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Abstract

This paper establishes the inferential theory for unbalanced panel data models with interac-

tive fixed effects. We propose a two-step estimation algorithm with the first step obtaining an

initial consistent estimator followed by an alternating maximization procedure. We prove that

the alternating maximization procedure is a contractionary mapping and the final estimator is

asymptotically normal, as long as the initial estimator is consistent. We also develop analytical

bias corrections according to the derived asymptotic bias expressions and the observed missing

pattern. Our results cover important missing patterns such as completely exogenous missing,

selection on regressors/factors/loadings and block/staggered missing, and we also show that our

results can be readily extended to cases with a Heckman correction term or more general set-

tings. An empirical analysis of the U.S. state-level tax rates from 1951 to 2000 with missing data

reveals persistence in tax rates, while state income influences different taxes in varying ways.
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1 Introduction

Factor model provides a parsimonious way to capture heterogeneous impacts of common shocks,

time-varying effects of individual heterogeneity and cross-sectional dependence. In the past two

decades panel data models with a factor error structure have experienced substantial development

and have been widely applied in asset pricing, applied micro and empirical macro studies. In

practice, it is quite common to encounter missing data. For example, the issues of attrition, sample

selection and non-response are well known in applied micro studies. Participants of surveys may

leave due to relocation, retirement or loss of interest. Participants may also skip sensitive questions

such as income, health status and family planning. In financial and macro studies, observations

may be missing due to company bankruptcy or mixed sampling frequency. In causal panel data, the

untreated potential outcomes after treatment are unobservable and the treatment adoption could be

simultaneous, staggered or switching on and off. See Verbeek and Nijman (1996), Baltagi and Song

(2006), Bańbura and Modugno (2014), Athey et al. (2021), Bai and Ng (2021), Jin et al. (2021) and

Agarwal et al. (2023) for detailed discussions.

While panel data models with interactive fixed effects (IFEs hereafter) are extensively studied

and missing data is common in practice, there is almost no formal research on unbalanced panel

with IFEs except for some simulation studies in Bai et al. (2015) and Czarnowske and Stammann

(2020). To fill the void, this paper studies the numerical convergence and asymptotic properties

of a two-step procedure for the estimation and inference of unbalanced panel with IFEs. In the

first step we perform nuclear norm regularized (NNR) quasi maximum likelihood estimation. In

the second step we use the first step estimator as initial value and maximize the quasi likelihood

function iteratively by alternating maximization between the regression coefficients and the factors

and loadings. We formally prove that the first step estimator is consistent and the second step as a

block Gauss-Seidel (or Jacobi) procedure is a contractionary mapping within a local neighborhood of

the true parameters. Then the convergence of the second step is guaranteed given the consistency

of the first step estimator. We also provide the details of the Alternating Direction Method of

Multipliers (ADMM) algorithm for computing the NNR estimator and prove the consistency of the

estimated number of factors.

We establish the convergence rate and the limit distribution of the second step estimator in

a unified framework that covers both static and dynamic panels and both random and block-type

missing patterns. For random missing, we allow the missing probabilities to be cross-sectionally and

serially heterogenous and correlated with the covariates, factors and loadings. We also allow the

missing indicators to be serially dependent, which is crucial when the panel data model is dynamic

and when the missing indicators of each individual follow a dynamic binary process, because in
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these cases the missing indicators are naturally serially dependent. Our assumptions on random

missing are relevant for survey data, asset pricing panels, recommendation system, switchback

digital platform experiments and other scenarios where the missingness arises from decision behavior

and/or the missing probability is correlated with the missing value itself. For block-type missing,

we only require that we have a positive fraction of completely observed individuals and a positive

fraction of completely observed periods. This includes exact block missing, staggered missing, mixed

frequency and regular missing as special cases, which are relevant for treatment effect estimation

and macro/financial applications. A fundamental difference between the random missing and the

block-type missing is that the latter does not treat the missing indicator as a random variable, since

the analysis is conditioned on the block-type missing pattern.

For all the above missing patterns, the second step estimator of the regression coefficients is

consistent and asymptotically normal but may have biases of the same asymptotic order as their

standard deviations as N (the number of individuals) and T (the number of periods) tend to

infinity jointly. The derived bias expressions show that the biases depend on the missing pattern

and consequently bias correction needs to be done according to the specific observed missing pattern.

Our simulation results indicate that when the missing probability is correlated with the factors and

loadings, rank estimation needs larger sample size and the bias tends to be larger compared to other

missing patterns. When there is no missing data, our bias expressions are the same as those in Bai

(2009) for static panels and in Moon and Weidner (2017) for dynamic panels.

As in Bai (2009) and Moon and Weidner (2017), we need to tackle the incidental parameter

problem resulting from estimating the factors and loadings. The main difficulty here is that explicit

expressions of the estimated regression coefficients and the estimated factors and loadings are no

longer available when there is missing data. Therefore we take asymptotic expansion of the first

order conditions and analyze the high dimensional Hessian and third order terms directly. This is

feasible since the IFEs model gives the Hessian and third order terms special structures that allow

us to decompose them and analyze their asymptotic behavior. We show that the upper bound of the

magnitude of third order terms is not affected by any missing pattern,1 but the Hessian structure

depends on the missing pattern. The assumptions we impose on the missing patterns are very

general but sufficient to ensure that missingness does not destroy the local concavity of the Hessian.

Related literature and contributions of this paper. First, there is a large literature on

panel data model with IFEs. Early studies consider GMM estimation under the large N fixed T

asymptotics; see, e.g., Holtz-Eakin et al. (1988), Ahn et al. (2001) and Ahn et al. (2013). Recent

developments can be broadly divided into two branches. One follows the common correlated effects

(CCE) approach of Pesaran (2006); see, e.g., Chudik and Pesaran (2015), Chudik and Pesaran

1See Lemma E.4 in the appendix.

2

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5177283

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



(2013), Westerlund and Urbain (2015), and Juodis and Sarafidis (2022). The other follows the

principal component analysis (PCA) approach of Bai (2009); see, e.g., Lu and Su (2016), Moon and

Weidner (2017), Shi and Lee (2017), Chen et al. (2021b) and Hong et al. (2023). As discussed in

Chudik and Pesaran (2013), computationally missing data is not an issue for the CCE estimators

since for unbalanced panels it is still straightforward to compute the cross-sectional averages of the

dependent variable and the covariates. However, when the missing probability is correlated with

the covariates/factors/loadings, it is no longer appropriate to put the cross-sectional averages in the

regression as proxies of the factors, since the relationship between the factors and the cross-sectional

averages are no longer stable over time.2 As far as we know, this topic has not been fully studied

in the literature. For the PCA approach, Bai (2009) remarks that one may modify the alternating

maximization (AM hereafter) procedure to handle unbalanced panel where the EM algorithm is

utilized to calculate the factors and loadings given the regression coefficients. However, the numerical

convergence and asymptotic properties of this modified procedure are totally unknown. This paper

proves that the modified AM procedure is guaranteed to converge and the regression coefficient

estimators are consistent and asymptotically normal under a wide variety of missing patterns, as

long as certain initial estimator is consistent. Also, the derived bias expressions show how the

biases depend on the missing pattern and provide guidance for bias corrections and randomized

experimental design.

When there is no missing data, iterative estimation of panel data models with IFEs has been

studied by Jiang et al. (2021), Moon and Weidner (2023) and Hong et al. (2023).3 In these pa-

pers, both the convergence proof of the alternating minimization and the asymptotic analyses rely

on the explicit expressions of the estimated regression coefficients and the estimated factors and

loadings, which are no longer available for unbalanced panels. Therefore, our convergence proof

and asymptotic analyses are totally new and generally applicable to various alternating maximiza-

tion/minimization problems.

Second, there is also a large literature on panel data models with missing data; see, e.g., Honoré

(1992), Hu (2002) and Honoré and Hu (2004) for censored panels and Wooldridge (1995), Wooldridge

(2019), Kyriazidou (1997), Kyriazidou (2001), Dustmann and Rochina-Barrachina (2007), Semykina

and Wooldridge (2010) and Semykina and Wooldridge (2013) for sample selection panels. These

studies focus on models with only individual effects under the large N and fixed T setup. However,

2See the footnote of Example 2 in Section 2 for details.
3Jiang et al. (2021) show that the regression coefficient estimators in all iterations are consistent and asymptotically

normal if the initial estimator is consistent, but they may be inconsistent for arbitrary initial estimators unless
the regressors satisfy some restrictive conditions. Moon and Weidner (2023) propose to use NNR estimator as the
consistent initial estimator and show that alternating minimization in the second step converges to the local minimum.
Hong et al. (2023) propose a two-step profile GMM estimation for panel data models with IFEs and endogenous
regressors and also prove the convergence of the alternating minimization in the second step.
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in addition to the individual effects, in many cases the sample selection process is also affected by

common shocks such as business cycles, technology progresses and treatment adoption designs. For

some technical reasons,4 sample selection panels with both individual and time fixed effects are

rarely studied. Instead, recent progresses on the two-way fixed effects (TWFE) panel regression

focus on the block/staggered missing patterns to make inference on heterogenous treatment effect;

see, e.g., de Chaisemartin and d’Haultfoeuille (2020), Goodman-Bacon (2021), Sun and Abraham

(2021), Callaway and Sant’Anna (2021), Borusyak et al. (2024), Athey and Imbens (2022) and

Arkhangelsky and Imbens (2024).5 Given these previous studies, this paper shows that IFEs provide

a more general way to capture time-varying latent confounders in panel data sample selection

models. We prove that the regression coefficient estimator has no selection bias as long as the latent

confounders that affect both the outcome and the treatment indicator can be captured by a factor

structure. Based on our asymptotic analysis, it’s not difficult to further extend the results to allow

the error terms in the selection equation and the main equation to be correlated, say, by adding

a Heckman correction term under some distributional assumptions. To crystallize our asymptotic

analyses and stay focused, we do not pursue this extension formally in this paper. In addition, IFEs

also help to relax the parallel trend assumption in the TWFE panel literature; see Callaway and

Karami (2023) and the references therein.

Third, while we focus on linear panel with IFEs, our analyses for the numerical convergence and

the asymptotic properties are prototypical for fixed effects estimation of unbalanced panels. We

prove that the AM procedure is a contractionary mapping as long as the Hessian is locally concave,

and our proof can be readily extended to other settings such as nonlinear panels, TWFE models,

grouped fixed effects models and other missing patterns. The asymptotic distribution and bias of

the QMLE under these settings can also be derived following similar steps as used in our analyses.

As discussed in Fernández-Val and Weidner (2018), many panel data estimators have computation

packages/solutions for the corresponding unbalanced cases, but there is no formal study that proves

the asymptotic validity of these estimators for the unbalanced case under the relevant missing

conditions, or extends the bias corrections to the unbalanced case. This paper seeks to fill this gap.

We show that the asymptotic theory for the unbalanced panels is nontrivial, especially when we

deviate from the case of completely random missing. The bias corrections also need to take the

4For example, as pointed out in Charbonneau (2017), under the large N fixed T asymptotics, Manski (1987)’s
maximum score estimator for binary response panels cannot be extended to settings with both individual and time
effects. The presence of time effects also makes it harder to difference out the sample selection correction term.
The difficulites are partially circumvented by the large N large T asymptotics and recent progress are made in
Hahn and Moon (2006), Moon and Weidner (2017), Fernández-Val and Weidner (2016) and Chen et al. (2021b)
for dynamic/nonlinear panels with two way/interactive fixed effects. Fernández-Val and Vella (2011) study sample
selection panels under the large N large T asymptotics but still only consider individual effects.

5The main focus of these papers is on the relationship between the TWFE and the DID estimator under heteroge-
nous treatment effects.
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specific missing patterns into account.

Outline. The rest of the paper is structured as follows. Section 2 introduces the notations

and the missing patterns. Section 3 presents the estimation procedure and the relevant technical

details. Section 4 presents the limit distribution of the proposed estimator and the analytical bias

corrections. Section 5 discusses the Heckman correction for the sample selection with IFEs. Section

6 presents the simulation results. Section 7 presents an application to the US state tax data. Section

8 concludes. All proofs are relegated to the online appendix.

Notation. Let (N,T ) → ∞ denote N and T going to infinity jointly and cNT = min{N
1
2 , T

1
2 }.

p→ and
d→ denote convergence in probability and distribution, respectively. “w.p.a.1” denotes with

probability approaching 1. For real numbers a and b, a ∨ b = max{a, b} and a ∧ b = min{a, b}.

∥·∥ denotes the Euclidean norm for vector and spectral norm for matrix. ∥·∥∗, ∥·∥max and ∥·∥F
denote the nuclear norm, max norm and Frobenius norm, respectively. σmin(·) denotes the smallest

eigenvalue. Denote [n] = {1, · · · , n} for any positive integer n. M denotes some large positive

constant that may vary throughout the paper.

2 Model Setup

Consider the following panel data model with IFEs and missing values:

yit = dit(x
′
itβ

0 + f0′t λ
0
i + vit) for i ∈ [N ] and t ∈ [T ], (2.1)

dit = 1 {yit and xit are observable} ,

where f0t is the r-dimensional unobservable factor at time t, λ0i is the r-dimensional unobservable

loading of unit i, r is the number of factors, xit = (xit1, ..., xitK)′ is the K-dimensional vector of

regressors, β0 is the K-dimensional regression coefficients, vit is the error term, and 1 {·} denotes

the indicator function. r and K are fixed as (N,T ) → ∞. We assume r is known for the moment

and then propose a consistent estimator for r in Section 3.3. Our objective is to estimate β0 based

on the unbalanced panel data and study its asymptotic properties. The IFEs model allows us

to incorporate heterogeneous impacts of common shocks f0t and time-varying effects of individual

heterogeneities λ0i , and the common shocks and the individual heterogeneities are allowed to be

correlated with the regressors xit. We allow xit to contain lagged dependent variables, and thus

our results are valid for both static and dynamic panels. We also allow xit to contain low-rank

regressors provided some regularity conditions are satisfied.

Let λ = (λ′1, ..., λ
′
N )′, f = (f ′1, ..., f

′
T )′, Λ = (λ1, ..., λN )′, F = (f1, ..., fT )′ and Θ = FΛ′. For

notational simplicity, we also define ϕ = (λ′, f ′)′ and γ = (β′, λ′, f ′)′. Note that the dimensions of
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λ, f , Λ, F , Θ, ϕ and γ are Nr×1, Tr×1, N×r, T ×r, T ×N , (Nr+Tr)×1 and (K+Nr+Tr)×1,

respectively. We use β0, λ0, f0, Λ0, F 0, Θ0, ϕ0 and γ0 to denote the true parameter values.

In addition, let Eϕ denote the expectation conditioning on the factors and loadings ϕ0, Φit =

Eϕ(dit) and d̃it = dit−Φit. For k ∈ [K], let δ0ki and ω0
kt be the solution of the following least squares

problem:

min
{δki, ωkt}

∑N

i=1

∑T

t=1
Eϕ(dit)

∥∥∥∥Eϕ(ditxitk)

Eϕ(dit)
− δ′kif

0
t − ω′

ktλ
0
i

∥∥∥∥2 , (2.2)

and let δ0i and ω0
t denote K × r matrices such that δ0ki and ω0

kt are the transpose of the k-th row of

δ0i and ω0
t , respectively. Now we present the missing pattern conditions considered in this paper.

Assumption 1 (i) For the random missing, d̃it is independent across i conditioning on ϕ0 and

d̃it is independent with vjs for all i, t, j, s; Φit is independent with vjs and mini,t Φit ≥ d > 0;

1
T

∑T
s=1

∑T
t=1 γNd (t, s) ≤ M where γNd (t, s) = 1

N

∑N
i=1 |Eϕ(d̃itd̃is)|; for some κ with N

1
κ√
T

→

0 and T
1
κ√
N

→ 0, E( 1
N

∑N
i=1

∥∥∥ 1√
T

∑T
t=1 d̃itf

0
t f

0′
t

∥∥∥κ) ≤ M , E( 1
T

∑T
t=1

∥∥∥ 1√
N

∑N
i=1 d̃itλ

0
iλ

0′
i

∥∥∥κ) ≤ M ,

E( 1
N

∑N
i=1

∥∥∥ 1√
T

∑T
t=1 d̃itf

0
t ω

0′
kt

∥∥∥κ) ≤M and E( 1
T

∑T
t=1

∥∥∥ 1√
N

∑N
i=1 d̃itλ

0
i δ

0′
ki

∥∥∥κ) ≤M .

(ii) For the block-type missing, {dit : i ∈ [N ] and t ∈ [T ]} is nonrandom, dit = 1 for i ≤ No or

t ≤ To and no restrictions on dit for i > No and t > To, where No and To denotes the number of

fully observed columns and rows, respectively. As (N,T ) → ∞, both No/N and To/T are bounded

away from zero, and both σmin( 1
T

∑To
t=1 f

0
t f

0′
t ) and σmin( 1

N

∑No
i=1 λ

0
iλ

0′
i ) are bounded away from zero

in probability.

Assumption 1(i)–(ii) covers the random missing and the block-type missing, respectively. Our

results require either Assumption 1(i) or 1(ii) but not both. The main difference between these two

types of missing is that dit is a random variable in Assumption 1(i) while in Assumption 1(ii) dit is

treated as a given nonrandom variable. Consequently, Eϕ(dit) ≥ d > 0 for all i and t under random

missing while under block-type missing Eϕ(dit) = 0 for the missing observations. For both types of

missing patterns, dit is assumed to be independent with vjs for all (i, j) and (t, s). If dit is correlated

with vjs conditioning on the factors and loadings, then additional procedures are needed to correct

the sample selection bias, say, via Heckman corrections or propensity-score-based methods. Our

results provide the tools for these further generalizations. See the discussion on missing patterns in

Su and Wang (2024) from the perspective of a pure factor model.

Assumption 1(i) allows Eϕ(dit) to vary across i and t and correlate with λ0j and f0s for some

(j, s), i.e., missingness can depend endogenously on multiple time-varying individual effects. For

example, firms are more likely to bankrupt and drop out of the panel during economic recessions.

Workers’ decision to work and wage rates are correlated with both workers’ individual characteristics

and macroeconomic shocks. The estimated regression coefficients would be inconsistent if we only
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include individual effects in the regression while the true model contains IFEs. Thus the IFEs

provides us a more general way to capture latent confounders. Assumption 1(i) also allows d̃it

to be weakly dependent across t conditioning on ϕ0 in the sense that the moment conditions in

Assumption 1(i) are satisfied if d̃it is weakly dependent across t. These moment conditions are what

we need in the proof and can be verified once we impose specific models on dit. Some important

examples of the models of dit under Assumption 1(i) are listed below.

Example 1 (Completely random missing): dit is independent across i and t and indepen-

dent with the factors, loadings and error terms.

Example 2 (Selection on covariates/factors/loadings): dit follows a binary process for

each i, where Eϕ(dit) may depend on the factors and loadings, di,t−1 and some observable variables.6

Specifically, consider the case where d∗it = z′itδ
0 + g0′t α

0
i + uit and dit = 1 {d∗it > 0}, where zit may

contain xit, yi,t−1, di,t−1 and other observable variables, g0t and α0
i denote some latent factors

and loadings and uit is the error term. zit, g
0
t and α0

i could be correlated with f0t and λ0i ; uit is

independent with vit and both are independent with zit, g
0
t and α0

i . Clearly, d̃it is dependent across

t conditioning on ϕ0 if uit is independent across i and t and zit contains yi,t−1 or di,t−1. A special

case is d∗it = di,t−1δ
0 + f0′t λ

0
i + uit and uit is independent across i and t. In this case dit is a first

order Markov process, which is relevant for the switchback missing pattern in the high-tech industry

experiments.

Example 3 (Dynamic panel): Without loss of generality, consider the case xit = yi,t−1. Let

dyit = 1 {yit is observable} . Then we have dit = 1 {yit and xit are observable} = dyitd
y
i,t−1. Suppose

dyit is independent across i and t conditioning on ϕ, then dit is correlated with di,t−1 but uncorrelated

with di,t−l for l ≥ 2.7 Thus for dynamic panels it is crucial to allow dit to be weakly dependent

across t conditioning on ϕ0.

Assumption 1(ii) requires that we have a positive fraction of completely observed individuals

and a positive fraction of completely observed periods. Under Assumption 1(ii) our results are also

valid for dynamic panels, since {dit : i ∈ [N ] and t ∈ [T ]} are treated as nonrandom and the error

vit has mean zero for those (i, t) with dit = 1. In the following we list some important special cases

of the block-type missing.

Example 4 (Exact block missing): dit = 1 for i ≤ No or t ≤ To, and dit = 0 for i > No

and t > To. Both No/N and To/T are bounded away from zero.

6For the CCE approach, it may not be appropriate to use the cross-sectional averages as proxies for the factors.
Suppose xit = λx′

i f0
t + vxit, then x̄′

t =
∑N

i=1 ditx
′
it/

∑N
i=1 dit

p→ f0′
t

∑N
i=1 Eϕ(dit)λ

x
i /

∑N
i=1 Eϕ(dit) under some condi-

tions. If Eϕ(dit) is correlated with λx
i and heterogenous over t, the coefficient

∑N
i=1 Eϕ(dit)λ

x
i /

∑N
i=1 Eϕ(dit) may not

be stable over t.
7Eϕ(ditdi,t−1) = Eϕ(d

y
it)Eϕ[(d

y
i,t−1)

2]Eϕ(d
y
i,t−2) ̸= Eϕ(d

y
it)[Eϕ(d

y
i,t−1)]

2Eϕ(d
y
i,t−2) = Eϕ(dit)Eϕ(di,t−1). But for l ≥

2, Eϕ(ditdi,t−l) = Eϕ(d
y
itd

y
i,t−1d

y
i,t−ld

y
i,t−l−1) = Eϕ(d

y
itd

y
i,t−1)Eϕ(d

y
i,t−ld

y
i,t−l−1) = Eϕ(dit)Eϕ(di,t−l).
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Example 5 (Mixed frequency/regular missing): dit = 1 for i ≤ No and all t. dit = 0 if

i > No and t/h is not an integer, where No is the number of high frequency series and h is the

frequency ratio (e.g., h = 3 for the case of mixed monthly-quarterly data).

Example 6 (Staggered missing): dit = 1 for i ≤ No and all t. dit = 1 for i > No and

t ≤ Toi, where Toi is the largest t with dit = 1. To = minToi and both No/N and To/T are bounded

away from zero. Here {Toi, i ∈ [N ]} is considered as fixed. In comparison, in Athey and Imbens

(2022) the design based analysis for the TWFE estimator under staggered adoption considers Toi

as a random variable. They show that the DID estimator is an unbiased estimator of a particular

weighted average causal effect under random assignment of Toi. It would be interesting to extend

our results to the design-based settings.

3 The Estimation Procedure

To estimate the regression coefficient vector β0, we consider a two-step procedure where in the first

step we construct a consistent initial estimator of β0 and in the second step we use this estimator

as the initial value to maximize the quasi log-likelihood function

L(β, λ, f) = −1

2

∑N

i=1

∑T

t=1
dit(yit − x′itβ − f ′tλi)

2 (3.1)

by alternating maximization between the regression coefficients and the factors and loadings. We

shall prove the numerical convergence of this two-step procedure in three parts. In Part 1 we

show that there exists a unique solution for S(γ) = 0 within the local neighborhood of the true

parameters γ0 = (β0′, λ0′, f0′)′, where S(·) is the score function. In Part 2 we show that within

the local neighborhood of γ0 the alternating maximization procedure is a contractionary mapping

towards the solution of S(γ) = 0. In Part 3 we show that the nuclear norm regularized estimator is

consistent and hence lies in the local neighborhood of γ0 w.p.a.1. These three parts jointly imply

that the two-step procedure is guaranteed to converge to the solution of S(γ) = 0. To present the

details for these three parts, we make some assumptions.

Below, we use M > 0 to denote a generic constant that may vary across places.

Assumption 2 (i) 1
T F

0′F 0 p→ ΣF > 0 and
∥∥f0t ∥∥ ≤M for all t; (ii) 1

N Λ0′Λ0 p→ ΣΛ > 0 and
∥∥λ0i ∥∥ ≤

M for all i; (iii) The eigenvalues of the r × r matrix ΣFΣΛ are different.

Assumption 2(i)-(ii) assume that the factors are pervasive and the factors and loadings are uni-

formly bounded, as in Bai and Li (2014), Ando and Bai (2020) and Chen et al. (2021a). In the

matrix completion literature, the uniform boundedness of f0t and λ0i is referred to as the incoherence
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condition and helps to verify the restricted strong convexity condition for the nuclear norm regular-

ized estimation; see, e.g., Negahban and Wainwright (2011), Negahban and Wainwright (2012) and

Chernozhukov et al. (2023). Assumption 2(iii) is a standard condition for identifying the factors

and loadings from the common components.

Assumption 3 (i) (a) plim 1
NT

∑N
i=1

∑T
t=1 xitx

′
it is positive definite (p.d.) and (b)Wx ≡ plim 1

NT

∑N
i=1∑T

t=1 ditẋitẋ
′
it is p.d., where ẋit = (ẋit1, ..., ẋitK)′ and ẋitk = xitk − (δ0′kif

0
t + ω0′

ktλ
0
i );

(ii) E(∥xit∥ϱ) ≤M for all i and t and some ϱ ≥ 8;

(iii) E(|| 1√
T

∑T
t=1[ditxit−Eϕ(ditxit)]f

0′
t ||2F ) ≤M for all i, E(|| 1√

N

∑N
i=1[ditxit−Eϕ(ditxit)]λ

0′
i ||2F ) ≤

M for all t; and E(|| 1
NT

∑N
i=1

∑T
t=1[ditxitx

′
it − Eϕ(ditxitx

′
it)]||2F ) = o(1).

The first part of Assumption 3(i) is a standard noncollinearity condition and is implied by the

second part. We state it separately since it is already sufficient in some steps of the proof. The

second part of Assumption 3(i) requires the regressors to be noncollinear after projecting out the

true factors and true loadings, where the projection is as defined in (2.2).8 The second part of

Assumption 3(i) is crucial for both the local identification of β0 and the numerical convergence

of the alternating maximization within the local neighborhood of the true parameters. Note that

Wx can be p.d. even if xit contains some low-rank regressors. Nevertheless, Assumption 3(i) is

not enough for the global identification in the presence of low-rank regressors; see Appendix S.3

of Moon and Weidner (2017) for detailed explanations when there is no missing data. To achieve

global identification, we use the nuclear norm regularized estimation to obtain an initial consistent

estimator, which is a popular approach in the literature on low-rank estimation.

Assumption 3(ii) requires xit to have bounded moments. Assumption 3(iii) requires that ditxit

and ditxitx
′
it be weakly dependent across i and t conditioning on ϕ0. If dit is nonrandom (see

Assumption 1(ii)), we only need xit to be weakly dependent across i and t conditioning on ϕ0,

which is also assumed in Assumption 5(iii)-(iv) of Moon and Weidner (2017) for dynamic panels.

Assumption 4 (i) E(|vit|ζ) ≤M for all i and t and some ζ > 8;

(ii) maxs γN (s, s) ≤M and 1
T

∑T
s=1

∑T
t=1 |γN (s, t)| ≤M where γN (s, t) = 1

N

∑N
i=1 E(disvisditvit);

(iii) For every (t, s), E{ 1√
N

∑N
i=1[disvisditvit − E(disvisditvit)]}2 ≤M .

Assumption 4(i) requires vit to have bounded ζ-th order moments. Assumption 4(ii)-(iii) im-

poses weak dependence condition on {ditvit} along the time and cross-sectional dimensions. These

conditions reduce to Assumption C in Bai (2003) when dit = 1 for all i and t.

8When dit is treated as nonrandom, we have Eϕ(dit) = dit and Eϕ(ditxitk) = ditEϕ(xitk), then δ0ki and ω0
kt are the

solution of min{δki,ωkt}
∑N

i=1

∑T
t=1 dit(Eϕ(xitk)− δ′kif

0
t − ω′

ktλ
0
i )

2.
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Assumption 5 (i) E( 1
NT

∑T
t,s=1

∑N
i=1 |Eϕ(ditvitdisvis)|) ≤M and E( 1

NT

∑N
i,j=1

∑T
t=1 |Eϕ(ditvitdjtvjt)|)

≤M ;

(ii) E(vitxitdit) = 0 and E(|| 1√
NT

∑N
i=1

∑T
t=1 xitditvit||2) ≤M .

Assumption 5(i) imposes additional weak dependence conditions on {ditvit} along the time and

cross-sectional dimensions. These conditions reduce to Assumption D Bai (2003) when dit = 1 for

all i and t. Assumption 5(ii) allows xit to be either strictly exogenous or weakly exogenous as in

dynamic panels, but we do not need to assume vit to be independent across (i, t). In contrast, Moon

and Weidner (2017) directly assumes that vit is independent across (i, t) in dynamic panels.

3.1 Existence of the Local Critical Point

The criterion function for the estimation is Q(β, λ, f) = L(β, λ, f) +G(λ, f), where

G(λ, f) = − c
2
NT

∑r

p=1

∑r

q=1
(

1

N

∑N

i=1
λ0iqλip −

1

T

∑T

t=1
f0tpftq)

2, (3.2)

c is an arbitrary positive constant and L(β, λ, f) is the quasi log-likelihood function defined in (3.1).

Note that the solution of maximizing L(β, λ, f) is not unique since for any (λ, f) and any r × r

invertible matrix Π, we have f ′tλi = (Π′ft)
′Π−1λi for all i and t. To ensure the uniqueness of

the solution, we add the penalty G(λ, f) to L(β, λ, f) so that maximizing Q(β, λ, f) is equivalent

to picking up the solution that satisfies 1
N

∑N
i=1 λ

0
iqλip = 1

T

∑T
t=1 f

0
tpftq for all p, q ∈ [r] from the

many solutions of maximizing L(β, λ, f). Such a set of normalization conditions impose exactly

r2 restrictions for the identification of (λ0, f0) despite it is somewhat infeasible.9 We assume that

the true parameters (λ0, f0) satisfy these restrictions. If not, we can redefine the true parameters

without changing the product f0′t λ
0
i for all i and t.

Recall that ϕ = (λ′, f ′)′ and γ = (β′, λ′, f ′)′. Let S(γ) = ∂γQ(γ) denote the score function of

Q(γ) and Qγγ′(γ) = ∂γγ′Q(γ) denote the Hessian. Specifically, we introduce the following notations:

Sβ(γ) = ∂βQ(γ), Sλi
(γ) = ∂λi

Q(γ), Sft(γ) = ∂ftQ(γ),

Sλ(γ) = (Sλ1(γ)′, ..., SλN
(γ)′)′, Sf (γ) = (Sf1(γ)′, ..., SfT (γ)′)′,

Sϕ(γ) = (Sλ(γ)′, Sf (γ)′)′, S(γ) = (Sβ(γ)′, Sϕ(γ)′)′,

Qββ′(γ) = ∂ββ′Q(γ), Qβϕ′(γ) = ∂βϕ′Q(γ), and Qϕϕ′(γ) = ∂ϕϕ′Q(γ).

We suppress the argument when the score and the Hessian are evaluated at the true parameter

9In matrix form, the restrictions can be written as 1
N

∑N
i=1 λ

0
iλ

′
i = 1

T

∑T
t=1 ftf

0′
t . This type of restrictions is

inspired by Chen et al. (2021b). Compared to the restrictions in Su and Wang (2024), the benefit of this type of
restrictions is a simpler Hessian structure, while the cost is that it is computationally infeasible since f0

t and λ0
i are

unobservable. See Section 3.2 for the computation details.
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values, i.e., Sϕ = Sϕ(γ0), Qϕϕ′ = Qϕϕ′(γ0), and so on. We shall show that S(γ) = 0 has a unique

solution in the interior of the local region Bm(γ0) of γ0, where

Bm(γ0) = {γ ∈ RK+Nr+Tr :
∥∥β − β0

∥∥ ≤ m,
1√
N

∥∥λ− λ0
∥∥ ≤ m and

1√
T

∥∥f − f0
∥∥ ≤ m} (3.3)

and m > 0 is a small but fixed constant. Bm(γ0) is large enough to contain the initial consis-

tent estimator without imposing any requirements on the convergence rate of the initial estima-

tor. If
∥∥∥β̂(0) − β0

∥∥∥ = op(1),
∥∥∥λ̂(0) − λ0

∥∥∥ = op(
√
N) and

∥∥∥f̂ (0) − f0
∥∥∥ = op(

√
T ), then obviously

(β̂
(0)′
, λ̂

(0)′
, f̂ (0)′)′ ∈ Bm(γ0) w.p.a.1. In addition, Bm(γ0) is small enough to guarantee that the

Hessian matrix of Q(γ) is well-behaved inside this region, as shown in the following proposition.

Proposition 3.1 Let DNT =

[
N × INr 0

0 T × ITr

]
and DTN =

[
T × INr 0

0 N × ITr

]
. Under

Assumptions 1–4, there exist m > 0 and C > 0 such that as (N,T ) → ∞,

(i) min
γ∈Bm(γ0)

σmin(−D− 1
2

TNQϕϕ′(γ)D
− 1

2
TN ) ≥ C w.p.a.1,

(ii) min
γ∈Bm(γ0)

σmin(− 1
NT [Qββ′(γ) −Qβϕ′(γ)(Qϕϕ′(γ))−1Qϕβ′(γ)]) ≥ C.

Proposition 3.1 shows that the normalized Hessian matrix is negative definite uniformly within

Bm(γ0). This result could also be generalized to other missing patterns following a similar proof

of Proposition 3.1. DNT and DTN are designed such that the eigenvalues of −D− 1
2

TNQϕϕ′(γ)D
− 1

2
TN

have the same asymptotic order even when N and T tend to infinity at different rates. Based on

Proposition 3.1, we can prove the following important theorem.

Theorem 3.1 Under Assumptions 1–5, there exists a unique solution for S(γ) = 0 in the interior of

Bm(γ0). Let γ̂ = (β̂
′
, ϕ̂

′
)′ = (β̂

′
, λ̂

′
, f̂ ′)′ denote this solution. Then we also have

∥∥∥β̂ − β0
∥∥∥ = Op(

1
cNT

),∥∥∥ 1√
N

(λ̂− λ0)
∥∥∥ = Op(

1
cNT

) and
∥∥∥ 1√

T
(f̂ − f0)

∥∥∥ = Op(
1

cNT
), where recall that cNT = N

1
2 ∧ T

1
2 .

Given Theorem 3.1, we define γ̂ as our estimator for γ0 = (β0′, λ0′, f0′)′. The condition S(γ̂) = 0

allows us to take Taylor expansions for the asymptotic analysis in Section 4, and is also crucial

for proving that γ̂ is the convergence target of the alternating maximization procedure. Since

Proposition 3.1 implies that Qγγ′(γ̂) is negative definite, γ̂ is also the local maximum in Bm(γ0).

Note that in general the local maximum could be on the boundary of the local region, Theorem 3.1

implies that the local maximum in Bm(γ0) is an interior point.

3.2 Convergence of the Alternating Maximization Procedures

In this subsection we show that the alternating maximization algorithm is a contractionary mapping

towards γ̂ within Bm(γ0). First, we present the algorithm as follows.

11
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Algorithm 1

1. Obtain an initial consistent estimate (β̂
(0)′
, ϕ̂

(0)′
)′. Let ϕ̃

(0)
= ϕ̂

(0)
.

2. At step k ≥ 0, given β̂
(k)

, use ϕ̃
(k)

as the initial value and the EM algorithm to calculate

ϕ̃
(k+1) ≡ (λ̃

(k+1)′
, f̃ (k+1)′)′ = arg max(λ,f) L(β̂

(k)
, λ, f). More specifically, for h = 0, 1, 2, ....,

let f̃
(k,0)
t = f̃

(k)
t and λ̃

(k,0)
i = λ̃

(k)
i , and let y

(k,h)
it = yit − x′itβ̂

(k)
if dit = 1, y

(k,h)
it = f̃

(k,h)′
t λ̃

(k,h)
i

if dit = 0. Let y(k,h) denote the T × N matrix with y
(k,h)
it as the (t, i)-th element. Then

F̃ (k,h+1) = (f̃
(k,h+1)
1 , ..., f̃

(k,h+1)
T )′ are

√
T times the eigenvectors of y(k,h)y(k,h)′ corresponding

to the rth largest eigenvalues and Λ̃(k,h+1) = (λ̃
(k,h+1)
1 , ..., λ̃

(k,h+1)
N )′ = 1

T y
(k,h)′F̃ (k,h+1). Iterate

h = 0, 1, 2, .... until convergence.

3. Given ϕ̃
(k+1)

, calculate β̂
(k+1)

= arg maxβ L(β, λ̃
(k+1)

, f̃ (k+1)). The solution is β̂
(k+1)

=

(
∑N

i=1

∑T
t=1 ditxitx

′
it)

−1
∑N

i=1

∑T
t=1 dit(yit − f̃

(k+1)′
t λ̃

(k+1)
i ).

4. Iterate between step 2 and step 3 until convergence and obtain the estimator (β̂, ϕ̃).

Remark 3.1 In Algorithm 1, k is the index for the outer loop while h is the index for the inner

loop that carries out the EM. The difference between Algorithm 1 and the algorithm in Appendix B

of Bai (2009) for unbalanced panels is that Algorithm 1 starts from consistent initial estimates while

that in Bai (2009) starts from random initial values. This difference is crucial for the convergence

analysis. In fact, Bai (2009) did not provide any convergence analysis or study the asymptotic

properties of his estimator for unbalanced panels.

Remark 3.2 In Algorithm 1, the EM algorithm for calculating ϕ̃
(k+1)

given (β̂
(k)
, ϕ̃

(k)
) can be

replaced by a gradient descent algorithm or some other algorithm to handle ultra large data sets,

where even singular value decomposition is slow.

Remark 3.3 Given β̂
(k)

, since L(β̂
(k)
, λ, f) = −1

2

∑N
i=1

∑T
t=1 dit(yit−x′itβ̂

(k)−f ′tλi)2 only depends

on the product f ′tλi and f ′tλi = (Π′ft)
′Π−1λi for any invertible r × r matrix Π, the solution of

maximizing L(β̂
(k)
, λ, f) is not unique. Among all the solutions of maximizing L(β̂

(k)
, λ, f), there

is only one solution such that G(λ, f) = 0, denote this solution as

ϕ̂
(k+1)

= (λ̂
(k+1)′

, f̂ (k+1)′)′ = arg max
λ,f

L(β̂
(k)
, λ, f) +G(λ, f). (3.4)

Since the objective function for the alternating maximization is Q(β, λ, f) = L(β, λ, f) +G(λ, f) in

Step 2 of Algorithm 1, we are supposed to compute (λ̂
(k+1)

, f̂ (k+1)) rather than (λ̃
(k+1)

, f̃ (k+1)). How-

ever, this does not affect the computation of β̂
(k+1)

in Step (3) of Algorithm 1 since f̃
(k+1)′
t λ̃

(k+1)
i =

12
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f̂
(k+1)′
t λ̂

(k+1)

i for all (t, i). In summary, algorithm 1 produces (β̂, ϕ̃) while the asymptotic analysis

focuses on (β̂, ϕ̂).

An important observation is that the alternating maximization in Algorithm 1 is a block Gauss-

Seidel procedure and the Hessian is negative definite, symmetric and approximately constant within

Bm(γ0).10 This observation allows us to prove the following theorem.

Theorem 3.2 Suppose that Assumptions 1-5 hold and (β̂
(0)′
, ϕ̂

(0)′
)′ ∈ Bm(γ0). Then

∥∥∥β̂(k+1) − β̂
∥∥∥ <

ψ
∥∥∥β̂(k) − β̂

∥∥∥ for some 0 < ψ < 1, implying that
∥∥∥β̂(k) − β̂

∥∥∥→ 0 and
∥∥∥ϕ̂(k) − ϕ̂

∥∥∥→ 0 as k → ∞.

Theorem 3.2 shows that if the initial estimate (β̂
(0)′
, ϕ̂

(0)′
)′ lie in the region Bm(γ0), then∥∥∥β̂(k) − β̂

∥∥∥ converges to zero with a linear speed.11 Note that the convergence of (β̂
(k)′
, ϕ̂

(k)′
)′

does not rely on the convergence rate of (β̂
(0)
, ϕ̂

(0)
). This gives us plenty of freedom in constructing

the initial estimator, since we can put aside the efficiency and inference concerns and focus on the

consistency and computational convenience. For example, we can use a small but balanced part of

the unbalanced panels to obtain the initial consistent estimates as in Bai and Ng (2021) for the case

of pure factor models.

The proof of Theorem 3.2 applies in spirit to other settings such as nonlinear panels, two-way

fixed effects models and other missing patterns. All we need to do is to verify the local concavity

of the Hessian matrix in these settings. For example, the Hessian of nonlinear panel with two-way

additive or interactive fixed effects is locally concave when there is no missing data, so we just need

to verify this is still true under the missing patterns of Assumption 1 or other patterns of interest.

Similarly, Theorem 3.1 also can be readily extended to these settings.

The convergence of the Gauss-Seidel procedure in the current context suggests that the Jacobi

procedure should also converge. The details are as follows.

Algorithm 2

1. Obtain an initial consistent estimate (β̂
(0)′
, ϕ̂

(0)′
)′. Let ϕ̃

(0)
= ϕ̂

(0)
.

2. At step k ≥ 0, given β̂
(k)

, use ϕ̃
(k)

as the initial value and the EM algorithm to calculate

ϕ̃
(k+1)

= (λ̃
(k+1)′

, f̃ (k+1)′)′ = arg max(λ,f) L(β̂
(k)
, λ, f).

3. Given ϕ̃
(k)

, obtain β̂
(k+1)

= arg maxβ L(β, λ̃
(k)
, f̃ (k)). The solution is β̂

(k+1)
= (
∑N

i=1

∑T
t=1 ditxitx

′
it)

−1∑N
i=1

∑T
t=1 dit(yit − f̃

(k)′
t λ̃

(k)
i ).

10See Golub and Van Loan (2013) and Hackbusch (2016) for textbook introductions for the Gauss-Seidel procedure.
11Iterative estimation is very common in the machine learning literature. A good initial value is sometimes called

a warm start, which is crucial for large scale nonconvex optimization.
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4. Repeat step 2 and step 3 until β̂
(k)

and ϕ̃
(k)

converge.

The difference between Algorithm 1 and Algorithm 2 lies in the third step, where the former uses

ϕ̃
(k+1)

to calculate β̂
(k+1)

while the latter uses ϕ̃
(k)

. As explained in Remark 3.3, the alternating

maximization produces (β̂
′
, ϕ̃

′
)′ while the asymptotic analysis focuses on (β̂

′
, ϕ̂

′
)′. Here, (β̂

′
, ϕ̂

′
)′ is

the convergence target of (β̂
(k+1)′

, ϕ̂
(k+1)′

)′ :

ϕ̂
(k+1)

= arg max
β

L(β̂
(k)
, ϕ) +G(ϕ) and β̂

(k+1)
= arg max

β
L(β, ϕ̂

(k)
). (3.5)

Corollary 3.1 Suppose Assumptions 1-5 hold and (β̂
(0)′
, ϕ̂

(0)′
)′ ∈ Bm(γ0). Then (β̂

(k)′
, ϕ̂

(k)′
)′ as

defined in (3.5) converges to (β̂
′
, ϕ̂

′
)′ as k → ∞ in the sense

∥∥∥β̂(k) − β̂
∥∥∥→ 0 and

∥∥∥ϕ̂(k) − ϕ̂
∥∥∥→ 0.

Similarly, other variants of alternating maximization such as the Richardson iteration and the

successive over-relaxation also can be developed to accelerate the convergence speed or implement

parallel computation. We may also iterate between β, λ and f by dividing the Hessian matrix into

3 × 3 blocks. These extensions are valuable for ultra large data sets and is left for future research.

3.3 The Initial Consistent Estimator

In this subsection we present the details of the nuclear norm regularized (NNR) approach for

consistent initial estimation. Since the 2018 working paper version of Moon and Weidner (2023)

introduced the NNR approach to the econometrics literature, similar regularizations have been

used in many other contexts such as network structures, panel quantile regressions, grouped fixed

effects panels, panel threshold models, high-dimensional VAR and conditional factor models; see

the references in Moon and Weidner (2023). The popularity is mainly due to the global convexity of

the NNR objective function. As emphasized in Moon and Weidner (2023), another advantage of the

NNR approach is that it allows for low-rank regressors. In this paper we propose to apply the NNR

approach to obtain the initial estimate for the unbalanced panels. It is useful to emphasize that

the NNR approach is just one choice for consistent initial estimation. In practice, another potential

choice is to obtain initial estimates from a small but balanced part of the unbalanced panel.

For the random missing case (Assumption 1(i)), we obtain the NNR estimator as

(β̂
(0)
, Θ̂(0)) = arg min

β,Θ

1

2

N∑
i=1

T∑
t=1

dit(yit − Θit − x′itβ)2 + νNT ∥Θ∥∗ , (3.6)

where νNT is a tuning parameter.12 We choose to use the ADMM algorithm to solve this optimiza-

12The tuning parameter νNT is a critical component in model optimization, as it directly induces the low-rank
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tion problem; see Appendix H in the online supplement for details. With Θ̂(0), let Û (0), V̂(0) and

Σ̂(0) denote the first r left singular vectors, the first r right singular vectors and the r × r diagonal

matrix that contains first r singular values of Θ̂(0) ordered in descending order along its diagonal

line, respectively. Then we define f̂ (0) =
√
T Û (0) and λ̂

(0)
=

√
N V̂(0)Σ̂(0). The number of factors r

is estimated via singular value thresholding:

r̂ =
N∧T∑
s=1

1

σs( Θ̂(0)

√
NT

) ≥ cf

√
c
−1/4
NT σ1(

Θ̂(0)

√
NT

)

 , (3.7)

where σs (A) denotes the s-th largest singular value of A and cf > 0. In the simulation, we set

cf = 0.6.

For the block missing case, we run the NNR estimation on the complete data block, e.g., the

data block with i ∈ [No] and t ∈ [T ], to obtain r̂, β̂, {f̂ (0)t , t ∈ [T ]} and {λ̂(0)i , i ∈ [No]}. Then for

each i = No + 1, ..., N, we regress yit − x′itβ̂ on f̂
(0)
t to obtain λ̂

(0)

i . Let F̂ (0) = (f̂
(0)
1 , ..., f̂

(0)
T )′ and

Λ̂(0) = (λ̂
(0)

1 , ..., λ̂
(0)

N )′. Then we normalize F̂ (0) and Λ̂(0) such that F̂ (0)′F̂ (0)/T = Λ̂(0)′Λ̂(0)/N and

both are diagonal.

To show the consistency of the NNR estimators, we define the following restricted set

R = {∆Θ ∈ RT×N : ∥∆Θ∥max ≤M and
∥∥∥P⊥(∆Θ)

∥∥∥
∗
≤ 3 ∥P(∆Θ)∥∗}, (3.8)

where ∆Θ = Θ − Θ0 for any Θ and P⊥(∆Θ) and P(∆Θ) are defined as follows. Let Θ0 = U0Σ0V0′

be the singular value decomposition of Θ0 and decompose U0 = (Ur,U0) and V0 = (Vr,V0) with

(Ur,Vr) being the singular vectors corresponding to nonzero singular values and (U0,V0) being

the singular vectors corresponding to zero singular values. For any matrix A ∈ RT×N , we define

P⊥ (A) = U0U ′
0AV0V ′

0 and P (A) = A−P⊥ (A), i.e., P (A) can be seen as the linear projection of A

onto the low-rank space with P⊥ (A) being its orthogonal space. Intuitively, the second restriction

in (3.8) means the projection onto the high rank space can be controlled by the projection onto the

low-rank space.

Let Mvec(x) = I−Pvec(x) and Pvec(x) denote the projection matrix of [vec(x1), ..., vec(xK)], where

vec(xk) is the TN × 1 vector that vectorizes xk. We add the following assumption.

Assumption 6 (i) For the random missing, (a) dit is independent across (i, t) conditioning on

(ϕ0, xit), mini,t Eϕx(dit) ≥ d > 0 where Eϕx(·) the expectation conditioning on ϕ0 and all xit, (b)

there exists µ > 0, independent of (N,T ), such that vec(∆Θ)′Mvec(x)vec(∆Θ) ≥ µ ∥∆Θ∥2F for any

∆Θ ∈ R when N and T are sufficiently large.

structure in the solution. In the simulation, we set νNT = c
√

max(N,T ) with c ∈ {10−2, 10−1, 1, 10} and we choose
the one giving the minimum value of objective function L(β, λ, f).
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(ii) For the block missing, Assumption 1(ii) holds and Assumptions 2, 3(i)a, 5(ii) and 6(i)b hold

for at least one completely observed data block.

Here we need the conditional independence of dit to verify the restricted strong convexity (RSC)

condition as defined in Negahban and Wainwright (2011), Negahban and Wainwright (2012) and

Klopp (2014). Assumption 6(i)b requires that the Euclidean norm of vec(∆Θ) after projecting on

vec(x) be a positive proportion of its Euclidean norm before projection, if we restrict ∆Θ to belong to

R. The same assumption also appears in Moon and Weidner (2023) and Mugnier (2024) and plays a

similar role as the restricted eigenvalue condition common in the LASSO literature (e.g., Bickel et al.

(2009)). Assumption 6(ii) presents the conditions for the consistency of the NNR estimator when

applied to a balanced block of the unbalanced panel. Given these assumptions, the following theorem

proves the consistency of r̂, β̂
(0)

, λ̂
(0)

and f̂ (0), which guarantees that γ̂(0) = (β̂
(0)′
, λ̂

(0)′
, f̂ (0)′)′ falls

in Bm(γ0) w.p.a.1.

Theorem 3.3 Suppose that Assumptions 2, 3(i)-(ii), 4, 5(ii) and 6. Suppose that νNT = 2c1(N
1/2T 1/4

+N1/4T 1/2) for some constant c1 > 0. Then as (N,T ) → ∞, P(r̂ = r) → 1,
∥∥∥β̂(0) − β0

∥∥∥ = op(1),

N−1/2
∥∥∥λ̂(0) − λ0

∥∥∥ = op(1) and T−1/2
∥∥∥f̂ (0) − f0

∥∥∥ = op(1).

The side condition on the tuning parameter νNT in Theorem 3.3 is sufficient but not nec-

essary. Under the weak condition in Assumption 4, we show in Lemma D.1 that ∥d ◦ v∥ =

Op(N
1
2T

1
4 +N

1
4T

1
2 ), where d ◦ v is a T ×N matrix with ditvit as the (t, i)-th element. If we impose

some stronger conditions than those in Assumption 4, this rate can be improved to Op(N
1
2 + T

1
2 )

as in Lata la (2005) if one assumes some (conditional) independence conditions along both the in-

dividual and time dimensions or Op(N
1
2 + (T log T )

1
2 ) as in Wang et al. (2022) if one assumes

(conditional) independence along the individual dimension and (conditional) strong mixing along

the time dimension. With such a better control on ∥d ◦ v∥ , one can choose a smaller rate for νNT

(as small as 2c1
(
N1/2 + T 1/2

)
) which will yield a better control on the rates at which

∥∥∥β̂(0) − β0
∥∥∥ ,

N−1/2
∥∥∥λ̂(0) − λ0

∥∥∥ and T−1/2
∥∥∥f̂ (0) − f0

∥∥∥ converge to 0 in probability. Since we only aim at ob-

taining a consistent initial estimator, the choice of νNT = 2c1
(
N1/2T 1/4 +N1/4T 1/2

)
is sufficient.

4 Limit Distribution and Bias Correction

Theorem 3.1 shows
∥∥∥β̂ − β0

∥∥∥ = Op(
1

cNT
),
∥∥∥λ̂− λ0

∥∥∥ = Op(
√
N

cNT
) and

∥∥∥f̂ − f0
∥∥∥ = Op(

√
T

cNT
). In this

section we take higher order Taylor expansions of the first order conditions to refine the asymptotic

expansions and to derive the asymptotic distribution and bias of β̂:

0 = Sβ(β̂, ϕ̂) = Sβ +Qββ′(β̂ − β0) +Qβϕ′(ϕ̂− ϕ0) +Rβ, (4.1)
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0 = Sϕ(β̂, ϕ̂) = Sϕ +Qϕβ′(β̂ − β0) +Qϕϕ′(ϕ̂− ϕ0) +Rϕ. (4.2)

Here, Rβ (of dimension K × 1) and Rϕ (of dimension (Nr + Tr) × 1) are the remainders in the

expansions; see Lemma E.4 in the online supplement for their detailed expressions. Equations

(4.1)-(4.2) provide a general framework for the asymptotic analyses of fixed effects estimation of

large dimensional panels. Linear/nonlinear panels with one way/two way/interactive fixed effects

are all covered by this framework, with each model corresponding to a specific structure on the

Hessians and the remainders.13 Moreover, equations (4.1)-(4.2) also cover these panel data models

with missing data. We show in the online appendix that the upper bounds of ∥Rβ∥ and ∥Rϕ∥ are

not affected by any missing patterns and Qϕϕ′ is still negative definite under missing patterns of

Assumption 1, but the asymptotic variances and biases of β̂ do depend on the missing patterns.

When there is no missing data, the most general framework for fixed effects estimation of large

dimensional panels is Fernández-Val and Weidner (2016). Nevertheless, it is unclear how to extend

their results to cases with missing patterns of Assumption 1. In the following we present the details

of our asymptotic analyses.

4.1 Limit Distribution of the Local Critical Point

To study the limit distribution of our estimator, we add two assumptions.

Assumption 7 (i) maxh∈[T ]

∑N
i=1

∑T
t,s=1

∣∣Eϕ(ditvitdisvisdihv
2
ih)
∣∣ ≤MNT a.s., maxh∈[T ]

∑N
i,j=1

∑T
t,s=1

|Eϕ(ditvitdihvihdjsvjsdjhvjh)| ≤ M(NT + N2) a.s., maxk∈[N ]

∑T
t=1

∑N
i,j=1 |Eϕ(dktv

2
ktditvitdjtvjt)|

≤MNT a.s., and maxk∈[N ]

∑T
t,s=1

∑N
i,j=1 |Eϕ(dktvktditvitdksvksdjsvjs)| ≤M(NT + T 2) a.s.;

(ii)
∑N

i,j=1

∑T
t,s=1 |Eϕ(ditvitdjsvjs)| ≤MNT a.s.;

(iii) maxh∈[T ]

∑N
i=1

∑T
t,s=1 |Eϕ(ditvitdisvisdihx

′
ihxih)|) ≤MNT a.s., and maxh∈[T ]

∑N
i,j=1

∑T
t,s=1

|Eϕ(ditvitdihx
′
ihxjhdjhdjsvjs)| ≤M(NT +N2) a.s..

Assumption 7(i)-(ii) imposes weak dependence conditions for {ditvit} along both the time and

cross-sectional dimensions. These conditions generalize Assumption F(1)-(2) in Bai (2003) to the

missing data setting, similar to Assumptions 3-4 in Gonçalves and Perron (2020) and Assumptions

2.4 and 3.8 in Fan and Liao (2022). Assumption 7(ii) strengthens Assumption 5. When dit is

independent of vjs for all i, j, t, s conditional on ϕ or dit is treated as nonrandom, Assumption 7

hold as long as it holds when there is no missing data.

Assumption 8 Define d̃itxit = ditxit − Eϕ(ditxit). Let covϕ denote covariance conditional on ϕ0.

13Note that the Hessian and the remainder are high dimensional, but their structures allow us to decompose and
analyze them accurately. The intuition is that the Hessian of all these models are approximately diagonal; see
Appendix A and Lemma E.4 for the Hessian matrix and remainder terms for the current study.
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(i) 1√
NT

∑N
i=1

∑T
t=1 ẋitditvit

d→ N (0,Ωx);

(ii)
∑N

i,j=1

∑T
t,s=1

∑T
u,h=1 |covϕ(d̃itxitdisvis, d̃juxjudjhvjh)| ≤ MNT 2, and

∑T
t,s=1

∑N
i,j=1

∑N
k,l=1

|covϕ(d̃itxitdjtvjt, d̃ksxksdlsvls)| ≤MN2T a.s.,

(iii)
∑N

i,j=1

∑T
t,s=1

∑T
u,h=1 |covϕ(d̃itdisvis, d̃judjhvjh)| ≤ MNT 2, and

∑T
t,s=1

∑N
i,j=1

∑N
k,l=1 |covϕ

(d̃itdjtvjt, d̃ksdlsvls)| ≤MN2T a.s.;

(iv)
∑N

i,j=1

∑T
t,s=1

∑T
u,h=1 |covϕ(ditvitdisvis, djuvjudjhvjh)| ≤ MNT 2, and

∑T
t,s=1

∑N
i,j=1

∑N
k,l=1

|covϕ(ditvitdjtvjt, dksvksdlsvls)| ≤MN2T a.s..

Assumption 8(i) is the central limit theorem. Assumption 8(ii) corresponds to Assumption 5(v)

in Moon and Weidner (2017) but the latter authors assume vit is independent across (i, t). In Bai

(2009), Assumption 8(ii) is satisfied automatically since xit is strictly exogenous there. Assumption

8(iii) is satisfied automatically when d̃it = 0, i.e., when there is no missing data or when dit is

treated as nonrandom. Assumption 8(iv) corresponds to Assumption C(iv) in Bai (2009) with “eit”

replaced by ditvit, and is also satisfied in Moon and Weidner (2017) in the case of no missing since

they assume vit is independent across (i, t).

Utilizing the asymptotic expansion (4.1)-(4.2) and Assumptions 7-8, the following proposition

refines the results of Theorem 3.1.

Proposition 4.1 Suppose Assumptions 1–5 and 7–8 hold and N
1
κ T

1
κ+N

2
κ√

T
→ 0 and N

1
κ T

1
κ+T

2
κ√

N
→ 0

as (N,T ) → ∞. Then (i)
∥∥∥β̂ − β0

∥∥∥ = Op(
1

c2NT
) and (ii)

∥∥∥∥D− 1
2

NT (ϕ̂− ϕ0) +D
− 1

2
NTQ

−1
ϕϕ′Sϕ

∥∥∥∥ = Op(
1

c2NT
).

Proposition 4.1(i) establishes the accurate convergence rate of β̂ − β0 and Proposition 4.1(ii)

shows that the remainder of the asymptotic expansion of D
− 1

2
NT (ϕ̂ − ϕ0) is Op(

1
c2NT

). Note that

Proposition 4.1 holds with κ = ∞ when dit is treated as nonrandom. Proposition 4.1(ii) is crucial

for calculating the effect of using estimated factors and loadings on the asymptotic distribution and

bias of β̂
0
, which is presented in the following theorem.

Theorem 4.1 Suppose that Assumptions 1–5 and 7–8 hold, and T
[ 12+(( 3

ς∧ζ
+3

ς +1
ϱ )∨ 1

κ )]∨( 23+ 4
3κ )

N → 0,

N
[ 12+(( 3

ς∧ζ
+3

ς +1
ϱ )∨ 1

κ )]∨( 23+ 4
3κ )

T → 0 for some κ > 4 as (N,T ) → ∞. Then

√
NT (β̂ − β0) −W−1

x b
d→ N (0,W−1

x ΩxW
−1
x )

where b =
∑6

l=1 bl, bl’s are all K × 1 vectors whose k-th element are respectively given by

b1k =
1√
NT

∑T

t=1

∑N

i=1

∑N

j=1
Eϕ(djtvjtditxitk)λ0′i [L̄−1

ff ′ ]tλ
0
j ,

b2k =
1√
NT

∑N

i=1

∑T

t=1

∑T

s=1
Eϕ(ditvitdisxisk)f0′t [L̄−1

λλ′ ]if
0
s ,
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b3k =
1√
NT

∑T

t=1

∑N

i=1

∑N

j=1
Eϕ(ditvitdjtvjt)δ

0′
ki[L̄

−1
ff ′ ]tλ

0
j ,

b4k =
1√
NT

∑N

i=1

∑T

t=1

∑T

s=1
Eϕ(ditvitdisvis)ω

0′
kt[L̄

−1
λλ′ ]if

0
s ,

b5k =
1√
NT

∑T

t=1

∑N

i=1

∑N

j=1
Eϕ(ditvitdjtvjt)λ

0′
i Ξktλ

0
j ,

b6k =
1√
NT

∑N

i=1

∑T

t=1

∑T

s=1
Eϕ(ditvitdisvis)f

0′
t ∆kif

0
s ,

[L̄−1
ff ′ ]t = (−

∑N
i=1 Φitλ

0
iλ

0′
i )−1, [L̄−1

λλ′ ]i = (−
∑T

t=1 Φitf
0
t f

0′
t )−1, ∆ki = [L̄−1

λλ′ ]i(
∑T

t=1 Φitf
0
t ω

0′
kt)[L̄

−1
λλ′ ]i,

Ξkt = [L̄−1
ff ′ ]t(

∑N
i=1 Φitλ

0
i δ

0′
ki)[L̄

−1
ff ′ ]t and δ

0
ki and ω

0
kt are defined in (2.2).

Theorem 4.1 shows that β̂ is consistent and asymptotically normal even if dit is correlated with

f0t and λ0i as long as dit is independent with vit. In other words, if the latent confounders that

affect both the outcome yit and the treatment indicator dit can be modeled by a factor structure,

then β̂ has no selection bias once we perform the IFEs estimation. This covers a lot of empirically

relevant cases since sample selection is likely to be affected by both individual heterogeneity and

common shocks. While we assume independence between dit and vit, the techniques developed for

Proposition 4.1 and Theorem 4.1 can be readily applied to cases where the latent confounders can

not be fully captured by a factor structure; see Section 5 for details.

Theorem 4.1 also shows how missing patterns affect the asymptotic variances and biases. Both

the bias W−1
x b and the variance W−1

x ΩxW
−1
x depend on the missing pattern, regressors, factors,

loadings and error terms in a complicated way. Our simulation results show that the bias could be

large when dit is correlated with f0t and λ0i . Moreover, the expressions of Wx, Ωx and b allow us to

construct analytical bias corrections and may also provide some guidance on experimental design.

Remark 4.1 Theorem 4.1 holds with κ = ∞ for block missing. Note that ς = ∞ for uniformly

bounded factors and loadings under Assumption 2. ϱ and ζ also could be very large. Then the

sufficient (but not necessary) conditions on N and T in Theorem 4.1 approximately become T
2
3

N → 0

and N
2
3

T → 0.

Remark 4.2 Before the
√
NT -normalizations, bl’s are of order Op(

1
N ) for l = 1, 3, 5 and Op(

1
T )

for l = 2, 4, 6 under the usual weak cross-sectional and serial dependence conditions. Our bias

expressions include those of the static panel Bai (2009) and the dynamic panel Moon and Weidner

(2017) as special cases.

(i) First, b1k = 0 for Bai (2009) since dit = 1 for all (i, t) and Eϕ(djtvjtditxitk) = 0 when xitk

is strictly exogenous. b1k = 0 for Moon and Weidner (2017) since dit = 1 for all (i, t) and they

assume that (xit, vit) is independent across i and E(vis
∣∣xit, vi,t−1, ϕ

0 ) = 0 for s ≥ t.
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(ii) Second, b2k = 1√
NT

∑N
i=1

∑T
t=1

∑T
s=t+1 Eϕ(ditvitdisxisk)f0′t [L̄−1

λλ′ ]if
0
s if ditvit is uncorrelated

with disxisk for s ≤ t as in dynamic panels, which corresponds to term B1 in Moon and Weidner

(2017). b2k = 0 in Bai (2009) for static panel.

(iii) Third, b3 +b5 corresponds to term B in expression (18) of Bai (2009) and term B2 in Moon

and Weidner (2017). Both b3 and b5 are Op(
√
T√
N

), which is op(1) if T/N → 0.

(iv) Fourth, b4 + b6 corresponds to term C in expression (19) of Bai (2009) and term B3 in

Moon and Weidner (2017). Both b4 and b6 are Op(
√
N√
T

), which is op(1) if N/T → 0.

(v) Fifth, b4 + b6 = 0 if ditvit is uncorrelated across t and both Φit = Eϕ(dit) and Eϕ(ditv
2
it) are

constant across t so that we have Φit = Φi. In this special case, [L̄−1
λλ′ ]i = − 1

Φi
(
∑T

t=1 f
0
t f

0′
t )−1 and

b6k =
1√
NT

∑N

i=1

∑T

t=1
Eϕ(ditv

2
it)f

0′
t ∆kif

0
t =

1√
NT

∑N

i=1
Eϕ(di1v

2
i1)
∑T

t=1
f0′t ∆kif

0
t

=
1√
NT

tr

(∑N

i=1
Eϕ(di1v

2
i1)
∑T

t=1
f0t f

0′
t [L̄−1

λλ′ ]i(Φi

∑T

t=1
f0t ω

0′
kt)[L̄

−1
λλ′ ]i

)
= − 1√

NT
tr(
∑N

i=1
Eϕ(di1v

2
i1)(
∑T

t=1
f0t ω

0′
kt)[L̄

−1
λλ′ ]i)

= − 1√
NT

∑N

i=1

∑T

t=1
Eϕ(ditv

2
it)ω

0′
kt[L̄

−1
λλ′ ]if

0
t = −b4k.

Similarly, b3 + b5 = 0 if vit is uncorrelated across i and both Eϕ(dit) and Eϕ(ditv
2
it) are constant

across i. But other than these special cases, b4+b6 and b3+b5 are generally nonzero. In particular, if

Eϕ(dit) is not a constant across i and t, either b3+b5 ̸= 0 or b4+b6 ̸= 0 even if ditvit is uncorrelated

and homoskedastic across i and t.

4.2 Analytical Bias Correction

In this subsection we utilize the expressions of Wx, Ωx and b to construct analytical bias corrections

for β̂. Since the estimation of Wx, Ωx and b depends on the serial and cross-sectional dependence,

we impose the following assumption to simplify the asymptotics.

Assumption 9 (i) {(dit, vit, xit), t = 1, ..., T} is independent across i conditioning on ϕ0;

(ii) Eϕ(ditvitdisxisk) ≤M |s− t|c2 and Eϕ(ditvitdisvis) ≤M |s− t|c2 for all i and s ̸= t for some

constant c2 < −1.

Assumption 9 rules out cross-sectional dependence of (dit, vit, xit), but allows serial dependence

of (dit, vit, xit) and weakly exogenous regressors. As discussed in Bai (2009), the difficulty of bias

correction under cross-sectional dependence is that there is no natural ordering of the data and

large |i− j| does not mean small correlation between vit and vjt. This issue has not been fully

solved even without missing data. A promising solution is to extend the bootstrap bias correction
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for the individual effects panel to the IFEs panel, see Gonçalves and Perron (2014), Kim and Sun

(2016) and Higgins and Jochmans (2024). We leave this for future research and simply focus on

cases under Assumption 9.

When vit is uncorrelated across i and t which can occur for both static and dynamic panels, Wx,

Ωx and b are estimated as follows:14

Ŵx =
1

NT

∑N

i=1

∑T

t=1
dit ˆ̇xit ˆ̇x

′
it, Ω̂x =

1

NT

∑N

i=1

∑T

t=1
ditv̂

2
it

ˆ̇xit ˆ̇x
′
it,

b̂1k = 0, b̂2k = 0 if xit is strictly exogenous,

b̂2k =
1√
NT

∑N

i=1

∑T−1

t=1

∑T

s=t+1
Γ(
s− t

LT
)disv̂itditxiskf̂

′
t [

ˆ̄L−1
λλ′ ]if̂s if xit is weakly exogenous,

b̂3k =
1√
NT

∑T

t=1

∑N

i=1
ditv̂

2
itδ̂

′
ki[

ˆ̄L−1
ff ′ ]tλ̂i and b̂4k =

1√
NT

∑N

i=1

∑T

t=1
ditv̂

2
itω̂

′
kt[

ˆ̄L−1
λλ′ ]if̂t,

b̂5k =
1√
NT

∑T

t=1

∑N

i=1
ditv̂

2
itλ̂

′
iΞktλ̂i and b̂6k =

1√
NT

∑N

i=1

∑T

t=1
ditv̂

2
itf̂

′
t∆̂kif̂t,

where Γ(·) is a kernel function such that Γ( s−t
LT

) = 1 {|s− t| ≤ LT }, LT is a bandwidth parameter,

[ ˆ̄L−1
ff ′ ]t = (−

∑N

i=1
ditλ̂iλ̂

′
i)
−1, [ ˆ̄L−1

λλ′ ]i = (−
∑T

t=1
ditf̂tf̂

′
t)

−1,

∆̂i = [ ˆ̄L−1
λλ′ ]i(

∑T

t=1
ditf̂tω̂

′
kt)[

ˆ̄L−1
λλ′ ]i, Ξ̂t = [ ˆ̄L−1

ff ′ ]t(
∑N

i=1
ditλ̂iδ̂

′
ki)[

ˆ̄L−1
ff ′ ]t,

v̂it = yit − x′itβ̂ − λ̂
′
if̂t, ˆ̇xitk = xitk − δ̂

′
kif̂t − ω̂′

ktλ̂i,

({δ̂ki}i∈[N ], {ω̂kt}t∈[T ]) = arg min
δki,ωkt

∑N

i=1

∑T

t=1
dit(xitk − δ′kif̂t − ω′

ktλ̂i)
2. (4.3)

Eqn. (G.1) in the Appendix shows how to solve the minimization problem (4.3).

When vit is correlated across t but uncorrelated across i under Assumption 9, we focus on the

static panels with strict exogeneity to avoid the endogeneity issue. In this case, Ŵx, b̂1k, b̂3k and

b̂5k remain the same, b̂2k = 0, Ω̂x, b̂4k and b̂6k are adjusted as follows:

Ω̂x =
1

NT

∑N

i=1

∑T

t=1

∑T

s=1
Γ(

|s− t|
LT

)ditv̂itdisv̂is ˆ̇xit ˆ̇x
′
is,

b̂4k =
1√
NT

∑N

i=1

∑T

t=1

∑T

s=1
Γ(

|s− t|
LT

)ditv̂itdisv̂isω̂
′
kt[

ˆ̄L−1
λλ′ ]if̂s,

b̂6k =
1√
NT

∑N

i=1

∑T

t=1

∑T

s=1
Γ(

|s− t|
LT

)ditv̂itdisv̂isf̂
′
t∆̂kif̂s.

Let β̂
abc

= β̂ − 1√
NT

Ŵ−1
x b̂ denote the analytically bias-corrected estimator where b̂ =

∑6
l=1 b̂l and

b̂l = (b̂l1, ..., b̂lK)′, we have the following theorem for β̂
abc

.

14This is because Eϕ(ditvitdjtvjt) = Eϕ(ditdjt)Eϕ(vit)Eϕ(vjt) = 0, Eϕ(djtvjtditxitk) = Eϕ(djtditxitk) Eϕ(vjt) = 0 if
i ̸= j, Eϕ(ditvitdisvis) = Eϕ(ditdis)Eϕ(vit)Eϕ(vis) = 0 if t ̸= s, and Ωx = plim 1

NT

∑N
i=1

∑T
t=1 Eϕ(ditv

2
it)ẋitẋ

′
it.
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Theorem 4.2 Suppose Assumptions 1–5 and 7–9 hold. Suppose that N
T → ε ∈ (0,∞), LT /T

1
4
− 4

ϱ∧ζ →
0 and LT → ∞, as (N,T ) → ∞. Then

(i) Ŵx = Wx + op(1), Ω̂x = Ωx + op(1), b̂l = bl + op(1) for l ∈ [6] ;

(ii)
√
NT (β̂

abc − β0)
d→ N (0,W−1

x ΩxW
−1
x ).

Theorem 4.2 shows the analytically corrected estimator β̂
abc

is asymptotically unbiased. To

simplify the proof and the conditions on (N,T, LT ) , we now focus on the case where N and T pass

to infinity at the same speed. The confidence intervals of elements of β0 can be constructed based

on β̂
abc

and Ŵ−1
x Ω̂xŴ

−1
x as usual. Note that split panel jackknife (SPJ) bias corrections may not

work for unbalanced panels since the “symmetry” utilized by the SPJ bias correction is likely to be

destroyed by the missing data, unless the missing is uniform and completely random and certain

stationarity conditions along both the cross-sectional and time dimensions are satisfied.

5 Discussion: Heckman Correction for Sample Selection with IFEs

When dit is still correlated with the error term after conditioning on the factors and loadings, one

possible solution is to employ the Heckman correction. Consider the following parametric model:

yit = dit(x
′
itβ

0
x + f0′t λ

0
i + ϵit), (5.1)

d∗it = z′itδ
0 + φ(g0t , α

0
i ) + uit and dit = 1 {d∗it > 0} , (5.2)

where zit may contain xit, lagged yit, lagged dit, and other observable variables, φ(g0t , α
0
i ) denotes

the fixed effect component, uit is the error term, and (uit, ϵit) is jointly normal conditioning on the

regressors, the factors and the loadings. φ(g0t , α
0
i ) could be the one way/two way/interactive effects

or have a more general form. To correct the selection endogeneity, we can add a Heckman correction

term to eqn. (5.1). More specifically,

E(yit |dit = 1) = x′itβ
0
x + f0′t λ

0
i + E(uit |dit = 1)

E(uitϵit)

E(u2it)
= x′itβ

0
x + f0′t λ

0
i +mitβ

0
m, (5.3)

where mit = E(uit |dit = 1) = m(z′itδ
0 + φ(g0t , α

0
i )) and m(·) is the inverse Mills ratio function. Let

vit = ϵit −mitβ
0
m. Then we have yit = x′itβ

0
x + mitβ

0
m + f0′t λ

0
i + vit, i.e., we use mitβ

0
m to correct

the endogeneity.

Since mit depends on unknown parameters (δ0, g0, α0), we can estimate the selection eqn. (5.2)

first to obtain the estimators (δ̂, α̂, ĝ) and calculate m̂it = m(z′itδ̂+φ(ĝt, α̂i)). Then we replace mit by

m̂it in the main eqn. and estimate the main eqn. by quasi-MLE: (β̂, λ̂, f̂) = arg max
γ∈Bm(γ0)

Q(β, λ, f),
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where β = (β′x, βm)′, Q(β, λ, f) = L(β, λ, f) +G(λ, f), G(λ, f) and Bm(γ0) are the same as expres-

sions (3.2) and (3.3), respectively, and L(β, λ, f) = −1
2

∑N
i=1

∑T
t=1 dit(yit − x′itβx − m̂itβm − f ′tλi)

2.

Following the estimation procedure in Section 3, we get the initial estimates (β̂
(0)
, λ̂

(0)
, f̂ (0)) first

and then iterate by alternating maximization until convergence. The main difference here is that

there is an extra error term due to replacing mit by m̂it, i.e.,

yit = x′itβ
0
x + m̂itβ

0
m + f0′t λ

0
i + vit + (mit − m̂it)β

0
m. (5.4)

Following the same roadmap of convergence analysis and asymptotic analysis in Section 3 and

Section 4, Theorems 3.1-3.3, Proposition 4.1 and Theorem 4.1 can be reestablished in a similar way

and we just need to calculate the effect of (mit − m̂it)β
0
m on the asymptotic biases and variances.

Depending on the model of φ(g0t , α
0
i ), the calculations could be straightforward or tedious.

There is a large literature on panel data sample selection models, including both fixed effects

and random effects approaches and both parametric and semi-non parametric approaches; see the

references in the Introduction. Existing studies mainly focus on models with only individual effects

under the large N fixed T setup, except for Fernández-Val and Vella (2011) who studies individual

effects model under large N and large T . Equations (5.1)-(5.2) generalize the sample selection model

to the case of IFEs, which is crucial for capturing both individual heterogeneities and common shocks

in the selection process. Equations (5.1)-(5.2) is a fixed effects parametric approach. The advantage

is avoiding distributional assumptions on the unobservable heterogeneities, while the cost is that

the joint normality assumption may be too strong. Therefore, it is also promising to extend our

results in Sections 3-4 to the propensity-score-based methods.

6 Simulations

In this section, we report simulation results for our proposed algorithms based on 1000 replications.

We focus on the following panel data model yit = dit(
∑2

r=1 λ
0
irf

0
tr + x′itβ

0 + vit), where dit =

1{yit and xit are observable}, xit = (x1,it, x2,it)
′ and β0 = (β01, β

0
2)

′.

6.1 Data Generating Processes (DGPs)

The following two main DGPs are employed.

DGP 1: Static panel. For any r ∈ {1, 2}, we set f0tr
i.i.d∼ N (0, 1), λ0ir

i.i.d∼ N (1, 1), x1,it = 1 +∑2
r=1(λ

0
ir + µir)(f

0
tr + f0t−1,r) + N (0, 1) with µir

i.i.d∼ N (1, 1). x2,it
i.i.d∼ N (0, 1), β0 = (1, 1)′.

Errors vit = 1√
2
(eit + ei,t−1) where eit ∼ N (0, σ2e,it) and σe,it

i.i.d∼ U(0.5, 1.5).
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DGP 2: Dynamic panel. In this case, f0tr = ρff
0
t−1,r + utr where utr

i.i.d∼ N (0, (1 − ρ2f )σ2f ) with

ρf = 0.5, σf = 0.5. Moreover, x1,it = yi,t−1, and vit ∼ N (0, σ2v,it) with σv,it
i.i.d∼ U(0.5, 1.5).

β0 = (0.3, 1)′. All others are same as DGP 1.

We define the missing patterns as follows.

Pattern 1: Completely random heterogeneous missing. dit is binary, independent across (i, t)

and independent of (f0s , λ
0
j , vjs) for all (i, j, t, s). pit := E(dit) follows i.i.d U(0.5, 0.9) across

(i, t).

Pattern 2: Selection on factors and loadings. Conditioning on factors and loadings, dit is in-

dependent across (i, t) and independent of vjs for all (i, j, t, s); Eϕ(dit) = Φ(λ0′i f
0
t ), where Φ(·)

denotes the CDF of the standard normal distribution.

Pattern 3: Mixed frequency. dit = 0 if i > 0.6N and t/3 is not an integer.

Pattern 4: Staggered missing. dit = 0 when (i, t) ∈ {0.4N + 1 ≤ i ≤ 0.7N and 0.7T + 1 ≤ t ≤
T} or (i, t) ∈ {0.7N + 1 ≤ i ≤ 0.7N and 0.4T + 1 ≤ t ≤ T}.

For the static and dynamic panel DGPs, we set the factor structure and the first regressor x1,it

following Moon and Weidner (2015) and Moon and Weidner (2017). We allow the error term to be

heteroskedastic in both DGPs. The number of factors are two in our simulations. We apply the

proposed SVT approach to estimate the true number of factors, with the results presented in the

next subsection. To derive the inference results, we adopt the commonly used Bartlett kernel for

bias correction and covariance matrix estimation. For the bandwidth, we set LT = ⌊cT 1/5⌋ with

c = 2 for the bias correction and the variance estimation.

6.2 Simulation Results

In this subsection, we first consider the performance of SVT in estimating the number of factors

and then study the performance of the proposed AM algorithms. Table 1 reports the frequency of

correctly estimating the number of factors using the SVT approach outlined in Section 3.3 with the

true number of factors being 2. For all missing patterns across all DGPs, the accuracy is notably

high, reflecting the robustness of the SVT approach across various scenarios.

Below we show the performance of the proposed AM algorithms. Define RMSE(Θ) = 1√
NT

∥∥Θ − Θ0
∥∥

for any Θ ∈ RT×N . Similarly, define RMSE(Λ) = 1√
N

∥∥Λ − Λ0
∥∥ for any Λ ∈ RN×r, RMSE(F ) =

1√
T

∥∥F − F 0
∥∥ for any F ∈ RT×r, and RMSE(β) =

∥∥β − β0
∥∥ for any β ∈ RK . Note that K = 2

in the simulations. We set the convergence accuracy of alternating maximization algorithm to be

10−4.
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Table 1: Frequency of estimating the correct number of factors by using SVT

Pattern

DGP 1 DGP 2

N=100 N=200 N=100 N=200

T=25 T=50 T=100 T=100 T=25 T=50 T=100 T=100

1 1.00 1.00 0.957 1.00 1.00 0.992 1.00 1.00
2 0.868 0.888 0.986 0.998 0.955 0.969 0.993 1.00
3 1.00 1.00 1.00 1.00 1.00 0.999 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00 0.969 1.00 1.00

Table 2 reports the number of iterations required for convergence in the two alternating maxi-

mization algorithms: “AM1”, which corresponds to the Gauss-Seidel procedure from Algorithm 1,

and “AM2”, which corresponds to the Jacobi procedure from Algorithm 2. The table shows that

the Gauss-Seidel procedure typically converges within 30 iterations, whereas the Jacobi procedure

requires significantly more iterations, generally staying below 100. Across all DGPs and missing pat-

terns, the Jacobi procedure consistently requires more iterations to achieve convergence compared

to the Gauss-Seidel procedure. This difference arises because, in the Jacobi procedure, the slope

estimator depends on factor estimates from the previous iteration, increasing its computational

burden. Moreover, scenarios with serial correlation require substantially more iterations for both

procedures compared to dynamic cases. Overall, “AM1”, i.e., the Gauss-Seidel procedure, exhibits

greater efficiency, achieving numerical convergence with fewer iterations across most settings.

Table 2: Number of iterations by AM algorithm

DGP N T
AM1 AM2

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 1 Pattern 2 Pattern 3 Pattern 4

1
100

25 23.94 24.85 26.73 31.33 65.77 81.49 95.45 115.89
50 18.38 15.50 17.43 24.58 61.80 35.46 59.20 98.37
100 13.82 14.46 13.28 14.33 55.88 56.35 66.12 64.62

200 100 12.87 13.05 11.25 13.17 58.91 65.46 55.84 56.66

2
100

25 7.31 15.65 7.48 12.24 11.55 28.37 13.32 19.42
50 8.43 7.66 8.34 10.02 19.32 13.55 20.03 23.93
100 6.39 6.58 6.25 6.11 15.58 16.21 16.67 14.40

200 100 5.69 5.87 5.25 5.73 14.98 14.99 13.69 15.00

Tables 3 presents the RMSE results for the slope and intercept matrix estimators associated

with factor and factor loading estimates across three algorithms: “NNR”, “AM1”, and “AM2”.

The results are divided into three panels, with the first panel (NNR) showing the RMSE results

for initial estimators obtained using nuclear norm regularization. The findings reveal significant

differences in estimation accuracy across the algorithms. As the first step in the estimation process,

NNR produces higher RMSE values compared to AM1 and AM2. After applying the AM algorithms,

25

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5177283

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



in contrast, the RMSE values drop significantly. AM1 and AM2 demonstrate substantially lower

RMSEs for all β, Θ, factor and factor loadings. For instance, under DGP 1 with N = 200 and

T = 100, AM1 achieves RMSEs of 0.221 for Θ, which is approximately one-sixth of the RMSE of

1.473 achieved by NNR. Additionally, the performance of AM1 and AM2 is generally similar across

most settings. Overall, AM1 and AM2 substantially outperform NNR in terms of precision as

expected, highlighting the effectiveness of the alternating maximization approach in refining initial

estimates.

Table 4 presents the point estimation and inference results for β1 and β2 using the Gauss-

Seidel algorithm across both DGPs and various missing patterns. For each missing pattern within

each DGP, we report the bias, standard deviation (sd), and coverage probability (CV) of the 95%

confidence intervals for both the uncorrected estimator and the bias-corrected estimator, denoted

by “β̂” and “β̂
abc

”, respectively. We first examine the bias in β̂2. Due to the construction of x2,it,

which is independent of both factors and loadings, the bias remains generally small across all DGPs

and missing patterns. In contrast, since x1,it is correlated with the factor structure, a noticeable

bias is present. As N or T increases, this bias gradually decreases, aligning with the theoretical

result in Theorem 4.1. Next, bias correction significantly reduces bias across all settings. When T

is small (e.g., T = 25), the correction procedure eliminates approximately 40% of the bias in most

cases. However, in more complex scenarios, such as missing pattern 2 in DGP 1 – where missingness

is correlated with the factor structure – the correction is less effective, reducing the bias by only

about 25%. As T increases, the effectiveness of the bias correction improves, with more substantial

reductions observed for T = 50 and T = 100.

For the standard deviation of the estimators, as expected, increasing N or T reduces the standard

deviation, as more observations provide more stable estimates. The bias correction procedure has

minimal impact on standard deviation, as the values for β̂ and β̂
abc

remain almost identical across

all settings. This suggests that the bias correction method effectively improves accuracy without

inflating estimator variability, ensuring stable inference.

Finally, we assess the coverage probability of the 95% confidence intervals. For β̂2, the coverage

probability is close to the nominal level across most cases, owing to its relatively small bias. However,

for β̂1, the results highlight the critical role of bias correction. The coverage probability is lower

when T is small, particularly in DGP 2, where the initial bias is larger. With bias correction, the

coverage probability improves significantly and aligns more closely with 95%, especially in cases

with moderate or large T . However, the coverage probabilities sometimes fall short of 0.95, even

when T reaches 100; see the results for missing pattern 2 in the dynamic panel. This deviation may

be attributed to the challenges in accurately estimating the bias for those more complex scenarios.

Nonetheless, as the sample size increases, the coverage probability for β̂1 after bias correction
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Table 3: RMSE results by NNR and AM algorithms

Pattern Algorithm N T
DGP 1 DGP 2

β Θ F Λ β Θ F Λ

1

NNR
100

25 0.249 1.755 2.156 2.157 0.289 1.099 1.854 1.457
50 0.245 1.568 2.208 2.306 0.106 0.948 1.805 1.408
100 0.227 1.594 2.703 2.794 0.081 0.951 1.795 1.398

200 100 0.231 1.473 2.162 2.144 0.149 0.960 1.800 1.420

AM1
100

25 0.029 0.441 0.189 0.354 0.039 0.470 0.366 0.543
50 0.019 0.322 0.163 0.225 0.021 0.321 0.245 0.333
100 0.012 0.254 0.158 0.157 0.014 0.260 0.247 0.244

200 100 0.009 0.221 0.115 0.159 0.011 0.222 0.163 0.223

AM2
100

25 0.029 0.442 0.189 0.354 0.039 0.471 0.368 0.544
50 0.020 0.323 0.163 0.225 0.021 0.321 0.245 0.333
100 0.013 0.254 0.159 0.158 0.014 0.260 0.247 0.244

200 100 0.009 0.221 0.115 0.159 0.011 0.222 0.163 0.223

2

NNR
100

25 0.315 1.758 2.014 1.698 0.237 0.976 1.873 1.543
50 0.278 1.622 2.133 1.821 0.119 0.893 2.144 1.584
100 0.259 1.846 2.219 1.995 0.179 0.960 1.824 1.431

200 100 0.227 1.739 2.144 1.967 0.173 0.918 1.806 1.370

AM1
100

25 0.032 0.700 0.464 0.448 0.052 0.544 0.384 0.503
50 0.022 0.541 0.409 0.306 0.027 0.602 0.680 0.571
100 0.016 0.770 0.591 0.243 0.016 0.356 0.351 0.286

200 100 0.011 0.395 0.261 0.211 0.012 0.292 0.257 0.277

AM2
100

25 0.033 0.798 0.538 0.484 0.052 0.550 0.392 0.505
50 0.022 0.569 0.420 0.315 0.027 0.623 0.705 0.585
100 0.016 0.820 0.614 0.239 0.017 0.359 0.354 0.286

200 100 0.011 0.384 0.247 0.209 0.012 0.297 0.264 0.277

3

NNR
100

25 0.248 1.838 2.295 2.490 0.113 0.970 1.695 1.233
50 0.250 1.423 2.055 2.165 0.202 1.033 1.879 1.549
100 0.242 1.567 2.237 2.244 0.143 0.984 1.856 1.511

200 100 0.238 1.439 2.182 2.126 0.133 0.956 1.815 1.414

AM1
100

25 0.027 0.486 0.183 0.369 0.031 0.489 0.319 0.570
50 0.018 0.327 0.156 0.241 0.022 0.354 0.228 0.349
100 0.012 0.274 0.154 0.177 0.014 0.279 0.222 0.263

200 100 0.009 0.241 0.119 0.186 0.010 0.250 0.172 0.279

AM2
100

25 0.027 0.487 0.184 0.369 0.031 0.492 0.322 0.574
50 0.019 0.327 0.156 0.241 0.022 0.355 0.229 0.349
100 0.012 0.275 0.155 0.177 0.014 0.279 0.222 0.264

200 100 0.009 0.241 0.119 0.186 0.010 0.251 0.172 0.280

4

NNR
100

25 0.279 1.981 2.264 2.221 0.216 1.136 1.903 1.518
50 0.237 1.795 2.229 2.201 0.239 1.050 1.900 1.603
100 0.225 1.493 2.360 2.372 0.149 0.991 1.827 1.431

200 100 0.240 1.486 2.220 2.313 0.154 0.962 1.802 1.409

AM1
100

25 0.027 0.458 0.173 0.322 0.053 0.721 0.575 0.852
50 0.019 0.352 0.176 0.251 0.027 0.330 0.220 0.307
100 0.012 0.277 0.172 0.183 0.014 0.286 0.261 0.260

200 100 0.009 0.220 0.117 0.153 0.011 0.229 0.176 0.236

AM2
100

25 0.027 0.459 0.174 0.322 0.052 0.730 0.585 0.861
50 0.019 0.353 0.177 0.251 0.027 0.330 0.220 0.307
100 0.013 0.277 0.172 0.183 0.014 0.286 0.261 0.261

200 100 0.009 0.220 0.117 0.153 0.011 0.229 0.176 0.236
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gradually approaches the nominal level, demonstrating the asymptotic validity of the correction

procedure.

Overall, the results in Table 4 indicate that our AM algorithms are robust and effective in

managing a wide range of data structures. The estimation and inference results by using the Jacobi

procedure are presented in Table 5, showing patterns and insights similar to those in Table 4.

7 Empirical Application

7.1 Background and Model

State excise taxes have long been a focal point in public finance and econometrics, providing a unique

framework to study tax competition, policy diffusion, and temporal dynamics in the fiscal policy.

Three key features of state excise taxes have consistently drawn attention in the literature. First,

state excise taxes exhibit significant cross-sectional dependence, as tax decisions in one state are

often influenced by those in neighboring states. This phenomenon aligns with the broader literature

on tax competition and policy interdependence (see, e.g., Brueckner, 2003; Case et al., 1993; Besley

and Case, 1995). Empirical studies such as Egger et al. (2005) and Devereux et al. (2007) quantify

this cross-sectional dependence of state excise taxes using spatial panel models, which effectively

captures the spatial spillover of tax policy. Second, state excise taxes exhibit strong persistence over

time, suggesting that past taxes heavily influence current policy choices. This persistence can be

attributed to the long-term fiscal planning and the stability of political preferences. Using data on

cigarette and gasoline taxes for the U.S. states from 1977 to 1997, Devereux et al. (2007) demonstrate

statistically significant and high persistence in excise taxes. Third, the level of income also plays

a critical role in shaping state excise taxes. Some studies, such as Chaloupka and Warner (2000),

find that higher income per capita can lead to higher excise taxes on specific goods, like alcohol,

as wealthier populations may be more willing to tolerate such taxes due to increased awareness of

public health considerations.

These three empirical regularities, viz., cross-sectional dependence, high persistence, and the

influence of income, highlight the complex dynamics underlying state excise tax policies. In this

section, we revisit the topic of U.S. state excise taxes. Unlike Devereux et al. (2007), who use a

balanced panel dataset of cigarette and gasoline tax data for 20 years, the proposed algorithms for

the unbalanced panel data model motivate us to study a longer period and include an additional

excise tax: the wine tax. Wine taxes often exhibit more missing data and are frequently overlooked

in the balanced panel data research. Beyond excise taxes, this section also extends the analysis

to include income taxes, such as the state-level corporate top tax rate, to explore whether the

persistence and the impact of income emerge across different types of state tax policies.
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Table 4: Estimation and inference results by Gauss-Seidel algorithm

DGP missing pattern
N=100, T=25 N=100, T=50 N=100, T=100 N=200, T=100

β̂1 β̂2 β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

1

1

β̂

bias -0.0141 0.0008 -0.0069 -0.0006 -0.0042 0.0000 -0.0035 0.0007
sd 0.0149 0.0264 0.0092 0.0189 0.0060 0.0125 0.0041 0.0089
CV 0.818 0.935 0.881 0.939 0.874 0.949 0.899 0.952

β̂
abc

bias -0.0090 0.0006 -0.0034 -0.0005 -0.0010 0.0000 -0.0008 0.0007
sd 0.0149 0.0265 0.0092 0.0189 0.0060 0.0125 0.0041 0.0089
CV 0.871 0.935 0.923 0.939 0.960 0.950 0.955 0.952

2

β̂

bias -0.0112 -0.0004 -0.0065 -0.0013 -0.0032 -0.0002 -0.0023 0.0006
sd 0.0145 0.0318 0.0113 0.0240 0.0072 0.0149 0.0046 0.0102
CV 0.830 0.924 0.875 0.925 0.894 0.949 0.916 0.944

β̂
abc

bias -0.0098 0.0001 -0.0039 -0.0012 -0.0006 0.0000 0.0000 0.0006
sd 0.0144 0.0318 0.0114 0.0240 0.0072 0.0149 0.0047 0.0102
CV 0.851 0.923 0.918 0.926 0.954 0.950 0.952 0.945

3

β̂

bias -0.0104 -0.0015 -0.0059 0.0007 -0.0025 0.0004 -0.0023 0.0003
sd 0.0124 0.0262 0.0102 0.0176 0.0063 0.0121 0.0043 0.0086
CV 0.851 0.926 0.894 0.941 0.907 0.950 0.915 0.951

β̂
abc

bias -0.0062 -0.0017 -0.0026 0.0003 -0.0004 0.0003 -0.0003 0.0003
sd 0.0123 0.0262 0.0102 0.0176 0.0063 0.0121 0.0043 0.0086
CV 0.906 0.925 0.937 0.942 0.947 0.950 0.960 0.950

4

β̂

bias -0.0121 0.0023 -0.0079 -0.0015 -0.0038 0.0003 -0.0041 -0.0002
sd 0.0127 0.0249 0.0084 0.0175 0.0060 0.0124 0.0044 0.0088
CV 0.828 0.937 0.860 0.937 0.899 0.942 0.855 0.944

β̂
abc

bias -0.0094 0.0022 -0.0036 -0.0013 -0.0014 0.0002 -0.0010 -0.0002
sd 0.0127 0.0249 0.0084 0.0175 0.0060 0.0124 0.0044 0.0088
CV 0.870 0.936 0.933 0.936 0.943 0.942 0.945 0.943

2

1

β̂

bias -0.0264 -0.0024 -0.0084 -0.0009 -0.0068 -0.0003 -0.0055 0.0002
sd 0.0205 0.0270 0.0127 0.0178 0.0085 0.0125 0.0060 0.0089
CV 0.631 0.931 0.863 0.940 0.857 0.943 0.835 0.946

β̂
abc

bias -0.0150 -0.0014 -0.0029 -0.0008 -0.0021 -0.0002 -0.0015 0.0002
sd 0.0196 0.0271 0.0125 0.0178 0.0084 0.0125 0.0059 0.0089
CV 0.834 0.929 0.924 0.944 0.933 0.945 0.943 0.946

2

β̂

bias -0.0382 -0.0012 -0.0121 -0.0001 -0.0070 -0.0017 -0.0062 -0.0002
sd 0.0252 0.0337 0.0160 0.0233 0.0101 0.0147 0.0070 0.0098
CV 0.519 0.912 0.830 0.920 0.862 0.942 0.842 0.955

β̂
abc

bias -0.0226 0.0002 -0.0038 0.0001 -0.0023 -0.0017 -0.0014 -0.0001
sd 0.0241 0.0339 0.0156 0.0233 0.0100 0.0147 0.0069 0.0098
CV 0.750 0.908 0.917 0.919 0.939 0.941 0.935 0.955

3

β̂

bias -0.0124 0.0009 -0.0113 -0.0006 -0.0038 0.0005 -0.0034 -0.0003
sd 0.0183 0.0273 0.0125 0.0176 0.0086 0.0127 0.0058 0.0090
CV 0.865 0.937 0.817 0.945 0.910 0.946 0.897 0.954

β̂
abc

bias -0.0047 0.0011 -0.0031 -0.0004 -0.0009 0.0005 -0.0009 -0.0002
sd 0.0178 0.0273 0.0124 0.0176 0.0086 0.0127 0.0058 0.0090
CV 0.911 0.936 0.928 0.946 0.942 0.948 0.947 0.953

4

β̂

bias -0.0449 -0.0048 -0.0190 -0.0006 -0.0071 -0.0007 -0.0066 0.0003
sd 0.0201 0.0263 0.0129 0.0185 0.0087 0.0119 0.0059 0.0090
CV 0.294 0.926 0.632 0.947 0.852 0.953 0.781 0.949

β̂
abc

bias -0.0243 -0.0035 -0.0081 -0.0004 -0.0017 -0.0007 -0.0017 0.0003
sd 0.0193 0.0264 0.0126 0.0186 0.0085 0.0119 0.0058 0.0090
CV 0.683 0.932 0.878 0.947 0.930 0.951 0.941 0.949
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Table 5: Estimation and inference results by Jacobi algorithm

DGP missing pattern
N=100, T=25 N=100, T=50 N=100, T=100 N=200, T=100

β̂1 β̂2 β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

1

1

β̂

bias -0.0138 0.0007 -0.0066 -0.0006 -0.0049 0.0000 -0.0034 0.0007
sd 0.0151 0.0264 0.0096 0.0189 0.0064 0.0125 0.0045 0.0089
CV 0.823 0.930 0.879 0.937 0.870 0.948 0.894 0.951

β̂
abc

bias -0.0087 0.0006 -0.0032 -0.0005 -0.0009 0.0000 -0.0007 0.0007
sd 0.0151 0.0265 0.0095 0.0189 0.0064 0.0125 0.0045 0.0089
CV 0.870 0.933 0.916 0.937 0.949 0.948 0.951 0.951

2

β̂

bias -0.0110 -0.0008 -0.0061 -0.0015 -0.0033 -0.0002 -0.0025 0.0003
sd 0.0153 0.0319 0.0119 0.0240 0.0079 0.0150 0.0053 0.0102
CV 0.821 0.921 0.885 0.924 0.892 0.948 0.919 0.943

β̂
abc

bias -0.0095 -0.0004 -0.0034 -0.0014 -0.0007 0.0000 -0.0002 0.0003
sd 0.0152 0.0318 0.0119 0.0240 0.0080 0.0150 0.0053 0.0102
CV 0.843 0.920 0.917 0.925 0.940 0.948 0.942 0.942

3

β̂

bias -0.0105 -0.0015 -0.0057 0.0007 -0.0023 0.0003 -0.0022 0.0003
sd 0.0129 0.0262 0.0107 0.0176 0.0068 0.0121 0.0047 0.0086
CV 0.844 0.925 0.897 0.941 0.902 0.949 0.915 0.950

β̂
abc

bias -0.0063 -0.0017 -0.0024 0.0003 -0.0003 0.0003 -0.0003 0.0003
sd 0.0128 0.0263 0.0107 0.0176 0.0068 0.0121 0.0047 0.0086
CV 0.896 0.925 0.926 0.941 0.934 0.950 0.947 0.950

4

β̂

bias -0.0124 0.0023 -0.0080 -0.0015 -0.0037 0.0003 -0.0041 -0.0002
sd 0.0132 0.0249 0.0090 0.0176 0.0065 0.0124 0.0046 0.0088
CV 0.819 0.936 0.843 0.936 0.894 0.942 0.846 0.944

β̂
abc

bias -0.0097 0.0023 -0.0037 -0.0013 -0.0013 0.0002 -0.0011 -0.0002
sd 0.0132 0.0249 0.0090 0.0176 0.0065 0.0124 0.0046 0.0088
CV 0.857 0.936 0.924 0.936 0.934 0.942 0.930 0.943

2

1

β̂

bias -0.0261 -0.0023 -0.0083 -0.0009 -0.0067 -0.0003 -0.0054 0.0002
sd 0.0206 0.0270 0.0126 0.0178 0.0085 0.0125 0.0060 0.0089
CV 0.635 0.931 0.866 0.940 0.850 0.943 0.835 0.946

β̂
abc

bias -0.0147 -0.0014 -0.0028 -0.0008 -0.0020 -0.0002 -0.0014 0.0002
sd 0.0197 0.0271 0.0125 0.0178 0.0085 0.0125 0.0060 0.0089
CV 0.833 0.928 0.926 0.943 0.932 0.945 0.945 0.946

2

β̂

bias -0.0378 -0.0012 -0.0114 0.0000 -0.0079 -0.0016 -0.0060 -0.0002
sd 0.0252 0.0337 0.0161 0.0235 0.0102 0.0147 0.0071 0.0098
CV 0.524 0.910 0.842 0.917 0.851 0.942 0.843 0.955

β̂
abc

bias -0.0222 0.0002 -0.0031 0.0001 -0.0021 -0.0016 -0.0013 -0.0002
sd 0.0241 0.0340 0.0158 0.0235 0.0101 0.0147 0.0070 0.0098
CV 0.754 0.909 0.922 0.918 0.935 0.941 0.933 0.954

3

β̂

bias -0.0119 0.0010 -0.0111 -0.0006 -0.0037 0.0005 -0.0033 -0.0002
sd 0.0183 0.0273 0.0126 0.0176 0.0087 0.0127 0.0059 0.0090
CV 0.870 0.936 0.820 0.945 0.912 0.946 0.901 0.953

β̂
abc

bias -0.0046 0.0012 -0.0026 -0.0004 -0.0008 0.0005 -0.0008 -0.0002
sd 0.0178 0.0273 0.0125 0.0176 0.0086 0.0127 0.0058 0.0090
CV 0.909 0.936 0.931 0.946 0.940 0.948 0.945 0.953

4

β̂

bias -0.0446 -0.0047 -0.0189 -0.0006 -0.0070 -0.0007 -0.0065 0.0003
sd 0.0199 0.0263 0.0129 0.0185 0.0087 0.0119 0.0059 0.0090
CV 0.297 0.927 0.632 0.947 0.854 0.951 0.785 0.949

β̂
abc

bias -0.0240 -0.0034 -0.0080 -0.0004 -0.0016 -0.0007 -0.0017 0.0003
sd 0.0191 0.0264 0.0126 0.0186 0.0086 0.0119 0.0059 0.0090
CV 0.694 0.932 0.879 0.947 0.929 0.951 0.940 0.948
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To account for cross-sectional dependence, we employ IFEs. To capture the persistence in tax,

we utilize dynamic panel models. The state-level income per capita is included as an independent

variable. Specifically, we consider the following four panel models with IFEs and potential missing

values:

lgasit = dit(λ
′
ift + β1lgasi,t−1 + β2gincit + vit), (7.1)

lcigit = dit(λ
′
ift + β1lcigi,t−1 + β2gincit + vit), (7.2)

lwineit = dit(λ
′
ift + β1lwinei,t−1 + β2gincit + vit), (7.3)

lcorpit = dit(λ
′
ift + β1lcorpi,t−1 + β2gincit + vit). (7.4)

In the models above, lgasit is the logarithm of gasoline unit tax for state i at year t, lgasi,t−1 is the

logarithm of time lag term for the gasoline unit tax, and similar definitions apply for lcigit, lcigi,t−1,

lwineit and lwinei,t−1. Moreover, lcorpit is the logarithm of state-level corporate top tax rate with

lcorpi,t−1 being the corresponding time lag term. “gincit” is the growth rate of income per capita for

each state, which is included as the state-level control variable. vit is the error term, λi and ft are

the loadings and factors, respectively. dit is the missing indicator. β1 and β2 are the corresponding

slopes for each regression model, with β2 indicating the income elasticity on the taxes.

7.2 Data

We collect the tax data for gasoline, cigarettes, wine, and corporate from the World Tax Database

maintained by the Office of Tax Policy Research at the University of Michigan. State-level income

per capita data is sourced from the Bureau of Economic Analysis. Following Devereux et al. (2007),

we deflate unit taxes using the 1982 CPI.

For the analysis of gasoline and cigarette taxes, we construct a dataset covering 49 U.S. states

from 1951 to 2000, excluding Alaska and Hawaii, as they became states only after 1959. For wine

and corporate taxes, after cleaning the data, the dataset includes 30 and 44 states over the same

time period, as several states lack data for the entire time periods. The data reveal missing values

for gasoline tax (1.76%), cigarette tax (3.39%), wine tax (8.47%) and corporate top tax (10.59%).

Figure 1 illustrates the missing data patterns for the four taxes, with missing values indicated

in beige color. For gasoline taxes, missing data occur only in specific years: 1951, 1993, and 1999.

Similarly, cigarette tax data exhibit minimal gaps, with only a few states (e.g., California, Colorado,

Maryland) lacking data in the earlier years. In contrast, the wine tax and corporate top tax datasets

exhibit significantly more missing data. For the wine tax, the gaps are both persistent throughout

the timeline for certain states (e.g., the District of Columbia) and concentrated in specific time
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periods. The corporate tax dataset combines characteristics of both the cigarette and wine tax

datasets, with more states missing data in the earlier years and certain specific years showing

scattered missing data points. This makes the corporate tax dataset the most incomplete among

the four.

Figure 1: Missing patterns for the tax data

(a) Gasoline (b) Cigarette

(c) Wine (d) Corporate

7.3 Estimation and Inference Results for the Unbalanced Panel

Using the SVT approach described in Section 3.3, the estimated number of factors for all four

models remain one. Table 6 presents the estimation results, where the columns correspond to the

gasoline, cigarette, wine, and corporate tax models (7.1) – (7.4), respectively.

In this table, the row labeled “taxi,t−1” represents the lagged dependent variable in each re-

gression. Results are reported both with and without bias correction, as discussed in Section 4.
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The estimated elasticity coefficients for the lagged tax are consistently high across all excise taxes,

indicating strong persistence over time. While it becomes weaker for the corporate tax. The esti-

mates range from 0.334 (corporate tax) to 0.971 (cigarette tax), all statistically significant at the

1% level. Bias correction has only minor effects on these estimates, suggesting the relatively small

finite-sample bias.

Regarding the growth rate of state income, the estimated effects vary across tax types. Bias

correction leads to more negative estimates for gasoline and cigarette taxes, with coefficients of

-0.817 and -0.310, respectively, both statistically significant at the 1% and 5% levels. The wine

tax exhibits a positive and significant relationship with income growth (0.579, significant at the

5% level), whereas the corporate tax shows a negative but statistically insignificant relationship.

Especially, the bias correction helps to improve the significance level for the relationship of income

and cigarette/wine taxes.

The differing effects of income growth across tax types likely reflect distinct economic and policy

considerations. The negative relationship between income growth and gasoline/cigarette taxes may

suggest that as a state economy grow, the state government may be less reliant on these two excise

taxes, possibly shifting toward alternative revenue sources. In contrast, the positive effect on wine

tax rates suggests a progressive taxation effect in states where wine consumption is more prevalent

among higher-income populations. Moreover, the lack of significance for corporate tax rates implies

that corporate tax policies may be driven by structural and political factors rather than short-term

income fluctuations.

Table 6: Estimation results for US state tax with missing data

Variables Bias correction gasit cigit wineit corpit

taxi,t−1

yes
0.963 0.971 0.630 0.334

(214.41)∗∗∗ (247.14)∗∗∗ (21.87)∗∗∗ (10.74)∗∗∗

no
0.964 0.973 0.625 0.327

(214.72)∗∗∗ (247.53)∗∗∗ (21.71)∗∗∗ (10.53)∗∗∗

ginc

yes
-0.817 -0.310 0.579 -0.163

(−6.07)∗∗∗ (−2.23)∗∗ (3.59)∗∗ (−0.75)

no
-0.758 -0.237 0.524 -0.170

(−5.63)∗∗∗ (−1.71)∗ (3.21)∗ (−0.78)

N 49 49 30 44
T 50 50 50 50

Notes: Values in parentheses are the t-statistics. ∗, ∗∗, and ∗∗∗denote signifi-
cance at 10%, 5%, and 1%, respectively.
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7.4 Comparison with the Results for the Balanced Sub-panel

To compare the results from our unbalanced dataset with a traditional balanced panel approach, we

constructed a balanced panel by removing states with missing data from 1951 to 2000. After this

data cleaning, the balanced dataset includes 15 states for gasoline tax, 41 states for cigarette tax,

and 11 states for corporate tax. Due to data limitations after the truncation, the wine tax model

is excluded from this balanced sample. For gasoline, cigarette, and corporate taxes, we apply the

traditional panel data model with IFEs following the method in Moon and Weidner (2017). The

estimation results are reported in Table 7.

For the lagged tax rate, the estimates in the balanced model are generally higher than those in

the unbalanced model. The estimate for taxi,t−1 increases from 0.963 and 0.971 in the unbalanced

model to 0.99 and 0.981 in the balanced model for gasoline and cigarette taxes. However, for

corporate tax, the estimate increases to 1.002, suggesting possible overestimation due to a smaller

sample size (N = 11). The very high persistence of corporate tax rates (above 1) in the balanced

model indicates potential estimation issues, reinforcing the advantage of using the missing data

approach, which leverages a larger sample for more reliable estimates.

Regarding income growth, the balanced panel results differ significantly from the unbalanced

model. The previously strong negative effect of income growth on gasoline tax (-0.817) becomes

statistically insignificant (-0.164) in the balanced model. Similarly, for the cigarette tax, the negative

income effect (-0.310, significant at 5%) disappears in the balanced model (0.035, insignificant). For

corporate taxes, the unbalanced model shows a small negative effect (-0.163), but in the balanced

panel, the estimate is nearly zero (0.007, insignificant). These differences suggest that restricting

the data to a balanced panel can introduce bias and lead to misleading conclusions about the

relationship between income growth and tax rates.

The comparison between our proposed AM algorithm for handling missing data and the tradi-

tional balanced panel approach highlights the advantages of incorporating all available data. The

unbalanced panel approach captures meaningful economic relationships that are lost when using

a traditional balanced panel. This suggests that removing data to create a balanced panel may

introduce biases and obscure important economic dynamics, reinforcing the advantages of our AM

algorithm.

8 Conclusions

This paper studies IFEs panel data models with missing data. A two-step procedure is proposed

to estimate the regression coefficients and the factors and loadings, where in the first step we use

nuclear norm regularization to obtain consistent initial estimates and in the second step we use
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Table 7: Estimation results for US state tax with balanced data

Variables Bias correction gasit cigit corpit

taxi,t−1

yes
0.990 0.981 1.002

(62.60)∗∗∗ (443.60)∗∗∗ (498.56)∗∗∗

no
0.967 0.981 1.002

(61.16)∗∗∗ (443.59)∗∗∗ (498.54)∗∗∗

ginc

yes
-0.164 0.035 0.007

(−1.04) (0.55) (0.11)

no
-0.045 0.035 0.010

(−0.29) (0.55) (0.17)

N 15 41 11
T 50 50 50

Notes: Values in the parentheses are t-statistics. ∗∗∗ denote
significance at 1%.

the alternating maximization (AM) to iterate until convergence. Under fairly general missing data

patterns, we prove that the AM is a contractionary mapping towards the second step estimator and

the second step estimator is asymptotically normal, as long as the initial estimator is consistent. We

also show that the asymptotic biases and variances depend on the missing patterns and we develop

analytical bias corrections according to the missing pattern. Monte Carlo simulations demonstrate

excellent finite sample performance for the proposed estimation algorithm. An empirical application

for the US state-level tax rates from year 1951 to 2000 with missing data shows that gasoline,

cigarette, wine and corporate tax rate all exhibit persistence and state-level income growth affects

various types of taxes differently.

Our results allow some important missing patterns, including block/staggered missing and selec-

tion on regressors/factors/loadings. Moreover, we also show that our results can be readily extended

to cases with a Heckman correction term or other general settings such as nonlinear panels, two

way fixed effects model and other missing patterns.

A series of work can be done based on our theoretical framework, e.g., testing the presence of

sample selection bias in addition to the factor structure, extending our results to the fixed T cases

or the nonlinear cases, allowing for nonstationarity in the data and allowing for potential slope

heterogeneity. Our results are prototypical for the estimation and inference of unbalanced panels

under general missing patterns and thus should be useful for these further studies.
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Honoré, B. E. and Hu, L. (2004). Estimation of cross sectional and panel data censored regression models

with endogeneity. Journal of Econometrics, 122(2):293–316.
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This online appendix contains 9 sections. Section A contains details for the Hessian matrices used in the

estimation. Section B contains the proofs of Proposition 3.1 and Theorem 3.1. Section C contains the proofs

of Theorem 3.2 and Corollary 3.1. Section D contains the proof Theorem 3.3. Section E contains the proofs

of Proposition 4.1 and Theorem 4.1. Section F contains some supplementary lemmas used in the proofs of

the results in Section E. Section G contains the proof of Theorem 4.2. Section H contains details for the

Alternating Direction Method of Multipliers Algorithm (ADMM).

A Details for the Hessian Matrices

Recall that γ = (β
′
, λ′, f ′)

′
and Q(γ) = L(γ) + G(γ), where L(·) and G(·) are defined in (3.1) and (3.2),

respectively. We use the following notations to define the Hessian matrix associated with Q (γ) .

Qγγ′(γ) = ∂γγ′Q(γ) =

(
∂ββ′Q(γ) ∂βϕ′Q(γ)

∂ϕβ′Q(γ) ∂ϕϕ′Q(γ)

)
=

(
Qββ′(γ) Qβϕ′(γ)

Qϕβ′(γ) Qϕϕ′(γ)

)
, (A.1)

Qββ′(γ) = −
∑N

i=1

∑T

t=1
ditxitx

′
it for any γ, (A.2)

Qβϕ′(γ) = (Qβλ′
1
(γ), ..., Qβλ′

N
(γ);Qβf ′

1
(γ), ..., Qβf ′

T
(γ)), (A.3)

where Qβλ′
i
(γ) = −

∑T
t=1 ditxitf

′
t and Qβf ′

t
(γ) = −

∑N
i=1 ditxitλ

′
i. For Qϕϕ′(γ), we make the following

decomposition:

Qϕϕ′(γ) = ∂ϕϕ′L(γ) +Gϕϕ′(γ), (A.4)

where ∂ϕϕ′L(γ) = Lϕϕ′(γ) + Jϕϕ′(γ) and ∂ϕϕ′G(γ) = Gϕϕ′(γ). We make the following partitions:

Qϕϕ′(γ) =

(
Qλλ′(γ) Qλf ′(γ)

Qfλ′(γ) Qff ′(γ)

)
, (A.5)

Lϕϕ′(γ) =

(
Lλλ′(γ) Lλf ′(γ)

Lfλ′(γ) Lff ′(γ)

)
and Jϕϕ′(γ) =

(
0 Jλf ′(γ)

Jfλ′(γ) 0

)
. (A.6)

Here, Lλλ′(γ) is an Nr × Nr block-diagonal matrix and the i-th diagonal block is −
∑T

t=1 ditftf
′
t ; Lff ′(γ)

is a Tr × Tr block-diagonal matrix and the t-th diagonal block is −
∑N

i=1 ditλiλ
′
i; Lλf ′(γ) is of dimension

1
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Nr× Tr and the (i, t)-th block is −ditftλ′i; Lfλ′(γ) is the transpose of Lλf ′(γ). Jλf ′(γ) is also Nr× Tr and

the (i, t)-th block is ditvit(γ)Ir with vit(γ) = yit − xitβ − f ′tλi, and Jfλ′(γ) = Jλf ′(γ)′. When γ = γ0, we

suppress the argument of these matrices and write, e.g., Qϕϕ′ = Qϕϕ′(γ0).

In addition, we define the following sets of (Nr + Tr) × 1 vectors for 1 ≤ p ≤ q ≤ r.

w0
pp : For the first Nr elements, in the i-th block, the p-th element is λ0ip and all the other elements are

zeros; for the last Tr elements, in the t-th block, the p-th element is −f0tp and all the other elements

are zeros.

w0
pq : For the first Nr elements, in the i-th block, the p-th element is λ0iq and all the other elements are

zeros; for the last Tr elements, in the t-th block, the q-th element is −f0tp and all the other elements

are zeros.

w0
qp : For the first Nr elements, in the i-th block, the q-th element is λ0ip and all the other elements are zero;

for the last Tr elements, in the t-th block, the p-th element is −f0tq and all the other elements are zero.

Let W 0 contain the vectors w0
pp, w0

pq and w0
qp, i.e.,

W 0 = (w0
11, ..., w

0
rr;w0

12, ..., w
0
1r, w

0
23, ..., w

0
2r, ..., w

0
(r−1)r;w0

21, ..., w
0
r1, w

0
32, ..., w

0
r2, ..., w

0
r(r−1))

≡ (W 0′
λ ,W

0′
f )′, (A.7)

where W 0
λ (an Nr × r2 matrix) contains the first Nr rows of W 0 and W 0

f ((a Tr × r2 matrix)) contains the

last Tr rows. From expression (3.2) it’s not difficult to see that

G(λ, f) = − c
2

∥∥∥√NT (D
− 1

2

NTW
0)′D

− 1
2

NTϕ
∥∥∥2 = − c

2

∥∥∥W 0′D
− 1

2

NTD
1
2

TNϕ
∥∥∥2

= − c
2
ϕ′D

1
2

TND
− 1

2

NTW
0W 0′D

− 1
2

NTD
1
2

TNϕ, and hence

Gϕϕ′ = ∂ϕϕ′G(λ, f) = −cD
1
2

TND
− 1

2

NTW
0W 0′D

− 1
2

NTD
1
2

TN . (A.8)

A cautionary note. For a real square matrix A, we will A−1 to denote its usual inverse when A is of

full rank, and the Moore-Penrose generalized inverse (A+) if A is not of full rank. The Hessian matrix Lϕϕ′(·)
associated with L(·) is has rank (N + T )r− r2, whereas the Hessian matrix Qϕϕ′ associated with Q (·) is full

rank (see Lemma B.1 below).

B Proofs of Proposition 3.1 and Theorem 3.1

Lemma B.1 Suppose Assumptions 1–2 and 4 hold. Then as (N,T ) → ∞, (−D− 1
2

TNQϕϕ′D
− 1

2

TN )−1 = Op(1).

Proof. For the random missing case, Lemma B.1 in Su and Wang (2024) (see steps (1.1)-(1.3) in

particular) proves this result under their Assumptions 1, 2(i) and 4. Note that Qϕϕ′ here corresponds to

Ȟϕϕ′ +(Lϕϕ′ − L̄ϕϕ′)+Jϕϕ′ there. For the block-type missing case, Lemma B.2 in Su and Wang (2024) proves

this result under their Assumptions 1, 2(ii) and 4.

The proofs are quite different under random missing and block-type missing because the structure of Qϕϕ′

under these two types of missing patterns are quite different. A key condition for proving (−D− 1
2

TNQϕϕ′D
− 1

2

TN )−1 =

2
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Op(1) in the random missing cases is that Eϕ(dit) ≥ d > 0 for all i and t. Nevertheless, this condition is

violated in the block missing cases where dit is always 1 if i ≤ No or t ≤ To and always 0 if i > No and

t > To. Because of this fundamental difference, Su and Wang (2024) prove (−D− 1
2

TNQϕϕ′D
− 1

2

TN )−1 = Op(1)

conditioning on the block missing pattern, utilizing a totally different strategy.

Given the factors, loadings and the block missing pattern are realized and fixed down, Su and Wang

(2024) calculate exactly all the eigenvalues and eigenvectors of the normalized Hessian and show that the

smallest eigenvalue is bounded away from zero in probability as long as both No/N and To/T are bounded

away from zero. For the block-type (e.g., staggered) missing cases, they show that the eigenvalues of the

normalized Hessian become smaller if some entries of the data matrix are thrown away so that it becomes

an exact block missing matrix. Thus (−D− 1
2

TNQϕϕ′D
− 1

2

TN )−1 = Op(1) holds for the block-type missing cases as

long as it holds for the block missing case.

Proof of Proposition 3.1:

Part (i): Recall that the i-th diagonal block of Lλλ′(γ) is −
∑T

t=1 ditftf
′
t , the t-th diagonal block

of Lff ′(γ) is −
∑N

i=1 ditλiλ
′
i, the (i, t)-th block of Lλf ′(γ) is −ditftλ′i and the (i, t)-th block of Jλf ′(γ) is

ditvit(γ)Ir, where vit(γ) = yit − x′itβ − f ′tλi. When γ ∈ Bm(γ0), we have
∥∥∥D− 1

2

NT (ϕ− ϕ0)
∥∥∥ ≤ m. Then

by using a2 − b2 = 2 (a− b) b + (a− b)
2
, ab − a0b0 = (a − a0)b0 + a0

(
b− b0

)
+ (a − a0)

(
b− b0

)
and the

Cauchy-Schwarz (CS hereafter) inequality, we obtain∣∣∣∣ 1

N

∑N

i=1
λ2iq −

1

N

∑N

i=1
(λ0iq)2

∣∣∣∣ ≤ 2m

√
1

N

∑N

i=1
(λ0iq)2 +m2 for any q, (B.1)∣∣∣∣ 1

N

∑N

i=1
λipλiq −

1

N

∑N

i=1
λ0ipλ

0
iq

∣∣∣∣ ≤ 2mmax
q

√
1

N

∑N

i=1
(λ0iq)2 +m2 for p ̸= q, (B.2)∣∣∣∣ 1

T

∑T

t=1
f2tq −

1

T

∑T

t=1
(f0tq)2

∣∣∣∣ ≤ 2m

√
1

T

∑T

t=1
(f0tq)2 +m2 for any q, (B.3)∣∣∣∣ 1

T

∑T

t=1
ftpftq −

1

T

∑T

t=1
f0tpf

0
tq

∣∣∣∣ ≤ 2mmax
q

√
1

T

∑T

t=1
(f0tq)2 +m2 for p ̸= q, (B.4)√

1

NT

∑N

i=1

∑T

t=1
[x′it(β − β0)]2 ≤ m

√
1

NT

∑N

i=1

∑T

t=1
∥xit∥2. (B.5)

Thus by Assumptions 2 and 3(ii), there exists M > 0 such that w.p.a.1,

max
γ∈Bm(γ0)

∥∥∥∥ 1

T
(Lλλ′(γ) − Lλλ′)

∥∥∥∥ ≤ max
γ∈Bm(γ0)

∥∥∥∥ 1

T

∑T

t=1
ditftf

′
t −

1

T

∑T

t=1
ditf

0
t f

0′
t

∥∥∥∥ ≤ mM ,

max
γ∈Bm(γ0)

∥∥∥∥ 1

N
(Lff ′(γ) − Lff ′)

∥∥∥∥ ≤ max
γ∈Bm(γ0)

∥∥∥∥ 1

N

∑N

i=1
ditλiλ

′
i −

1

N

∑N

i=1
ditλ

0
iλ

0′
i

∥∥∥∥ ≤ mM ,

max
γ∈Bm(γ0)

∥∥∥∥ 1√
NT

(Lλf ′(γ) − Lλf ′)

∥∥∥∥
F

≤ max
γ∈Bm(γ0)

√
1

NT

∑N

i=1

∑T

t=1

∥∥ditftλ′i − ditf0t λ
0′
i

∥∥2
F
≤ mM ,

max
γ∈Bm(γ0)

∥∥∥∥ 1√
NT

(Jλf ′(γ) − Jλf ′)

∥∥∥∥
F

≤ max
γ∈Bm(γ0)

√
1

NT

∑N

i=1

∑T

t=1
∥ditvit(γ)Ir − ditvitIr∥2F ≤ mM .

3
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Since Qϕϕ′(γ) = Lϕϕ′(γ) + Jϕϕ′(γ) +Gϕϕ′ and Qϕϕ′ = Lϕϕ′ + Jϕϕ′ +Gϕϕ′ , we have

max
γ∈Bm(γ0)

∥∥∥D− 1
2

TN (Qϕϕ′(γ) −Qϕϕ′)D
− 1

2

TN

∥∥∥
= max

γ∈Bm(γ0)

∥∥∥D− 1
2

TN (Lϕϕ′(γ) − Lϕϕ′ + Jϕϕ′(γ) − Jϕϕ′)D
− 1

2

TN

∥∥∥
≤ max

γ∈Bm(γ0)

{∥∥∥∥ 1

T
(Lλλ′(γ) − Lλλ′)

∥∥∥∥+

∥∥∥∥ 1

N
(Lff ′(γ) − Lff ′)

∥∥∥∥+

∥∥∥∥ 2√
NT

(Lλf ′(γ) − Lλf ′)

∥∥∥∥
+

∥∥∥∥ 2√
NT

(Jλf ′(γ) − Jλf ′)

∥∥∥∥}
≤ mM w.p.a.1. (B.6)

If we take m ≤ C
2M with 0 < 2C ≤plimσmin(−D− 1

2

TNQϕϕ′D
− 1

2

TN ) by Lemma B.1, then w.p.a.1.

min
γ∈Bm(γ0)

σmin(−D− 1
2

TNQϕϕ′(γ)D
− 1

2

TN ) ≥ σmin(−D− 1
2

TNQϕϕ′D
− 1

2

TN ) − max
γ∈Bm(γ0)

∥∥∥D− 1
2

TN (Qϕϕ′(γ) −Qϕϕ′)D
− 1

2

TN

∥∥∥ ≥ C.

Part (ii): First note that Qββ′(γ) = Qββ′ since
∑T

t=1

∑N
i=1 ditxitx

′
it is free of γ. Next, by the CS

inequality,

max
γ∈Bm(γ0)

∥∥∥(Qβϕ′(γ)−Qβϕ′)D
− 1

2

TN

∥∥∥
≤ max

γ∈Bm(γ0)

√√√√ N∑
i=1

∥∥∥∥∥ 1√
T

T∑
t=1

ditxit(ft − f0t )′

∥∥∥∥∥
2

F

+

T∑
t=1

∥∥∥∥∥ 1√
N

N∑
i=1

ditxit(λi − λ0i )′

∥∥∥∥∥
2

F

≤ max
γ∈Bm(γ0)

√√√√ N∑
i=1

T∑
t=1

∥xit∥2 (
∥f − f0∥2

T
+

∥∥λ− λ0
∥∥2

N
) ≤ mM

√
NT w.p.a.1, (B.7)

and ∥∥∥Qβϕ′D
− 1

2

TN

∥∥∥ ≤

√√√√ N∑
i=1

T∑
t=1

∥xit∥2 (
∥f0∥2

T
+

∥∥λ0∥∥2
N

) ≤M
√
NT w.p.a.1. (B.8)

In addition,

max
γ∈Bm(γ0)

∥∥∥D 1
2

TN [(Qϕϕ′(γ))
−1 −Q−1

ϕϕ′ ]D
1
2

TN

∥∥∥
= max

γ∈Bm(γ0)

∥∥∥D 1
2

TN (Qϕϕ′(γ))
−1

(Qϕϕ′(γ) −Qϕϕ′)Q−1
ϕϕ′D

1
2

TN

∥∥∥
≤ max

γ∈Bm(γ0)

∥∥∥(D
− 1

2

TNQϕϕ′(γ)D
− 1

2

TN )
−1
∥∥∥∥∥∥D− 1

2

TN (Qϕϕ′(γ) −Qϕϕ′)D
− 1

2

TN

∥∥∥∥∥∥(D
− 1

2

TNQϕϕ′D
− 1

2

TN )
−1
∥∥∥

≤ mM

C2
w.p.a.1, (B.9)

where the last inequality follows from Lemma B.1, Proposition 3.1(i), and eqn. (B.6). Combining (B.7)–(B.9)

and using

ABA′ −A0B0A0′ = (A−A0)B0A0′ +A0(B −B0)A0′ +A0B0(A−A0)′ + (A−A0)(B −B0)A0′

4
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+(A−A0)B0(A−A0)′ +A0(B −B0)(A−A0)′ + (A−A0)(B −B0)(A−A0)′,

we can readily show that for some large M > 0,

max
γ∈Bm(γ0)

∥∥∥∥Qβϕ′(γ)(Qϕϕ′(γ))
−1
Qϕβ′(γ)− 1

NT
Qβϕ′Q−1

ϕϕ′Qϕβ′

∥∥∥∥
= max

γ∈Bm(γ0)

∥∥∥Qβϕ′(γ)D
− 1

2

TND
1
2

TN (Qϕϕ′(γ))−1D
1
2

TND
− 1

2

TNQϕβ′(γ) −Qβϕ′D
− 1

2

TND
1
2

TNQ
−1
ϕϕ′D

1
2

TND
− 1

2

TNQϕβ′

∥∥∥
≤ mMNT w.p.a.1.

In addition, Assumption 3(i) and Lemma B.2 below imply σmin(− 1
NT [Qββ′ − Qβϕ′Q−1

ϕϕ′Qϕβ′ ]) ≥ C w.p.a.1.

This finishes the proof of part (ii) after taking m ≤ C
2M . ■

Lemma B.2 (i) Let Q̄ϕϕ′ = Eϕ(Qϕϕ′) and define the other expected counterparts similarly, e.g., Q̄ββ′ =

Eϕ(Qββ′), Q̄βϕ′ = Eϕ(Qβϕ′), L̄ϕϕ′ = Eϕ(Lϕϕ′) and J̄ϕϕ′ = Eϕ(Jϕϕ′). Suppose the conditions in Proposition

3.1 hold. Then
∑N

i=1

∑T
t=1 Eϕ(ditẋitẋ

′
it) = −(Q̄ββ′ − Q̄βϕ′Q̄−1

ϕϕ′Q̄ϕβ′).

(ii) Under Assumptions 1-4, we have 1
NT (Qββ′ − Qβϕ′Q−1

ϕϕ′Qϕβ′) = 1
NT (Q̄ββ′ − Q̄βϕ′Q̄−1

ϕϕ′Q̄ϕβ′) + op(1)

as (N,T ) → ∞.

Proof. The following proof is presented in an unified way for both the random missing case and the

block-type missing case. For the latter, since our analysis is conditioning on the missing pattern, we have

Eϕ(dit) = dit, Eϕ(ditxit) = ditEϕ(xit), Eϕ(ditxitx
′
it) = ditEϕ(xitx

′
it), etc.

Part (i): Step (1): The first order conditions (FOCs) for the minimization problem in (2.2) is that for

each k,

∑T

t=1
Eϕ(dit)(

Eϕ(ditxitk)

Eϕ(dit)
− δ0′kif

0
t − ω0′

ktλ
0
i )f0′t = 0 for any i,∑N

i=1
Eϕ(dit)(

Eϕ(ditxitk)

Eϕ(dit)
− δ0′kif

0
t − ω0′

ktλ
0
i )λ0′i = 0 for any t.

Recall that δ0i and ω0
t are K × r matrices such that δ0ki and ω0

kt are the transpose of the k-th row of δ0i

and ω0
t , respectively. Define δ0 = (δ01, ..., δ

0
N )′ and ω0 = (ω0

1, ..., ω
0
T )′. Then the above FOCs imply

Q̄βϕ′ = (δ0′, ω0′)L̄ϕϕ′ . (B.10)

They also imply
∑N

i=1

∑T
t=1 Eϕ(dit)(

Eϕ(ditxit)
Eϕ(dit)

− δ0i f
0
t − ω0

tλ
0
i )(δ0i f

0
t + ω0

tλ
0
i )′ = 0. It follows that

∑N

i=1

∑T

t=1
Eϕ(dit)(δ

0
i f

0
t + ω0

tλ
0
i )(δ0i f

0
t + ω0

tλ
0
i )′ (B.11)

=
∑N

i=1

∑T

t=1
Eϕ(ditxit)(δ

0
i f

0
t + ω0

tλ
0
i )′ = −Q̄βϕ′L̄−1

ϕϕ′Q̄ϕβ′ ,

where the second equality follows from eqn. (B.10), eqn. (A.3), and the fact that Eϕ(ditxitλ
0′
i ) = Eϕ(ditxit)λ

0′
i

and Eϕ(ditxitf
0′
t ) = Eϕ(ditxit)f

0′
t . Since ẋit = xit − (δ0i f

0
t + ω0

tλ
0
i ),

∑N

i=1

∑T

t=1
Eϕ(ditẋitẋ

′
it)

5
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=
∑N

i=1

∑T

t=1
Eϕ(ditxitx

′
it) − 2

∑N

i=1

∑T

t=1
Eϕ(ditxit)(δ

0
i f

0
t + ω0

tλ
0
i )′

+
∑N

i=1

∑T

t=1
Eϕ(dit)(δ

0
i f

0
t + ω0

tλ
0
i )(δ0i f

0
t + ω0

tλ
0
i )′ = −(Q̄ββ′ − Q̄βϕ′L̄−1

ϕϕ′Q̄ϕβ′). (B.12)

Thus it remains to show that Q̄βϕ′L̄−1
ϕϕ′Q̄ϕβ′ = Q̄βϕ′Q̄−1

ϕϕ′Q̄ϕβ′ .

Step (2): Recall that Q̄ϕϕ′ = L̄ϕϕ′ + Gϕϕ′ = L̄ϕϕ′ − cD
1
2

TND
− 1

2

NTW
0W 0′D

− 1
2

NTD
1
2

TN and W 0 is defined in

Appendix A. Any two different columns of W 0 are orthogonal to each other, and the columns of W 0 are all

orthogonal to the space spanned by the eigenvectors of Lϕϕ′ and orthogonal to the rows of Qβϕ′ . In matrix

form, we have

Lϕϕ′W 0 = 0, Qβϕ′W 0 = 0,

L̄ϕϕ′W 0 = 0, and Q̄βϕ′W 0 = 0. (B.13)

It’s easy to see that any two columns of D
− 1

2

NTW
0 are also orthogonal to each other, and the columns ofD

− 1
2

NTW
0

are all orthogonal to the eigenvectors of D
− 1

2

TN L̄ϕϕ′D
− 1

2

TN (since D
− 1

2

TN L̄ϕϕ′D
− 1

2

TND
− 1

2

NTW
0 = 1√

NT
D

− 1
2

TN L̄ϕϕ′W 0 =

0). Thus we have

(D
− 1

2

TN Q̄ϕϕ′D
− 1

2

TN )−1 = (D
− 1

2

TN L̄ϕϕ′D
− 1

2

TN )−1 − 1

c
D

− 1
2

NTW
0(W 0′D−1

NTW
0)−2W 0′D

− 1
2

NT . (B.14)

We also have Q̄βϕ′D
− 1

2

TND
− 1

2

NTW
0 = 1√

NT
Q̄βϕ′W 0 = 0, it follows that

Q̄−1
βϕ′Q̄

−1
ϕϕ′ = Q̄βϕ′D

− 1
2

TN (D
− 1

2

TN Q̄ϕϕ′D
− 1

2

TN )−1D
− 1

2

TN

= Q̄βϕ′D
− 1

2

TN (D
− 1

2

TN L̄ϕϕ′D
− 1

2

TN )−1D
− 1

2

TN = Q̄βϕ′L̄−1
ϕϕ′ . (B.15)

Then Q̄βϕ′L̄−1
ϕϕ′Q̄ϕβ′ = Q̄βϕ′Q̄−1

ϕϕ′Q̄ϕβ′ . This concludes the proof of part (i).

Part (ii): It suffices to show that 1
NT (Qββ′ − Q̄ββ′) = op(1) and 1

NT (Qβϕ′Q−1
ϕϕ′Qϕβ′ − Q̄βϕ′Q̄−1

ϕϕ′Q̄ϕβ′) =

op(1). We only prove the second claim as the first one is implied by Assumption 3(iii) (see (B.19) below). To

show the second claim, given Lemma B.1, it suffices to show∥∥∥(D
− 1

2

TNQϕϕ′D
− 1

2

TN )−1 − (D
− 1

2

TN Q̄ϕϕ′D
− 1

2

TN )−1
∥∥∥ = op(1), (B.16)∥∥∥Qβϕ′D

− 1
2

TN

∥∥∥ = Op(
√
NT ), (B.17)∥∥∥(Qβϕ′ − Q̄βϕ′)D

− 1
2

TN

∥∥∥ = Op(
√
N +

√
T ), (B.18)∥∥Qββ′ − Q̄ββ′

∥∥ = op(NT ). (B.19)

Eqn. (B.17) holds by eqn. (B.8). Equations (B.18) and (B.19) follow from Assumption 3(iii). Now

consider eqn. (B.16). Equations (B.16) and (B.15) in the appendix of Su and Wang (2024) show that∥∥∥D− 1
2

TN (Lϕϕ′ − L̄ϕϕ′)D
− 1

2

TN

∥∥∥ = Op(N
1
κ√
T

+ T
1
κ√
N

+ 1√
cNT

) and
∥∥∥D− 1

2

TNJϕϕ′D
− 1

2

TN

∥∥∥ = Op( 1√
cNT

) for the random miss-

ing cases. Since Qϕϕ′ − Q̄ϕϕ′ = Lϕϕ′ − L̄ϕϕ′ + Jϕϕ′ , we have

∥∥∥D− 1
2

TN (Qϕϕ′ − Q̄ϕϕ′)D
− 1

2

TN

∥∥∥ = Op(
N

1
κ

√
T

+
T

1
κ

√
N

+
1

√
cNT

), (B.20)

6

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5177283

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



which together with Lemma B.1 proves eqn. (B.16) for the random missing cases. For the block-type missing

cases, Lϕϕ′ = L̄ϕϕ′ since Eϕ(dit) = dit, i.e., eqn. (B.20) is still valid with κ = ∞.

Proof of Theorem 3.1:

Step (1): Let γ̂ = (β̂
′
, λ̂

′
, f̂ ′)′ be the solution of the problem minγ∈Bm(γ0) ∥S(γ)∥2. Since γ0 ∈ Bm(γ

0
),

∥S(γ̂)∥ ≤ ∥S∥ by definition. Take the Taylor expansion of S(γ̂) at γ0,

Sβ(β̂, ϕ̂) − Sβ = Q∗
ββ′(β̂ − β0) +Q∗

βϕ′(ϕ̂− ϕ0), (B.21)

Sϕ(β̂, ϕ̂) − Sϕ = Q∗
ϕβ′(β̂ − β0) +Q∗

ϕϕ′(ϕ̂− ϕ0), (B.22)

where Q∗
ββ′ = Qββ′(γ∗), Q∗

βϕ′ = Qβϕ′(γ∗), Q∗
ϕβ′ = Q∗′

βϕ′ , Q∗
ϕϕ′ = Qϕϕ′(γ∗) and γ∗ = sγ̂ + (1 − s)γ0 for some

0 < s < 1. It follows that

β̂ − β0 = (Q∗
ββ′ −Q∗

βϕ′Q∗−1
ϕϕ′ Q

∗
ϕβ′)−1(Sβ(β̂, ϕ̂) − Sβ −Q∗

βϕ′Q∗−1
ϕϕ′ (Sϕ(β̂, ϕ̂) − Sϕ))

= Op(
1

NT
)(Op(

√
NT ) +Op(

√
NT )Op(1)Op(

√
T +

√
N)) = Op(

1

cNT
), (B.23)

where the second equality holds by facts (1)–(5) below.

(1) By Proposition 3.1(ii),∥∥∥∥(
1

NT
[Q∗

ββ′ −Q∗
βϕ′Q∗−1

ϕϕ′ Q
∗
ϕβ′ ])−1

∥∥∥∥ = 1/σmin(− 1

NT
[Q∗

ββ′ −Q∗
βϕ′Q∗−1

ϕϕ′ Q
∗
ϕβ′ ])

≤ 1/ min
γ∈Bm(γ0)

σmin(− 1

NT
[Qββ′(γ) −Qβϕ′(γ)(Qϕϕ′(γ))

−1
Qϕβ′(γ)]) = Op(1). (B.24)

(2) Note that Sβ =
∑N

i=1

∑T
t=1 xitditvit, Sλi =

∑T
t=1 ditvitf

0
t , Sλ = (S′

λ1
, ..., S′

λN
)′, Sft =

∑N
i=1 ditvitλ

0
i

and Sf = (S′
f1
, ..., S′

fT
)′. By Assumption 5, ∥Sβ∥ = Op(

√
NT ), ∥Sλ∥ = Op(

√
NT ), ∥Sf∥ = Op(

√
NT ) and

∥S∥ ≤ ∥Sβ∥ + ∥Sλ∥ + ∥Sf∥ = Op(
√
NT ). It follows that∥∥∥Sβ(β̂, ϕ̂) − Sβ

∥∥∥ ≤
∥∥∥Sβ(β̂, ϕ̂)

∥∥∥+ ∥Sβ∥ ≤
∥∥∥S(β̂, ϕ̂)

∥∥∥+ ∥Sβ∥ ≤ ∥S∥ + ∥Sβ∥ = Op(
√
NT ).

(3) By the triangle inequality and equations (B.7) and (B.8),∥∥∥Q∗
βϕ′D

−1/2
TN

∥∥∥ ≤ max
γ∈Bm(γ0)

∥∥∥(Qβϕ′(γ)−Qβϕ′)D
− 1

2

TN

∥∥∥+
∥∥∥Qβϕ′D

− 1
2

TN

∥∥∥ = Op(
√
NT ). (B.25)

(4) By Proposition 3.1(i),∥∥∥D1/2
TNQ

∗−1
ϕϕ′ D

1/2
TN

∥∥∥ =
∥∥∥(D

−1/2
TN Q∗

ϕϕ′D
−1/2
TN )−1

∥∥∥ = 1/σmin(−D−1/2
TN Q∗

ϕϕ′D
−1/2
TN )

≤ 1/ min
γ∈Bm(γ0)

σmin(−D−1/2
TN Qϕϕ′(γ)D

−1/2
TN ) = Op(1). (B.26)

(5) Note that∥∥∥D−1/2
TN (Sϕ(β̂, ϕ̂) − Sϕ)

∥∥∥ ≤ 1√
T

∥∥∥Sλ(β̂, ϕ̂) − Sλ

∥∥∥+
1√
N

∥∥∥Sf (β̂, ϕ̂) − Sf

∥∥∥
7
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≤ 1√
T

(
∥∥∥Sλ(β̂, ϕ̂)

∥∥∥+ ∥Sλ∥) +
1√
N

(
∥∥∥Sf (β̂, ϕ̂)

∥∥∥+ ∥Sf∥)

≤ 2(
1√
T

+
1√
N

) ∥S∥ = Op(
√
T +

√
N). (B.27)

By eqn. (B.22) we also have ϕ̂− ϕ0 = Q∗−1
ϕϕ′ (Sϕ(β̂, ϕ̂) − Sϕ) −Q∗−1

ϕϕ′ Q∗
ϕβ′(β̂ − β0). Then∥∥∥D1/2

TN (ϕ̂− ϕ0)
∥∥∥ =

∥∥∥(D
1/2
TNQ

∗−1
ϕϕ′ D

1/2
TN )

[
D

−1/2
TN (Sϕ(β̂, ϕ̂) − Sϕ) −D

−1/2
TN Q∗

ϕβ′(β̂ − β0)
]∥∥∥

≤
∥∥∥(D

1/2
TNQ

∗−1
ϕϕ′ D

1/2
TN )

∥∥∥ [∥∥∥D−1/2
TN (Sϕ(β̂, ϕ̂) − Sϕ)

∥∥∥+
∥∥∥D−1/2

TN Q∗
ϕβ′

∥∥∥∥∥∥β̂ − β0
∥∥∥]

= Op(1)
[
Op(

√
T +

√
N) +Op(

√
NT )Op(1/cNT )

]
= Op(

√
T +

√
N),

where the second equality follows from equations (B.25), (B.26), (B.27) and (B.23). Thus
∥∥∥D−1/2

NT (ϕ̂− ϕ0)
∥∥∥ =

1√
NT

∥∥∥D1/2
TN (ϕ̂− ϕ0)

∥∥∥ = Op( 1
cNT

), implying that
∥∥∥ 1√

N
(λ̂− λ0)

∥∥∥ = Op( 1
cNT

) and
∥∥∥ 1√

T
(f̂ − f0)

∥∥∥ = Op( 1
cNT

).

Step (2): Combining the results that
∥∥∥β̂ − β0

∥∥∥ = Op( 1
cNT

),
∥∥∥ 1√

N
(λ̂− λ0)

∥∥∥ = Op( 1
cNT

) and
∥∥∥ 1√

T
(f̂ − f0)

∥∥∥ =

Op( 1
cNT

) together implies that γ̂ = (β̂
′
, λ̂

′
, f̂ ′)′ must be an interior point of Bm(γ

0
) for any fixed m. It is not

difficult to verify that the first order conditions of minγ∈Bm(γ0) ∥S(γ)∥2 is 2Qγγ′(γ)S(γ) = 0. Since γ̂ is an

interior point, we must have 2Qγγ′(γ̂)S(γ̂) = 0.

Since γ̂ ∈ Bm(γ
0
), by Proposition 3.1, 1

NT [Qββ′(γ̂)−Qβϕ′(γ̂)(Qϕϕ′(γ̂))−1Qϕβ′(γ̂)] and D
− 1

2

TNQϕϕ′(γ̂)D
− 1

2

TN

are negative definite w.p.a.1. Then Qββ′(γ̂) − Qβϕ′(γ̂)(Qϕϕ′(γ̂))−1Qϕβ′(γ̂) and Qϕϕ′(γ̂) are also negative

definite w.p.a.1. This implies that Qγγ′(γ̂) is negative definite w.p.a.1.1 It follows that S(γ̂) = 0 w.p.a.1. ■

Remark. The intuition of Theorem 3.1 is that since the normalized Hessian is negative definite (the

curvature is bounded away from zero) and S(γ̂) is close to S(γ0) (due to S(γ̂) = 0 and S(γ0) = Op(
√
NT )),

γ̂ should also be close to γ0.

C Proofs of Theorem 3.2 and Corollary 3.1

Proof of Theorem 3.2:

Since β̂
(k+1)

= arg maxβ L(β, ϕ̃
(k+1)

) = arg maxβ L(β, ϕ̂
(k+1)

) and ϕ̂
(k+1)

= arg maxϕQ(β̂
(k)
, ϕ),2 we

have Sϕ(β̂
(k)
, ϕ̂

(k+1)
) = 0 and Sβ(β̂

(k+1)
, ϕ̂

(k+1)
) = 0. By Theorem 3.1, we also have Sβ(β̂, ϕ̂) = 0 and

Sϕ(β̂, ϕ̂) = 0. By Taylor expansions, we have

Qββ′(β̂
(k+1)

− β̂) +Q
(k+1)
βϕ′ (ϕ̂

(k+1)
− ϕ̂) = Sβ(β̂

(k+1)
, ϕ̂

(k+1)
) − Sβ(β̂, ϕ̂) = 0, (C.1)

Q
(k+ 1

2 )

ϕβ′ (β̂
(k)

− β̂) +Q
(k+ 1

2 )

ϕϕ′ (ϕ̂
(k+1)

− ϕ̂) = Sϕ(β̂
(k)
, ϕ̂

(k+1)
) − Sϕ(β̂, ϕ̂) = 0, (C.2)

where Qββ′ = −
∑T

t=1

∑N
i=1 ditxitx

′
it, Q

(k+1)
βϕ′ = Qβϕ′(sγ̂(k+1) + (1 − s)γ̂) and Q

(k+ 1
2 )

ϕϕ′ = Qϕϕ′(sγ̂(k+
1
2 ) + (1 −

s)γ̂) with γ̂(k+1) = (β̂
(k+1)′

, ϕ̂
(k+1)′

)′, γ̂(k+
1
2 ) = (β̂

(k)′
, ϕ̂

(k+1)′
)′. From eqn. (C.2) we have ϕ̂

(k+1)
− ϕ̂ =

1Note that

(
A B
B′ D

)
=

(
I BD−1

0 I

)(
A−BD−1B′ 0

0 D

)(
I 0

D−1B′ I

)
.

2As explained in Section 3.2, L(β, ϕ̃
(k+1)

) = L(β, ϕ̂
(k+1)

) since f̂
(k+1)′
t λ̂

(k+1)

i = f̃
(k+1)′
t λ̃

(k+1)

i for all (i, t).
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−(Q
(k+ 1

2 )

ϕϕ′ )−1Q
(k+ 1

2 )

ϕβ′ (β̂
(k)

− β̂). Plugging this back into eqn. (C.1) yields

β̂
(k+1)

− β̂ = Q−1
ββ′Q

(k+1)
βϕ′ (Q

(k+ 1
2 )

ϕϕ′ )−1Q
(k+ 1

2 )

ϕβ′ (β̂
(k)

− β̂). (C.3)

We next show that ∥∥∥Q−1
ββ′Q

(k+1)
βϕ′ (Q

(k+ 1
2 )

ϕϕ′ )−1Q
(k+ 1

2 )

ϕβ′

∥∥∥ < ψ for some constant ψ ∈ (0, 1), (C.4)

which implies that
∥∥∥β̂(k+1)

− β̂
∥∥∥ < ψ

∥∥∥β̂(k)
− β̂

∥∥∥ < ... < ψk+1
∥∥∥β̂(0)

− β̂
∥∥∥ .

First, by eqn. (B.7) we have∥∥∥(Q
(k+1)
βϕ′ −Qβϕ′)D

−1/2
TN

∥∥∥ ≤ max
γ∈Bm(γ0)

∥∥∥(Qβϕ′(γ)−Qβϕ′)D
− 1

2

TN

∥∥∥ ≤ mM
√
NT w.p.a.1,∥∥∥D−1/2

TN (Q
(k+ 1

2 )

ϕβ′ −Qϕβ′)
∥∥∥ ≤ max

γ∈Bm(γ0)

∥∥∥D−1/2
TN (Qϕβ′(γ)−Qϕβ′)

∥∥∥ ≤ mM
√
NT w.p.a.1,

and by eqn. (B.9) we have

D
1/2
TN ((Q

(k+ 1
2 )

ϕϕ′ )−1 −Q−1
ϕϕ′)D

1/2
TN ≤ max

γ∈Bm(γ0)

∥∥∥D 1
2

TN ((Qϕϕ′(γ))
−1 −Q−1

ϕϕ′)D
1
2

TN

∥∥∥ ≤ mM

C2
w.p.a.1.

Second, by Assumption 3(i) and Lemma B.2, − 1
NT (Qββ′ − Qβϕ′Q−1

ϕϕ′Qϕβ′) is positive definite (p.d.)

asymptotically. Then
∥∥∥Q−1

ββ′

∥∥∥ ≤
∥∥∥(Qββ′ −Qβϕ′Q−1

ϕϕ′Qϕβ′)−1
∥∥∥ ≤ 1

NTM for some M > 0 w.p.a.1. It follows

that for some M > 0, ∥∥∥Q−1
ββ′Q

(k+1)
βϕ′ (Q

(k+ 1
2 )

ϕϕ′ )−1Q
(k+ 1

2 )

ϕβ′ −Q−1
ββ′Qβϕ′Q−1

ϕϕ′Qϕβ′

∥∥∥
≤

∥∥∥Q−1
ββ′

∥∥∥∥∥∥Q(k+1)
βϕ′ (Q

(k+ 1
2 )

ϕϕ′ )−1Q
(k+ 1

2 )

ϕβ′ −Qβϕ′Q−1
ϕϕ′Qϕβ′

∥∥∥ ≤Mm w.p.a.1, (C.5)

implying that
∥∥∥Q−1

ββ′Q
(k+1)
βϕ′ (Q

(k+ 1
2 )

ϕϕ′ )−1Q
(k+ 1

2 )

ϕβ′

∥∥∥ ≤
∥∥∥Q−1

ββ′Qβϕ′Q−1
ϕϕ′Qϕβ′

∥∥∥+Mm w.p.a.1.

Third, note that

−1

NT
(Qββ′ −Qβϕ′Q−1

ϕϕ′Qϕβ′) =
1

NT
(−Qββ′)1/2

[
IK − (−Q−1/2

ββ′ )Qβϕ′(−Qϕϕ′)−1Qϕβ′(−Q−1/2
ββ′ )

]
(−Qββ′)1/2

=
1

NT
(−Qββ′)1/2 [IK − Ξ] (−Qββ′)1/2

where Q
1/2
ββ′ is the symmetric square root of Qββ′ and Ξ = (−Qββ′)−1/2Qβϕ′(−Qϕϕ′)−1Qϕβ′(−Qββ′)−1/2. By

the fact that − 1
NT (Qββ′ − Qβϕ′Q−1

ϕϕ′Qϕβ′) is p.d. asymptotically, we know that IK − Ξ is p.d. asymp-

totically. Since − 1
NTQϕϕ′ is p.d., Ξ is also p.d., both asymptotically. Thus all eigenvalues of Ξ are

between 0 and 1 w.p.a.1. Since −Q−1
ββ′Qβϕ′(−Qϕϕ′)−1Qϕβ′ and Ξ have the same eigenvalues, all eigen-

values of −Q−1
ββ′Qβϕ′(−Qϕϕ′)−1Qϕβ′ are strictly between 0 and 1 asymptotically, i.e., all eigenvalues of

Q−1
ββ′Qβϕ′Q−1

ϕϕ′Qϕβ′ are strictly between 0 and 1 asymptotically. Therefore, if m is small enough, all eigen-

values of Q−1
ββ′Q

(k+1)
βϕ′ (Q

(k+ 1
2 )

ϕϕ′ )−1Q
(k+ 1

2 )

ϕβ′ are strictly between 0 and 1 asymptotically. That is, (C.4) holds. ■
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Proof of Corollary 3.1:

By eqn. (3.5), we have Sϕ(β̂
(k)
, ϕ̂

(k+1)
) = 0 and Sβ(β̂

(k+1)
, ϕ̂

(k)
) = 0. This, in conjunction with the fact

that Sβ(β̂, ϕ̂) = 0 and Sϕ(β̂, ϕ̂) and Taylor expansions, implies that

Qββ′(β̂
(k+1)

− β̂) +Q
(k+ 1

2 )

βϕ′ (ϕ̂
(k)

− ϕ̂) = Sβ(β̂
(k+1)

, ϕ̂
(k)

) − Sβ(β̂, ϕ̂) = 0, (C.6)

Q
(k+ 1

2 )

ϕβ′ (β̂
(k)

− β̂) +Q
(k+ 1

2 )

ϕϕ′ (ϕ̂
(k+1)

− ϕ̂) = Sϕ(β̂
(k)
, ϕ̂

(k+1)
) − Sϕ(β̂, ϕ̂) = 0, (C.7)

where Q
(k+ 1

2 )

βϕ′ = Qβϕ′(s(β̂
(k+1)

, ϕ̂
(k)

) + (1 − s)(β̂, ϕ̂)), Q
(k+ 1

2 )

ϕβ′ = Qϕβ′(s(β̂
(k)
, ϕ̂

(k+1)
) + (1 − s)(β̂, ϕ̂)), and

Q
(k+ 1

2 )

ϕϕ′ = Qϕϕ′(s(β̂
(k)
, ϕ̂

(k+1)
) + (1 − s)(β̂, ϕ̂)) for 0 < s < 1. It follows that β̂

(k+1)
− β̂

ϕ̂
(k+1)

− ϕ̂

 = −

(
Qββ′ 0

0 Q
(k+ 1

2 )

ϕϕ′

)−1(
0 Q

(k+ 1
2 )

βϕ′

Q
(k+ 1

2 )

ϕβ′ 0

) β̂
(k)

− β̂

ϕ̂
(k)

− ϕ̂


= −

(
0 Q−1

ββ′Q
(k+ 1

2 )

βϕ′

(Q
(k+ 1

2 )

ϕϕ′ )−1Q
(k+ 1

2 )

ϕβ′ 0

) β̂
(k)

− β̂

ϕ̂
(k)

− ϕ̂

 . (C.8)

Thus
∥∥∥γ̂(k+1) − γ̂

∥∥∥ ≤
√∥∥∥Q−1

ββ′Q
(k+ 1

2 )

βϕ′ (Q
(k+ 1

2 )

ϕϕ′ )−1Q
(k+ 1

2 )

ϕβ′

∥∥∥ ∥∥∥γ̂(k) − γ̂
∥∥∥.3 It’s easy to see that eqn. (C.5) is also

valid for Q−1
ββ′Q

(k+ 1
2 )

βϕ′ (Q
(k+ 1

2 )

ϕϕ′ )−1Q
(k+ 1

2 )

ϕβ′ and we have already proved that
∥∥∥Q−1

ββ′Qβϕ′Q−1
ϕϕ′Qϕβ′

∥∥∥ < ψ ∈ (0, 1).

Then
∥∥∥Q−1

ββ′Q
(k+ 1

2 )

βϕ′ (Q
(k+ 1

2 )

ϕϕ′ )−1Q
(k+ 1

2 )

ϕβ′

∥∥∥ is also strictly less than 1 asymptotically. ■

D Proof of Theorem 3.3

To prove Theorem 3.3, we state and prove five technical lemmas.

Lemma D.1 Under Assumption 4, as (N,T ) → ∞, ∥d ◦ v∥ = Op(N
1
2T

1
4 +N

1
4T

1
2 ), where d ◦ v is a T ×N

matrix with ditvit as the (t, i)-th element.

Proof. This lemma is the same as Lemma A.1 in Su and Wang (2024). For completeness, we outline the

proof here.

E ∥d ◦ v∥4 = ∥(d ◦ v)′(d ◦ v)∥2 ≤ ∥(d ◦ v)′(d ◦ v)∥2F = E
∑T

s,t=1
(
∑N

i=1
disvisditvit)

2

≤ 2
∑T

s,t=1
E(
∑N

i=1
[disvisditvit − E(disvisditvit)])

2 + 2
∑T

s,t=1
(
∑N

i=1
E(disvisditvit))

2

= N
∑T

s,t=1
E{ 1√

N

∑N

i=1
[disvisditvit − E(disvisditvit)]}2 +N2

∑T

s,t=1
[γN (s, t)]2

= O(NT 2) +O(N2T ),

where the last equality follows from Assumption 4(ii)-(iii). Then the result hold by the Markov inequality.

3If c is an eigenvalue of

(
0 B
C 0

)
, then

(
0 B
C 0

)(
e1
e2

)
=

(
Be2
Ce1

)
=

(
ce1
ce2

)
. It follows that BCe1 =

Bce2 = c2e1. That is, c
2 is an eigenvalue of BC.
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Lemma D.2 Let ∆̂
(0)
Θ = Θ̂(0) − Θ0 and νNT = 2c1(N

1
2T

1
4 + N

1
4T

1
2 ). Under Assumptions 3(i)-(ii), 4 and

5(ii), ∆̂
(0)
Θ ∈ R w.p.a.1.

Proof. LetMvec(d◦x) = INT−Pvec(d◦x) and Pvec(d◦x) denote the projection matrix of [vec(d◦x1), ..., vec(d◦
xK)], where vec(d◦xk) is the TN×1 vector that vectorizes d◦xk. Also, let mat(·) denote the inverse operator

of vec (·) by transforming a TN × 1 vector back to a T ×N matrix. Let y (resp. v) denote the T ×N matrix

with yit (resp. vit) as the (t, i)-th element. Then after concentrating out β, the sum of squared residuals

(i.e., −L (·) with L (·) defined in (3.1)) can be rewritten as

SSR(Θ) =
1

2
vec(d ◦ (y − Θ))′Mvec(d◦x)vec(d ◦ (y − Θ)).

Then

SSR(Θ0) − SSR(Θ̂(0)) = −vec(d ◦ (y − Θ0))′Mvec(d◦x)vec(d ◦ (Θ0 − Θ̂(0)))

−1

2
vec(d ◦ (Θ0 − Θ̂(0)))′Mvec(d◦x)vec(d ◦ (Θ0 − Θ̂(0)))

≤ −vec(d ◦ v)′Mvec(d◦x)vec(d ◦ (Θ0 − Θ̂(0)))

= −vec(d ◦ v)′Mvec(d◦x)vec(Θ
0 − Θ̂(0))

= tr
[
∆̂

(0)′
Θ mat(Mvec(d◦x)vec(d ◦ v))

]
≤
∥∥mat(Mvec(d◦x)vec(d ◦ v))

∥∥∥∥∥∆̂
(0)
Θ

∥∥∥
∗

=
∥∥d ◦ v −mat(Pvec(d◦x)vec(d ◦ v))

∥∥∥∥∥∆̂
(0)
Θ

∥∥∥
∗

≤ c1(N
1
2T

1
4 +N

1
4T

1
2 )
∥∥∥∆̂

(0)
Θ

∥∥∥
∗

w.p.a.1,

where c1 is some positive constant, the first inequality holds by the fact that Mvec(d◦x)vec(d ◦ xk) = 0 for all

k, the second equality follows from the fact that vec(d◦xk)′vec(d◦ (Θ0− Θ̂(0))) = vec(d◦xk)′vec(Θ0− Θ̂(0)),

the second inequality is due to the fact that tr(A′B) ≤ ∥A∥ ∥B∥∗, and the last inequality follows from Lemma

D.1 and the fact that

∥∥mat(Pvec(d◦x)vec(d ◦ v))
∥∥ ≤

∥∥mat(Pvec(d◦x)vec(d ◦ v))
∥∥
F

=
∥∥Pvec(d◦x)vec(d ◦ v)

∥∥
F

≤

√√√√ K∑
k=1

∥d ◦ xk∥2F

∥∥∥∥∥(

N∑
i=1

T∑
t=1

ditxitx
′
it)

−1

∥∥∥∥∥
∥∥∥∥∥

N∑
i=1

T∑
t=1

ditxitvit

∥∥∥∥∥ = Op(1)

by Assumptions 3(ii), 3(i) and 5(ii).

Now, from the construction of P⊥ and P, we have∥∥∥Θ̂(0)
∥∥∥
∗

=
∥∥∥∆̂

(0)
Θ + Θ0

∥∥∥
∗

=
∥∥∥Θ0 + P⊥(∆̂

(0)
Θ ) + P(∆̂

(0)
Θ )
∥∥∥
∗
≥
∥∥∥Θ0 + P⊥(∆̂

(0)
Θ )
∥∥∥
∗
−
∥∥∥P(∆̂

(0)
Θ )
∥∥∥
∗

=
∥∥Θ0

∥∥
∗ +

∥∥∥P⊥(∆̂
(0)
Θ )
∥∥∥
∗
−
∥∥∥P(∆̂

(0)
Θ )
∥∥∥
∗
. (D.1)

Then
∥∥Θ0

∥∥
∗ −

∥∥∥Θ̂(0)
∥∥∥
∗
≤
∥∥∥P(∆̂

(0)
Θ )
∥∥∥− ∥∥∥P⊥(∆̂

(0)
Θ )
∥∥∥
∗
. It follows that w.p.a.1

0 ≤ SSR(Θ0) − SSR(Θ̂(0)) + νNT

(∥∥Θ0
∥∥
∗ −

∥∥∥Θ̂(0)
∥∥∥
∗

)
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≤ c1(N
1
2T

1
4 +N

1
4T

1
2 )
∥∥∥∆̂

(0)
Θ

∥∥∥
∗

+ νNT

(∥∥∥P(∆̂
(0)
Θ )
∥∥∥
∗
−
∥∥∥P⊥(∆̂

(0)
Θ )
∥∥∥
∗

)
≤ c1(N

1
2T

1
4 +N

1
4T

1
2 )
(∥∥∥P⊥(∆̂

(0)
Θ )
∥∥∥
∗

+
∥∥∥P(∆̂

(0)
Θ )
∥∥∥
∗

)
+ νNT

(∥∥∥P(∆̂
(0)
Θ )
∥∥∥
∗
−
∥∥∥P⊥(∆̂

(0)
Θ )
∥∥∥
∗

)
,

and consequently
∥∥∥P⊥(∆̂

(0)
Θ )
∥∥∥
∗
≤ 3

∥∥∥P(∆̂
(0)
Θ )
∥∥∥
∗

w.p.a.1 if νNT = 2c1(N
1
2T

1
4 +N

1
4T

1
2 ).

Lemma D.3 For any ∆Θ ∈ R, we have ∥∆Θ∥∗ ≤ 4
√

2r ∥∆Θ∥F .

Proof. For any ∆Θ ∈ R,

∥∆Θ∥∗ = ∥P(∆Θ)∥∗ +
∥∥P⊥(∆Θ)

∥∥
∗ ≤ 4 ∥P(∆Θ)∥∗ ≤ 4

√
2r ∥P (∆Θ)∥F ≤ 4

√
2r ∥∆Θ∥F ,

where the first inequality follows from the definition of R, the second inequality is due to ∥A∥∗ ≤
√

rank(A) ∥A∥F
and rank (P (∆Θ)) ≤ 2r, and the third inequality is due to the fact that ∥∆Θ∥2F =tr(∆′

Θ∆Θ) = tr([P(∆Θ) +

P⊥(∆Θ)]′[P(∆Θ) + P⊥(∆Θ)]), ∥P (∆Θ)∥2F = tr(P(∆Θ)′P(∆Θ)),
∥∥P⊥ (∆Θ)

∥∥2
F

= tr(P⊥(∆Θ)′P⊥(∆Θ)) and

tr(P(∆Θ)′P⊥(∆Θ)) = 0.

Lemma D.4 Suppose that Assumptions 3(ii) and 6(i) hold. Then

(i) ∥[d− Eϕx(d)] ◦ xk∥ = Op(T
1
2N

1
4 ), where d−Eϕx(d) and xk denotes the T×N matrix with dit−Eϕx(dit)

and xitk as the (t, i)-th element, respectively;

(ii) Eϕx[∥χ ◦ d)∥] ≤ T
1
2N

1
4 , where χ denotes the T × N matrix with χit as the (t, i)-th element and

{χit : i ∈ [N ], t ∈ [T ]} are independent Rademacher random variables.

Proof. (i) Note that

Eϕx(∥[d− Eϕx(d)] ◦ xk∥4) = Eϕx(∥([d− Eϕx(d)] ◦ xk)([d− Eϕx(d)] ◦ xk)′∥2)

≤ Eϕx(∥([d− Eϕx(d)] ◦ xk)([d− Eϕx(d)] ◦ xk)′∥2F )

=
∑T

s,t=1
Eϕx

{∑N

i=1
[dis − Eϕx(dis)][dit − Eϕx(dit)]xitkxisk

}2

=
∑T

s,t=1

∑N

i=1
Eϕx

{
[dis − Eϕx(dis)]

2[dit − Eϕx(dit)]
2x2itkx

2
isk

}
≤

∑T

s,t=1

∑N

i=1
x2itkx

2
isk,

where the third equality follows from Assumption 6(i). Thus by Assumption 3(ii),

E(∥[d− Eϕx(d)] ◦ xk∥4) = E[Eϕx(∥[d− Eϕx(d)] ◦ xk∥4)] ≤
∑T

s,t=1

∑N

i=1
E(x2itkx

2
isk)

≤
∑T

s,t=1

∑N

i=1

√
E(x4itk)E(x4isk) ≤ T 2NM,

and it follows that ∥[d− Eϕx(d)] ◦ xk∥ = Op(T
1
2N

1
4 ).

(ii) The proof is similar to that of part (i) and thus omitted, given that {χit : i ∈ [N ], t ∈ [T ]} are

independent Rademacher random variables.
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Lemma D.5 Let ∆̂
(0)
β = β̂

(0)
−β0. Suppose that Assumptions 3(i)-(ii), 4, 5(ii) and 6(i) hold. Then w.p.a.1,

∣∣∣∣∣
N∑
i=1

T∑
t=1

[dit − Eϕx(dit)] (∆̂
(0)
Θ,it + x′it∆̂

(0)
β )2

∣∣∣∣∣
≤ M

√
NT

∥∥∥∆̂
(0)
β

∥∥∥2 +MT
1
2N

1
4

∥∥∥∆̂
(0)
β

∥∥∥∥∥∥∆̂
(0)
Θ

∥∥∥
∗

+ANT + ENT +
1

√
cNT

∥∥∥∆̂
(0)
Θ

∥∥∥2
F
, (D.2)

where ENT = 3r(16M)2
√
cNT (Eϕx[∥χ ◦ d)∥])2, {χit : i ∈ [N ], t ∈ [T ]} are independent Rademacher random

variables and ANT = M
√
NTcNT log(N + T ).

Proof. This lemma is crucial for extending the NNR estimator for balanced panels (Moon and Weidner

(2023)) to the unbalanced case. The techniques are borrowed from the matrix completion literature (e.g.,

Klopp (2014) and Negahban and Wainwright (2012)) and compared to those previous papers, there are two

main differences. First, we have ∆̂
(0)
β here while the matrix completion literature typically does not. Second,

the last term of expression (D.2) is 1√
cNT

∥∥∥∆̂
(0)
Θ

∥∥∥2
F

while in previous literature the corresponding term is

1
2

∥∥∥∆̂
(0)
Θ

∥∥∥2
F

. The design of expression (D.2) is tailored for the current setup. To prove this lemma, we first

note that ∣∣∣∣∣
N∑
i=1

T∑
t=1

[dit − Eϕx(dit)] (∆̂
(0)
Θ,it + x′it∆̂

(0)
β )2

∣∣∣∣∣
≤

∣∣∣∣∣
N∑
i=1

T∑
t=1

[dit − Eϕx(dit)] ∆̂
(0)′
β xitx

′
it∆̂

(0)
β

∣∣∣∣∣
+ 2

∣∣∣∣∣
N∑
i=1

T∑
t=1

[dit − Eϕx(dit)] ∆̂
(0)
Θ,itx

′
it∆̂

(0)
β

∣∣∣∣∣+

∣∣∣∣∣
N∑
i=1

T∑
t=1

[dit − Eϕx(dit)] (∆̂
(0)
Θ,it)

2

∣∣∣∣∣ . (D.3)

Below, we study the three terms on the right hand side of (D.3) one by one.

First, by Assumption 6(i), dit − Eϕx(dit) is independent across i and t conditioning on all xit, thus

E

Eϕx

{
N∑
i=1

T∑
t=1

[dit − Eϕx(dit)]xitkxitl

}2
 = E

{
N∑
i=1

T∑
t=1

Eϕx( [dit − Eϕx(dit)]
2
)x2itkx

2
itl

}

≤
N∑
i=1

T∑
t=1

E(x2itkx
2
itl) ≤

N∑
i=1

T∑
t=1

E{ ∥xit∥4},

i.e., E(
∥∥∥∑N

i=1

∑T
t=1 [dit − Eϕx(dit)]xitx

′
it

∥∥∥2
F

) = O(NT ) by Assumption 3(ii). Thus

∣∣∣∣∣
N∑
i=1

T∑
t=1

[dit − Eϕx(dit)] ∆̂
(0)′
β xitx

′
it∆̂

(0)
β

∣∣∣∣∣ ≤
∥∥∥∆̂

(0)
β

∥∥∥2 ∥∥∥∥∥
N∑
i=1

T∑
t=1

[dit − Eϕx(dit)]xitx
′
it

∥∥∥∥∥
=

∥∥∥∆̂
(0)
β

∥∥∥2Op(
√
NT ). (D.4)
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Second, by Lemma D.4,∣∣∣∣∣
N∑
i=1

T∑
t=1

[dit − Eϕx(dit)] ∆̂
(0)
Θ,itx

′
it∆̂

(0)
β

∣∣∣∣∣ ≤
K∑

k=1

∣∣∣∆̂(0)
β,k

∣∣∣ ∥[d− Eϕx(d)] ◦ xk∥
∥∥∥∆̂

(0)
Θ

∥∥∥
∗

≤
∥∥∥∆̂

(0)
β

∥∥∥Op(T
1
2N

1
4 )
∥∥∥∆̂

(0)
Θ

∥∥∥
∗
. (D.5)

Third, we shall prove∣∣∣∣∣
N∑
i=1

T∑
t=1

[dit − Eϕx(dit)] (∆̂
(0)
Θ,it)

2

∣∣∣∣∣ ≤ ANT +
1

√
cNT

∥∥∥∆̂
(0)
Θ

∥∥∥2
F

+ ENT w.p.a.1. (D.6)

To prove expression (D.6), we first define the events

R = {∆Θ ∈ RT×N :
∥∥P⊥(∆Θ)

∥∥
∗ ≤ 3 ∥P(∆Θ)∥∗ and ∥∆Θ∥max ≤M},

RA,l = R∩ {∆Θ : (
6

5
)l−1ANT ≤ ∥∆Θ∥2F ≤ (

6

5
)lANT } and

RA = R∩ {∆Θ : ∥∆Θ∥2F ≥ ANT } = ∪∞
l=1RA,l.

and the functional

gl(d) = sup
∆Θ∈RA,l

∣∣∣∣∣
N∑
i=1

T∑
t=1

[dit − Eϕx(dit)] (∆Θ,it)
2

∣∣∣∣∣ .
Also, define the events

A =

{
∃∆Θ ∈ RA s.t.

∣∣∣∣∣
N∑
i=1

T∑
t=1

[dit − Eϕx(dit)] (∆Θ,it)
2

∣∣∣∣∣ ≥ ∥∆Θ∥2F√
cNT

+ ENT

}
,

Al =

{
gl(d) ≥ 1

√
cNT

(
6

5
)l−1ANT + ENT

}
.

Note that A ⊂ ∪∞
l=1Al and

Pr(A) ≤ Pr (∪∞
l=1Al) ≤

∞∑
l=1

Pr

(
|gl(d) − Eϕx[gl(d)]| + Eϕx[gl(d)] ≥ 1

√
cNT

(
6

5
)l−1ANT + ENT

)

≤
∞∑
l=1

Pr

(
|gl(d) − Eϕx[gl(d)]| ≥

( 6
5 )l−1

√
cNT

ANT + ENT − 32MEϕx[∥χ ◦ d)∥]

√
2r(

6

5
)lANT

)

≤
∞∑
l=1

Pr

(
|gl(d) − Eϕx[gl(d)]| ≥ 1

6
√
cNT

(
6

5
)lANT

)

≤
∞∑
l=1

2 exp

(
− 1

18M4NTcNT
(
6

5
)2lA2

NT

)
≤

∞∑
l=1

2 exp

(
−

log( 6
5 )

9M4NTcNT
A2

NT l

)

= 2
exp

(
− log( 6

5 )

9M4NTcNT
A2

NT

)
1 − exp

(
− log( 6

5 )

9M4NTcNT
A2

NT

) ≤ 2

exp(log(N + T )) − 1
→ 0, (D.7)
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where the third inequality follows from expression (D.10) below, the fourth inequality follows from the fact

32MEϕx[∥χ ◦ d)∥]

√
2r(

6

5
)lANT = 2

{√
3r16Mc

1/4
NTEϕx[∥χ ◦ d)∥]

}
· 1
√

3c
1/4
NT

√
2(

6

5
)lANT

≤ 3r(16M)2
√
cNT (Eϕx[∥χ ◦ d)∥])2 +

2

3
√
cNT

(
6

5
)lANT

≡ ENT +
2

3
√
cNT

(
6

5
)lANT

by the CS inequality, the fifth inequality follows from (D.9) below and the sixth inequality follows from ( 6
5 )2l >

log( 6
5 )2l. Now denote the event A =

{∣∣∣∑N
i=1

∑T
t=1 [dit − Eϕx(dit)] (∆̂

(0)
Θ,it)

2
∣∣∣ > ANT +

∥∥∥∆̂(0)
Θ

∥∥∥2

F√
cNT

+ ENT

}
.

Pr(A) = Pr

(
A ∩

{∥∥∥∆̂
(0)
Θ

∥∥∥2
F
< ANT

})
+ Pr

(
A ∩

{∥∥∥∆̂
(0)
Θ

∥∥∥2
F
≥ ANT

})
= Pr

(
A ∩

{∥∥∥∆̂
(0)
Θ

∥∥∥2
F
≥ ANT

})
≤ Pr

(
A ∩

{∥∥∥∆̂
(0)
Θ

∥∥∥2
F
≥ ANT

}
∩
{

∆̂
(0)
Θ ∈ R

})
+ Pr

(
∆̂

(0)
Θ /∈ R

)
≤ Pr

(
A ∩

{
∆̂

(0)
Θ ∈ RA

})
+ Pr

(
∆̂

(0)
Θ /∈ R

)
≤ Pr(A) + Pr

(
∆̂

(0)
Θ /∈ R

)
→ 0 by expression (D.7) and Lemma D.2, (D.8)

where the second equality follows from the fact that the events A and
∥∥∥∆̂

(0)
Θ

∥∥∥2
F
< ANT are mutually exclusive

since |dit − Eϕx(dit)| ≤ 1. In summary, expressions (D.3)-(D.6) together proves this lemma.

(1) In the above proof, we call upon the following concentration inequality:

Pr(|gl(d) − Eϕx[gl(d)]| ≥ a) ≤ 2 exp

(
− 2

NTM4
a2
)
. (D.9)

This expression follows from the Azuma-Hoeffding inequality (see Corollary 2.21 in chapter 2 of Wainwright,

2019), since dit is independent with each other conditioning on ϕ and x and gl(d) satisfies the bounded

difference property with parameter M2 as verified below.

Suppose d1 = {dit1, i ∈ [N ], t ∈ [T ]} and d2 = {dit2, i ∈ [N ], t ∈ [T ]} are the same except for the

(i′, t′)-th element. Define ∆Θl,s = arg max∆Θ∈RA,l

∣∣∣∑N
i=1

∑T
t=1 [dits − Eϕx(dit)] (∆Θ,it)

2
∣∣∣ for s = 1, 2, then

gl(d1) − gl(d2) = sup
∆Θ∈RA,l

∣∣∣∣∣
N∑
i=1

T∑
t=1

[dit1 − Eϕx(dit)] (∆Θ,it)
2

∣∣∣∣∣− sup
∆Θ∈RA,l

∣∣∣∣∣
N∑
i=1

T∑
t=1

[dit2 − Eϕx(dit)] (∆Θ,it)
2

∣∣∣∣∣
=

∣∣∣∣∣
N∑
i=1

T∑
t=1

[dit1 − Eϕx(dit)] (∆Θl,1,it)
2

∣∣∣∣∣−
∣∣∣∣∣

N∑
i=1

T∑
t=1

[dit2 − Eϕx(dit)] (∆Θl,2,it)
2

∣∣∣∣∣
≤

∣∣∣∣∣
N∑
i=1

T∑
t=1

[dit1 − Eϕx(dit)] (∆Θl,1,it)
2

∣∣∣∣∣−
∣∣∣∣∣

N∑
i=1

T∑
t=1

[dit2 − Eϕx(dit)] (∆Θl,1,it)
2

∣∣∣∣∣
≤

∣∣[di′t′1 − Eϕx(di′t′)] (∆Θl,1,i′t′)
2
∣∣+
∣∣[di′t′2 − Eϕx(di′t′)] (∆Θl,1,i′t′)

2
∣∣ ≤M2.
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(2) In the above proof, we also call upon the following symmetrization and contraction inequality:

Eϕx[gl(d)] = Eϕx

{
sup

∆Θ∈RA,l

∣∣∣∣∣
N∑
i=1

T∑
t=1

[dit − Eϕx(dit)] (∆Θ,it)
2

∣∣∣∣∣
}

≤ 2Eϕx

{
sup

∆Θ∈RA,l

∣∣∣∣∣
N∑
i=1

T∑
t=1

χitdit(∆Θ,it)
2

∣∣∣∣∣
}

≤ 8MEϕx

{
sup

∆Θ∈RA,l

∣∣∣∣∣
N∑
i=1

T∑
t=1

χitdit∆Θ,it

∣∣∣∣∣
}

= 8MEϕx

{
sup

∆Θ∈RA,l

|tr((χ ◦ d)′∆Θ)|

}
≤ 8MEϕx

{
sup

∆Θ∈RA,l

∥χ ◦ d)∥ ∥∆Θ∥∗

}

≤ 8MEϕx[∥χ ◦ d)∥] sup
∆Θ∈RA,l

4
√

2r ∥∆Θ∥F = 32MEϕx[∥χ ◦ d)∥]

√
2r(

6

5
)lANT , (D.10)

where the first inequality follows from the symmetrization argument (e.g., Theorem 2.1 in chapter 2 of

Koltchinskii, 2011), the second inequality follows from the Talagrand contraction inequality (Theorem 2.2 in

chapter 2 of Koltchinskii, 2011), the fourth inequality follows from Lemma D.3 and the last equality follows

from the definition of RA,l.

Proof of Theorem 3.3:

(1) The random missing cases.

Step 1: By (3.6), we have

0 ≤ 1

2

N∑
i=1

T∑
t=1

dit(yit − x′itβ
0 − Θ0

it)
2 − 1

2

N∑
i=1

T∑
t=1

dit(yit − x′itβ̂
(0)

− Θ̂
(0)
it )2 + νNT

(∥∥Θ0
∥∥
∗ −

∥∥∥Θ̂(0)
∥∥∥
∗

)
=

N∑
i=1

T∑
t=1

ditvit(∆̂
(0)
Θ,it + x′it∆̂

(0)
β ) − 1

2

N∑
i=1

T∑
t=1

dit(∆̂
(0)
Θ,it + x′it∆̂

(0)
β )2 + νNT

(∥∥Θ0
∥∥
∗ −

∥∥∥Θ̂(0)
∥∥∥
∗

)
. (D.11)

It follows that w.p.a.1,

dµ

2

∥∥∥∆̂
(0)
Θ

∥∥∥2
F
≤ d

2
vec(∆̂

(0)
Θ )′Mvec(x)vec(∆̂

(0)
Θ ) ≤ d

2

N∑
i=1

T∑
t=1

(∆̂
(0)
Θ,it + x′it∆̂

(0)
β )2

≤ 1

2

N∑
i=1

T∑
t=1

Eϕx(dit)(∆̂
(0)
Θ,it + x′it∆̂

(0)
β )2

≤
N∑
i=1

T∑
t=1

ditvit∆̂
(0)
Θ,it +

N∑
i=1

T∑
t=1

ditvitx
′
it∆̂

(0)
β + νNT (

∥∥Θ0
∥∥
∗ −

∥∥∥Θ̂(0)
∥∥∥
∗
)

− 1

2

N∑
i=1

T∑
t=1

[dit − Eϕx(dit)] (∆̂
(0)
Θ,it + x′it∆̂

(0)
β )2

≤ (∥d ◦ v∥ + νNT )
∥∥∥∆̂

(0)
Θ

∥∥∥
∗

+M
√
NT

∥∥∥∆̂
(0)
β

∥∥∥+
1

2
(M

√
NT

∥∥∥∆̂
(0)
β

∥∥∥2
+MT

1
2N

1
4

∥∥∥∆̂
(0)
β

∥∥∥∥∥∥∆̂
(0)
Θ

∥∥∥
∗

+ANT +
1

√
cNT

∥∥∥∆̂
(0)
Θ

∥∥∥2
F

+ ENT )

≤M(N
1
2T

1
4 +N

1
4T

1
2 )4

√
2r
∥∥∥∆̂

(0)
Θ

∥∥∥
F

+M
√
NT

∥∥∥∆̂
(0)
β

∥∥∥+M
√
NT

∥∥∥∆̂
(0)
β

∥∥∥2
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+MT
1
2N

1
4

∥∥∥∆̂
(0)
β

∥∥∥ 4
√

2r
∥∥∥∆̂

(0)
Θ

∥∥∥
F

+ANT +
1

√
cNT

∥∥∥∆̂
(0)
Θ

∥∥∥2
F

+ ENT

≤ 3[M(N
1
2T

1
4 +N

1
4T

1
2 )4

√
2r]2

dµ
+
dµ

6

∥∥∥∆̂
(0)
Θ

∥∥∥2
F

+M
√
NT

∥∥∥∆̂
(0)
β

∥∥∥+M
√
NT

∥∥∥∆̂
(0)
β

∥∥∥2
+

3[MT
1
2N

1
4

∥∥∥∆̂
(0)
β

∥∥∥ 4
√

2r]2

dµ
+
dµ

6

∥∥∥∆̂
(0)
Θ

∥∥∥2
F

+ANT +
1

√
cNT

∥∥∥∆̂
(0)
Θ

∥∥∥2
F

+ ENT , (D.12)

where the first inequality follows from Assumption 6(i), the second inequality follows from concentrating out

β, the third inequality follows from Eϕx(dit) ≥ d for all (i, t), the fourth inequality follows from expression

(D.11), the fifth inequality follows from Assumption 5(ii) and Lemma D.5, the sixth inequality follows from

the following facts: (1) ∥d ◦ v∥ = Op(N
1
2T

1
4 +N

1
4T

1
2 ) by Lemma D.1, (2) νNT = 2c1(N

1
2T

1
4 +N

1
4T

1
2 ) and

(3)
∥∥∥∆̂

(0)
Θ

∥∥∥
∗
≤ 4

√
2r
∥∥∥∆̂

(0)
Θ

∥∥∥
F

by Lemma D.3, and the last inequality follows from the fact that 2ab ≤ a2 + b2.

From expression (D.12) it’s not difficult to see that∥∥∥∆̂
(0)
Θ

∥∥∥2
F
≤M(N

1
2T

1
4 +N

1
4T

1
2 )2 +M

√
NT

∥∥∥∆̂
(0)
β

∥∥∥+MT
√
N
∥∥∥∆̂

(0)
β

∥∥∥2 +ANT + ENT . (D.13)

Plugging this back to (D.12) and noticing that ∆̂
(0)
β

∑N
i=1

∑T
t=1 xitx

′
it∆̂

(0)
β ≤

∑N
i=1

∑T
t=1(∆̂

(0)
Θ,it + x′it∆̂

(0)
β )2 +∣∣∣2∑N

i=1

∑T
t=1 ∆̂

(0)
Θ,itx

′
it∆̂

(0)
β

∣∣∣ +
∥∥∥∆̂

(0)
Θ

∥∥∥2
F

and plim 1
NT

∑N
i=1

∑T
t=1 xitx

′
it is positive definite under Assumption

3(i), after some calculations, we have

∥∥∥∆̂
(0)
β

∥∥∥ =

√
1

NT
Op(M(N

1
2T

1
4 +N

1
4T

1
2 )2 +ANT + ENT ) = Op(c

−1/4
NT ),

where the equality follows from ENT = 3r(16M)2
√
cNT (Eϕx[∥χ ◦ d)∥])2 = 3r(16M)2

√
cNTT

√
N by Lemma

D.4 and ANT = M
√
NTcNT log(N + T ). Plugging this back into (D.13), we have

1√
NT

∥∥∥∆̂
(0)
Θ

∥∥∥
F

= Op(

√
ENT

NT
) = Op(c

−1/4
NT ).

Step 2: Now we prove the consistency of r̂, f̂ (0) and λ̂
(0)

. This step is similar to Theorem 3.2 in

Hong et al. (2023). Let {σ̂s, s ∈ [N ∧ T ]} and {σs, s ∈ [N ∧ T ]} denote the singular values of Θ̂(0)
√
NT

and

Θ0
√
NT

, respectively. By Weyl’s inequality for singular values, |σ̂s − σs| ≤
∥∥∥∥ ∆̂

(0)
Θ√
NT

∥∥∥∥ ≤
∥∥∥∥ ∆̂

(0)
Θ√
NT

∥∥∥∥
F

= Op(c
−1/4
NT )

for all s. Since σs is bounded away from zero in probability for s ≤ r and σs = 0 for s > r, we have

σ̂s = σs + op(1) ≥
√
c
−1/4
NT σ̂1 = Op(c

−1/4
NT ) for s ≤ r and σ̂s = 0 + Op(c

−1/4
NT ) <

√
c
−1/4
NT for s > r, thus

Pr(r̂ = r) → 1.

Recall that {Û (0)
1 , ..., Û (0)

r } and {U0
1 , ...,U0

r } denote the left-singular vectors corresponding to {σ̂1, ..., σ̂r}
and {σ1, ..., σr}, respectively. By the Davis-Kahan sin Θ theorem,

∥∥∥Û (0)
s − U0

s

∥∥∥ ≤
√

2

η

∥∥∥∥∥ ∆̂
(0)
Θ√
NT

∥∥∥∥∥ ≤
√

2

η

∥∥∥∥∥ ∆̂
(0)
Θ√
NT

∥∥∥∥∥
F

= Op(c
−1/4
NT ) for s ∈ [r] ,

where the equality is because η = mins{|σs−1 − σ̂s| ∧ |σs+1 − σ̂s|} is bounded and bounded away from zero
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in probability. It follows that∥∥∥√T σ̂sÛ (0)
s −

√
TσsU0

s

∥∥∥ ≤
∣∣∣√T σ̂s −

√
Tσs

∣∣∣ ∥∥∥Û (0)
s

∥∥∥+
√
Tσs

∥∥∥Û (0)
s − U0

s

∥∥∥ = Op(c
−1/4
NT

√
T ),

i.e.,
∥∥∥f̂ (0) − f0

∥∥∥ = Op(c
−1/4
NT

√
T ). By symmetry, we also have

∥∥∥λ̂(0) − λ0
∥∥∥ = Op(c

−1/4
NT

√
N).

(2) The block-type missing cases.

Given that Assumption 6(i)b holds for at least one completely observed data block, without loss of

generality, we assume the block {i ∈ [No], t ∈ [T ]} satisfies Assumption 6(i)b. The nuclear norm regularized

estimation applied on this block produces r̂, β̂, {f̂ (0)t , t ∈ [T ]} and {λ̂
(0)

i , i ∈ [No]}. Since the data block is

completely observed, Theorem 2 of Moon and Weidner (2023) for NNR estimation of panel without missing

data is applicable here. For completeness, we outline the main steps (with slight adjustments).

Let (ybl, xbl) denote the completely observed block of (y, x), and let vbl, Θbl, Θ̂
(0)
bl and ∆̂

(0)
Θbl denote

the corresponding blocks. The sum of squared residuals given Θbl and concentrating out β is SSR(Θbl) =
1
2vec(ybl − Θbl)

′Mvec(xbl)vec(ybl − Θbl), and

0 ≤ SSR(Θ0
bl) − SSR(Θ̂

(0)
bl ) + νNoT

(∥∥Θ0
bl

∥∥
∗ −

∥∥∥Θ̂
(0)
bl

∥∥∥
∗

)
= −vec(ybl − Θ0

bl)
′Mvec(xbl)vec(Θ

0
bl − Θ̂

(0)
bl )

−1

2
vec(Θ0

bl − Θ̂
(0)
bl )′Mvec(xbl)vec(Θ

0
bl − Θ̂

(0)
bl ) + νNoT

(∥∥Θ0
bl

∥∥
∗ −

∥∥∥Θ̂
(0)
bl

∥∥∥
∗

)
. (D.14)

It follows that

µ

2

∥∥∥∆̂
(0)
Θbl

∥∥∥2
F

≤ 1

2
vec(Θ0

bl − Θ̂
(0)
bl )′Mvec(xbl)vec(Θ

0
bl − Θ̂

(0)
bl )

≤ −vec(ybl − Θ0
bl)

′Mvec(xbl)vec(Θ
0
bl − Θ̂

(0)
bl ) + νNoT

(∥∥Θ0
bl

∥∥
∗ −

∥∥∥Θ̂
(0)
bl

∥∥∥
∗

)
= vec(vbl)

′Mvec(xbl)vec(Θ̂
(0)
bl − Θ0

bl) + νNoT

(∥∥Θ0
bl

∥∥
∗ −

∥∥∥Θ̂
(0)
bl

∥∥∥
∗

)
≤

∥∥mat(Mvec(xbl)vec(vbl)
′)
∥∥∥∥∥∆̂

(0)
Θbl

∥∥∥
∗

+ νNoT

(∥∥Θ0
bl

∥∥
∗ −

∥∥∥Θ̂
(0)
bl

∥∥∥
∗

)
≤ (∥vbl∥ +

∥∥mat(Pvec(xbl)vec(vbl))
∥∥+ νNoT )

∥∥∥∆̂
(0)
Θbl

∥∥∥
∗

≤ 12c1
√

2r(N
1
2T

1
4 +N

1
4T

1
2 )
∥∥∥∆̂

(0)
Θbl

∥∥∥
F

w.p.a.1,

where the first inequality follows from Assumption 6(ii), the second inequality follows from expression

(D.14), the fifth inequality follows from ∥vbl∥ ≤ ∥d ◦ v∥ because the T × No matrix vbl is a submatrix of

d ◦ v, Lemma D.1,
∥∥mat(Pvec(xbl)vec(vbl))

∥∥ = Op(1) by Assumption 5(ii), νNT = 2c1(N
1
2T

1
4 + N

1
4T

1
2 )

and Lemma D.3. Thus 1√
NT

∥∥∥∆̂
(0)
Θbl

∥∥∥
F

= Op(c
−1/2
NT ). This together with 1

2

∑N
i=1

∑T
t=1(∆̂

(0)
Θbl,it + x′it∆̂

(0)
β )2 ≤∑N0

i=1

∑T
t=1 vit∆̂

(0)
Θbl,it+

∑N0

i=1

∑T
t=1 vitx

′
it∆̂

(0)
β +νN0T (

∥∥Θ0
bl

∥∥
∗−
∥∥∥Θ̂

(0)
bl

∥∥∥
∗
) implies that

∥∥∥∆̂
(0)
β

∥∥∥ = Op(N
1
2 T

1
4 +N

1
4 T

1
2√

NT
) =

Op(c
−1/2
NT ). In addition, similar to Step (2) of the random missing case, 1√

NT

∥∥∥∆̂
(0)
Θbl

∥∥∥
F

= Op(c
−1/2
NT ) im-

plies that Pr(r̂ = r) → 1,
∥∥∥f̂ (0) − f0

∥∥∥ = Op(c
−1/2
NT

√
T ) and

√∑N0

i=1

∥∥∥λ̂(0)i − λ0i

∥∥∥2 = Op(c
−1/2
NT

√
N). For
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No < i ≤ N ,

λ̂
(0)

i − λ0i = (

T∑
t=1

f̂
(0)
t f̂

(0)′
t )−1

T∑
t=1

f̂
(0)
t (yit − xitβ̂) − λ0i

= (

T∑
t=1

f̂
(0)
t f̂

(0)′
t )−1

T∑
t=1

f̂
(0)
t ((f0t − f̂

(0)
t )′λ0i + vit − xit∆̂

(0)
β ).

Given thatNo/N and To/T are bounded away from zero,
∥∥∥f̂ (0) − f0

∥∥∥ = Op(c
−1/2
NT

√
T ),

∑T
t=1 f

0
t vit = Op(

√
T ),√∑N

i=N0+1

∥∥λ0i∥∥2 = Op(
√
N) and

∥∥∥∆̂
(0)
β

∥∥∥ = Op(c
−1/2
NT ), it is not difficult to see that

√∑N
i=N0+1

∥∥∥λ̂(0)i − λ0i

∥∥∥2 =

Op(c
−1/2
NT

√
N). Thus

√∑N
i=1

∥∥∥λ̂(0)i − λ0i

∥∥∥2 is also Op(c
−1/2
NT

√
N). ■

E Proofs of Proposition 4.1 and Theorem 4.1

To prove Proposition 4.1, we state and prove four lemmas.

Lemma E.1 Suppose that Assumptions 1, 2, 4(i), 5 and 7 hold. Then as (N,T ) → ∞,

(i)
∥∥W 0′

λ L
−1
λλ′Sλ

∥∥ = Op(
√

N
T + N

T ) and
∥∥∥W 0′

f L
−1
ff ′Sf

∥∥∥ = Op(
√

T
N + T

N );

(ii)
∥∥W 0′

λ Q
−1
λλ′Sλ

∥∥ = Op(
√

N
T + N

T ) and
∥∥∥W 0′

f Q
−1
ff ′Sf

∥∥∥ = Op(
√

T
N + T

N );

(iii)
∥∥Lfλ′Q−1

λλ′Sλ

∥∥ = Op(
√
N + N√

T
) and

∥∥∥Lλf ′Q−1
ff ′Sf

∥∥∥ = Op(
√
T + T√

N
);

(iv)
∥∥Jfλ′Q−1

λλ′Sλ

∥∥ = Op(
√
N + N√

T
) and

∥∥∥Jλf ′Q−1
ff ′Sf

∥∥∥ = Op(
√
T + T√

N
).

Proof. The proof is similar to that of Lemma C.3 in Su and Wang (2024) with slightly different notations.

“W” and “Q” here correspond to “U” and “H” there, respectively. For the readers’ convenience, we also

provide the main details here. It suffices to prove the first half of parts (i)-(iv) in the above lemma as the

second half can be done analogously. Below, we shall consider the random missing cases first.

(i) Recall that Sλi
=
∑T

t=1 ditvitf
0
t , Sλ = (S′

λ1
, ..., S′

λN
)′ and W 0

λ is defined in (A.7). We need to show

that for any (p, q),
∑N

i=1 λ
0
ip1r′q (

∑T
t=1 ditf

0
t f

0′
t )−1(

∑T
t=1 ditvitf

0
t ) is Op(

√
N
T + N

T ), where 1rq denotes the r× 1

vector with the q-th element being one and the other elements being zeros. This is equivalent to the following

expression, which will be discussed later.

∑N

i=1

∑T

t=1
(
∑T

t=1
ditf

0
t f

0′
t )−1ditvitf

0
t λ

0′
i = Op(

√
N

T
+
N

T
). (E.1)

(ii) Since Qλλ′ = Lλλ′ − cT
N W 0

λW
0′
λ , by Woodbury identity we have

Q−1
λλ′ = L−1

λλ′ − L−1
λλ′W

0
λ(− N

cT
Ir2 +W 0′

λ L
−1
λλ′W

0
λ)−1W 0′

λ L
−1
λλ′ , (E.2)

thus W 0′
λ Q

−1
λλ′Sλ = W 0′

λ L
−1
λλ′Sλ +W 0′

λ L
−1
λλ′W

0
λ(
N

cT
Ir2 −W 0′

λ L
−1
λλ′W

0
λ)−1W 0′

λ L
−1
λλ′Sλ.
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Since W 0′
λ L

−1
λλ′W 0

λ is negative definite, we have∥∥∥∥(
N

cT
Ir2 −W 0′

λ L
−1
λλ′W

0
λ)−1

∥∥∥∥ ≤ cT

N
, (E.3)

thus it remains to show
∥∥W 0′

λ L
−1
λλ′W 0

λ

∥∥ = Op(N
T ). This follows from (1) by Assumption 2(ii),

∥∥W 0
λ

∥∥ = Op(
√
N), (E.4)

and (2) by Lemma C.2(ii) in the appendix of Su and Wang (2024),

∥∥L−1
λλ′

∥∥ = Op(
1

T
). (E.5)

(iii) From eqn. (E.2), we have

Lfλ′Q−1
λλ′Sλ = Lfλ′L−1

λλ′Sλ + Lfλ′L−1
λλ′W

0
λ(
N

cT
Ir2 −W 0′

λ L
−1
λλ′W

0
λ)−1W 0′

λ L
−1
λλ′Sλ. (E.6)

The first term on the right hand side is Op(
√
N + N√

T
) due to

[Lfλ′L−1
λλ′Sλ]s =

∑N

i=1
disλ

0
i f

0′
s (
∑T

t=1
ditf

0
t f

0′
t )−1(

∑T

t=1
ditvitf

0
t )

= [f0′s
∑N

i=1

∑T

t=1
(
∑T

t=1
ditf

0
t f

0′
t )−1ditvitf

0
t λ

0′
i dis]

′ = Op(

√
N

T
+
N

T
), (E.7)

where the last equality will be proved later. From Assumption 2 it’s easy to see that
∥∥Lfλ′

∥∥ = Op(
√
NT ).

This together with equations (E.3)-(E.5) and part (i) implies that the second term on the right hand of (E.6)

is also Op(
√
N + N√

T
).

(iv) From eqn. (E.2), we have

Jfλ′Q−1
λλ′Sλ = Jfλ′L−1

λλ′Sλ + Jfλ′L−1
λλ′W

0
λ(
N

cT
Ir2 −W 0′

λ L
−1
λλ′W

0
λ)−1W 0′

λ L
−1
λλ′Sλ.

The first term on the right hand is Op(
√
N + N√

T
) due to the following expression, which will be discussed

later.

[Jfλ′L−1
λλ′Sλ]s = −

∑N

i=1

∑T

t=1
(
∑T

t=1
ditf

0
t f

0′
t )−1disvisditvitf

0
t = Op(

√
N

T
+
N

T
). (E.8)

From Assumption 4(i) it’s easy to see that
∥∥Jfλ′

∥∥ = Op(
√
NT ). This together with equations (E.3)-(E.5)

and part (i) implies that the second term on the right hand is also Op(
√
N + N√

T
).

Proof for expression (E.1): Let AiF = 1
T

∑T
t=1 ditf

0
t f

0′
t and ĀiF = Eϕ(AiF ). We have∥∥∥∥∑N

i=1

∑T

t=1
(
∑T

t=1
ditf

0
t f

0′
t )−1f0t λ

0′
i ditvit

∥∥∥∥
F

≤
∥∥∥∥ 1

T

∑N

i=1

∑T

t=1
Ā−1

iF f
0
t λ

0′
i ditvit

∥∥∥∥
F

+

∥∥∥∥∑N

i=1
(A−1

iF − Ā−1
iF )

1

T

∑T

t=1
f0t λ

0′
i ditvit

∥∥∥∥
F
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≤ Op(

√
N

T
) +

√∑N

i=1

∥∥A−1
iF − Ā−1

iF

∥∥2√∑N

i=1

∥∥∥∥ 1

T

∑T

t=1
f0t ditvitλ

0′
i

∥∥∥∥2
F

= Op(

√
N

T
) +Op(

√
N

T
)Op(

√
N

T
) = Op(

√
N

T
+
N

T
). (E.9)

The second inequality of expression (E.9) is due to

E(

∥∥∥∥∑N

i=1

∑T

t=1
Ā−1

iF f
0
t λ

0′
i ditvit

∥∥∥∥2
F

)

= E(Eϕ(

∥∥∥∥∑N

i=1

∑T

t=1
Ā−1

iF f
0
t λ

0′
i ditvit

∥∥∥∥2
F

))

≤ E(r2
∑N

i,j=1

∑T

t,s=1

∥∥Ā−1
iF

∥∥∥∥f0t ∥∥∥∥λ0i∥∥ ∥∥∥Ā−1
jF

∥∥∥∥∥f0s ∥∥∥∥λ0j∥∥ |Eϕ(ditvitdjsvjs)|)

≤ ME(
∑T

t,s=1

∑N

i,j=1
|Eϕ(ditvitdjsvjs)|) ≤ NTM (E.10)

by Assumptions 2(i) and 7(ii). The first equality of expression (E.9) is due to:

∑N

i=1

∥∥A−1
iF − Ā−1

iF

∥∥2 ≤
∑N

i=1

∥∥AiF − ĀiF

∥∥2 sup
i

∥∥A−1
iF

∥∥2 sup
i

∥∥Ā−1
iF

∥∥2 = Op(
N

T
) (E.11)

by Assumption 1 and eqn. (E.5), and by Assumption 5(i),

E(
∑N

i=1

∥∥∥∥∑T

t=1
f0t λ

0′
i ditvit

∥∥∥∥2
F

) ≤ E(
∑T

t,s=1

∥∥f0t ∥∥∥∥f0s ∥∥∥∥λ0i∥∥2∑N

i=1
|Eϕ(ditvitdisvis)|) ≤ NTM.

Proof for expression (E.7): Similar to eqn. (E.10), for all h we have

Eϕ(

∥∥∥∥∑N

i=1

∑T

t=1
Ā−1

iF f
0
t λ

0′
i ditvitdih

∥∥∥∥2
F

)

= Eϕ(Eϕd(

∥∥∥∥∑N

i=1

∑T

t=1
Ā−1

iF f
0
t λ

0′
i dihditvit

∥∥∥∥2
F

))

≤ Eϕ(r2
∑N

i,j=1

∑T

t,s=1

∥∥Ā−1
iF

∥∥∥∥f0t ∥∥∥∥λ0i dih∥∥ ∥∥∥Ā−1
jF

∥∥∥∥∥f0s ∥∥∥∥λ0jdjh∥∥ |Eϕd(ditvitdjsvjs)|)

≤ M
∑T

t,s=1

∑N

i,j=1
|Eϕ(ditvitdjsvjs)| ≤ NTM, (E.12)

where Eϕd(·) denotes the expectation conditioning on ϕ and d, the first inequality is because vit is independent

with d, and the last two inequalities follow from Assumptions 2(i) and 7(ii). Also,∥∥∥∥∑N

i=1

∑T

t=1
(A−1

iF − Ā−1
iF )f0t λ

0′
i ditvitdih

∥∥∥∥2
F

≤ (
∑N

i=1

∥∥A−1
iF − Ā−1

iF

∥∥2)(
∑N

i=1

∥∥∥∥∑T

t=1
f0t ditvitλ

0′
i dih

∥∥∥∥2
F

) = Op(
N

T
)Op(NT ) = Op(N2),
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where the equality is due to eqn. (E.11) and by Assumption 5

Eϕ(
∑N

i=1

∥∥∥∥∑T

t=1
f0t λ

0′
i ditvitdih

∥∥∥∥2
F

)

= Eϕ(
∑N

i=1

∑T

t,s=1

∑r

p,q=1
f0tpf

0
sp(λ0iqdih)2Eϕd(ditvitdisvis))

≤ M
∑T

t,s=1

∥∥f0t ∥∥∥∥f0s ∥∥∑N

i=1
|Eϕ(ditvitdisvis)|) ≤ NTM . (E.13)

Proof for expression (E.8): Let ξith = ditvitdihvih, then we have

−[Jfλ′L−1
λλ′Sλ]h =

∑N

i=1

∑T

t=1
(
∑T

t=1
ditf

0
t f

0′
t )−1dihvihditvitf

0
t

=
1

T

∑N

i=1

∑T

t=1
(Ā−1

iF ξithf
0
t + (A−1

iF − Ā−1
iF )ξithf

0
t ) ≡ II1h + II2h.

By Assumptions 2(i) and 7(i), we have

Eϕ(∥II1h∥2) = Eϕ

∥∥∥∥ 1

T

∑N

i=1

∑T

t=1
Ā−1

iF f
0
t ξith

∥∥∥∥2
≤ r

T 2

∑N

i,j=1

∑T

t,s=1

∣∣Eϕ(ξithξjsh)
∣∣ ∥∥Ā−1

iF

∥∥∥∥f0t ∥∥∥∥∥Ā−1
jF

∥∥∥∥∥f0s ∥∥
≤ M

T 2

∑N

i,j=1

∑T

t,s=1

∣∣Eϕ(ξithξjsh)
∣∣ = Op(

NT +N2

T 2
).

By Assumption 7(i) and eqn. (E.11), we have

Eϕ

∑N

i=1

∥∥∥∥∑T

t=1
ξithf

0
t

∥∥∥∥2 ≤
∑N

i=1

∑T

t,s=1

∥∥f0t ∥∥∥∥f0s ∥∥ |Eϕ(ξithξish)| ≤ NTM,

and ∥II2h∥2 ≤
∑N

i=1

∥∥A−1
iF − Ā−1

iF

∥∥2 1

T 2

∑N

i=1

∥∥∥∥∑T

t=1
ξithf

0
t

∥∥∥∥2 = Op(
N2

T 2
).

The block-type missing case. For this case, AiF = ĀiF , consequently all terms with A−1
iF − Ā−1

iF in the

proof of expressions (E.1), (E.7) and (E.8) become zeros. Thus we have (i)
∥∥W 0′

λ L
−1
λλ′Sλ

∥∥ = Op(
√

N
T ), (ii)∥∥W 0′

λ Q
−1
λλ′Sλ

∥∥ = Op(
√

N
T ) and (iii)

∥∥Lfλ′Q−1
λλ′Sλ

∥∥ = Op(
√
N). However,

∥∥Jfλ′Q−1
λλ′Sλ

∥∥ is still Op(
√
N+ N√

T
)

since ∥II1h∥2 is still Op(NT+N2

T 2 ). Therefore, Qfλ′Q−1
λλ′Sλ = (Lfλ′ +Jfλ′ − cW 0

fW
0′
λ )Q−1

λλ′Sλ is still Op(
√
N +

N√
T

) and this is what matters for Lemma E.2 below.

For the rest of the appendix, all lemmas, propositions and theorems hold for the random

missing with κ > 4 and hold for the block-type missing with κ = ∞.

Lemma E.2 Suppose that Assumptions 1-2, 4-5 and 7 hold. Let S1 be the (Nr)×(N + T ) r selection matrix

such that S1A selects the first Nr rows of a (N + T ) r× (N + T ) r matrix A. Let S2 be the (Tr)× (N + T ) r

selection matrix such that S2A selects the last Tr rows of A. Then as (N,T ) → ∞,

(i)
∥∥∥S1Q−1

ϕϕ′Sϕ − L̄−1
λλ′Sλ

∥∥∥ = Op

(
1√
N

+ 1√
T

+ N
1
2
+ 1

κ

T

)
;

(ii)
∥∥∥S2Q−1

ϕϕ′Sϕ − L̄−1
ff ′Sf

∥∥∥ = Op

(
1√
T

+ 1√
N

+ T
1
2
+ 1

κ

N

)
.
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Proof. Note that Q−1
ϕϕ′Sϕ =

(
(Qλλ′ −Qλf ′Q−1

ff ′Qfλ′)−1(Sλ −Qλf ′Q−1
ff ′Sf )

(Qff ′ −Qfλ′Q−1
λλ′Qλf ′)−1(Sf −Qfλ′Q−1

λλ′Sλ)

)
. We prove (i) by show-

ing that ∥∥∥S1Q−1
ϕϕ′Sϕ − (Qλλ′ −Qλf ′Q−1

ff ′Qfλ′)−1Sλ

∥∥∥ = Op(
1√
N

+
1√
T

) (E.14)∥∥∥(Qλλ′ −Qλf ′Q−1
ff ′Qfλ′)−1Sλ −Q−1

λλ′Sλ

∥∥∥ = Op(
1√
T

+

√
N

T
), (E.15)

∥∥Q−1
λλ′Sλ − L−1

λλ′Sλ

∥∥ = Op(
1√
T

+

√
N

T
) (E.16)

∥∥L−1
λλ′Sλ − L̄−1

λλ′Sλ

∥∥ = Op(
N

1
2+

1
κ

T
). (E.17)

Similarly, we prove (ii) by showing that∥∥∥S2Q−1
ϕϕ′Sϕ − (Qff ′ −Qfλ′Q−1

λλ′Qλf ′)−1Sf

∥∥∥ = Op(
1√
N

+
1√
T

), (E.18)∥∥∥(Qff ′ −Qfλ′Q−1
λλ′Qλf ′)−1Sf −Q−1

ff ′Sf

∥∥∥ = Op(
1√
N

+

√
T

N
), (E.19)∥∥∥Q−1

ff ′Sf − L−1
ff ′Sf

∥∥∥ = Op(
1√
N

+

√
T

N
), (E.20)∥∥∥L−1

ff ′Sf − L̄−1
ff ′Sf

∥∥∥ = Op(
T

1
2+

1
κ

N
). (E.21)

Proof for equations (E.14) and (E.18): T (Qλλ′ −Qλf ′Q−1
ff ′Qfλ′)−1 and N(Qff ′ −Qfλ′Q−1

λλ′Qλf ′) is the

upper-left and lower-right block of (D
− 1

2

TNQϕϕ′D
− 1

2

TN )−1, respectively. By Lemma B.1,∥∥∥T (Qλλ′ −Qλf ′Q−1
ff ′Qfλ′)−1

∥∥∥ ≤
∥∥∥(D

− 1
2

TNQϕϕ′D
− 1

2

TN )−1
∥∥∥ = Op(1), (E.22)∥∥N(Qff ′ −Qfλ′Q−1

λλ′Qλf ′)−1
∥∥ ≤

∥∥∥(D
− 1

2

TNQϕϕ′D
− 1

2

TN )−1
∥∥∥ = Op(1) (E.23)

From equations (A.5)-(A.8), Qλf ′ = Lλf ′ + Jλf ′ − cW 0
λW

0′
f . Then by Lemma E.1(ii)-(iv),

∥∥∥Qλf ′Q−1
ff ′Sf

∥∥∥ ≤
∥∥∥Lλf ′Q−1

ff ′Sf

∥∥∥+
∥∥∥Jλf ′Q−1

ff ′Sf

∥∥∥+
∥∥∥cW 0

λW
0′
f Q

−1
ff ′Sf

∥∥∥ = Op(
√
T +

T√
N

). (E.24)

It follows that∥∥∥S1Q−1
ϕϕ′Sϕ − (Qλλ′ −Qλf ′Q−1

ff ′Qfλ′)−1Sλ

∥∥∥ =
∥∥∥(Qλλ′ −Qλf ′Q−1

ff ′Qfλ′)−1Qλf ′Q−1
ff ′Sf

∥∥∥
≤

∥∥∥(Qλλ′ −Qλf ′Q−1
ff ′Qfλ′)−1

∥∥∥∥∥∥Qλf ′Q−1
ff ′Sf

∥∥∥
= Op(

1√
T

+
1√
N

)

Similarly, ∥∥Qfλ′Q−1
λλ′Sλ

∥∥ = Op(
√
N +

N√
T

), (E.25)
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and ∥∥∥S2Q−1
ϕϕ′Sϕ − (Qff ′ −Qfλ′Q−1

λλ′Qλf ′)−1Sf

∥∥∥ =
∥∥(Qff ′ −Qfλ′Q−1

λλ′Qλf ′)−1Qfλ′Q−1
λλ′Sλ

∥∥
= Op(

1√
N

+
1√
T

).

Proof for equations (E.15) and (E.19):

(Qλλ′ −Qλf ′Q−1
ff ′Qfλ′)−1Sλ = Q−1

λλ′Sλ +Q−1
λλ′Qλf ′(Qff ′ −Qfλ′Q−1

λλ′Qλf ′)−1Qfλ′Q−1
λλ′Sλ (E.26)

It is easy to see that ∥Qλf ′∥ = Op(
√
NT ), and equations (E.2)-(E.5) imply that

∥∥Q−1
λλ′

∥∥ = Op( 1
T ). These

results, along with equations (E.23) and (E.25), imply that the Euclidean norm of the second term on the

r.h.s. of (E.26) is Op( 1√
T

+
√
N
T ). This implies (E.15). By symmetry, we also have (E.19).

Proof for equations (E.16) and (E.20): From eqn. (E.2) we have

Q−1
λλ′Sλ = L−1

λλ′Sλ + L−1
λλ′W

0
λ(
N

cT
Ir2 −W 0′

λ L
−1
λλ′W

0
λ)−1W 0′

λ L
−1
λλ′Sλ.

By equations (E.3)–(E.5) and Lemma E.1(i), the Euclidean norm of the second term on the right hand side

is Op( 1√
T

+
√
N
T ). By symmetry, we also have

∥∥∥Q−1
ff ′Sf − L−1

ff ′Sf

∥∥∥ = Op( 1√
N

+
√
T

N ).

Proof for equations (E.17) and (E.21): Eqn. B.17 in the appendix of Su and Wang (2024) shows that∥∥Lλλ′ − L̄λλ′
∥∥ = Op(

√
TN

1
κ ). This together with eqn. (E.5) imply that

∥∥L−1
λλ′ − L̄−1

λλ′

∥∥ =
∥∥−L−1

λλ′(Lλλ′ − L̄λλ′)L̄−1
λλ′

∥∥ = Op(
N

1
κ

T
√
T

). (E.27)

By Assumption 5, ∥Sλ∥ = Op(
√
NT ), thus

∥∥L−1
λλ′Sλ − L̄−1

λλ′Sλ

∥∥ = Op(N
1
2
+ 1

κ

T ). Similarly,
∥∥∥L−1

ff ′Sf − L̄−1
ff ′Sf

∥∥∥ =

Op(T
1
2
+ 1

κ

N ). For the block-type missing, this term is zero since Lλλ′ = L̄λλ′ and Lff ′ = L̄ff ′ .

Lemma E.3 Suppose that Assumptions 1-2, 4-5 and 7-8 hold.

(i) If N
1
κ T

1
κ +N

2
κ√

T
→ 0 and N

1
κ T

1
κ +T

2
κ√

N
→ 0, then Sβ −Qβϕ′Q−1

ϕϕ′Sϕ = Op(
√
NT +N + T );

(ii) If N
2
3
+ 4

3κ

T → 0, T
2
3
+ 4

3κ

N → 0 and κ > 4, then 1√
NT

(Sβ−Qβϕ′Q−1
ϕϕ′Sϕ)− (b1 +b2 +b3 +b4)

d→ N (0,Ωx),

where

b1 =
1√
NT

∑T

t=1

∑N

i=1

∑N

j=1
Eϕ(djtvjtditxit)λ

0′
i [L̄−1

ff ′ ]tλ
0
j ,

b2 =
1√
NT

∑N

i=1

∑T

t=1

∑T

s=1
Eϕ(disvisditxit)f

0′
t [L̄−1

λλ′ ]if
0
s ,

b3 =
1√
NT

∑T

t=1

∑N

i=1

∑N

j=1
Eϕ(ditvitdjtvjt)δ

0
i [L̄−1

ff ′ ]tλ
0
j ,

b4 =
1√
NT

∑N

i=1

∑T

t=1

∑T

s=1
Eϕ(disvisditvit)ω

0
t [L̄−1

λλ′ ]if
0
s .

Proof. First note that

Sβ −Qβϕ′Q−1
ϕϕ′Sϕ = (Sβ − Q̄βϕ′Q̄−1

ϕϕ′Sϕ) − (Qβϕ′ − Q̄βϕ′)Q−1
ϕϕ′Sϕ + Q̄βϕ′Q̄−1

ϕϕ′(Qϕϕ′ − Q̄ϕϕ′)Q−1
ϕϕ′Sϕ
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≡ II1,1 − II1,2 + II1,3. (E.28)

We study II1,1, II1,2 and II1,3 in turn.

(1) By equations (B.10) and (B.15), Q̄βϕ′Q̄−1
ϕϕ′ = Q̄βϕ′L̄−1

ϕϕ′ = (δ0′, ω0′). Then

Q̄βϕ′Q̄−1
ϕϕ′Sϕ = (δ0′, ω0′)Sϕ =

∑N

i=1

∑T

t=1
(δ0i f

0
t + ω0

tλ
0
i )ditvit.

Since Sβ =
∑N

i=1

∑T
t=1 xitditvit, we have II1,1 = Sβ − Q̄βϕ′Q̄−1

ϕϕ′Sϕ =
∑N

i=1

∑T
t=1 ẋitditvit. Then by Assump-

tion 8(i),
1√
NT

II1,1 =
1√
NT

∑N

i=1

∑T

t=1
ẋitditvit

d→ N (0,Ωx). (E.29)

(2) From Assumption 3(iii) and Lemma E.2, we have

(Qβϕ′ − Q̄βϕ′)[Q−1
ϕϕ′Sϕ − ((L̄−1

λλ′Sλ)′, (L̄−1
ff ′Sf )′)′] =

√
NTOp(

1√
T

+
N

1
2+

1
κ

T
+

1√
N

+
T

1
2+

1
κ

N
),

which is op(N + T ) if N
1
κ√
T

→ 0 and T
1
κ√
N

→ 0, or equals op(
√
NT ) if N

1
2
+ 1

κ

T → 0 and T
1
2
+ 1

κ

N → 0. Next, note

that

(Qβϕ′ − Q̄βϕ′)((L̄−1
λλ′Sλ)′, (L̄−1

ff ′Sf )′)′ = (Qβλ′ − Q̄βλ′)L̄−1
λλ′Sλ + (Qβf ′ − Q̄βf ′)L̄−1

ff ′Sf .

The i-th block of Qβλ′ − Q̄βλ′ is −
∑T

t=1(ditxit − Eϕ(ditxit))f
0′
t and the t-th block of Qβf ′ − Q̄βf ′ is

−
∑N

i=1(ditxit − Eϕ(ditxit))λ
0′
i . By Assumption 8(ii) and the fact that maxi,t,s

∣∣f0′t [T L̄−1
λλ′ ]if

0
s

∣∣ ≤ M and

maxi,j,t

∣∣∣λ0′i [T L̄−1
ff ′ ]tλ

0
j

∣∣∣ ≤M ,

−(Qβλ′ − Q̄βλ′)L̄−1
λλ′Sλ

=
∑N

i=1

∑T

t=1

∑T

s=1
(ditxit − Eϕ(ditxit))disvisf

0′
t [L̄−1

λλ′ ]if
0
s

=
∑N

i=1

∑T

t=1

∑T

s=1
Eϕ[(ditxit − Eϕ(ditxit))disvis]f

0′
t [L̄−1

λλ′ ]if
0
s +Op(

√
N)

=
∑N

i=1

∑T

t=1

∑T

s=1
Eϕ(ditxitdisvis)f

0′
t [L̄−1

λλ′ ]if
0
s +Op(

√
N), (E.30)

and

−(Qβf ′ − Q̄βf ′)L̄−1
ff ′Sf

=
∑T

t=1

∑N

i=1

∑N

j=1
(ditxit − Eϕ(ditxit))djtvjtλ

0′
i [L̄−1

ff ′ ]tλ
0
j

=
∑T

t=1

∑N

i=1

∑N

j=1
Eϕ[(ditxit − Eϕ(ditxit))djtvjt]λ

0′
i [L̄−1

ff ′ ]tλ
0
j +Op(

√
T )

=
∑T

t=1

∑N

i=1

∑N

j=1
Eϕ(ditxitdjtvjt)λ

0′
i [L̄−1

ff ′ ]tλ
0
j +Op(

√
T ). (E.31)

It follows that

− 1√
NT

II1,2 = − 1√
NT

(Qβϕ′ − Q̄βϕ′)Q−1
ϕϕ′Sϕ
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=
1√
NT

∑N

i=1

∑T

t=1

∑T

s=1
Eϕ(ditxitdisvis)f

0′
t [L̄−1

λλ′ ]if
0
s

+
1√
NT

∑T

t=1

∑N

i=1

∑N

j=1
Eϕ(ditxitdjtvjt)λ

0′
i [L̄−1

ff ′ ]tλ
0
j +Op(

√
N +

√
T√

NT
)

= b2 + b1 +Op

(
1√
N

+
1√
T

)
. (E.32)

(3) By equations (B.17) and (B.18),
∥∥∥Q̄βϕ′D

− 1
2

TN

∥∥∥ = Op(
√
NT ). By Lemma B.1 and eqn. (B.16),

(D
− 1

2

TN Q̄ϕϕ′D
− 1

2

TN )−1 = Op(1). These results, together with eqn. (B.20) and Lemma E.2, imply that

Q̄βϕ′Q̄−1
ϕϕ′(Qϕϕ′ − Q̄ϕϕ′)[Q−1

ϕϕ′Sϕ − ((L̄−1
λλ′Sλ)′, (L̄−1

ff ′Sf )′)′]

= Q̄βϕ′D
− 1

2

TN (D
− 1

2

TN Q̄ϕϕ′D
− 1

2

TN )−1D
− 1

2

TN (Qϕϕ′ − Q̄ϕϕ′)D
− 1

2

TND
1
2

TN [Q−1
ϕϕ′Sϕ − ((L̄−1

λλ′Sλ)′, (L̄−1
ff ′Sf )′)′]

= Op(
√
NT )Op(1)Op

(
N

1
κ

√
T

+
T

1
κ

√
N

+
1

√
cNT

)
Op

(
1 +

N
1
2+

1
κ

√
T

+
T

1
2+

1
κ

√
N

)
,

which is op(
√
NT ) if N

2
3
+ 4

3κ

T → 0, T
2
3
+ 4

3κ

N → 0 and κ > 4, and op(N+T ) if N
1
κ T

1
κ +N

2
κ√

T
→ 0 and N

1
κ T

1
κ +T

2
κ√

N
→

0.

Now, we consider Q̄βϕ′Q̄−1
ϕϕ′(Qϕϕ′ − Q̄ϕϕ′)((L̄−1

λλ′Sλ)′, (L̄−1
ff ′Sf )′)′. Noting that Q̄βϕ′Q̄−1

ϕϕ′ = Q̄βϕ′L̄−1
ϕϕ′ and

Qϕϕ′ − Q̄ϕϕ′ = Lϕϕ′ − L̄ϕϕ′ + Jϕϕ′ , we have

Q̄βϕ′Q̄−1
ϕϕ′(Qϕϕ′ − Q̄ϕϕ′)((L̄−1

λλ′Sλ)′, (L̄−1
ff ′Sf )′)′

= Q̄βϕ′L̄−1
ϕϕ′(Lϕϕ′ − L̄ϕϕ′ + Jϕϕ′)((L̄−1

λλ′Sλ)′, (L̄−1
ff ′Sf )′)′

= δ0′(Lλλ′ − L̄λλ′)L̄−1
λλ′Sλ + δ0′(Lλf ′ − L̄λf ′)L̄−1

ff ′Sf + ω0′(Lfλ′ − L̄fλ′)L̄−1
λλ′Sλ

+ω0′(Lff ′ − L̄ff ′)L̄−1
ff ′Sf + δ0′Jλf ′L̄−1

ff ′Sf + ω0′Jfλ′L̄−1
λλ′Sλ.

By Assumption 8(iii) and the fact that Eϕ(d̃itdisvis) = 0, Eϕ(d̃itdjtvjt) = 0, maxits

∣∣f0′t [T L̄−1
λλ′ ]if

0
s

∣∣ ≤ M ,

maxijt

∣∣∣λ0′i [T L̄−1
ff ′ ]tλ

0
j

∣∣∣ ≤ M , maxit

∣∣δ0′kif0t ∣∣ ≤ M(N ∨ T )
1
ϱ and maxit

∣∣ω0′
ktλ

0
i

∣∣ ≤ M(N ∨ T )
1
ϱ (by Lemma

F.3(ii)), we have

δ0′k (Lλλ′ − L̄λλ′)L̄−1
λλ′Sλ

= −
∑N

i=1

∑T

t=1

∑T

s=1
d̃itdisvisδ

0′
kif

0
t f

0′
t [L̄−1

λλ′ ]if
0
s = Op(

√
N(N ∨ T )

1
ϱ ), (E.33)

δ0′k (Lλf ′ − L̄λf ′)L̄−1
ff ′Sf

= −
∑T

t=1

∑N

i=1

∑N

j=1
d̃itdjtvjtδ

0′
kif

0
t λ

0′
i [L̄−1

ff ′ ]tλ
0
j = Op(

√
T (N ∨ T )

1
ϱ ), (E.34)

ω0′
k (Lfλ′ − L̄fλ′)L̄−1

λλ′Sλ

= −
∑N

i=1

∑T

t=1

∑T

s=1
d̃itdisvisω

0′
ktλ

0
i f

0′
t [L̄−1

λλ′ ]if
0
s = Op(

√
N(N ∨ T )

1
ϱ ), (E.35)
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and

ω0′
k (Lff ′ − L̄ff ′)L̄−1

ff ′Sf

= −
∑T

t=1

∑N

i=1

∑N

j=1
d̃itdjtvjtω

0′
ktλ

0
iλ

0′
i [L̄−1

ff ′ ]tλ
0
j = Op(

√
T (N ∨ T )

1
ϱ ). (E.36)

By Assumption 8(iv) and the fact that maxijt

∣∣∣δ0′ki[T L̄−1
ff ′ ]tλ

0
j

∣∣∣ ≤ M(N ∨ T )
1
ϱ and maxits

∣∣ω0′
kt[T L̄

−1
λλ′ ]if

0
s

∣∣ ≤
M(N ∨ T )

1
ϱ , we have

δ0′k Jλf ′L̄−1
ff ′Sf

=
∑T

t=1

∑N

i=1

∑N

j=1
ditvitdjtvjtδ

0′
ki[L̄

−1
ff ′ ]tλ

0
j

=
∑T

t=1

∑N

i=1

∑N

j=1
Eϕ(ditvitdjtvjt)δ

0′
ki[L̄

−1
ff ′ ]tλ

0
j +Op(

√
T (N ∨ T )

1
ϱ ), (E.37)

and

ω0′
k Jfλ′L̄−1

λλ′Sλ

=
∑N

i=1

∑T

t=1

∑T

s=1
disvisditvitω

0′
kt[L̄

−1
λλ′ ]if

0
s

=
∑N

i=1

∑T

t=1

∑T

s=1
Eϕ(disvisditvit)ω

0′
kt[L̄

−1
λλ′ ]if

0
s +Op(

√
N(N ∨ T )

1
ϱ ). (E.38)

Then

1√
NT

II1,3 =
1√
NT

Q̄βϕ′Q̄−1
ϕϕ′(Qϕϕ′ − Q̄ϕϕ′)Q−1

ϕϕ′Sϕ

=
1√
NT

∑T

t=1

∑N

i=1

∑N

j=1
Eϕ(ditvitdjtvjt)δ

0′
ki[L̄

−1
ff ′ ]tλ

0
j +

+
1√
NT

∑N

i=1

∑T

t=1

∑T

s=1
Eϕ(disvisditvit)ω

0′
kt[L̄

−1
λλ′ ]if

0
s

+Op(N−1/2(N ∨ T )
1
ϱ ) + T−1/2(N ∨ T )

1
ϱ )

= b3 + b4 +Op(N−1/2(N ∨ T )
1
ϱ ) + T−1/2(N ∨ T )

1
ϱ ),

where the remainder term is op(1) if T
1
ϱ√
N

→ 0 and N
1
ϱ√
T

→ 0, which is easily satisfied when ϱ ≥ 8.

Combining the above results, we obtain the desired result.

Lemma E.4 Let Rβ and Rϕ be as defined in (4.1) and (4.2), respectively. Let Rϕ = (R′
λ, R

′
f )′ where

Rλ and Rf are Nr × 1 and Tr × 1, respectively. Suppose that Assumptions 2(i)-(ii) and 3(ii) hold. If

(β̂
′
, λ̂

′
, f̂ ′)′ ∈ Bm(γ

0
) w.p.a.1 for any fixed m > 0, then we have

(i) ∥Rβ∥ = Op(
√
NT

∥∥∥λ̂− λ0
∥∥∥∥∥∥f̂ − f0

∥∥∥);

(ii) ∥Rλ∥ = Op(
√
NT

∥∥∥β̂ − β0
∥∥∥∥∥∥f̂ − f0

∥∥∥+
√
T
∥∥∥λ̂− λ0

∥∥∥∥∥∥f̂ − f0
∥∥∥+

√
N
∥∥∥f̂ − f0

∥∥∥2);

(iii) ∥Rf∥ = Op(
√
NT

∥∥∥β̂ − β0
∥∥∥ ∥∥∥λ̂− λ0

∥∥∥+
√
N
∥∥∥λ̂− λ0

∥∥∥∥∥∥f̂ − f0
∥∥∥+

√
T
∥∥∥λ̂− λ0

∥∥∥2).

Proof. (i) Let Rβk
denote the k-th element of Rβ , which denotes the remainder term in the first order

Taylor expansion of Sβ(β̂, ϕ̂) around Sβ = Sβ(β0, ϕ0) with a second order remainder term. Using the integral
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form of the mean value theorem for vector-valued functions to expand the first order conditions, we can

express Rβk
as Rβk

= Rβββk
+Rβϕβk

+Rϕββk
+Rϕϕβk

,

Rβββk
= (β̂ − β0)′(

∫ 1

0

∫ s1

0

∂ββ′βk
Q(s2)ds2ds1)(β̂ − β0),

Rβϕβk
= Rϕββk

= (β̂ − β0)′(

∫ 1

0

∫ s1

0

∂βϕ′βk
Q(s2)ds2ds1)(ϕ̂− ϕ0),

Rϕϕβk
= (ϕ̂− ϕ0)′(

∫ 1

0

∫ s1

0

∂ϕϕ′βk
Q(s2)ds2ds1)(ϕ̂− ϕ0),

where ∂ϕϕ′βk
Q(s) = ∂βk

∂ϕϕ′Q(s) = ∂βk
∂ϕϕ′Q(β0 + s(β̂−β0), ϕ0 + s(ϕ̂−ϕ0)) and ∂βϕ′βk

Q(s) and ∂ββ′βk
Q(s)

are defined similarly. Since Q(·) is quadratic, we have

Rβββk
= 0, (E.39)

Rβϕβk
= Rϕββk

= 0. (E.40)

Since ∂ϕϕ′Q(γ) = Lϕϕ′(γ) + Jϕϕ′(γ) + Gϕϕ′(γ), ∂βk
Lϕϕ′(γ) = 0, ∂βk

Gϕϕ′(γ) = 0 and the (i, t)-th block of

∂βk
Jλf ′(γ) is −ditxitkIr,4 we have

∥∥Rϕϕβk

∥∥ =

∥∥∥∥(ϕ̂− ϕ0)′(

∫ 1

0

∫ s1

0

∂βk
Jϕϕ′(s2)ds2ds1)(ϕ̂− ϕ0)

∥∥∥∥
=

∥∥∥∥∥−
N∑
i=1

T∑
t=1

ditxitk(λ̂i − λ0i )′(f̂t − f0t )

∥∥∥∥∥
≤

√√√√ N∑
i=1

T∑
t=1

x2itk

∥∥∥λ̂− λ0
∥∥∥∥∥∥f̂ − f0

∥∥∥ = Op(
√
NT

∥∥∥λ̂− λ0
∥∥∥ ∥∥∥f̂ − f0

∥∥∥), (E.41)

where the last equality follows from Assumption 3(ii).

(ii)-(iii) Now we consider Rϕ = (R′
λ, R

′
f )′ = (ϕ1, ..., ϕ(N+T )r)′, where ϕj denotes the jth element of ϕ for

j ∈ [(N + T ) r] . Note that

Rϕj
= Rββϕj

+Rβϕϕj
+Rϕβϕj

+Rϕϕϕj
, (E.42)

where

Rββϕj
= (β̂ − β0)′(

∫ 1

0

∫ s1

0

∂ββ′ϕj
Q(s2)ds2ds1)(β̂ − β0),

Rϕβϕj
= Rβϕϕj

= (β̂ − β0)′(

∫ 1

0

∫ s1

0

∂βϕ′ϕj
Q(s2)ds2ds1)(ϕ̂− ϕ0),

Rϕϕϕj
= (ϕ̂− ϕ0)′(

∫ 1

0

∫ s1

0

∂ϕϕ′ϕj
Q(s2)ds2ds1)(ϕ̂− ϕ0).

4Recall from expression (A.8) that Gϕϕ′(γ) is a constant matrix for all γ.
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First, noting that Q(·) is quadratic, we have

Rββϕj
= 0K×K . (E.43)

Next, we consider Rβϕϕ = (Rββϕ1
, ..., Rββϕ(N+T )r

)′ = (R′
βϕλ, R

′
βϕf )′, where

Rβϕλ = (Rββϕ1
, ..., RββϕNr

)′ ≡ (R′
ββλ1

, ..., R′
ββλN

)′, and

Rβϕf = (RββϕNr+1
, ..., Rββϕ(N+T )r

)′ ≡ (R′
βϕf1 , ..., R

′
βϕfT )′.

Note that

∂βϕ′λiq
Q(γ) = ∂λiq∂βϕ′Q(γ) = ∂λiqQβϕ′(γ) = (0K×r, ..., 0K×r, di1xi11r′q , ...diTxiT 1r′q ),

which is a K × (N + T ) r matrix. Here, recall that 0K×r denotes a K × r matrix of zeros and 1rq denotes the

r × 1 vector with the q-th element being one and the other elements being zeros. Thus we have

Rβϕλi = −1

2

∑T

t=1
(β̂ − β0)′ditxit (f̂t − f0t ), and (E.44)

Rβϕft = −1

2

∑N

i=1
(β̂ − β0)′ditxit (λ̂i − λ0i ). (E.45)

It follows that

∥Rβϕλ∥ ≤ 1

2

∥∥∥β̂ − β0
∥∥∥√∑N

i=1

∑T

t=1
∥xit∥2

∥∥∥f̂ − f0
∥∥∥

= Op(
√
NT

∥∥∥β̂ − β0
∥∥∥∥∥∥f̂ − f0

∥∥∥), (E.46)

∥Rβϕf∥ ≤ 1

2

∥∥∥β̂ − β0
∥∥∥√∑N

i=1

∑T

t=1
∥xit∥2

∥∥∥λ̂− λ0
∥∥∥

= Op(
√
NT

∥∥∥β̂ − β0
∥∥∥∥∥∥λ̂− λ0

∥∥∥). (E.47)

Now, we consider Rϕϕϕ = (Rϕϕϕ1
, ..., Rϕϕϕ(N+T )r

)′ = (R′
ϕϕλ, R

′
ϕϕf )′, where

Rϕϕλ = (Rϕϕϕ1
, ..., RϕϕϕNr

)′ ≡ (R′
ββλ1

, ..., R′
ββλN

)′, and

Rϕϕf = (RϕϕϕNr+1
, ..., Rϕϕϕ(N+T )r

)′ ≡ (R′
ϕϕf1 , ..., R

′
ϕϕfT )′.

Note that (1) ∂λiq
Lλλ′(γ) = 0, (2) the t-th block of ∂λiq

Lff ′(γ) is −dit(λi1r′q + 1rqλ
′
i), (3) the (i, t)-th

block of ∂λiq
Lλf ′(γ) is −ditft1r′q and the (j, s)-th block is zero if j ̸= i, (4) the (i, t)-th block of ∂λiq

Jλf ′(γ)

is −ditftqIr and the (j, s)-th block is zero if j ̸= i, and (5) ∂λiq
Gϕϕ′ = 0. It follows that

(ϕ̂− ϕ0)′
∫ 1

0

∫ s1

0

∂λiq∂ϕϕ′Q(s2)ds2ds1(ϕ̂− ϕ0)

= −2
∑T

t=1
dit(λ̂i − λ0i )′

∫ 1

0

∫ s1

0

(ft(s2)1r′q + ftq(s2)Ir)ds2ds1(f̂t − f0t )

−2
∑T

t=1
dit(f̂t − f0t )′

∫ 1

0

∫ s1

0

λi(s2)1r′q ds2ds1(f̂t − f0t ), (E.48)
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where ft(s) = f0t + s(f̂t − f0t ) and λi(s) = λ0i + s(λ̂i − λ0i ). Then

∥Rϕϕλ∥ ≤ M
∥∥∥λ̂− λ0

∥∥∥ sup
0≤s≤1

∥f(s)∥
∥∥∥f̂ − f0

∥∥∥+M sup
0≤s≤1

∥λ(s)∥
∥∥∥f̂ − f0

∥∥∥2
= Op(

√
T
∥∥∥λ̂− λ0

∥∥∥ ∥∥∥f̂ − f0
∥∥∥+

√
N
∥∥∥f̂ − f0

∥∥∥2), (E.49)

where the equality follows from sup
0≤s≤1

∥f(s)∥ ≤
∥∥f0∥∥+m

√
T = Op(

√
T ) and sup

0≤s≤1
∥λ(s)∥ ≤

∥∥λ0∥∥+m
√
N =

Op(
√
N) by Assumption 2(i)-(ii) and the fact that (β̂

′
, λ̂

′
, f̂ ′)′ ∈ Bm(γ

0
) for a fixed m. By symmetry, we also

have

∥Rϕϕf∥ = Op(
√
N
∥∥∥λ̂− λ0

∥∥∥∥∥∥f̂ − f0
∥∥∥+

√
T
∥∥∥λ̂− λ0

∥∥∥2). (E.50)

Combining equations (E.43), (E.46)-(E.47) and (E.49)-(E.50), we conclude the proof of the lemma.

Proof of Proposition 4.1

From equations (4.1)-(4.2), we have

β̂ − β0 = −(Qββ′ −Qβϕ′Q−1
ϕϕ′Qϕβ′)−1(Sβ −Qβϕ′Q−1

ϕϕ′Sϕ)

−(Qββ′ −Qβϕ′Q−1
ϕϕ′Qϕβ′)−1(Rβ −Qβϕ′Q−1

ϕϕ′Rϕ), and (E.51)

ϕ̂− ϕ0 = −Q−1
ϕϕ′Sϕ −Q−1

ϕϕ′Rϕ −Q−1
ϕϕ′Qϕβ′(β̂ − β0). (E.52)

By Assumption 3(i) and Lemma B.2, (Qββ′−Qβϕ′Q−1
ϕϕ′Qϕβ′)−1 = Op( 1

NT ). By Lemma E.3, Sβ−Qβϕ′Q−1
ϕϕ′Sϕ =

Op(
√
NT +N + T ). By Lemma E.4, Lemma B.1 and eqn. (B.17), we have∥∥∥Qβϕ′Q−1

ϕϕ′Rϕ

∥∥∥ =
∥∥∥Qβϕ′D

− 1
2

TN (D
− 1

2

TNQϕϕ′D
− 1

2

TN )−1D
− 1

2

TNRϕ

∥∥∥
≤

∥∥∥Qβϕ′D
− 1

2

TN

∥∥∥∥∥∥(D
− 1

2

TNQϕϕ′D
− 1

2

TN )−1
∥∥∥∥∥∥D− 1

2

TNRϕ

∥∥∥
=

√
NTOp

{√
N
∥∥∥β̂ − β0

∥∥∥∥∥∥f̂ − f0
∥∥∥+

∥∥∥λ̂− λ0
∥∥∥∥∥∥f̂ − f0

∥∥∥
+

√
N

T

∥∥∥f̂ − f0
∥∥∥2 +

√
T
∥∥∥β̂ − β0

∥∥∥∥∥∥λ̂− λ0
∥∥∥+

√
T

N

∥∥∥λ̂− λ0
∥∥∥2} .

Plug these rates into eqn. (E.51), we have∥∥∥β̂ − β0
∥∥∥

= Op

(
1√
NT

+
1

N
+

1

T

)
+Op

(
1√
NT

∥∥∥λ̂− λ0
∥∥∥∥∥∥f̂ − f0

∥∥∥)
+Op

{
1√
T

∥∥∥f̂ − f0
∥∥∥∥∥∥β̂ − β0

∥∥∥+
1√
N

∥∥∥λ̂− λ0
∥∥∥∥∥∥β̂ − β0

∥∥∥ +
1

T

∥∥∥f̂ − f0
∥∥∥2 +

1

N

∥∥∥λ̂− λ0
∥∥∥2}

= Op(
1

c2NT

), (E.53)

where the second equality follows from Theorem 3.1. By eqn. (E.52) and Lemma B.1, we have∥∥∥D− 1
2

NT (ϕ̂− ϕ0 +Q−1
ϕϕ′Sϕ)

∥∥∥ ≤ (NT )
−1/2

∥∥∥(−D− 1
2

TNQϕϕ′D
− 1

2

TN )−1
[
D

− 1
2

TNRϕ +D
− 1

2

TNQϕβ′(β̂ − β0)
]∥∥∥

30

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5177283

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



≲ (NT )
−1/2

{∥∥∥D− 1
2

TNRϕ

∥∥∥+
∥∥∥D− 1

2

TNQϕβ′

∥∥∥ ∥∥∥(β̂ − β0)
∥∥∥}

= Op(
1

c2NT

), (E.54)

where the last equality holds by the fact that
∥∥∥D− 1

2

TNRϕ

∥∥∥ = Op(
√
NT

c2NT
),
∥∥∥D− 1

2

TNQϕβ′

∥∥∥ = Op(
√
NT ) by eqn.

(B.17) and
∥∥∥β̂ − β0

∥∥∥ = Op( 1
c2NT

) by eqn. (E.53). To see the first fact, note that by Theorem 3.1,
∥∥∥β̂ − β0

∥∥∥ =

Op( 1
cNT

), 1√
N

∥∥∥λ̂− λ0
∥∥∥ = Op( 1

cNT
) and 1√

T

∥∥∥f̂ − f0
∥∥∥ = Op( 1

cNT
); plugging these rates into Lemma E.4 yields∥∥∥D− 1

2

TNRϕ

∥∥∥ = Op(
√
NT

c2NT
). ■

To prove Theorem 4.1, we state and prove the next lemma where refine our calculations of Rβ and

Qβϕ′Q−1
ϕϕ′Rϕ.

Lemma E.5 Suppose that Assumptions 1-5, 7 and 8(ii)-(iv) hold.

(i) Rβ = op(
√
NT ) if

√
T

N → 0 and
√
N
T → 0;

(ii) −Qβϕ′Q−1
ϕϕ′Rϕ =

√
NT (b5+b6)+op(

√
NT ) if T

[ 1
2
+(( 3

ς∧ζ
+3

ς
+ 1

ϱ
)∨ 1

κ
)]∨ 2

3

N → 0 and N
[ 1
2
+(( 3

ς∧ζ
+3

ς
+ 1

ϱ
)∨ 1

κ
)]∨ 2

3

T →
0, where b5 and b6 are K × 1 vectors with the respective k-th elements given by

b5k =
1√
NT

∑T

t=1

∑N

i=1

∑N

j=1
Eϕ(ditvitdjtvjt)λ

0′
i [L̄−1

ff ′ ]t(
∑N

i=1
Φitλ

0
i δ

0′
ki)[L̄

−1
ff ′ ]tλ

0
j ,

b6k =
1√
NT

∑N

i=1

∑T

t=1

∑T

s=1
Eϕ(ditvitdisvis)f

0′
t [L̄−1

λλ′ ]i(
∑T

t=1
Φitf

0
t ω

0′
kt)[L̄

−1
λλ′ ]if

0
s .

Proof. (i) From equations (E.39)–(E.41), we have

∥Rβ∥ = ∥Rϕϕβ∥ =

∥∥∥∥−∑N

i=1

∑T

t=1
ditxit(λ̂i − λ0i )′(f̂t − f0t )

∥∥∥∥
≤

√∑T

t=1

∥∥∥f̂t − f0t

∥∥∥2
√∑T

t=1

∥∥∥∥∑N

i=1
ditxit(λ̂i − λ0i )′

∥∥∥∥2
= Op(

TN

c3NT

) = op(
√
NT ) if

√
T

N
→ 0 and

√
N

T
→ 0,

where the third equality follows from Theorem 3.1 and Lemma F.1(iii).

(ii) By (E.42), we can write

Rϕ = Rββϕ +Rβϕϕ +Rϕβϕ +Rϕϕϕ, (E.55)

where Rββϕ, Rβϕϕ, Rϕβϕ, and Rϕϕϕ are all (N + T ) r×1 vector with typical elements given by Rββϕj
, Rβϕϕj

,

Rϕβϕj
, and Rϕϕϕj

, respectively.

First note that Rββϕ = 0(N+T )r×1 by (E.43). Next, using Rβϕϕ = (R′
βϕλ, R

′
βϕf )′ and (E.46)–(E.47), we

have

∥Rβϕλ∥ = Op(
√
NT

∥∥∥β̂ − β0
∥∥∥∥∥∥f̂ − f0

∥∥∥) and ∥Rβϕf∥ = Op(
√
NT

∥∥∥β̂ − β0
∥∥∥∥∥∥λ̂− λ0

∥∥∥).

It follows that ∥∥∥D− 1
2

TNRβϕϕ

∥∥∥ = Op

{√
NT

∥∥∥β̂ − β0
∥∥∥( 1√

T

∥∥∥f̂ − f0
∥∥∥+

1√
N

∥∥∥λ̂− λ0
∥∥∥)} .
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Then by eqn. (B.17), Lemma B.1 and Proposition 4.1,

Qβϕ′Q−1
ϕϕ′Rβϕϕ = Qβϕ′D

− 1
2

TN (−D− 1
2

TNQϕϕ′D
− 1

2

TN )−1D
− 1

2

TNRβϕϕ = Op(
NT

c3NT

) (E.56)

= op(
√
NT ) if

√
T

N
→ 0 and

√
N

T
→ 0.

Now, we consider Qβϕ′Q−1
ϕϕ′Rϕϕϕ. Define Qβϕ′Q−1

ϕϕ′ = (δ∗′, ω∗′) = (δ∗1, ..., δ
∗
N , ω

∗
1, ..., ω

∗
T ), where δ∗i ’s and

ω∗
t ’s are all K × r matrices. Let δ∗ki and ω∗

kt denote the transpose of the k-th row of δ∗i and ω∗
t , respectively.

From eqn. (E.48), the k-th element of Qβϕ′Q−1
ϕϕ′Rϕϕϕ is:

Qβkϕ
′Q−1

ϕϕ′Rϕϕϕ = −2
∑T

t=1
(f̂t − f0t )′

∫ 1

0

∫ s1

0

∑N

i=1
ditλi(s2)δ∗′kids2ds1(f̂t − f0t )

−2
∑N

i=1

∑T

t=1
(λ̂i − λ0i )′

∫ 1

0

∫ s1

0

dit(ft(s2)δ∗′ki + δ∗′kift(s2)Ir)ds2ds1(f̂t − f0t )

−2
∑T

t=1

∑N

i=1
(f̂t − f0t )′

∫ 1

0

∫ s1

0

dit(λi(s2)ω∗′
kt + ω∗′

ktλi(s2)Ir)ds2ds1(λ̂i − λ0i )

−2
∑N

i=1
(λ̂i − λ0i )′

∫ 1

0

∫ s1

0

∑T

t=1
ditft(s2)ω∗′

ktds2ds1(λ̂i − λ0i ).

Thus by Lemma F.2 and Theorem 3.1, we have

Qβkϕ
′Q−1

ϕϕ′Rϕϕϕ = −
∑N

i=1

∑T

t=1
(λ̂i − λ0i )′dit(f

0
t δ

∗′
ki + δ∗′kif

0
t Ir)(f̂t − f0t )

−
∑T

t=1

∑N

i=1
(f̂t − f0t )′dit(λ

0
iω

∗′
kt + ω∗′

ktλ
0
i Ir)(λ̂i − λ0i )

−
∑N

i=1

∑T

t=1
(f̂t − f0t )′(ditλ

0
i δ

∗′
ki)(f̂t − f0t )

−
∑T

t=1

∑N

i=1
(λ̂i − λ0i )′(ditf

0
t ω

∗′
kt)(λ̂i − λ0i ) +Op(

NT

c3NT

)

≡ −II2,1 − II2,2 − II2,3 − II2,4 +Op(
NT

c3NT

). (E.57)

Noting that
∑T

t=1 ditf
0
t δ

∗′
ki(f̂t − f0t ) =

∑T
t=1 ditf

0
t (f̂t − f0t )′δ∗ki and

∑T
t=1 ditδ

∗′
kif

0
t (f̂t − f0t ) =

∑T
t=1 dit(f̂t −

f0t )f0′t δ
∗
ki,

∥II2,1∥ ≤ 2
∑N

i=1

∥∥∥λ̂i − λ0i

∥∥∥ ∥δ∗ki∥∥∥∥∥∑T

t=1
ditf

0
t (f̂t − f0t )′

∥∥∥∥
= Op(

√
N

cNT
)Op((N ∨ T )

3
ς∧ζ+

3
ς +

1
ϱ )Op(

T
√
N

c2NT

) = Op((N ∨ T )
3

ς∧ζ+
3
ς +

1
ϱ )Op(

NT

c3NT

)

= op(
√
NT ) if

T
1
2+

3
ς∧ζ+

3
ς +

1
ϱ

N
→ 0 and

N
1
2+

3
ς∧ζ+

3
ς +

1
ϱ

T
→ 0, (E.58)

where the first equality follows from Theorem 3.1, Lemma F.1(i) and Lemma F.3. Similarly,

∥II2,2∥ ≤ 2
∑T

t=1

∥∥∥f̂t − f0t

∥∥∥ ∥ω∗
kt∥
∥∥∥∥∑N

i=1
ditλ

0
i (λ̂i − λ0i )′

∥∥∥∥
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= Op(

√
T

cNT
)Op((N ∨ T )

3
ς∧ζ+

3
ς +

1
ϱ )Op(

N
√
T

c2NT

) ≤ Op((N ∨ T )
3

ς∧ζ+
3
ς +

1
ϱ )Op(

TN

c3NT

)

= op(
√
NT ) if

T
1
2+

3
ς∧ζ+

3
ς +

1
ϱ

N
→ 0 and

N
1
2+

3
ς∧ζ+

3
ς +

1
ϱ

T
→ 0, (E.59)

where the first equality follows from Theorem 3.1, Lemma F.1(ii) and Lemma F.3. Next, by Lemma F.4(i)-(iv)

and Theorem 3.1, we have

II2,3 = Op(
T

c2NT

)Op(
√
NT

1
κ +

N1+ 1
κ

√
T

+
N

√
cNT

) −
∑T

t=1
(f̂t − f0t )′(

∑N

i=1
Φitλ

0
i δ

0′
ki)(f̂t − f0t ),(E.60)

II2,4 = Op(
N

c2NT

)Op(
√
TN

1
κ +

T 1+ 1
κ

√
N

+
T

√
cNT

) −
∑N

i=1
(λ̂i − λ0i )′(

∑T

t=1
Φitf

0
t ω

0′
kt)(λ̂i − λ0i ),(E.61)

where Op( NT
c2NT

)Op( T
1
κ√
N

+ N
1
κ√
T

+ 1√
cNT

) = op(
√
NT ) if T ( 1

2
+ 1

κ
)∨ 2

3

N → 0 and N( 1
2
+ 1

κ
)∨ 2

3

T → 0. By eqn. (E.54) and

Lemma E.2, we have

√∑T
t=1

∥∥∥f̂t − f0t + [L̄−1
ff ′ ]tSft

∥∥∥2 = Op(
√
T

c2NT
+T

1
2
+ 1

κ

N ). By Theorem 3.1,

√∑T
t=1

∥∥∥f̂t − f0t

∥∥∥2 =

Op(
√
T

cNT
). These, together with Lemma F.4(v)-(vi), imply that expressions in (E.60) and (E.61) can be further

simplified to obtain

II2,3 = −
∑T

t=1
S′
ft [L̄

−1
ff ′ ]t(

∑N

i=1
Φitλ

0
i δ

0′
ki)[L̄

−1
ff ′ ]tSft +Op(

NT

c3NT

+
T 1+ 1

κ

cNT
), (E.62)

II2,4 = −
∑N

i=1
S′
λi

[L̄−1
λλ′ ]i(

∑T

t=1
Φitf

0
t ω

0′
kt)[L̄

−1
λλ′ ]iSλi

+Op(
NT

c3NT

+
N1+ 1

κ

cNT
), (E.63)

where Op( NT
c3NT

+ T 1+ 1
κ

cNT
) = op(

√
NT ) and Op( NT

c3NT
+ N1+ 1

κ

cNT
) = op(

√
NT ) if T

1
2
+ 1

κ

N → 0, T
1
κ√
N

→ 0, N
1
2
+ 1

κ

T → 0

and N
1
κ√
T

→ 0. Plugging in Sft =
∑N

i=1 λ
0
i ditvit and Sλi =

∑T
t=1 f

0
t ditvit, we have

II2,3 = −
∑T

t=1
S′
ft [L̄

−1
ff ′ ]t(

∑N

i=1
Φitλ

0
i δ

0′
ki)[L̄

−1
ff ′ ]tSft + op(

√
NT )

= −
∑T

t=1

∑N

i=1

∑N

j=1
ditvitdjtvjtλ

0′
j [L̄−1

ff ′ ]t(
∑N

i=1
Φitλ

0
i δ

0′
ki)[L̄

−1
ff ′ ]tλ

0
i + op(

√
NT )

= −
∑T

t=1

∑N

i=1

∑N

j=1
Eϕ(ditvitdjtvjt)λ

0′
j [L̄−1

ff ′ ]t(
∑N

i=1
Φitλ

0
i δ

0′
ki)[L̄

−1
ff ′ ]tλ

0
i +Op(

√
T ) + op(

√
NT ),

and

II2,4 = −
∑N

i=1
S′
λi

[L̄−1
λλ′ ]i(

∑T

t=1
Φitf

0
t ω

0′
kt)[L̄

−1
λλ′ ]iSλi + op(

√
NT )

= −
∑N

i=1

∑T

t=1

∑T

s=1
ditvitdisvisf

0′
t [L̄−1

λλ′ ]i(
∑T

t=1
Φitf

0
t ω

0′
kt)[L̄

−1
λλ′ ]if

0
s + op(

√
NT )

= −
∑N

i=1

∑T

t=1

∑T

s=1
Eϕ(ditvitdisvis)f

0′
t [L̄−1

λλ′ ]i(
∑T

t=1
Φitf

0
t ω

0′
kt)[L̄

−1
λλ′ ]if

0
s +Op(

√
N) + op(

√
NT ).

where we use Assumption 8(iv) and the fact that maxi,j,t |λ0′j [NL̄−1
ff ′ ]t(

1
N

∑N
i=1 Φitλ

0
i δ

0′
ki)[NL̄

−1
ff ′ ]tλ

0
i | ≤ M

and maxi,t,s |f0′t [T L̄−1
λλ′ ]i(

1
T

∑T
t=1 Φitf

0
t ω

0′
kt)[T L̄

−1
λλ′ ]if

0
s | ≤M by Lemma F.4(v)-(vi).

Combining the above results on II2,j ’s yields the desired result.

Proof of Theorem 4.1
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Given eqn. (E.51), it’s easy to see that Theorem 4.1 follows from Lemma B.2, Lemma E.3 and Lemma

E.5. ■

F Supplementary Lemmas Used in the Proof of Lemma E.5

In this section, we state and prove four technical lemmas used in the proof of Lemma E.5.

Lemma F.1 Under Assumptions 1-5 and 7, as (N,T ) → ∞,

(i)
∑N

i=1

∥∥∥∑T
t=1 ditf

0
t (f̂t − f0t )′

∥∥∥2 = Op(T 2N
c4NT

);

(ii)
∑T

t=1

∥∥∥∑N
i=1 ditλ

0
i (λ̂i − λ0i )′

∥∥∥2 = Op(TN2

c4NT
);

(iii)
∑T

t=1

∥∥∥∑N
i=1 ditxit(λ̂i − λ0i )′

∥∥∥2 = Op(TN2

c4NT
).

Proof. (i)-(ii) The proof of (i) is similar to that of (ii). We focus on the proof of (ii) here. By equations

(E.14)–(E.16), (E.18)–(E.20), and (E.54), we have

1√
N

∥∥∥(λ̂− λ0) + L−1
λλ′Sλ

∥∥∥ = Op(
1

c2NT

), and (F.1)

1√
T

∥∥∥(f̂ − f0) + L−1
ff ′Sf

∥∥∥ = Op(
1

c2NT

). (F.2)

Noting that the i-th block of L−1
λλ′Sλ is [L−1

λλ′ ]iSλi
, we have by the CS inequality

∑T

s=1

∥∥∥∥∑N

i=1
disλ

0
i (λ̂i − λ0i )′

∥∥∥∥2
≤ 2

∑T

s=1

∥∥∥∥∑N

i=1
disλ

0
i (λ̂i − λ0i + [L−1

λλ′ ]iSλi)
′
∥∥∥∥2 + 2

∑T

s=1

∥∥∥∥∑N

i=1
disλ

0
iS

′
λi

[L−1
λλ′ ]i

∥∥∥∥2
≤ 2T

∑N

i=1

∥∥λ0i∥∥2∑N

i=1

∥∥∥λ̂i − λ0i + [L−1
λλ′ ]iSλi

∥∥∥2
+2
∑T

s=1

∥∥∥∥∑N

i=1

∑T

t=1
disλ

0
i f

0′
t ditvit(

∑T

t=1
ditf

0
t f

0′
t )−1

∥∥∥∥2
= Op(

N2T

c4NT

) +Op(
NT +N2

T
) = Op(

N2T

c4NT

),

where the equality follows from eqn. (F.1) and expression (E.7).

(iii) The proof is similar to that of part (ii). Note that

∑T

s=1

∥∥∥∥∑N

i=1
disxis(λ̂i − λ0i )′

∥∥∥∥2
≤ 2

∑T

s=1

∥∥∥∥∑N

i=1
disxis(λ̂i − λ0i + [L−1

λλ′ ]iSλi
)′
∥∥∥∥2 + 2

∑T

s=1

∥∥∥∥∑N

i=1
disxisS

′
λi

[L−1
λλ′ ]i

∥∥∥∥2
≤ 2T

∑N

i=1
∥xis∥2

∑N

i=1

∥∥∥λ̂i − λ0i + [L−1
λλ′ ]iSλi

∥∥∥2
+2
∑T

s=1

∥∥∥∥∑N

i=1

∑T

t=1
disxisf

0′
t ditvit(

∑T

t=1
ditf

0
t f

0′
t )−1

∥∥∥∥2
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= Op(
N2T

c4NT

) + 2
∑T

s=1

∥∥∥∥∑N

i=1

∑T

t=1
disxisf

0′
t ditvit(

∑T

t=1
ditf

0
t f

0′
t )−1

∥∥∥∥2
= Op(

N2T

c4NT

) +Op(
NT 2 +N2T

T 2
) = Op(

N2T

c4NT

),

where the first equality follows from eqn. (F.2) and Assumption 3(ii), and the second equality is proved

below. Recalling that AiF = 1
T

∑T
t=1 ditf

0
t f

0′
t and ĀiF = Eϕ(AiF ), we have

Eϕ(
∑T

h=1

∥∥∥∥∑N

i=1

∑T

t=1
Ā−1

iF f
0
t x

′
ihditvitdih

∥∥∥∥2
F

)

≤
∑T

h=1

∑N

i,j=1

∑T

t,s=1

∥∥Ā−1
iF

∥∥∥∥f0t ∥∥∥∥∥Ā−1
jF

∥∥∥∥∥f0s ∥∥ |Eϕ(ditvitdihdjhx
′
ihxjhdjsvjs)|

≤ T (NT +N2)M,

where the last inequality follows from Assumptions 2(i) and 7 (iii) and
∥∥Ā−1

iF

∥∥ is bounded for all i by

Assumption 1. Also,

∑T

h=1

∥∥∥∥∑N

i=1

∑T

t=1
(A−1

iF − Ā−1
iF )f0t x

′
ihditvitdih

∥∥∥∥2
F

≤ (
∑N

i=1

∥∥A−1
iF − Ā−1

iF

∥∥2)(
∑T

h=1

∑N

i=1

∥∥∥∥∑T

t=1
f0t ditvitx

′
ihdih

∥∥∥∥2
F

)

= Op(
N

T
)Op(NT 2) = Op(N2T ),

where the first equality is due to eqn. (E.11) and

∑T

h=1
Eϕ(

∑N

i=1

∥∥∥∥∑T

t=1
f0t x

′
ihditvitdih

∥∥∥∥2
F

)

=
∑T

h=1
Eϕ(

∑N

i=1

∑T

t,s=1

∑r

p=1

∑K

k=1
f0tpf

0
sp(xihkdih)2ditvitdisvis)

≤
∑T

h=1

∑T

t,s=1

∥∥f0t ∥∥∥∥f0s ∥∥∑N

i=1
|Eϕ(ditvitdisvisx

′
ihxihdih)|) ≤ NT 2M ,

by Assumption 7(iii).

Lemma F.2 Let Bλf (s) denote the Nr×Tr matrix with dit(ft(s)δ
∗′
ki+δ

∗′
kift(s)Ir) as the (i, t)-th block, Bfλ(s)

denote the Tr×Nr matrix with dit(λi(s)ω
∗′
kt + ω∗′

ktλi(s)Ir) as the (t, i)-th block, Bλλ(s) denote the Nr×Nr

block diagonal matrix with
∑T

t=1 ditft(s)ω
∗′
kt as the i-th block, and Bff (s) denote the Tr × Tr block diagonal

matrix with
∑N

i=1 ditλi(s)δ
∗′
ki as the t-th block. Suppose that Assumptions 1-5 hold. Then as (N,T ) → ∞,

(i) sup
0≤s≤1

∥Bλf (s) −Bλf (0)∥F = Op(
√
NT

cNT
);

(ii) sup
0≤s≤1

∥Bfλ(s) −Bfλ(0)∥F = Op(
√
NT

cNT
);

(iii) sup
0≤s≤1

∥Bλλ(s) −Bλλ(0)∥ = Op( T
cNT

);

(iv) sup
0≤s≤1

∥Bff (s) −Bff (0)∥ = Op( N
cNT

).

Proof. (i) Noting that f(s) = f0 + s(f̂ − f0), we notice that the (i, t)-th block of Bλf (s) − Bλf (0) is
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s(f̂t − f0t )δ∗′kidit + sδ∗′ki(f̂t − f0t )ditIr, and

sup
0≤s≤1

∥Bλf (s) −Bλf (0)∥2F ≤ (r + 1)
∑N

i=1
∥δ∗ki∥

2
∑T

t=1

∥∥∥f̂t − f0t

∥∥∥2 = Op(
NT

c2NT

),

where the equality follows from Theorem 3.1 and

T
∑N

i=1
∥δ∗ki∥

2 ≤
∥∥∥Qβϕ′Q−1

ϕϕ′D
1
2

TN

∥∥∥2
F
≤
∥∥∥Qβϕ′D

− 1
2

TN

∥∥∥2
F

∥∥∥(D
− 1

2

TNQϕϕ′D
− 1

2

TN )−1
∥∥∥2 = Op(NT ).

The last equality is due to eqn. (B.17) and Lemma B.1.

(ii) Noting that the (t, i)-th block of Bfλ(s) −Bfλ(0) is s(λ̂i − λ0i )ω∗′
ktdit + sω∗′

kt(λ̂i − λ0i )ditIr, the proof

is similar to that of part (i).

(iii) The i-th block of Bλλ(s) −Bλλ(0) is s
∑T

t=1 dit(f̂t − f0t )ω∗′
kt. Then

sup
0≤s≤1

∥Bλλ(s) −Bλλ(0)∥ = max
i

∥∥∥∥∑T

t=1
dit(f̂t − f0t )ω∗′

kt

∥∥∥∥
≤

√∑T

t=1

∥∥∥f̂t − f0t

∥∥∥2√∑T

t=1
∥ω∗

kt∥
2

= Op(
T

cNT
),

where the last equality follows from Theorem 3.1 and

N
∑T

t=1
∥ω∗

kt∥
2 ≤

∥∥∥Qβϕ′Q−1
ϕϕ′D

1
2

TN

∥∥∥2
F

= Op(NT ).

(iv) The proof is similar to that of part (iii).

Lemma F.3 Suppose that Assumptions 1, 2, 3(ii) and 4 hold. Then as (N,T ) → ∞,

(i) max
i

∥δ∗ki∥ = Op((N ∨ T )
3

ς∧ζ+
3
ς +

1
ϱ ) and max

t
∥ω∗

kt∥ = Op((N ∨ T )
3

ς∧ζ+
3
ς +

1
ϱ );

(ii) max
i

∥∥δ0ki∥∥ = Op((N ∨ T )
6
ς +

1
ϱ ) and max

t

∥∥ω0
kt

∥∥ = Op((N ∨ T )
6
ς +

1
ϱ ).

Note that ς = ∞ when
∥∥λ0i∥∥ and

∥∥f0t ∥∥ are uniformly bounded.

Proof. (i) Let ∥·∥1 denote the 1-norm of a matrix that is given by the maximum absolute column sum:

for an m× n matrix A = {aij} , ∥A∥1 = maxj∈[n]

∑m
i=1 |aij | .

Step (1): We first bound
∥∥Q−1

λλ′

∥∥
1
.

By eqn. (E.2), Q−1
λλ′ = L−1

λλ′ − L−1
λλ′W 0

λ(− N
cT Ir2 +W 0′

λ L
−1
λλ′W 0

λ)−1W 0′
λ L

−1
λλ′ . Then

∥∥Q−1
λλ′

∥∥
1

≤
∥∥L−1

λλ′

∥∥
1

+
∥∥L−1

λλ′

∥∥
1

∥∥W 0
λ

∥∥
1

∥∥∥∥(− N

cT
Ir2 +W 0′

λ L
−1
λλ′W

0
λ)−1

∥∥∥∥
1

∥∥W 0′
λ

∥∥
1

∥∥L−1
λλ′

∥∥
1

= Op(
1

T
) +Op(

1

T
)Op(N)O(

rcT

N
)Op(N

1
ς )Op(

1

T
) = Op(

N
1
ς

T
),

where the first equality by the results in (1.1)–(1.3) below.

(1.1) by eqn. (E.5),
∥∥L−1

λλ′

∥∥
1
≤

√
r
∥∥L−1

λλ′

∥∥ = Op( 1
T ) when N

1
κ

√
T

→ 0;

(1.2) by Assumption 2,
∥∥W 0

λ

∥∥
1

= max
q∈[r]

∑N
i=1 |λ

0
iq| ≤

√
N
∥∥λ0∥∥ = Op(N) and

∥∥W 0′
λ

∥∥
1

= max
i∈[N ]

∑r
q=1 |λ

0
iq| =

O(N
1
ς );

36

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5177283

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



(1.3) by negative definiteness of W 0′
λ L

−1
λλ′W 0

λ , we have∥∥∥∥(− N

cT
Ir2 +W 0′

λ L
−1
λλ′W

0
λ)−1

∥∥∥∥
1

≤ r

∥∥∥∥(− N

cT
Ir2 +W 0′

λ L
−1
λλ′W

0
λ)−1

∥∥∥∥ ≤ rcT

N
. (F.3)

Step (2): Let (Q−1
ϕϕ′)ul, (Q−1

ϕϕ′)lr, (Q−1
ϕϕ′)ur and (Q−1

ϕϕ′)ll denote the upper-left, lower-right, upper-right

and lower-left block of Q−1
ϕϕ′ of sizes Nr × Nr, Tr × Tr, Nr × Tr, Tr × Nr, respectively. We shall prove

that the 1-norm of these four terms are respectively Op(N
2

ς∧ζ
+2

ς

T ), Op(T
2

ς∧ζ
+2

ς

N ), Op(N
2

ς∧ζ
+2

ς T
1

ς∧ζ
+1

ς

T ), and

Op(T
2

ς∧ζ
+2

ς N
1

ς∧ζ
+1

ς

N ) in (2.1)–(2.4) below.

(2.1) The upper-left block is (Q−1
ϕϕ′)ul = [Qλλ′ −Qλf ′Q−1

ff ′Qfλ′ ]−1, thus∥∥∥[Qλλ′ −Qλf ′Q−1
ff ′Qfλ′ ]−1

∥∥∥
1

=
∥∥Q−1

λλ′ +Q−1
λλ′Qλf ′ [Qff ′ −Qfλ′Q−1

λλ′Qλf ′ ]−1Qfλ′Q−1
λλ′

∥∥
1

= Op(
N

1
ς

T
) +Op(

N
1
ς

T
)Op(N

2
ς∧ζ T )Op(

N
1
ς

T
) = Op(

N
2

ς∧ζ+
2
ς

T
). (F.4)

We next show
∥∥Qλf ′ [Qff ′ −Qfλ′Q−1

λλ′Qλf ′ ]−1Qfλ′
∥∥
1

= Op(N
2

ς∧ζ T ). It suffices to show

∥∥Qλf ′ [Qff ′ −Qfλ′Q−1
λλ′Qλf ′ ]−1Qfλ′

∥∥
max

= Op(
T

N
N

2
ς∧ζ ). (F.5)

For a matrix A of Nr × Tr which is written as an N × T block partitioned matrix with each block of size

r× r, we use the row index ip to denote the pth element of the ith row block, similarly for the column index.

The (ip, jq)th element is Qλf ′ [Qff ′ −Qfλ′Q−1
λλ′Qλf ′ ]−1Qfλ′ is

[Qλf ′ ]ip[Qff ′ −Qfλ′Q−1
λλ′Qλf ′ ]−1[Qλf ′ ]′jq,

where [Qλf ′ ]ip denotes the ip-th row of Qλf ′ . [Qff ′ − Qfλ′Q−1
λλ′Qλf ′ ]−1 equals the lower right block of

Q−1
ϕϕ′ = D

− 1
2

TN (D
− 1

2

TNQϕϕ′D
− 1

2

TN )−1D
− 1

2

TN . Then by Lemma B.1,

∥∥[Qff ′ −Qfλ′Q−1
λλ′Qλf ′ ]−1

∥∥ ≤ 1

N

∥∥∥(D
− 1

2

TNQϕϕ′D
− 1

2

TN )−1
∥∥∥ = Op(

1

N
). (F.6)

Recall that Qλf ′ = Lλf ′ + Jλf ′ + Gλf ′ and the (i, t)-th block of Lλf ′ , Jλf ′ and Gλf ′ is −ditf0t λ
0′
i , ditvitIr

and cf0t λ
0′
i , respectively. It follows that

maxip ∥[Qλf ′ ]ip∥ = maxip ∥[Lλf ′ ]ip∥ + maxip ∥[Gλf ′ ]ip∥ + maxip ∥[Jλf ′ ]ip∥

= Op(
√
TN

1
ς +

√
TN

1
ζ ) = Op(

√
TN

1
ς∧ζ ), (F.7)

where the second equality is due to Assumptions 2 and 4(i).

(2.2) By symmetry,
∥∥∥(Q−1

ϕϕ′)lr

∥∥∥
1

=
∥∥[Qff ′ −Qfλ′Q−1

λλ′Qλf ′ ]−1
∥∥
1

= Op(T
2

ς∧ζ
+2

ς

N ).

(2.3) The upper-right block is (Q−1
ϕϕ′)ur = −(Q−1

ϕϕ′)ulQλf ′Q−1
ff ′ . In step (2.1) we proved that

∥∥Q−1
λλ′

∥∥
1

=

Op(N
1
ς

T ). By symmetry,
∥∥∥Q−1

ff ′

∥∥∥
1

= Op(T
1
ς

N ). By Assumptions 2 and 4(i), ∥Qλf ′∥1 ≤ ∥Lλf ′∥1 + ∥Jλf ′∥1 +
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∥Gλf ′∥1 = Op(NT
1
ς +NT

1
ζ ). These results, together with part (2.1), imply that

∥∥∥(Q−1
ϕϕ′)ur

∥∥∥
1

= Op(N
2

ς∧ζ
+2

ς T
1

ς∧ζ
+1

ς

T ).

(2.4) The lower-left block is the transpose of the upper-right block, thus by symmetry,
∥∥∥(Q−1

ϕϕ′)ll

∥∥∥
1

=

Op(T
2

ς∧ζ
+2

ς N
1

ς∧ζ
+1

ς

N ).

Step (3): Recall that Qβϕ′Q−1
ϕϕ′ = (δ∗′, ω∗′) = (δ∗1, ..., δ

∗
N , ω

∗
1, ..., ω

∗
T ), where δ∗i and ω∗

t are K×r matrices

and δ∗ki and ω∗
kt denote the transpose of the k-th row of δ∗i and ω∗

t respectively. Let δ∗k· and ω∗
k· denote the

k-th row of δ∗′ and ω∗′, respectively. It follows that

max
i∈[N ]

∥δ∗ki∥ ≤
√
r ∥δ∗k·∥max =

√
r
∥∥∥Qβkλ

′(Q−1
ϕϕ′)ul +Qβkf

′(Q−1
ϕϕ′)ll

∥∥∥
max

≤
√
r
∥∥∥Qβkλ

′(Q−1
ϕϕ′)ul

∥∥∥
max

+
√
r
∥∥∥Qβkf

′(Q−1
ϕϕ′)ll

∥∥∥
max

≤
√
r
∥∥Qβkλ

′
∥∥
max

∥∥∥(Q−1
ϕϕ′)ul

∥∥∥
1

+
√
r
∥∥Qβkf

′
∥∥
max

∥∥∥(Q−1
ϕϕ′)ll

∥∥∥
1

= Op(TN
1
ϱ )Op(

N
2

ς∧ζ+
2
ς

T
) +Op(NT

1
ϱ )Op(

T
2

ς∧ζ+
2
ςN

1
ς∧ζ+

1
ς

N
)

= Op(N
2

ς∧ζ+
2
ς +

1
ϱ ) +Op(T

2
ς∧ζ+

2
ς +

1
ϱN

1
ς∧ζ+

1
ς ) = Op((N ∨ T )

3
ς∧ζ+

3
ς +

1
ϱ ),

where the second equality is due to

∥∥Qβkλ
′
∥∥
max

= max
i∈[N ]

∥∥∥∥∥
T∑

t=1

ditxitkf
0′
t

∥∥∥∥∥ ≤ max
i∈[N ]

√√√√ T∑
t=1

x2itk

√√√√ T∑
t=1

∥f0t ∥
2

= Op(TN
1
ϱ ),

∥∥Qβkf
′
∥∥
max

= max
t∈[T ]

∥∥∥∥∥
N∑
i=1

ditxitkλ
0′
i

∥∥∥∥∥ ≤ max
t∈[T ]

√√√√ N∑
i=1

x2itk

√√√√ N∑
i=1

∥∥λ0i∥∥2 = Op(NT
1
ϱ ).

By symmetry, we also have max
t

∥ω∗
kt∥ = Op(T

2
ς∧ζ+

2
ς +

1
ϱ ) +Op(N

2
ς∧ζ+

2
ς +

1
ϱT

1
ς∧ζ+

1
ς ).

(ii) From equations (B.10) and (B.15), we have (δ0′, ω0′) = Q̄βϕ′Q̄−1
ϕϕ′ . Then the proof is the same as part

(i) with Q, L and J replaced by Q̄, L̄ and J̄ , respectively. Since J̄λf ′ = 0, the term maxip ∥[Jλf ′ ]ip∥ in eqn.

(F.7) would disappear when J is replaced by J̄ . Consequently, ζ disappears throughout the whole proof.

Lemma F.4 Suppose that Assumptions 1-2, 3(ii)-(iii) and 4 hold. Then as (N,T ) → ∞,

(i) max
i

∥∥∥∑T
t=1 ditf

0
t (ω∗′

kt − ω0′
kt)
∥∥∥ = Op(

√
TN

1
κ + T 1+ 1

κ√
N

+ T√
cNT

);

(ii) max
t

∥∥∥∑N
i=1 ditλ

0
i (δ∗′ki − δ0′ki)

∥∥∥ = Op(
√
NT

1
κ + N1+ 1

κ√
T

+ N√
cNT

);

(iii) max
i

∥∥∥∑T
t=1(dit − Φit)f

0
t ω

0′
kt

∥∥∥ = Op(
√
TN

1
κ );

(iv) max
t

∥∥∥∑N
i=1(dit − Φit)λ

0
i δ

0′
ki

∥∥∥ = Op(
√
NT

1
κ );

(v) max
t

∥∥∥∑N
i=1 Φitλ

0
i δ

0′
ki

∥∥∥ = Op(N);

(vi) max
i

∥∥∥∑T
t=1 Φitf

0
t ω

0′
kt

∥∥∥ = Op(T ).

Proof. (i)–(ii). First note that√
T
∑N

i=1

∥∥δ∗ki − δ0ki
∥∥2 +N

∑T

t=1
∥ω∗

kt − ω0
kt∥

2
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≤
∥∥∥(Qβϕ′Q−1

ϕϕ′ − Q̄βϕ′Q̄−1
ϕϕ′)D

1
2

TN

∥∥∥
≤

∥∥∥Q̄βϕ′D
− 1

2

TN

∥∥∥ ∥∥∥D 1
2

TN (Q−1
ϕϕ′ − Q̄−1

ϕϕ′)D
1
2

TN

∥∥∥+
∥∥∥(Qβϕ′ − Q̄βϕ′)D

− 1
2

TN

∥∥∥∥∥∥(D
− 1

2

TNQϕϕ′D
− 1

2

TN )−1
∥∥∥

= Op(
√
NT )Op(

N
1
κ

√
T

+
T

1
κ

√
N

+
1

√
cNT

) +Op(
√
N + T ) = Op(N

1
2+

1
κ + T

1
2+

1
κ +

√
NT

√
cNT

),

where the first equality follows from equations (B.17)-(B.18), (B.20 ) and Lemma B.1. It follows that√∑T
t=1 ∥ω∗

kt − ω0
kt∥

2
= Op(N

1
κ + T

1
2
+ 1

κ√
N

+
√
T√

cNT
) and

√∑N
i=1

∥∥δ∗ki − δ0ki
∥∥2 = Op(T

1
κ + N

1
2
+ 1

κ√
T

+
√
N√

cNT
). Then

the results follow under Assumption 2.

(iii)–(iv). The proof follows from Assumption 1. Note that we assume N
1
κ√
T

→ 0 and T
1
κ√
N

→ 0 in

Assumption 1(i), and dit = Φit under Assumption 1(ii) since our analysis is conditioning on the missing

pattern under Assumption 1(ii).

(v)–(vi). First note that√
T
∑N

i=1

∥∥δ0ki∥∥2 +N
∑T

t=1
∥ω0

kt∥
2

=
∥∥∥Q̄βϕ′Q̄−1

ϕϕ′D
1
2

TN

∥∥∥
F
≤
∥∥∥Q̄βϕ′D

− 1
2

TN

∥∥∥
F

∥∥∥(D
− 1

2

TN Q̄ϕϕ′D
− 1

2

TN )−1
∥∥∥ = Op(

√
NT ).

Thus
∑N

i=1

∥∥δ0ki∥∥2 = Op(N) and
∑T

t=1

∥∥ω0
kt

∥∥2 = Op(T ). Then the results follow under Assumption 2.

G Proof of Theorem 4.2

To prove Theorem 4.2, we first state and prove two technical lemmas.

Lemma G.1 Under Assumptions 1-5, as (N,T ) → ∞,

√
1
N

∑N
i=1

∥∥∥δ̂ki − δ0ki

∥∥∥2 = Op(N
1
κ√
T

+ T
1
κ√
N

+ 1√
cNT

) =

op(1) and
√

1
T

∑T
t=1 ∥ω̂kt − ω0

kt∥
2

= Op(N
1
κ√
T

+ T
1
κ√
N

+ 1√
cNT

) = op(1).

Proof. The FOCs for the minimization problem in (4.3) are: for each k ∈ [K],

∑T

t=1
dit(xitk − δ̂

′
kif̂t − ω̂′

ktλ̂i)f̂
′
t = 0 for all i ∈ [N ] ,∑N

i=1
dit(xitk − δ̂

′
kif̂t − ω̂′

ktλ̂i)λ̂
′
i = 0 for all t ∈ [T ] .

As in step (1) of the proof of Lemma B.2(i), let δ̂i and ω̂t denote K × r matrices such that δ̂ki and ω̂kt are

the transpose of the k-th row of δ̂i and ω̂t, respectively. Let δ̂ = (δ̂1, ..., δ̂N )′ and ω̂ = (ω̂1, ..., ω̂T )′. Then the

above FOCs imply

Q
(∞)
βϕ′ = (δ̂

′
, ω̂′)L

(∞)
ϕϕ′ , (G.1)

where Q
(∞)
βϕ′ = Qβϕ′(γ̂), L

(∞)
ϕϕ′ = Lϕϕ′(γ̂), and Qβϕ′(γ̂) and Lϕϕ′(γ̂) are defined in expressions (A.3) and (

A.6) with γ = γ̂, respectively. Note that here we use the supscript (∞) because in the proof of Theorem 3.2

we defined Q
(k+1)
βϕ′ = Qβϕ′(sγ̂(k+1) + (1 − s)γ̂) and γ̂(k) → γ̂ as k → ∞.

From eqn. (G.1), we have (δ̂
′
, ω̂′) = Q

(∞)
βϕ′ L

(∞)−1
ϕϕ′ . From eqn. (B.10), we have (δ0′, ω0′) = Q̄βϕ′L̄−1

ϕϕ′ .

As remarked at the end of Section A, the inverse here actually denotes the Moore-Penrose pseudo-inverse
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because L
(∞)
ϕϕ′ and L̄ϕϕ′ are not of full rank. Thus

√
T
∑N

i=1

∥∥∥δ̂ki − δ0ki

∥∥∥2 +N
∑T

t=1
∥ω̂kt − ω0

kt∥
2

=
∥∥∥(Q

(∞)
βkϕ

′L
(∞)−1
ϕϕ′ − Q̄βkϕ

′L̄−1
ϕϕ′)D

1
2

TN

∥∥∥
F
≤
∥∥∥(Q

(∞)
βϕ′ L

(∞)−1
ϕϕ′ − Q̄βϕ′L̄−1

ϕϕ′)D
1
2

TN

∥∥∥
≤

∥∥∥Q(∞)
βϕ′ (L

(∞)−1
ϕϕ′ − L̄−1

ϕϕ′)D
1
2

TN

∥∥∥+
∥∥∥(Q

(∞)
βϕ′ − Q̄βϕ′)L̄−1

ϕϕ′D
1
2

TN

∥∥∥
≤

∥∥∥Q(∞)
βϕ′ D

− 1
2

TN

∥∥∥∥∥∥D 1
2

TN (L
(∞)−1
ϕϕ′ − L̄−1

ϕϕ′)D
1
2

TN

∥∥∥+
∥∥∥(Q

(∞)
βϕ′ − Q̄βϕ′)D

− 1
2

TN

∥∥∥ ∥∥∥(D
− 1

2

TN L̄ϕϕ′D
− 1

2

TN )−1
∥∥∥

= Op(
√
NT )Op(

N
1
κ

√
T

+
T

1
κ

√
N

+
1

√
cNT

) +Op(
√
N + T ) = Op(N

1
2+

1
κ + T

1
2+

1
κ +

√
NT

√
cNT

),

where the second equality holds by the following arguments.

(1) Similarly to expression (B.25),
∥∥∥Q(∞)

βϕ′ D
− 1

2

TN

∥∥∥ = Op(
√
NT ).

(2) We want to show that
∥∥∥(Q

(∞)
βϕ′ − Q̄βϕ′)D

− 1
2

TN

∥∥∥ = Op(
√
N + T ). First,

∥∥∥(Qβϕ′ − Q̄βϕ′)D
− 1

2

TN

∥∥∥ = Op(
√
N + T )

by expression (B.18). Second, by Assumption 3(ii) and Theorem 3.1,

∥∥∥(Q
(∞)
βϕ′ −Qβϕ′)D

− 1
2

TN

∥∥∥ ≤

√√√√√√√√
N∑
i=1

∥∥∥∥∥∥∥∥
T∑

t=1
ditxit(f̂t − f0t )′

√
T

∥∥∥∥∥∥∥∥
2

F

+

T∑
t=1

∥∥∥∥∥∥∥∥
N∑
i=1

ditxit(λ̂i − λ0i )′

√
N

∥∥∥∥∥∥∥∥
2

F

≤

√√√√ N∑
i=1

T∑
t=1

∥xit∥2 (
∥f − f0∥2

T
+

∥∥λ− λ0
∥∥2

N
) = Op(

√
NT

cNT
).

Combining these results yields the claim.

(3) We want to show
∥∥∥(D

− 1
2

TN L̄ϕϕ′D
− 1

2

TN )−1
∥∥∥ = Op(1). As explained in step (2) of the proof of Lemma B.2,

any two different columns of D
− 1

2

NTW
0 are orthogonal to each other, the columns of D

− 1
2

NTW
0 are all orthogonal

to the eigenvectors of D
− 1

2

TN L̄ϕϕ′D
− 1

2

TN , and D
− 1

2

TN Q̄ϕϕ′D
− 1

2

TN = D
− 1

2

TN L̄ϕϕ′D
− 1

2

TN − cD− 1
2

NTW
0W 0′D

− 1
2

NT . All nonzero

eigenvalues of −D− 1
2

TN L̄ϕϕ′D
− 1

2

TN are positive. Thus the smallest nonzero eigenvalue of −D− 1
2

TN L̄ϕϕ′D
− 1

2

TN is not

smaller than the smallest eigenvalue of −D− 1
2

TN Q̄ϕϕ′D
− 1

2

TN . It follows that∥∥∥(D
− 1

2

TN L̄ϕϕ′D
− 1

2

TN )−1
∥∥∥ ≤

∥∥∥(D
− 1

2

TN Q̄ϕϕ′D
− 1

2

TN )−1
∥∥∥ = Op(1),

where the equality follows from step (1.1) of Lemma B.1 in Su and Wang (2024) with Q̄ϕϕ′ corresponding

to H̆ϕϕ′ there. For the block-type missing, the equality follows from Lemma B.1 (or Lemma B.2 in Su and

Wang, 2024).

(4)
∥∥∥D− 1

2

TN (Lϕϕ′ − L̄ϕϕ′)D
− 1

2

TN

∥∥∥ = Op(N
1
κ√
T

+ T
1
κ√
N

+ 1√
cNT

) by step (1.3) of Lemma B.1 in Su and Wang

(2024). We also have
∥∥∥D− 1

2

TN (L
(∞)
ϕϕ′ − Lϕϕ′)D

− 1
2

TN

∥∥∥ = Op( 1
cNT

) due to the following:

∥∥∥∥ 1

T
(Lλλ′(γ̂) − Lλλ′)

∥∥∥∥ ≤
∥∥∥∥ 1

T

∑T

t=1
ditf̂tf̂

′
t −

1

T

∑T

t=1
ditf

0
t f

0′
t

∥∥∥∥ = Op(
1

cNT
),∥∥∥∥ 1

N
(Lff ′(γ̂) − Lff ′)

∥∥∥∥ ≤
∥∥∥∥ 1

N

∑N

i=1
ditλ̂

′
iλ̂

′
i −

1

N

∑N

i=1
ditλ

0
iλ

0′
i

∥∥∥∥ = Op(
1

cNT
),
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∥∥∥∥ 1√
NT

(Lλf ′(γ̂) − Lλf ′)

∥∥∥∥
F

≤
√

1

NT

∑N

i=1

∑T

t=1

∥∥∥ditf̂tλ̂′i − ditf0t λ
0′
i

∥∥∥2
F

= Op(
1

cNT
),

by a simple application of the results in Theorem 3.1. It follows that∥∥∥D 1
2

TN (L
(∞)−1
ϕϕ′ − L̄−1

ϕϕ′)D
1
2

TN

∥∥∥ =
∥∥∥(D

1
2

TN L̄
−1
ϕϕ′D

1
2

TN )D
− 1

2

TN (L
(∞)
ϕϕ′ − L̄ϕϕ′)D

− 1
2

TN (D
1
2

TNL
(∞)−1
ϕϕ′ D

1
2

TN )
∥∥∥

≤
∥∥∥(D

− 1
2

TN L̄ϕϕ′D
− 1

2

TN )−1
∥∥∥ ∥∥∥D− 1

2

TN (L
(∞)
ϕϕ′ − L̄ϕϕ′)D

− 1
2

TN

∥∥∥∥∥∥(D
− 1

2

TNL
(∞)
ϕϕ′ D

− 1
2

TN )−1
∥∥∥

= Op(
N

1
κ

√
T

+
T

1
κ

√
N

+
1

√
cNT

).

Lemma G.2 Suppose that Assumptions 1-5 hold. Then maxit |v̂it| = Op(N
1
ζ T

1
ζ ) +Op(

√
NT

c2NT
).

Proof. First, by Theorem 3.1 and Assumption 2, we have maxi

∥∥∥λ̂i∥∥∥ ≤ maxi

∥∥λ0i∥∥ + maxi

∥∥∥λ̂i − λ0i

∥∥∥ ≤

maxi

∥∥λ0i∥∥+

√∑N
i=1

∥∥∥λ̂i − λ0i

∥∥∥2 = Op(
√
N

cNT
). Similarly, we also have maxt

∥∥∥f̂t∥∥∥ = Op(
√
T

cNT
). It follows that

max
it

|v̂it − vit| ≤ max
it

∥xit∥
∥∥∥β̂ − β0

∥∥∥+ max
it

∥∥∥λ̂i∥∥∥∥∥∥f̂t∥∥∥+ max
it

∥∥λ0i∥∥∥∥f0t ∥∥
= Op(

N
1
ϱT

1
ϱ

cNT
) +Op(

√
NT

c2NT

) = Op(

√
NT

c2NT

) when ϱ ≥ 4, (G.2)

where the equality also uses maxit ∥xit∥ ≤ (
∑N

i=1

∑T
t=1 ∥xit∥

ϱ
)

1
ϱ = Op(N

1
ϱT

1
ϱ ) by Assumption 3(ii) and∥∥∥β̂ − β0

∥∥∥ = Op( 1
cNT

) by Theorem 3.1. In addition, maxit |vit| = Op(N
1
ζ T

1
ζ ) by Assumption 4(i), thus

maxit |v̂it| ≤ maxit |vit| + maxit |v̂it − vit| = Op(N
1
ζ T

1
ζ ) +Op(

√
NT

c2NT
).

Proof of Theorem 4.2

(i) (1) Consistency of Ŵx: Since ẋit = xit − (δ0i f
0
t + ω0

tλ
0
i ),

Wx = plim
1

NT

∑N

i=1

∑T

t=1
ditẋitẋ

′
it

= plim
1

NT

{∑N

i=1

∑T

t=1
ditxitx

′
it −

∑N

i=1

∑T

t=1
ditxit(δ

0
i f

0
t + ω0

tλ
0
i )′

−
∑N

i=1

∑T

t=1
dit(δ

0
i f

0
t + ω0

tλ
0
i )x′it +

∑N

i=1

∑T

t=1
dit(δ

0
i f

0
t + ω0

tλ
0
i )(δ0i f

0
t + ω0

tλ
0
i )′
}

= −(Q̄ββ′ − Q̄βϕ′L̄−1
ϕϕ′Q̄ϕβ′),

where the last equality follows from Assumptions 3(iii) and 1 and equations (B.11)–(B.12). Then it suffices

to show 1
NT

∑N
i=1

∑T
t=1

∥∥∥dit ˆ̇xit ˆ̇x′it − ditẋitẋ
′
it

∥∥∥ = Op( 1
cNT

). Since ˆ̇xit = xit − δ̂if̂t − ω̂tλ̂i, it suffices to show

∑N

i=1

∑T

t=1

∥∥∥ditxit(δ̂if̂t + ω̂tλ̂i)
′ − ditxit(δ

0
i f

0
t + ω0

tλ
0
i )′
∥∥∥ = Op(

NT

cNT
) and∑N

i=1

∑T

t=1

∥∥∥dit(δ̂if̂t + ω̂tλ̂i)(δ̂if̂t + ω̂tλ̂i)
′ − dit(δ

0
i f

0
t + ω0

tλ
0
i )(δ0i f

0
t + ω0

tλ
0
i )′
∥∥∥ = Op(

NT

cNT
).
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It’s easy to see that these follow from Theorem 3.1 and Lemma G.1, e.g.,∑N

i=1

∑T

t=1

∥∥∥ditxit(δ̂if̂t)′ − ditxit(δ
0
i f

0
t )′
∥∥∥

≤
∑N

i=1

∑T

t=1

∥∥∥ditxit(δ̂if̂t)′ − ditxit(δ
0
i f̂t)

′
∥∥∥+

∑N

i=1

∑T

t=1

∥∥∥ditxit(δ0i f̂t)′ − ditxit(δ
0
i f

0
t )′
∥∥∥

≤
√∑N

i=1

∑T

t=1
dit ∥xit∥2

√∑N

i=1

∑T

t=1

∥∥∥(δ̂i − δ0i )
∥∥∥2 ∥∥∥f̂t∥∥∥2

+

√∑N

i=1

∑T

t=1
dit ∥xit∥2

√∑N

i=1

∑T

t=1

∥∥δ0i∥∥2 ∥∥∥f̂t − f0t

∥∥∥2
= Op(

√
NT )Op(

√
NT

cNT
) = Op(

NT

cNT
).

(2) Consistency of Ω̂x without cross-sectional and serial dependence:

First, part (1) shows 1
NT

∑N
i=1

∑T
t=1

∥∥∥dit ˆ̇xit ˆ̇x′it − ditẋitẋ
′
it

∥∥∥ = Op( 1
cNT

), which, along with Lemma G.2,

implies that if N
2
ζ /T

1
2−

2
ζ → 0, T

2
ζ /N

1
2−

2
ζ → 0, N/T

3
2 → 0 and T/N

3
2 → 0 (which are satisfied when ζ > 8

and T/N → ε ∈ (0,∞)),∥∥∥∥∥Ω̂x − 1

NT

N∑
i=1

T∑
t=1

ditv̂
2
itẋitẋ

′
it

∥∥∥∥∥ =

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

ditv̂
2
it(ˆ̇xit ˆ̇x

′
it − ẋitẋ

′
it)

∥∥∥∥∥
≤ max

i,t
v̂2it

1

NT

N∑
i=1

T∑
t=1

dit

∥∥∥ˆ̇xit ˆ̇x
′
it − ẋitẋ

′
it

∥∥∥ = [Op(N
2
ζ T

2
ζ ) +Op(

NT

c4NT

)]Op(
1

cNT
)

= op(1). (G.3)

Second, given that v̂it = yit − x′itβ̂ − λ̂
′
if̂t, by Assumption 3(ii) and Theorem 3.1,

N∑
i=1

T∑
t=1

(v̂it − vit)
2 =

N∑
i=1

T∑
t=1

(x′it(β̂ − β0) + λ̂
′
if̂t − λ0′i f

0
t )2

≤ 2

N∑
i=1

T∑
t=1

∥xit∥2
∥∥∥β̂ − β0

∥∥∥2 + 4

N∑
i=1

T∑
t=1

(λ̂
′
if̂t − λ0′i f̂t)

2 + 4

N∑
i=1

T∑
t=1

(λ0′i f̂t − λ0′i f
0
t )2

= Op(NT )Op(
1

c2NT

) +Op(
NT

c2NT

) = Op(
NT

c2NT

). (G.4)

Note that
∑N

i=1

∑T
t=1 v

2
it = Op(NT ) by Assumption 4 (i). In addition,

max
i,t

∥ẋitk∥ ≤ max
i,t

∥xitk∥ + max
i,t

∥∥δ0′kif0t + ω0′
ktλ

0
i

∥∥
= Op(N

1
ϱT

1
ϱ ) +Op((N ∨ T )

6
ς +

1
ϱ ) = Op(N

1
ϱT

1
ϱ ) (G.5)

by Lemma F.3(ii), Assumption 3(ii) and Assumption 2 . Note that ς = ∞ when
∥∥f0t ∥∥ and

∥∥λ0i∥∥ are uniformly

bounded. It follows that∥∥∥∥∥
N∑
i=1

T∑
t=1

dit(v̂
2
it − v2it)ẋitẋ

′
it

∥∥∥∥∥ =

∥∥∥∥∥
N∑
i=1

T∑
t=1

dit(v̂it − vit)
2ẋitẋ

′
it +

N∑
i=1

T∑
t=1

dit(v̂it − vit)2vitẋitẋ
′
it

∥∥∥∥∥
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≤ max
i,t

∥ẋit∥2 [

N∑
i=1

T∑
t=1

(v̂it − vit)
2 + 2

√√√√ N∑
i=1

T∑
t=1

(v̂it − vit)2

√√√√ N∑
i=1

T∑
t=1

v2it]

= Op(N
2
ϱT

2
ϱ )Op(

NT

cNT
) = op(NT ) if N

2
ζ /T

1
2−

2
ζ → 0 and T

2
ζ /N

1
2−

2
ζ → 0. (G.6)

In sum, we have shown
∥∥∥Ω̂x − 1

NT

∑N
i=1

∑T
t=1 ditv

2
itẋitẋ

′
it

∥∥∥ = op(1). This implies
∥∥∥Ω̂x − Ωx

∥∥∥ = op(1) since

Ωx = plim 1
NT

∑N
i=1

∑T
t=1 ditv

2
itẋitẋ

′
it.

(3) Consistency of b̂2k, ..., b̂6k. We focus on the analysis of b̂2k as the proof of the consistency of the other

terms is analogous. We shall show that b̂2k = b2k + op (1) in four steps below.

Step (1): First,∥∥∥∥b̂2k − 1√
NT

∑N

i=1

∑T−1

t=1

∑T

s=t+1

1

T
Γ(
s− t

LT
)ditvitdisxiskf̂

′
t [T

ˆ̄L−1
λλ′ ]if̂s

∥∥∥∥
=

∥∥∥∥ 1√
NT

∑N

i=1

∑T−1

t=1

∑T∧(t+LT )

s=t+1

1

T
dit(v̂it − vit)disxiskf̂

′
t [T

ˆ̄L−1
λλ′ ]if̂s

∥∥∥∥
≤ max

i,t,s

∥∥∥f̂ ′t [T ˆ̄L−1
λλ′ ]if̂s

∥∥∥ 1√
NT

∑N

i=1

∑T−1

t=1

∑T∧(t+LT )

s=t+1

∥∥∥∥ 1

T
dit(v̂it − vit)disxisk

∥∥∥∥
≤ max

i,t,s

∥∥∥f̂ ′t [T ˆ̄L−1
λλ′ ]if̂s

∥∥∥LT max
i,s

∥xis∥
1

T
√
NT

∑N

i=1

∑T−1

t=1
∥dit(v̂it − vit)∥

≤ max
i,t,s

∥∥∥f̂ ′t [T ˆ̄L−1
λλ′ ]if̂s

∥∥∥LT max
i,s

∥xis∥
1

T

√∑N

i=1

∑T−1

t=1
(v̂it − vit)2

= Op(
T

c2NT

)LTOp(N
1
ϱT

1
ϱ )

1

T
Op(

√
NT

cNT
)

= Op(LT
N

1
2+

1
ϱT

1
2+

1
ϱ

c3NT

) = op(1) if
N

T
→ ε and

LT

T
1
2−

2
ϱ

→ 0, (G.7)

where the second equality follows from
∑N

i=1

∑T−1
t=1 (v̂it − vit)

2 = Op( NT
c2NT

) by eqn. (G.4), maxi,s ∥xis∥ =

Op(N
1
ϱT

1
ϱ ) by Assumption 3(ii) and

max
i,t,s

∥∥∥f̂ ′t [T ˆ̄L−1
λλ′ ]if̂s

∥∥∥ ≤ max
t

∥∥∥f̂t∥∥∥max
i

∥∥∥T [ ˆ̄L−1
λλ′ ]i

∥∥∥max
s

∥∥∥f̂s∥∥∥ = Op(
T

c2NT

). (G.8)

Expression(G.8) is due to maxt

∥∥∥f̂t∥∥∥ = Op(
√
T

cNT
) as explained at the beginning of the proof of Lemma G.2

and maxi

∥∥∥T [ ˆ̄L−1
λλ′ ]i

∥∥∥ ≤ 1
d

∥∥∥( 1
T

∑T
t=1 f̂tf̂

′
t)

−1
∥∥∥ = Op(1).

Step (2): Next,∥∥∥∥ 1√
NT

∑N

i=1

∑T−1

t=1

∑T

s=t+1

1

T
Γ(
s− t

LT
)ditvitdisxisk(f̂ ′t [T

ˆ̄L−1
λλ′ ]if̂s − f0′t [T L̄−1

λλ′ ]if
0
s )

∥∥∥∥
≤ max

its
∥vit∥ ∥xis∥

1

T
√
NT

∑N

i=1

∑T−1

t=1

∑T∧(t+LT )

s=t+1

∥∥∥f̂ ′t [T ˆ̄L−1
λλ′ ]if̂s − f0′t [T L̄−1

λλ′ ]if
0
s

∥∥∥
= Op(N

1
ζ+

1
ϱT

1
ζ+

1
ϱ )

N√
NT

LTOp(
1

cNT
) = op(1) if

N

T
→ ε and

LT

T
1
2−

2
ϱ−

2
ζ

→ 0, (G.9)

where maxit |vit| = Op(N
1
ζ T

1
ζ ) by Assumption 4(i), maxis ∥xis∥ = Op(N

1
ϱT

1
ϱ ) by Assumption 3(ii) and
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1
T
√
NT

∑N
i=1

∑T−1
t=1

∑T∧(t+LT )
s=t+1

∥∥∥f̂ ′t [T ˆ̄L−1
λλ′ ]if̂s − f0′t [T L̄−1

λλ′ ]if
0
s

∥∥∥ = NLT√
NT

Op( 1
cNT

) is proved in the following.

First,

1

T
√
NT

∑N

i=1

∑T−1

t=1

∑T∧(t+LT )

s=t+1

∥∥∥f̂ ′t [T ˆ̄L−1
λλ′ ]if̂s − f̂ ′t [T

ˆ̄L−1
λλ′ ]if

0
s

∥∥∥
≤ 1

T
√
NT

N max
i

∥∥∥T [ ˆ̄L−1
λλ′ ]i

∥∥∥∑T−1

t=1

∑T∧(t+LT )

s=t+1

∥∥∥f̂ ′t∥∥∥∥∥∥f̂s − f0s

∥∥∥
≤ 1

T
√
NT

N max
i

∥∥∥T [ ˆ̄L−1
λλ′ ]i

∥∥∥LT

√∑T

t=1

∥∥∥f̂t∥∥∥2√∑T

s=1

∥∥∥f̂s − f0s

∥∥∥2
=

1

T
√
NT

NOp(1)LTOp(
√
T )Op(

√
T

cNT
) =

N√
NT

LTOp(
1

cNT
),

where the second inequality is due to
∑T−1

t=1

∥∥∥f̂t∥∥∥∥∥∥f̂t+l − f0t+l

∥∥∥ ≤
√∑T

t=1

∥∥∥f̂t∥∥∥2∑T
s=1

∥∥∥f̂s − f0s

∥∥∥2 for l ∈ [LT ].

Similarly, 1
T
√
NT

∑N
i=1

∑T−1
t=1

∑T∧(t+LT )
s=t+1

∥∥∥f̂ ′t [T L̄−1
λλ′ ]if

0
s − f0′t [T L̄−1

λλ′ ]if
0
s

∥∥∥ = NLT√
NT

Op( 1
cNT

). Second,

1

T
√
NT

∑N

i=1

∑T−1

t=1

∑T∧(t+LT )

s=t+1

∥∥∥f̂ ′t [T ˆ̄L−1
λλ′ ]if

0
s − f̂ ′t [T L̄

−1
λλ′ ]if

0
s

∥∥∥
≤ 1

T
√
NT

∑N

i=1

∥∥∥[T ˆ̄L−1
λλ′ ]i − [T L̄−1

λλ′ ]i

∥∥∥∑T−1

t=1

∑T∧(t+LT )

s=t+1

∥∥∥f̂t∥∥∥∥∥f0s ∥∥
≤ N

T
√
NT

max
i

∥∥∥[T ˆ̄L−1
λλ′ ]i

∥∥∥ ∥∥[T L̄−1
λλ′ ]i

∥∥∥∥∥[T ˆ̄Lλλ′ ]i − [T L̄λλ′ ]i

∥∥∥LT

√∑T

t=1

∥∥∥f̂t∥∥∥2∑T

s=1
∥f0s ∥

2

=
N

T
√
NT

Op(1)Op(1)Op(
1

cNT
)LTT =

NLT√
NT

Op(
1

cNT
),

where we uses maxi

∥∥∥[T ˆ̄Lλλ′ ]i − [T L̄λλ′ ]i

∥∥∥ = maxi

∥∥∥ 1
T

∑T
t=1 Eϕ(dit)f̂tf̂

′
t − 1

T

∑T
t=1 Eϕ(dit)f

0
t f

0′
t

∥∥∥ = Op( 1
cNT

)

for the first equality.

Step (3):∥∥∥∥ 1√
NT

∑N

i=1

∑T−1

t=1

∑T

s=t+1

1

T
Γ(
s− t

LT
)[ditvitdisxisk − Eϕ(ditvitdisxisk)]f0′t [T L̄−1

λλ′ ]if
0
s

∥∥∥∥
≤ 1

T
√
NT

∑T−1

t=1

∑T∧(t+LT )

s=t+1

∥∥f0t ∥∥ ∥∥f0s ∥∥∥∥∥∥∑N

i=1
[ditvitdisxisk − Eϕ(ditvitdisxisk)][T L̄−1

λλ′ ]i

∥∥∥∥
≤ M

√
TLT

T
√
NT

√∑T−1

t=1

∑T∧(t+LT )

s=t+1

∥∥∥∥∑N

i=1
[ditvitdisxisk − Eϕ(ditvitdisxisk)][T L̄−1

λλ′ ]i

∥∥∥∥2
=

M
√
TLT

T
√
NT

Op(
√
NTLT ) = Op(

1√
T
LT ) = op(1), (G.10)

where the first equality follows from Assumption 9(i).

Step (4): ∣∣∣∣ 1√
NT

∑N

i=1

∑T

t=1

∑T

s=1

1

T
Γ(
s− t

LT
)Eϕ(ditvitdisxisk)f0′t [T L̄−1

λλ′ ]if
0
s − b2k

∣∣∣∣
=

1√
NT

∑N

i=1

∑T

t=1

∑T

s=t+LT+1

1

T
Eϕ(ditvitdisxisk)f0′t [T L̄−1

λλ′ ]if
0
s
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≤ 1

T
√
NT

max
i,t,s

∥∥f0′t [T L̄−1
λλ′ ]if

0
s

∥∥∑N

i=1

∑T

t=1

∑T

s=t+LT+1
Eϕ(ditvitdisxisk)

≤ 1

T
√
NT

MN
∑T

t=1

∑T

s=t+LT+1
M |s− t|c2 ≤ M2N√

NT

∑∞

s−t=LT+1
|s− t|c2

= o(
N√
NT

) as LT → ∞. (G.11)

Expressions (G.7), (G.9), (G.10) and (G.11) prove the consistency of b̂2k when N
T → ε, LT

T
1
2
− 4

ϱ∧ζ
→ 0 and

LT → ∞.

The consistency of b̂3k, ..., b̂6k and Ω̂x when there is serial dependence (under Assumption 9) can be proved

similarly to b̂2k. The main difference is that the rate in Lemma G.1 is 1√
cNT

rather than 1
cNT

, consequently

we need LT

T
1
4
− 4

ϱ∧ζ
→ 0. Note that these conditions on LT is sufficient but not necessary. ■

H Details for the Alternating Direction Method of Multipliers Al-

gorithm

ADMM is a powerful algorithm for solving optimization problems with structured objectives and constraints,

like the NNR problem. First, it splits complex optimization problems into simpler subproblems and is

capable to handle non-smooth objective functions, which makes it particularly effective for solving NNR,

as the optimization can be separated into a smooth component and a proximal operator for the nuclear

norm, leveraging SVT. Second, the tuning parameter set up is easy for ADMM, which can achieve robust

convergence behavior. Third, ADMM has well-established convergence properties. Compared to common

optimization approaches like gradient descent which is not suitable for NNR due to the non-differentiability,

ADMM provides a balance of flexibility, scalability, and computational efficiency that makes it a preferred

choice for our problem.

Our optimization problem is equivalent to the following one:

min
β,Θ,ZΘ

1

2

N∑
i=1

T∑
t=1

dit(yit − Θit − x′itβ)2 + νNT ∥ZΘ∥∗ +
ρ

2
∥ZΘ − Θ∥2F ,

s.t. ZΘ − Θ = 0,

where ρ > 0 is the penalty parameter. The corresponding augmented Lagrangian (in scaled form) is

L (β,Θ, ZΘ, UΘ) =
1

2

N∑
i=1

T∑
t=1

dit(yit − Θit − x′itβ)2 + νNT ∥ZΘ∥∗ +
ρ

2
∥ZΘ − Θ + UΘ∥2F − ρ

2
∥UΘ∥2F .

The detailed optimization algorithm is as below.

Algorithm 3

1. Set up the initial value:

Θ
[0]
it = (dit + ρ)−1dityit, Z

[0]
Θ = Θ[0], β[0] = 0, U

[0]
Θ = 0.
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2. Given β[k], Z
[k]
Θ , and U

[k]
Θ , we notice that

Θ[k+1] = min
Θ

1

2

N∑
i=1

T∑
t=1

dit(yit − Θit − x′itβ
[k])2 +

ρ

2

∥∥∥Z [k]
Θ − Θ + U

[k]
Θ

∥∥∥2
F
,

which produces Θ
[k+1]
it = [dit(yit − x′itβ) + ρ(ZΘ,it + UΘ,it)] (dit + ρ)−1.

3. Given Θ[k+1], we notice that

Z
[k+1]
Θ = min

ZΘ

νNT ∥ZΘ∥∗ +
ρ

2

∥∥∥ZΘ − Θ[k+1] + U
[k]
Θ

∥∥∥2
F
.

By the SVD, we have Θ[k+1] − U
[k]
Θ = P [k+1]D[k+1]Q[k+1]′. Let D

[k+1]
νNT = max(D[k+1] − νNT

ρ , 0) , then

we update Z
[k+1]
Θ = P [k+1]D

[k+1]
νNT Q[k+1]′. Moreover, we update

β[k+1] =

(
N∑
i=1

T∑
t=1

ditxitx
′
it

)−1 N∑
i=1

T∑
t=1

ditxit

(
yit − Θ

[k+1]
it

)
, and

U
[k+1]
Θ = Z

[k+1]
Θ − Θ[k+1] + U

[k]
Θ .

4. Iterate Steps 2-3 until convergence and the final result produce the initial estimates β̂
(0)

and Θ̃(0).

In practice, to choose the tuning parameter ρ, we can simply fix it as ρ = 1 or ρ = 10. Otherwise,

we can do the adjustment in each iteration. In our simulation, we start with the default choice ρ = 1 and

adopt the common residual balancing strategy to update rho in each iteration; see Section 3.4 in Boyd et al.

(2011). While a fixed ρ can be used for simpler problems, residual balancing adaptively maintains balance

between residuals for faster and more stable convergence. Specifically, define PR =
∥∥∥Z [k+1]

Θ − Θ[k+1]
∥∥∥
F

and

DR =
∥∥∥Z [k+1]

Θ − Z
[k]
Θ

∥∥∥
F

. Then we adjust ρ[k+1] as

ρ[k+1] =


ρ[k]τ incr, if PR > µDR,

ρ[k]/τdecr, if DR > µPR,

ρ[k], otherwise.

If the primal residual (PR) is much larger than the dual residual (DR), it indicates that the constraint Θ = Zθ

is poorly enforced, and we increase ρ. If the dual residual is much larger than the primal residual, it indicates

instability in the dual updates, and we decrease ρ. Otherwise, ρ remains unchanged. τ incr, τdecr, and µ are

all adjustment parameters. In the simulation, we set τ incr = τdecr = 2, and µ = 10.
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