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Abstract
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pattern. Our results cover important missing patterns such as completely exogenous missing,
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1 Introduction

Factor model provides a parsimonious way to capture heterogeneous impacts of common shocks,
time-varying effects of individual heterogeneity and cross-sectional dependence. In the past two
decades panel data models with a factor error structure have experienced substantial development
and have been widely applied in asset pricing, applied micro and empirical macro studies. In
practice, it is quite common to encounter missing data. For example, the issues of attrition, sample
selection and non-response are well known in applied micro studies. Participants of surveys may
leave due to relocation, retirement or loss of interest. Participants may also skip sensitive questions
such as income, health status and family planning. In financial and macro studies, observations
may be missing due to company bankruptcy or mixed sampling frequency. In causal panel data, the
untreated potential outcomes after treatment are unobservable and the treatment adoption could be
simultaneous, staggered or switching on and off. See Verbeek and Nijman (1996), Baltagi and Song
(2006), Baribura and Modugno (2014), Athey et al. (2021), Bai and Ng (2021), Jin et al. (2021) and
Agarwal et al. (2023) for detailed discussions.

While panel data models with interactive fixed effects (IFEs hereafter) are extensively studied
and missing data is common in practice, there is almost no formal research on unbalanced panel
with IFEs except for some simulation studies in Bai et al. (2015) and Czarnowske and Stammann
(2020). To fill the void, this paper studies the numerical convergence and asymptotic properties
of a two-step procedure for the estimation and inference of unbalanced panel with IFEs. In the
first step we perform nuclear norm regularized (NNR) quasi maximum likelihood estimation. In
the second step we use the first step estimator as initial value and maximize the quasi likelihood
function iteratively by alternating maximization between the regression coefficients and the factors
and loadings. We formally prove that the first step estimator is consistent and the second step as a
block Gauss-Seidel (or Jacobi) procedure is a contractionary mapping within a local neighborhood of
the true parameters. Then the convergence of the second step is guaranteed given the consistency
of the first step estimator. We also provide the details of the Alternating Direction Method of
Multipliers (ADMM) algorithm for computing the NNR estimator and prove the consistency of the
estimated number of factors.

We establish the convergence rate and the limit distribution of the second step estimator in
a unified framework that covers both static and dynamic panels and both random and block-type
missing patterns. For random missing, we allow the missing probabilities to be cross-sectionally and
serially heterogenous and correlated with the covariates, factors and loadings. We also allow the
missing indicators to be serially dependent, which is crucial when the panel data model is dynamic

and when the missing indicators of each individual follow a dynamic binary process, because in



these cases the missing indicators are naturally serially dependent. Our assumptions on random
missing are relevant for survey data, asset pricing panels, recommendation system, switchback
digital platform experiments and other scenarios where the missingness arises from decision behavior
and/or the missing probability is correlated with the missing value itself. For block-type missing,
we only require that we have a positive fraction of completely observed individuals and a positive
fraction of completely observed periods. This includes exact block missing, staggered missing, mixed
frequency and regular missing as special cases, which are relevant for treatment effect estimation
and macro/financial applications. A fundamental difference between the random missing and the
block-type missing is that the latter does not treat the missing indicator as a random variable, since
the analysis is conditioned on the block-type missing pattern.

For all the above missing patterns, the second step estimator of the regression coefficients is
consistent and asymptotically normal but may have biases of the same asymptotic order as their
standard deviations as N (the number of individuals) and T (the number of periods) tend to
infinity jointly. The derived bias expressions show that the biases depend on the missing pattern
and consequently bias correction needs to be done according to the specific observed missing pattern.
Our simulation results indicate that when the missing probability is correlated with the factors and
loadings, rank estimation needs larger sample size and the bias tends to be larger compared to other
missing patterns. When there is no missing data, our bias expressions are the same as those in Bai
(2009) for static panels and in Moon and Weidner (2017) for dynamic panels.

As in Bai (2009) and Moon and Weidner (2017), we need to tackle the incidental parameter
problem resulting from estimating the factors and loadings. The main difficulty here is that explicit
expressions of the estimated regression coefficients and the estimated factors and loadings are no
longer available when there is missing data. Therefore we take asymptotic expansion of the first
order conditions and analyze the high dimensional Hessian and third order terms directly. This is
feasible since the IFEs model gives the Hessian and third order terms special structures that allow
us to decompose them and analyze their asymptotic behavior. We show that the upper bound of the
magnitude of third order terms is not affected by any missing pattern,! but the Hessian structure
depends on the missing pattern. The assumptions we impose on the missing patterns are very
general but sufficient to ensure that missingness does not destroy the local concavity of the Hessian.

Related literature and contributions of this paper. First, there is a large literature on
panel data model with IFEs. Early studies consider GMM estimation under the large N fixed T'
asymptotics; see, e.g., Holtz-Eakin et al. (1988), Ahn et al. (2001) and Ahn et al. (2013). Recent
developments can be broadly divided into two branches. One follows the common correlated effects
(CCE) approach of Pesaran (2006); see, e.g., Chudik and Pesaran (2015), Chudik and Pesaran

!See Lemma E.4 in the appendix.



(2013), Westerlund and Urbain (2015), and Juodis and Sarafidis (2022). The other follows the
principal component analysis (PCA) approach of Bai (2009); see, e.g., Lu and Su (2016), Moon and
Weidner (2017), Shi and Lee (2017), Chen et al. (2021b) and Hong et al. (2023). As discussed in
Chudik and Pesaran (2013), computationally missing data is not an issue for the CCE estimators
since for unbalanced panels it is still straightforward to compute the cross-sectional averages of the
dependent variable and the covariates. However, when the missing probability is correlated with
the covariates/factors/loadings, it is no longer appropriate to put the cross-sectional averages in the
regression as proxies of the factors, since the relationship between the factors and the cross-sectional
averages are no longer stable over time.? As far as we know, this topic has not been fully studied
in the literature. For the PCA approach, Bai (2009) remarks that one may modify the alternating
maximization (AM hereafter) procedure to handle unbalanced panel where the EM algorithm is
utilized to calculate the factors and loadings given the regression coefficients. However, the numerical
convergence and asymptotic properties of this modified procedure are totally unknown. This paper
proves that the modified AM procedure is guaranteed to converge and the regression coefficient
estimators are consistent and asymptotically normal under a wide variety of missing patterns, as
long as certain initial estimator is consistent. Also, the derived bias expressions show how the
biases depend on the missing pattern and provide guidance for bias corrections and randomized
experimental design.

When there is no missing data, iterative estimation of panel data models with IFEs has been
studied by Jiang et al. (2021), Moon and Weidner (2023) and Hong et al. (2023).> In these pa-
pers, both the convergence proof of the alternating minimization and the asymptotic analyses rely
on the explicit expressions of the estimated regression coefficients and the estimated factors and
loadings, which are no longer available for unbalanced panels. Therefore, our convergence proof
and asymptotic analyses are totally new and generally applicable to various alternating maximiza-
tion/minimization problems.

Second, there is also a large literature on panel data models with missing data; see, e.g., Honoré
(1992), Hu (2002) and Honoré and Hu (2004) for censored panels and Wooldridge (1995), Wooldridge
(2019), Kyriazidou (1997), Kyriazidou (2001), Dustmann and Rochina-Barrachina (2007), Semykina
and Wooldridge (2010) and Semykina and Wooldridge (2013) for sample selection panels. These

studies focus on models with only individual effects under the large N and fixed T setup. However,

2See the footnote of Example 2 in Section 2 for details.

3Jiang et al. (2021) show that the regression coefficient estimators in all iterations are consistent and asymptotically
normal if the initial estimator is consistent, but they may be inconsistent for arbitrary initial estimators unless
the regressors satisfy some restrictive conditions. Moon and Weidner (2023) propose to use NNR estimator as the
consistent initial estimator and show that alternating minimization in the second step converges to the local minimum.
Hong et al. (2023) propose a two-step profile GMM estimation for panel data models with IFEs and endogenous
regressors and also prove the convergence of the alternating minimization in the second step.



in addition to the individual effects, in many cases the sample selection process is also affected by
common shocks such as business cycles, technology progresses and treatment adoption designs. For

4 sample selection panels with both individual and time fixed effects are

some technical reasons,
rarely studied. Instead, recent progresses on the two-way fixed effects (TWFE) panel regression
focus on the block/staggered missing patterns to make inference on heterogenous treatment effect;
see, e.g., de Chaisemartin and d’Haultfoeuille (2020), Goodman-Bacon (2021), Sun and Abraham
(2021), Callaway and Sant’Anna (2021), Borusyak et al. (2024), Athey and Imbens (2022) and
Arkhangelsky and Imbens (2024).° Given these previous studies, this paper shows that IFEs provide
a more general way to capture time-varying latent confounders in panel data sample selection
models. We prove that the regression coeflicient estimator has no selection bias as long as the latent
confounders that affect both the outcome and the treatment indicator can be captured by a factor
structure. Based on our asymptotic analysis, it’s not difficult to further extend the results to allow
the error terms in the selection equation and the main equation to be correlated, say, by adding
a Heckman correction term under some distributional assumptions. To crystallize our asymptotic
analyses and stay focused, we do not pursue this extension formally in this paper. In addition, IFEs
also help to relax the parallel trend assumption in the TWFE panel literature; see Callaway and
Karami (2023) and the references therein.

Third, while we focus on linear panel with IFEs, our analyses for the numerical convergence and
the asymptotic properties are prototypical for fixed effects estimation of unbalanced panels. We
prove that the AM procedure is a contractionary mapping as long as the Hessian is locally concave,
and our proof can be readily extended to other settings such as nonlinear panels, TWFE models,
grouped fixed effects models and other missing patterns. The asymptotic distribution and bias of
the QMLE under these settings can also be derived following similar steps as used in our analyses.
As discussed in Fernandez-Val and Weidner (2018), many panel data estimators have computation
packages/solutions for the corresponding unbalanced cases, but there is no formal study that proves
the asymptotic validity of these estimators for the unbalanced case under the relevant missing
conditions, or extends the bias corrections to the unbalanced case. This paper seeks to fill this gap.
We show that the asymptotic theory for the unbalanced panels is nontrivial, especially when we

deviate from the case of completely random missing. The bias corrections also need to take the

“For example, as pointed out in Charbonneau (2017), under the large N fixed T asymptotics, Manski (1987)’s
maximum score estimator for binary response panels cannot be extended to settings with both individual and time
effects. The presence of time effects also makes it harder to difference out the sample selection correction term.
The difficulites are partially circumvented by the large N large T asymptotics and recent progress are made in
Hahn and Moon (2006), Moon and Weidner (2017), Ferndndez-Val and Weidner (2016) and Chen et al. (2021b)
for dynamic/nonlinear panels with two way/interactive fixed effects. Ferndndez-Val and Vella (2011) study sample
selection panels under the large N large T asymptotics but still only consider individual effects.

®The main focus of these papers is on the relationship between the TWFE and the DID estimator under heteroge-
nous treatment effects.



specific missing patterns into account.

Outline. The rest of the paper is structured as follows. Section 2 introduces the notations
and the missing patterns. Section 3 presents the estimation procedure and the relevant technical
details. Section 4 presents the limit distribution of the proposed estimator and the analytical bias
corrections. Section 5 discusses the Heckman correction for the sample selection with IFEs. Section
6 presents the simulation results. Section 7 presents an application to the US state tax data. Section
8 concludes. All proofs are relegated to the online appendix.

Notation. Let (N,T) — oo denote N and T going to infinity jointly and cyr = min{N% , T%}
2 and % denote convergence in probability and distribution, respectively. “w.p.a.1” denotes with
probability approaching 1. For real numbers a and b, a V b = max{a,b} and a A b = min{a, b}.

||-|| denotes the Euclidean norm for vector and spectral norm for matrix. ||-||,, |||l and ||| p

max
denote the nuclear norm, max norm and Frobenius norm, respectively. opin(-) denotes the smallest
eigenvalue. Denote [n] = {1,---,n} for any positive integer n. M denotes some large positive

constant that may vary throughout the paper.

2 Model Setup

Consider the following panel data model with IFEs and missing values:

yie = dig(2h,8° + fON) +wy) for i € [N] and t € [T], (2.1)

diy = 1{yi and x;; are observable},

where f{ is the r-dimensional unobservable factor at time ¢, \? is the r-dimensional unobservable
loading of unit ¢,  is the number of factors, z;; = (21, ..., Zix)" is the K-dimensional vector of
regressors, 3° is the K-dimensional regression coefficients, v is the error term, and 1 {-} denotes
the indicator function. r and K are fixed as (N,T) — oo. We assume r is known for the moment
and then propose a consistent estimator for 7 in Section 3.3. Our objective is to estimate 5% based
on the unbalanced panel data and study its asymptotic properties. The IFEs model allows us
to incorporate heterogeneous impacts of common shocks f and time-varying effects of individual
heterogeneities \Y, and the common shocks and the individual heterogeneities are allowed to be
correlated with the regressors x;;. We allow x;; to contain lagged dependent variables, and thus
our results are valid for both static and dynamic panels. We also allow x; to contain low-rank
regressors provided some regularity conditions are satisfied.

Let A = (A, o, AN F = (f, s F7)s A= (M1, AN)s F = (f1,..., fr) and © = FA’. For
notational simplicity, we also define ¢ = (X, f)" and v = (8, X, f’). Note that the dimensions of



AN F, 0, ¢pand yare Nrx1, Trx1, Nxr,Txr,TxN,(Nr+Tr)x1and (K+Nr+Tr)x1,
respectively. We use 82, A2, f9, A9, FO, 0% ¢" and 4° to denote the true parameter values.

In addition, let E; denote the expectation conditioning on the factors and loadings &, Dy =
Eg(dit) and diy = dyy — ®;y. For k € [K], let (5&» and wgt be the solution of the following least squares

problem:
2

- ;cifto_wzt/\? ) (2.2)

. N T Eg(dit i)
min Ey(dy) || ——72
{0kis Wit} Zi:l Zt:l ¢( t) ‘ E¢>(dit>

and let 07 and w{ denote K x r matrices such that 6%, and w?, are the transpose of the k-th row of

5? and w?, respectively. Now we present the missing pattern conditions considered in this paper.

Assumption 1 (i) For the random missing, dit is independent across i conditioning on ¢° and
dNit is independent with vjs for all i,t,j,s; ®y is independent with vjs and min;; ®;; > d > 0;
- 9 1
%ZSTZI Zthl YN (t,s) < M where yyg(t,s) = %Zf\; \Ey(dirdis)|; for some k with N5 —
1 ~ ~ K
0 and 35 0 BT | g S dest 2 < M, BG S G S Aot < v
N T 3 ® T N 3 "

B(d SN, || L Sy dieffuff|) < M ond B(ESL, || & SO, dintely| ) < .

(ii) For the block-type missing, {d; : i € [N] and t € [T']} is nonrandom, d;y = 1 for i < N, or

A g

‘ K

t < T, and no restrictions on d;; for i > N, and t > T,, where N, and T, denotes the number of
fully observed columns and rows, respectively. As (N,T) — oo, both No/N and T,/T are bounded
away from zero, and both omin(F 3121 [ 1Y) and omin(% Zi\iol MNY are bounded away from zero

i probability.

Assumption 1(i)—(ii) covers the random missing and the block-type missing, respectively. Our
results require either Assumption 1(i) or 1(ii) but not both. The main difference between these two
types of missing is that d;; is a random variable in Assumption 1(i) while in Assumption 1(ii) d; is
treated as a given nonrandom variable. Consequently, E4(d;;) > d > 0 for all  and ¢ under random
missing while under block-type missing Eg(d;;) = 0 for the missing observations. For both types of
missing patterns, d;; is assumed to be independent with v;, for all (¢, ) and (¢, s). If dj is correlated
with v;, conditioning on the factors and loadings, then additional procedures are needed to correct
the sample selection bias, say, via Heckman corrections or propensity-score-based methods. Our
results provide the tools for these further generalizations. See the discussion on missing patterns in
Su and Wang (2024) from the perspective of a pure factor model.

Assumption 1(i) allows E4(d;) to vary across ¢ and t and correlate with )\? and f? for some
(4, ), i.e., missingness can depend endogenously on multiple time-varying individual effects. For
example, firms are more likely to bankrupt and drop out of the panel during economic recessions.
Workers’ decision to work and wage rates are correlated with both workers’ individual characteristics

and macroeconomic shocks. The estimated regression coefficients would be inconsistent if we only



include individual effects in the regression while the true model contains IFEs. Thus the IFEs
provides us a more general way to capture latent confounders. Assumption 1(i) also allows dit
to be weakly dependent across ¢ conditioning on ¢° in the sense that the moment conditions in
Assumption 1(i) are satisfied if dit is weakly dependent across t. These moment conditions are what
we need in the proof and can be verified once we impose specific models on d;;. Some important
examples of the models of d;; under Assumption 1(i) are listed below.

Example 1 (Completely random missing): d;; is independent across i and t and indepen-
dent with the factors, loadings and error terms.

Example 2 (Selection on covariates/factors/loadings): d;; follows a binary process for
each i, where Eg(di) may depend on the factors and loadings, d; ;—1 and some observable variables.b
Specifically, consider the case where dj, = z,’;t(SO + g?’oz? + u;y and dy = 1{d}, > 0}, where zj; may
contain i, Yit—1, diz—1 and other observable variables, g,? and oz? denote some latent factors
and loadings and wu; is the error term. z, gto and a? could be correlated with ft0 and )\?; Uip 18
independent with vy and both are independent with z;, g,? and a?. Clearly, ciit 18 dependent across
t conditioning on (bo if i is independent across i and t and zy contains y;—1 or d;i—1. A special
case is dy, = di,t,léo + f?’)x? + uir and ui is independent across i and t. In this case d; is a first
order Markov process, which is relevant for the switchback missing pattern in the high-tech industry
experiments.

Example 3 (Dynamic panel): Without loss of generality, consider the case x4 = y;¢—1. Let
d, = 1{ys is observable}. Then we have diy = 1{y; and z; are observable} = d‘qjtdzt_l. Suppose
d?t is independent across i and t conditioning on ¢, then d;; is correlated with d; ;1 but uncorrelated
with d; 4y for 1 > 2.7 Thus for dynamic panels it is crucial to allow dy to be weakly dependent
across t conditioning on ¢°.

Assumption 1(ii) requires that we have a positive fraction of completely observed individuals
and a positive fraction of completely observed periods. Under Assumption 1(ii) our results are also
valid for dynamic panels, since {d;; : i € [N] and t € [T]} are treated as nonrandom and the error
v has mean zero for those (i,t) with d;; = 1. In the following we list some important special cases
of the block-type missing.

Example 4 (Exact block missing): diy =1 for i < N, or t <T,, and dy = 0 for i > N,
and t > T,. Both N,/N and T,/T are bounded away from zero.

5For the CCE approach, it may not be appropriate to use the cross-sectional averages as proxies for the factors.
Suppose zix = AT ff + o5, then ) = SN dual, /SN [ di B SN Ey(die) N/ SN, Eg(di) under some condi-
tions. If E4(dst) is correlated with Af and heterogenous over ¢, the coefficient vazl Ey(dit) AT/ vazl E4(ds¢) may not
be stable over t.

"Eg(dirdii—1) = Bg(d})Bo[(d},_1)*|Es(dY, ) # Eo(dl)[Bo(dy, 1)°Ee(d}, 5) = Eg(dit)Eg(di,e—1). But for I >
2, E¢(ditdi,t—l) = Eﬂb(diytdiy,tfldzy,tfldiy,tflfl) = Ed>(dzytdiy,t71)E¢(d¢y,tfldg,t7171) = E¢(dit)E¢(di,t—l)-



Example 5 (Mixed frequency/regular missing): di; = 1 for i < N, and all t. diy = 0 if
i > N, and t/h is not an integer, where N, is the number of high frequency series and h is the
frequency ratio (e.g., h = 3 for the case of mixed monthly-quarterly data).

Example 6 (Staggered missing): d; = 1 for i < N, and all t. diy = 1 for i > N, and
t < Tyi, where Ty; is the largest t with diy = 1. T, = minT,; and both N,/N and T,/T are bounded
away from zero. Here {Ty,i € [N]} is considered as fized. In comparison, in Athey and Imbens
(2022) the design based analysis for the TWFE estimator under staggered adoption considers Ty
as a random variable. They show that the DID estimator is an unbiased estimator of a particular
weighted average causal effect under random assignment of T,;. It would be interesting to extend

our results to the design-based settings.

3 The Estimation Procedure

To estimate the regression coefficient vector 3°, we consider a two-step procedure where in the first
step we construct a consistent initial estimator of BO and in the second step we use this estimator

as the initial value to maximize the quasi log-likelihood function

LA =5 S0 ST duly — 2ty — FiN)? (3.)

by alternating maximization between the regression coefficients and the factors and loadings. We
shall prove the numerical convergence of this two-step procedure in three parts. In Part 1 we
show that there exists a unique solution for S(v) = 0 within the local neighborhood of the true
parameters 70 = (Y, AY, f%) where S(-) is the score function. In Part 2 we show that within
the local neighborhood of 7 the alternating maximization procedure is a contractionary mapping
towards the solution of S(y) = 0. In Part 3 we show that the nuclear norm regularized estimator is
consistent and hence lies in the local neighborhood of 4 w.p.a.1. These three parts jointly imply
that the two-step procedure is guaranteed to converge to the solution of S(v) = 0. To present the
details for these three parts, we make some assumptions.

Below, we use M > 0 to denote a generic constant that may vary across places.

Assumption 2 (i) +F"F° 2 Yr >0 and | 2] < M for all t; (ii) +AYA0 L %A >0 and H/\?H <

M for all i; (iit) The eigenvalues of the r X r matriz XpXa are different.

Assumption 2(i)-(ii) assume that the factors are pervasive and the factors and loadings are uni-
formly bounded, as in Bai and Li (2014), Ando and Bai (2020) and Chen et al. (2021a). In the

matrix completion literature, the uniform boundedness of 2 and A is referred to as the incoherence



condition and helps to verify the restricted strong convexity condition for the nuclear norm regular-
ized estimation; see, e.g., Negahban and Wainwright (2011), Negahban and Wainwright (2012) and
Chernozhukov et al. (2023). Assumption 2(iii) is a standard condition for identifying the factors

and loadings from the common components.

Assumption 3 (i) (a) plimﬁ ZZIL Zthl T xl, s positive definite (p.d.) and (b) Wy = plimﬁ le\il
Zthl dixZud’, is p.d., where Ty = (Fit1, o, Tirr )| and Tigg = Tigk — (Ops f2 + WUAD);

(11) E(||z:]|®) < M for all i and t and some o > 8;

(iii) E(Hﬁ E?:l[dz’tl'it—qu(ditﬂ?it)] ,50’||%) < M foralli, E(||\/1—N Ei\il[ditxit_E¢(dit1’it)p\?/|’%) <
M for all t; and E(|| 5 o S, [diaaaly, — Eg(duzaaly)||%) = o(1).

The first part of Assumption 3(i) is a standard noncollinearity condition and is implied by the
second part. We state it separately since it is already sufficient in some steps of the proof. The
second part of Assumption 3(i) requires the regressors to be noncollinear after projecting out the
true factors and true loadings, where the projection is as defined in (2.2).® The second part of
Assumption 3(i) is crucial for both the local identification of 8% and the numerical convergence
of the alternating maximization within the local neighborhood of the true parameters. Note that
W, can be p.d. even if x;; contains some low-rank regressors. Nevertheless, Assumption 3(i) is
not enough for the global identification in the presence of low-rank regressors; see Appendix S.3
of Moon and Weidner (2017) for detailed explanations when there is no missing data. To achieve
global identification, we use the nuclear norm regularized estimation to obtain an initial consistent
estimator, which is a popular approach in the literature on low-rank estimation.

Assumption 3(ii) requires x;; to have bounded moments. Assumption 3(iii) requires that d;x;
and djzix), be weakly dependent across ¢ and ¢ conditioning on #°. If dj is nonrandom (see
Assumption 1(ii)), we only need z;; to be weakly dependent across i and ¢ conditioning on ¢,

which is also assumed in Assumption 5(iii)-(iv) of Moon and Weidner (2017) for dynamic panels.

Assumption 4 (i) E(|jvy|) < M for all i and t and some ¢ > 8;
(i) max, (s, 5) < M and £ 31 S [yn(s,t)] < M where (s, t) = £ S0 E(disvisdirvie);
(iii) For every (t,s), E{ﬁ Zf\il[disvisditvit — E(disvisdizvig)]}2 < M.

Assumption 4(i) requires vy to have bounded (-th order moments. Assumption 4(ii)-(iii) im-
poses weak dependence condition on {d;v;} along the time and cross-sectional dimensions. These

conditions reduce to Assumption C in Bai (2003) when d;; = 1 for all ¢ and t.

8When d;; is treated as nonrandom, we have By (di¢) = diy and Eg(diwir) = disEy(2ier), then 6%, and wf, are the
solution of mings, , wy,} Doy dorey dit (B (Tiek) — Opi [ — whe A2



Assumption 5 (i) (5 Z?fs:l SN | Eg(diviedisvis)]) < M and B( R zszl ST By (dipviedjivit)])
< M;

(id) E(vazidi) = 0 and E(|| A= S, S0 wadivul [*) < M.

Assumption 5(i) imposes additional weak dependence conditions on {d;v;:} along the time and
cross-sectional dimensions. These conditions reduce to Assumption D Bai (2003) when d;; = 1 for
all ¢ and ¢. Assumption 5(ii) allows z; to be either strictly exogenous or weakly exogenous as in
dynamic panels, but we do not need to assume v;; to be independent across (i,t). In contrast, Moon

and Weidner (2017) directly assumes that v is independent across (i,7) in dynamic panels.

3.1 Existence of the Local Critical Point

The criterion function for the estimation is Q(8, A, f) = L(B, A, f) + G(X, f), where

G\ f) = —*NTZP— Zq 1 NZ /\?q/\ip_%zil fipfra)” (32)

¢ is an arbitrary positive constant and L(3, A, f) is the quasi log-likelihood function defined in (3.1).
Note that the solution of maximizing L(3, A, f) is not unique since for any (A, f) and any r x r
invertible matrix II, we have f/\; = (II'f;)'TI"1)\; for all i and t. To ensure the uniqueness of
the solution, we add the penalty G(\, f) to L(B, A, f) so that maximizing Q(S, \, f) is equivalent
to picking up the solution that satisfies % ZN A oAip = %Zthl ft% fiq for all p,q € [r] from the
many solutions of maximizing L(8, A, f). Such a set of normalization conditions impose exactly
72 restrictions for the identification of (A\°, f0) despite it is somewhat infeasible.” We assume that
the true parameters ()\O f0) satisfy these restrictions. If not, we can redefine the true parameters
without changing the product f¥\) for all i and .

Recall that ¢ = (X, ') and v = (8, X, f’)’. Let S(v) = 9,Q(v) denote the score function of
Q(7v) and Q- () = 0y, Q(7) denote the Hessian. Specifically, we introduce the following notations:

Ss(v) = 08Q(Y), Sx,(v) = 9 Q(Y), Sp(v) = 01,Q(7),
S\ = () S () Sp() = (S () s S (1))
Se(v) = (Sa(0),Sr (), S(v) = (Ss(7)' Se (1))

Qpp(7) = 0z Q(7), Qpy (7) = Oy Q(Y), and Qs (7) = Ty Q(7)-

We suppress the argument when the score and the Hessian are evaluated at the true parameter

°In matrix form, the restrictions can be written as = ZN XN = % 23:1 fefY’. This type of restrictions is
inspired by Chen et al. (2021b). Compared to the restrlctlons in Su and Wang (2024), the benefit of this type of
restrictions is a simpler Hessian structure, while the cost is that it is computationally infeasible since fP and A are
unobservable. See Section 3.2 for the computation details.
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values, i.e., Sy = Ss(79), Qpp = Qpy (7°), and so on. We shall show that S(v) = 0 has a unique

solution in the interior of the local region Bm(yo) of 4%, where

Bin(7°) = {y e REFN™IT 15— 50| < m, A= A%|| <m and lT = £ <m} (3.3)

|
and m > 0 is a small but fixed constant. Bm(’yo) is large enough to contain the initial consis-
tent estimator without imposing any requirements on the convergence rate of the initial estima-

tor. If HB(O) —BOH = 0p(1) ’5\(0) —)\OH = 0,(V/N) and ‘f(g) —fOH = 0,(V/T), then obviously

(B(O)/,S\ 0 ”f(o)/)/ € Bn(?") w.p.a.l. In addition, B,,(7") is small enough to guarantee that the

Hessian matrix of Q(v) is well-behaved inside this region, as shown in the following proposition.

.. N x IN,, 0 T x INr 0
Proposition 3.1 Let Dyr = and Dpy = . Under
0 T x I, 0 N x Ip,
Assumptions 1-4, there exzst m >0 and C > 0 such that as (N,T) — oo,
(i) egm? )Umm( TNQ(;&(;& () TN) > C w.p.a.l,
(i) min , Guin(~rlQas (1) = Qs (1)(@egr (1)) Qo () = C.

Proposition 3.1 shows that the normalized Hessian matrix is negative definite uniformly within
B,,(7%). This result could also be generalized to other missing patterns following a similar proof
of Proposition 3.1. Dyp and Dpy are designed such that the eigenvalues of —D;]%QW/ ('y)D;]%
have the same asymptotic order even when N and T tend to infinity at different rates. Based on

Proposition 3.1, we can prove the following important theorem.

Theorem 3.1 Under Assumptions 1-5, there exists a unique solution for S(v) = 0 in the interior of
B (7°). Letd = (B/, (}5/)’ = (B/, 5\/, f'Y denote this solution. Then we also have HB — ,BOH = L)

CNT ’

Hﬁﬁ - )‘O)H = Op(ﬁ) and Hﬁ(f— fO)H = Op( W)’ where recall that ey = Nz ATS.

Given Theorem 3.1, we define 4 as our estimator for 10 = (8%, AV, f¥)/. The condition S(%) =
allows us to take Taylor expansions for the asymptotic analysis in Section 4, and is also crucial
for proving that 4 is the convergence target of the alternating maximization procedure. Since
Proposition 3.1 implies that Q,./(¥) is negative definite, 4 is also the local maximum in Bm(fyo).
Note that in general the local maximum could be on the boundary of the local region, Theorem 3.1

implies that the local maximum in B,, ('yo) is an interior point.

3.2 Convergence of the Alternating Maximization Procedures

In this subsection we show that the alternating maximization algorithm is a contractionary mapping

towards 4 within Bm(yo). First, we present the algorithm as follows.

11



Algorithm 1

1. Obtain an initial consistent estimate (B(O)/, &(0)/),. Let &5(0) = gAb(O)

2. At step k > 0, given B(k), use (Eﬁ(k) as the initial value and the EM algorithm to calculate

é(kﬂ) = (S\(kﬂ)/ f(’fﬂ)’) = argmaxy f) L(B(k),)\,f). More specifically, for h = 0,1,2,....,

let 5O = F® ana AP0 = 3 and tet y 8 = gy — 24,8Y if dig = 1, g = FERRED

)

if dy = 0. Let y(k’h) denote the T x N matriz with yl(f’h) as the (t,i)-th element. Then

Fhtl) — (fl(k’h+1), s }k’hﬂ))’ are VT times the eigenvectors of y &My &M corresponding
to the rth largest eigenvalues and A1) = (S\Ek’hﬂ) )\55 hH)) Ty(k’h)'ﬁ(k’hﬂ). Iterate
h=0,1,2,.... until convergence.
~ o (k
3. Given qb(k“), calculate B( o arg maxg L(3, A D ,f (E+1)). The solution is ﬁ( o

(k+1)

_ (k+1
(Zf\; Zthl ditTit};) ! Zi\il 23:1 dit (Yt — ft * )/)‘i )-

4. Iterate between step 2 and step 3 until convergence and obtain the estimator (B, 55)

Remark 3.1 In Algorithm 1, k is the index for the outer loop while h is the index for the inner
loop that carries out the EM. The difference between Algorithm 1 and the algorithm in Appendixz B
of Bai (2009) for unbalanced panels is that Algorithm 1 starts from consistent initial estimates while
that in Bai (2009) starts from random initial values. This difference is crucial for the convergence
analysis. In fact, Bai (2009) did not provide any convergence analysis or study the asymptotic

properties of his estimator for unbalanced panels.

Remark 3.2 In Algorithm 1, the EM algorithm for calculating a)(kﬂ) given (B(’“),é(’“)) can be
replaced by a gradient descent algorithm or some other algorithm to handle ultra large data sets,

where even singular value decomposition is slow.

Remark 3.3 Given B(k), since L(B(k), M) =358 ST iy —x;tﬁ(k) — fI\i)? only depends

on the product fi\; and fiN; = (IUf;)'TI=1)\; for any invertible r x r matriz 11, the solution of

(k)

maximizing L(B A, f) is not unique. Among all the solutions of mazimizing L(B(k),k, f), there

is only one solution such that G(X, f) = 0, denote this solution as

~(k+1)

BT = AT ey = angmax LB 0, ) + GO ) (34)

Since the objective function for the alternating maximization is Q(B, A, f) = L(B, A, f) + G(\, f) in

Step 2 of Algorithm 1, we are supposed to compute (S\(kﬂ) f(kﬂ)) rather than (\ (k+1) , FEDY . How-
in Step (3) of Algorithm 1 since fthrl fkﬂ)

(k+1)

~(k
ever, this does not affect the computation of 3
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f(kH)/ (b+1) for all (t,i). In summary, algorithm 1 produces (B,(ES) while the asymptotic analysis
focuses on (B, ).

An important observation is that the alternating maximization in Algorithm 1 is a block Gauss-
Seidel procedure and the Hessian is negative definite, symmetric and approximately constant within

l’)’m(vo).10 This observation allows us to prove the following theorem.

Theorem 3.2 Suppose that Assumptions 1-5 hold and (B(O),, &(0)/), € Bm(’yo). Then HB(]C—H) — BH <
P HBUC) — BH for some 0 < ¢ < 1, implying that HB(k) — BH — 0 and Hgb(k) = g?)H — 0 as k — oo.

(0)) lie in the region By,(7"), then

ALY

~(0) ~(0
does not rely on the convergence rate of (ﬂ( ), ¢( )). This gives us plenty of freedom in constructing

Theorem 3.2 shows that if the initial estimate (ﬁ ,qb

converges to zero with a linear speed.!! Note that the convergence of (B

the initial estimator, since we can put aside the efficiency and inference concerns and focus on the
consistency and computational convenience. For example, we can use a small but balanced part of
the unbalanced panels to obtain the initial consistent estimates as in Bai and Ng (2021) for the case
of pure factor models.

The proof of Theorem 3.2 applies in spirit to other settings such as nonlinear panels, two-way
fixed effects models and other missing patterns. All we need to do is to verify the local concavity
of the Hessian matrix in these settings. For example, the Hessian of nonlinear panel with two-way
additive or interactive fixed effects is locally concave when there is no missing data, so we just need
to verify this is still true under the missing patterns of Assumption 1 or other patterns of interest.
Similarly, Theorem 3.1 also can be readily extended to these settings.

The convergence of the Gauss-Seidel procedure in the current context suggests that the Jacobi

procedure should also converge. The details are as follows.

Algorithm 2

»(0)

1. Obtain an nitial consistent estimate (f

7&)(0)’),. Let &(0) _ gb(o)

2. At step k > 0, given B(k), use &Ug) as the initial value and the EM algorithm to calculate
~(k‘+1) o ~(k+1)/ N(k-i—].)/ ’ ~ (]C)
o - ()‘ o f ) = argmaxy f) L(B a)‘vf)‘

3. Given &)(k;) obtain B(kH) = argmaxg L(f3, S\(k), f®)). The solution is B(kH) = (N ST dywgal,)
Zz 1Zt y it (i — (k) /\E ))-

198ee Golub and Van Loan (2013) and Hackbusch (2016) for textbook introductions for the Gauss-Seidel procedure.
HTterative estimation is very common in the machine learning literature. A good initial value is sometimes called
a warm start, which is crucial for large scale nonconvex optimization.
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4. Repeat step 2 and step 3 until B(k) and g?)(k) converge.

The difference between Algorithm 1 and Algorithm 2 lies in the third step, where the former uses

- A (k ~
¢(k+1) to calculate ﬁ( ) while the latter uses qb(k). As explained in Remark 3.3, the alternating
maximization produces (B/ g~b/) while the asymptotic analysis focuses on (B/, qASI)’ . Here, (B/, qAb/)’ is
(k ~ (K
the convergence target of (ﬂ H)/, 10) ) )
~ (k+1) (k+1)

$ :arg;naxL(/é(’“),qﬁHG(@ and 3 :arg;naxL(ﬁ,&ﬁ(k))- (3.5)

Corollary 3.1 Suppose Assumptions 1-5 hold and (B(O)/,&ﬁ(o)/)’ € B(7°). Then (B &
(k)

Y a
defined in (3.5) converges to (B/,éﬁl)’ as k — oo in the sense HB(k) B ‘ — 0 and H —¢ll—=o0

Similarly, other variants of alternating maximization such as the Richardson iteration and the
successive over-relaxation also can be developed to accelerate the convergence speed or implement
parallel computation. We may also iterate between 5, A and f by dividing the Hessian matrix into

3 x 3 blocks. These extensions are valuable for ultra large data sets and is left for future research.

3.3 The Initial Consistent Estimator

In this subsection we present the details of the nuclear norm regularized (NNR) approach for
consistent initial estimation. Since the 2018 working paper version of Moon and Weidner (2023)
introduced the NNR approach to the econometrics literature, similar regularizations have been
used in many other contexts such as network structures, panel quantile regressions, grouped fixed
effects panels, panel threshold models, high-dimensional VAR and conditional factor models; see
the references in Moon and Weidner (2023). The popularity is mainly due to the global convexity of
the NNR objective function. As emphasized in Moon and Weidner (2023), another advantage of the
NNR approach is that it allows for low-rank regressors. In this paper we propose to apply the NNR
approach to obtain the initial estimate for the unbalanced panels. It is useful to emphasize that
the NNR approach is just one choice for consistent initial estimation. In practice, another potential
choice is to obtain initial estimates from a small but balanced part of the unbalanced panel.

For the random missing case (Assumption 1(i)), we obtain the NNR estimator as

N ~

N T
(5 @ ) = ar%min Z Zdit(yit — @it — .’L‘;tﬁ)Q + UNT H@H* s (3.6)

=1 t=1

[NRE

where v 7 is a tuning parameter.'> We choose to use the ADMM algorithm to solve this optimiza-

12The tuning parameter vy7 is a critical component in model optimization, as it directly induces the low-rank
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tion problem; see Appendix H in the online supplement for details. With 6(0)7 let Z:I(O), VO and
30 denote the first 7 left singular vectors, the first r right singular vectors and the r x r diagonal
matrix that contains first r singular values of 60 ordered in descending order along its diagonal
line, respectively. Then we define f(©) = /T1{(® and )\ = VNV . The number of factors r

is estimated via singular value thresholding:

6O Y10

N
=Y 1ol 2 e oo (5.7)

where o4 (A) denotes the s-th largest singular value of A and ¢y > 0. In the simulation, we set

cy = 0.6.

For the block missing case, we run the NNR estimation on the complete data block, e.g., the
data block with i € [N,] and t € [T}, to obtain #, 3, {ft(o),t € [T]} and {5\(0) ) [ ol}. Then for
each i = N, + 1, ..., N, we regress 4;; — :E;tB on ft(o) to obtain 5\( ) Let F'© (f1 , A(O))’ and
AO) = (5\50), ...,5\(0)) Then we normalize F(© and A©) such that FOF© /7 = AOVA©) /N and

both are diagonal.
To show the consistency of the NNR estimators, we define the following restricted set

R = {86 € RN : | Aol < M and [PH(A0)|| < 3P(A0)IL}, (3.8)

max —

where Ag = © — OV for any © and P*(Ag) and P(Ag) are defined as follows. Let @0 = ¢/0%0DY
be the singular value decomposition of ©¥ and decompose U° = (U,.,Uy) and V' = (V,, V) with
(U, Vr) being the singular vectors corresponding to nonzero singular values and (Up, Vo) being

the singular vectors corresponding to zero singular values. For any matrix A € RT*V

PL(A) = Uy AVyV} and P (A) = A—PL (A), i.e., P (A) can be seen as the linear projection of A

onto the low-rank space with P+ (A) being its orthogonal space. Intuitively, the second restriction

, we define

in (3.8) means the projection onto the high rank space can be controlled by the projection onto the
low-rank space.
Let Myee(z) = I — Pyee() and Pyee(y) denote the projection matrix of [vec(z1), ..., vee(z k)], where

vec(zy) is the TN x 1 vector that vectorizes xx. We add the following assumption.

Assumption 6 (i) For the random missing, (a) di is independent across (i,t) conditioning on
(qbo, Tit), ming gy (diy) > d > 0 where Eg,(-) the expectation conditioning on & and all z;, (b)
there exists p > 0, independent of (N,T), such that vec(Ae)' Myeczyvec(Ae) > p |Ael% for any
Ag € R when N and T are sufficiently large.

structure in the solution. In the simulation, we set vnxr = cy/max(N, T) with ¢ € {1072,107!,1,10} and we choose
the one giving the minimum value of objective function L(8, A, f).
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(ii) For the block missing, Assumption 1(ii) holds and Assumptions 2, 3(i)a, 5(ii) and 6(i)b hold

for at least one completely observed data block.

Here we need the conditional independence of d;; to verify the restricted strong convexity (RSC)
condition as defined in Negahban and Wainwright (2011), Negahban and Wainwright (2012) and
Klopp (2014). Assumption 6(i)b requires that the Euclidean norm of vec(Ag) after projecting on
vec(z) be a positive proportion of its Euclidean norm before projection, if we restrict Ag to belong to
R. The same assumption also appears in Moon and Weidner (2023) and Mugnier (2024) and plays a
similar role as the restricted eigenvalue condition common in the LASSO literature (e.g., Bickel et al.
(2009)). Assumption 6(ii) presents the conditions for the consistency of the NNR estimator when
applied to a balanced block of the unbalanced panel. Given these assumptions, the following theorem
3O 3 3O p0ry gans

~ (0 ~
proves the consistency of 7, B( ), and f©, which guarantees that '?(0) = (p

in By,(7°) w.p.a.l.

Theorem 3.3 Suppose that Assumptions 2, 3(i)-(ii), 4, 5(ii) and 6. Suppose that vyt = 2¢1(NY/2T1/*
+NYATY2) for some constant ¢; > 0. Then as (N, T) — oo, P(7 = 1) — 1, ‘B(O) — ﬁOH = 0p(1),

N—1/2 Hj\(o) - )\OH = 0,(1) and T~1/? Hf(o) - fOH = 0,(1).

The side condition on the tuning parameter vy in Theorem 3.3 is sufficient but not nec-
essary. Under the weak condition in Assumption 4, we show in Lemma D.1 that |[dov| =
Op(N%Ti + NiT%), where dov is a T' x N matrix with d;v;; as the (¢,7)-th element. If we impose
some stronger conditions than those in Assumption 4, this rate can be improved to O, (N 2 + T%)
as in Latala (2005) if one assumes some (conditional) independence conditions along both the in-
dividual and time dimensions or O, (N 74 (T'logT )%) as in Wang et al. (2022) if one assumes
(conditional) independence along the individual dimension and (conditional) strong mixing along
the time dimension. With such a better control on ||d o v||, one can choose a smaller rate for vy
(as small as 2¢; (N1/2 + Tl/Q)) which will yield a better control on the rates at which HB(O) -0
N-1/2 H;\(O) )0 ’ and T—1/2 Hf(o) _ fo‘

taining a consistent initial estimator, the choice of vy = 2¢; (]\71/2T1/4 + N1/4T1/2) is sufficient.

9

converge to 0 in probability. Since we only aim at ob-

4 Limit Distribution and Bias Correction

CNT CNT CNT

Theorem 3.1 shows HB—BOH = Op( L )s

)X - AOH = 0,(Y) and Hf - fOH = 0,(2L). Tn this
section we take higher order Taylor expansions of the first order conditions to refine the asymptotic

expansions and to derive the asymptotic distribution and bias of B :

0 = SB(BMES) =53+ QBB’(B - 8%+ Q;W(Cg —¢%) + Rg, (4.1)
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0 = Ss(B,9) = Sp+ Quz (B —B°) + Quy (& — ¢°) + Ry. (4.2)

Here, Rj (of dimension K x 1) and Ry (of dimension (N7 + T'r) x 1) are the remainders in the
expansions; see Lemma E.4 in the online supplement for their detailed expressions. Equations
(4.1)-(4.2) provide a general framework for the asymptotic analyses of fixed effects estimation of
large dimensional panels. Linear/nonlinear panels with one way/two way/interactive fixed effects
are all covered by this framework, with each model corresponding to a specific structure on the
Hessians and the remainders.'® Moreover, equations (4.1)-(4.2) also cover these panel data models
with missing data. We show in the online appendix that the upper bounds of ||Rg|| and || Ry are
not affected by any missing patterns and Q4 is still negative definite under missing patterns of
Assumption 1, but the asymptotic variances and biases of B do depend on the missing patterns.
When there is no missing data, the most general framework for fixed effects estimation of large
dimensional panels is Ferndndez-Val and Weidner (2016). Nevertheless, it is unclear how to extend
their results to cases with missing patterns of Assumption 1. In the following we present the details

of our asymptotic analyses.

4.1 Limit Distribution of the Local Critical Point

To study the limit distribution of our estimator, we add two assumptions.

Assumption 7 (i) maxpep) Zfil Zz:szl |E¢(ditvitdisvisdihv§h)‘ < MNT a.s., maxuep Zgjﬂ ZZ:s:l
|Eg(dirviedinvindjsvjsdinvjn)| < M(NT + N?) a.s., MaXye(n) Zthl Zij:l |E¢(dktvgtditvitdjtvjt)|
< MNT a.s., and maxj¢ |y ZZSZI Zﬁ;zl E g (ditvpedipvirdgsvrsdjsvis)| < M(NT +T?) a.s.;

(i1) 1 S ooy [Eg(divindjsvis)] < MNT a.s.;

(i) maxpep) SV Zfszl By (ditvirdisvisdin@iy,win)|) < MNT a.s., and maxpeqr nyj:l 23:8:1
By (ditviedin @y zindind;svis)| < M(NT + N?) a.s..

Assumption 7(i)-(ii) imposes weak dependence conditions for {d;v;:} along both the time and
cross-sectional dimensions. These conditions generalize Assumption F(1)-(2) in Bai (2003) to the
missing data setting, similar to Assumptions 3-4 in Gongalves and Perron (2020) and Assumptions
2.4 and 3.8 in Fan and Liao (2022). Assumption 7(ii) strengthens Assumption 5. When d;; is
independent of v;s for all 4, j,¢, s conditional on ¢ or dj is treated as nonrandom, Assumption 7

hold as long as it holds when there is no missing data.

Assumption 8 Define d/Z:a:/n = dywi — Eg(digxiy). Let covy denote covariance conditional on qbo.

13Note that the Hessian and the remainder are high dimensional, but their structures allow us to decompose and
analyze them accurately. The intuition is that the Hessian of all these models are approximately diagonal; see
Appendix A and Lemma E.4 for the Hessian matrix and remainder terms for the current study.
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. . d
(i) ﬁ Zilil Zthl Eirdigvie — N(0,Q);
. N T T Tl T N N
(ii) Zi,j:l Zt,5:1 Zu,h:1 |covg (ditirdisvis, djutjudjnvjn)| < MNT?, and Zt,s:l Zi,j:l Zk,l:l
‘COUqg(ditxitdjt’th, dksxksdlsvls)] S MN2T a.s.,
N T T 7 7 T N N
i (iii) Ej,j:l Zt,s:l Zuﬁ:l |covy(ditdisvis, djudjnvjn)| < MNT?, and Zt,s:1 Zi,j:l Ek,l:l |cov
(ditdjrvje, dpsdisvis)| < MN?T a.s.;
. N T T T N N
(iv) 21,3:1 Zt,321 Zu,h:1 |covg (divitdisvis, djuvjudjnvin)| < MNT?, and Zt,s:l Zi,j:l Zk,l:l
‘COU¢(ditUitdjt’th, dksvksdlsvls)] S MN2T a.s..

Assumption 8(i) is the central limit theorem. Assumption 8(ii) corresponds to Assumption 5(v)
in Moon and Weidner (2017) but the latter authors assume vj; is independent across (i,t). In Bai
(2009), Assumption 8(ii) is satisfied automatically since x;; is strictly exogenous there. Assumption
8(iii) is satisfied automatically when dix = 0, i.c., when there is no missing data or when d; is
treated as nonrandom. Assumption 8(iv) corresponds to Assumption C(iv) in Bai (2009) with “e;;”
replaced by d; v, and is also satisfied in Moon and Weidner (2017) in the case of no missing since
they assume v;; is independent across (i, ).

Utilizing the asymptotic expansion (4.1)-(4.2) and Assumptions 7-8, the following proposition

refines the results of Theorem 3.1.

B3N]

2
K

|-

11 1

Proposition 4.1 Suppose Assumptions 1-5 and 7-8 hold and % — 0 and N”TTJFT —0
. _1 . _1

as (N, T) = 0. Then (i) |3~ 8°|| = Op( ) and (ii) HDN?F(qﬁ — %)+ DN?FQd)(;,Sd,H — Op(Z-)-

Proposition 4.1(i) establishes the accurate convergence rate of 3 — 8° and Proposition 4.1(ii)
shows that the remainder of the asymptotic expansion of D;,%T(qz — ¢ is Op(ﬁ). Note that
Proposition 4.1 holds with k = oo when d;; is treated as nonrandom. Proposition 4.1(ii) is crucial
for calculating the effect of using estimated factors and loadings on the asymptotic distribution and

0
bias of 8, which is presented in the following theorem.

B+ 3+ VIV +35)

Theorem 4.1 Suppose that Assumptions 1-5 and 7-8 hold, and L N — 0,
5+(Re T2+ VIV +50)
N2 = = 50 for some k>4 as (N,T) — oo. Then

VNT(B — £%) — W, b %5 N (0, W, ', W, )
where b=Y"8 by, by’s are all K x 1 vectors whose k-th element are respectively given by
by = \/]1\77 Zthl ZZ]\; Zjvzl E¢>(djtvjtditl’itk)A?’[fz;}/]t)\?7
bop = \/]1\77 Zjil Zthl Zstl Eo(ditviediszise) [ Ly i f2s
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ok = \FZL Zjv 12 Eg(divvied;rvje) 03 L],
ik = \/722 1Zt 12 Ey( Ztvztdlsvzs)wkt[LA,\’] :
by, = \/ﬁ thl Zz’:l ijl Eg(ditviedjivje) A e A,
ber = \/]1\77 Zil Zthl Zil Eo(ditviedisvis) [ Dri f?

[f’;}/]t _( Zz ICIDZt)‘O/\O/) ’ [I_/)\)\/]l_( Zt 1 tht ) 17 Agi _[ )\)\/] (Zt 1 tht wkt)[ )\)\/]
gt = [Eff’]t(Zizl Dy N8V [L ff,]t and 89; and WY, are defined in (2.2).

Theorem 4.1 shows that B is consistent and asymptotically normal even if d;; is correlated with
ft0 and )\? as long as d; is independent with v;;. In other words, if the latent confounders that
affect both the outcome y;; and the treatment indicator d;; can be modeled by a factor structure,
then ,@’ has no selection bias once we perform the IFEs estimation. This covers a lot of empirically
relevant cases since sample selection is likely to be affected by both individual heterogeneity and
common shocks. While we assume independence between d;; and v, the techniques developed for
Proposition 4.1 and Theorem 4.1 can be readily applied to cases where the latent confounders can
not be fully captured by a factor structure; see Section 5 for details.

Theorem 4.1 also shows how missing patterns affect the asymptotic variances and biases. Both
the bias W, b and the variance W, 'Q,W_! depend on the missing pattern, regressors, factors,
loadings and error terms in a complicated way. Our simulation results show that the bias could be
large when d;; is correlated with f? and )\?. Moreover, the expressions of W, €2, and b allow us to

construct analytical bias corrections and may also provide some guidance on experimental design.

Remark 4.1 Theorem 4.1 holds with k = oo for block missing. Note that ¢ = oo for uniformly
bounded factors and loadings under Assumption 2. o and ( also could be very large. Then the
suﬁ‘iczent (but not necessary) conditions on N and T in Theorem 4.1 approzimately become —0
and 22 5 0.

Remark 4.2 Before the v/ NT-normalizations, b;’s are of order Op(+) for I = 1,3,5 and Op(=%)
for 1 = 2,4,6 under the usual weak cross-sectional and serial dependence conditions. QOur bias
expressions include those of the static panel Bai (2009) and the dynamic panel Moon and Weidner
(2017) as special cases.

(i) First, by = 0 for Bai (2009) since diyz = 1 for all (i,t) and Eg(djivjidiziar) = 0 when iy
is strictly exogenous. by, = 0 for Moon and Weidner (2017) since diy = 1 for all (i,t) and they

assume that (x4, v;) is independent across i and E(v;s ’-’Eit, Vit—1, gbo) =0 for s > t.
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(ii) Second, by = ﬁzf\il Ethl ZsttH Eg(ditvirdisxisk) P’[E;/\l,]ifg if ditvy is uncorrelated
with disxisp for s <t as in dynamic panels, which corresponds to term B1 in Moon and Weidner
(2017). bar = 0 in Bai (2009) for static panel.

(iii) Third, bs+bs corresponds to term B in expression (18) of Bai (2009) and term B2 in Moon
and Weidner (2017). Both bs and bs are Op(\/i%), which is op(1) if T/N — 0.

(iv) Fourth, by + bg corresponds to term C in expression (19) of Bai (2009) and term B3 in
Moon and Weidner (2017). Both by and bg are Op(‘/—g), which is o,(1) if N/T — 0.

(v) Fifth, by + b = 0 if djyvie is uncorrelated across t and both ®; = Ey(di) and E¢(ditvi2t) are

constant across t so that we have ®;; = ®;. In this special case, [E;\;/]z - —(}%.(ZtTﬂ 271 and

= zilﬁadw@ff'%ff:%leﬂvfnz; Pt
= \/;—T”(ZN Eg(dinvdy Z fF ,\>\’ Zt 1 Al ,\,\1’}1')
= Z IE¢ 11%1 Z 0 0/ A,\lf]i)
= _\/ﬁ Zi:l thl E(b(ditvit)wkt[[’;)\/]ift = —bap.

Similarly, bs + bs = 0 if vy is uncorrelated across i and both Ey(diy) and IEd,(ditviQt) are constant
across i. But other than these special cases, by+bg and bs+bs are generally nonzero. In particular, if
Eg(dit) is not a constant across i and t, either bg+bs # 0 or by+bs # 0 even if dipvy is uncorrelated

and homoskedastic across i and t.

4.2 Analytical Bias Correction

In this subsection we utilize the expressions of W, 2, and b to construct analytical bias corrections
for 3. Since the estimation of Wy, € and b depends on the serial and cross-sectional dependence,

we impose the following assumption to simplify the asymptotics.

Assumption 9 (i) {(di, vit, xit),t = 1,...,T} is independent across i conditioning on ¢°;
(1t) By (dirvirdismisk) < M |s — | and Eg(dpvirdisvis) < M |s — t| for alli and s # t for some

constant cog < —1.

Assumption 9 rules out cross-sectional dependence of (d;¢, vy, i), but allows serial dependence
of (di, vit, x;) and weakly exogenous regressors. As discussed in Bai (2009), the difficulty of bias
correction under cross-sectional dependence is that there is no natural ordering of the data and
large |i — j| does not mean small correlation between v;; and vjt. This issue has not been fully

solved even without missing data. A promising solution is to extend the bootstrap bias correction
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for the individual effects panel to the IFEs panel, see Gongalves and Perron (2014), Kim and Sun
(2016) and Higgins and Jochmans (2024). We leave this for future research and simply focus on
cases under Assumption 9.

When v;; is uncorrelated across ¢ and ¢t which can occur for both static and dynamic panels, W,

Q, and b are estimated as follows:'*

Wy = NT § . g thztxzta Tz = NT § =1 § Ztvzt'xltxzta

blk =0, bgk =0 if x; is strlctly ex0genous,

A 1 - s—t . A B A .

bop = ——— Zi_ Zt—l Zs—t+1 F(7T)disvitditxisk:fg[LA;/]ifs if x4 is weakly exogenous,
b3k - \/7 Zt 1 Z ztvztékz ff’] >\ and b4k - \/7 Zl 1 Zt 1 zt’[)ztwgﬁt[-i;;]iftv

~

- a2\ = N - A2 AL F
b = thl Zizl dis02 N Ai and bgy, \/W Zizl thl dit 0 fi Dy fr,

where I'(-) is a kernel function such that F(L—t) =1{|s —t| < Ly}, Ly is a bandwidth parameter,

Ll = (X dadd) ™ = (=3, dufif) ™

~ 2 T A ES - 2 N N 2
VRS [L)\)%’]'(Zt 1 dit twkt)[L)\)\/] is =t = [Lf}/] (Zizl dit/\i(ski)[Lf;/]ta
@it = Yit ztﬁ >\ fta xztk = Titk — 5szt wktA“
N N T
({0kitienys {@kt teerr) = argmin Z¢:1 thl it (Tith — Opi fr — wWigAi)?. (4.3)

Oki Wkt

Eqn. (G.1) in the Appendix shows how to solve the minimization problem (4.3).
When v;; is correlated across ¢ but uncorrelated across i under Assumption 9, we focus on the
static panels with strict exogeneity to avoid the endogeneity issue. In this case, W, Blk, bs, and

65k remain the same, ng =0, Qx, 6419 and [;6]€ are adjusted as follows:
1 N T T |s t
7T Zizl Zt:l Zszl F( L
N 1 N T T |s — t] R o 214 s
bag, = \/ﬁ Zi:l Zt:l Zs:l F(TT)ditUitdisUz‘swkt [L)\)\/]z‘fS,
. 1 N T T |s — ¢ R e
ber, = INT Zi:l Zt:l 23:1 I( Ir )ditOitdisVis fy Agi fs-

tvztd svzs-rztl'zs ,

~ab N o ~ ~ ~

Let 5a ‘= b — \/%W; 1p denote the analytically bias-corrected estimator where b = 216:1 b; and
A A A ~ ab

by = (b, ..., birc)’, we have the following theorem for Ba ‘

14ThiS is because E¢(ditv¢tdjtv]~t) = E¢(ditdjt)]E¢(vit)]E¢(vjt) = 0, E¢(djtvjtditl'itk) = ]E¢(djtd¢txnk) ]E¢ (th) =0 if
7 ;é j, E(p(ditvitdis?}is) = E¢(ditdis)E¢(Uit)E¢(Uis) =0 ift ;é S, and ng = plzmﬁ Efvzl Zle E¢(dit’l)i2t)iiti‘;t.
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Theorem 4.2 Suppose Assumptions 1-5 and 7-9 hold. Suppose that % — e € (0,00), LT/Ti_ﬁ —
0 and Lt — oo, as (N,T) — oo. Then

(i) Wo = Wy + 0p(1), Q0 = Qu + 0,(1), by = by + 0,(1) for € [6];

(ii) VNT(B™ — 5% % N0, W10, W ).

Theorem 4.2 shows the analytically corrected estimator Babc is asymptotically unbiased. To
simplify the proof and the conditions on (N, T, Lt), we now focus on the case where N and T pass
to infinity at the same speed. The confidence intervals of elements of 3° can be constructed based
on Babc and W; IQIW; 1 as usual. Note that split panel jackknife (SPJ) bias corrections may not
work for unbalanced panels since the “symmetry” utilized by the SPJ bias correction is likely to be
destroyed by the missing data, unless the missing is uniform and completely random and certain

stationarity conditions along both the cross-sectional and time dimensions are satisfied.

5 Discussion: Heckman Correction for Sample Selection with IFEs

When d;; is still correlated with the error term after conditioning on the factors and loadings, one

possible solution is to employ the Heckman correction. Consider the following parametric model:

yir = din(zB0 + [N+ eir), (5.1)
b= Zz/'tfso + @(9?704?) +uy and diy = 1{d;; > 0}, (5.2)

where z;; may contain x;, lagged y;;, lagged d;¢, and other observable variables, go(g? , a?) denotes

the fixed effect component, u; is the error term, and (u;, €;;) is jointly normal conditioning on the
0

regressors, the factors and the loadings. ¢(gf, a?) could be the one way/two way /interactive effects
or have a more general form. To correct the selection endogeneity, we can add a Heckman correction

term to eqn. (5.1). More specifically,

E(uiteir)

0 0710
E(yu ‘dit - 1) . 37;153: + ft/)‘i + E(uit ‘dit = 1) E(uft)

= 2By + N +mabn,  (53)
where m;; = E(uy |di = 1) = m(2},0° + (g9, a)) and m(-) is the inverse Mills ratio function. Let
Vit = €t — mitﬁgn. Then we have y;; = x;tﬁg + mitﬁ?n + fto’)\? + v, 1.e., we use mitﬁgn to correct
the endogeneity.

Since m;; depends on unknown parameters (62, g%, a®), we can estimate the selection eqn. (5.2)
first to obtain the estimators (8, &, §) and calculate 7i;; = m(z,0+¢(ge, &;)). Then we replace mg; by

;i in the main eqn. and estimate the main eqn. by quasi-MLE: (B, A, f) = arg rélaiio) QB A, f),
YELmM (Y
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where 8 = (8, 8,)s Q(B,\, f) = L(B, A\, )+ G(\, f), G\, f) and B, (7°) are the same as expres-
sions (3.2) and (3.3), respectively, and L(3, ), f) = —3 Zfil Zle dit(yir — 75, By — MitBy, — fiNi)2.
Following the estimation procedure in Section 3, we get the initial estimates (B(O), 5\(0), f (0)) first
and then iterate by alternating maximization until convergence. The main difference here is that

there is an extra error term due to replacing mg; by My, i.e.,
Yit = T B9 + i, + FA] + vie + (mie — i) B, (5.4)

Following the same roadmap of convergence analysis and asymptotic analysis in Section 3 and
Section 4, Theorems 3.1-3.3, Proposition 4.1 and Theorem 4.1 can be reestablished in a similar way
and we just need to calculate the effect of (m;; — mit)ﬁgl on the asymptotic biases and variances.
Depending on the model of ¢(g?, ag), the calculations could be straightforward or tedious.

There is a large literature on panel data sample selection models, including both fixed effects
and random effects approaches and both parametric and semi-non parametric approaches; see the
references in the Introduction. Existing studies mainly focus on models with only individual effects
under the large N fixed T" setup, except for Ferndndez-Val and Vella (2011) who studies individual
effects model under large N and large T'. Equations (5.1)-(5.2) generalize the sample selection model
to the case of IFEs, which is crucial for capturing both individual heterogeneities and common shocks
in the selection process. Equations (5.1)-(5.2) is a fixed effects parametric approach. The advantage
is avoiding distributional assumptions on the unobservable heterogeneities, while the cost is that
the joint normality assumption may be too strong. Therefore, it is also promising to extend our

results in Sections 3-4 to the propensity-score-based methods.

6 Simulations

In this section, we report simulation results for our proposed algorithms based on 1000 replications.
We focus on the following panel data model y; = dit(Zizl MO+ a:fitﬁo + v;), where d;; =

1{yi: and z;; are observable}, x;; = (14, x2,it)" and B0 = (6(1],68)’.

6.1 Data Generating Processes (DGPs)

The following two main DGPs are employed.

DGP 1: Static panel. For any r € {1,2}, we set ft()ri'ildN(O,l), bV Z"fiv'd/\/'(l,l), T = 1+
. j.i.d j.i.d
St O+ i) (5 + f1,) + N (0,1) with gy, SN (L) 2o M N(0,1), 5% = (1,1).

Errors vy = %(eit + €i+—1) where e;; ~ N (0, azﬁ) and 067iti>iv'dU(0.5, 1.5).
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DGP 2: Dynamic panel. In this case, fy. = pfff_l,r + uy where uy, ii&d/\/'(O, (1- p})azf) with
ps = 0.5, oy = 0.5. Moreover, 1t = y;t—1, and vy ~ N(O,aait) with av,iti'ri\'adU(O.B,lb).
B° = (0.3,1)". All others are same as DGP 1.

We define the missing patterns as follows.

Pattern 1: Completely random heterogeneous missing. d;; is binary, independent across (i, t)
and independent of (f?, )\?,vjs) for all (¢,7,t,s). pit == E(d;) follows i.i.d U(0.5,0.9) across
(i,t).

Pattern 2: Selection on factors and loadings. Conditioning on factors and loadings, d;; is in-
dependent across (i,t) and independent of vjs for all (i, j, t, s); Eg(di) = ®(\Y ), where ®(-)
denotes the CDF of the standard normal distribution.

Pattern 3: Mixed frequency. d;; = 0 if i > 0.6N and ¢/3 is not an integer.

Pattern 4: Staggered missing. d; = 0 when (i,t) € {04AN +1<:¢<0.7N and 0.77 4+ 1 <t <
T} or (i,t) € {0.TN +1<i<0.7N and 047 +1 <t <T}.

For the static and dynamic panel DGPs, we set the factor structure and the first regressor x1 ;;
following Moon and Weidner (2015) and Moon and Weidner (2017). We allow the error term to be
heteroskedastic in both DGPs. The number of factors are two in our simulations. We apply the
proposed SVT approach to estimate the true number of factors, with the results presented in the
next subsection. To derive the inference results, we adopt the commonly used Bartlett kernel for
bias correction and covariance matrix estimation. For the bandwidth, we set Ly = |[¢T/®] with

¢ = 2 for the bias correction and the variance estimation.

6.2 Simulation Results

In this subsection, we first consider the performance of SVT in estimating the number of factors
and then study the performance of the proposed AM algorithms. Table 1 reports the frequency of
correctly estimating the number of factors using the SV'T approach outlined in Section 3.3 with the
true number of factors being 2. For all missing patterns across all DGPs, the accuracy is notably
high, reflecting the robustness of the SVT approach across various scenarios.

Below we show the performance of the proposed AM algorithms. Define RMSE(©) = ﬁ H@ - H
for any © € RN, Similarly, define RMSE(A) = —< [|A — A°|| for any A € RM*", RMSE(F) =
% HF—FOH for any ' € RT*" and RMSE(B) = Hﬁ—BOH for any § € RX. Note that K = 2
in the simulations. We set the convergence accuracy of alternating maximization algorithm to be
1074,
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Table 1: Frequency of estimating the correct number of factors by using SVT

Table 2 reports the number of iterations required for convergence in the two alternating maxi-
mization algorithms: “AM1”, which corresponds to the Gauss-Seidel procedure from Algorithm 1,
and “AM2”, which corresponds to the Jacobi procedure from Algorithm 2. The table shows that
the Gauss-Seidel procedure typically converges within 30 iterations, whereas the Jacobi procedure
requires significantly more iterations, generally staying below 100. Across all DGPs and missing pat-
terns, the Jacobi procedure consistently requires more iterations to achieve convergence compared
to the Gauss-Seidel procedure. This difference arises because, in the Jacobi procedure, the slope
estimator depends on factor estimates from the previous iteration, increasing its computational
burden. Moreover, scenarios with serial correlation require substantially more iterations for both

procedures compared to dynamic cases. Overall, “AM1”, i.e., the Gauss-Seidel procedure, exhibits

\ DGP 1 \ DGP 2

Pattern | N=100 | N=200 | N=100 | N=200

| T=25 T=50 T=100 | T=100 | T=25 T=50 T=100 | T=100

1.00 1.00 0.957 1.00 1.00  0.992 1.00 1.00
0.868 0.888  0.986 0.998 | 0.955 0.969  0.993 1.00
1.00 1.00 1.00 1.00 1.00  0.999 1.00 1.00
1.00 1.00 1.00 1.00 1.00  0.969 1.00 1.00

=W N =

greater efficiency, achieving numerical convergence with fewer iterations across most settings.

Table 2: Number of iterations by AM algorithm

| AM1 \ AM?2
DGP N T ‘ Pattern 1 Pattern 2 Pattern 3 Pattern 4 ‘ Pattern 1 Pattern 2 Pattern 3 Pattern 4

25 23.94 24.85 26.73 31.33 65.77 81.49 95.45 115.89

100 50 18.38 15.50 17.43 24.58 61.80 35.46 59.20 98.37

1 100 13.82 14.46 13.28 14.33 55.88 56.35 66.12 64.62
200 100 12.87 13.05 11.25 13.17 58.91 65.46 55.84 56.66

25 7.31 15.65 7.48 12.24 11.55 28.37 13.32 19.42

100 50 8.43 7.66 8.34 10.02 19.32 13.55 20.03 23.93

2 100 6.39 6.58 6.25 6.11 15.58 16.21 16.67 14.40
200 100 5.69 5.87 5.25 5.73 14.98 14.99 13.69 15.00

Tables 3 presents the RMSE results for the slope and intercept matrix estimators associated
with factor and factor loading estimates across three algorithms: “NNR”, “AM1”, and “AM?2”.
The results are divided into three panels, with the first panel (NNR) showing the RMSE results
for initial estimators obtained using nuclear norm regularization. The findings reveal significant
differences in estimation accuracy across the algorithms. As the first step in the estimation process,

NNR produces higher RMSE values compared to AM1 and AM2. After applying the AM algorithms,
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in contrast, the RMSE values drop significantly. AM1 and AM2 demonstrate substantially lower
RMSEs for all 5, O, factor and factor loadings. For instance, under DGP 1 with N = 200 and
T = 100, AM1 achieves RMSEs of 0.221 for ©, which is approximately one-sixth of the RMSE of
1.473 achieved by NNR. Additionally, the performance of AM1 and AM2 is generally similar across
most settings. Overall, AM1 and AM2 substantially outperform NNR in terms of precision as
expected, highlighting the effectiveness of the alternating maximization approach in refining initial
estimates.

Table 4 presents the point estimation and inference results for 3, and S, using the Gauss-
Seidel algorithm across both DGPs and various missing patterns. For each missing pattern within
each DGP, we report the bias, standard deviation (sd), and coverage probability (CV) of the 95%
confidence intervals for both the uncorrected estimator and the bias-corrected estimator, denoted
by “B” and “Babc”, respectively. We first examine the bias in BQ. Due to the construction of xo j,
which is independent of both factors and loadings, the bias remains generally small across all DGPs
and missing patterns. In contrast, since x1; is correlated with the factor structure, a noticeable
bias is present. As N or T increases, this bias gradually decreases, aligning with the theoretical
result in Theorem 4.1. Next, bias correction significantly reduces bias across all settings. When T’
is small (e.g., T' = 25), the correction procedure eliminates approximately 40% of the bias in most
cases. However, in more complex scenarios, such as missing pattern 2 in DGP 1 — where missingness
is correlated with the factor structure — the correction is less effective, reducing the bias by only
about 25%. As T increases, the effectiveness of the bias correction improves, with more substantial
reductions observed for 1" = 50 and 1" = 100.

For the standard deviation of the estimators, as expected, increasing N or T reduces the standard
deviation, as more observations provide more stable estimates. The bias correction procedure has
minimal impact on standard deviation, as the values for B and Babc remain almost identical across
all settings. This suggests that the bias correction method effectively improves accuracy without
inflating estimator variability, ensuring stable inference.

Finally, we assess the coverage probability of the 95% confidence intervals. For Bz, the coverage
probability is close to the nominal level across most cases, owing to its relatively small bias. However,
for Bl, the results highlight the critical role of bias correction. The coverage probability is lower
when T is small, particularly in DGP 2, where the initial bias is larger. With bias correction, the
coverage probability improves significantly and aligns more closely with 95%, especially in cases
with moderate or large T'. However, the coverage probabilities sometimes fall short of 0.95, even
when 7" reaches 100; see the results for missing pattern 2 in the dynamic panel. This deviation may
be attributed to the challenges in accurately estimating the bias for those more complex scenarios.

Nonetheless, as the sample size increases, the coverage probability for Bl after bias correction
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Table 3: RMSE results by NNR and AM algorithms

Pattern Algorithm N

DGP 1

DGP 2

T

B

(S)

F

A

B

(S]

F

A

NNR

100

200

25
50
100
100

0.249
0.245
0.227
0.231

1.755
1.568
1.594
1.473

2.156
2.208
2.703
2.162

2.157
2.306
2.794
2.144

0.289
0.106
0.081
0.149

1.099
0.948
0.951
0.960

1.854
1.805
1.795
1.800

1.457
1.408
1.398
1.420

1 AM1

100

200

25
50
100
100

0.029
0.019
0.012
0.009

0.441
0.322
0.254
0.221

0.189
0.163
0.158
0.115

0.354
0.225
0.157
0.159

0.039
0.021
0.014
0.011

0.470
0.321
0.260
0.222

0.366
0.245
0.247
0.163

0.543
0.333
0.244
0.223

AM?2

100

200

25
50
100
100

0.029
0.020
0.013
0.009

0.442
0.323
0.254
0.221

0.189
0.163
0.159
0.115

0.354
0.225
0.158
0.159

0.039
0.021
0.014
0.011

0.471
0.321
0.260
0.222

0.368
0.245
0.247
0.163

0.544
0.333
0.244
0.223

NNR

100

200

25
50
100
100

0.315
0.278
0.259
0.227

1.758
1.622
1.846
1.739

2.014
2.133
2.219
2.144

1.698
1.821
1.995
1.967

0.237
0.119
0.179
0.173

0.976
0.893
0.960
0.918

1.873
2.144
1.824
1.806

1.543
1.584
1.431
1.370

2 AM1

100

200

25
50
100
100

0.032
0.022
0.016
0.011

0.700
0.541
0.770
0.395

0.464
0.409
0.591
0.261

0.448
0.306
0.243
0.211

0.052
0.027
0.016
0.012

0.544
0.602
0.356
0.292

0.384
0.680
0.351
0.257

0.503
0.571
0.286
0.277

AM2

100

200

25
50
100
100

0.033
0.022
0.016
0.011

0.798
0.569
0.820
0.384

0.538
0.420
0.614
0.247

0.484
0.315
0.239
0.209

0.052
0.027
0.017
0.012

0.550
0.623
0.359
0.297

0.392
0.705
0.354
0.264

0.505
0.585
0.286
0.277

NNR

100

200

25
50
100
100

0.248
0.250
0.242
0.238

1.838
1.423
1.567
1.439

2.295
2.055
2.237
2.182

2.490
2.165
2.244
2.126

0.113
0.202
0.143
0.133

0.970
1.033
0.984
0.956

1.695
1.879
1.856
1.815

1.233
1.549
1.511
1.414

3 AM1

100

200

25
50
100

100

0.027
0.018
0.012
0.009

0.486
0.327
0.274
0.241

0.183
0.156
0.154
0.119

0.369
0.241
0.177
0.186

0.031
0.022
0.014
0.010

0.489
0.354
0.279
0.250

0.319
0.228
0.222
0.172

0.570
0.349
0.263
0.279

AM2

100

200

25
50
100
100

0.027
0.019
0.012
0.009

0.487
0.327
0.275
0.241

0.184
0.156
0.155
0.119

0.369
0.241
0.177
0.186

0.031
0.022
0.014
0.010

0.492
0.355
0.279
0.251

0.322
0.229
0.222
0.172

0.574
0.349
0.264
0.280

NNR

100

200

25
50
100
100

0.279
0.237
0.225
0.240

1.981
1.795
1.493
1.486

2.264
2.229
2.360
2.220

2.221
2.201
2.372
2.313

0.216
0.239
0.149
0.154

1.136
1.050
0.991
0.962

1.903
1.900
1.827
1.802

1.518
1.603
1.431
1.409

4 AM1

100

200

25
50
100
100

0.027
0.019
0.012
0.009

0.458
0.352
0.277
0.220

0.173
0.176
0.172
0.117

0.322
0.251
0.183
0.153

0.053
0.027
0.014
0.011

0.721
0.330
0.286
0.229

0.575
0.220
0.261
0.176

0.852
0.307
0.260
0.236

AM2

100

200

50
100
100

0.027
0.019
0.013
0.009

0.459
0.353
0.277
0.220

0.174
0.177
0.172
0.117

0.322
0.251
0.183
0.153

0.052
0.027
0.014
0.011

0.730
0.330
0.286
0.229

0.585
0.220
0.261
0.176

0.861
0.307
0.261
0.236
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gradually approaches the nominal level, demonstrating the asymptotic validity of the correction
procedure.

Overall, the results in Table 4 indicate that our AM algorithms are robust and effective in
managing a wide range of data structures. The estimation and inference results by using the Jacobi

procedure are presented in Table 5, showing patterns and insights similar to those in Table 4.

7 Empirical Application

7.1 Background and Model

State excise taxes have long been a focal point in public finance and econometrics, providing a unique
framework to study tax competition, policy diffusion, and temporal dynamics in the fiscal policy.
Three key features of state excise taxes have consistently drawn attention in the literature. First,
state excise taxes exhibit significant cross-sectional dependence, as tax decisions in one state are
often influenced by those in neighboring states. This phenomenon aligns with the broader literature
on tax competition and policy interdependence (see, e.g., Brueckner, 2003; Case et al., 1993; Besley
and Case, 1995). Empirical studies such as Egger et al. (2005) and Devereux et al. (2007) quantify
this cross-sectional dependence of state excise taxes using spatial panel models, which effectively
captures the spatial spillover of tax policy. Second, state excise taxes exhibit strong persistence over
time, suggesting that past taxes heavily influence current policy choices. This persistence can be
attributed to the long-term fiscal planning and the stability of political preferences. Using data on
cigarette and gasoline taxes for the U.S. states from 1977 to 1997, Devereux et al. (2007) demonstrate
statistically significant and high persistence in excise taxes. Third, the level of income also plays
a critical role in shaping state excise taxes. Some studies, such as Chaloupka and Warner (2000),
find that higher income per capita can lead to higher excise taxes on specific goods, like alcohol,
as wealthier populations may be more willing to tolerate such taxes due to increased awareness of
public health considerations.

These three empirical regularities, viz., cross-sectional dependence, high persistence, and the
influence of income, highlight the complex dynamics underlying state excise tax policies. In this
section, we revisit the topic of U.S. state excise taxes. Unlike Devereux et al. (2007), who use a
balanced panel dataset of cigarette and gasoline tax data for 20 years, the proposed algorithms for
the unbalanced panel data model motivate us to study a longer period and include an additional
excise tax: the wine tax. Wine taxes often exhibit more missing data and are frequently overlooked
in the balanced panel data research. Beyond excise taxes, this section also extends the analysis
to include income taxes, such as the state-level corporate top tax rate, to explore whether the

persistence and the impact of income emerge across different types of state tax policies.
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Table 4: Estimation and inference results by Gauss-Seidel algorithm

DGP missing pattern

| N=100, T=25 | N=100, T=50 | N=100, T=100 | N=200, T=100

| A B | B B | B B | B B
bias | -0.0141  0.0008 | -0.0069 -0.0006 | -0.0042 0.0000 | -0.0035 0.0007
B sd | 00149 00264 | 0.0092 0.0189 | 0.0060 0.0125 | 0.0041  0.0089
CV | 0818 0935 | 0881 0939 | 0.874 0949 | 0.899  0.952
! bias | -0.0090  0.0006 | -0.0034 -0.0005 | -0.0010 0.0000 | -0.0008  0.0007
g¢ sd | 0.0149  0.0265 | 0.0092  0.0189 | 0.0060 0.0125 | 0.0041  0.0089
CV | 0871 0935 | 0923 0939 | 0960 0950 | 0.955  0.952
bias | -0.0112 -0.0004 | -0.0065 -0.0013 | -0.0032 -0.0002 | -0.0023 ~ 0.0006
5 sd | 00145 00318 | 0.0113  0.0240 | 0.0072 0.0149 | 0.0046  0.0102
CV | 0830 0924 | 0875 0925 | 0.894  0.949 | 0.916  0.944
2 bias | -0.0098  0.0001 | -0.0039 -0.0012 | -0.0006 0.0000 | 0.0000  0.0006
g¢ sd | 0.0144  0.0318 | 0.0114  0.0240 | 0.0072  0.0149 | 0.0047  0.0102
CV | 0851 0923 | 0918 0926 | 0954 0950 | 0.952  0.945
1 bias | -0.0104 -0.0015 | -0.0059  0.0007 | -0.0025 0.0004 | -0.0023  0.0003
B osd | 00124 00262 | 0.0102 00176 | 0.0063 0.0121 | 0.0043  0.0086
CV | 0851 0926 | 08904 0941 | 0.907  0.950 | 0.915  0.951
3 bias | -0.0062 -0.0017 | -0.0026 0.0003 | -0.0004 0.0003 | -0.0003 ~ 0.0003
gesd | 0.0123  0.0262 | 0.0102  0.0176 | 0.0063 0.0121 | 0.0043  0.0086
CV | 0906 0925 | 0937 0942 | 0947 0950 | 0.960  0.950
bias | -0.0121  0.0023 | -0.0079 -0.0015 | -0.0038  0.0003 | -0.0041 -0.0002
B osd | 00127 00249 | 0.0084 0.0175 | 0.0060 0.0124 | 0.0044  0.0088
CV | 0828 0937 | 0860 0937 | 0.899 0942 | 0.855  0.944
4 bias | -0.0094  0.0022 | -0.0036 -0.0013 | -0.0014  0.0002 | -0.0010 -0.0002
e sd | 00127 0.0249 | 0.0084 0.0175 | 0.0060 0.0124 | 0.0044  0.0088
CV | 0870 0936 | 0933 0936 | 0943 0942 | 0.945  0.943
bias | -0.0264 -0.0024 | -0.0084 -0.0009 | -0.0068 -0.0003 | -0.0055 0.0002
B sd | 00205 00270 | 0.0127 0.0178 | 0.0085 0.0125 | 0.0060 0.0089
CV | 0631 0931 | 0863 0940 | 0857 0943 | 0.835  0.946
! bias | -0.0150 -0.0014 | -0.0029 -0.0008 | -0.0021 -0.0002 | -0.0015  0.0002
e sd | 00196 0.0271 | 0.0125 0.0178 | 0.0084 0.0125 | 0.0059  0.0089
CV | 0834 0929 | 0924 0944 | 0933 0945 | 0.943  0.946
bias | -0.0382 -0.0012 | -0.0121 -0.0001 | -0.0070 -0.0017 | -0.0062 -0.0002
7 sd | 00252 00337 | 0.0160 0.0233 | 0.0101 0.0147 | 0.0070  0.0098
CV | 0519 0912 | 0830 0920 | 0862 0942 | 0.842  0.955
2 bias | -0.0226  0.0002 | -0.0038  0.0001 | -0.0023 -0.0017 | -0.0014 -0.0001
ge sd | 0.0241 0.0339 | 0.0156  0.0233 | 0.0100 0.0147 | 0.0069  0.0098
CV | 0750 0908 | 0917 0919 | 0939 0941 | 0935  0.955
2 bias | -0.0124  0.0009 | -0.0113 -0.0006 | -0.0038  0.0005 | -0.0034 -0.0003
3 sd | 00183 00273 | 0.0125 0.0176 | 0.0086 0.0127 | 0.0058  0.0090
CV | 0865 0937 | 0.817 0945 | 0910  0.946 | 0.897  0.954
P bias | -0.0047  0.0011 | -0.0031 -0.0004 | -0.0009 0.0005 | -0.0009 -0.0002
ge sd | 0.0178  0.0273 | 0.0124  0.0176 | 0.0086 0.0127 | 0.0058  0.0090
CV | 0911 0936 | 0928 0946 | 0942 0948 | 0.947  0.953
bias | -0.0449 -0.0048 | -0.0190 -0.0006 | -0.0071 -0.0007 | -0.0066  0.0003
B sd | 00201 00263 | 00129 0.0185 | 0.0087 0.0119 | 0.0059  0.0090
CV | 0294 0926 | 0632 0947 | 0852  0.953 | 0.781  0.949
4 bias | -0.0243 -0.0035 | -0.0081 -0.0004 | -0.0017 -0.0007 | -0.0017 ~ 0.0003
ge sd | 0.0193  0.0264 | 0.0126  0.0186 | 0.0085 0.0119 | 0.0058  0.0090
CV | 0683 0932 | 0.878 0947 | 0930 0951 | 0.941  0.949
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Table 5: Estimation and inference results by Jacobi algorithm

DGP missing pattern

| N=100, T=25 | N=100, T=50 | N=100, T=100 | N=200, T=100

| A By | B By | B B | B Ba
bias | -0.0138  0.0007 | -0.0066 -0.0006 | -0.0049 0.0000 | -0.0034 0.0007
B sd | 00151 00264 | 0.0096 0.0189 | 0.0064 0.0125 | 0.0045 0.0089
CV | 0823 0930 | 0.879 0937 | 0.870  0.948 | 0.894  0.951
! bias | -0.0087  0.0006 | -0.0032 -0.0005 | -0.0009 0.0000 | -0.0007 0.0007
e sd | 0.0151  0.0265 | 0.0095 0.0189 | 0.0064 0.0125 | 0.0045 0.0089
CV | 0870 0933 | 0916 0937 | 0.949  0.948 | 0.951  0.951
bias | -0.0110 -0.0008 | -0.0061 -0.0015 | -0.0033 -0.0002 | -0.0025 ~ 0.0003
B sd | 00153 00319 | 0.0119 0.0240 | 0.0079 0.0150 | 0.0053  0.0102
CV | 0821 0921 | 0885 0924 | 0.892 0948 | 0919  0.943
2 bias | -0.0095 -0.0004 | -0.0034 -0.0014 | -0.0007  0.0000 | -0.0002 0.0003
e sd | 0.0152  0.0318 | 0.0119  0.0240 | 0.0080  0.0150 | 0.0053  0.0102
CV | 0.843 0920 | 0917 0925 | 0.940 0948 | 0942  0.942
1 bias | -0.0105 -0.0015 | -0.0057 0.0007 | -0.0023 0.0003 | -0.0022  0.0003
B sd | 00129 00262 | 0.0107 00176 | 0.0068 0.0121 | 0.0047  0.0086
CV | 0.844 0925 | 0897 0941 | 0.902 0.949 | 0915  0.950
3 bias | -0.0063 -0.0017 | -0.0024 0.0003 | -0.0003 ~ 0.0003 | -0.0003 ~ 0.0003
e sd | 0.0128  0.0263 | 0.0107 0.0176 | 0.0068 0.0121 | 0.0047  0.0086
CV | 0.896 0925 | 0926 0941 | 0934 0950 | 0.947  0.950
bias | -0.0124  0.0023 | -0.0080 -0.0015 | -0.0037 0.0003 | -0.0041 -0.0002
B sd | 00132 00249 | 0.0090 0.0176 | 0.0065 0.0124 | 0.0046 0.0088
CV | 0819 0936 | 0.843 0936 | 0.894  0.942 | 0846  0.944
4 bias | -0.0097 0.0023 | -0.0037 -0.0013 | -0.0013 0.0002 | -0.0011 -0.0002
g sd | 0.0132 0.0249 | 0.0090 0.0176 | 0.0065 0.0124 | 0.0046  0.0088
CV | 0.857 0936 | 0924 0936 | 0934 0942 | 0.930  0.943
bias | -0.0261 -0.0023 | -0.0083 -0.0009 | -0.0067 -0.0003 | -0.0054  0.0002
B sd | 0.0206 00270 | 0.0126 0.0178 | 0.0085 0.0125 | 0.0060 0.0089
CV | 0635 0931 | 0866 0940 | 0850  0.943 | 0.835  0.946
! bias | -0.0147 -0.0014 | -0.0028 -0.0008 | -0.0020 -0.0002 | -0.0014  0.0002
e sd | 0.0197  0.0271 | 0.0125 0.0178 | 0.0085 0.0125 | 0.0060  0.0089
CV | 0833 0928 | 0926 0943 | 0932 0945 | 0.945  0.946
bias | -0.0378 -0.0012 | -0.0114  0.0000 | -0.0079 -0.0016 | -0.0060 -0.0002
5 sd | 00252 00337 | 0.0161 00235 | 0.0102 0.0147 | 0.0071  0.0098
CV | 0524 0910 | 0.842 0917 | 0851 0942 | 0.843  0.955
2 bias | -0.0222  0.0002 | -0.0031  0.0001 | -0.0021 -0.0016 | -0.0013 -0.0002
e sd | 0.0241  0.0340 | 0.0158  0.0235 | 0.0101  0.0147 | 0.0070  0.0098
CV | 0754 0909 | 0922 0918 | 0935 0941 | 0933  0.954
2 bias | -0.0119  0.0010 | -0.0111 -0.0006 | -0.0037 0.0005 | -0.0033 -0.0002
5 sd | 00183 00273 | 0.0126 0.0176 | 0.0087 0.0127 | 0.0059  0.0090
CV | 0870 0936 | 0.820 0945 | 0912 0946 | 0.901  0.953
P bias | -0.0046  0.0012 | -0.0026 -0.0004 | -0.0008 0.0005 | -0.0008 -0.0002
e sd | 0.0178  0.0273 | 0.0125 0.0176 | 0.0086 0.0127 | 0.0058  0.0090
CV | 0909 0936 | 0931 0946 | 0.940  0.948 | 0.945  0.953
bias | -0.0446 -0.0047 | -0.0189 -0.0006 | -0.0070 -0.0007 | -0.0065 ~0.0003
B sd | 00199 00263 | 0.0129 0.0185 | 0.0087 0.0119 | 0.0059  0.0090
CV | 0207 0927 | 0.632 0947 | 0.854 0951 | 0.785  0.949
4 bias | -0.0240 -0.0034 | -0.0080 -0.0004 | -0.0016 -0.0007 | -0.0017 ~ 0.0003
e sd | 0.0191  0.0264 | 0.0126  0.0186 | 0.0086 0.0119 | 0.0059  0.0090
CV | 0.604 0932 | 0879 0947 | 0920  0.951 | 0.940  0.948
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To account for cross-sectional dependence, we employ IFEs. To capture the persistence in tax,
we utilize dynamic panel models. The state-level income per capita is included as an independent
variable. Specifically, we consider the following four panel models with IFEs and potential missing

values:

lgas;, = dit(\; fi + B1lgas; ;1 + Baginc, + vit), (
leig;, = dis (N fy + Bylcig; 1 + Bagine;, + vit), (
lwine;; = dit()\; [t + B1lwine; ;1 + Baginc, + vir), (

(

lcorp;; = du(Nofi + B 1leorp; ;1 + Baginc;, + vir).

In the models above, lgas;; is the logarithm of gasoline unit tax for state ¢ at year ¢, Igas; ;1 is the
logarithm of time lag term for the gasoline unit tax, and similar definitions apply for lcigg, lcig; ;—1,
lwine;; and Iwine; ;1. Moreover, lcorp;; is the logarithm of state-level corporate top tax rate with
lcorp; ;—1 being the corresponding time lag term. “ginc;;” is the growth rate of income per capita for
each state, which is included as the state-level control variable. v;; is the error term, A; and f; are
the loadings and factors, respectively. d;; is the missing indicator. §; and 3, are the corresponding

slopes for each regression model, with /3, indicating the income elasticity on the taxes.

7.2 Data

We collect the tax data for gasoline, cigarettes, wine, and corporate from the World Tax Database
maintained by the Office of Tax Policy Research at the University of Michigan. State-level income
per capita data is sourced from the Bureau of Economic Analysis. Following Devereux et al. (2007),
we deflate unit taxes using the 1982 CPIL.

For the analysis of gasoline and cigarette taxes, we construct a dataset covering 49 U.S. states
from 1951 to 2000, excluding Alaska and Hawaii, as they became states only after 1959. For wine
and corporate taxes, after cleaning the data, the dataset includes 30 and 44 states over the same
time period, as several states lack data for the entire time periods. The data reveal missing values
for gasoline tax (1.76%), cigarette tax (3.39%), wine tax (8.47%) and corporate top tax (10.59%).

Figure 1 illustrates the missing data patterns for the four taxes, with missing values indicated
in beige color. For gasoline taxes, missing data occur only in specific years: 1951, 1993, and 1999.
Similarly, cigarette tax data exhibit minimal gaps, with only a few states (e.g., California, Colorado,
Maryland) lacking data in the earlier years. In contrast, the wine tax and corporate top tax datasets
exhibit significantly more missing data. For the wine tax, the gaps are both persistent throughout

the timeline for certain states (e.g., the District of Columbia) and concentrated in specific time
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periods. The corporate tax dataset combines characteristics of both the cigarette and wine tax
datasets, with more states missing data in the earlier years and certain specific years showing
scattered missing data points. This makes the corporate tax dataset the most incomplete among

the four.

Figure 1: Missing patterns for the tax data

(a) Gasoline (b) Cigarette

West Virginia
Wisconsin

7.3 Estimation and Inference Results for the Unbalanced Panel

Using the SVT approach described in Section 3.3, the estimated number of factors for all four
models remain one. Table 6 presents the estimation results, where the columns correspond to the
gasoline, cigarette, wine, and corporate tax models (7.1) — (7.4), respectively.

In this table, the row labeled “tax;; 1" represents the lagged dependent variable in each re-

gression. Results are reported both with and without bias correction, as discussed in Section 4.
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The estimated elasticity coefficients for the lagged tax are consistently high across all excise taxes,
indicating strong persistence over time. While it becomes weaker for the corporate tax. The esti-
mates range from 0.334 (corporate tax) to 0.971 (cigarette tax), all statistically significant at the
1% level. Bias correction has only minor effects on these estimates, suggesting the relatively small
finite-sample bias.

Regarding the growth rate of state income, the estimated effects vary across tax types. Bias
correction leads to more negative estimates for gasoline and cigarette taxes, with coefficients of
-0.817 and -0.310, respectively, both statistically significant at the 1% and 5% levels. The wine
tax exhibits a positive and significant relationship with income growth (0.579, significant at the
5% level), whereas the corporate tax shows a negative but statistically insignificant relationship.
Especially, the bias correction helps to improve the significance level for the relationship of income
and cigarette/wine taxes.

The differing effects of income growth across tax types likely reflect distinct economic and policy
considerations. The negative relationship between income growth and gasoline/cigarette taxes may
suggest that as a state economy grow, the state government may be less reliant on these two excise
taxes, possibly shifting toward alternative revenue sources. In contrast, the positive effect on wine
tax rates suggests a progressive taxation effect in states where wine consumption is more prevalent
among higher-income populations. Moreover, the lack of significance for corporate tax rates implies
that corporate tax policies may be driven by structural and political factors rather than short-term

income fluctuations.

Table 6: Estimation results for US state tax with missing data

Variables Bias correction gas;; cig; wine;; COTPjt
0.963 0.971 0.630 0.334
¥§ (214.41)**  (247.14)*  (21.87)*  (10.74)***
b1 0.964 0.973 0.625 0.327
no (214.72)**  (247.53)***  (21.71)***  (10.53)***
-0.817 -0.310 0.579 -0.163
yes (=6.07)***  (—2.23)** (3.59)** (=0.75)
swme -0.758 -0.237 0.524 -0.170
no (—5.63)*** (—-1.71)* (3.21)* (—0.78)
N 49 49 30 44
T 50 50 50 50
Notes: Values in parentheses are the t-statistics. *, **, and ***denote signifi-

cance at 10%, 5%, and 1%, respectively.
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7.4 Comparison with the Results for the Balanced Sub-panel

To compare the results from our unbalanced dataset with a traditional balanced panel approach, we
constructed a balanced panel by removing states with missing data from 1951 to 2000. After this
data cleaning, the balanced dataset includes 15 states for gasoline tax, 41 states for cigarette tax,
and 11 states for corporate tax. Due to data limitations after the truncation, the wine tax model
is excluded from this balanced sample. For gasoline, cigarette, and corporate taxes, we apply the
traditional panel data model with IFEs following the method in Moon and Weidner (2017). The
estimation results are reported in Table 7.

For the lagged tax rate, the estimates in the balanced model are generally higher than those in
the unbalanced model. The estimate for tax;;—; increases from 0.963 and 0.971 in the unbalanced
model to 0.99 and 0.981 in the balanced model for gasoline and cigarette taxes. However, for
corporate tax, the estimate increases to 1.002, suggesting possible overestimation due to a smaller
sample size (N = 11). The very high persistence of corporate tax rates (above 1) in the balanced
model indicates potential estimation issues, reinforcing the advantage of using the missing data
approach, which leverages a larger sample for more reliable estimates.

Regarding income growth, the balanced panel results differ significantly from the unbalanced
model. The previously strong negative effect of income growth on gasoline tax (-0.817) becomes
statistically insignificant (-0.164) in the balanced model. Similarly, for the cigarette tax, the negative
income effect (-0.310, significant at 5%) disappears in the balanced model (0.035, insignificant). For
corporate taxes, the unbalanced model shows a small negative effect (-0.163), but in the balanced
panel, the estimate is nearly zero (0.007, insignificant). These differences suggest that restricting
the data to a balanced panel can introduce bias and lead to misleading conclusions about the
relationship between income growth and tax rates.

The comparison between our proposed AM algorithm for handling missing data and the tradi-
tional balanced panel approach highlights the advantages of incorporating all available data. The
unbalanced panel approach captures meaningful economic relationships that are lost when using
a traditional balanced panel. This suggests that removing data to create a balanced panel may
introduce biases and obscure important economic dynamics, reinforcing the advantages of our AM

algorithm.

8 Conclusions

This paper studies IFEs panel data models with missing data. A two-step procedure is proposed
to estimate the regression coefficients and the factors and loadings, where in the first step we use

nuclear norm regularization to obtain consistent initial estimates and in the second step we use
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Table 7: Estimation results for US state tax with balanced data

Variables Bias correction gas;; cig; COTDj¢
0.990 0.981 1.002
yes (62.60)*  (443.60)*  (498.56)"*
taxiz-1 0.967 0.981 1.002
no (61.16)***  (443.59)"*  (498.54)**
-0.164 0.035 0.007
yes (—1.04) (0.55) (0.11)
gme -0.045 0.035 0.010
no (—0.29) (0.55) (0.17)
N 15 41 11
T 50 50 50

Notes: Values in the parentheses are t-statistics. *** denote
significance at 1%.

the alternating maximization (AM) to iterate until convergence. Under fairly general missing data
patterns, we prove that the AM is a contractionary mapping towards the second step estimator and
the second step estimator is asymptotically normal, as long as the initial estimator is consistent. We
also show that the asymptotic biases and variances depend on the missing patterns and we develop
analytical bias corrections according to the missing pattern. Monte Carlo simulations demonstrate
excellent finite sample performance for the proposed estimation algorithm. An empirical application
for the US state-level tax rates from year 1951 to 2000 with missing data shows that gasoline,
cigarette, wine and corporate tax rate all exhibit persistence and state-level income growth affects
various types of taxes differently.

Our results allow some important missing patterns, including block/staggered missing and selec-
tion on regressors/factors/loadings. Moreover, we also show that our results can be readily extended
to cases with a Heckman correction term or other general settings such as nonlinear panels, two
way fixed effects model and other missing patterns.

A series of work can be done based on our theoretical framework, e.g., testing the presence of
sample selection bias in addition to the factor structure, extending our results to the fixed T' cases
or the nonlinear cases, allowing for nonstationarity in the data and allowing for potential slope
heterogeneity. Our results are prototypical for the estimation and inference of unbalanced panels

under general missing patterns and thus should be useful for these further studies.
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This online appendix contains 9 sections. Section A contains details for the Hessian matrices used in the
estimation. Section B contains the proofs of Proposition 3.1 and Theorem 3.1. Section C contains the proofs
of Theorem 3.2 and Corollary 3.1. Section D contains the proof Theorem 3.3. Section E contains the proofs
of Proposition 4.1 and Theorem 4.1. Section F contains some supplementary lemmas used in the proofs of
the results in Section E. Section G contains the proof of Theorem 4.2. Section H contains details for the
Alternating Direction Method of Multipliers Algorithm (ADMM).

A Details for the Hessian Matrices

Recall that v = (8, X, f')" and Q(y) = L(v) + G(v), where L(-) and G(-) are defined in (3.1) and (3.2),

respectively. We use the following notations to define the Hessian matrix associated with @ (7).

ot = amaor=( 280 200 )= (Sn) ety ) e

Qowr(1) = —30 S diaa for any 7, (4.2)

Qoo (V) = (Qaxy () Quxy, (1): Qapy (V) Qg (7)) (A.3)

where Qg (7) = —Zle diszie fi and Qgyp/(v) = —ZlN:l ditzyN;. For Qe (), we make the following
decomposition:

Qoo (7) = 0p L(7) + G (), (A.4)

where Opg L(77) = Ly (7) + Jpe (7) and Opp G(7) = Gy (7). We make the following partitions:

B Qv (v) Qap(v)

Qo)) = (ka’(’Y) Qrpr(7) ) (4.5)
B Lax(v)  Lag(v) N ) — 0 I ()

Fer) = (Lfm Lff/w)) et fe ) (fom) 0 > o

Here, Ly () is an Nr x Nr block-diagonal matrix and the i-th diagonal block is — Zthl ditfefls Lip ()
is a Tr x Tr block-diagonal matrix and the ¢-th diagonal block is — vazl digtAi\y; Ly #(77) is of dimension



Nr x Tr and the (i,t)-th block is —d;¢ fe\;; Lya () is the transpose of Lys (7). Jxg () is also Nr x Tr and
the (i,t)-th block is diyvi(v)I, with v (v) = yir — xaf — fiXi, and Jyx(y) = Jap(v)'. When v = ~0, we
suppress the argument of these matrices and write, e.g., Qgp' = Qpg’ (v°).

In addition, we define the following sets of (Nr 4 T'r) x 1 vectors for 1 <p < g <r.

wgp : For the first Nr elements, in the i-th block, the p-th element is )\?p and all the other elements are
zeros; for the last Tr elements, in the ¢-th block, the p-th element is — f& and all the other elements

are zeros.

wp,, © For the first N7 elements, in the i-th block, the p-th element is )\?q and all the other elements are
zeros; for the last Tr elements, in the ¢-th block, the g-th element is — ffp and all the other elements

are zeros.

w,, : For the first N7 elements, in the i-th block, the g-th element is )\?p and all the other elements are zero;

for the last T'r elements, in the ¢-th block, the p-th element is — f?q and all the other elements are zero.

Let W0 contain the vectors w?

0 .
pp> wp €.

0
g and wg,,, 1.

3

0 _ 0 0.,0 0 .0 0 0 0 0 .0 0 0
WY = (wn,...,wm.,wm,...,wh_,w%,...,wQT.,...,w<r_1),,,,w21,...,wT.l,wgg,...,w7.2,...,wT(T_1))

= Wy, wyy, (A7)

where WY (an N7 x 7% matrix) contains the first N7 rows of W° and W§ ((a T7 x 7* matrix)) contains the

last T'r rows. From expression (3.2) it’s not difficult to see that

C

GO = =5

= fggb’D%ND;,%TWOWO’D;éD%Nqﬁ, and hence

_1 _1 2 _1 1 2
Vv NT(DN%WO)/DN%(bH = *g HWO/DN%DJZ“NQSH

Gopy = Opy G\ f) = —cD2NDNaWOWY D 2D2 . (A.8)

A cautionary note. For a real square matrix A, we will A~! to denote its usual inverse when A is of
full rank, and the Moore-Penrose generalized inverse (AT) if A is not of full rank. The Hessian matrix Ly (-)
associated with L(-) is has rank (N + T')r — r?, whereas the Hessian matrix @4 associated with @ (-) is full
rank (see Lemma B.1 below).

B Proofs of Proposition 3.1 and Theorem 3.1
Lemma B.1 Suppose Assumptions 1-2 and 4 hold. Then as (N,T) — oo, (—D;I%meD;I%)_l = 0,(1).

Proof. For the random missing case, Lemma B.1 in Su and Wang (2024) (see steps (1.1)-(1.3) in
particular) proves this result under their Assumptions 1, 2(i) and 4. Note that Q44 here corresponds to
le +(Lyy — Lyg )+ Jpe there. For the block-type missing case, Lemma B.2 in Su and Wang (2024) proves
this result under their Assumptions 1, 2(ii) and 4.

The proofs are quite different under random missing and block-type missing because the structure of Q44

1 _1
under these two types of missing patterns are quite different. A key condition for proving (—D;2 Qe Dr) ™' =



O,(1) in the random missing cases is that E,(d;) > d > 0 for all ¢ and ¢. Nevertheless, this condition is
violated in the block missing cases where d;; is always 1 if i < N, or t < T, and always 0 if i > N, and
t > T,. Because of this fundamental difference, Su and Wang (2024) prove (—D;J%QM/D;J%)*I = 0,(1)
conditioning on the block missing pattern, utilizing a totally different strategy.

Given the factors, loadings and the block missing pattern are realized and fixed down, Su and Wang
(2024) calculate exactly all the eigenvalues and eigenvectors of the normalized Hessian and show that the
smallest eigenvalue is bounded away from zero in probability as long as both N,/N and T, /T are bounded
away from zero. For the block-type (e.g., staggered) missing cases, they show that the eigenvalues of the
normalized Hessian become smaller if some entries of the data matrix are thrown away so that it becomes
an exact block missing matrix. Thus (=D, J%,QM/D;J%)’l = Op(1) holds for the block-type missing cases as

long as it holds for the block missing case. m
Proof of Proposition 3.1:

Part (i): Recall that the i-th diagonal block of Ly (v) is —ZtT:I dit frf{, the t-th diagonal block
of Lyp () is — Zfil ditAiX;, the (i,t)-th block of Ly (v) is —di fi\; and the (i,t)-th block of Jyp(v) is
digvit (7)1, where vy (v) = yir — 24,8 — fi\i. When v € B,,(7°), we have HD;,;@S—&)H < m. Then
by using a2 — b2 = 2(a —b) b+ (a —b)*, ab — a®b° = (a — a®)b° + a° (b—=1b%) + (a —a) (b—10°) and the
Cauchy-Schwarz (CS hereafter) inequality, we obtain

Nove TN 00 1 0 2
N 2oic Nig — N Zi:l()\iq) < 2m N ZZ 1()\ )2 + m? for any q, (B.1)
1
20 )0 0 2
‘N AipAig — N 21 . Aiphig| = 2mmax Z (/\ g)2 +m” for p#q, (B.2)
> 1T 02
? Zt:l ftq - f thl(ftq) < ftq + m for any ¢, (B3)
1 T 1 T 0,0
T thl fepftq — T Zf:l fipftg) < 2m max ftq +m? for p # q, (B.4)

\/ T Doy (8= 8P < m\/ o ZL Z; e (B.5)

Thus by Assumptions 2 and 3(ii), there exists M > 0 such that w.p.a.l,

1 1 T 1 T

— ’ — ’ < — . !/ . £0 0/ <
oyerél:?é(l) ‘T(L)\)\ (’Y) LA)\ ) ‘ = ’yéléljffyo) ’T Zt:l dztftft T thl dltft t < 'rrL]M'7
max i(L (v) = L)l £ max —ZN d: )\‘)\(_lZN AN || < s
¥€B,(v0) || N s fr = L €Bm (1) i BN T oy Githi A || S ,

1
U L ’ — L ’ < d'L )\I . O)\O/ < M

76%13@0) ’\/ﬁ( A (7) )‘f) Wegm(v \/NT ZZ 12 H e dit f ||F m

2
< s\ o S W) — dat <

’\/Zlv—T(JAf' (V) = Iagr) .

max
’YEBm("/O)



Since Qppr (V) = Lo (7) + Jpgr (V) + Gppr and Qe = Ly + Jpgr + Gpgr, we have

1 1
max ||D,.2 () — , D—EH
veBm('yo)) T (Qsg (1) — Qo) Dry
1 N
YEBm ()
. {3 - 2o+ | §Ear ) = 2000 + | Ao = 2ar)|
max — ’ —_ ’ e / — , - , - ,
T yEB(7?) T MY AN N ey If \/ﬁ Af\Y \f
2
+ || —=—=(Irs — Jy s
=) =)}
< mM w.p.a.l. (B.6)

_1 _1
If we take m < 537 with 0 < 2C <plimowin(=Dp R Qg DrR) by Lemma B.1, then w.p.a.l.

_1 _1 _1 _1
min = Tmin(—DrjQss (V) Drx) = Omin(—DpRQep Dri) — max |
YEBm (7°) YEBm

‘DTN Qoo (1) — Q¢¢')D;1%H > C.

Part (ii): First note that Qg (v) = Qpp since Zthl Zf\il dizxial, is free of . Next, by the CS

inequality,

1
max (y)— /D_§H
HEB(70) ’(QM (") —@pe' ) Dr
N | I 2 T | 2
< max — D dazy(fi— )] + —— ) dpzit(\ = A
veBm(vo);ﬁ;tt g P ;\/N; »
N T 0(12
s = fOH L =2 o
< max <mMvNT w.p.a.l, B.7
s Jpax ;;H zall ( ) < p (B.7)
and
2SR a2 A2 X .
i=1 t=1
In addition,
|DEn[(Quwr (1) ™ = Q1D
o
_ P!
= &% ‘DTN Qo (7)) 1(Q¢¢'(7)—Q¢¢')Q¢;/D%NH
_1 1 _ _1 _1 _1 1 _

< max [(075Qew D7) | [ D2 (@owr (1) — Qoo Dri | | (DR Qoo D7)

mM
< 2 w.p.a.l, (B.9)

where the last inequality follows from Lemma B.1, Proposition 3.1(i), and eqn. (B.6). Combining (B.7)—(B.9)

and using

ABA' — A°'B°AY = (A—- A"B°AY + A°(B - B%)AY 4+ A°B%(A — A% + (A — A%)(B — B%)AY



+(A - ANBY(A - A% + A%(B - B%)(A— A% + (A - A%)(B — B)(A — A%,
we can readily show that for some large M > 0,

maX
768771

_ 1
‘Qw N Qpp (7)) 1Q¢ﬁ'(7)—MQﬁ¢/Q¢$/Q¢5/'

1 1 11 1 «
B verlglax ‘Qﬁaﬁ’ )DTNDTN(Q¢¢’( ) 1D72“NDT]%IQ¢,3’(7)_Qﬁtb/DT]%fDIZ“NQqub'DZ{NDTKIQ(Mi"

< mMNT w.p.a.l.

In addition, Assumption 3(i) and Lemma B.2 below imply owmin(— 57 [@ss — QB(#’Q;;'QM/]) > C w.p.a.l.
This finishes the proof of part (ii) after taking m < % |

Lemma B.2 (i) Let Qup = Ey(Qpy) and define the other expected counterparts similarly, e.g., Qg =
Eg(Qpp), Qpe = E¢(Qpe); Loy = Ep(Lyy) and Jyy = Eg(Jpg). Suppose the conditions in Proposition
3.1 hold. Then Y101 S By(dudundyy) = —(Qap — Qoo Qppy Qusr)-

(it) Under Assumptions 1-4, we have 5= (Qgg — QM,/Q;;,QM/) = 7 (Qpp — QW/Q;(;,QM/) +o0p(1)
as (N,T) — oo

Proof. The following proof is presented in an unified way for both the random missing case and the
block-type missing case. For the latter, since our analysis is conditioning on the missing pattern, we have
Eg(dit) = dit, Bg(ditxir) = ditEg(xit), B (dinwiral,) = ditEg(ziral,), ete.

Part (i): Step (1): The first order conditions (FOCs) for the minimization problem in (2.2) is that for
each k,

T Eg(diwitk) or .
Y Eglda) (—L T - — 0f ,
=1 ¢( t)( ]Eqb(du) ft ) t or any 1
N Ey(dstxs
S B () (el atice) t“k)—azzf?—w%x?n?’ = 0 for any t.
i=1 Ey(dit)

Recall that 67 and w9 are K x r matrices such that d5; and w9, are the transpose of the k-th row of 67

and w?, respectively. Define 6° = (489, ...,6%)" and w® = (w9, ...,w%)". Then the above FOCs imply

Qpy = (0%, 0”") Loy (B.10)

They also imply Zf\il Zthl E¢(dit)(% — 029 — WA (Y £O + wWINY) = 0. It follows that

N T
> IZt B (di) (00 F7 + wIAD) (60 £ + wf ALY (B.11)
040y __ ~ F—1 A
Zl 12 E¢ thlt 6 ft +Wt)\ ) _QB¢,L¢¢/Q¢B/7

where the second equality follows from eqn. (B.10), eqn. (A.3), and the fact that Eg(dyaiA)') = Eg(dizwi) A
and By (diwit fY) = B (daai) £ Since iy = ms — (67 £ + wPA),

Zj\;l ZtT:1 By (didiedyy)



N T N T
= Zi:l thl Eg(dipzirayy) — 2 Zi:l thl Eg(divwie) (07 f7 +wPAT)

N T _ _ _ _
D > Ealdi) O2F) + oA + W) = —(Qppr — Qoo LyyQoe).  (B12)

Thus it remains to show that QMI;;,QM/ = Qﬂ¢/Q;(;,Q¢5/.

Step (2): Recall that Quy = Loy + Guor = Loy — cDiy Dy2WOWYD 2Dy and WO is defined in
Appendix A. Any two different columns of W° are orthogonal to each other, and the columns of W° are all
orthogonal to the space spanned by the eigenvectors of Lyg and orthogonal to the rows of Qgg4. In matrix

form, we have

LegW? = 0, QpaW° =0,
LyyW? = 0, and QpyW° = 0. (B.13)
It’s easy to see that any two columns of D;,%F WY are also orthogonal to each other, and the columns of D;,T%J/VO
1

J —1 1 _ _1 —1 N
are all orthogonal to the eigenvectors of Dy 2 Ly Dy (since Dy Ly Dy D2 W0 = ﬁDT Ly WO =
0). Thus we have

3 A —33\—1 -3 7 sy Lt 0 10 1 Oy =20
(DrR Qo D)™ = (DTNL¢¢/DTN) _EDNTW (WP Dy W?) "W Dy 7. (B.14)
_ _1 _1 = 0
We also have Qgy D3 Dy2W0 = ﬁc)wwo = 0, it follows that
~N—1 A—1 _ 9 D_% D_% o D_% —lD_%
Q5¢IQ¢¢I = Qpy DX (DpRQe¢ Dry) TN
_ 1, 1 O | - =
= QpyDry(DpR Loy DrRy) 1DT§/ = QB¢’L¢$'- (B.15)

Then Q5¢/L;$,Q¢/3/ = Qg¢/Q;$,Q¢5/. This concluc{es the proof of part (i). -
Part (ii): It suffices to show that +=(Qps — Qspr) = 0p(1) and ﬁ(Qﬁ(ﬁ/Q;(;,QM/ - QB¢/Q;$,Q¢5/) =
0p(1). We only prove the second claim as the first one is implied by Assumption 3(iii) (see (B.19) below). To

show the second claim, given Lemma B.1, it suffices to show

|(D7R Qoo DrA) ™ = (D7 A Qus D) Y| = 0n(1), (B.16)
HQ&#/D;I%H = O(VNT), (B.17)

H(Q6¢’ - QBW)D;J%H = Op(VN+VT), (B.18)

|Qpsr = Qapr|| = o0p(NT). (B.19)

Eqn. (B.17) holds by eqn. (B.8). Equations (B.18) and (B.19) follow from Assumption 3(iii). Now
consider eqn. (B.16). Equations (B.16) and (B.15) in the appendix of Su and Wang (2024) show that
_A < _1 1 1 _1 _1 .
‘DTK,(LM/ . L¢¢/)DT§,H = 0p(M + Tt + ) and HDTJZ‘VJWDTJZVH ~ 0,(—A~) for the random miss-

ing cases. Since Qug' — Qpg’ = Lggr — Lpg + Jpg7, we have

HD;I%V(QW - Qw)D;z%vH = Op( ), (B.20)



which together with Lemma B.1 proves eqn. (B.16) for the random missing cases. For the block-type missing

cases, Lyy = Ly since Ey(dir) = dy, i.e., eqn. (B.20) is still valid with £ = co. ®
Proof of Theorem 3.1:

Step (1): Let 4 = (B/, 5\/7]5’)’ be the solution of the problem min, ¢z (.0 IS()|)?. Since 1° € B,,(v%),
ISl < |IS|| by definition. Take the Taylor expansion of S(¥) at 42,

0, (B.21)
%), (B.22)

Q@

Ss(B,
Ss(B,

) — = QZﬁ’(B - 8%+ QZM’((% -

¢
)=Sp = Qip(B—B")+Qhu(d—¢

@J

where Q35 = Qo (1), Qhyr = Qawr (1), Qe = @Bl Qi = Quor (v7) and 47 = 57+ (1 — 57 for some
0 < s < 1. It follows that

B—=B = (Qhy — Qs @iy Qis) (S8(B,8) — S5 — Qi @5 (Ss(B, 0) — )

Op(57) Op(VNT) + 0 (VRT)0,(1)0p (VT + V) = Oy ), (B.23)

N CNT

where the second equality holds by facts (1)—(5) below.
(1) By Proposition 3.1(ii),

1
= I/Umin(_ﬁ[QZﬁ’ - QE¢’Q¢¢/ Q¢B ])

1 * *
H( N7 @b — Qb Qi Qo)) ™!

< 1/ min Umin(*NfT[Qﬁﬁ'(”Y)*Q/M(V)(Qqsqs'(V))_qubﬁ'(W)])ZOp(l)- (B.24)

YEBm(70)
(2) Note that Sg = S0 | S2 @iedivie, Sx, = gy divviefOy Sx = (Sh,s s Sh)s Spo = oy digvi Al

and Sy = (S%,,...,8,.)". By Assumption 5, [|Ss|| = Op(VNT), [|Sx]| = O,(VNT), [|S¢]l = Op(V'NT) and
I1SI < 1Sl + [1Sall + IS¢l = Op(VNT). 1t follows that

HSB(B,@ - SﬂH < HSB(&G})

|+ 11851 < ||5(3,9)

|+ 1151 < ISI+ 1S5]l = O, (VNT).

(3) By the triangle inequality and equations (B.7) and (B.8),

—1/2 _1
|@ssDrN?| < max | [(@ser(1)-@a0)D #Dri|| = Op(VNT). (B.25)
(4) By Proposition 3.1(i),
1/2 ~x% 1/2 —1/2 1/2 —-1/2 1/2
HD/ Q5 Diln H - H o 2Qs, Dok H_l/amm( o 2Q5, DI
< 1/ min omin(—Drx*Que (V) DN %) = O,(1). (B.26)

YEBm (7°)

(5) Note that

presi-s] = Lol o5



1 PRS 1 PN
< ﬁHsA(ﬁ,qs) [+ 831D+ ([ 8:(3.8) | + s
< 2=+ —=) IS = O,(VT + V). (B.27)

vT VN

By eqn. (B.22) we also have ¢—¢° = Q¢¢, (S¢(6 ¢) Se) — Q¢¢>’ Qs (6 3°). Then

HDlT/f/(&S—QSO)H = H 1/2Q;¢1D1/2){ _1/2(5¢(ﬁ ) — Sy) — _1/2Q¢5'5 50 }H
< H D2 2¢/1D1/2 H {HD 1/2(5.(B,8) — Sy) H—i—HD 1/2Q¢ﬂ’ HB »BO’H

= 0,(1) |0,(VT + VN) + O, (VNT)O,(1/enr)| = 0,(VT + VN),

where the second equality follows from equations (B.25), (B.26), (B.27) and (B.23). Thus HD 1/2 H

\/7 HD1/2 é—¢° H = cNT) implying that H\F A=X9 OP(E ) and H\F f=19 H = CNT)

‘ﬁ—ﬁ H = Oy ) || 7= ( A=2X% H— M Crem aﬂdHﬁ (f =19 H =
Al Al A

—) together implies that 4 = (8, A, f’)’ must be an interior point of B, (+°) for any fixed m. It is not

Step (2): Combining the results that

Op(o
dlfﬁcult to verify that the first order conditions of min,cp 40y [|S(y )I? is 2Q++(7)S(y) = 0. Since 4 is an

interior point, we must have 2Q,~/ (¥)S(%) = 0.

Since 4 € By (7"), by Proposition 3.1, §7[Qas (9) — Qs (1) (Qoer () ™' Qepr (3)] and D3 Qo (1) Dy
are negative definite w.p.a.l. Then Qgg (¥) — Qpe (7)(Qsw (7)) ' Qus () and Qs () are also negative
definite w.p.a.1. This implies that (%) is negative definite w.p.a.1.! It follows that S(§) =0 w.p.a.1. B

Remark. The intuition of Theorem 3.1 is that since the normalized Hessian is negative definite (the
curvature is bounded away from zero) and S(¥) is close to S(v°) (due to S(¥) = 0 and S(7°) = O,(VNT)),
4 should also be close to 7°.

C Proofs of Theorem 3.2 and Corollary 3.1

Proof of Theorem 3.2:

EAN argmdxﬁ L(pB, gb(kJr ) = argmaxg L(5, ¢ ) and éb(kﬂ) = argmaxg Q(B(k),gb),Q we
have S¢(B(k) & ) = 0 and Ss(3 kH),(Z)(kH ) = 0. By Theorem 3.1, we also have S3(3,¢) = 0 and

S¢(ﬁ7 ng) = 0. By Taylor expansions, we have

~(k+1)

(k+1) (k+1) (k+1) ~(k+1)

Qoa (B =B+ Q567 =8 = Ss(B 8 ) —Ss(B,¢) =0, (C.1)

QBN B+l —8) = 5,(3Y,6") = 84(B,9) =0, (C2)

where Qgz = — Zt 1 ZZ 1 dirxi @y, Q;;l = Qse (555 £ (1= $)3) and Q;J%) = Q¢¢/(sﬁ(k+%) +(1-
(k+1)7 (}(kﬂ)/ (k)r (Es(k+1) ~ (k+1)

s)) with 4%+ = (3 ), 4%+ = (B
. A B\ _ (I BD! A-BD'B" 0 I 0
Tpe that < B D ) = ( o I > ( 0 p )\ pB 1

) =L(8,4

2 As explained in Section 3.2, L(ﬁ,(}ﬁ(‘w1 (k+1)) since Aka)';\EkH) f(kH)/ FD for all (3, t).

). From eqn. (C.2) we have ¢




(Q Uet3 )) Q(kJr (B " _ B) Plugging this back into eqn. (C.1) yields

9’ B’
A(k+1) o _ k (k+4 (k+3) 5k 2
B h =kl @)l Y (8 - B). (C3)
We next show that
HQ;&,Q(BZ:U(Q;’;T%)) Qaﬁﬁ/ ’ < 1) for some constant ¢ € (0,1), (C4)

»(0)

" _ BH <<kt HB

Akt
B B <w
First, by eqn. (B.7) we have

-4

which implies that ‘

Q0 (1)~Qs6)Dr || < mMVNT wp.at,

(k+1) _ b —1/2H < max
(k+1 -
HD 1/2 Q¢B’ ) Qaﬁﬁ’) < Verélag()) ‘DTJIV/Q(QGW/(’V)_Q(#B,) ’ < mM\/ﬁ w.p.a.l,

and by eqn. (B.9) we have

k+1)\— _
DY ((Quy )™ = Q) Dify < max

1 M
D; : D1y < 2o wpal,
max | D2((Qoor () = Q) Dy wpa.

Second, by Assumption 3(i) and Lemma B.2, —<-(Qgs — QW/Q;(;,QMI) is positive definite (p.d.)
H(Qﬁﬁ/ - Qﬁ¢’,Q;$’Q¢B H < M for some M > 0 w.p.a.l. It follows

asymptotically. Then Qgé,‘ <
that for some M > 0,

—1 A(k+1) ;A (k+3) (k+3) -1 -1
Q55/Q5¢/ (Q¢¢/ ) Qd’ﬁ’ *QgﬁlQﬁWQ(M,/QsW'

k+5 (k _
S QBB/ HQBIZJI) ;(’;frz)) qu;; 2) - Qﬂ¢/Q¢;,Q¢5/ S Mm W.p.a.l, (C5)
k
implying that HQﬂﬁ'Qﬁ}?l <Q<(z>¢j )~ ¢B' 55 Q0 Qg Qopr || + Mm w.p.a.l.
Third, note that
-1 _ —1/2 — -1/2
N7 (@85 — Qpy QyyQopr) = ( Qap)" [IK — (=Qap Q80 (—Que) " Qup (— Q5! )} (—Qpp)"?
1 12
— I -
N7 (" Qsp) Ik —E] (= Qppr)'?

where Q;/;/ is the symmetric square root of Qﬂﬁ/ and = = (—Qﬁﬁ/)_1/2Q5¢/(—Q¢¢/)_1Q¢BI(—Qﬁﬁ/)_l/Q. By
the fact that _ﬁ(QBB’ — Q5¢/Q;(;,Q¢ﬁ/) is p.d. asymptotically, we know that Ix — Z is p.d. asymp-
otically. Since ——= /is p.d., E is also p.d., both asymptotically. us all eigenvalues of = are
totically. Si NITQ¢¢ is p.d., = is also p.d., both asymptotically. Th 1l eig 1 f =

between 0 and 1 w.p.a.l. Since fQEﬁl,QM/(fQMr)*lQMI and = have the same eigenvalues, all eigen-
values of —Qgéwa(—Qw)_le are strictly between 0 and 1 asymptotically, i.e., all eigenvalues of
Qgg/QW/Q;é,QW/ are strictly between 0 and 1 asymptotically. Therefore, if m is small enough, all eigen-

values of Qgﬂl,QgZ,rl)(Q ;; )) Q((bk; are strictly between 0 and 1 asymptotically. That is, (C.4) holds. B



Proof of Corollary 3.1:

~(k+1) (k+1)

By eqn. (3.5), we have S¢(ﬂ gb ) =0 and Sg(ﬂ ,¢) ) 0. This, in conjunction with the fact
that SB(B, &5) =0 and S¢(ﬂ, d)) and Taylor expansions, implies that

(k+1) (k+1) 4 (k) (k+1) ~ (k)

Qo (B =B+ Q5P —0) = Sp(B".8") — Ss(B.d) =0, (C.6)
QUPEY —p+l " —d) = s, 6" - 5u(8,4) = 0, (c.7)
where Q) = Qo B8 F = 98,0 QU = Quar(s(3Y.6") £ (1 - 9)(5.9), and
QYT = Quur(s(8",0"™) + (1 = 5)(B,)) for 0 < s < 1. Tt follows that
B(k-&-l) _3 o ( Qsp 0 )1 < 0 Q(k:+ 1) ) B(k) _ B
és(kﬂ) _é 0 Q¢,j;_ 3) ng; 0 &(k) -3
~ (k) «
_ 0 Q@ ) BB ©8)
( @Y o 0" —o
Thus \/HQBﬂ/Q;;— 3) ¢":;- )) ¢B’ »yHi It’s easy to see that eqn. (C.5) is also

valid for Qgﬁl,ng; )(Q((;f;,_ )) Qg?,_ 2) and we have already proved that HQgﬁl,QM/Q;;,QM/

_ k+1 E+1),_ 1
Then Q3300 (@0 )1y

<€ (0,1).

is also strictly less than 1 asymptotically. Bl

D Proof of Theorem 3.3

To prove Theorem 3.3, we state and prove five technical lemmas.

Lemma D.1 Under Assumption 4, as (N, T) = oo, ||[dov|| = Op(N2T% + NiT?), where dov is a T x N

matriz with d;zv;e as the (t,1)-th element.

Proof. This lemma is the same as Lemma A.1 in Su and Wang (2024). For completeness, we outline the

proof here.

T N
Eldou|* = [@ov)(dov) < (dov)(dov)} =EY (S disvisdiuva)?
T N

= 2287]‘;1 E(Ziil[disvisditvit_E(disvzs zt'Uzt —I-QZ 1 Z (disvisditvit))Q

T 1 N )
N NZS,t:1 E{ﬁ Zizl[disvisditvit — E(disvisdirvir) ]} + N Z (s, )]
= O(NT?) + O(N?T),

where the last equality follows from Assumption 4(ii)-(iii). Then the result hold by the Markov inequality.

3 . . 0 B 0 B et \ [ Bea \ [ cex _
If ¢ is an eigenvalue of ( c o ) then c o e ) =\ Cel = cen /- It follows that BCe; =

Bces = ¢?e;. That is, c? is an eigenvalue of BC.

10



5(it), Ag)) €R w.p.a.l.

Proof. Let Mycc(dor) = INT—Poec(dor) a1d Pyec(dor) denote the projection matrix of [vec(doxy), ..., vec(do
2k )], where vec(doxy) is the TN x 1 vector that vectorizes doxy. Also, let mat(-) denote the inverse operator
of vec (+) by transforming a TN x 1 vector back to a T' x N matrix. Let y (resp. v) denote the T x N matrix
with y;; (resp. v;) as the (t,4)-th element. Then after concentrating out [, the sum of squared residuals
(i.e., =L (-) with L (-) defined in (3.1)) can be rewritten as

1
SSR(©) = 5vec(d o (y — ©)) Myec(gomyvec(do (y — ©)).
Then

SSR(@O) - SSR(é(O)) = —vec(do(y— 60))/Mvec(doa:)vec(d ° (@O N é(O)))
1 A N
—ivec(d 0 (0% — OO M, cctgoryvec(do (€0 — ©0))

< —vec(d o v) Myee(goryvec(do (6° — CION

= —vec(d o v) Myec(dor)vec(©° — 0

=t [A mat(Myceqaomvec(d 0 v))| < [mat(Myeeaoryvectdov)| [AL)]|
= Hdov —mat(PUeC(dOm)vcc(dov))H HA(@?)H*

< cl(N%T% 4 NiT%) ‘Ag)) . w.p.a.l,

where ¢, is some positive constant, the first inequality holds by the fact that M,c.(goz)vec(d o zx) = 0 for all
k, the second equality follows from the fact that vec(doxy,) vec(do (0° —O©)) = vee(d o xy,) vec(0° — O0)),
the second inequality is due to the fact that tr(A’B) < || A || B||,, and the last inequality follows from Lemma
D.1 and the fact that

Hmat(Pvec(dox)vec(d o)) H < ||mat(Pvec(dom)vec(d o)) HF = HPvec(doz)vec(d o) ||F

K N T N T
< (Do doailln||[O0D  duwal) T DD dumirvie|| = 0p(1)
k=1 i=1 t=1 i=1 t=1
by Assumptions 3(ii), 3(i) and 5(ii).
Now, from the construction of P+ and P, we have
69| = A9 +e°| = |e°+P+AL) +PAD)| = |6°+ P+ AL - |[PAY)
= [[e°], + [P+ A9, - ||P@ad)||. (D)

Then [|6°]], - 6

<l

. It follows that w.p.a.l

)

0 < SSR(O°) - SSROY) + vy (||6°]. -

’(:)(m

11



< awirt iz 58], o (A0,
= Cl(N%Ti+N%T% (HPL Ag ) >+VNT (’ A (Ag))) ),
and consequently H <3 Hp 0) w.p.a.lif vyr = QCI(N%Ti + NiT%), n

Lemma D.3 For any Ag € R, we have || Ae]|, < 4V2r | Al -
Proof. For any Ag € R,
12ell, = IP(A6)Il, + [P (2e)], < 41P(Ae)l, < 4V2r||P (A6)l s < 4V2r || A6l

where the first inequality follows from the definition of R, the second inequality is due to || A, < y/rank(A) || A]|
and rank (P (Ae)) < 2r, and the third inequality is due to the fact that ||Ae |5 =tr(AbAe) = tr([P(Ae) +
PL(A) [P(A6) + PL(A6)). [P (A2 = tr(P(Ae)P(A6)), [P (Ae)| = tr(P*(Ao)P-(Ae)) and
tr(P(Ae)'P+(Ae)) =0. m

Lemma D.4 Suppose that Assumptions 3(ii) and 6(i) hold. Then

(1) ||[d — Egz(d)] o x| = Op(T%N%), where d—E g (d) and x), denotes the T'x N matric with di —Egz(dit)
and x5, as the (t,1)-th element, respectively;

(ii) Egglllx o d)||] < TZN%, where x denotes the T x N matriz with x;, as the (t,i)-th element and
{Xi : @ € [N],t € [T} are independent Rademacher random variables.

Proof. (i) Note that

Ego(l[d = Epe(d] o zill") = Egu(([d = Ege(d)] o i)(([d — Ega(d)] 0 i) |*)
< Ege(([d — Egu(d)] 0 i) ([d = Ega(d)] 0 ) |1 7)

T N

>y Eor {Z

s,t=1 i=1
T N

B Zsatzl Zi:l Ega {[dis - E¢$(dis)]2[dit - E¢x(dit)]21'z2thzzsk}
T N

= Zs,t:l Zi:l xlzth?skv

where the third equality follows from Assumption 6(i). Thus by Assumption 3(ii),

2
[dis — Ege(dis)][dit — Em(dit)}xitk%sk}

E(|[d —Epe(d)] o zp||') = E[Eg(||[d - Egu(d)] oxi]|")] < Zst 12 (22,2%,)
ZZt:l ZZI\; E(x}y, ) E(xf,,) < T°NM,

and it follows that ||[d — Egz(d)] 0 z1|| = O,(T= N#).
(ii) The proof is similar to that of part (i) and thus omitted, given that {x,, : i € [N],t € [T]} are

IN

independent Rademacher random variables. m

12



Lemma D.5 Let Ag)) = B(O) —B°. Suppose that Assumptions 3(i)-(ii), 4, 5(ii) and 6(i) hold. Then w.p.a.1,

- ]Eqﬁx( it)] (Ae it ztA(O))

Mﬂ

N
=1

R 2
< MVNT HA(ﬁO)H + MT N

o~
Il

1
1

CNT

~ (012
AQHF, (D.2)

+ ANt + EnT +
*

where Ent = 3r(16M)%/ent (Ege[llx 0 )|)?, {xi : ¢ € [N],t € [T]} are independent Rademacher random
variables and Ant = M\/NTCNT log(N +T).

Proof. This lemma is crucial for extending the NNR estimator for balanced panels (Moon and Weidner
(2023)) to the unbalanced case. The techniques are borrowed from the matrix completion literature (e.g.,
Klopp (2014) and Negahban and Wainwright (2012)) and compared to those previous papers, there are two

~ (O

main differences. First, we have A 3 ) here while the matrix completion literature typically does not. Second,

the last term of expression (D.2) is

R 2
\/ClNiT ‘A(eo )HF while in previous literature the corresponding term is

R 2

% HA(@O )H . The design of expression (D.2) is tailored for the current setup. To prove this lemma, we first
F

note that

N T
~ (0 ~ (0
ZZ dit — Egu(dit)] (Aga,)it—i_x;tAé))Q

=1 t=1
N T
<D0 die — Bgaldir)] APzt AT
=1 t=1
N T N T
0 0 2 (0
+2)° — Egu(di)] A, 2l AP+ 135 [die — Egu(die)] (AS))? (D.3)
=1 t=1 =1 t=1

Below, we study the three terms on the right hand side of (D.3) one by one.
First, by Assumption 6(i), di; — E¢,(d;i) is independent across ¢ and ¢ conditioning on all z;, thus

N T 2
E Ege {Z Z [dit — Egy(dit)] xithitl}

=1 t=1

N T
E {Z Z Ega ([dit — ]E¢z<dit)]2)xzztkm?tl}

=1 t=1

IN

N T N T
ZZE(ﬁth?ﬂ) < ZZE{ ||$it||4},

=1 t=1 i=1 t=1

2
F) = O(NT) by Assumption 3(ii). Thus

Le., E( HZf\Ll ZtT:1 [dit — Ego(dit)] zirzi,

N T ) ) T A
Z Z it E¢a: it )] Agoyxitx;tA(ﬁO) S Ag)) H Z Z [dzt - Ed)z (dzt)] mitx;;t
=1 t=1 =1 t=1
" 2
= [|A® H 0,(vVNT). (D.4)

13



Second, by Lemma D.4,

N T
SN it~ Eouldi)) At AP | < \A L llld = B ()] o 2]l | AL
i=1 t=1 &
< AS”HO;;( Tinh A9 (D.5)
Third, we shall prove
\- (0) 1 K
it — By (di)] (AL )2 HA H pal. D.
;tzzl[ t ¢( t)]( @,’Lt) m (€] F+5NTWpa‘ ( 6)
To prove expression (D.6), we first define the events
R = {Ae e RN [P (Aq)|, <3[P(A0)ll, and [|Ael|y. < M},
6 6
Ray = Rﬂ{A@:(g)l‘lANTg |\A@||2F§(g)’ANT} and
Ra = RN{he: Aol > Anr} = UZ,Ray.
and the functional
N T
g(d) = swp > > [di — Egu(di)] (Aot ‘
Ae€RAL |31 t=1
Also, define the events
- |||
A = {HA@ERA s.t Zz[dit_]E(M( )] (AG)zt) Lk 5NT},
i=1 t=1 ENT
A = { () > —— (O 1apr e }
l g = m 5 NT NT
Note that A C U2, A; and
> 1 6
Pr(A) <P ) < —Eya Ee > —)=ta
(4 < Pr(UZ1A4) < 3 Pr (10 ~ Banla@l] + Eanlaid)] = ()" v + 1)
S ()" 6
< l:Zle <|gl(d) Egz[g1(d)]] > ;%ANT + Ent — 32MEgs[[[x o d)|] 2T(5)IANT>
> 6
<) Pr d) — B4 ! )
<3P (Il ~ Bl 2 Gmg) r
& 1 2l 2 Og( ) 2
< - - __°\SS
= IZ;QGXP( 18M4NTcNT Av > ZZGXP( OMANT ey N7
log($) 2
€xXp _47¢:ANT 2
=9 ( oM N e ) =0, (D.7)

<
lo, ( - _
1 —exp ( 9M4JgVTcNT A%VT) exp(log(N +T)) -1
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where the third inequality follows from expression (D.10) below, the fourth inequality follows from the fact

SMEqs [l Ay 2r () Avr = 2 {VBROMeiBurllx o DIl } -~ 2(5) Avr
3enr
< 316 VeNT (Barllx 0 DI + 52— () v
EnT + 3\/%(2)ZANT
by the CS inequality, the fifth inequality follows from (D.9) below and the sixth inequality follows from g
log(£)2l. Now denote the event A = {‘Zi\il Z?:l [dit — Epe(di)] (A @ Zt ‘ > An H (:JF +E&n }
Pr(A) =Pr <Aﬂ

{ AQ i < ANT}> +Pr (Am {HAS”H? > ANT}>
— P <Am { A9 = ANT}>
{ AL i > ANT} n{aQ e R}) +Pr (A ¢ R)
< Pr (Zﬂ {Ag” € RA}) +Pr (Ag” ¢ R)
p

r(A) + Pr (Ag) ¢ R) — 0 by expression (D.7) and Lemma D.2, (D.8)

IN

_ . 2
where the second equality follows from the fact that the events A and HA(G? ) H < Ayt are mutually exclusive
F
since |dit — Egz(di¢)| < 1. In summary, expressions (D.3)-(D.6) together proves this lemma.

(1) In the above proof, we call upon the following concentration inequality:

Praa) - Baulan@)]  0) < 2089 (- e’ (D.9)

This expression follows from the Azuma-Hoeffding inequality (see Corollary 2.21 in chapter 2 of Wainwright,
2019), since d;; is independent with each other conditioning on ¢ and z and g;(d) satisfies the bounded
difference property with parameter M? as verified below.

Suppose di = {dj1, 1 € [N], t € [T]} and dy = {dj2, i € [N], t € [T]} are the same except for the
SN ST [dies — Ega(di)] (A@,im‘ for s = 1,2, then

(i',t')-th element. Define Ag; s = argmaxager,

N T N T
gl(dl) - gl(d2> — sup Z Z itl — Eqﬁz it )] (A@,it)2 - sup Z Z it2 Eqﬁx it )] (A@,it)2
Ae€RaL |31 1=1 Ae€RaL |37 1=1
N T
N Z Z itl — ]Eqb:c 1t)] AOl 1 1t ‘ Z Z it2 T Equ zt)] (A@l 2 7.t) |
=1 t=1 =1 t=1
N T N T
< Z [dit1 — Egy(dit)] (Ael,l,it)2‘ - Z Z [dita — Ega(dit)] (AG)l,l,it)Q’
=1 t=1 =1 t=1

< ldivn — Ega(die)] (Aou 1,0 )| + |[dirve — Ega (diry)] (Aer1,i0 )| < MP.
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(2) In the above proof, we also call upon the following symmetrization and contraction inequality:

N T
ZZthdzt (Ae.it)? ‘} < 8ME¢I{ sup
6
< 8MEgo(llxod)ll]  sup 4V2r || Ael| p = 32MEg, || x o d)||]m7 (D.10)

ZZ it — Epa(dir)] (Ao ir)?

Ae€RAL |21 =1

Eye[gi(d)] = Em{ sup

N T
D0 xudile

=1 t=1

= 8ME¢a:{ sup tf((xod)'A@)l} < 8M]E¢z{ sup  [[xod) IIAGII*}

< 2Ky, sup
Aeg€RA, | Ag€ER A,
Aeo€ERA, Aeo€ERA,L
0€ER A,

where the first inequality follows from the symmetrization argument (e.g., Theorem 2.1 in chapter 2 of
Koltchinskii, 2011), the second inequality follows from the Talagrand contraction inequality (Theorem 2.2 in
chapter 2 of Koltchinskii, 2011), the fourth inequality follows from Lemma D.3 and the last equality follows
from the definition of R4,;. =

Proof of Theorem 3.3:

(1) The random missing cases.
Step 1: By (3.6), we have

R 1T Q) A )
0< 53D dilyan — B — 00 = 553 daya — B~ 69 +vwr (%], - [0 )
=1 t=1 i=1 t=1

N T ) ) 1 N T

= 3> divi DG, + AL = 337D di( AL, + 2l AP +vnr (H@OH* - ) . (D.11)
i=1 t=1 =1 t=1

It follows that w.p.a.1,
du Aol _d 4 _ AN .
> ) A(@?)HF < ivec(Ag)) M yec(zyvec(A 5 ZZ Ag)z @, Ag)))2

i=1 t=1 i=1 t=1
1 N T
=5 20 2 it = Egu(din)] (AG), + i, ALY
i=1 t=1

A A 1 " 2
< (ldov] +vr) [AD|| +MVNT |AP |+ S VT AP

sl

N 2
+ MTEN? |A9| | +énr)

1
VENT
~ N N 2
< M(N3T% + N3T%)4v/2r HAS”HF + MVNT |AD|| + MV NT [AD|
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A~ A 1 A 2
+MT3N% A(BO)HN?HAS))H +ANT+WHA8)HF+5NT
1,1
73[M(N2T4_;N4 )4\F] ‘ H +MFHA<0 ”+MFHA H
du
3[MT:NT A(O H4\F ?
. du 4 Anp + +€N1; (D.12)
dp 0 " ver

where the first inequality follows from Assumption 6(i), the second inequality follows from concentrating out

B, the third inequality follows from Ey,(d;;) > d for all (¢,t), the fourth inequality follows from expression

(D.11), the fifth inequality follows from Assumption 5(ii) and Lemma D.5, the sixth inequality follows from

the following facts: (1) ||dov| = Op(N%T% + N%T%) by Lemma D.1, (2) vnr = 201(N%T% + NiT%) and

(3) HAQ)’ < 4V2r HAEOO)‘ by Lemma D.3, and the last inequality follows from the fact that 2ab < a? + b2.
From e*xpression (D.12)Fit’s not difficult to see that

HAg”HigM(N%T%JerT%) + MVNT |AQ|| + MTVN A H + Ant + Ent. (D.13)

Plugging this back to (D.12) and noticing that Ago) Zivzl 23:1 mitxgtﬁg)) < Zf\il Z?ZI(A(@O)“ + x;tA(BO))Q +
. - < on 112

‘2 vazl 23:1 Ag))itx;tAg))‘ + HAS)) H and plim Zil ZLT:1 X%}, is positive definite under Assumption
: F

3(i), after some calculations, we have

A0 - im (N3TH + NATH2 4+ Ayp + Enr) = Op(ci¥h),

where the equality follows from Enr = 3r(16M)%\/en7(Eps[|x o d)||])? = 3r(16M)?/cn7TVN by Lemma
D.4 and AnT = M\/NTCNT log(N + T). Plugging this back into (D.13), we have

1

A (0 Ent —1/4
\/ﬁ A(G)HF = Op( 7) = Op(c / )

NT

A < (0
Step 2: Now we prove the consistency of #, f(®© and )\( ). This step is similar to Theorem 3 2 in

Hong et al. (2023). Let {65, s € [N AT]} and {0, s € [N A T]} denote the singular values of and
)

7| < |7 =0 <cN1T/4>
for all s. Since o, is bounded away from zero in probability for s < r and o5 = 0 for s > r, we have
Gs = 05 +0p(1) > \/CN1T/401 =0 (cN1T/4) for s < rand 65 =0+ O (CN1T/4) < chT/4 for s > r, thus
Pr(f=r)— 1.

Recall that {Z/?l(o), ...7Z;{T(O)} and {UY,...,U°} denote the left-singular vectors corresponding to {61, ..., 6, }
and {01, ...,0,}, respectively. By the Davis-Kahan sin © theorem,

A(®)
\/(?VLT, respectively. By Weyl’s inequality for singular values, |65 — 05| < 2

. V2| AW V2 || AW )
O — 0| < X2 2o || < Y2 2o || — 0, (¢ for s €[],
s s n \/ﬁ = n \/ﬁ B (CNT ) r [T]

where the equality is because n = ming{|os_1 — 6| A |os+1 — G|} is bounded and bounded away from zero
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in probability. It follows that

|vrias - vrmie] < v - v

00|+ /T |® —ut]| = 0y V)

e., ‘f(o) - fOH = O)p( _1/4\F) By symmetry, we also have Hj\(o) — )\OH = Op( _1/4\F)

(2) The block-type missing cases.

Given that Assumption 6(i)b holds for at least one completely observed data block, without loss of
generality, we assume the block {i € [N,],t € [T]} satlsﬁes Assumptlon 6( )b The nuclear norm regularized
estimation applied on this block produces 7, f3, { ; )t € [T]} and {)\Z- ,i € [No]}. Since the data block is
completely observed, Theorem 2 of Moon and Weidner (2023) for NNR estimation of panel without missing
data is applicable here. For completeness, we outline the main steps (with slight adjustments).

Let (yp,xp) denote the completely observed block of (y,x), and let vy, O, (:)l()?) and Aggl denote
the corresponding blocks. The sum of squared residuals given O and concentrating out 3 is SSR(Oy) =

l’U@C(ybl - ebl) vec(zbl)vec(ybl - 6bl) and

0 < SSROY) - SSROP) +vnr ([|60]. - | 6]| )
= —’UeC(ybl - Gbl) vec(mbl)vec(e)bl el(>(l) )
| i ) )
e O Y Myryrec® - 6) v (04, - [69)]). 0w

It follows that

g Ag)ng = %WC(@ 61(7?)) Myec(ayyvec(Oy — @1(7?))
< —vec(yn — 91;1) vec(xbl)vec(e)bl @( )) + VN, T (H@blH © ?) H*)
= vee(un) Maucegevec(®l) — 68 + v, (681, - [65] )
< |lmat(Miceyvee(on)) | [AG), +vror (€01, — [637]])
< (el + ||mat(Poecqayvec(vn)) || + va,r) HA@“H*
< 12eV2r(N3TH + NiTH) HA&HF wpal,

where the first inequality follows from Assumption 6(ii), the second inequality follows from expression

(D.14), the fifth inequality follows from |lvy|| < ||d o v|| because the T' x N, matrix vy is a submatrix of

soyvec(on))|| = Op(1) by Assumption 5(ii), vyr = 2e,(N2T% + NiT3)
0

HA(@Ogl ’ = Op(cy 71/ ). This together with 1 ZZ 1 Zt 1(A§92l it +thA(O))

d o v, Lemma D.1, ||mat(Pvec(
and Lemma D.3. Thus

1
e

0 1
Z Zt 1UztAobz ZﬁZ Zt 1v,tmztA +VN0T (o, —H(abl)H 1mphesthat‘A( H — N2T4EJ¥4T2

@) (chT/Q). In addition, similar to Step (2) of the random missing case, \/7 H g)blH =0 (chT/Q) im-

= Op(c;\,T/Q\/N). For

plies that Pr(f = r) — 1, Hf(o) —fOH Op(cnil>VT) and \/Z —)\0

18

~—



N, <i<N,

S

AT N = Zf£°> Z (i — aeB3) —

T

= th(o) Z D= VYN + v — 2 AY).

O = | = Opleni*VT), X1 fivi = 0,(VT),

N 2
A0 ol =

Given that N, /N and T, /T are bounded away from zero,

ZZ Not1 ||)\0|| = 0,(VN) and HA(O)H = NlT/ ), it is not difficult to see that \/Z?]—NOH ‘

Op(cnil*VN). Thus \/ZZ 1 is also Op(cyil>VN). B

_/\0

E Proofs of Proposition 4.1 and Theorem 4.1

To prove Proposition 4.1, we state and prove four lemmas.

Lemma E.1 Suppose that Assumptions 1, 2, 4(i), 5 and 7 hold. Then as (N,T) — oo,

(i) ||W,(\)/L,\,\/S>\H = p \/;—F T and HW)?/L”,S/H = \/74_

(i) ||W)(\)/Q;,\1/SAH = \/E+ MY and HW?’Q;},S}H = \/j+ T
(iii) || Lpn QyaSa || = Op(VN + f) and HL)\f’fo/SfH =0,(VT + f)
()] T3 QxxrSa || = \ﬁ"' 7)) and HJAf Qf//SfH =0,(VT + ).

Proof. The proof is similar to that of Lemma C.3 in Su and Wang (2024) with slightly different notations.
“W” and “@Q” here correspond to “U” and “H” there, respectively. For the readers’ convenience, we also
provide the main details here. It suffices to prove the first half of parts (i)-(iv) in the above lemma as the
second half can be done analogously. Below, we shall consider the random missing cases first.

(i) Recall that Sy, = ZtT Vdigvie [P, Sx = (S5, -, S4,) and WY is defined in (A.7). We need to show
that for any (p, q), Z /\?plz’(Zthl dit f? ?’)_1(2321 digvir ) is Op(\/g—&— ), where 17 denotes the r x 1
vector with the ¢-th element being one and the other elements being zeros. This is equivalent to the following

expression, which will be discussed later.

N

N T T 0 0 —=1 3. . 007 _ /Ei
Zi:l Zt:l(ztzl dztft t) dztvztft )‘i —Op( T + T)' (El)

(ii) Since Qyn = Ly — S WIWY, by Woodbury identity we have

Qv = Ly — L Wi(- Iz+W£’LM,W,\) WYLy, (E.2)
N
thus WY'QyvSh = WYLLLSy+ Wy 'L;/\/Wf(ﬁlrz — WYLV W) T WY LS.
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Since WYL\, WY is negative definite, we have

N

T
H%Tfﬂ — WL W) | <

< N (E.3)

thus it remains to show HWS’LK, WP = Op(%). This follows from (1) by Assumption 2(ii),
W3] = 0(VN), (E.4)

and (2) by Lemma C.2(ii) in the appendix of Su and Wang (2024),

_ 1
34 = 0yl (E25)
(iii) From eqn. (E.2), we have
- _ _ N _ . _
LinQyySy=LivLySy+ LinvLys, WS((TTITQ — WYL W TTWY LTSy (E.6)

The first term on the right hand side is O, (VN + %) due to

N T T
[LyxLinSils = Zi:l disA?fgl(thlditfto tO/)_l(thl dirvit f})
(% N T L 0 £07—1 0407 I __ N N
£ D O a1 v N di) = Op(\[ o + ), (BLT)

= O,(VNT).
This together with equations (E.3)-(E.5) and part (i) implies that the second term on the right hand of (E.6)
is also Op(\/ﬁ—i— %)

(iv) From eqn. (E.2), we have

where the last equality will be proved later. From Assumption 2 it’s easy to see that ||L I\

_ b _ N _ _ _
TraQibSy = Jpa Lk Sy + JfXLMl,WQ(CfT[ﬂ — WYL W)WY LTS,

The first term on the right hand is Op(\/N + %) due to the following expression, which will be discussed

later.
B N T T _ N N
v LanSals == Do O, daf ) disvisdivvin ]} = Op(y) T+ 7)) (E.8)

= O,(VNT). This together with equations (E.3)-(E.5)
and part (i) implies that the second term on the right hand is also O,(vV/N + %)
Proof for expression (E.1): Let A;p = £ Zthl die fO 12 and A;p = E4(A;r). We have

N T T
I3 S O st
o - - F

1 N T g1 0,00 N a1 T o
= HT Zizl poy i FON digvi F+ Zizl(AiF —AF)T thl Je Ai divvi

From Assumption 4(i) it’s easy to see that ||.Jx

F
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IN

N N _ — N 1
op(\/;) + \/Zi_l [A7r — AiﬁHz\/Zi_l 7D fdiva )
N

- Op<ﬁ>+op<\/§>op<\/§> =op<\/§ ). (E9)

The second inequality of expression (E.9) is due to

2
]E(HZZL jzlgi_Fle)‘?/dit”it )
F
2
= E(E( HZ 12 VAR N divou| )
F
< B ST AR A 0 IS0 vt
= Zt,s:l Zi,j:l [Eg(dirviedjsvis)|) < NT'M (E.10)

by Assumptions 2(i) and 7(ii). The first equality of expression (E.9) is due to:

N
Zi:l’A;FI_ H <Zz 1HAZF_ lFH SUPHA H SUPHA H = Op( ) (E.11)

by Assumption 1 and eqn. (E.5), and by Assumption 5(i),
N

E(Zizl Zil f?A?/ditvit

Proof for expression (E.7): Similar to eqn. (E.10), for all A we have

2 T 5 <N
F) < ]E(Zt,s:l 12N 2] A Zi:l [Eg(diviedisvis)|) < NTM.

N T F-1,0\00 ?
B Zizl thl Aip [y Air digviedin F)
N r N ’
= EsBoal|D . D A fIN dindivvir )
F
< B2 S0 AR N0 | A7) 12 XS | Eaieviadovgo)
< Zt -~ Zl i1 [Bo(divvied;svjs)| < NTM, (E.12)

where E4q(-) denotes the expectation conditioning on ¢ and d, the first inequality is because v;; is independent

with d, and the last two inequalities follow from Assumptions 2(i) and 7(ii). Also,

Hzl 1275 1 Ap — A ) [N divvigdin

N _

< Oz - A,

2

F

2
) = 0, ()0, (NT) = 0,(N?),
F

0r
i ih
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where the equality is due to eqn. (E.11) and by Assumption 5

N 2

B3 | FOA diviad )
ZZ 1Zt5 12 ftp . AO din)*Ega(divirdisvis))

Mzt,s:l 1211122 ZZ_ZI |Eg(digviedisvis)]) < NTM. (E.13)

IN

Proof for expression (E.8): Let ,;;;, = ditvitdinvin, then we have

—[Jpnv Ly Siln = Zl ) Zt . Z dic f2 1) dinvindigvin 7
= 7 Zi:l thl(Ai_F Einfi + (Aip — Aip)unf?) = I + Lo

By Assumptions 2(i) and 7(i), we have

B |3 0, o, A
< TQZ” S B IAZ N 1220 452 e

NT + N?
< ﬁ Zm:l ZLS:I |E¢(§ithfjsh)’ = Op(T)-

By Assumption 7(i) and eqn. (E.11), we have

Eg ZZ 1 Z zthft

and ||I Ly |

2
2
Eg(I11nI")

IA

N T 0 0

Yo Doy MM By (€ianisn)| < NTM,
N _ — 1

> 47 - A7 =

The block-type missing case. For this case, A;p = Aip, consequently all terms with AZ. — A7 F in the
proof of expressions (E.1), (E.7) and (E.8) become zeros. Thus we have (i) ||W)(\J’L;§,S>\H = O,(y/ &), (i)
WY Qv SA|| = Op(1/ ) and (iii) | L Q5a/Sal| = Op(V/N). However, ||Jpx Q5 Sal| is still O, (VN + %)
since ||[II,))? is still O, (NZEND). Therefore, Q yx Q5L Sy = (Lyx 4 Jpar —cWIW)Q5 0 Sy is still Op (VN +

%) and this is what matters for Lemma E.2 below. m

2 2
N
= Op(ﬁ

T

IN

Eaunl?

~—

t=1

For the rest of the appendix, all lemmas, propositions and theorems hold for the random

missing with x > 4 and hold for the block-type missing with x = occ.

Lemma E.2 Suppose that Assumptions 1-2, 4-5 and 7 hold. Let Sy be the (N7)x (N + T)r selection matriz
such that S1 A selects the first Nr rows of a (N +T)r x (N +T)r matriz A. Let Sz be the (Tr) x (N +T)r
selection matriz such that SoA selects the last Tr rows of A. Then as (N, T) — oo,

(i) 8105485 - Iiisi| = 0 <r+f+ z“);

) ~ _ -
(ii) "SQQ¢;/S¢ - Lf]},SfH ~=0, <\/1T TR ) .




(@ax = Qapr Q3£ Qpx)TH(Sx — Quap Q. Sy)

Proof. Note that Q1 S, =
4o ( (Qrp — Qen Qi @ap) (S5 — QpaQia/Sx)

). We prove (i) by show-

ing that
HS -1g 20 S] = 0p(—— + 2 E.14
103055 = @~ @rQp} Q)8 = 0=+ ) (E.14)
_ _ _ 1 VN
H(Q)\)\/ 7Q)\f/Qf;/Qf)\/) IS)\*Q)\/\l/S)\H = Op(ﬁ+7) (E15)
_ _ 1 VN
@ Sx = Ly Sall = Op(ﬁ +7) (E.16)
-1 7—1 Ntz
[L3aSx = Ly Sal| = Opf T ) (E.17)
Similarly, we prove (ii) by showing that
-1 —1 —1 1 1
HSQQ¢¢'S¢ — Qs = Qex @3y @p) " Sy = O,,(ﬁ + ﬁ), (E.18)
_ _ _ 1 VT
"(fo’_QfA'Qki’QAf’) 1Sf_fo1’Sf = Op(ﬁ"‘w), (Elg)
1 VT
71/ y L71/ == E— E— E.2
Hfo Sy —LgpSs OP(\/N t )s (E.20)
—1 F—1 Ti+x
HLff,sf — L} Ss| = Op(—) (E.21)

Proof for equations (E.14) and (E.18): T(Qxx — Q,\erJIfl,QfX)_l and N(Qsp — QfA/Q;;/Q,\f/) is the
1 _1
upper-left and lower-right block of (Dy% Qs D7), respectively. By Lemma B.1,

IN

HT(QA/\’ - Q/\f'QJ:;/Qf,\')_lH
IN(Qrs = Qe Qo Qxs) |

|(Dr3 Qo D) | = 0,(1), (E.22)

|(rdQus Dz | = 0, (E.23)

IN

From equations (A.5)-(A.8), Qxsr = Lag + Japr — cW{W'. Then by Lemma E.1(ii)-(iv),

T

|@xr@rtse| < [Ear@rtss| + [ nr@rh | +||lewswiar sy = opv/T + v OSNGED)
It follows that
8107056 = @ = Q71 S| = [[@w = @arQ7f Qa7 S
< H(QAX - QAf'Q]Tfl/Qf/\')AH HQ/\f’Q;}/SfH
= Op(% + L)
T VN
Similarly,
[QrxQaxSall = Op(VN + %)7 (E.25)
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and

HSQQ;<;’5¢ - (Qsp - Qf/\’Q;,\I'QAf’)_lsfH H(fo' - Qf)\’Q;\;/Q)\f’)_le)\’Q;\i,S,\H
1 1
Op(—=+ —=).
"w T
Proof for equations (E.15) and (E.19):
(Qxn — Q,\f’Q]}/QfA')dSA = QvSr T Qi Qup (Qrp — Qv @iy Qap) Qv Qi Sx (E.26)

It is easy to see that ||Qxs| = O,(V'NT), and equations (E.2)-(E.5) imply that ||Q;;/ | = Op(5). These
results, along with equations (E.23) and (E.25), imply that the Euclidean norm of the second term on the
r.hs. of (E.26) is Op(% + g) This implies (E.15). By symmetry, we also have (E.19).

Proof for equations (E.16) and (E.20): From eqn. (E.2) we have

N
QrnSx = L4 Sx + L;i,Wf\J(C—TITz ~ WYL W)WY LTSy

By equations (E.3)—(E.5) and Lemma E.1(i), the Euclidean norm of the second term on the right hand side
is Op(ﬁ + g) By symmetry, we also have HQ;},Sf — L]Tfl,SfH = Op(\/% + %)

Proof for equations (E.17) and (E.21): Eqn. B.17 in the appendix of Su and Wang (2024) shows that
| Lax = Lo | = 0,(VTN#). This together with eqn. (E.5) imply that

N=

| Zxx = Ly VT

:H_L;Al'(L/\/\’ L/\A’)L,\A/|

= 0,(——). (E.27)

By Assumption 5, |[|Sx|| = O,(VNT), thus HL;;,S,\ - E;j,S/\H = 0,( N2+ ). Similarly, HLff,Sf Lff/SfH

1,1
Op(TZI\;” ). For the block-type missing, this term is zero since Lyy = Ly and Lip = Lff/. ]

Lemma E. 3 Suppose that Assumptwns 1-2, 4-5 and 7-8 hold.
(i) IfN’“L\HN“ — 0 and N”T%T” — 0, then Sﬁ Q5¢/Q;(;,S¢ =O,(VNT + N +1T);
(ii) If NST 3 -0, T3 %50 and k> 4, then = (Sp — Q@¢/Q¢¢,S¢) (by+bo+bs+bs) 3 N(0,Q,),

where

ad %Zj—l ZL Zjv— Eqg(djvsidiwi) XY [Ly 1],
b2 = % Zz 1 Zt 1 Zs 1 mvzs ztxzt)ft [ )\)%/} 0
b= th 122 12] digviedjevje) 02 L7 1eNs

by = \/721 1Zt 125 L Eo(disvis digvie )} (L )i -

Proof. First note that
S5 = QpyrQyySe = (S5~ QpyQyySs) = (Qpy — Quer) Ry So + Qo Qg (Qugr — Qo) Qg So
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= 11171 —11172 +IIl73. (E28)

We study I1; 1, 1112 and I 3 in turn.
(1) By equations (B.10) and (B.15), QB¢/Q;(;, = Q5¢/E;(;, = (Y, w"). Then

Q5¢/Q¢¢/S¢ = , W Z’L 1Zt 1 60ft +OJ?)\ ) itVit-

Since Sg = Zf\; 23:1 TV, we have I 1 = Sg— QM!Q;(;,;S}) = Zf\; Zthl Z41d;pvi. Then by Assump-
tion 8(i),

1 1 N r o d
ﬁ[.{l’l = ﬁ Zi:l Zt:l CEitditUit — N(O, Qz) (E29)

(2) From Assumption 3(iii) and Lemma E.2, we have
N3tx T3+%

(@ser = Qo) Qu S = (LS (£} S)Y] = VTO, (o 2o W%* )

1 1 1
which is 0, (N + T)) if J\VF” — 0 and L 7 — 0, or equals 0, (VNT) if N2T — 0 and T2 — 0. Next, note
that

Qg — Qpor ) (LynS2)' s (L51.:57)") = (Qax — Qan )Ly Sx + (Qpp — Qpp) L7 Sy-

The i-th block of Qg — Qpy is —Zthl(ditl‘it — Eg(digxir)) fY and the t-th block of Qg — Qpyr is

N dpzis — By (dpzi))AY. By Assumption 8(ii) and the fact that max; ¢ ¢ |fY[TL7L]f°| < M and
i=1 o} i )t t AN s
max; j¢ A [TLff’] )\? <
—(Qpxn — Qpx) L\ Sx
N T T
= Zi:l thl Zszl(ditxit —Ey(dixir)) Zgvzgf "IL A)},] 0
T 77
= Zi:l Zt:l Zs:l ]Ed)[(d’btx’bt - E(b(ditl’it))disvis] é),[ )\/\/] fO + O (\/7)
T T
= Zi:l thl Zs:l B (dieirdisvis) f [Lyn]if2 + Op (VN), (E.30)
and
(Qssr — Qos) Ly Sy
i N N
— thl lel ijl itLqt — Eq&(ditxn))d]t'l}jt)\ [Lff’] )\O
T N N
- Zt:1 lel Z]:l 7/txit - E(ﬁ(ditxit))djtvjt])\ [ ff'] )\O + @) (f)
T N N
— Zt:l Zz 12] 1 thztd]tvjt>)\ [ ffl] )\ +O (\/7) (E31)
It follows that
Il = e (Quy — Qo) QS
VNT L2 VNT B B )% pgp! PP
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1 N T T 0
N \/ﬁzizl Zt:l Zs:l By (dsvandisvis) 11" [L M'] fs

LT Y g ) VEVT
+ﬁ Zt:l Zi:l ijl Eo( ”m”dﬁvﬁ))‘ 'L ff’} A+ Op(——=— VNT )
1 1
= by+b01+0, (\/N + \/T) . (E.32)

(3) By equations (B.17) and (B.18), HQM,/DTNH = Op(VNT). By Lemma B.1 and eqn. (B.16),
(D TNQ¢¢>’ DTN) = Op(1). These results, together with eqn. (B.20) and Lemma E.2, imply that

Qe Qg (Qogr — Qpp)Qpgi S — (LinSn)'s (L77:55)')']
= Qﬁqb'D;Kr(D;J%Qw'D;J%YID;J%(QW — Quo ) DR DEN[Qy5Ss — (LyxSa)'s (Ly1S5)")]

N# T* Nzts LTt
= 0,(VNT)0,(1)0, (\F \F ) <1+ T f)

4

24
3

s 3+ax o NET® N7 TR AT
which is 0, (VN )1fo3 — 0, 2 — 0and k > 4, and 0,(N+T) 1f% %Oand% —
0.

Now, we consider QMIQ;(;/(QM' = Quer) (L3 S2)'. (E;;, S¢)")'. Noting that QB(;&’Q;(;/ = Qpy’ E;;/ and
Qg — Qogr = Loy — Loy + Jgr, we have

Qs Qpgr Qo — Qo) (LyySN)'s (L7 1.S5)")
= Qoo Ly (Log — Loy + Jow )(LynS0) s (L71.57))
= 6"(Lox — L)Ly Sx+ 6" (Lap — EAf’)E;;/Sf +w”(Lpx — Lpa) L35S,
W(Lygr = Lyp)LypSy+ 0% g LSy 4w Jpa Ly Sy
By Assumption 8(iii) and the fact that E4(dirdisvis) = 0, Eg(dirdjivje) = 0, max, Kl TL;, O < M,

max; ¢ )\O [TLff,] /\? < M, max; ‘52;ft0| < M(NV T)é and max;; |w2’t/\?| < M(NVT)
F.3(ii)), we have

(by Lemma

&Y (L — EM,)E;;, S
= —Zl 1Zt 12 ditdisvi0% FO PO ILT 10 = Op(VN(N V T) ), (E.33)

OV (Lagr — Exf/)ilz},sf
= —Zt 122 12 dirdjevi00 [N L7} 1eX) = Op(VT(N Vv T)2), (E.34)

Wi (Lyx = Lpa) Ly Sx
N T T . 1
- Zi:l Zt:l Zszl dirdisviswy N (L )i f = Op(VN(N VT)?), (E.35)
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and

wi (Lyp — Effﬂ}}/ Sy
= —Zt 121 12 dirdjevj AN (L7 1A = Op(VT(N V T) %), (E.36)

oy [TE;},]M? < M(NV T)% and max;s [wiy [T Ly )i f0] <

By Assumption 8(iv) and the fact that max;;;
M(N\/T)%, we have

Sy Iap L} Sy
T N N B
Zt:l Z¢:1 ijl ditvitdjtvjtf;g/i [L;;f]t/\?
T N N ~
Do Doy Dy Boldavind;evs) 05 [L 71 1iAT + Op (VT (N v T)%), (E.37)

and

<1
) disVisdirviw iy [Lx )i f2

g (disvisdigvin) w0 (L33 i 0 + Op(VN(N V T)%). (E.38)
Then

1 A ~A—1 A -1
IIl,3 = ﬁ@ﬁqﬁ’@czg@(@wﬂ—Q¢¢’)Q¢¢/S¢

1 77 N N
B \/t Zf*l 2171 ijl B ”U”dﬁvﬁ)dkl[ f;’] )‘0 +

\/ﬁzz 1 Zt 1 ng disvis ztvzt)wkt[f/A)\/] fO

H+O,(NTVANVT)e)+ T Y2(NVT)?)
= by+bi+ Op(NTVANVT)e) + TN VT)2),

where the remainder term is o, (1) i \F — 0 and ]\\;3 — 0, which is easily satisfied when g > 8.

Combining the above results, we obtain the desired result. m

Lemma E.4 Let Rg and Ry be as defined in (4.1) and (4.2), respectively. Let Ry = (R\,R})" where
Ry and Ry are Nr x 1 and Tr x 1, respectively. Suppose that Assumptions 2(i)-(ii) and 3(ii) hold. If
(B/, 5\/, 1Y € Bp(7®) w.p.a.1 for any fized m > 0, then we have

(i) 1Bl = Op(VNT | A = X°| || £ = £°| )

103 =0T 3~ 91 - o - | -
11 = 0T 3~ i ] 3] - o+ v -

Proof. (i) Let Rg, denote the k-th element of Rg, which denotes the remainder term in the first order
Taylor expansion of Sﬂ(B , c}ﬁ) around Sg = Sﬂ(ﬁo, #") with a second order remainder term. Using the integral
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form of the mean value theorem for vector-valued functions to expand the first order conditions, we can

express ng as R@k = Rﬂﬁﬁk + R5¢5k + R¢g5k + R¢¢gk,

Rgss, = (B—5° // 9pp15, Q(s2)ds2ds1)(B — B),
Rags, = Ress, = (B—8°) / / Dsors Qs)dsads:) (B — 6°),

Roos, = (3— ") / / Do, Qs3)dsads ) (& — 0°),

where g5, Q(s) = 95, ey Q() = 05, Dy Q(B° +5(B— B°), 8" + s(¢ — ¢°)) and Dy, Q(s) and gz, Q(s)

are defined similarly. Since Q(-) is quadratic, we have

Rgps, = 0, (E.39)
Rgyp, = Rgpp, =0. (E.40)

Since Dy Q(Y) = Loy (7) + Jppr (V) + Gor (7), 98, Lo (v) = 0, 93, Gy (v) = 0 and the (4,¢)-th block of
ngJAf/ (’y) is _ditxitklr;4 we have

H¢ ) / [ 0nus (sytsadsi) o - )

B H_ ZZ diswioe(Ni — A (fe — £2)

i=1 t=1

| Roos, |

IA

>3 [ - ~ou T ] - cean

i=1 t=1

where the last equality follows from Assumption 3(ii).
(ii)-(iii) Now we consider Ry = (R}, R})" = (¢1, ..., §(y41)-)’s Where ¢; denotes the jth element of ¢ for
€ [(N +T)r]. Note that
Ry, = Rppy; + Rppe, + Reops, + Ross, (E.42)

where

1 S1 .
Ragy, (8- 50)’(/0 / g, Q(s2)dsads1) (B — B°),

Ryss, = Raps, = (B—B°) / / Doty Q52)dsads1) (& — %),

(¢ —¢°) // Dppr o, Q(s2)dsadsy) (¢ — ¢°).

Ryog,

“Recall from expression (A.8) that G4, (7) is a constant matrix for all 7.
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First, noting that Q(-) is quadratic, we have
Rﬁﬂ(bj =0 xK- (E.43)
Next, we consider Rgpp = (Rggp,s s Rapo .y, ) = (Rpgr: Rgpyp)'s Where

Rgon = (Rppe,s - Repoy,) = (Ripays - Rpry)'s and
Rﬁ¢’f = <R5ﬂ¢1\1r+17 e Rﬁﬁd’(NJrT)r)l = (Rlﬁ¢f1’ ) R,/B¢fT)/'

Note that
Dpgri, Q(7) = Or,, 085 Q(Y) = O, Qe (V) = (O scrs -y O ey dinwin 13, odirair 1y,

which is a K x (N + T') r matrix. Here, recall that O x, denotes a K x r matrix of zeros and 1j, denotes the

r x 1 vector with the ¢-th element being one and the other elements being zeros. Thus we have
AN B Ydm (F— O
Rogpr, = =5, (B=B"daie (fr — f7), and (E.44)
Rﬁ¢fr = _721 1 5 ﬂ di Ty (Az >\ILO) (E45)

It follows that

1Bsarl < 5 [B-8°] \/zf_l S el F - £

<

= O(NT 35" 7= 1) (E.46)
it < - #| =, St i)

- Op(x/ﬁHB—ﬂOH HX—AOH). (E.47)

Now, we consider Rgpg = (Rpgp, s s R¢¢¢<N+T)T)' = (R/¢¢>\’R;>¢f)l’ where

R¢¢>\ — (R¢¢¢1,...,R¢¢¢NT)/ = (R%ﬂ)q’“"R/ﬁB/\N)/’ and
! / / !
Roor = (Rogon,yr - Rovonir,) = Bsprs o Roppr)-

Note that (1) dx,, Ly (y) = 0, (2) the t-th block of dx,, Lgs () is —dit (A1 + 15X;), (3) the (i, t)-th
block of Oy, Ly () is —d; fi17" and the (j, s)-th block is zero if j # i, (4) the (i,t)-th block of dx,, Jxs (7)
is —dit fiqI, and the (j, s)-th block is zero if j # 4, and (5) Oi,,Gge = 0. It follows that

(¢ ¢ // 8/\1(18¢¢'Q(82)d82ds1(¢ ¢)
: —2Zt:1du<&—A?>’ / | sy + futsa) ) dsadn (- 1)
- Z — 1 // i(s2) 10 dsadsy (fr — f7), (E.48)
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where fi(s) = f0 + s(f; — f2) and Ai(s) = A + s(A; — A?). Then

IRoonll < 21 [A= x| sup s [[F = 57+ 21 sup £ - 17
- ousr il - o

where the equality follows from sup 1f ()| < [[fO]] +mVT = Op(VT) and Sup [IA(s)] < H/\OH +my/N =
0<

O,(V/N) by Assumption 2(i)-(ii) and the fact that (B JA ,f’)’ € Bn(?°) for a ﬁxed m. By symmetry, we also

have

. . . 2
IRaosll = Op(VN |5 = 2% |7 = 70| + vT | A= X[ ). (E.50)
Combining equations (E.43), (E.46)-(E.47) and (E.49)-(E.50), we conclude the proof of the lemma. m
Proof of Proposition 4.1

From equations (4.1)-(4.2), we have

B=8° = —(Qps — QoerQupQus) (S8 — Qps Qi So)
—(Qspr — QperQypy Qo)™ (Rg — Qpyr Qg Ry), and (E.51)
$—0" = —Qu38 — QupRe—QuyQep (B—5). (E.52)

By Assumption 3(i) and Lemma B.2, (Qﬁﬂ/—QBWQ;é,QM/)_l = Op(57)- By LemmaE.3, SB—Q,@WQ;;,&) =
Op(VNT + N +7T). By Lemma E.4, Lemma B.1 and eqn. (B.17), we have

|@s6 DA (D24 Qoo Drd) ' Dk Ro|
HQWD;]%H H(D;]%Qqﬁqﬁ’D;]%)_lH HD;]%R¢H
VNTO, (VN 3= 5| |7 = ] + A -] £ - ]

R e [ T

Plug these rates into eqn. (E.51), we have

HQMQ;;/%H

IN

[5-#]

- (i s o (Gl =)
on{ Gl - 5=+ g =2l o5 -

I}
~0 (c1 ), (E.53)
NT

where the second equality follows from Theorem 3.1. By eqn. (E.52) and Lemma B.1, we have
D36 = 0"+ Q10| = (NT)™?||(=Dr3 Qoo Dra) ™" [DraRe + DriQus (53— 8] |
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< -1/2 -3 -3 2 0
s VD™ {|DriRa| + [ Dran|]|3 - 9]}
1
Op(5—), (E.54)
CNT
where the last equality holds by the fact that HD;]%Rd’H = Op(—VC?VNTT), D;]%,QW/ = 0,(VNT) by eqn.

(B.17) and HB - ﬁOH = Op(z—) by eqn. (E.53). To see the first fact, note that by
NT

Op(5)s \/—lﬁ HS\ - )\OH = Op(517) and ﬁ Hf - fOH = Op(517); plugging these rates into Lemma E.4 yields
_1
|Drse]| = 0,05 m

To prove Theorem 4.1, we state and prove the next lemma where refine our calculations of Rg and
Lemma E.5 Suppose that Assumptions 1-5, 7 and 8(ii)-(iv) hold.
(i) Ry = 0,(v/NT) if YL — 0 and YN — 0;
. 1 ppla (Rt 2+ vV NEH(Re 2+ v v
(it) =Qpy Q4 Ro = VNT (b5 +bg)+0,(VNT) if ~ — 0 and 7

0, where bs and bg are K x 1 vectors with the respective k-th elements given by

_ 1 T N N 071 N 0 0

bsk = ﬁztﬂZizlijlm(dnvudﬂuﬂ)xi [Lipled | @aNOR)Ly 1A,
1 N T T o7 —1 T 0.0 0

b = mzizlztzl > Boldicviedicvis) f L1 ®if Pl Lan]if?-

Proof. (i) From equations (E.39)—(E.41), we have
[Rsgsll = H Z . Z dipair(Ni = X)) (fe = f7)

L -l 2|
= 0,2y~ o (VAT it g 50 and VTN o,

CNT

152l

2

IN

ft ft ltxzt()\ )\0)

z 1

where the third equality follows from Theorem 3.1 and Lemma F.1(iii).
(ii) By (E.42), we can write

Ry = Rppy + Rpgp + Rops + Roos, (E.55)

where Rgge, Rgog, Repe, and Rege are all (N +T') r x 1 vector with typical elements given by Rgpg,» Rpog,
R¢5¢j, and R¢¢¢j, respectively.

First note that Rggy = O(vy1yrx1 by (E.43). Next, using Rgpp = (Rj45, Ryp) and (E.46)-(E.47), we
have

|Rsoall = Ou(VNT || = ||| £ = £°])) and (1Rl = Ou(VNT |3 = 8] |3 = %]

It follows that

HD;]%RW\\zop{ T|5- ﬁH( [F-rl+ HA_AO‘D}_
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Then by eqn. (B.17), Lemma B.1 and Proposition 4.1,

_ _1 _1 1 . 1 NT .
Qo Qo Rovs = Qoo Dri(=Dri Qo D)™ DriRags = Op(Z—) (E.56)
NT

T
= 0,(VNT) if % — 0 and g — 0.

Now, we consider QM’Q;(;/R¢¢¢- Define QBqﬁ’Q;(;/ = (6", w*) = (07, -, Ons WF, oy i), where §;’s and
wy’s are all K x r matrices. Let d;; and w}, denote the transpose of the k-th row of §; and wj, respectively.
From eqn. (E.48), the k-th element of QW(Q;;, Rygg is:

T . Lopst N R
Qp, 6 Qg Rovo = —2 E e = fto)//o /0 E i ditAi(s2)055dsadsy (fi — f7)
N T N 0y/ ! o */ */ r 0
-2) - > A= A7) dit(fi(s2)0p; + 0y fi(s2) I )dsadsy (fi — fr)
= = 0o Jo
T N n 0y/ ! o */ */ B\ 0
-2) _ ) _ e =17 dit(Ai(s2)wiy + wigAi(s2)1r)dsads1(Ai — A7)
= = 0 Jo
Noe 0y\/ ! o T */ N 0
-2 E i:l(/\i — )\l) /O /0 E N d,’t,ft(Sz)wktdSQdSl()\i — /\z)

Thus by Lemma F.2 and Theorem 3.1, we have

Qoo Qpgy Rovs = — ZL Z;O‘i = XD da(FO83; + 6310 1) (fe = 1Y)
S ST (e Y Ny + WAL (s~ XY)
SN ST e A NS (e )
3 S R A P = A) + O

ENT
NT
= 7][271 —IIQ,Q —11273 —11274—|—Op(37). (E57)

CNT
Noting that Y, di fO01:(fe — £2) = Soi_y dief2(fe — £2)'0rs and 3oy dusdpi fO(fe — £2) = Si_y die(fi —
fz?) tOI Zia

N ~ T R
TR DAl s 1A ) S T
VN 3. +3+1 TVN 3 4341 NT
= Ol OV IDTERTN0,(C5 ) = O (N V)T 0,(G )
1 3 3 1 1 3 3 1
~— . T2teaxetsts Niteoreti+ts
= 0p(VNT) ifT—H)and%%o’ (E.58)

where the first equality follows from Theorem 3.1, Lemma F.1(i) and Lemma F.3. Similarly,

il < 230 = 22 okl [ S, i = 20y

32



VT 3 4341 NVT 3 .3,1 TN
= Op(=—)Op((NVT)FTTT2)0p(—5—) < Op((NVT)FT5T2)0p(—5—)
CNT CNT CNT
1 3 3 1 1 3 3 1
Ta2tsactets Nztaaetete
= 0p(VNT) if ———— =0 and ————— =0, (E.59)

where the first equality follows from Theorem 3.1, Lemma F.1(ii) and Lemma F.3. Next, by Lemma F.4(i)-(iv)

and Theorem 3.1, we have

Ntz N T . N .
Iy = 0p<c JOUVNT S + = ) = 3 (o= S, @iNloi) (e = ):(E.60)
NT - -
T+ T Nog N el 0, .0/ 0
Thi = OZo)0,(VINt +—— ) = D B Y @uffelt) O = ) (B 61
NT - 2
where O, (FT)0, (T + Y% + ) = 0,(VNT )'f% 0and X228 g By eqn. (E.54) and

Lemma E.2, we have \/Z?_l‘ft—f? +[L jf’] Sy, _O (\7+T2 n) By Theorem 3.1, \/Zt 1 ft

Oy ( VT ). These, together with Lemma F.4(v)-(vi), imply that expressions in (E.60) and (E.61) can be further

CNT

simplified to obtain

T - N NT T'=

Ihs = =, SRlLepl( | @uNO)LypliSs, + Op(5— 2" onr ), (E.62)
N __ T NT N

Iy = =) SAILWEOQ S, @uffwf)LyiSy, + Opl 5 o) (E.63)
B A NT

NT
where O, ( -

1
and ]\\}% — 0. Plugging in Sy, = Zfil )\?ditvit and Sy, = Zthl f2disvit, we have

1
L) = 0p(VNT) and O, (&~

CN

Nt o T3 T NEtE
=) = 0p(VNT) if == —0, v 0 S =0

cN

T _ N _
Iy = — thl S, [L}}/]t(ziz O A0 [L7 1Sy, + 0p(VNT)
T N N N _
- thl Zi:l Zj: dirviedjv;e N (L7 ) (Z: i AP LT 1A, + 0y (VNT)
T N N N _
- Zt:l Zi:l Zj:l Edl Ztvltd]tvjt))\ [Lff’] (Zizl ‘I)zt>\?522)[Lf}/]t)\? + Op(\/f) + Op(\/ _Z\/vTj)7

and

N . T
Iya = =) SULWQ | @aflof) L)y +0p(VNT)
N T T _ T
2 Zi:l thl Zs:l ditvitdisvisf?/[L;,\lz]i(ztzl @y flwiy)[L ,\,\/] Jo + op(VNT)

= Y S S Eelvidivi) SIS, a0+ Op(VR) 4 0, (VAT).

where we use Assumption 8(iv) and the fact that max; ;; [A)[NL7}]i(3 SN B AGY)INLTEINY < M
and max; ¢ s | f[TLyy]i( % ZtT:l Dy fPwY)[TLy i 2] < M by Lemma F.4(v)-(vi).

Combining the above results on 115 ;’s yields the desired result. m

ff’

Proof of Theorem 4.1
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Given eqn. (E.51), it’s easy to see that Theorem 4.1 follows from Lemma B.2, Lemma E.3 and Lemma
E5 1

F Supplementary Lemmas Used in the Proof of Lemma E.5

In this section, we state and prove four technical lemmas used in the proof of Lemma E.5.

Lemma F.1 Under Assumptions 1-5 and 7, as (N,T) — oo,
) S [l dast o= 22y = 05
(i) S || S X - Ny =0 b (H5);
(iii) 2T, HZL duwi (i =20 = 0 W(T0),

Proof. (i)-(ii) The proof of (i) is similar to that of (ii). We focus on the proof of (ii) here. By equations
(E.14)—(E.16), (E.18)—(E.20), and (E.54), we have

Sl < o o
fo 1) +Lff'SfH i O”(cf\,lT)' (F.2)

Noting that the ¢-th block of L;/\l, Sy is [L;/\l,]iS \;» we have by the CS inequality

T 2

Zs:l ZZV:I disA] (3 = A
N

2y >,
S/ DN PV S YRSV RR 1O
+2 25:1 Zi:l thl disA?f?/ditUit(ijl dnfP 177!

2

IN

dzs}‘o( )‘? + (L )\A’ SA

oy IS st ik

IN

N2T NT + N? N2T
= Op( 1 )+OP(#):OP( 1 )7
CNT CNT

where the equality follows from eqn. (F.1) and expression (E.7).
(iii) The proof is similar to that of part (ii). Note that

T 2

Yo 3 i = Ay
23 IS (A= X+ (L3 iSn)
QTZ \xlsHQZ ‘
2y IS disxisf?’duvu@; die 1)

IA

+2ZS X ZiNzl diswis Sy, Ly )i

_1 2
[ AA/]iSA,;

IN
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N2T T N T o T 0 e0r 1 2
= Oy( a ) +QZS:1 Zi:l thl disTis [ ditvit(ztzlditft t)
N2T NT? + N?2T N2T
= Op(——)+ Op(T) = Op(——);
CNT CNT

where the first equality follows from eqn. (F.2) and Assumption 3(ii), and the second equality is proved
below. Recalling that A;p = % Zle die fOY and A;r = E4(Air), we have
)

T
E¢>(Zh:1 .

T N T _ _
S 2o 2 WAL |52 1291 B dirviadind iy jnd v
T(NT + N*)M,

T 2

N F—140, 7
E i1 1 Alr [z divirdin

N

where the last inequality follows from Assumptions 2(i) and 7 (iii) and ||/L_FlH is bounded for all ¢ by
Assumption 1. Also,

2

" ’ AT — ATH P02 divied;
i=1 t:l( iF iF)ft Tjp it Vit Qipy

T
2

N _ T N
O 4 = A7 DS, >

= 0,(5)0,(NT?) = 0,(N"T),

F

IN

2
T
0 /
Zt_l fedivviwi, din|| )
- F

where the first equality is due to eqn. (E.11) and

T N 2
)

Zh:l E¢(Zi:1 ZtT:l fPai digviedin .
’ N Y " K 0 ,0 2
- Zh:l E¢(Zi:1 Zt,s:1 szl Zk:l ftpfsp(xihkdih) ditvitdisvis)

T T N
< thl Zt,s:l A2 21:1 Eg (ditvirdisvis i windin)|) < NT?M,

by Assumption 7(iii). m

Lemma F.2 Let Bys(s) denote the NrxTr matriz with d;i(f(s)85; 405 f+(s)I) as the (i,t)-th block, B (s)

denote the T'r x Nr matriz with di (X (s)wi, +wiiAi(s)I) as the (t,i)-th block, Bxx(s) denote the Nr x Nr

block diagonal matrix with 23:1 dit fr(s)wiy as the i-th block, and Bys(s) denote the T'r x Tr block diagonal

matrix with Ef\il disMi(s)05; as the t-th block. Suppose that Assumptions 1-5 hold. Then as (N,T) — oo,
(i) sup [1Bxs(s) = Brs (Ol = Op (570

CNT

(ii) sup |1Bya(s) = Bya(0)llp = 0, (AT,

0<s< enNT

(i) sup || Bax(s) — Ba(0)|| = Op(%)5
0<s<1

(iv) sup |1Bys(s) = Bys(0)] = Op(25).

CNT

Proof. (i) Noting that f(s) = fO + s(f — f°), we notice that the (i,t)-th block of By¢(s) — Bxy(0) is
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s(fr — fO)075dis + 505 (fr — f0)diiI,., and

sup ||B)\f(3)_B)\f(O)”i* (r+ )Z 167%:11” Zt 1Hft I H

0<s<1 CNT
where the equality follows from Theorem 3.1 and
Y e 13 | 1 o POt O
T 16t0° < | Qoo @i Din|, < |@so Dzd |, || D73 Que D) Y| = 04(NT).

The last equality is due to eqn. (B.17) and Lemma B.1.

(ii) Noting that the (¢,4)-th block of Byx(s) — Bya(0) is 5(5\1 — )\O)wktdzt + swzg(;\z — /\?)ditlr, the proof
is similar to that of part (i).

(iii) The i-th block of Bxx(s) — Baa(0) is szt 1 dir(fy — f2 Jwiy. Then

T

thl (f Fwit
T 2 T T
\/Zt—l \/Zt—l HwktHQ = Op(%),

where the last equality follows from Theorem 3.1 and

sup [|Bax(s) — Baa(0)| = max
0<s<1 %

fi— £

IN

T * 12 V. 1 2
NY- il < |Qou@ul D, = 0y(NT).

(iv) The proof is similar to that of part (iii). m

Lemma F.3 Suppose that Assumptions 1, 2, 3(ii) and 4 hold. Then as (N,T) —
(i) max |37, = <<NvT>ﬁ+%+%> and max [lw;, || = Op((N v T) < v,
(i1) max||§ | = N\/T) %) and m?XngtH = Op((N\/T)? E).

Note that ¢ = oo when H/\?H and HftOH are uniformly bounded.

Proof. (i) Let ||-||; denote the 1-norm of a matrix that is given by the maximum absolute column sum:
for an m x n matrix A = {a;;}, |All; = maxjep >oiy |ais] -

Step (1): We first bound ||Q;§/ |1.

By eqn. (E.2), Qyy, = Ly — Ly W(—25Le + WYL, W)WY LT),. Then

_ _ N _
s/l < sl + 2SR AL IR |« ol t W N L WR)” HW Mol
1 1 T 1 N%
= Oy(7) + Op(H)0p(N)O(S)0p(N )0, () = Opl—),
where the first equality by the results in (1.1)7(1.3) below.
l
(1.1) by eqn. (E.5) ||L;;, < Vr||Liy | = A) when ¥ 77 0
(1.2) by Assumption 2, HW)\H1 = maxzZ 1 |)\ | < \ﬁH)\OH = ) and ||W)(\J’||1 = m[z?\)[(] PO 1|

O(N*);
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1.3) by negative definiteness of WY L7, W?, we have
PP YLD

N
—— L2+ WYL L W)™t

ST(CT

1

N
H(—CTITz + WYL W)t < —- (F.3)

Step (2): Let (Q;;)ul, (Q;;,)lr, (Q;;)W and (Q;;,)” denote the upper-left, lower-right, upper-right
and lower-left block of Q;(;, of sizes Nr x Nr, Tr x Tr, Nr x Tr, Tr x Nr, respectively. We shall prove

2042 2042 242, 141
that the 1-norm ?f these four terms are respectively O,(22—), O,(T5%—), O (F-=—L"—=), and

FetiyeAactt
Op (T2 ) in (2.1)—(2.4) below.
(2.1) The upper-left block is (Q;(;,)ul = [Qxn — QAf/QJI},QfX]*l, thus

@ = @ur@if@nd™|,
= [|Qny + Qv Qrp[Qrr — Qv Qi Qapl ' Qen Qv I,

1

Nt N+ 2 Nt Neact?

= 0,(5) + 0,0 )0, (NFT)0, () = Oy~ (F.4)
We next show ||Q,\f/ Qsp — Qf,\/Q;j,Q,\f/]’leX L= O,,(NWQCT). It suffices to show
-1 —1 Tz
1Qxf/[Qrp — QrnQn@ap)l Qx| = Op(NN‘“)- (F.5)

For a matrix A of Nr x Tr which is written as an N x T" block partitioned matrix with each block of size

r X r, we use the row index ip to denote the pth element of the ith row block, similarly for the column index.
The (ip, jq)th element is Qxp [Qrp — Qv @y Qap/] 1 Qv is

(@ ip[Qrpr = QpnQin@ap ) QA g

where [QAf Jip denoteb the ip-th row of Qxpr. [Qpp — Qf,\rQ;;,Q,\f/]_l equals the lower right block of
Q¢¢, = DTN( TNQ¢¢’DTN) DTN Then by Lemma B.1,

1

1 _1 _1
[1Qs1 = Quv @ik @1l < 5 | (P22 Qesr D22 7Y = Onl5): (F.6)

Recall that Q)\f/ = L)\f/ + J)\f/ + G)\f/ and the (i,t)—th block of L)\f/, J>\f/ and G)\f/ is —ditfto)\?l, diz i,
and cfP )\, respectively. Tt follows that

maxip [[[@xplipll = maxip [[LogJipl| + maxip [[Gaplip]| +maxip [[Txg]ipll

Op,(VTN* + VTN¢) = O,(VTN <), (F.7)

where the second equality is due to Assumptions 2 and 4(i).
Qs )irl| = lQss — QrxQix Qapr] M|, = Oy ).

2.3) The upper-right block is (Q¢¢/)ur = _(Q;;/)ulQ)\f/Q;;/. In step (2.1) we proved that HQ;;, .
Op(N: Q;}, =0 ( : ). By Assumptions 2 and 4(i), |@Qxp ||, < [[Laglly + ([T lly +

2
Acts

S

(2.2) By symmetry,

). By symmetry,
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2 2
Gapll, = Op(NT%—i—NT%). These results, together with part (2.1), imply that H(Q;;,)w = 0,(¥ +§TT
(2.4) The lower-left block is the transpose of the upper-right block, thus by symmetry, ’ (Q;(;,)”HI =
cAct?neActt
OP(%)

Step (3): Recall that QM/Q;;, = (6", w*) = (67, .., O, Wi, .., win), where §; and w} are K x r matrices
and ¢y, and w}, denote the transpose of the k-th row of §; and w; respectively. Let d;. and wj. denote the
k-th row of §* and w*', respectively. It follows that

max 651 < VIO o = VP Qv (Qpd )t + Qi (@ |

i€[N]
S \/;HQHICX(Q;Q;/)M ax+\/;HQka/(Q;(;/)” max
< V@ s (@5t + V1@ e (@
1 N&+% 1 TsAC stA +%

= 0 (ch+ Te) 40, (Twc+ FENTIH) = O, (N Vv T)Tetets),

where the second equality is due to

T T

[@6x lle = 12 Zdtxmft < 1 | 2 | PN = Op(TN)
N N

||Q/3kf/Hmax = {Ielaj)ﬁ Zdztxztk)\ <1151€137)§ ; ;H/\OH NT)

By symmetry, we also have max lwi.ll = Op(T$+%+%) + Op(N%+%+%T<iC+%).

(ii) From equations (B.10) and (B.15), we have (6%,w?) = Qe Qg+ Then the proof is the same as part
(i) with @, L and J replaced by @, L and J, respectively. Since j)\f, =0, the term maxy, ||[Jas]ipll i eqn.
(F.7) would disappear when .J is replaced by J. Consequently, ¢ disappears throughout the whole proof. m

Lemma F.4 Suppose that Assumptions 1-2, 3(ii)- (m) and 4 hold. Then as (N,T) — oo
(i) max | S, duuf(wfy — o) = Op(VIN + L f + Jowr);
(i1) mtax‘ ZZ L 4\ (075 — 039)|| = Op(VNT= + \/T + \/g\?)’
(iii) max ‘thl(dit i) fPwl| = p(\/TN%);
(iv) max Sy (die = @) A6 = Op(VNT);
SV @AY = O, (N);
(vi) max th:l Dt flwly || = Op(T).

(v) max

Proof. (i)—(ii). First note that

Ve -

2

!+NZ ok = el
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-1 _ A  A-1\p3
H(QB¢’Q¢¢' - Q5¢'Q¢¢f)D%NH

HQ6¢'D;J§vH HD%N Quy — Q;;/)DYE’NH + H(Qw - QM’)D;?vH H(D;IEVQWD;@)*IH

IN

%
vﬂ

0,(VNT)O (iji =+ ﬁ> O)VNTT) =0 vttt priet 4 VAL,

where the first equality follows from equations (B.17)-(B.18), (B.20 ) and Lemma B.1. It follows that

VI g, - wlull® = Op(NH 4+ 2 ATy and /Y [|67, — 0| = 0p(T% + X225 & /) Then
the results follow under Assumption 2.

A=

1
N Tx
T 0 and TN
Assumption 1(i), and d;y = ®;; under Assumption 1(ii) since our analysis is conditioning on the missing

(iii)—(iv). The proof follows from Assumption 1. Note that we assume — 0 in

pattern under Assumption 1(ii).
(v)—(vi). First note that

N T
\/ Ty I+ N Y el

-~ 41 ~ _1 1 1
HQ'B‘Z’/Q¢;'D22"NHF < HQB¢’D V| H(DT?VQWDTJ%) 1H = Op(VNT).

Thus ZZ 1 H(5 || O,(N) and Et 1 ||wkt” O, (T). Then the results follow under Assumption 2. =

G Proof of Theorem 4.2

To prove Theorem 4.2, we first state and prove two technical lemmas.

R 2
Lemma G.1 Under Assumptions 1-5, as (N,T) — oo, \/ﬁ, Zfil H&ki — 0,

T |- 2 £ £
op(1) and \/% i ke — Wy ll” = Op(]\vﬁ + % + ﬁ) = o0p(1).
Proof. The FOCs for the minimization problem in (4.3) are: for each k € [K],

T oA S
S, dulwin — b fe — @A) J, = 0foralli€[N],

N I A
S diwio — P A WY 0 for all ¢ € [T].
As in step (1) of the proof of Lemma B.2(i), let 31 and w; denote K X r matrices such that 3;“- and wy; are
the transpose of the k-th row of §; and &, respectively. Let & = (31, ey 31\[)’ and @ = (@1, ..., wr)’. Then the

above FOCs imply
QY = (&, &)LS), (G.1)

where Qﬂ¢>’ = Qay (7), Lg;f,) = Lyy (7), and Qpy (¥) and Ly (7) are defined in expressions (A.3) and (
A.6) with v = 4, respectively. Note that here we use the supscript (%) because in the proof of Theorem 3.2
we defined ng;l) Qs (s 4 (1 — $)4) and 3% — 5 as k — oc.

From eqn. (G.1), we have (5 W' = QEM ¢¢,) '. From eqn. (B.10), we have (6, w”) = QM/E(;(;/.

As remarked at the end of Section A, the inverse here actually denotes the Moore-Penrose pseudo-inverse
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because L((;:,) and E¢¢/ are not of full rank. Thus

N ~ 2
VTZZ-_ T S Sy

)L(OO) 1 Q /L, DE < Q L(OO) 1 Q /E*l )D%
o4’ ¢¢' TN||, = Be' oo’ B¢ Hog' )TN

[e’e] oc0)—1 7 i
: H@w 1 - 12oh |+ @ - uzi b
e’} oco)—1 7
< HQ(5¢/)D Eb¢’) L D%NH"’H Q5¢' Qﬂd TNHH DTNL¢¢’DTN) H
N% T+ 1 s .1 VNT
= O0,(WNT)O,(— + — O,(WVN+T)=0,(N2t% +T2"%
P( ) P(\/T + \/N + m) + P( + ) P( 2 + 2 + CNT)7

where the second equality holds by the following arguments.

~)p-z|l = 0,(VNT).

(1) Similarly to expression (B.25), iy

_ _1 _ _1
2) Q%) = Quo)Dri | = O VN FT). (Qssr = Qao)Diri|| = Op(VN+T)
by expression (B.18). Second, by Assumption 3(ii) and Theorem 3.1,
2 N X 2
- . N Z duzit(fe — ) 7 || 2 diwi (A — A
OO/ o , D_§ H < + =1
H(Qﬂ¢ Q5¢ ) TN = z:: \/T e \/N
F F
N T 0112
A= f°|| x = VNT
< = — ).
< D bl =0,

Combining these results yields the clalm
(3) We want to show ‘

DTNL¢¢/DTN H = O,(1). As explained in step (2) of the proof of Lemma B.2,

any two different columns of D N%Wo are orthogonal to each other the columns of D N%WO are all orthogonal
07170

to the eigenvectors quTNL¢?/ DTN, and DTNQ¢¢/DTN = DTNL¢¢/ DTN — cDN%W W 'DIJY%. All nonzero

eigenvalues of —D.% Ly Dy § are positive. 'll’hus the §mallest nonzero eigenvalue of —D.. % Lyg DR is not

smaller than the smallest eigenvalue of —D;.2 Qs Dy g It follows that

1. _1 1 _1
H(DTKrLWDTK/) 1H < H(DT}"VQasavDva) 1H = Op(1),

where the equality follows from step (1.1) of Lemma B.1 in Su and Wang (2024) with Qg4 corresponding
to ﬁw’ there. For the block-type missing, the equality follows from Lemma B.1 (or Lemma B.2 in Su and
Wang, 2024).

HDTN L¢¢/ L¢¢’ TNH = O

1

—) by step (1.3) of Lemma B.1 in Su and Wang

(2024) We also have HDTN <(z>¢’) L¢¢/)D_% = Op(CNT) due to the following:
F(Iav(3) = Lay foft = S s =0,
AA ) oy ditfefe oy QitTe Ty Al
(L Lp)|| < Y dAA, Va0 = 0,
N ff’( ) ff/ = N s RN iiﬁzizl it A\ A\g p(E)’
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= OP(L)v

CNT

dirfil; — ztfo)\O/

)‘FS\/NlTZj:ZtT—l‘

by a simple application of the results in Theorem 3.1. It follows that

1
_— L ’ A —L ’

D) L2yl = (2Ll D2 )D*I(L( %) Lyw ) Dyt (D2 LC) 7 D2
d>d>’ ¢’/ T TN TN~ ¢’ TN g o' )Y TN\ TN ¢¢/
_1_ - _ -~ -
sttt ol
N T* 1

AN

[
Lemma G.2 Suppose that Assumptions 1-5 hold. Then max;; |0;| = (N%T%) +0 ( . L.
Proof. First, by Theorem 3.1 and Assumption 2, we have max; ; ||)\?|| + max; ||\ — )\?
max; ‘)\ | + \/ZZ 1 /\O =0 ( ) Similarly, we also have max; HftH = P(£ ). It follows that
ma [0y — v < mae | |3 = 8% + mane [Ad] || ]|+ manc 22120
= 0, 0T 0, N e g3 4, (G2)

CNT CNT CNT

where the equality also uses maxy ||z:] < (vazl ZtT:1 ||xit||g)§ = Op(N%Ti) by Assumption 3(ii) and
HB—BOH = Op(ﬁ) by Theorem 3.1. In addition, max; |vy| = Op(N%T%) by Assumption 4(i), thus

max; [0;t] < maxy |vi| + maxg |9 — vig| = Op(N%Té) +0 ( ), m

X

Proof of Theorem 4.2

(i) (1) Consistency of W,: Since @ = x5 — (8 f0 + wINY),

W, = plzm— ZZ 12 dip iy,
= pl@m— {Zz 12 ththzt Zz 12 ztl‘zt 5 ft +w?,\0)

~ Zl 1Zt (02 + Ny +Z Z i (89 0 + wWON0) (590 +ng9)'}
= —(Qsp — QuorLyyQop),

where the last equality follows from Assumptions 3(iii) and 1 and equations (B.11)—(B.12). Then it suffices
to show Zz’:l Et:l

itxitxit — dpdadl,|| = Op( L ) Since x;; = Ty — 0; fr — Wi A, it suffices to show

N T
> 2 [

it(0ifr + @A) O fe + i) — dia (00 f + wPAD) (67 ) + wPAD)

= OP(E) and

CNT

itxit(gift + @tj\i)/ - ditxit(‘s?f)? + wto)‘?)/

DI |
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It’s easy to see that these follow from Theorem 3.1 and Lemma G.1, e.g.,
N T
PIND IR
DN

2
VL %zi_l >

N T ~ .
+\/Zi—1 Zt:l dit |xit”2\/zz‘_1 Zt:l Hd?H2

YNT)_ o, M),

CNT CNT

diswit (i fr) — digwir (62 £

it (0:fo) — divwin (57 1) H +Zl 12 ‘

2

it (09 fr) — diswin (67 F7)

N

2
5\

IA

~ 2
fo— 12|

= Op(VNT)O

(2) Consistency of ), without cross-sectional and serial dependence:
. N T
First, part (1) shows = >0, >, = Op(ﬁ
2

implies that if N%/T%_% — 0, T%/N%_? — 0, N/T? — 0 and T/N? — 0 (which are satisfied when ¢ > 8
and T/N — ¢ € (0,0)),

ditfcitfc;t — dpdpdl, ), which, along with Lemma G.2,

1 N T
NT Z Z ditﬁ?t (j/’itx';t - x'itx';t)

1 N T
- <7 SO il

i=1 t=1 i=1 t=1
N T
1 2,2 NT 1
< max U’Lt NT Zl tzl dzt l’ltl'lt ZL’Zt:L'” = [Op(NC TC) + OP(% Op E
= op(l). (G.3)

Second, given that v;; = v — w;tﬁ — S\Iift, by Assumption 3(ii) and Theorem 3.1,

N T N T
ZZ Uzt_vzt :ZZ Lt B 50 +)‘ft )\zOIftO)2
=1 t=1 — 1 g
N T (. ) N T ) N T )
< 230N fwall® BB 4D S NS - A2 AN D = AV )
i=1 t=1 i=1 t=1 i=1 t=1
1 NT NT
= Op(NT)Op(—5—) + Op(5—) = Op(5—)- (G.4)
CNT CNT CNT

Note that sz\; Zthl v% = O,(NT) by Assumption 4 (i). In addition,
mac [l < mae el + ma 0% £ + oY

Op(N2T%)+ O,(NVT)ts) = 0,(NeT%) (G.5)

by Lemma F.3(ii), Assumption 3(ii) and Assumption 2 . Note that ¢ = co when ||ft0|| and ||)\? || are uniformly
bounded. It follows that

N T
-9
§ E dit (05 — xltzzt

i=1 t=1

N N T

§ § dzt U’Lt - vzt xlt‘rzt + E § d’Lt 'Uzt Uzt)2vztx1tx1t

i=1 t=1 i=1 t=1
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N T T
< maXIIOCnII2 ZZ Bir = vie)” 20 [ DD (B —vi) 24| D> v3
=1 t=1 i=1 t=1 =1 t=1
2, 2 NT 2,1 2 1_2
= Op(NeTe)Op(—) =o0p )if N¢/T27¢ — 0 and Tc/Nz < —=0. (G.6)
CNT

(1) since

A N T . . . A
Q, — ﬁ Simy Yoy dipvZidl,|| = op(1). This implies ‘ "
. N T ..
Q, = plzmﬁ Dot i Dt V3 Ty
(3) Consistency of bag, ..., bgr.. We focus on the analysis of by, as the proof of the consistency of the other

In sum, we have shown ‘

terms is analogous. We shall show that i)gk = bay, + 0, (1) in four steps below.
Step (1): First,

. 1 N T-1 T 1_ . s—1 P —11 f
boy, — T Zi—l thl Zs:t+1 TF(TT )ditvitdisxiskfg[TLAi’]i s

TA(t+L7) . P »
H \/7 Zl . Zt ) ZS i (Uit - Uit)disffiskf[[TL,\i/]i s

PO TA(t+Lr)
S 111,12522( ft[TL)\)\/]ifs FZZ lzt 1 Zs 1 lf(vlt Uit)diszisk
< max FITL i fs LTmax|\xis|\?Z‘:12t:1 it (e — vir) ||
< | ER LA B ol 2 [S2 S7T o — v

T 1 VvVNT
= Oy )Lr0,(NETH) 20,V
NT CNT
N3teTts N
= Op(lp—F5——)=0,(1)if 5 wcand —— — 0, (G.7)
CNT T T2

where the second equality follows from Zi\; Z;‘F;ll (0t — vir)? = Op(HL) by eqn. (G.4), max; , [|is]| =

Op(N%T%) by Assumption 3(ii) and

Kr

wax | FTLL L, | et e | = 0002 (G3)

Expression(G.8) is due to max; HftH = OP(CN‘/TT) as explained at the beginning of the proof of Lemma G.2

and max; || T[Ly )| < 2 H(% Y ftft’)*lH = 0p(1)
Step (2): Next,

1 N T—1 T 1 s—t e _
H% Zi_l Zt—l Zs_t+1 Tl—‘(i)ditvitdisxisk(f{[TLA,\l/]ifs — fYITL)ifD)

TA(t+L7) -
< max|foie] || = F S S S B L ids — ST
N 1 N L
= O,(NttaT<+s) ~—=L10y(—) = 0,(1) if 7 — = and Tff_z 0, (G.9)

where maxy; |vy| = Op(N%T%) by Assumption 4(i), max;, ||z;s]| = Op(Ne ) by Assumption 3(ii) and
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N T—1 —TA(t+L 2 F-11 ¢ =
T\/lﬁ Zi:l Zt:l Zs:t(Jrl ") I[TL)\)\’]ifs_ tO/[TLAi']ifg

First,

- \A/I%Op( . ) is proved in the following.

CNT

AT fs — f;[Ti;;wS

TAG+Lr)
TFZZ 1Zt 1 Zs t+1 '

< NmaXHT AT
= T\/ﬁ /\/\’ t=1 s=t41
< T\/ﬁNm?XHT[z;;/]i \/ —
= T\/lNiTNOp(l)LTOp(\/T)Op(C\]/\z): \/WLTO (CNT),
where the second inequality is due to Zt L e ‘le ft-s-lH < \/Zt 1 % ZS 1 § 2f0rl€ [Lr].
Similarly, Wzizl Zt ZbTAt(j_—’l_LT) {[TL )\)\’] fO— tOI[TLM/]ifB yLl p( ) Second,
’ F S SIS R les? — HTTLSY
= T\/ﬁ Zz 1” wli = [TL ‘Zt 1 Z?Af(:LT 21
< B Izt |k - | £y S [AF S e
_ TLWOP<1)OP(1)0P($)LTT=%Op(ﬁx

[TLxx]i — [TLyx]i

S Eo(dit) fof — % S i—y Bo(dae) £2 £

where we uses max;

= Op(ﬁ)
for the first equality.
Step (3):

1 N =T-1«=T 1 _ s—t o
H\/ﬁ Zi:l thl Zs:t+1 TF(TT)[ditUitdisxisk — By (digvitdiswisk )| £ [TLyy )i o

1 T—1 TA(+LT) 0 0 N -1

< TVNT thl ZS:tH 720 1121 Hzi_l[ditvitdiszisk — By (digvisdiswisk) | [T L )i
M,/TLT TA@+LT) || N 2

< \/Zt . Zé 1 Z._l[ditvitdismisk — Eg(dividisisr )| [TL s
M TLT 1

_ NTL7) = Op(—=Lz) = 0,(1), G.10
TFV WVVTL) = Oy L) = o,(1) (G.10)

where the first equality follows from Assumption 9(i).
Step (4):

‘\/7 Zz 1 Zt 1 Zs 1 T ]E¢(d”vltd“m“k)ft [TL3)if — bax
- 7\/NT Zi:l Zt:l Zs:t+LT+1 TE¢(ditUitdisxisk) ?/[TI’;;/]JS
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1 . .

< g me [ TLRAN Dy Dy Doy Boldivndinmins)
! e o M2N oo )

T D D SN Ll S D DR LE

) as Ly — oo. (G.11)

IN

_om

Expressions (G.7), (G.9), (G.10) and (G.11) prove the consistency of by, when T —e 5 — 0and

T2 2nc
LT — OQ.

The consistency of Egk, - ber and ), when there is serial dependence (under Assumption 9) can be proved

similarly to ng. The main difference is that the rate in Lemma G.1 is \/517 rather than ——, consequently
NT CNT
we need —= — 0. Note that these conditions on Ly is sufficient but not necessary. Wl
T4~ onC

H Details for the Alternating Direction Method of Multipliers Al-
gorithm

ADMM is a powerful algorithm for solving optimization problems with structured objectives and constraints,
like the NNR problem. First, it splits complex optimization problems into simpler subproblems and is
capable to handle non-smooth objective functions, which makes it particularly effective for solving NNR,
as the optimization can be separated into a smooth component and a proximal operator for the nuclear
norm, leveraging SVT. Second, the tuning parameter set up is easy for ADMM, which can achieve robust
convergence behavior. Third, ADMM has well-established convergence properties. Compared to common
optimization approaches like gradient descent which is not suitable for NNR due to the non-differentiability,
ADMM provides a balance of flexibility, scalability, and computational efficiency that makes it a preferred
choice for our problem.

Our optimization problem is equivalent to the following one:

4 2
min - dit(y; x; +v Zoll, + = | Ze — O3,
i o §_1t§1 +(yie — z8)° + vt | Ze |, 5 1Ze = Ol
s.t. Zog — O =0,

where p > 0 is the penalty parameter. The corresponding augmented Lagrangian (in scaled form) is

N T
Z(B,0,%Z6,Ue) = 5> > dit(yie — zt—$§t5)2+VNTHZe||*+g||Z®—9+U@||fv—g||U@||fv~

=1 t=1

l\')\)—l

The detailed optimization algorithm is as below.

Algorithm 3

1. Set up the initial value:

@Eg] (dit + )~ diryie, Z([_;)] =l gl —q, Ug)] =0.
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2. Given B[k], Zg], and Ug], we notice that

. Pk Kl||2
O+ = min =3 3" iy — O — o482 + 2 | 28 — 0+ UL

=1 t=1

N =

which produces @EIE-H] = [dit(yir — ¥54,8) + p(Zo.it + Us.it)| (dir + p) L.
3. Given Ot we notice that

2
Z5* = minvyr | Ze|. + 2 |26 — 0114 Ul .

By the SVD, we have OF+11 — yl) = ple+ll pltilQtl - Lot DITET = max(DIF+1) — 222 0) | then

we update Zgﬂ] = P[k‘*‘l]Dl[,k;Tl]Q[kH]’. Moreover, we update

N T LN T
gkl — (Z Zditxitx;t> ZZ ditit (yit B GEIEH]) , and

=1 t=1 i=1 t=1
UgCJFl] — Zg+1] _ @[k—‘-l} + Ugc]

~(0 -
4. Iterate Steps 2-3 until convergence and the final result produce the initial estimates ﬁ( ) and ©©)

In practice, to choose the tuning parameter p, we can simply fix it as p = 1 or p = 10. Otherwise,
we can do the adjustment in each iteration. In our simulation, we start with the default choice p = 1 and
adopt the common residual balancing strategy to update rho in each iteration; see Section 3.4 in Boyd et al.

(2011). While a fixed p can be used for simpler problems, residual balancing adaptively maintains balance
‘Z([;H] - @[kH]HF and

between residuals for faster and more stable convergence. Specifically, define PR =

DR = HZ&“H] - Zg“]HF. Then we adjust p*1) as

o™ iner, if PR> uDR,
p* /T deer, if DR > uPR,

p[k] , otherwise.

plbH1] —

If the primal residual (PR) is much larger than the dual residual (DR), it indicates that the constraint © = Zy
is poorly enforced, and we increase p. If the dual residual is much larger than the primal residual, it indicates
instability in the dual updates, and we decrease p. Otherwise, p remains unchanged. T;ncr, Tdeer, and p are

all adjustment parameters. In the simulation, we set T;ncr = Tgeer = 2, and g = 10.
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