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Abstract

In high-dimensional regressions with low signal-to-noise ratios, we assess the

predictive performance of several prevalent machine learning methods. Theoretical

insights show Ridge regression’s superiority in exploiting weak signals, surpassing a

zero benchmark. In contrast, Lasso fails to exceed this baseline, indicating its learning

limitations. Simulations reveal that Random Forest generally outperforms Gradient

Boosted Regression Trees when signals are weak. Moreover, Neural Networks with

`2-regularization excel in capturing nonlinear functions of weak signals. Our empirical

analysis across six economic datasets suggests that the weakness of signals, not neces-

sarily the absence of sparsity, may be Lasso’s major limitation in economic predictions.

Keywords: Weak Signals, Precise Error, Machine Learning, Bayes Risk

1 Introduction

In regression analysis, covariates with non-zero coefficients are identified as true signals,

while those with zero coefficients are considered false signals. In a population model, this

∗We benefited tremendously from discussions with Gustavo Greire, Ulrich Muller, Mikkel Plagborg-Moller,
Alberto Quaini, Pragya Sur, as well as seminar and conference participants at Aarhus University, Duke Uni-
versity, Tsinghua University, Bates White LLC, Econometrics Society North American Winter Meeting,
ESIF Economics and AI+ML Meeting, Triangle Econometrics Conference, Applied Machine Learning, Eco-
nomics, and Data Science Webinar, the Stevanovich Center Conference on Big Data and Machine Learning
in Econometrics, Finance, and Statistics, the fifth International Workshop in Financial Econometrics, and
Young Econometricians in Asia-Pacific Annual Meeting.
†Address: 5807 S Woodlawn Avenue, Chicago, IL 60637 USA. Email: zshen10@chicagobooth.edu.
‡Address: 5807 S Woodlawn Avenue, Chicago, IL 60637, USA. Email: dacheng.xiu@chicagobooth.edu.

1



distinction is clear-cut, resembling a “black and white” scenario. However, in finite samples,

the presence of minuscule non-zero coefficients introduces a “gray” area, blurring the bound-

ary between true and false signals.1 This gray area represents weak signals—covariates that,

individually, exert negligible influence on the outcome variable.

The investigation of weak signals holds tangible implications for economic and financial

decision-making. Often, it is the collective impact of these weak signals that drives the

outcomes in these fields. Supporting this, Figure 1 provides empirical evidence by presenting

R2 values gathered from a compendium of Economics and Finance journal articles published

in 2022. The 25% quantiles of these R2 values stand at 9.7% for economics and 5.8% for

finance, suggesting that models in these disciplines frequently rely on covariates with modest

explanatory power. Furthermore, Figure 1 is based exclusively on published studies, which

are likely biased toward higher R2 values due to selection effects. This suggests that the

presence of weak signals may be even more widespread than the data here indicates.

Figure 1: Histograms of R2s in Selected Economics and Finance Journals
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Note: The histograms depict R2s manually collected from published papers in a selection of Economics and

Finance journals in 2022. This collection comprises data from five Economics journals (left) and three Finance

journals (right). Specifically, there are a total of 411 papers published in the American Economic Review,

Econometrica, Journal of Political Economy, Quarterly Journal of Economics, and Review of Economic

Studies, resulting in 8, 129 R2 observations. In addition, there are 380 papers from the Journal of Finance,

Journal of Financial Economics, and Review of Financial Studies, contributing 12, 198 R2 observations.

The decision to incorporate weak signals into a regression model carries the risk of over-

fitting, potentially undermining predictive accuracy. Overfitting arises when the increased

variance from estimating the coefficients of these weak signals outweighs the bias reduc-

1 The comparison of regression coefficients’ magnitudes is meaningful only when predictor variables are
normalized, an assumption implicitly adopted in the subsequent discussion.
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tion gained from their inclusion. This trade-off becomes even more pronounced in high-

dimensional settings, where the limited sample size relative to the number of covariates

amplifies prediction errors.

Machine learning methods, renowned for their focus on variable selection and dimension

reduction, have proven effective in mitigating overfitting and detecting true signals from

false ones, particularly when the true signals are strong. These methods employ regular-

ization techniques, such as penalizing the `1 or `2 norms of model parameters, to achieve

this objective. However, a pivotal question emerges: Can machines learn weak signals, or in

other words, can they surpass the naive zero predictor? The zero predictor, which disregards

all covariates and always predicts zero, serves as a passive baseline in the context of weak

signals. Surpassing this baseline indicates that a method has successfully extracted valuable

signals. Conversely, failing to exceed it highlights a limitation in its learning capacity. In

view of these considerations, we focus on evaluating the relative performance of regular-

ized predictors, Ridge and Lasso, against the zero predictor in high-dimensional regressions,

where the prediction target is driven by predictors that exhibit weak correlations with it.

In scenarios with sufficiently strong signals, both Lasso and Ridge are expected to out-

perform zero by effectively capturing and utilizing at least some of these signals. Hence,

accurately defining the notion of “weak” signals is crucial at the outset of our investigation.

This definition serves a dual purpose: it prevents the scenario from defaulting to trivial com-

parisons akin to strong signal cases and ensures practical relevance to finite sample scenarios

in economics and finance. We characterize a weak signal scenario as one in which the zero

predictor achieves the minimal Bayes prediction risk asymptotically. This setting turns out

to encompass a wide class of data generating processes (DGPs), and it approximates a finite

sample reality in which zero serves as a competitive benchmark.

In the defined weak signal scenarios, conventional error-bound analyses are insufficient

in distinguishing the performance of different predictors. Considering the optimal Lasso

and Ridge—each tuned to minimize prediction error—both can perform no worse than the

zero predictor. Intuitively, as the tuning parameters for Ridge and Lasso approach infinity,

Ridge converges to zero, while Lasso effectively becomes equivalent to zero. Consequently,

all three predictors—optimal Lasso, optimal Ridge, and zero—can achieve the optimal Bayes

prediction error, making them indistinguishable.

However, a more refined analysis reveals that, across a broad range of tuning parameter

choices, Ridge outperforms zero. In contrast, the optimal Lasso effectively reduces to zero,

meaning Lasso does not exceed zero’s performance regardless of its tuning parameter choice.
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This conclusion is based on a precise error approach, which enables us to zoom in and

explicitly characterize the relative prediction errors of Ridge and Lasso compared to the

zero predictor. These results highlight an important distinction between shrinkage and

selection methods. Shrinkage methods like Ridge are more effective in environments with

more homogenous signal strength. On the other hand, selection methods like Lasso are

preferable in scenarios where there is a clear distinction between true and false signals. In

weak signal contexts where this distinction is blurred, the advantage of Lasso tends to wane.

Our study further demonstrates the effectiveness of the cross-validation (CV) algorithm in

selecting the optimal tuning parameter for Ridge, even in weak signal contexts. This under-

scores CV’s robustness as a model-tuning tool in these settings. Moreover, the out-of-sample

R2 from the optimal Ridge—a metric frequently used for assessing predictor performance on

unseen data—proves a relevant indicator of the signal-to-noise ratio in the DGP, despite a

notable gap between its asymptotic limit and the population R2.

In the final aspect of our theoretical analysis, we expand our framework to include models

featuring a mix of signal strengths. This section specifically addresses scenarios in which a

benchmark model contains potentially strong signals. Our focus then shifts to evaluating the

benefits of leveraging the predictive power of the remaining weak signals. To this end, we

derive ordinary least squares (OLS) residuals, from which the impact of potentially strong

covariates in the benchmark model has been removed. Consistent with our earlier findings,

applying Ridge regression to these residuals, using the remaining covariates, enhances predic-

tive performance compared to a baseline predictor that ignores these additional covariates.

Our simulation analysis corroborates our theoretical findings: Ridge surpasses zero, which

in turn edges out Lasso, especially in DGPs characterized by low R2 values. When exploring

more sophisticated machine learning techniques, we observe that Random Forest (RF), which

produces dense models by including nearly all variables, outperforms the zero predictor. The

latter, in turn, surpasses Gradient Boosted Regression Trees (GBRT), as GBRT, similar to

Lasso, tends to generate sparse models. Furthermore, Neural Networks (NNs), when paired

with the `2-norm regularization, can deliver superior predictions. In contrast, applying an

`1-penalty in these networks fails to achieve comparable results.

Our empirical analysis spans six datasets across macroeconomics, microeconomics, and

finance. Five align with Giannone et al. (2022), and one is sourced from Gu et al. (2020).

Our finance examples delve into predicting market returns using financial and economic

indicators, as well as firm-level return prediction based on their specific characteristics. In

the macroeconomic context, we examine time-series predictions of industrial production
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using macroeconomic indicators, and a cross-country GDP growth prediction, utilizing socio-

economic, institutional, and geographical factors. Our microeconomic studies focus on crime

rate predictions and pro-plaintiff appellate decisions in takings law rulings.

The relevance of weak signals in datasets is contingent on the choice of benchmark models.

For instance, when compared to a benchmark with an intercept alone, weak signals are

revealed in four out of six datasets. Further benchmarking against covariates informed by

economic theory reveals weak signals across all datasets, making them particularly well-suited

for the application of our asymptotic theory. Drawing from their empirical analysis of these

datasets, Giannone et al. (2022) argue that sparsity may be an illusion, as optimal predictive

models often rely on a large number of covariates. Our collective theoretical and empirical

evidence points to signal weakness as a key factor in the underperformance of Lasso. As

our results suggest, even in cases where the majority of signals have zero coefficients in the

true DGP, Ridge may still outperform Lasso if the true signals are weak. Their comparative

performance thus does not necessarily offer insights into the sparsity of the DGP itself.

In light of these findings, we recommend a cautious approach to employing Lasso in

economic and financial settings. Despite its popularity as a modern counterpart to OLS,

Lasso’s effectiveness may be compromised in scenarios characterized by weak signals. Our

study complements the findings of Kolesár et al. (2024), who highlight issues with sparsity-

based estimators, such as their lack of invariance to reparametrization and sensitivity to

normalizations that are otherwise innocuous to OLS.

Our paper is closely related to the literature on the theoretical performance of Ridge and

Lasso, with two main threads being particularly relevant. The first focuses on error-bound

analysis. For Ridge, Hoerl and Kennard (1970) show that the prediction error decreases at

a rate of p/n, where p is the number of covariates and n the sample size, with its magnitude

tied to the eigen-structure of the design matrix. For Lasso, the prediction error vanishes if

s log p/n→ 0, where s is the number of non-zero parameters (see, e.g., Wainwright (2019)).

However, we consider an asymptotic setting where these error bounds fail to distinguish Ridge

and Lasso from the zero predictor, as their leading-order prediction errors are identical. This

motivates a more granular, higher-order analysis of prediction errors.

The second, more recent strand of research focuses on determining the precise prob-

ability limit of the prediction error for Ridge and Lasso.2 Bayati and Montanari (2012)

2The precise error analysis has provided valuable insights into various machine learning methods. For
example, Liang and Sur (2022) examine the properties of minimum `1-norm interpolation and boosting in
linear models. Miolane and Montanari (2021) explore cross-validation for Lasso, while Hastie et al. (2022)
investigate minimum `2-norm interpolation, shedding light on the double-descent phenomenon in neural
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employ approximate message passing algorithms to link them with Lasso and derive its error

limit. Alternatively, Thrampoulidis et al. (2015) use the Convex Gaussian Minimax Theory

(CGMT) to simplify Lasso’s optimization problem, enabling precise error derivation. For

Ridge, Dicker (2016) provides analogous insights into its prediction error. However, these

precise error analyses often rely on stringent parametric assumptions, such as independently

Gaussian-distributed design matrix elements. Dobriban and Wager (2018) extend Dicker

(2016)’s work by accommodating dependent covariates and non-Gaussian predictors, lever-

aging universality results from random matrix theory.

This paper is organized as follows. Section 2 presents the main theoretical results regard-

ing Ridge and Lasso. Section 3 conducts simulations to illuminate our theoretical predictions

while also expanding the analysis to assess the performance of advanced machine learning

methods under weak signals. Lastly, Section 4 provides empirical results. The appendix

contains mathematical proofs of main results, while the online appendix provides additional

theoretical results, technical lemmas, and their proofs.

Notation: For any x ∈ R, we refer to max(x, 0) as x+. For any vector x, ‖x‖0, ‖x‖1,

‖x‖ and ‖x‖∞ represent its `0, `1, `2 and `∞ norms, respectively. For a real matrix A, we

use ‖A‖ and ‖A‖F to denote its spectral norm (or `2 norm), and the Frobenius norm, that

is,
√
λmax(A>A), and

√
Tr(A>A), respectively. In the case where A is a p× p matrix, λi(A)

denotes its i-th largest eigenvalue, for 1 ≤ i ≤ p. We use the notation xn . yn when there

exists a constant C such that xn ≤ Cyn holds for sufficiently large n. Similarly, we use

xn .P yn to denote xn = OP(yn). If xn . yn and yn . xn, we write xn � yn for short.

Similarly, we use xn �P yn if xn .P yn and yn .P xn.

2 Theoretical Results

2.1 Model Setup

We start with the following linear regression model:

y = Xβ0 + ε, (1)

where y ∈ Rn, X ∈ Rn×p, β0 ∈ Rp and ε ∈ Rn. Throughout our discussion, X, β0, and ε are

treated as random variables, mutually independent of one another. Central to our analysis

networks. Regarding variable selection, Su et al. (2017) study the false discovery rate of the Lasso path, and
Wang et al. (2020) compare the variable selection properties of bridge estimators.
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is the calculation of the probability limit of the prediction errors, which necessities assuming

a (prior) probability distribution on the coefficients. This setting aligns with the literature

on precise errors, which also connects our analysis of prediction error with Bayes risk.

Our objective is to investigate the predictive performance of machine learning techniques

in the presence of weak signals.3 To accomplish this, we focus on a high-dimensional regres-

sion setting characterized by an increasing number of predictors, that is, p→∞. In such a

context, regularization techniques become not just relevant but often necessary. Moreover,

our specific focus is on situations where the signals are weak, characterized by the condition:

‖β0‖2 �P τ → 0. The choice to use ‖β0‖ as the metric for characterizing weak signals is

due to its close relationship with the widely-adopted R2 metric in regression analysis, which

provides a familiar and intuitive understanding of signal strength. Our investigation then

progresses to an asymptotic analysis under these two conditions. We will detail the specific

requirements for p, τ , and sample size n after introducing the baseline predictor.

Now, we proceed to present the assumptions governing the DGP of X:

Assumption 1. The covariates X ∈ Rn×p are generated as X = Σ
1/2
1 ZΣ

1/2
2 for an n × p

matrix Z with i.i.d. standard Gaussian entries, deterministic n × n and p × p positive

definite matrices Σ1 and Σ2. In addition, there exist positive constants c1, C1, c2, C2 such

that c1 ≤ λi(Σ1) ≤ C1, i = 1, 2, . . . , n and c2 ≤ λi(Σ2) ≤ C2, i = 1, 2, . . . , p.

This assumption accommodates time series dependencies via Σ1 and cross-sectional corre-

lations via Σ2. The eigenvalue constraints serve two purposes: upper bounds limit excessive

dependencies, while lower bounds prevent multicollinearity and ensure observations are not

linearly dependent across time. Moreover, since we focus on prediction rather than variable

selection, the dependence structure among X does not adversely impact Lasso’s predictive

performance (see Section 7.4 of Wainwright (2019)), even though its variable selection prop-

erties are sensitive to strong dependence among covariates.

While the Gaussian assumption for X is integral to our use of Gordon’s inequality (Gor-

don (1988)) for Gaussian processes in the proof, it does raise concerns regarding the robust-

ness of our findings when this assumption is not met in real-world scenarios. Our simulation

results indicate that the Gaussian assumption appears non-essential and our asymptotic

theory approximates finite sample behavior even with relatively small sizes, typically a few

hundred observations. This observation aligns with similar findings in random matrix the-

ory, where asymptotic properties initially derived for Gaussian ensembles were subsequently

3While Donoho and Jin (2004) and Hall and Jin (2010) study variable selection in rare and weak signals,
we focus on prediction in asymptotic settings where identifying nonzero coefficients is infeasible.
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shown to extend to a wider spectrum of random matrices—a phenomenon referred to as the

universality. Notably, when Σ1 = I, Dobriban and Wager (2018) use random matrix the-

ory to bypass the Gaussian assumption. However, their technique appears only applicable

to Ridge. Our objective is to compare Ridge and Lasso under a unified framework, which

necessitates the Gaussian assumption.

Next, we specify the assumption regarding ε:

Assumption 2. Let ε = Σ
1/2
ε z, where z comprises i.i.d. variables with mean zero, variance

one and finite fourth moment and Σε is a positive definite matrix satisfying cε ≤ λi(Σε) ≤ Cε,

i = 1, 2, . . . , n, for some fixed positive constants cε and Cε.

This assumption allows for autocorrelations and heteroscedasticity. If Σε is a diagonal

matrix, its spectral norm is evidently bounded under the condition that each entry of ε has

finite variance. Moreover, if ε follows a stationary process characterized by exponentially

decaying autocorrelations, it can be shown that the spectral norm of Σε remains bounded.

Under Assumptions 1 and 2, it follows that ‖Xβ0‖ �P

√
n ‖β0‖ and ‖ε‖ �P

√
n. This

indicates that the magnitude of each entry in X and ε neither explode nor vanish asymptot-

ically. Consequently, the magnitude of the signal-to-noise ratio (or R2) is entirely dictated

by ‖β0‖. Next, we impose an assumption that governs the properties of β0:

Assumption 3. The vector b0 =
√
pτ−1β0 comprises i.i.d. random variables, each following

a prior probability distribution F belonging to the class F . The class F is defined such that

any included random variable can be represented as q−1/2b1b2, where b1 and b2 are indepen-

dent, b1 follows a binomial distribution B(1, q), and b2 is a sub-exponential random variable

with a mean of zero and a variance denoted as σ2
β.

Without loss of generality, we use the term
√
pτ−1 as the normalization factor, ensur-

ing that ‖β0‖2 �P τ . This normalization facilitates a clearer interpretation of our results.

While the i.i.d. assumption may seem strong, it offers greater transparency by simplifying

more complex technical assumptions necessary to derive essential probability bounds. In

particular, this assumption allows for important classes of models, such as a spike-and-slab

prior for b0, extensively studied by Giannone et al. (2022) to examine the empirical relevance

of sparsity in economic datasets. Each element of b0 follows a mixed distribution, such as

when q = 1, with b2 modeled by (1 − υ)ψ0 + υψ1, where υ, a fixed constant within [0, 1],

modulates the mix between the spike (ψ0) and slab (ψ1) components of the prior. More gen-

erally, the formulation q−1/2b1b2 accommodates a spike-and-slab model with more extreme

sparsity (q → 0) through the component q−1/2b1. This scaling, q−1/2, ensures the variance of
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q−1/2b1b2 remains finite and non-vanishing. Essentially, q dictates the sparsity of β0: when

P(b2 = 0) = 0, ‖β0‖0 �P pq. In scenarios with strong signals (τ = 1), a DGP with q near-

ing zero typically favors Lasso, whereas a q closer to one suggests a preference for Ridge.

Therefore, this framework does not inherently privilege either.

The underlying assumptions that justify Ridge and Lasso are notably distinct, particu-

larly in the context of error-bound analysis. For instance, the analysis of Lasso often requires

the approximate sparsity condition and the restricted eigenvalue condition (see, e.g., Belloni

et al. (2013b) and Bickel et al. (2009)). On the other hand, the convergence rate of Ridge’s

prediction error requires intricate conditions on the eigenvalue structure of the design ma-

trix, as discussed in Tsigler and Bartlett (2023). In contrast, our analysis here compares the

asymptotic properties of different estimators within a common framework.

2.2 Predictors

We now turn our attention to the discussion of the predictors. In scenarios involving weak

signals, characterized by ‖β0‖ → 0, a straightforward and natural baseline predictor emerges,

that is, the naive zero predictor. As an estimator, zero is clearly consistent in terms of the

`2-loss of the estimation error, because it reduces to ‖β0‖, which vanishes in this context.

The zero predictor serves as a passive benchmark for a scenario where no learning occurs.

To surpass its performance, any alternative predictor must harness some signals. This indi-

cates the alternative predictor’s capability to successfully identify and leverage weak signals.

Therefore, to address the earlier question of whether machines can learn weak signals, we

need to compare the machine learning method’s performance with that of the zero predictor.

Only if they can do so can they outperform the naive zero predictor.

In our study, we consider Ridge and Lasso as contenders that leverage machine learning

techniques. These methods are widely used benchmarks in practice, owing to their simplicity

and universality. An in-depth analysis of these predictors provides valuable insights into their

specific regularization techniques, which can be extended to more advanced models.

The Ridge estimator, denoted as β̂r, is the solution to the following optimization problem:

β̂r(λn) := arg min
β

1

n
‖y −Xβ‖2 +

pλn
n
‖β‖2, (2)

where λn is its tuning parameter governing the strength of the regularization. In contrast,

the Lasso estimator, denoted as β̂l, is defined as:
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β̂l(λn) := arg min
β

1

n
‖y −Xβ‖2 +

λn√
n
‖β‖1. (3)

By convention, and without loss of generality, the terms involving penalties are typically

scaled by p/n in the case of Ridge and by 1/
√
n in the case of Lasso.

In addition, our theoretical results also encompass the OLS estimator and the Ridgeless

estimator, both of which correspond to special cases of Ridge when the tuning parameter

λn is set to zero. When p > n, the least squares problem has an infinite number of solu-

tions. Among these solutions, the Ridgeless estimator can be regarded as a minimum-norm

interpolating linear predictor, as noted by Bartlett et al. (2020):

β̂r(0) = arg min
β
‖β‖, s.t. Xβ = y. (4)

It is also possible to explore other interpolators, such as the minimum `1-norm interpolator

studied by Liang and Sur (2022). Future research might extend our analysis to other pe-

nalized linear estimators, such as Elastic Net, as introduced by Zou and Hastie (2005), or

SCAD by Fan and Li (2001).

With β0 estimated by some β̂, it is straightforward to construct corresponding predictor,

(xnew)>β̂, for a new data point xnew.

2.3 Bayes Risk

Now, we proceed to define the metric by which we assess various predictors. For any pre-

dictor, our primary interest is its Bayes prediction risk. This risk is related to the expected

squared prediction error evaluated at a new, independent data point (xnew, ynew). In the case

of a linear predictor, ŷnew = (xnew)>β̂, we can write the prediction error explicitly as:

EF (ynew − ŷnew)2 = σ2
ε + EF

[
(xnew)>(β̂ − β0)

]2

= σ2
ε + EF‖Σ1/2

2 (β̂ − β0)‖2, (5)

where the subscript in the expectation operator EF (·) emphasizes the fact that the expec-

tation is taken with respect to the prior distribution of b0 =
√
pτ−1β0. Obviously, it is

the second term in (5) that governs the relative predictive performance. Barring ‖Σ2‖, the

prediction risk is closely tied to the estimation error of β̂, i.e., ‖β̂ − β0‖.
Formally, we define the Bayes prediction risk associated with an estimator β̂ as

R(β̂, F ) := EF‖Σ1/2
2 (β̂ − β0)‖2.
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The predictor that minimizes this Bayes risk is termed the Bayes predictor. In our framework,

it is straightforward to show (see Chapter 4 of Berger (1985)) that the Bayes predictor

corresponds with the predictor that is derived from the posterior mean of β0, which is

represented as EF (β0|X, y). We denote its Bayes risk as R(F ).4

Under strong signals, i.e., τ = 1, and suppose that Σ1, Σ2 and Σε are identity matrices,

p/n→ c0 ∈ R+, significant progress has been made in understanding the asymptotic behavior

of Bayes risk. For Ridge regression, notable studies by Dicker (2016) and Dobriban and

Wager (2018) have derived the asymptotic limit of the Bayes risk.5 Similarly, in the case

of Lasso, several studies, such as those conducted by Bayati and Montanari (2012) and

Thrampoulidis et al. (2018), have established its asymptotic Bayes risk limit.6

In Figure 2, we present two heatmaps, with the y and x axes representing various values

of p/n and ‖β0‖2 = τσ2
β. The left heatmap illustrates the ratio of Bayes risk between optimal

Ridge and the zero estimator, while the right heatmap represents the ratio of optimal Lasso

against the zero estimator. For both Ridge and Lasso, their optimal tuning parameters

are selected by minimizing the probability limits of their Bayes risk given by (6) and (7),

respectively. A prediction error ratio below 1 suggests that zero is outperformed.

The heatmaps, as anticipated, clearly demonstrate that both optimal Ridge and Lasso

surpass the performance of the zero estimator. This superiority is particularly pronounced

in scenarios involving strong signals and relatively lower dimensions. Notably, the disparity

between these estimators becomes less pronounced as the norm of ‖β0‖ approaches zero and

the ratio p/n increases, indicating a shift towards scenarios characterized by weaker signals.

The existing result on precise error analysis is primarily built upon the assumption of strong

signals, where τ = 1. To discern the performance of various estimators under weak signal

4There exists an extensive body of literature focused on empirical Bayes methods, which explores feasible
approaches for implementing EF (β0|X, y), when F is unknown, see, e.g., Robbins (1964) and Efron (2012).

5The exact form of the limit is given by

lim
n→∞

R(β̂r(λn), F ) = c0m(−λ, c0) + λ(λσ2
β − c0)m′(−λ, c0), (6)

where λ = limn→∞ c0λn and m(−λ, c0) =
(
−(1− c0 + λ) +

√
(1− c0 + λ)2 + 4c0λ

)
/2c0λ.

6The limit in the case of Lasso can be explicitly written as follows: limn→∞R(β̂l(λn), F ) = (α∗)2, where

α∗ = arg min
α≥0

 inf
τg>0

sup
β≥0
τh>0

βτg
2

+
1

c0
L

(
α,
τg
β

)
− ατh

2
− αβ2

2τh
+ λG

(
αβ

τh
,
αλ

τh

) . (7)

Here λ = limn→∞ λn/
√
c0, L(c, τ) := E[ex2(cZ + ε, τ) − ε2], and G(c, τ) := E[e|x|(cZ + Xb, τ) − |Xb|],

with ef (y, τ) := minv(y − v)2/2τ + f(v), where random variables Z, ε, and Xb follow a standard normal
distribution (Z ∼ N (0, 1)), the distribution of the noise, and the distribution F , respectively.
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Figure 2: Comparison of Prediction Errors: Optimal Ridge and Lasso vs. the Zero Estimator
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Note: The left panel illustrates the ratio of prediction error between the optimal Ridge and the baseline zero

estimator. Conversely, the right panel presents a similar comparison for the optimal Lasso estimator against

the zero estimator. Both axes, y and x, depict a range of p/n ratios and ‖β0‖2 values, corresponding to data

generated in accordance with the model described in (1), with Σ1, Σ2, and Σε in Assumptions 1 and 2 set

as identity matrices. We set b0 as a Dirac-spike and a Gaussian slab with q = 1/5. In this context of strong

signals, the prediction errors for both optimal Ridge and Lasso are calculated using tuning parameters that

are optimally selected to minimize the expected prediction errors’ probability limits, as given by (6) and (7).

conditions, a more intricate analysis in the limiting case (τ → 0 and p/n 6→ 0) is necessary.

2.4 Zero’s Optimality and Relative Prediction Error

Figure 2 also indicates that our attention should be directed towards a regime where the

zero estimator exhibits meaningful competitiveness. Otherwise, we may question the ap-

propriateness of our definition of “weak” signals if some machine learning approaches can

obviously outperform it by a wide margin.

One might be tempted to define weak signals as instances where the signal strength falls

below a certain “detection boundary,” thereby becoming indiscernible through hypothesis

testing. Our focus is on prediction, rather than signal detection. This distinction is key be-

cause, even when signals are undetectable by hypothesis testing, their collective contribution

to prediction can still outperform the zero predictor. The zero predictor serves as a natural

benchmark for demonstrating the capacity of machine learning to utilize weak signals.

To motivate our concept of weak signals, we analyze a regime where the zero predictor

achieves certain notion of optimality, indicated by its Bayes risk being identical to that of

the Bayes predictor. This scenario is delineated more precisely by the assumption below:

Assumption 4. n−1p → c0 ∈ (0,∞], n−1τp(log p)4 → 0, nτp−2/3(log p)−4 → ∞, and
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n−1pqτ−1(log p)−4 →∞.

Assumption 4 covers a wide spectrum of signal strengths and counts, while simultaneously

imposing constraints to prevent an excessively large p/n ratio and overly rapid vanishing of

τ . The first two constraints imply τ → 0, while the third imposes a lower bound on τ .

Together, these constraints require that τ is bounded below by n−1/3.

The final constraint addresses cases of extreme sparsity in β0. It becomes redundant when

q does not vanish, as it is already implied by the first two constraints. Collectively, these

conditions imply that (pq) log p/n is bounded below by τ , and consequently by n−1/3 (up to a

logarithmic factor). Importantly, these constraints do not exclude the sparsity assumptions

commonly adopted in the literature for Lasso: ‖β0‖0 log p/n→ 0, where ‖β0‖0 �P pq.

These constraints serve to exclude edge cases where the relative performance of different

estimators cannot be conclusively determined using our proof technique. In Section 2.9,

we investigate scenarios outside the scope of these constraints (e.g., lower bound of n−1/3),

such as cases of extreme sparsity with only one true signal in the DGP. By employing an

alternative proof method that leverages the closed-form solution of Lasso in a special case,

we demonstrate that these constraints are not necessary for arriving at our conclusions.

To facilitate the discussion of the optimal estimator in our context, we refer to the

definition provided by Robbins (1964).

Definition 1. We say β̂ is asymptotically optimal relative to F , if it satisfies

lim
n→∞

R(β̂, F )

R(F )
= 1.7

Theorem 1. Suppose that Assumptions 1−4 hold. Furthermore, assume that the error

term ε in Assumption 2 follows a Gaussian distribution.8 Under these conditions, the zero

estimator is asymptotically optimal relative to any distribution F ∈ F .

This theorem demonstrates that, unlike the Bayes predictor, which relies on prior knowl-

edge F and is thus impractical, the zero predictor achieves the same asymptotic optimal

prediction risk without requiring such information, making it both feasible and optimal.

The zero estimator can be considered as a special case of both Ridge and Lasso when a

sufficiently large tuning parameter is chosen. Given this perspective, and as implied from

7The definition of asymptotic optimality is provided in terms of a ratio to accommodate more general
scenarios where R(F ) varies with the sample size n.

8The Gaussian assumption on ε is only used to facilitate considerations of optimality, which is a standard
assumption in the empirical Bayes literature, e.g., Jiang and Zhang (2009). While this assumption motivates
our characterization of weak signal regimes, it is not utilized in follow-up analysis of the estimators.
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Theorem 1, the relative Bayes risk of the optimal Ridge and Lasso compared to the zero

estimator asymptotically approaches one. This suggests that under weak signal conditions,

merely comparing their Bayes risk ratios is insufficient to distinguish among these estimators.

As such, we shift our attention to the relative prediction error between any estimator

β̂ and the zero estimator, defined as follows, in absolute difference rather than their ratio,

in the spirit of Bayesian regret. To ensure a meaningful scale in the limit, we multiply the

relative error by pn−1τ−2, and adopt the following metric for comparison:

∆(β̂) = pn−1τ−2(‖Σ1/2
2 (β̂ − β0)‖2 − ‖Σ1/2

2 β0‖2). (8)

Based on this definition, if ∆(β̂) > 0 holds with probability approaching one, it indicates

that the estimator β̂ exhibits inferior prediction performance compared to zero. Conversely,

if ∆(β̂) < 0 holds with probability approaching one, β̂ outperforms zero.

Before we proceed to present our main results in the following section, we need to provide

technical conditions governing the limiting behavior of Σ1, Σ2, and Σε:

Assumption 5. For matrices Σ1, Σ2 and Σε:

1

n
Tr(Σ1) = 1 +O(n−1/2),

1

p
Tr(Σ2) = σ2

x +O(p−1/2),
1

n
Tr(Σε) = σ2

ε +O(n−1/2).

Additionally, there exist constants θ1 to θ4 such that

1

n
Tr(ΣεΣ1) = σ2

εθ1 + o(nτ/p),

1

p
Tr(Σ2

2) = σ4
xθ2 + o(1),

1

n
Tr(ΣεΣ

2
1) = σ2

εθ3 + o(n/p),
1

n
Tr(Σ2

1) = θ4 + o(n/p).

As Σ1, Σ2, and Σε are positive definite, all of these constants θi, i = 1, 2, 3, and 4, are

positive. The condition concerning Σ2 can be verified through a more primitive condition:

the existence of the limit of Σ2’s empirical spectral distribution (see Dobriban and Wager

(2018)). In situations where all three matrices reduce to identity matrices, a common setting

in the literature on precise error analysis, Assumption 5 holds trivially.

2.5 Analysis of the Ridge Predictor

In this section, we present the results of Ridge in the context of weak signals. We begin by

presenting the relative error of Ridge for any tuning parameter value:
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Theorem 2. Assuming that Assumptions 1−5 hold, and setting λn = τ−1λ, we establish:

∆(β̂r(λn))
P−→ α∗ := 2θ2σ

4
x

(
σ2
εθ1

2λ2
−
σ2
β

λ

)
.

This theorem yields several important findings. First, by minimizing α∗ with respect to λ,

we can determine the optimal tuning parameter value: λoptn = τ−1σ2
εθ1/σ

2
β. Furthermore, with

the optimal tuning parameter in place, α∗ is negative, indicating that Ridge can effectively

learn weak signals when the tuning parameter is chosen appropriately.

Second, when we set λ → ∞ (equivalently, τλn → ∞), the value of α∗ converges to

zero. This outcome is expected, as the use of a large tuning parameter makes the predictor’s

performance increasingly resemble that of the zero predictor. Nevertheless, it is noteworthy

that α∗ → 0−; in other words, as λ increases, Ridge consistently outperforms the zero

predictor until it gradually becomes indistinguishable from it in the limit.

Third, as λ → 0, in which case λn = o(τ−1), α∗ approaches positive infinity. This in-

dicates that Ridge’s performance deteriorates to the point where the Ridgeless predictor

(corresponding to λ = 0) is surpassed by the zero predictor. This is a significant departure

from the strong signal setup in which Ridgeless can still outperform the zero predictor, as

shown by Hastie et al. (2022). Notably, Ridgeless, defined by λ = 0, is not devoid of regu-

larization; it applies implicit regularization by minimizing the `2-norm of the interpolator.

This form of regularization allows Ridgeless to effectively control variance when the number

of predictors p exceeds the sample size n, ensuring desirable performance in strong signal

scenarios. However, under weak signals this implicit regularization fails to adequately control

variance, causing ‖β̂‖ to be much larger than ‖β0‖, leading to poor performance of β̂.

Furthermore, given that Ridgeless is the interpolator that minimizes ‖β̂‖, all linear in-

terpolators, including, for instance, the one that minimizes the `1-norm, result in even larger

‖β̂‖. Therefore, these interpolators also fail to outperform zero in contexts with weak signals.

Figure 3 provides an illustrative example of the relationship between the relative error

of Ridge and the tuning parameter λ, showcasing the theoretical insights we have discussed.

Corollary 1 below summarizes the result on the Ridgeless estimator:

Corollary 1. Under the same assumptions as in Theorem 2, the Ridgeless estimator, defined

by (4), satisfies:

∆(β̂r(0))
P−→∞.

Given Ridge’s ability to effectively learn weak signals with an appropriately tuned pa-

rameter, the data-dependent selection of this parameter becomes crucial. A paradigmatic
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Figure 3: Ridge vs. Zero Predictor’s Relative Precise Error
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Note: In this plot, the black curve represents the probability limit of ∆(β̂r(λn)), denoted as α∗, as a function

of the tuning parameter λ, defined in Theorem 2, in the context of weak signals. To create this plot, we set

all parameters (c0, θ1, θ2, σx, σβ , σε) to one for simplicity.

approach for this purpose is K-fold CV.

In cases where the signals are strong, Hastie et al. (2022) demonstrate the effectiveness

of CV for Ridge. Specifically, the cross-validated tuning parameter converges in probability

to the optimal value within a pre-specified interval. The fact that this optimal value lies in

some known interval simplifies the derivation of the theoretical properties of CV. In scenarios

with weak signals, however, the optimal tuning parameter tends to diverge as the sample

size increases. The rate of divergence depends on the unknown strength of the weak signal,

τ . As we show next, CV remains a valid and useful tool in this case. To narrow our focus

to the matter of weak signals without delving into a complicated CV procedure, we consider

the case where both Σε and Σ1 are identity matrices. This assumption of no temporal

dependence in the data facilitates a more straightforward CV procedure for i.i.d. data.

To determine the optimal tuning parameter using K-fold CV, denoted as λ̂K−CV , the rows

of the design matrix X are partitioned into K distinct subsets, labeled as X(1), · · · , X(K). For

each i ∈ {1, · · · , K}, the submatrix X(−i) is formed by excluding the rows corresponding to

X(i). Similarly, the associated subvectors are y(i), ε(i), y(−i), and ε(−i). The Ridge estimator

for each fold, β̂ir(λn), is defined as the solution to the optimization problem for i = 1, · · · , K:

β̂ir(λn) = arg min
β

{
1

n
‖y(−i) −X(−i)β‖2 +

pλn
n
‖β‖2

}
.

Consequently, the tuning parameter selected by K-fold CV is given by
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λ̂K−CVn = arg min
λn∈[ε,∞)

1

n

K∑
i=1

‖y(i) −X(i)β̂
i
r(λn)‖2,

where ε > 0 is an arbitrary small constant. The following theorem provides its justification:

Theorem 3. Under the same assumptions as in Theorem 2, if we also assume that

Σ1 = I, Σε = σ2
εI, ε follows a sub-exponential distribution, and that q−1τ−1n−1/2 log(p),

q−1/2τ−3/2n−1/2 log(p)→ 0, then we can establish that:

τ λ̂K−CVn
P−→ λopt = σ2

ε/σ
2
β and ∆(β̂r(λ̂

K−CV
n ))−∆(β̂r(λ

opt
n ))

P−→ 0.

This theorem justifies the use of λ̂K−CVn as an approximation for the optimal tuning

parameter λoptn = λopt/τ (θ1 = 1 in this case) for Ridge. Importantly, this result does

not require prior knowledge of τ , making the CV approach directly applicable in practical

scenarios. The additional constraints on q become relevant only when q vanishes; otherwise,

they naturally follow from Assumption 4. These conditions ensure uniform convergence

across the spectrum of tuning parameter values, a prerequisite for the results of Theorem 3.

With our analysis of Ridge concluded, we will now turn our attention to Lasso.

2.6 Analysis of the Lasso Predictor

Unlike Ridge, the analysis of Lasso is more intricate, primarily because it lacks a closed-form

formula. In the special case where Σ1, Σ2, and Σε are identity matrices, several studies,

including Bayati and Montanari (2012) and Thrampoulidis et al. (2018), have established

Lasso’s precise error given by (7). Additionally, based on (7), Wang et al. (2020) conducted

a small-signal Taylor expansion of α∗ with respect to σ2
β, which affects α∗ through the

prior distribution F . They concluded that the optimal Lasso estimator fails to outperform

optimal Ridge.9 In the general case we consider, pinpointing the exact precise error appears

a daunting task. Instead, we seek probability bounds of the limit. This turns out sufficient

for us to conclude that Lasso cannot outperform zero for all values of its tuning parameter

in the context of weak signals. The next theorem summarizes our main findings:

Theorem 4. Assume that Assumptions 1−5 are satisfied and the tuning parameter λn is

chosen such that the following equation holds for some Cλ > 0:

9Their analysis does not address the scenario of Lasso with an arbitrary tuning parameter, nor does it
elucidate its relative performance compared to zero.
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pn−2τ−2EU∼N (0,Σ2)

∥∥∥(2σε
√
θ1|U | − λn)+

∥∥∥2

= Cλ.
10 (9)

Then, with probability approaching one, we have cα ≤ ∆(β̂l(λn)) ≤ Cα, where cα and Cα are

the solutions to the following equation in terms of x:

x−
√

2Cλ
c2

x = − Cλ
100C2

, (10)

where c2 and C2 are constants defined in Assumption 1.

Equation (9) implicitly determines the rate at which λn diverges to infinity. For any fixed

Cλ > 0, we can solve for the tuning parameter λn from (9), and derive the upper and lower

bounds, Cα and cα, from equation (10). Furthermore, equation (10) directly implies that Cα

and cα are non-negative, indicating that Lasso does not outperform the zero predictor for

any given tuning parameter value in the context of weak signals.

Moreover, as λn approaches zero, Cλ diverges to infinity, leading to a simultaneous di-

vergence of both cα and Cα. This suggests that Lasso behaves increasingly worse compared

to the zero predictor. Conversely, a larger tuning parameter λn causes Cλ to converge to

zero from the positive side. As a result, both cα and Cα converge to zero while remaining

non-negative. This implies that Lasso’s performance improves but remains inferior to the

zero predictor, until they become equivalent in the limit. Figure 4 illustrates upper and lower

bounds for the relative error of Lasso versus the zero predictor across different λn values.

Lasso struggles with weak signals because it has difficulty distinguishing true signals

from spurious ones. Its inability to select true weak signals does not significantly impact

its performance compared to the zero predictor, which ignores these signals entirely. The

main issue with Lasso is its ineffectiveness in penalizing irrelevant signals. While increasing

the tuning parameter might help, our theory indicates that Lasso only reaches the zero

predictor’s effectiveness when the penalty is large enough to essentially disregard all signals.

Given Lasso’s limitations with weak signals, the elastic net—merging the `1 and `2 norms

in its penalty—also underperforms compared to Ridge, in settings involving weak signals.11

In predictive regressions with many covariates, Lasso is often viewed as the successor to

OLS. However, our analysis reveals a critical caveat: Lasso, regardless of tuning parameter

choice, underperforms a zero predictor in weak-signal settings. This has important implica-

10When applied to a vector, | · | and (·)+ represent element-wise operations.
11Although a formal justification for this observation can be provided in the setting of Σ2 = I, we omit it

here due to space constraints.
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Figure 4: Lasso vs. Zero Predictor: Relative Precise Error Bounds
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Note: In this plot, the black curves represent the lower and upper probability bounds on ∆(β̂l(λn)), i.e.,

cα and Cα, as a function of the tuning parameter λn in the context of weak signals. In this setup, we fix

n = p = 2, 000. We assign the elements of b0 to follow a standard Gaussian distribution and set Σ2 = I. As

in Figure 3, we set all parameters (c0, θ1, θ2, σx, σβ , σε) to one. Finally, we select τ = 0.001, which results in

a population R2 around 0.1%.

tions for economics and finance, where large-scale regressions with low signal-to-noise ratios

are increasingly common. Instead, our results favor Ridge in such scenarios, emphasizing

the need to assess signal strength when selecting regularization techniques.

2.7 Assessing Signal-to-Noise Ratio

In line with this perspective, we delve into the assessment of the signal-to-noise ratio, a

measure that can offer insights into the viability of different machine learning techniques.

Our preceding analyses provide indirect guidance in this regard. Specifically, if Lasso under-

performs the zero predictor, it implies a potential issue with the data’s signal strength.

A more conventional and direct approach to evaluating the signal-to-noise ratio is through

R2. However, in-sample R2 is prone to overfitting, and as such, out-of-sample R2 is commonly

used in machine learning. This metric essentially involves the comparison of mean-squared

errors between two predictors. For our specific application, we have chosen to use zero as

the reference predictor and define this metric for a given estimator β̂ as follows:

R2
oos(β̂) = 1−

∑
i∈OOS(yi −Xiβ̂)2∑

i∈OOS y
2
i

, (11)

where “OOS” represents the out-of-sample data.
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Since a model’s predictive performance hinges on the signal-to-noise ratio, this metric is

a natural choice for evaluating the signal strength inherent in the DGP. In strong-signals

scenarios, the out-of-sample R2 consistently estimates the population R2, irrespective of the

specific estimator β̂, provided it is consistent with respect to β0, i.e., ‖β̂ − β0‖ = oP(1).

However, in weak-signal settings, the outcome critically depends on the estimator chosen,

beyond the signal-to-noise ratio itself. As an illustration, while both Lasso and Ridge are

consistent as their prediction errors asymptotically diminish, the out-of-sample R2 for Lasso

can become non-positive, indicating either no improvement or underperformance relative to

the zero predictor, as demonstrated in Theorem 4.

In the context of weak signals, the following proposition provides theoretical support for

the relevance of optimal Ridge’s R2
oos in assessing the signal-to-noise ratio in the data.

Proposition 1. Under the same assumptions as Theorem 3, and assuming that the out-of-

sample data follows the same DGP as the in-sample data, if noosp
−2n2τ 2 → ∞, where noos

is the size of the out-of-sample data, then for the optimal Ridge predictor, it holds that

R2
oos(β̂r(λ

opt
n )) = p−1nθ2(R2)2 (1 + oP(1)) ,

where R2 denotes the population R-squared, given by τσ2
xσ

2
β/(τσ

2
xσ

2
β + σ2

ε) in this context.

Interestingly, when noos is sufficiently large, to the extent that the estimation error in

R2
oos does not mask the performance differential between the optimal Ridge and the zero

predictor, R2
oos is approximately proportional to (R2)2. While it does not exactly mirror R2,

R2
oos still serves as an indicator of signal strength. The reason for their discrepancy is that in

the weak signal case, the numerator of the R2
oos—which reflects the relative prediction error

between the two predictors—decreases more rapidly than the numerator of R2. Therefore,

the numerator of R2
oos only provides a higher-order characterization of signal strength.

2.8 Mixed Signal Strengths and Alternative Benchmarks

In the preceding sections, our analysis primarily focuses on scenarios where all signals are

weak, leading us to consider the zero predictor as our natural benchmark. This section,

however, expands our analysis to include models where potentially strong signals serve as

benchmarks. Consider another DGP:

y = Wγ0 +Xβ0 + ε, (12)
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where W ∈ Rn×d represents a predefined set of covariates. These covariates include poten-

tially strong signals and form the basis of the benchmark model. We allow the dimension d

to increase to ∞, however, it does so at a slower rate compared to n, ensuring that OLS of

y against W remains a viable method for estimation.

In many cases, W could simply be a vector of ones, allowing us to remain agnostic

about the magnitude of the regression’s intercept. In our empirical analysis, W can be

motivated from economic theory, whose impact on the response variable is of central interest.

Alternatively, W can encompass lagged values of y, thereby facilitating the inclusion of

temporal dependence in the benchmark model. This setup is particular relevant when using

an autoregressive model as a benchmark for forecasting economic variables. Exploring the

possibility of a data-driven selection of W is an intriguing direction for future research.

Building on these considerations, our focus now shifts to evaluating and comparing the

performance against the OLS benchmark with covariates in W . In this context, the OLS

benchmark predictor, ŷnewb , for a new observation (wnew, xnew) is defined as follows:

ŷnewb = (wnew)>γ̂, where γ̂ = (W>W )−1W>y. (13)

The inclusion of W leads us to explore the following Ridge estimator with regularization

only imposed on coefficients of X:

β̂(λn) := arg min
β

{
min
γ

(
1

n
‖y −Wγ −Xβ‖2 +

pλn
n
‖β‖2

)}
= arg min

β

{
1

n
‖MWy −MWXβ‖2 +

pλn
n
‖β‖2

}
, (14)

where MW = I−W (W>W )−1W>. Consequently, the estimator for γ is thus given by

γ̂(λn) = (W>W )−1W>(y −Xβ̂(λn)). (15)

The construction for Lasso is similar. Therefore, utilizing the estimated parameters

(β̂(λn), γ̂(λn)) we are able to formulate a predictor for y as

ŷnew = (wnew)>γ̂(λn) + (xnew)>β̂(λn) = ŷnewb + (x̂new)>β̂(λn), (16)

where x̂new = xnew −X>W (W>W )−1wnew.

Notably, equation (16) illuminates the role of the second term, (x̂new)>β̂(λn), in cap-
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turing the contribution of weak signals relative to the OLS benchmark, ŷnewb . Moreover, a

comparison with the previously analyzed zero-benchmark scenario reveals a key distinction:

the modification of the response and covariates in equation (14). Here, the approach involves

regressingMWy onMWX, effectively predicting the residuals of the benchmark model using

covariates adjusted to eliminate dependence on W . While our earlier conclusions are likely

still valid, the inclusion of generated covariates introduces an additional layer of statistical

error that warrants careful examination. The forthcoming theorem will demonstrate that

this extra error does not compromise our prior conclusions. Given this context and our prior

comparative analysis, we focus on the optimal Ridge in this scenario for reason of space.

Theorem 5. Suppose that X = Wη0 + U . Assume that the triplet (U, β0, ε) follows the

same distribution as (X, β0, ε) in Theorem 2. Additionally, the matrix W is independent

from U , β0, and ε. Each covariate within W is assumed to have a finite second moment.

Furthermore, we assume that d = o(n2p−1τ), and the eigenvalues of n−1W>W are lower

bounded by some positive constant. Given these assumptions, the predictor, ŷnew, as defined

in (16) and based on the Ridge estimator from (14) with λn = τ−1λ, and the benchmark

predictor ŷnewb from (13), satisfy the following:

pn−1τ 2
(
EF
[
(ŷnew − ynew)2 | I

]
− EF

[
(ŷnewb − ynew)2 | I

] ) P−→ α∗, (17)

where I denotes the information set generated by (W,X, y, γ0, β0), α∗ is defined in Theorem

2, and the tuple (ynew, wnew, xnew) satisfies (12).

This result shows that a Ridge-augmented model outperforms the benchmark model

alone, aligning with our earlier conclusion that Ridge can effectively leverage weak signals.

2.9 Ridge vs. Lasso in Extremely Sparse Settings

This section clarifies that our asymptotic restrictions are mainly technical. Even in extreme

sparsity beyond our main analysis, Lasso fails to outperform zero when signals are sufficiently

weak, while Ridge retains a non-negligible probability of learning them. However, the setting

is stylized, as the proof relies on a distinct approach using Lasso’s closed-form solution.

Consider the Gaussian sequence model where y = β0 + ε with ε ∼ N (0, I). For this

model, X = I and n = p. We let β0 = (
√
nτ, 0, . . . , 0)>, so that s = ‖β0‖0 = 1 and

R2 = ‖Xβ0‖2
‖Xβ0+ε‖2 � τ → 0. This represents the most extreme form of sparsity, with only one

true signal. Moreover, we relax the n−1/3 lower bound restriction on τ .
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Proposition 2. Assume τ ≤ n−1 log(n)/100. There exists n0 > 0 such that n > n0, Lasso

satisfies

P
(
‖β̂l(λ)− β0‖2 − ‖β0‖2 ≥ 0,∀λ ≥ 0

)
≥ 1− n−1/2, (18)

while for Ridge,

P
(
∃λ > 1 s.t. ‖β̂r(λ)− β0‖2 − ‖β0‖2 < 0

)
≥ 0.5. (19)

This result highlights that in extreme sparsity, Ridge can still learn weak signals, whereas

Lasso remains ineffective regardless of tuning.

3 Monte Carlo Simulations

In this section, we conduct simulation experiments to assess the finite sample relevance of

our asymptotic theory. We begin by examining Ridge and Lasso in a linear model setup.

3.1 Ridge and Lasso for Linear Models

We now detail the DGP specified by (1) for the first simulation exercise. We set (Σ1)ij =

2−|i−j| for 1 ≤ i, j ≤ n. We construct Σε as a diagonal matrix with i.i.d. entries sampled

from the uniform distribution U(0.5, 1.5). The eigenvalues of Σ2 are also simulated from

U(0.5, 1.5), with corresponding eigenvectors from a randomly generated orthogonal matrix.

These components form Σ2, which, along with other matrices, remains fixed throughout the

simulations. By direct calculations, we have θ1 = 1, θ2 = 13/12, and θ3 = θ4 = 5/3.

We experiment with n = 500 and p = 300, dimensions that align closely with the

first microeconomic example studied below. For each simulated sample, we construct β0

as
√
p−1τb0, with b0 drawn from a spike-and-slab distribution: (1 − q)δ0 + qN (0, q−1σ2

β).

Here, δ0 represents the Dirac delta function, and we set σ2
β = 1. The error term ε is

sampled from N (0, 1), while the design matrix X is drawn from N (0, 1), then transformed

via pre-multiplication by Σ
1/2
1 and post-multiplication by Σ

1/2
2 . We consider two cases for the

sparsity parameter, q = 0.2 and q = 0.8. To represent weak and strong signal scenarios, we

calibrate two values of τ to achieve R2 = 5% and 50%, respectively. The parameters q and

τ (through R2) are varied as they are critical to the asymptotic performance, as highlighted

in Assumption 4. A total of 1, 000 Monte Carlo repetitions are conducted.

For each simulated sample, we compute the relative prediction error, ∆(β̂(λ̂K−CVn )), as
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defined in equation (8), with the tuning parameter for each method selected via 10-fold CV.

The histograms of these errors are presented in Figure 5. Additionally, Table 1 provides

summary statistics, including quantiles and the proportion of values classified as “zeros”

(where “zero” is defined as being within machine precision).

The histograms reveal notable differences in the performance of Ridge and Lasso when

R2 is low, while showing that both methods outperform the zero predictor when R2 is high.

Ridge displays a clear probability mass on the negative side of the error distribution, even in

weak signal settings, and its performance is largely unaffected by changes in sparsity levels.

In contrast, Lasso struggles to capture weak signals, as evidenced by a substantial proba-

bility mass on the positive side of the y-axis. While increasing sparsity (lowering q) leads to

modest improvement in Lasso’s performance, it still lags behind Ridge overall. This pattern

is supported by Table 1, which presents quantiles of these distributions. In finite samples

with high sparsity, some probability mass for Lasso can fall on the negative side. Neverthe-

less, Lasso also shows a heavier probability mass at zero compared to Ridge, consistent with

the theoretical prediction that optimal Lasso collapses to zero in weak-signal settings.

The above results use tuning parameters selected via 10-fold CV. To validate our theoreti-

cal findings independently of tuning parameter selection, Appendix A.1 presents experiments

with fixed tuning parameters. Additionally, Further simulations in Appendix A.2 support

our theoretical predictions regarding the R2
oos of the optimal Ridge. Appendix A.3 presents

evidence indicating that Type I error primarily influences Lasso’s performance relative to

the zero estimator. As λ increases, Type I error diminishes, leading to an improvement in

Lasso’s performance, which ultimately becomes identical to that of the zero estimator, while

Type II error persists at a high level.

To examine the robustness of our theory in cases of extreme sparsity, Appendix A.4

examines the effect of further reducing Lasso’s sparsity level to q = 0.1, 0.05, and 0.02. The

results reveal that for each sparsity level, as R2 decreases, Ridge’s performance improves,

whereas Lasso’s performance deteriorates. This suggests that even under extreme sparsity

conditions, the relative performance is dictated by the strength of the signal. Ridge continues

to outperform both the zero predictor and Lasso when the signal is sufficiently weak.

3.2 Advanced Machine Learning Methods for Nonlinear Models

In this section, we extend our investigation to nonlinear machine learning methodologies,

including RF, GBRT, and NNs, through simulation experiments. While providing a precise

theoretical analysis of errors for these algorithms remains challenging—and this part there-
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Figure 5: Simulation Results for Ridge and Lasso in Linear DGPs
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Note: The histograms depict the relative prediction error ∆(β̂r(λ̂
K−CV
n )) (top) and ∆(β̂l(λ̂

K−CV
n )) (bottom)

following equation (8) across 1, 000 Monte Carlo samples. We analyze three setups of (R2, q).

Table 1: Summary Statistics for Ridge and Lasso in Linear DGPs

Lasso Ridge
q R2 (%) Q1 Q2 Q3 #Zero Q1 Q2 Q3 #Zero

0.2 5% -0.127 0.000 0.521 360 -0.992 -0.501 -0.129 97
0.8 5% 0.000 0.000 0.975 400 -0.918 -0.541 -0.169 88
0.2 50% -0.508 -0.414 -0.331 0 -0.375 -0.300 -0.233 0

Note: The table illustrate the summary statistics (quantiles and the percentage of zeros) of relative prediction

error ∆(β̂(λ̂K−CVn )), for Ridge and Lasso, based on 1,000 Monte Carlo samples.

fore involves some degree of speculation—we draw on insights from linear models to interpret

and contextualize our simulation findings.

We simulate the following DGP, expressed explicitly in element-wise form:

yi =

p∑
j=1

β0,jf(Zij) + εi, i = 1, . . . , n, (20)

where yi denotes the ith observation of the response variable, β0,j represents the coefficient

associated with a function f(·) of the predictor variable Zij. We adopt the following pro-

cedure for simulating this model: Zij is generated by applying an inverse transform to Xij,

previously simulated in Section 3.1. Specifically, Zij = f−1(Xij), where X is constructed

using the same DGP as before.12 Additionally, both the coefficients β0 and the error term

12We present results for f(x) = tan(x). The results are nearly identical to those obtained with cubic or
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εi are drawn from the same baseline DGP. This approach guarantees the replication of the

exact simulation results observed when regressing y on X. However, the focus now shifts

to predicting y using nonlinear models of Z without prior knowledge of f(·). The effective

signal-to-noise ratio decreases due to the added complexity of learning an unknown function.

3.2.1 Simulations with Tree Algorithms

Tree algorithms are essential in machine learning for handling complex DGPs with discrete

variables, nonlinearities, and intricate interactions. However, single tree models often under-

perform, prompting the use of ensemble methods to enhance predictions.

Two popular ensemble techniques are RF and GBRT. RF uses bagging, where multiple

trees are trained independently on bootstrap samples, and their predictions are averaged

to improve performance. In contrast, GBRT employs boosting, iteratively fitting residuals

from prior trees to build a strong ensemble from weak learners.

Since trees are invariant to monotonic transformations, it suffices to report their predic-

tion results for the linear DGP, as these are identical to those for the nonlinear DGP under

consideration. However, tree methods may underperform Ridge and Lasso, partly due to an

additional approximation error from using piecewise constant functions to approximate the

linear DGP. Therefore, the primary focus here should not be on comparing tree methods

with linear models but rather on assessing the effectiveness of different ensemble techniques

in capturing weak signals and comparing their performance to the zero predictor.

We repeat the experiments from Section 3.1, this time generating an additional set of noos

out-of-sample observations to evaluate predictive performance.13 As illustrated in Figure 6,

RF demonstrates its ability to learn weak signals when R2 = 5%, with more than half of the

probability mass located to the left of the y-axis. In contrast, GBRT struggles at this signal

strength level. Sparsity does not appear to significantly impact either method. Nonetheless,

both methods markedly outperform the zero predictor as R2 increases to 50%.

A possible explanation for GBRT’s performance pattern could be an inherent `1-like regu-

larization in its boosting approach. This conjecture draws support from Efron et al. (2004),

which demonstrates a parallel between boosting and the Lasso path in linear regressions.

To substantiate this conjecture, we examine the number of active variables (those with a

non-zero importance score) from both tree methods under the benchmark case (q = 0.2,

R2 = 5%). For RF, the average count of active variables is 300. This mirrors that of

hyperbolic sine functions, and are therefore omitted for brevity.
13We set noos ≈ [τ−3] to meet the assumption in Proposition 1.
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Figure 6: Simulation Results for RF and GBRT in Linear DGPs
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Note: The histograms depict the relative prediction error, pn−1τ−2n−1oos
∑
i∈OOS((yi− ŷi)2− y2i ), from 1, 000

Monte Carlo samples. We consider RF and GBRT in settings of n = 500, q = 300, noos = 10, 000, across

three (R2, q) configurations. The red dashed line marks the y axis for reference.

Ridge. Conversely, GBRT demonstrates a significantly lower count of active variables, with

an average of 27.9, aligning more with the variable selection feature of Lasso. Based on our

theoretical findings that Ridge outperforms Lasso in weak signal scenarios, we can infer that

RF is more adept than GBRT in settings characterized by low signal strengths.

3.2.2 Simulations with Neural Networks

Next, we study fully-connected feed-forward NNs. Still, we fix n = 500 and p = 300. Such

parameters lead to an input layer in the NN configured with 300 neurons. Our chosen

architecture features a single hidden layer, which includes 16 neurons.

The training process of these NNs often incorporates a sophisticated mix of optimization

and regularization techniques crucial for enhancing performance.14 To isolate and assess

the impact of `1 and `2 regularization, we use plain stochastic gradient descent (SGD),

deliberately avoiding other optimization techniques to minimize interference, albeit at the

14Key methods include stochastic gradient descent (SGD) with Adam (Kingma and Ba (2014)), which
expedites the optimization process through an adaptive learning rate. Early stopping, as discussed in Good-
fellow et al. (2016), is employed to prevent overfitting by halting training when validation performance starts
to decline. Dropout (Srivastava et al. (2014)) is utilized for better generalization, achieved by randomly de-
activating neurons. Batch normalization (Ioffe and Szegedy (2015)) aids in stabilizing the training process.
Moreover, ensembling over various random seeds is implemented to reduce the variances in model outputs.
Furthermore, the integration of `1 and `2 penalties with these techniques helps regulate the NN parameters.
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expense of not fully exploiting the NN’s potential.15

Figure 7: Simulation Results for NNs in Nonlinear DGPs
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Note: The histograms show the relative prediction error, pn−1τ−2n−1oos
∑
i∈OOS((yi− ŷi)2− y2i ), across 1, 000

Monte Carlo samples, using `2 (top) and `1 (bottom) penalties. The settings include n = 500, q = 300,

noos = 10, 000 for three (R2, q) configurations. The red dashed line marks the y axis for reference.

The histograms in Figure 7 display the relative prediction errors of NNs. We observe

that `2 regularization effectively leverages weak signals, as indicated by most of the proba-

bility mass in their histograms being on the negative side of the y-axis when R2 = 5%. In

contrast, `1 regularization shows a notable decline in performance, which is consistent with

our theoretical insights from linear models.

4 Empirical Analysis of Six Economic Datasets

In this section, we demonstrate the practical relevance of our theoretical insights by applying

seven machine learning methods—Ridge, Lasso, OLS/Ridgeless, RF, GBRT, NNs with both

`1 and `2 penalties—across six datasets from finance, macroeconomics, and microeconomics,

with two datasets per field. We use five datasets similar to those in Giannone et al. (2022),

updated with the latest data when feasible, and introduce an updated dataset from Gu

et al. (2020) for our second finance example. Our empirical strategy differs notably from

Giannone et al. (2022), who estimate a parametric model using a Spike-and-Slab prior within

15We avoid early stopping, as our simulations (not reported due to space constraints) reveal it functions
similarly to `2-regularization by shrinking parameter values towards their initial, smaller magnitudes.
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a Bayesian framework. In contrast, our study, more aligned with Gu et al. (2020), focuses

on a comparative analysis of these methods.

At the outset of each empirical exercise, we face a variety of decisions regarding our imple-

mentation strategy. These include setting the in-sample and out-of-sample periods, choosing

between a rolling window or an expanding window approach, selecting a CV procedure, and

deciding on covariate normalization.16 We follow the frameworks established by Giannone

et al. (2022) and Gu et al. (2020) to limit degrees of freedom, thereby improving the robust-

ness, comparability, and reproducibility of our findings. In applying each machine learning

method, choosing the right grid for tuning parameters is crucial, balancing performance

optimization with computational efficiency. Finer and wider grids can potentially improve

performance but also increase computational demands. Details on our model configuration

and tuning parameter selection are provided in Online Appendix B.

Below we summarize the empirical findings from six distinct datasets, each analyzed

and reported separately. The primary summary statistics, R2
ooss, are collected in Table 2.

Additionally, we include variable importance plots in Figure 8 as supplementary evidence

to decode the performance of different methods. The notion of variable importance is not

universally established and varying across different contexts. Our approach diverges from

the well-known method associated with RF, originally presented in Breiman (2001). In our

analysis, variable importance is quantified as the reduction in R2
oos resulting from setting

each variable, one at a time, to zero (its mean value post-normalization), with this metric

normalized across all variables. For each method, the most significant variable, as per this

definition, is assigned a value of one, and a color gradient is employed to visually represent

the relative importance of each variable.

4.1 Finance 1: Market Equity Premium

In the first analysis, we focus on predicting market equity returns using a dataset of finan-

cial and macroeconomic indicators compiled by Welch and Goyal (2007).17 This dataset

comprises 16 predictors and includes 74 annual observations, covering a period from 1948

to 2021. Despite Welch and Goyal (2007) reporting a consistently negative R2
oos for this

dataset, many other studies, such as those by Campbell and Thompson (2007), Ferreira and

Santa-Clara (2011), Rapach et al. (2010), Kelly and Pruitt (2013), and Kelly et al. (2023),

16Normalizing covariates is essential before using machine learning methods, as it standardizes their scales,
aids in regularization, and improves the convergence of optimization algorithms. To prevent forward-looking
bias, normalization is performed using each covariate’s in-sample mean and standard deviation.

17The data, sourced from Amit Goyal’s website, was processed using Giannone et al. (2022)’s methodology.
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Figure 8: Variable Importance Plots
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Note: This figure illustrates the variable importance across six empirical studies, using color gradients to

show the relative reductions in R2
oos by each covariate. For the first example in Macroeconomics and the

second example in Microeconomics, we only present the cases with a more complex benchmark model.
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have developed forecasting strategies resulting in economically meaningful R2
oos values, which

translate into significant economic gains through simple market timing strategies.

Table 2: Out-of-sample R-squared Values in Empirical Studies

Ridge Lasso OLS/Ridgeless RF GBRT NN(`2) NN(`1)

Finance 1 0.80 −12.19 −81.08 1.30 −14.21 1.41 −10.31
Finance 2 0.19 0.10 −1.25 0.10 −0.30 0.26 0.14
Macro 1a 15.29 15.40 −1375 25.04 16.44 16.94 19.09
Macro 1b 3.49 3.69 −2939 9.08 1.11 7.09 5.39

Macro 2
6.58 −14.58 −837 9.03 1.28 4.00 1.92

(4.83) (43.74) (854) (9.92) (14.04) (18.42) (13.36)

Micro 1
0.48 −1.01 −13198 −1.75 −5.07 0.49 −6.77

(0.84) (2.01) (12479) (2.70) (6.60) (0.27) (17.87)

Micro 2a
26.27 20.37 −12729 27.69 16.44 23.87 23.37
(7.50) (6.41) (9213) (6.15) (3.40) (10.07) (10.09)

Micro 2b
1.89 -3.43 -14724 2.86 -6.45 1.11 -1.73

(3.09) (5.25) (10506) (3.67) (6.83) (2.20) (5.09)

Note: This table reports R2
oos values, presented in percentages, for Ridge, Lasso, OLS/Ridgeless, RF, GBRT,

and NNs with respective `1 and `2 penalties, across six empirical studies spanning Finance, Macroeconomics,

Microeconomics. For the first example in Macroeconomics and the second example in Microeconomics, two

benchmark models are considered. Standard deviations are provided in parentheses when applicable.

We revisit this exercise, by following the empirical framework of Giannone et al. (2022),

the initial training set spans from 1948 to 1964, with the model tested on the 1965 data.

Subsequently, data from 1965 is added to the training set, and the process is repeated, test-

ing the next model on the 1966 data. This procedure is conducted 57 times, progressively

incorporating one additional year into the training set and shifting the test sample forward

by one year each time. We evaluate R2
oos based on 57 different predictions using annually

expanding windows.18 The R2
oos results are summarized in Table 2 and align with our theo-

retical predictions. Specifically, Ridge records an R2
oos of 0.80%, significantly outperforming

Lasso’s -12.19%. With the smallest sample size being 17—just sufficient to run OLS with

16 predictors—OLS produces a highly negative R2
oos of -81.08%. Our RF attains an R2

oos

of 1.30% while GBRT show performance similar to Lasso, with an R2
oos of -14.21%. The

NN with an `2 penalty, NN(`2), achieves the highest R2
oos of 1.41%, whereas NN(`1) has

-10.31%. As indicated in Figure 8, Ridge and NN(`2) appear to assign similar weights to

these covariates. The leading covariate, eqis—the equity issuing activity ratio —is closely

followed in importance by the dividend-price ratio, d/p.

18In this example, R2
oos = 1−∑2021

t=1965(yt − ŷt)2/
∑2021
t=1965(yt − ȳt)2, where ȳt =

∑t−1
s=1948 yt/(t− 1948).
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4.2 Finance 2: Cross-Section of Expected Returns

In our second analysis, we build upon the predictors utilized by Gu et al. (2020) for predicting

monthly individual equity returns. Our dataset spans from March 1957 to December 2021,

incorporating a total of 920 covariates and averaging over 6,200 stocks per month. Following

Gu et al. (2020), our initial training phase utilizes data from 1957 to 1986, followed by per-

formance evaluation using 1987 data. We employ an expanding-window procedure annually,

with each iteration expanding the training sample by an additional year and shifting the

evaluation period forward by one year.

Table 2 compares the model performance in terms of R2
oos, where the zero predictor serves

as the benchmark.19 In this case, NN(`2) emerges as the leading model, closely followed by

Ridge, achieving R2
oos of 0.26% and 0.19%, respectively. These models dominate NN(`1) and

Lasso, which records an R2
oos of 0.14% and 0.10%. The performance of the OLS continues

to be underwhelming in this exercise. For the tree-based models, RF outperforms GBRT,

achieving an R2
oos of 0.10%, while GBRT yields a negative R2

oos of -0.30%. Figure 8 reveals

an intriguing pattern: there appears to be a relationship between the relatively stronger

performance among these pairs—Ridge vs Lasso, RF vs GBRT, and NN(`2) vs NN(`1)—

and their respective patterns of sparsity in variable importance plots. Models with denser

variable weights outperform those with sparser ones.

To illustrate the economic significance of these relatively low R2
ooss, we adopt a stock

selection portfolio strategy. This strategy involves going long on the top 10% and shorting

the bottom 10% of stocks, sorted based on their predicted returns for the upcoming month,

with equal weighting applied to each stock every month. Over 35 out-of-sample years, NN(`2)

achieves the highest Sharpe ratio at 2.13, followed closely by Ridge at 1.64. NN(`1) also

performs well, with a Sharpe ratio of 1.55. By contrast, GBRT exhibits the least impressive

performance, with the lowest Sharpe ratio of 0.80.

4.3 Macro 1: Macroeconomic Forecasting

The prediction of US macroeconomic activity using a wide range of predictors has been

a topic of significant interest since its exploration by Stock and Watson (2002). In our

current study, we utilize the FRED-MD dataset, compiled by McCracken and Ng (2016),

to forecast the monthly growth rate of US industrial production (IP). This dataset includes

119 potential predictors and extends from February 1960 to December 2019. Our evaluation

19In this pooled regression setting, we define R2
oos = 1−∑i,t∈OOS(yi,t − ŷi,t)2/

∑
i,t∈OOS y

2
i,t.
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methodology aligns with the prediction procedure outlined by Giannone et al. (2022). We

begin by training all models using data from February 1960 to December 1974 and then

evaluate their performance on data from the subsequent year. This process is repeated

45 times, using a similar expanding-window approach on an annual basis. We follow the

guidelines outlined by McCracken and Ng (2016) for covariate transformation and data

quality management, including outlier removal and imputation of missing data.

We start with a benchmark predictor that only uses an intercept term. In this scenario,

all machine learning methods significantly outperform this benchmark, achieving R2
oos values

ranging from 15.29% to 25.04%.20 In contrast, OLS overfits the data, resulting in a negative

R2
oos of -14. This result indicates the existence of strong signals within the covariates. The

benchmark model’s lack of competitiveness aligns with our expectations, given the temporal

dependence prevalent in macroeconomic time series.

We thereby propose an alternative benchmark that incorporates lagged values of IP

growth. Within each training sample, we fit an AR model to the IP growth, selecting the

order based on the AIC. The residuals from this model then serve as our prediction target.

As discussed in Section 2.8, this approach combines the predictions from the AR model

with those from our machine learning methods, yielding a hybrid out-of-sample forecast.21

Consequently, the new benchmark becomes the direct use of AR model predictions. In this

alternative setup, the comparison of R2
oos values reveals a pattern somewhat associated with

scenarios of weak signal strength: NN(`2) and RF emerge as the top performers, achieving

R2
oos values of 7.09% and 9.08%, respectively. Following closely are NN(`1) at 5.39%, while

GBRT lags with a considerably lower R2
oos of 1.11%. This disparity in performance appears

associated with the findings in Figure 8, which illustrates GBRT’s tendency towards sparser

models in comparison to their counterparts. In this example, linear models, specifically

Ridge and Lasso, demonstrate comparable performance, achieving R2
oos values of 3.49% and

3.69%, respectively. This suggests that, for this particular case, the challenges associated

with signal weakness are primarily evident in nonlinear features.

20In this case, the definition of R2
oos is similar to how it is defined in the Finance 1 case.

21In implementing advanced machine learning methods alongside a linear component Wγ, we adopt a
methodology that parallels the one used in Eq. (14). This approach is based on a DGP assumption thatMW y
is a general function of MWX. This assumption plays a critical role in streamlining the implementation
of these machine learning methods, ensuring that the results are directly comparable to those obtained in
linear settings. However, it is generally not equivalent to the assumption that y −Wγ is a function of X.
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4.4 Macro 2: Economic Growth Across Countries

Next, we explore a dataset originally compiled by Barro and Lee (1994), which includes 60

socio-economic, institutional, and geographical covariates across 90 countries. This dataset

is utilized for predicting long-term economic growth, specifically measured by the growth

rate of GDP per capita from 1960 to 1985. A pivotal aspect of this analysis involves testing

a key prediction of the classical Solow-Swan-Ramsey growth model, which concerns the effect

of an initial (lagged) GDP per capita level on subsequent growth rates. By incorporating the

logarithm of each country’s GDP per capita in 1960 alongside a constant term, our prediction

model includes a total of 62 potential covariates.

Belloni et al. (2013b) implement the Square-root-Lasso technique in their regression,

anticipating sparsity among the control variables. This methodology results in a remarkable

sparse model, characterized by the inclusion of a singular control variable: the log of the

black market premium, a measure of trade openness. In contrast, Giannone et al. (2022)

employ a Bayesian approach with a spike-and-slab prior, concluding that a dense model,

which includes all covariates, yields the best log-predictive score.

In our predictive analysis, we adopt the same empirical strategy outlined by Giannone

et al. (2022). We begin by randomly selecting half of the data samples for model estimation

and then proceed to assess the performance of these models using the remaining samples.

This process is repeated 100 times. The average out-of-sample R2
oos from these 100 repeti-

tions, in comparison to a benchmark model that includes only the intercept, is presented in

Table 2, accompanied by their standard deviations, provided in parentheses.2223

Our empirical findings align with Giannone et al. (2022), indicating that dense models,

specifically Ridge, RF, and NN(`2), exhibit superior performance compared to their sparse

counterparts, such as Lasso, GBRT, and NN(`1). The limited sample size appears to disad-

vantage complex NN models, rendering them less effective than the simpler Ridge regression.

RF demonstrates strong performance, achieving an R2
oos of 9.03%, although it concurrently

introduces a twofold increase in the variability of R2
oos values compared to those based on

Ridge. The variance of Lasso is pronounced, driven by a handful of extreme values; excluding

these, its R2
oos improves but remains notably low at -0.56%. Across all evaluated models,

the black market premium consistently emerges as the most influential variable in Figure 8,

aligning with the sole variable selected by Belloni et al. (2013b).

22Here R2
oos = 1−∑i∈OOS (yi − ŷi)2/

∑
i∈OOS (yi − ȳ)2, where ȳ is in-sample average of yi.

23We may also consider a benchmark model with GDP per capita in 1960 included, as predicted by theory.
Interestingly, mandating this variable’s inclusion reduces predictive performance in all models, resulting in
a negative R2

oos compared to a model with just an intercept.
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4.5 Micro 1: Crime Rates across US States

Our first microeconomic case revisits the study by Donohue and Levitt (2001), which in-

vestigates the impact of abortion legalization post-Roe vs. Wade on the decline in crime

rates. They analyze the change in log per-capita murder rates from 1986 to 1997 across 48

states, totaling 576 observations. Belloni et al. (2013a) expand this analysis by including a

broader set of 284 control variables, such as interactions and higher-order terms, to mitigate

potential confounders. They apply Lasso to select control variables, finding none selected.24

Similarly, Giannone et al. (2022) observe from their Bayesian analysis of this regression that

the posterior density is concentrated on very low probability values of the slab component,

which suggests that the regression model is sparse with high likelihood.

We employ the same benchmark model and sample splitting strategy outlined by Gi-

annone et al. (2022). For the initial estimation, we use data spanning from 1986 to 1989,

covering all states. Additionally, we incorporate data from a randomly selected 50% of the

states for the period from 1990 to 1997. The remaining 50% of the states from 1990 to 1997

are set aside for evaluating the model. This procedure is iterated 8 times, with each iteration

expanding the training sample to include one additional year of data, starting from 1990,

while correspondingly adjusting the evaluation sample.25 The entire sequence is carried out

13 times in total, yielding 104 distinct training and evaluation samples. We report the mean

and standard deviation of R2
ooss in Table 2.

Our findings reveal that NN(`2) exhibits a slight edge over Ridge, attaining a R2
oos of

0.49%, compared to Ridge’s 0.48%. Apart from these two models, all other models tested

demonstrate negative R2
oos values. Together, these results indicate an absence of strong

signals in the data. We interpret the scarcity of significant signals reported in the literature

as a result of their inherent weakness. Empirical evidence does not definitively categorize

the underlying DGP as either dense or sparse— rather, it may simply be that no individual

signals are particularly strong. Although a null model might initially seem appropriate, our

findings indicate that while individual signals may be weak, their combined predictive power

should not be overlooked. This is supported by Figure 8, which shows that both Ridge and

NN(`2) assign small weights to nearly all covariates.

24Belloni et al. (2013a) proposes a double-Lasso estimator to make inference on the effect of abortion on
murder rate. Part of their procedure involves a Lasso regression of murder rate on control variables. Notably,
they use differences as the dependent variable, but observe no substantial changes when using levels instead.

25Here and after, we calculate R2
oos in the same way as Finance 2 case.
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4.6 Micro 2: Eminent Domain and Economic Outcomes

In our final study, we consider a causal analysis pertinent to eminent domain. Previous

research by Chen and Yeh (2012), and subsequently Belloni et al. (2012), employ instrumental

variable regressions to understand the impact of eminent domain decisions on economic

outcomes. Differing from their broader focus, we closely follow Giannone et al. (2022),

focusing on the first stage of predicting pro-plaintiff decisions in takings law cases based

on judicial panel characteristics, using a dataset of 312 observations with 138 covariates.

Following their strategy, we train the model using data from 1979 to 1984 for all circuits,

supplemented with a random 50% of circuits’ data from 1985 to 2004. Performance is

evaluated on 1985 data from circuits excluded from training. This process is repeated 20

times, sequentially adding one year’s data to the training set and updating the evaluation set.

The procedure is independently repeated five times, yielding 20 × 5 = 100 unique training

and evaluation datasets.

We initially consider a benchmark model with only an intercept. In this setting, all ma-

chine learning methods successfully identify predictive signals and outperform this bench-

mark, as evidenced by large R2
ooss. RF performs best with an R2

oos of 27.69%, while other

models also perform well, except for GBRT. However, the scenario shifts markedly when

the benchmark is expanded to include a dummy variable for the absence of cases in a given

circuit-year and the number of takings appellate decisions, for a total of three covariates.

Against this expanded benchmark, the incremental predictive power of the remaining co-

variates drops sharply. Ridge’s R2
oos falls to 1.89%, RF to 2.86%, and NN(`2) to 1.11%,

while all other methods yield negative R2
oos values. Intriguingly, as highlighted in Figure 8,

these results seem to associate with the distinct approaches these methods take in weighting

covariates. Ridge, RF, and NN(`2) distribute small weights across covariates. Meanwhile,

NN(`1) also opts for a model with a considerable number of coefficients, resulting in a per-

formance that slightly surpasses both Lasso and GBRT, which favor more sparse models in

this case.

5 Conclusion

In this paper, we scrutinize the performance of machine learning techniques in contexts

characterized by low signal-to-noise ratios, a situation frequently observed in economics and

finance. Our theoretical analysis indicates that while Lasso is often considered a modern

alternative to traditional ordinary least squares, its application in these areas should be
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approached cautiously, primarily due to its lessened effectiveness with weak signals.

Our research complements and expands upon the arguments made by Giannone et al.

(2022), who cast doubt on the prevalence of sparsity in economic datasets. We take this

debate further by showing that it is signal weakness, not necessarily the absence of sparsity,

that more significantly contributes to the observed limitations of Lasso in economic applica-

tions. Furthermore, the lack of significant variables in empirical studies may be attributed

more to signal weakness than to the sparse nature of the underlying DGP.

Our analysis also reveals a marked difference in the performance of Ridge regression. No-

tably, Ridge demonstrates superior resilience and effectiveness in these environments. Our

theoretical findings are further substantiated by simulation studies encompassing a range of

advanced machine learning techniques, including trees and neural networks. These experi-

ments consistently reveal that algorithms designed to exploit sparsity tend to underperform

in environments where signals are inherently weak. Broadly, our findings emphasize the im-

portance of a nuanced, context-sensitive application of machine learning techniques, adapting

to the distinctive data characteristics encountered across various domains.
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A Mathematical Proofs

A.1 Proof of Theorem 1

Proof. Throughout the proof, we employ the shorthand notation “w.a.p.1” to denote “with

probability approaching one.” For two random variables X and Y , we write X ⊥ Y when

they are independent and X
d
= Y when they have the same distribution. For convenience,

we omit the subscript F from the expectation operator EF (·).
Our objective is to demonstrate that E‖Σ1/2

2 (E(β0|X, y)− β0)‖2/E‖Σ1/2
2 β0‖2 →

1, as n→∞. This can be shown by proving E‖Σ1/2
2 E(β0|X, y)‖2 = o(E‖Σ1/2

2 β0‖2). Given

that the eigenvalues of Σ2 are bounded away from zero and positive infinity, it suffices to

establish that E‖E(β0|X, y)‖2 = o(τ). Therefore, we need to prove for all 1 ≤ i ≤ p,

E(E(β0,i|X, y))2 = o(p−1τ), or, equivalently, E(E(b0,i|X, y))2 = o(1).

By the inequality E(E(A|F)2) ≤ E(E(A|G)2) for F ⊂ G, and that β0 is i.i.d., we have

E(E(b0,i|X, y))2 ≤ E(E(b0,i|X, y, β0,−i))
2 = E(E(b0,i|X·,i, β0,iΣ

−1/2
ε X·,i + z))2,

where z is defined in Assumption 2, X·,i represents the i-th column of X, and β0,−i de-

notes the subvector of β without the ith entry. Denote the information set generated by
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{X·,i, β0,iΣ
−1/2
ε X·,i + z} as Gi. By Assumption 3, b0,i can be written as q−1/2b1ib2i where

b1i ∼ B(1, q) and b2i is a sub-exponential random variable with mean zero and variance σ2
β,

whose distribution function is denoted by Fb2 . For any M1 < 0, find M2 (a function of

M1) such that Eb0,i1q1/2b0,i∈[M1,M2] = q1/2Eb2i1b2i∈[M1,M2] = 0. This is always feasible because

Eb2i = 0. By Cauchy-Schwarz inequality, we have

E(E(b0,i|Gi))2 ≤3E
(
E(b0,i1q1/2b0,i∈[M1,M2]|Gi)

)2
+ 3E

(
E(b0,i1q1/2b0,i>M2

|Gi)
)2

+ 3E
(
E(b0,i1q1/2b0,i<M1

|Gi)
)2

=: 3S1n + 3S2n + 3S3n. (21)

Lemma 13 proves that for any given M1, limn→∞ S1n = 0. Observe that S2n =

E
(
E(b0,i1q1/2b0,i>M2

|Gi)
)2 ≤ Eb2

0,i1q1/2b0,i>M2
. As a result, (21) implies

lim
n→∞

E(E(b0,i|Gi))2 ≤ 3Eb2
0,i1q1/2b0,i>M2

+ 3Eb2
0,i1q1/2b0,i<M1

= 3Eb2
2i1b2i>M2 + 3Eb2

2i1b2i<M1 .

Since b2i has finite variance, the right-hand-side of the above inequality can be arbitrarily

small by letting M1 → −∞, which completes the proof.

A.2 Proof of Theorem 2

Proof. For ease of notation, we let β̂ := β̂r(λn) and cn := p/n. Additionally, define δ∗1 :=

2
√
σ2
εθ1, δ∗2 := (2λσ2

xσ
2
βθ4 − 4σ2

εσ
2
xθ3)/δ∗1λ, µ(σxσβ, δ

∗
1, δ2) := (δ∗1δ2 − 2σ2

xσ
2
βθ4)/4σ2

εθ3, and

Cφ
n := cnτ

−1σ2
xσ

2
β − cnτ−1σ2

x(δ
∗
1)2(4λ)−1 + cnσ

2
εσ

4
xθ3λ

−2 − cnσ4
xσ

2
βθ4λ

−1.

We first show that it is sufficient to establish that

cnτ
−3/2(‖Σ1/2

2 (β̂ − β0)‖ − ‖Σ1/2
2 β0‖) P−→ α∗2 := θ2σ

3
x

(
σ2
εθ1

2λ2σβ
− σβ

λ

)
. (22)

This is because Eq. (22) implies that ‖Σ1/2
2 (β̂ − β0)‖2 = ‖Σ1/2

2 β0‖2 + 2c−1
n τ 3/2α∗2‖Σ1/2

2 β0‖ +

oP(c−1
n τ 2). Additionally, using Lemma 2 and q−1/2p−1/2 = o(1) by Assumption 4, we have

‖Σ1/2
2 β0‖ = τ 1/2σxσβ +OP(q−1/2p−1/2τ 1/2). (23)

The above two equations together yield the desired result of the theorem. To prove Eq. (22),

by incorporating (23) and cnq
−1/2p−1/2τ−1 = o(1) by Assumption 4, it reduces to

cnτ
−1(τ−1/2‖Σ1/2

2 (β̂ − β0)‖ − σxσβ)
P−→ α∗2. (24)
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Set w = τ−3/2Σ
1/2
2 (β − β0) and ŵ = τ−3/2Σ

1/2
2 (β̂ − β0). By Eq. (2), we have

ŵ = arg min
w

cn
n

∥∥∥τ 1/2Σ
1/2
1 Zw − τ−1ε

∥∥∥2

+ c2
nλ
∥∥∥Σ
−1/2
2 w + τ−3/2β0

∥∥∥2

− cnτ
−2

n
‖ε‖2 − Cφ

n , (25)

where subtracting cnτ
−2‖ε‖2/n and Cφ

n from the objective function does not alter the solu-

tion. Using the definition of ŵ, proving (24) is equivalent to proving cn‖ŵ‖− cnτ−1σxσβ
P−→

α∗2. Equivalently, we need to prove for all ε > 0, w.p.a.1,

α∗2 − ε ≤ cn‖ŵ‖ − cnτ−1σxσβ ≤ α∗2 + ε. (26)

Note that Eq. (25) is a high-dimensional optimization problem. By employing CGMT,

Lemma 14 connects it to a scalar optimization problem below:

min
cn|α−τ−1σxσβ |≤Kα

max
γ>0

0≤δ≤4τ−1
√
C1Cε

−cnδ
2

4
µn(α, δ) +

cn
n

(τ 1/2αg − τ−1Σ
−1/2
1 ε)>(Σ−1

1 − µn(α, δ)I)−1

× (τ 1/2αg − τ−1Σ
−1/2
1 ε)− cnγ

2
+
c2
nλ

2

4

(
τ−3/2Σ

1/2
2 β0 +

α2δτ 1/2

√
nγ

h

)>(
λ

4
Σ2 +

cnα
2λ2

2γ
I
)−1

×
(
τ−3/2Σ

1/2
2 β0 +

α2δτ 1/2

√
nγ

h

)
− cnτα

2δ2

2γn
‖h‖2 − cnτ

−2

n
‖ε‖2 − Cφ

n , (27)

where Kα is a sufficiently large fixed constant, µn is defined in Eq. (B9), and g ∈ Rn and

h ∈ Rp are standard Gaussian vectors independent of the other random variables. Denote

the objective function as Qn(α, δ, γ). Let us define γ = τ−1γ1, δ = τ−1δ∗1 + δ∗2 + c
−1/2
n δ3 and

α = τ−1σxσβ+c−1
n α2. Subsequently, we present the modified objective function Q̃n(α2, δ3, γ1):

Q̃n(α2, δ3, γ1) := Qn(τ−1σxσβ + c−1
n α2, τ

−1δ∗1 + δ∗2 + c−1/2
n δ3, τ

−1γ1). (28)

By Lemma 14, Qn(α, δ, γ) is convex with respect to α and jointly concave with respect to

(δ, γ). Therefore, it is evident that Q̃n remains convex with respect to α2 and jointly concave

with respect to (δ3, γ1). Lemma 14 implies that if the following claims hold

(i) ∀ compact A ⊂ [−Kα, Kα], min
α2∈A

max
γ1>0
δ3∈Kδ3

Q̃n(α2, δ3, γ1)
P−→ min

α2∈A
max
γ1>0
δ3∈R

Q̃(α2, δ3, γ1),

(ii) min
α2∈[−Kα,Kα]

max
γ1>0
δ3∈Kδ3

Q̃(α2, δ3, γ1) < min
α2∈[−Kα,α∗2−ε]∪[α∗2+ε,Kα]

max
γ1>0
δ3∈R

Q̃(α2, δ3, γ1) (29)
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where Q̃(α2, δ3, γ1) := − δ23θ1
4θ3

+2σxσβα2− γ21
4σ2
xσ

2
βλ
θ2− γ1α2

σxσβ
+

(δ∗1)2γ1
8λ2σ2

xσ
2
β
θ2 and Kδ3 := [−c1/2

n (τ−1δ∗1 +

δ∗2), 4c
1/2
n τ−1

√
C1Cε − c1/2

n (τ−1δ∗1 + δ∗2)], then Eq. (26) holds. The above two conditions are

verified in Lemma 18, thereby completing the proof.

A.3 Proof of Theorem 3

Proof. For convenience, we define the shorthand notation β̂iλn := β̂ir(λn). Also, we define

R̂K−CV (λn) := 1
n

∑K
i=1 ‖y(i) −X(i)β̂

i
r(λn)‖2. By Lemmas 2, 3 and 6, w.p.a.1, we have

n−1‖X>(−i)X(−i)‖ ≤ n−1C2‖Z>(−i)Z(−i)‖ ≤ C2(1 +
√
cn)2, i = 1, . . . , K, (30)

n−1‖ε‖2 ≤ 2σ2
ε and n−1‖y‖2 ≤ 2σ2

ε . (31)

Based on these inequalities, Lemma 19 proves

inf
λ∈[ε,c̃τ−1]

pn−1τ−2

{
R̂K−CV (λ)− 1

n
‖ε‖2 − ‖Σ1/2

2 β0‖2

}
> 0, (32)

w.p.a.1 for some constant c̃ > 0. Additionally, for any fixed λ > 0, Lemma 19 also proves

pn−1τ−2

{
R̂K−CV (τ−1λ)− 1

n
‖ε‖2 − ‖Σ1/2

2 β0‖2

}
P−→ 2(K − 1)

K
θ2σ

4
x

(
σ2
ε

2λ2
−
σ2
β

λ

)
. (33)

Using (33) and λopt’s definition, pn−1τ−2
{
R̂K−CV (τ−1λopt)− 1

n
‖ε‖2 − ‖Σ1/2

2 β0‖2
}
< 0. To-

gether with Eq. (32), the minimizer of R̂K−CV (λ) must satisfy λ̂K−CVn ≥ c̃τ−1, w.a.p.1,

so that, λ̂K−CVn = arg minλn∈[c̃τ−1,∞) R̂
K−CV (λn). Moreover, it also implies that τ−1λopt /∈

[ε, c̃τ−1], that is, λopt ≥ c̃.

Next, we re-parametrize the above optimization problem: µ̃ = arg minµ∈[0,c̃−1] R̃(µ),

where R̃(µ) := R̂K−CV (τ−1µ−1), and we extend the domain of R̃(·) to include 0:

R̃(0) := limµ→0 R̃(µ) = ‖y‖2/n. Lemma 20 implies that pn−1τ−2R̃(µ) satisfies stochas-

tic equicontinuity. Using this fact and Theorem 1 of Newey (1991), the convergence of

pn−1τ−2
{
R̃(µ)− 1

n
‖ε‖2 − ‖Σ1/2

2 β0‖2
}

P−→ 2(K−1)
K

θ2σ
4
x

(
σ2
εµ

2

2
− σ2

βµ
)

holds uniformly over

the interval [0, c̃−1]. Since (λopt)−1 is a unique minimizer of the right-hand-side and is

nonzero, it follows that µ̃
P−→ (λopt)−1 and µ̃ = τ−1(λ̂K−CVn )−1, w.a.p.1, which implies

that λ̂K−CVn /λoptn
P−→ 1.

Now we prove ∆(β̂r(λ̂
K−CV
n )) − ∆(β̂r(λ

opt
n ))

P−→ 0. For notational simplicity, we write

β̂r(λ̂
K−CV
n ) as β̂cv and β̂r(λ

opt
n ) as β̂opt. We need to prove cnτ

−2(‖Σ1/2
2 (β̂cv−β0)‖2−‖Σ1/2

2 (β̂opt−
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β0)‖2) = oP(1). By direct calculation, we have

cnτ
−2
(
‖Σ1/2

2 (β̂cv − β0)‖2 − ‖Σ1/2
2 (β̂opt − β0)‖2

)
=cnτ

−2
(
β̂>cvΣ2β̂cv − β̂>optΣ2β̂opt + 2(β̂opt − β̂cv)>Σ2β0

)
(34)

=cnτ
−2
(
(β̂cv − β̂opt)>Σ2β̂cv + β̂>optΣ2(β̂cv − β̂opt) + 2(β̂opt − β̂cv)>Σ2β0

)
=: A1 + A2 + A3.

Lemma 21 proves that these terms converge to zero w.p.a.1, which completes the proof.

A.4 Proof of Theorem 4

Proof. For ease of notation, we let β̂ := β̂l(λn). We adopt the same notation δ∗1 and

µ(σxσβ, δ
∗
1, δ2) as used in the proof of Theorem 2. Moreover, we define δ∗2 = 2σ2

xσ
2
βθ4/δ

∗
1

and Cφ
n = cnτ

−1σ2
xσ

2
β, respectively. Similar to Theorem 2, it is essential to establish that the

following inequality holds w.a.p.1 for any sufficiently small ε > 0:

cα
2σβ

+ ε ≤ cnτ
−1(τ−1/2‖Σ1/2

2 (β̂ − β0)‖ − σxσβ) ≤ Cα
2σβ
− ε. (35)

Define w = τ−3/2Σ
1/2
2 (β − β0). Using this, we can rewrite (3) as the following problem:

ŵ = arg min
w

cn
n
‖τ 1/2Σ

1/2
1 Zw − τ−1ε‖2 +

cnτ
−1/2λn√
n

‖Σ−1/2
2 w + τ−3/2β0‖1 −

cnτ
−2

n
‖ε‖2 − Cφ

n .

By CGMT, Lemma 22 establishes its connection with the following optimization problem:

min
α∈Kα

max
γ>0

0≤δ≤4τ−1
√
C1Cε

−cnδ
2

4
µn(α, δ) +

cn
n

(τ 1/2αg − τ−1Σ
−1/2
1 ε)>(Σ−1

1 − µn(α, δ)I)−1

× (τ 1/2αg − τ−1Σ
−1/2
1 ε)− cnγ

2
+
cnγτ

−3

2α2
β0Σ2β0 +

cnτ
−1δ√
n

h>Σ
1/2
2 β0 (36)

− min
‖v‖∞≤1

cnα
2

2γ

∥∥∥n−1/2τ−1/2λnΣ
−1/2
2 v − n−1/2τ 1/2δh− γ

α2
τ−3/2Σ

1/2
2 β0

∥∥∥2

− cnτ
−2

n
‖ε‖2 − Cφ

n ,

where Kα := {α|cnα− cnτ−1σxσβ ∈ [cα/4σβ, Cα/σβ]}, µn is defined in Eq. (B9), and g ∈ Rn

and h ∈ Rp are standard Gaussian vectors independent of the other random variables.

Denote the objective function as Qn(α, δ, γ). Similar to Theorem 2, we define γ = τ−1γ1,

δ = τ−1δ∗1 +δ∗2 +c
−1/2
n δ3, and α = τ−1σxσβ+c−1

n α2, obtaining the modified objective function:

Q̃n(α2, δ3, γ1) := Qn(τ−1σxσβ + c−1
n α2, τ

−1δ∗1 + δ∗2 + c−1/2
n δ3, τ

−1γ1). (37)
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Note that δ3 ∈ Kδ3 := [−c1/2
n (τ−1δ∗1 + δ∗2), 4c

1/2
n τ−1

√
C1Cε − c

1/2
n (τ−1δ∗1 + δ∗2)]. Lemma 22

implies that if the following inequalities

min
α2∈[ cα

4σβ
,Cα
σβ

]
max
γ1>0
δ3∈Kδ3

Q̃n(α2, δ3, γ1) < − Cλ
8C2

+ η,

min
α2∈[ cα

4σβ
, cα
2σβ

+ε]∪[ Cα
2σβ
−ε,Cα

σβ
]

max
γ1>0
δ3∈Kδ3

Q̃n(α2, δ3, γ1) > − Cλ
100C2

− η, (38)

hold for sufficiently small ε > 0 and η > 0, then Eq. (35) holds. Finally, Lemma 24 verifies

Eq. (38), thereby completing the proof.

A.5 Proof of Proposition 1

Proof. Since the out-of-sample data are mutually independent, Lemmas 2 and 3 lead

to
∑

i∈OOS y
2
i = noos(σ

2
ε + τσ2

xσ
2
β) + oP(noosτ) and

∑
i∈OOS y

2
i − (yi − Xiβ̂r(λ

opt
n ))2 =

noosp
−1nτ 2θ2σ

4
xσ

4
βσ
−2
ε (1 + oP(1)), where we use ∆(β̂r(λ

opt
n )) = −θ2σ

4
xσ

4
βσ
−2
ε + oP(1) by The-

orem 2 and noosp
−2n2τ 2 → ∞. The estimates above offer the key components for deriving

the limit of R2
oos:

R2
oos =

( ∑
i∈OOS

y2
i − (yi −Xiβ̂r(λ

opt
n ))2

)( ∑
i∈OOS

y2
i

)−1

= p−1nθ2(R2)2(1 + oP(1)).

A.6 Proof of Theorem 5

Proof. For convenience, let β̂ := β̂r(λn). We write the prediction error of the benchmark as:

ynew − ŷnewb =(wnew)>γ0 + (xnew)>β0 + εnew − (wnew)>(W>W )−1W>(Wγ0 +Xβ0 + ε)

=((unew)> − (wnew)>(W>W )−1W>U)β0 + (εnew − (wnew)>(W>W )−1W>ε).

Similarly, for the Ridge estimator, we have

ynew − ŷnew = ((unew)> − (wnew)>(W>W )−1W>U)(β0 − β̂) + (εnew − (wnew)>(W>W )−1W>ε).

As a result, with simple algebra we can rewrite E [(ynew − ŷnew)2|I]−E [(ynew − ŷnewb )2|I] as

E
[(

(unew)> − (wnew)>(W>W )−1W>U)(β0 − β̂)
)2

|I
]

46



− E
[(

(unew)> − (wnew)>(W>W )−1W>U)β0

)2 |I
]

− 2E
[
((unew)> − (wnew)>(W>W )−1W>U)β̂(εnew − (wnew)>(W>W )−1W>ε)|I

]
:=S1 − S2 − S3.

Below we analyze S1 to S3 one by one. With respect to S1, we note that β̂ =

n−1(n−1X>MWX + n−1pτ−1λI)−1X>MW (Uβ0 + ε). Define RX = (n−1X>MWX +

n−1pτ−1λI)−1. By direct calculations, we have

E
[
((wnew)>(W>W )−1W>Uβ̂)2|I

]
� ‖(W>W )−1W>Uβ̂‖2

≤2n−2‖(W>W )−1W>URXX
>MWUβ0‖2 + 2n−2‖(W>W )−1W>URXX

>MW ε‖2. (39)

For the second term in (39), we first note that for any constant λ > 0,

‖RXX
>MWXRX‖ = ‖RUU

>MWURU‖ =
nλ1(n−1U>MWU)

(λ1(n−1U>MWU) + n−1pτ−1λ)2
�P p

−1n2τ 2,

since ‖n−1U>MWU‖ .P n−1 ‖U‖2 .P 1 + cn = o(n−1pτ−1) by Lemma 6. Therefore, by

Lemma 2 and using inequality Tr(AB) ≤ ‖A‖Tr(B), for any A = A> and B ≥ 0, we have

n−2‖(W>W )−1W>URXX
>MW ε‖2

�Pn
−2 Tr((W>W )−1W>URXX

>MWXRXU
>W (W>W )−1)

=n−2 Tr(RXX
>MWXRXU

>W (W>W )−2W>U)

≤n−2‖RXX
>MWXRX‖Tr(U>W (W>W )−2W>U)

.Pp
−1τ 2 Tr(U>W (W>W )−2W>U) ≤ p−1τ 2‖U>U‖Tr((W>W )−1) = oP(p−1nτ 3).

Similarly, we can prove that the first term in (39) is of order oP(p−1nτ 3). Therefore, we have

E
[
((wnew)>(W>W )−1W>Uβ̂)2|I

]
= oP(p−1nτ 3). (40)

In addition, using the independence of wnew with W , U , I, and β0, the facts that wnew

has bounded variance, ‖(W>W )−1W>Σ
1/2
1 x‖2 �P ‖(W>W )−1W>Σ

1/2
1 ‖2

F by Lemma 2,

Tr(W>W )−1 = oP(p−1nτ), and that ‖Σ1/2
2 β0‖2 �P τ ,

E
[
((wnew)>(W>W )−1W>Uβ0)2|I

]
� ‖(W>W )−1W>Uβ0‖2 = ‖(W>W )−1W>Σ

1/2
1 ZΣ

1/2
2 β0‖2
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�P ‖Σ1/2
2 β0‖2‖(W>W )−1W>Σ

1/2
1 ‖2

F �P oP(p−1nτ 2). (41)

With (40) and (41), E
[
((wnew)>(W>W )−1W>U(β0 − β̂))2|I

]
= oP(p−1nτ 2). In

addition, since unew is independent of I and wnew, we have E[(unew)>((β0 −
β̂)((wnew)>(W>W )−1W>U(β0 − β̂)|I] = 0. Therefore, we conclude

S1 = E
[
((unew)>(β0 − β̂))2|I

]
+ oP(p−1nτ 2) = ‖Σ1/2

2 (β0 − β̂)‖2 + oP(p−1nτ 2).

By applying a similar argument, with the use of the independence of wnew with W , U , I,

and β0, as well as the fact that wnew has bounded variance, it can be shown that

S2 = E
[
((unew)>β0)2|I

]
+ oP(p−1nτ 2) = ‖Σ1/2

2 β0‖2 + oP(p−1nτ 2).

Finally we bound S3. Since unew and εnew are mean zero, mutually independent, and inde-

pendent of I, along with Eq. (40), Lemma 2 and Cauchy-Schwartz inequality, we have

|S3| =
∣∣∣2E [(wnew)>(W>W )−1W>Uβ̂(wnew)>(W>W )−1W>ε|I

] ∣∣∣
≤ 2

(
E
[
((wnew)>(W>W )−1W>Uβ̂)2|I

])1/2 (
E
[
((wnew)>(W>W )−1W>ε)2|I

])1/2

�P oP(p−1/2n1/2τ 3/2)(Tr(W (W>W )−2W>))1/2 = oP(p−1nτ 2).

In sum, we have S1 − S2 − S3 = ‖Σ1/2
2 (β0 − β̂)‖2 − ‖Σ1/2

2 β0‖2 + oP(p−1nτ 2). Next we prove,

pn−1τ−2(‖Σ1/2
2 (β̂ − β0)‖2 − ‖Σ1/2

2 β0‖2)
P−→ α∗. (42)

By Theorem 2, β̃ := n−1R̃UU
>(Uβ0 + ε) satisfies (42) with β̂ being replaced by β̃, where

R̃U := (n−1U>U+n−1pτ−1λI)−1. Given that ‖Σ1/2
2 (β0− β̂)‖2 = ‖Σ1/2

2 (β0− β̃)+Σ
1/2
2 (β̂− β̃)‖2

and that ‖Σ1/2
2 (β0 − β̃)‖ �P ‖Σ1/2

2 β0‖ �P τ
1/2, it is easy to verify that (42) follows from

‖β̂ − β̃‖2 = o(n2p−2τ 3), (43)

which is given by Lemma 26.

A.7 Proof of Proposition 2

Proof. Let τ0 =
√
nτ ≤ √log n/10 and λ0 =

√
nλ/2. Note that when X = I, Lasso has a

closed form solution β̂l(λ) = ((|ε1 + τ0| − λ0)+sgn(ε1 + τ0), (|ε2| − λ0)+sgn(ε2), . . . , (|εn| −
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λ0)+sgn(εn))>. Therefore, ‖β̂l(λ)− β0‖2−‖β0‖2 = ((|ε1 + τ0| − λ0)+− τ0)2− τ 2
0 +

n∑
i=2

((|εi| −
λ0)+)2. Assume for now that max

1≤i≤n
|εi| ≥ |ε1|+ 2τ0. Let i0 = arg max |εi|, then we have

‖β̂l(λ)− β0‖2 − ‖β0‖2 ≥((|ε1 + τ0| − λ0)+ − τ0)2 − τ 2
0 + ((|εi0| − λ0)+)2 := Q

Consider the following three cases for ε1: (i) ε1 ∈ [−λ0−τ0, λ0−τ0]: Q = 0+((|εi0|−λ0)+)2 ≥
0; (ii) ε1 ∈ (−∞,−λ0 − τ0): Q ≥ −τ 2

0 + ((|ε1| + 2τ0 − λ0)+)2 ≥ −τ 2
0 + 9τ 2

0 ≥ 0;(iii)

ε1 ∈ (λ0 − τ0,∞): Q ≥ −τ 2
0 + ((|ε1| + 2τ0 − λ0)+)2 ≥ −τ 2

0 + τ 2
0 = 0. Therefore, under the

event that max
1≤i≤n

|εi| ≥ |ε1| + 2τ0, it holds that ‖β̂l(λ) − β0‖2 − ‖β0‖2 ≥ 0. Now we evaluate

the probability of this event. Note that

P( max
1≤i≤n

|εi| ≤ u) = (P(|εi| ≤ u))n =

(
erf

(
u√
2

))n
≤ exp

{
−n

2
exp

{
− 2

π
u2

}}
,

where erf(·) represents the Gauss error function. The last inequality uses the fact that

(erf(x))2 ≤ 1 − exp(−4x2/π) and 1 + x ≤ ex. Reparametrizing u in terms of δ by solving

δ = exp
{
−n

2
exp

{
− 2
π
u2
}}

, we obtain that, with probability at least 1− δ:

max
1≤i≤n

|εi| ≥
√
π

2
log

n

2
− π

2
log log

1

δ
. (44)

Choosing δ = n−1, the event C =
{

max1≤i≤n |εi| ≥
√

π
2

log n
2
− π

2
log log n

}
happens with

probability at least 1− n−1. Setting u =
√

π
2

log n
2
− π

2
log log n− 2τ0. There exists n0 ∈ N,

when n ≥ n0, u ≥ √1.7 log n− 0.2
√

log n ≥ √log n. By Mills’ inequalities, when n ≥ n0,

P
(

max
1≤i≤n

|εi| − 2τ0 ≥ |ε1|
∣∣∣C) ≥ P

(
|ε1| ≤

√
π

2
log

n

2
− π

2
log log n− 2τ0

)
=P (|ε1| ≤ u) ≥ 1−

√
2

π

exp (−u2/2)

u
≥ 1−

√
2

π log n
n−1/2.

There exists n1 ≥ 1, when n ≥ n1, (1−
√

2
π logn

n−1/2)(1− 1
n
) ≥ 1− n−1/2. Therefore,

P
(

max
1≤i≤n

|εi| − 2τ0 ≥ |ε1|
)
≥ P(C) · P

(
max
1≤i≤n

|εi| − 2τ0 ≥ |ε1|
∣∣∣C) ≥ 1− n−1/2,

for n ≥ max(n0, n1), which implies Eq. (18). For Ridge, since β̂r(λ) = (1 + nλ)−1y, we have
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‖β̂r(λ)− β0‖2 − ‖β0‖2 =
−2nλε1τ0 − (1 + 2nλ)τ 2

0 +
∑n

i=1 ε
2
i

(1 + nλ)2
.

Observe that with probability equal to 0.5, ε1τ0 ≥ 0. Under this event, ‖β̂r(λ) − β0‖2 −
‖β0‖2 ≤ −(1+2nλ)τ20 +

∑n
i=1 ε

2
i

(1+nλ)2
. Therefore, ‖β̂r(λ)−β0‖2−‖β0‖2 < 0 as long as λ > (2n)−1(−1 +

τ−2
0

∑n
i=1 ε

2
i ).
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Abstract

Appendix A presents additional results from Monte Carlo simulations. Appendix B

discusses the selection of tuning parameters. Appendix C is devoted to the exposition

of technical lemmas along with their corresponding proofs.

A Supplemental Simulation Results

A.1 Additional Simulations with Fixed Tunings

In the simulation for the main paper, cross-validation is applied for Ridge and Lasso. In

this section, we verify our theories with manually selected λn. We also experiment with two

sample sizes, n = 500 and n = 2, 500, while maintaining p/n = 3/5. We fix q = 0.2 and

R2 = 5%. In the case of Ridge regression, we set λ as 0.5, 1 and 2, where λ = 1 corresponding

to the optimal tuning. The histograms of relative prediction error are presented in Figure

A1.

Several noteworthy observations can be made from these histograms. First, across all

plots, the probability mass is concentrated around the red vertical line. As the sample size

increases from 500 to 2,500 (and dimension increases from 300 to 1,500), the histograms

become increasingly concentrated. This aligns with our theory, which predicts that the

∗Address: 5807 S Woodlawn Avenue, Chicago, IL 60637 USA. Email: zshen10@chicagobooth.edu.
†Address: 5807 S Woodlawn Avenue, Chicago, IL 60637, USA. Email: dacheng.xiu@chicagobooth.edu.
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Figure A1: Simulation Results for Ridge with Fixed Tuning Parameters
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Note: The histograms depict the relative prediction error ∆(β̂r(λn)) following equation (8) across 1, 000

Monte Carlo samples. We consider two different sample sizes (n = 500 and n = 2, 500) and examine three

different values of λ, where λ = 0.5, 1, and 2. Notably, λ = 1 represents the optimal tuning parameter. The

red dashed line indicates the values of α∗.

relative prediction error converges in probability to the limit α∗ as the sample size grows.

Second, the value of α∗ corresponding to the optimal tuning parameter λ = 1 is the smallest.

This is because the optimal Ridge estimator achieves the smallest prediction error. Moreover,

almost all the probability mass corresponding to the optimal Ridge estimator is situated on

the negative side of the x-axis, indicating that this estimator outperforms the zero estimator

with high probability. Third, when λ = 0.5, it results in the worst performance, with a large

portion of the probability mass on the positive side of zero. In contrast, for λ = 2, α∗ gets

closer to zero, and the variance of the relative prediction error decreases. This behavior is

due to the increasing amount of penalization, which ultimately drives the estimator towards

zero, and in turn, α∗ towards zero as well.

In contrast to the results obtained for Ridge regression, our theoretical framework does

not provide a precise error limit for Lasso. Instead, Theorem 4 offers high probability bounds

on relative prediction errors. Figure A2 displays histograms of these errors for various tuning

parameters and sample sizes, accompanied by two red vertical lines in each plot representing

the lower and upper bounds, cα and Cα.

These plots yield several interesting findings. First, as the sample size increases, we

observe that the probability mass becomes more concentrated and largely falls within the

intervals defined by the bounds. Second, regardless of the tuning parameter values, Lasso
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Figure A2: Simulation Results for Lasso with Fixed Tuning Parameters
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Note: The histograms depict the relative prediction error ∆(β̂l(λn)) following equation (8) across 1, 000

Monte Carlo samples. We consider two different sample sizes (n = 500 and n = 2, 500) and examine three

different values of Cλ. The two dashed lines in each figure indicate the values of cα and Cα that are solutions

to (10).

consistently underperforms the zero estimator in almost all samples when the sample size is

large. Third, as the tuning parameter increases (indicated by a decrease in Cλ), both the

lower and upper bounds approach zero. This behavior is a consequence of the increased

regularization, which, in turn, steers the estimator closer to zero. In the end, Lasso becomes

identical to the zero estimator.

A.2 Out-of-sample R2

Continuing our investigation in the main text, we conduct an experiment to analyze R2
oos

based on the optimal Ridge. Proposition 1 describes the expected asymptotic behavior of

R2
oos. To empirically test this, we implement the optimal Ridge, setting λ = 1, on a training

dataset comprising n = 500 observations. We then calculate R2
oos based on predictions for a

separate test dataset of size noos = 10, 000. The comparative analysis between the population

R2, the empirically estimated R2
oos, and the theoretically derived limit of R2

oos is illustrated

in Figure A3. For a clearer visual presentation, we apply a logarithmic transformation

to the y-axis. We vary τ to compare against a range of population R2 values from 0.5%

to 10% on the x-axis. The red line represents the average R2
oos over 1, 000 Monte Carlo

simulations. Additionally, we draw boxplots to describe the distributions of R2
oos across

these simulations. The theoretical limit, expressed as p−1nθ2(R2)2, is traced by the blue
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line, and the green line illustrates the population R2, which would align with a 45-degree

line on a standard scale. Notably, in this weak signal setting, the population R2 significantly

surpasses the empirically achievable R2
oos. Furthermore, the close alignment between the red

and blue lines, particularly for scenarios with small R2 values, substantiates our theoretical

predictions.

Figure A3: Out-of-Sample R2 for Optimal Ridge in Linear DGPs
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Note: The figure presents boxplots showing the distributions of R2
oos for optimal Ridge regression (λ = 1)

over 1, 000 Monte Carlo repetitions, with n = 500, p = 300, q = 0.2, and noos = 10, 000. We explore a

range of population R2 values, from 0.5% to 10% in increments of 0.5% by adjusting τ . The plot features

red, blue, and green lines to represent the average R2
oos over Monte Carlo samples, the theoretical limit as

given by Proposition 1, and the population R2. In this plot, we employ a logarithmic scale for the y-axis.

Without the logarithmic transformation, the green line would align with a 45-degree line. Additionally, the

lower boundaries of the boxplots surpass the axis limits in instances where the R2
oos values are negative.

A.3 Why Lasso Fails?

A plausible explanation for the Lasso’s suboptimal performance with weak signals is its diffi-

culty in distinguishing between genuine and spurious signals. The failure to identify genuine

weak signals has a minor impact on Lasso’s performance relative to the zero estimator, which

does not utilize any true signals. Hence, the primary challenge for the Lasso lies in its failure

to adequately filter out irrelevant signals. This issue could be addressed with a sufficiently

large tuning parameter. However, our theory indicates that only when the penalty is so

substantial that the Lasso effectively becomes equivalent to the zero estimator does it apply

an adequate penalty.

To empirically explore this issue, we quantify Type I and Type II errors in simulations

of Lasso’s selection relative to its tuning parameter λn. The findings are presented in Figure
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A4. Considering our previous discussion, Type I errors represent a significant cost for Lasso.

Indeed, a considerable portion of the variables selected by Lasso are incorrectly deemed

genuine when λn is small. As λn increases, Type I errors decrease, enhancing Lasso’s perfor-

mance. Meanwhile, Type II errors persist and eventually converge to the number of non-zero

betas in the DGP.

Figure A4: Lasso’s Type I and Type II Errors
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Note: The plots compare average Type I and Type II errors of Lasso using the linear DGP following equation
(1) over 1, 000 Monte Carlo samples. Two population R2 are considered: R2 = 5% (left panel) and R2 = 50%
(right panel). The horizontal axis of each plot represents the logarithm of λn, spanning a range from 0 to 1.
The vertical axis measures the count of errors incurred while testing the null hypothesis H0,i : βi = 0.

A.4 Robustness Check

In our subsequent series of experiments, we intentionally deviate from the assumptions orig-

inally established during the development of our theoretical framework. This deviation is

aimed at evaluating the robustness and generalizability of our theoretical predictions beyond

their premises and initial parameters. To facilitate this evaluation, we introduce specific mod-

ifications to the baseline configuration along three key dimensions: First, we adjust (R2, q),

exploring more extreme sparsity levels and reducing signal strength accordingly compared

to the settings in the main text. Second, we increase the ratio p/n to 2 by increasing p

while maintaining n, making it more challenging for both Ridge and Lasso to capture the

underlying signals. Third, we modify the distribution of Z from standard Gaussian to a t-

distribution characterized by four degrees of freedom, and with a mean of zero and a variance

of one. In addition, we introduce heteroscedasticity into the error distribution, following the

configuration outlined by Giannone et al. (2022). The error term’s variance is defined by

the function σ2 exp(αX>i δ/
√∑n

i=1(X>i δ)
2/n) with α = 0.5. Here, Xi represents the i-th row

of X. σ serves as a scaling parameter to standardize the variance and match σ2
ε = 1. The
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vector δ is a p × 1 vector with zero elements in the same positions as the zero elements of

β0, while non-zero elements are drawn from a standard Gaussian distribution.

Table A1 compare the summary statistics for various cases under consideration. In Case

I, when q is small, the performance of the Lasso estimator improves relative to the baseline

scenario (reproduced from Table 1 for ease of comparison). This improvement is evident at

R2 = 5% for all levels of q, as the Q1 values become negative, indicating that Lasso surpasses

zero in predictive accuracy for a larger proportion of Monte Carlo repetitions. However, as

R2 is further reduced to 2%, Lasso once again becomes falls below the performance of zero.

In contrast, Ridge’s performance remains largely unaffected by changes in sparsity levels. As

expected, its performance deteriorates in finite samples as the signal strength weakens (i.e.,

as R2 decreases). Nonetheless, Ridge continues to outperform Lasso, although its relative

advantage over the zero estimator diminishes. The theoretical support for these observations

is discussed in Section 2.9. In Case II, we observe the increased ratio of p/n does not affect

our conclusion. Case III demonstrates the robustness of our theoretical findings, as it aligns

closely with the baseline scenario despite variations in distributional assumptions.

Table A1: Robustness Analysis of Ridge and Lasso in Alternative DGPs

Lasso Ridge
q R2 (%) Q1 Q2 Q3 #Zero Q1 Q2 Q3 #Zero

0.20 5% -0.127 0.000 0.521 360 -0.992 -0.501 -0.129 97
0.10 5% -0.871 0.000 0.187 327 -0.981 -0.475 -0.077 113
0.10 2% 0.000 0.000 3.435 493 -0.622 0.000 0.440 237

Case I 0.05 5% -2.688 -0.305 0.000 255 -1.037 -0.387 0.000 130
0.05 2% 0.000 0.000 2.948 473 -0.642 0.000 0.426 238
0.02 5% -6.542 -2.050 0.000 215 -1.304 -0.230 0.000 149
0.02 2% 0.000 0.000 1.695 432 -0.605 0.000 0.625 254

Case II 0.20 5% 0.000 0.000 3.228 470 -0.768 -0.416 0.000 183
Case III 0.20 5% 0.000 0.000 0.591 392 -0.848 -0.384 0.000 129

Note: The table illustrate the summary statistics of relative prediction error ∆(β̂(λ̂K−CVn )) for Ridge and

Lasso based on 1,000 Monte Carlo samples. We explore several distinct DGPs, each involving the alteration

of a specific condition. In Case I, we try a series of different values of R2 and q. In Case II, we adjust n/p

to 0.5. In Case III, we introduce t-distributed covariates with heterogeneous variance of ε. The benchmark

DGP adheres to the following specifications: n = 500, p = 300, p/n = 3/5, and complies with Assumptions

1 and 2. 10-fold cross-validation is used throughout these experiments.

B Choice of Tuning Parameters

In this section, we discuss the selection of tuning parameters for implementing machine

learning methods. The selection process aims to balance performance and cost while ensuring
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fair method comparisons.

For Ridge and Lasso, each with one tuning parameter, we use the glmnet package, which

optimizes it via ten-fold CV. The grid is adaptively selected for efficiency. Our implementa-

tion of RF involves three tuning parameters: the depth of each individual tree, the number

of randomly selected features used in each tree split, and the proportion of sample data used

for bootstrap.1 2 For GBRT, we tune tree depth, number of trees, and learning rate.3 In

the case of NNs, we adhere to a uniform architectural choice across our analyses, featuring

a single hidden layer. The number of neurons in this hidden layer is approximately equal to

the square root of the total number of neurons in the input layer, aligning the architecture

with the complexity and dimensions of the dataset. By not tuning the NN architecture ex-

tensively, we streamline the model selection process while retaining adequate complexity for

effective learning. For the remaining tuning parameters in trees and NNs, we select suitable

ranges based on model performance from the cross-validation step. A critical element in

selecting our grid is to ensure that the optimal tuning parameters are situated within the

median range of the grid. The details regarding model configuration and tuning parameters

for empirical studies are provided in Table B2.4

C Technical Lemmas and Their Proofs

For completeness, the following section introduces a collection of lemmas, including proofs

for some. We start with the Convex Gaussian Min-max Theorem (CGMT), a pivotal the-

orem to our proof. For a detailed exposition of its proof, we direct readers to the work of

Thrampoulidis et al. (2015). The CGMT pertains to the following optimization problems:

Φ(G) := min
w∈Sw

max
u∈Su

u>Gw + ψ(w, u), and φ(g, h) := min
w∈Sw

max
u∈Su
‖w‖g>u− ‖u‖h>w + ψ(w, u),

where G ∈ Rm×n, g ∈ Rm, h ∈ Rn,Sw ⊂ Rn,Su ⊂ Rm, and ψ : Rn × Rm → R.

1This procedure is known as subbagging, which helps address weak signals. In linear regressions, LeJeune
et al. (2020) show that the asymptotic risk of subbagging least squares matches that of Ridge regression.

2In our simulations, tree depth varies from 5 to 20, selected features from 10 to 300, and bootstrap sample
proportion from 0.1 to 0.2. The RF ensemble size is fixed at 5,000 trees, as 10,000 offers no significant
improvement.

3The learning rate varies from 0.001 to 0.5, tree depth from 1 to 6, and the maximum number of trees is
100, though training usually stops earlier, reflecting GBRT’s preference for shallower and fewer trees.

4We follow the same approach for the empirical analysis, except for Finance 2. Due to its scale and
computational constraints, we use two-fold CV and a narrower grid: log(λ) ranges from 6 to 7 for Ridge and
from -3.5 to -2.5 for Lasso. We ensure that the optimal tuning parameters fall within the central range of
these specified grids.
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Table B2: Model Configuration for Machine Learning Methods

RF GBRT NN(`2) NN(`1)

depth=1∼20 depth=1∼5 architecture∼{16,4,1} architecture∼{16,4,1}
#trees=500 #trees=1∼10 batch size=16 batch size=16

Finance 1 #features=1∼15 lr ∈ {0.01,0.02, (lr,epochs)={(0.1,5), (lr,epochs)={(0.4,1),
%samples=0.05∼1 0.05,0.1,0.2,0.5,1} (0.01,50), (0.0025,200)} (0.08,5), (0.02,20)}

log(λ) ∈ [−2, 1] log(λ) ∈ [−2, 1]
depth=2∼12 depth=1∼6 architecture∼{920,32,1} architecture∼{920,32,1}
#trees=500 #trees=10∼400 batch size=10000 batch size=10000

Finance 2 #features ∈ {1, lr ∈ {0.0001,0.001, (lr,epochs)={(0.5,2), (lr,epochs)={(0.5,2),
2,3,5} 0.01,0.02,0.05} (0.1,10), (0.067,15)} (0.2,5), (0.067,15),
%samples=0.5∼1 log(λ) ∈ [−4, 0] (0.05,20),(0.04,25)}

log(λ) ∈ [−5,−3]
depth=5∼50 depth=1∼5 architecture∼{119,8,1} architecture∼{119,8,1}
#trees=500 #trees=1∼600 batch size=16 batch size=16

Macro 1 #features=1∼60 lr ∈ {0.005,0.01, (lr,epochs)={(0.008,10), (lr,epochs)={(0.05,2),
%samples=0.5∼1 0.02,0.05,0.1, (0.004,20), (0.002,40), (0.02,5),(0.01,10),

0.2,0.5} (0.0008,100), (0.0005,160)} (0.005,20), (0.002,50)}
log(λ) ∈ [−2, 2] log(λ) ∈ [−10.5, 1.5]

depth=5∼50 depth=1∼5 architecture∼{119,8,1} architecture∼{119,8,1}
#trees=500 #trees=1∼200 batch size=16 batch size=16

Macro 1b #features=5∼100 lr ∈ {0.01,0.02, (lr,epochs)={(0.024,75), (lr,epochs)={(0.004,25),
%samples=0.5∼1 0.05,0.1,0.2,0.5} (0.012,150), (0.006,300) (0.002,50),(0.001,100),

(0.003,600)} (0.0005,200)}
log(λ) ∈ [−1,−0.5] log(λ) ∈ [2, 3]

depth=1∼30 depth=1∼10 architecture∼{61,8,1} architecture∼{61,8,1}
#trees=500 #trees=1∼500 batch size=16 batch size=16

Macro 2 #features=1∼60 lr ∈ {0.01,0.02, (lr,epochs)={(0.02,50), (lr,epochs)={(0.05,20),
%samples=0.5∼1 0.05,0.1,0.2,0.5} (0.005,200), (0.00125,800)} (0.02,50), (0.002,500)}

log(λ) ∈ [−3,−3] log(λ) ∈ [−7, 4]
depth=1∼20 depth=1∼5 architecture∼{297,16,1} architecture∼{297,16,1}
#trees=500 #trees=1∼20 batch size=16 batch size=16

Micro 1 #features=1∼20 lr ∈ {10−15,10−14, (lr,epochs)={(0.1,1), (lr,epochs)={(0.4,1),
%samples=0.005∼0.5 ...,0.05,0.1,0.2,0.5} (0.01,10), (0.001,100), (0.2,2), (0.08,5),

(0.0001,1000), (0.00005,2000)} (0.04,10), (0.02,20)}
log(λ) ∈ [−11,−7] log(λ) ∈ [−8, 0]

depth=5∼30 depth=1∼6 architecture∼{217,16,1} architecture∼{217,16,1}
#trees=500 #trees=1∼30 batch size=16 batch size=16

Micro 2 #features=1∼30 lr ∈ {0.05,0.1, (lr,epochs)={(0.1,1),(0.02,5), (lr,epochs)={(0.1,1),(0.01,10),
%samples=0.5∼1.0 0.15,. . . ,1} (0.01,10),(0.005,20)} (0.001,100), (0.0001,1000)}

log(λ) ∈ [−10,−6] log(λ) ∈ [−12,−9]
depth=1∼50 depth=1∼10 architecture∼{215,16,1} architecture∼{215,16,1}
#trees=500 #trees=1∼50 batch size=16 batch size=16

Micro 2b #features=1∼3 lr ∈ {10−10,10−9, (lr,epochs)={(0.04,5), (lr,epochs)={(0.01,50),
%samples=0.5∼1 . . . ,0.1,0.2,0.5,1} (0.02,10), (0.01,20)} (0.005,100), (0.0025,200)}

log(λ) ∈ [0, 2] log(λ) ∈ [0, 2]

Note: The table reports the range of tuning parameters for RF, GBRT, and NNs, as well as the architecture

of NNs applied across six datasets. For RF, we fix the number of trees at #trees= 500, and tune three other

parameters: the depth of the tree (depth), the number of features (#features), and the ratio of bootstrapped

samples (%samples) within a predefined grid. In the case of GBRT, we tune depth and #trees, and the

learning rate (lr). For NNs, we adopt a fixed model architecture, denoted by the number of neurons in each

layer indicated in brackets. Additionally, we fix the batch size for SGD and focus on jointly tuning the

learning rate (lr) and the number of epochs (epochs), as well as the `1- or `2-penalty parameter (log(λ)).
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Lemma 1 (CGMT). Suppose that Sw and Su are compact sets, ψ is continuous on Sw ×
Su, and the entries of G, g, and h are i.i.d. Gaussian. Then we have P(Φ(G) < c) ≤
2P(φ(g, h) ≤ c), ∀c ∈ R. Moreover, if Sw and Su are convex sets, and ψ is convex-concave

on Sw × Su, then P(Φ(G) > c) ≤ 2P(φ(g, h) ≥ c), ∀c ∈ R.

Lemma 2 (Lemma B.26 from Bai and Silverstein (2009)). Let x = (x1, · · · , xn)> be a

random vector of i.i.d. entries. Assume that Exi = 0, Ex2
i = 1, and Ex4

i ≤ v4. Then, for

any A ∈ Rn×n, it holds that x>Ax− Tr(A) = OP

(√
v4 Tr(AA>)

)
.

Lemma 3. Let x = (x1, · · · , xn)> and y = (y1, · · · , ym)> be two independent random vectors

with i.i.d. entries. Assume that each element has a mean of zero and a variance of one.

Then, for any A ∈ Rn×m, it holds that x>Ay = OP

(√
Tr(AA>)

)
.

Proof. The conclusion follows from the fact that E(x>Ay)2 = Tr(AA>).

The lemma below pertains to the Neumann series. See Meyer (2000) for a detailed proof.

Lemma 4. If A is a square matrix with ‖A‖ < 1, then I−A is nonsingular and (I−A)−1 =∑∞
k=0A

k. As a consequence, ‖(I− A)−1 −∑`
k=0 A

k‖ ≤∑∞k=`+1 ‖A‖k = ‖A‖`+1/(1− ‖A‖).

Lemma 5. Assume x = (x1, · · · , xn)> and y = (y1, · · · , yp)> are two independent random

vectors with i.i.d. sub-exponential random variables with their sub-exponential norm bounded

by K. Then for any A ∈ Rn×n and B ∈ Rn×p, there exists a constant c > 0 such that

P
(
|x>Ax− Ex>Ax| ≥ t

)
≤ 2 exp

(
−cmin

{
t2

K4‖A‖2
F

,
t1/2

K‖A‖1/2

})
, (C1)

P
(
|x>By| ≥ t

)
≤ 2 exp

(
−cmin

{
t2

K4‖B‖2
F

,
t1/2

K‖B‖1/2

})
. (C2)

Proof. Inequality (C1) is given by Proposition 1.1 presented in Götze et al. (2021) for the

case of symmetric A. To extend it for the asymmetric case, we use the identity that x>Ax =

x>(A + A>)x/2, which allows us to apply (C1) to (A + A>)/2. Using triangle inequalities,

we have
∥∥(A+ A>)/2

∥∥2

F
≤ ‖A‖2

F and
∥∥(A+ A>)/2

∥∥1/2 ≤ ‖A‖1/2. Thus, (C1) holds for

asymmetric A. For (C2), let z = (x>, y>)> and C =

(
0n×n B

0p×n 0p×p

)
. By (C1), we obtain

P
(
|x>By| ≥ t

)
= P

(
|z>Cz| ≥ t

)
≤ 2 exp

(
−cmin

{
t2

K4‖C‖2
F

,
t1/2

K‖C‖1/2

})
= 2 exp

(
−cmin

{
t2

K4‖B‖2
F

,
t1/2

K‖B‖1/2

})
.
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The next lemma is established in Bai and Silverstein (2009) and Chen and Pan (2012).

Lemma 6. Suppose Z is an n×p matrix with i.i.d. Gaussian entries. Then for any positive

constant ε > 0, it holds that n−1Z>Z ≤ (1 + ε)(1 +
√
cn)2, w.p.a.1, for cn = p/n ∈ [0,∞].

Lemma 7 (Convexity). Let O ⊆ Rd be open and convex and D be a dense subset of O. For

θ ∈ O, both Mn(θ) and M(θ) are convex in θ. If Mn(θ)
P−→ M(θ), for any θ ∈ D, then

supθ∈K |Mn(θ)−M(θ)| P−→ 0, for any compact subset K ⊂ O.

This lemma has been shown by Lemma 7.75 of Liese and Miescke (2008). Next, we

present a min-convergence theorem for functions defined on an open set (0,∞), as shown by

Lemma 10 of Thrampoulidis et al. (2018).

Lemma 8. Consider a sequence of proper, convex stochastic functions Mn : R+ → R, and a

deterministic function M : R+ → R, satisfying (a) Mn(x)
P−→M(x), ∀x > 0; (b) there exists

z > 0 such that M(x) > infy>0M(y), ∀x ≥ z. Then we have infx>0Mn(x)
P−→ infx>0M(x).

Relatedly, we introduce a lemma for functions on a diverging sequence of closed sets.

Lemma 9. Consider a sequence of closed intervals {[xn, yn]}∞n=1 such that limn→∞ xn = −∞
and limn→∞ yn = +∞. Additionally, let there be a sequence of proper random and convex

functions Mn : [xn, yn]→ R, and a convex, continuous, and deterministic function M : R→
R that satisfy: (a) Mn(x)

P−→M(x) for every x ∈ R; (b) there exists z > 0 such that M(x) >

infy∈RM(y) holds for all |x| ≥ z. Then it holds that infx∈[xn,yn]Mn(x)
P−→ infx∈RM(x).

Proof. For n sufficiently large, z ∈ [xn, yn]. Assume x∗ ∈ [−z, z] minimizes M(x). Condition

(b) in fact implies that x? ∈ (−z, z) and that M(x?) = infx∈RM(x). Consider the event

inf |x|>z,x∈[xn,yn] Mn(x) < Mn(x∗). Under this event, there exists |zn| > z and zn ∈ [xn, yn]

such that Mn(zn) < Mn(x∗). The geometry implies that there exists θn ∈ (0, 1), such that

either znθn + x?(1 − θn) = z or znθn + x?(1 − θn) = −z holds. Using convexity, we have

min(Mn(z),Mn(−z)) ≤ θnMn(zn)+(1−θn)Mn(x∗) < Mn(x∗). By taking limits on both sides,

we have min(M(z),M(−z)) ≤ M(x∗), which contradicts condition (b). Therefore, w.p.a.1,

we have inf |x|>z,x∈[xn,yn] Mn(x) ≥Mn(x∗). Furthermore, by Lemma 7, for all arbitrarily small

ε > 0, w.p.a.1, sup|x|≤z |Mn(x)−M(x)| < ε. In addition, by definition, there exists a sequence

of zn, such that |zn| ≤ z and inf |x|≤zMn(x) ≥Mn(zn)− ε. Combining these two inequalities

with the fact that M(x?) minimizes M on R leads to inf |x|≤zMn(x) ≥Mn(zn)−ε ≥M(zn)−
2ε ≥ M(x∗)− 2ε, w.p.a.1. On the other hand, inf |x|≤zMn(x) ≤ Mn(x∗)

P−→ M(x∗). Since ε
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is arbitrary, we have inf |x|≤zMn(x)
P−→ M(x∗). Along with inf |x|>z,x∈[xn,yn] Mn(x) ≥ Mn(x∗)

and Mn(x?)
P−→M(x∗) by (a), we have

inf
x∈[xn,yn]

Mn(x) = min
(

inf
|x|≤z

Mn(x), inf
|x|>z,x∈[xn,yn]

Mn(x)
)

P−→M(x∗).

Lemma 10. Suppose X is a standard Gaussian random variable, then for x > 0,

√
2√
π

exp

(
−x

2

2

)(
2x−3 − 12x−5 − 15x−7

)
≤ E(|X| − x)2

+ ≤
√

2√
π

exp

(
−x

2

2

)(
2x−3 + 3x−5

)
.

Proof. With integration by parts, we find

E(|X| − x)2
+ =

√
2

π

∫ ∞
x

(t− x)2 exp

(
−t

2

2

)
dt =

√
2

π

(
−x exp

(
−x

2

2

)
+ (x2 + 1)fG(x)

)
,

where fG(x) =
∫∞
x

exp(−t2/2)dt. Lemma 10 then follows from the tail inequality:

exp

(
−x

2

2

)(
1

x
− 1

x3
+

3

x5
− 15

x7

)
≤ fG(x) ≤ exp

(
−x

2

2

)(
1

x
− 1

x3
+

3

x5

)
.

Lemma 11. Given that X is a standard Gaussian random variable, the following inequalities

hold when x > 0 and x is sufficiently large:

E|X|(|X| − x)2
+ ≤ 2xE(|X| − x)2

+ and EX2(|X| − x)2
+ ≤ 2x2E(|X| − x)2

+.

Proof. The proof is analogous to that of Lemma 10 and is therefore omitted.

Definition 1. A centered random variable X belongs to the sub-exponential class SE (ν2, α)

with ν > 0 and α > 0, if EeλX ≤ e
λ2ν2

2 , for all λ such that |λ| < α−1.

Lemma 12. Let {xk}∞k=1 be a sequence of diverging positive numbers. Then as p→∞, we

have w.p.a.1, ‖Σ2b0‖∞ < xpq
−1/2log(p) and ‖Σ1/2

2 h‖∞ < xp
√

log(p), where Σ2 and b0 are

defined in Assumptions 1 and 3, respectively, and h ∈ Rp is a standard Gaussian vector.

Proof. We only present the proof for the first inequality, noting that the proof for the second

inequality follows similarly. By definition, there exist b1i ∼ B(1, q) and a sub-exponential

random variable b2i such that b0,i = q−1/2b1ib2i. Note that b1ib2i is still sub-exponential.

Without loss of generality, assume q1/2b0,i = b1ib2i ∈ SE(1, 1).

Write the (i, j)-th element of Σ2 as Σ2,ij. By the properties of sub-exponential vari-

ables, we have
(
Σ2q

1/2b0

)
i
∈ SE

(∑p
j=1 Σ2

2,ij,maxj |Σ2,ij|
)
. Given that

∑p
j=1 Σ2

2,ij = (Σ2
2)i,i ≤
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λ1(Σ2
2) = C2

2 and maxj |Σ2,ij| ≤ C2, we conclude that
(
Σ2q

1/2b0

)
i
∈ SE(C2

2 , C2). The tail

bound of sub-exponential variables yields P
(
|(Σ2q

1/2b0)i| > xplog(p)
)
≤ 2 exp

(
−xp log(p)

2C2

)
.

The conclusion follows by union bound inequality and 2p exp
(
−xp log(p)

2C2

)
→ 0.

Lemma 13. For any given M1, it holds that limn→∞ S1n = 0 for S1n defined in Eq. (21).

Proof. Write x̃k = (Σ
−1/2
ε X·,i)k and ỹk = β0,ix̃k + zk for k = 1, . . . , n. By definition, we have

E(b0,i1q1/2b0,i∈[M1,M2]|Gi) =

∫
b1q1/2b∈[M1,M2] exp

(
−

n∑
k=1

(
ỹk − p−1/2τ 1/2x̃kb

)2
/2

)
dF (b)

∫
exp

(
−

n∑
k=1

(
ỹk − p−1/2τ 1/2x̃kb

)2
/2

)
dF (b)

=

∫
b1q1/2b∈[M1,M2] exp

(
−p−1τb2

n∑
k=1

x̃2
k/2 + bp−1/2τ 1/2

n∑
k=1

ỹkx̃k

)
dF (b)

∫
exp

(
−p−1τb2

n∑
k=1

x̃2
k/2 + bp−1/2τ 1/2

n∑
k=1

ỹkx̃k

)
dF (b)

:=
Q1n

Q2n

,

where F is the distribution function of b0,i. By the facts that
∫
b1q1/2b∈[M1,M2]dF (b) = 0 and

dF (b) = (1− q)δ0 + qdFb2(q
1/2b), we have

|Q1n| =
∣∣∣∣∣
∫
qb1q1/2b∈[M1,M2]

[
exp

(
−p−1τb2

n∑
k=1

x̃2
k/2 + bp−1/2τ 1/2

n∑
k=1

ỹkx̃k

)
− 1

]
dFb2(q

1/2b)

∣∣∣∣∣
≤q1/2M̃

∫ ∣∣∣∣∣exp

(
−p−1τq−1b̃2

n∑
k=1

x̃2
k/2 + b̃q−1/2p−1/2τ 1/2

n∑
k=1

ỹkx̃k

)
− 1

∣∣∣∣∣ dFb2(b̃),
where M̃ := max(|M1|, |M2|). Define the event

An :=

{∣∣p−1/2τ 1/2

n∑
k=1

ỹkx̃k
∣∣ ≤ C̃p−1/2τ 1/2n1/2 log2(p) and p−1τ

n∑
k=1

x̃2
k ≤ C̃p−1nτ

}
, (C3)

where C̃ := 5C1C2c
−1
ε . Under this event, we observe that∣∣∣∣∣exp

(
−p−1τq−1b̃2

n∑
k=1

x̃2
k/2 + b̃q−1/2p−1/2τ 1/2

n∑
k=1

ỹkx̃k

)
− 1

∣∣∣∣∣
≤ exp

(
C̃|b̃|p−1/2τ 1/2n1/2q−1/2 log2(p)

)
− exp

(
−C̃b̃2p−1nτq−1 − C̃|b̃|p−1/2τ 1/2n1/2q−1/2 log2(p)

)
.
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Since p−1/2τ 1/2n1/2q−1/2 log2(p) → 0 and p−1nτq−1 → 0 by Assumption 4, and given that

Fb2 follows a sub-exponential distribution, the integral of both terms on the right-hand-side

converges to zero as n → ∞. Therefore, for any ε > 0, there exists n0 such that for all

n > n0, we have |Q1n| ≤ ε under the event An. Similarly, it can be proven that there exists

n1 such that for all n > n1, we obtain Q2n ≥ 1/2 under the event An.

Next we analyze the event An. We start with the second inequality in An. Note that

n∑
k=1

x̃2
k =X>·,iΣ

−1
ε X·,i ≤ c−1

ε X>·,iX·,i = c−1
ε e>i Σ

1/2
2 Z>Σ1ZΣ

1/2
2 ei

≤c−1
ε C1‖ZΣ

1/2
2 ei‖2 d

= c−1
ε C1‖Σ1/2

2 ei‖2χ2(n) ≤ c−1
ε C1C2χ

2(n),

where ei is the i-th standard basis vector. By Lemma 5, with probability at least 1 −
2 exp(−cp) for some fixed constant c > 0, χ2(n) ≤ 5n, which implies the second inequality.

For the first inequality in An, using the second inequality, we observe that,

p−1/2τ 1/2
∣∣∣ n∑
k=1

x̃kỹk

∣∣∣ = p−1/2τ 1/2
∣∣∣β0,i

n∑
k=1

x̃2
k +

n∑
k=1

x̃kzk

∣∣∣ ≤ C̃np−1/2τ 1/2|β0,i|+ p−1/2τ 1/2
∣∣∣ n∑
k=1

x̃kzk

∣∣∣
= C̃p−1τn|q−1/2b1ib2i|+ p−1/2τ 1/2

∣∣∣ n∑
k=1

x̃kzk

∣∣∣ ≤ C̃p−1q−1/2τn|b2i|+ p−1/2τ 1/2
∣∣∣ n∑
k=1

x̃kzk

∣∣∣.
Using the property of a sub-exponential random variable, for some constant c > 0,

with probability at least 1 − 2 exp(−c log2(p)), we have |b2| ≤ log2(p)/2, which im-

plies C̃p−1q−1/2τn|b2i| ≤ C̃p−1q−1/2τn log2(p)/2 = o(C̃p−1/2τ 1/2n1/2 log2(p)/2) by As-

sumption 4. In addition, by Lemma 5, with probability at least 1 − 2 exp(−c log2(p)),

we have
∣∣∣∑n

k=1 x̃kzk

∣∣∣ ≤ C̃n1/2 log2(p)/2, which implies p−1/2τ 1/2
∣∣∣∑n

k=1 x̃kzk

∣∣∣ ≤
C̃p−1/2τ 1/2n1/2 log2(p)/2.

In sum, using the facts that max(exp(−cp), exp(−c log2(p))) = o(p−1), we conclude that

with probability at least 1− p−1 as p→∞, An holds. Hence we have

lim
n→∞

S1n = lim
n→∞

E
(
E(b0,i1q1/2b0,i∈[M1,M2]|Gi)

)2
1An + lim

n→∞
E
(
E(b0,i1q1/2b0,i∈[M1,M2]|Gi)

)2
1Acn

≤ 4ε2 + lim
n→∞

q−1M̃2P(Acn) ≤ 4ε2 + lim
n→∞

p−1q−1M̃2 = 4ε2.

The conclusion then follows from the arbitrariness of ε.
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Lemma 14. The objective function in Eq. (27) is convex with respect to α and jointly

concave with respect to (δ, γ). Additionally, as long as Eq. (29) holds, we have Eq. (26).

Proof. By Lemma 15, it suffices to prove Eq. (26) holds for ŵB, which equals

arg min
w∈Snw

cn
n

∥∥∥τ 1/2Σ
1/2
1 Zw − τ−1ε

∥∥∥2

+ c2
nλ
∥∥∥Σ
−1/2
2 w + τ−3/2β0

∥∥∥2

− cnτ
−2

n
‖ε‖2 − Cφ

n , (C4)

and Snw = {w
∣∣cnτ−1σxσβ −Kα ≤ cn‖w‖ ≤ cnτ

−1σxσβ + Kα} for some sufficiently large Kα.

With slight abuse of notation, we refer to the optimal solution ŵ instead of using ŵB.

Note that for any vector x, ‖x‖2 = maxu
√
nu>x− n‖u‖2/4, where its argmax is 2x/

√
n,

and similarly ‖x‖2 = maxv v
>x−‖v‖2/4. Applying these equalities to ‖τ 1/2Σ

1/2
1 Zw− τ−1ε‖2

and ‖Σ−1/2
2 w + τ−3/2β0‖2, setting ũ = Σ

1/2
1 u, and ṽ = Σ

−1/2
2 v, we can rewrite (C4) as

min
w∈Snw

max
ũ,ṽ

cnτ
1/2

√
n
ũ>Zw − cnτ

−1

√
n
ũ>Σ

−1/2
1 ε− cn‖Σ−1/2

1 ũ‖2

4
+ c2

nλṽ
>w + c2

nλτ
−3/2ṽ>Σ

1/2
2 β0

− c2
nλ‖Σ1/2

2 ṽ‖2

4
− cnτ

−2

n
‖ε‖2 − Cφ

n . (C5)

To simplify notation and without ambiguity, we continue using u and v in place of ũ and ṽ.

For a given w, the argmax of Eq. (C5), denoted by û, is equal to 2√
n
(τ 1/2Σ1Zw −

τ−1Σ
1/2
1 ε). Given the definition of Snw and Assumptions 1 and 2, we have ‖w‖ ≤ τ−1σxσβ +

c−1
n Kα, ‖Σ1‖ ≤ C1, ‖Σε‖ ≤ Cε. Furthermore, w.p.a. 1, ‖z‖ ≤

√
2n by the law of large

numbers, which implies ‖ε‖ ≤ √2Cεn. Together with Lemma 6 and that τcn → 0 by

Assumption 4, we have the following upper bound for ‖û‖ as n is large enough: ‖û‖ ≤
2τ1/2√

n
‖Σ1Zw‖ + 2√

n
‖τ−1Σ

1/2
1 ε‖ ≤ 4τ−1

√
C1Cε. Let Snu = {u

∣∣‖u‖ ≤ 4τ−1
√
C1Cε}. Based on

the above result, w.a.p.1, the following optimization problem is equivalent to (C5):

min
w∈Snw

max
u∈Snu
v

cnτ
1/2

√
n
u>Zw − cnτ

−1

√
n
u>Σ

−1/2
1 ε− cn‖Σ−1/2

1 u‖2

4
+ c2

nλv
>w + c2

nλτ
−3/2v>Σ

1/2
2 β0

− c2
nλ‖Σ1/2

2 v‖2

4
− cnτ

−2

n
‖ε‖2 − Cφ

n . (C6)

Next, we need introduce an auxiliary problem for the purpose of applying CGMT:
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φ(g, h) = max
0≤δ≤4τ−1

√
C1Cε

v

min
w∈Snw

max
‖u‖=δ

Rn(w, v, u), where

Rn(w, v, u) =
cnτ

1/2

√
n
‖w‖g>u− cnτ

1/2

√
n
δh>w − cnτ

−1

√
n
u>Σ

−1/2
1 ε− cn‖Σ−1/2

1 u‖2

4

+ c2
nλv

>w + c2
nλτ

−3/2v>Σ
1/2
2 β0 −

c2
nλ‖Σ1/2

2 v‖2

4
− cnτ

−2

n
‖ε‖2 − Cφ

n ,

(C7)

and g ∈ Rn and h ∈ Rp are standard Gaussian vectors, independent of the other random

variables. Similarly, let S̃n := {w
∣∣|cn‖w‖ − cnτ

−1σxσβ − α∗2| < ε}, define φS̃cn(g, h) as the

optimal value of an analogous optimization problem to (C7), with w restricted to Snw ∩ S̃cn.

Lemma 16 characterizes the limiting behavior of the optimal solution to (C6), ŵ, and in

turn, proves the desired (26), under conditions pertaining to the optimization problem (C7).

Therefore, we only need show that conditions outlined in Lemma 16 hold as long as (29)

holds. That is, under (29), we need to prove the existence of the constants φ̄ < φ̄S̃cn such

that for all η > 0, w.p.a.1 in the limit of n→∞, φ(g, h) < φ̄+ η and φS̃cn(g, h) > φ̄S̃cn − η.

Let ū = u/δ, maximizing part of Rn(w, v, u) over u simplifies to the following problem:

max
‖u‖=δ

cnτ
1/2

√
n
‖w‖g>u− cnτ

−1

√
n
u>Σ

−1/2
1 ε− cn‖Σ−1/2

1 u‖2

4

= max
‖ū‖=1

cnδ√
n

(τ 1/2‖w‖g − τ−1Σ
−1/2
1 ε)>ū− cnδ

2

4
ū>Σ−1

1 ū.

The latter is a quadratic programming problem, which has been studied in Gander et al.

(1989). The optimal value associated with this problem is given by:

−cnδ
2

4
µn(α, δ) +

cn
n

(τ 1/2αg − τ−1Σ
−1/2
1 ε)>(Σ−1

1 − µn(α, δ)I)−1(τ 1/2αg − τ−1Σ
−1/2
1 ε) (C8)

where α := ‖w‖ and µn(α, δ) is the solution to

1

n
(τ 1/2αg − τ−1Σ

−1/2
1 ε)>(Σ−1

1 − µn(α, δ)I)−2(τ 1/2αg − τ−1Σ
−1/2
1 ε)− δ2

4
= 0, (C9)

under the condition Σ−1
1 − µn(α, δ)I is positive semidefinite. With this, Eq. (C7) equals:

max
0≤δ≤4τ−1

√
C1Cε

v

min
w∈Snw

− cnδ
2

4
µn(α, δ) +

cn
n

(τ 1/2αg − τ−1Σ
−1/2
1 ε)>(Σ−1

1 − µn(α, δ)I)−1

× (τ 1/2αg − τ−1Σ
−1/2
1 ε)− cnτ

1/2

√
n
δh>w + c2

nλv
>w
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+ c2
nλτ

−3/2v>Σ
1/2
2 β0 −

c2
nλ‖Σ1/2

2 v‖2

4
− cnτ

−2

n
‖ε‖2 − Cφ

n .

Solving the inside minimization problem with respect to w/α while fixing α leads to

max
0≤δ≤4τ−1

√
C1Cε

v

min
|cnα−cnτ−1σxσβ |≤Kα

− cnδ
2

4
µn(α, δ) +

cn
n

(τ 1/2αg − τ−1Σ
−1/2
1 ε)>(Σ−1

1 − µn(α, δ)I)−1

× (τ 1/2αg − τ−1Σ
−1/2
1 ε)− cn‖cnλv − n−1/2τ 1/2δh‖α (C10)

+ c2
nλτ

−3/2v>Σ
1/2
2 β0 −

c2
nλ‖Σ1/2

2 v‖2

4
− cnτ

−2

n
‖ε‖2 − Cφ

n .

By Lemma 17, the objective function of the above optimization is convex in α and jointly

concave in (δ, v). As a result, we can switch the order of min and max by Corollary 3.3

in Sion (1958). Also, note that for any vector x, ‖x‖ = minγ>0
1

2γ
‖x‖2 + γ

2
. Applying this

equation to ‖cnλv − n−1/2τ 1/2δh‖α, Eq. (C10) becomes

min
cn|α−τ−1σxσβ |≤Kα

max
γ>0

0≤δ≤4τ−1
√
C1Cε

max
v
−cnδ

2

4
µn(α, δ) +

cn
n

(τ 1/2αg − τ−1Σ
−1/2
1 ε)>

× (Σ−1
1 − µn(α, δ)I)−1(τ 1/2αg − τ−1Σ

−1/2
1 ε)− cnγ

2
− cnα

2

2γ
‖cnλv − n−1/2τ 1/2δh‖2

+ c2
nλτ

−3/2v>Σ
1/2
2 β0 −

c2
nλ‖Σ1/2

2 v‖2

4
− cnτ

−2

n
‖ε‖2 − Cφ

n .

Note that the objective function above is jointly concave in (δ, γ, v). To see why this is

true, it is sufficient to prove that −α2

2γ
‖cnλv − n−1/2τ 1/2δh‖2 is jointly concave in (δ, γ, v),

which follows by Lemma 13 in Thrampoulidis et al. (2018). Consequently, after solving the

first maximization problem over v, the resulting function remains jointly concave in (δ, γ).

Maximizing over v is again a standard quadratic programming problem, which leads to Eq.

(27). Thus, we conclude that (27) is convex with respect to α and jointly concave with

respect to (δ, γ).

For any compact set A, define φA(g, h) := minα2∈A max γ1>0
δ3∈Kδ3

Q̃n(α2, δ3, γ1). Based on the

above argument and condition (i) in (29), we can deduce

φ(g, h) = φ[−Kα,Kα](g, h)
P−→ min

α2∈[−Kα,Kα]
max
γ1>0
δ3∈R

Q̃(α2, δ3, γ1),

φS̃cn(g, h) = min{φ[−Kα,α∗2−ε](g, h), φ[α∗2+ε,Kα](g, h)} P−→ min
α2∈[−Kα,α∗2−ε]∪[α∗2+ε,Kα]

max
γ1>0
δ3∈R

Q̃(α2, δ3, γ1).
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Together with condition (ii), the conditions in Lemma 16 are satisfied by letting φ̄ =

min
α2∈[−Kα,Kα]

max
γ1>0
δ3∈R

Q̃(α2, δ3, γ1) and φ̄S̃cn = min
α2∈[−Kα,α∗2−ε]∪[α∗2+ε,Kα]

max
γ1>0
δ3∈R

Q̃(α2, δ3, γ1).

We now introduce two lemmas whose proofs follow the same reasoning as those of Lemma

5 and Lemma 7 in Thrampoulidis et al. (2018), and are therefore omitted here.

Lemma 15. Under the conditions of Theorem 2, define Snw := {w
∣∣cnτ−1σxσβ − Kα ≤

cn‖w‖ ≤ cnτ
−1σxσβ +Kα} for some Kα such that |α∗2| < Kα. If the solution ŵB to

arg min
w∈Snw

cn
n

∥∥∥τ 1/2Σ
1/2
1 Zw − τ−1ε

∥∥∥2

+ c2
nλ
∥∥∥Σ
−1/2
2 w + τ−3/2β0

∥∥∥2

− cnτ
−2

n
‖ε‖2 − Cφ

n

satisfies cn‖ŵB‖ − cnτ−1σxσβ → α∗2, then the same holds true for ŵ of Eq. (25).

Lemma 16. Let ŵ denote an optimal solution of Eq. (C6). Regarding φ(g, h) and φS̃cn(g, h),

as introduced and discussed in relation to Eq. (C7), suppose there are constants φ̄ and

φ̄S̃cn with φ̄ < φ̄S̃cn, such that for all η > 0, the following hold w.a.p.1 as n → ∞: (a)

φ(g, h) < φ̄+ η, (b) φS̃cn(g, h) > φ̄S̃cn − η. Under these conditions, we have ŵ ∈ S̃n w.p.a.1.

Lemma 17. The objective function of Eq. (C10) is convex in α and jointly concave in (δ, v).

Proof. First, we prove the objective function is convex in α = ‖w‖. Revisiting the term

f(α, u) := cnτ1/2√
n
αg>u − cnτ−1

√
n
u>Σ

−1/2
1 ε − cn‖Σ−1/2

1 u‖2
4

in Eq. (C7), we observe that it is

convex in α. After maximizing over the direction of u, the term remains convex in α since

max‖u‖=δ f(θα1+(1−θ)α2, u) ≤ max‖u‖=δ{θf(α1, u)+(1−θ)f(α2, u)} ≤ θmax‖u‖=δ f(α1, u)+

(1 − θ) max‖u‖=δ f(α2, u), for θ ∈ (0, 1). Note that from Eq. (C8), max‖u‖=δ f(α, u) =

− cnδ2

4
µn(α, δ)+ cn

n
(τ 1/2αg−τ−1Σ

−1/2
1 ε)>(Σ−1

1 −µn(α, δ)I)−1(τ 1/2αg−τ−1Σ
−1/2
1 ε), which yield

the first two terms in Eq. (C10). Meanwhile, the term −‖cnλv−n−1/2τ 1/2δh‖α is also convex

in α. Consequently, we deduce that the objective function of Eq. (C10) is convex in α.

Next, we demonstrate that this function is jointly concave in (δ, v). It is easy to verify that

−‖cnλv−n−1/2τ 1/2δh‖α is jointly concave in (δ, v), since α ≥ 0. Moreover, λτ−3/2v>Σ
1/2
2 β0−

λ‖Σ1/2
2 v‖2/4 is concave in v. Therefore, it suffices to prove

−δ
2

4
µn(α, δ) +

1

n
(τ 1/2αg − τ−1Σ

−1/2
1 ε)>(Σ−1

1 − µn(α, δ)I)−1(τ 1/2αg − τ−1Σ
−1/2
1 ε) (C11)

is concave in δ. Let the eigenvalues and normalized eigenvectors of Σ1 be {(λi, vi)}ni=1, and

let wi = (τ 1/2αg − τ−1Σ
−1/2
1 ε)>vi, for i = 1, 2, . . . , n. Then (C11) equals − δ2

4
µn(α, δ) +
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1
n

∑n
i=1

1
1/λi−µn(α,δ)

w2
i . The first order derivative of this equation with respect to δ is

− δ

2
µn(α, δ)− δ2

4
∂δµn(α, δ) +

∂δµn(α, δ)

n

n∑
i=1

1

(1/λi − µn(α, δ))2
w2
i = −δ

2
µn(α, δ), (C12)

where the last equation follows from the definition of the function µn(α, δ):

1

n

n∑
i=1

1

(1/λi − µn(α, δ))2
w2
i =

δ2

4
. (C13)

Further, the second-order derivative with respect to δ can be calculated as: −1
2
µn(α, δ) −

δ
2
∂δµn(α, δ). By the chain rule of differentiation, ∂δµn(α, δ) is the reciprocal of ∂µnδ.

The latter can be calculated directly using the definition of µn via Eq. (C13): ∂µnδ =(
1
n

∑n
i=1

1
(1/λi−µn)2

w2
i

)−1/2

· 2
n

∑n
i=1

1
(1/λi−µn)3

w2
i . With this, we can write the second-order

derivative as follows:

−1

2
µn(α, δ)− δ

2
∂δµn(α, δ) = −1

2
µn −

1

2
·
∑n

i=1
1

(1/λi−µn)2
w2
i∑n

i=1
1

(1/λi−µn)3
w2
i

= −1

2
·
∑n

i=1
1/λi

(1/λi−µn)3
w2
i∑n

i=1
1

(1/λi−µn)3
w2
i

.

Since Σ−1
1 − µnI is positive semidefinite, the right-hand-side is no larger than zero, which

concludes the proof.

Lemma 18. For Q̃n = Q̃n(α2, δ3, γ1) in Eq. (28), Eq. (29) holds.

Proof. The notation below is defined in the proof of Theorem 2. Let δ2 = δ∗2 + c
−1/2
n δ3.

First, we demonstrate that cnτ
−1µn(α, δ)− cnµ(σxσβ, δ

∗
1, δ2)

P−→ 0. Let f(x) := 1
n
(τ 1/2αg −

τ−1Σ
−1/2
1 ε)>(Σ−1

1 −xI)−2(τ 1/2αg− τ−1Σ
−1/2
1 ε). Recall that µn(α, δ) is the solution to f(x) =

δ2/4. Note that f(x) exhibits a monotonic increase in x when x ≤ 1/C1. Therefore, it

suffices to show that, given any arbitrarily small ε > 0, w.p.a.1, the following inequalities

hold: cnτf(τµ(σxσβ, δ
∗
1, δ2)+τc−1

n ε)−cnδ2τ/4 > c+ > 0 and cnτf(τµ(σxσβ, δ
∗
1, δ2)−τc−1

n ε)−
cnδ

2τ/4 < c− < 0, for some constants c+ and c−.

By Lemmas 2 and 3, we can deduce the following equations:

cnτ
−1

n
ε>Σ

−1/2
1

(
Σ−1

1 − τµ(σxσβ, δ
∗
1, δ2)I− τc−1

n εI
)−2

Σ
−1/2
1 ε

− cnτ
−1

n
Tr
[
Σ1/2
ε Σ

−1/2
1

(
Σ−1

1 − τµ(σxσβ, δ
∗
1, δ2)I− τc−1

n εI
)−2

Σ
−1/2
1 Σ1/2

ε

]
= OP(cnτ

−1n−1/2),

cnτ
2

n
α2g>

(
Σ−1

1 − τµ(σxσβ, δ
∗
1, δ2)I− τc−1

n εI
)−2

g
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− cnα
2τ 2

n
Tr
[(

Σ−1
1 − τµ(σxσβ, δ

∗
1, δ2)I− τc−1

n εI
)−2
]

= OP(cnn
−1/2),

cnτ
1/2α

n
εΣ
−1/2
1

(
Σ−1

1 − τµ(σxσβ, δ
∗
1, δ2)I− τc−1

n εI
)−2

g = OP(cnτ
−1/2n−1/2).

Therefore, using the definition of f(·) we can deduce that:

cnτf(τµ(σxσβ, δ
∗
1, δ2) + τc−1

n ε)

− cnτ
−1

n
Tr
[
Σ1/2
ε Σ

−1/2
1

(
Σ−1

1 − τµ(σxσβ, δ
∗
1, δ2)I− τc−1

n εI
)−2

Σ
−1/2
1 Σ1/2

ε

]
− cnα

2τ 2

n
Tr
[(

Σ−1
1 − τµ(σxσβ, δ

∗
1, δ2)I− τc−1

n εI
)−2
]

= OP(cnτ
−1n−1/2) = oP(1). (C14)

Note that for sufficiently small x such that x‖Σ1‖ < 1,

τ−1

n
Tr
[
Σ1/2
ε Σ

−1/2
1

(
Σ−1

1 − xI
)−2

Σ
−1/2
1 Σ1/2

ε − Σ1/2
ε Σ

1/2
1 (I + 2xΣ1) Σ

1/2
1 Σ1/2

ε

]
=
τ−1

n
Tr
[
Σ1/2
ε Σ

1/2
1 (I− xΣ1)−2 Σ

1/2
1 Σ1/2

ε − Σ1/2
ε Σ

1/2
1 (I + 2xΣ1) Σ

1/2
1 Σ1/2

ε

]
≤τ−1C1Cε‖ (I− xΣ1)−2 − (I + 2xΣ1) ‖ . τ−1x2,

where we apply Lemma 4 in the last inequality. As a consequence, we have:

τ−1

n
Tr
[
Σ1/2
ε Σ

−1/2
1

(
Σ−1

1 − τµ(σxσβ, δ
∗
1, δ2)I− τc−1

n εI
)−2

Σ
−1/2
1 Σ1/2

ε

]
=

1

n
Tr
[
Σ1/2
ε Σ

−1/2
1

(
τ−1Σ2

1 + 2
(
µ(σxσβ, δ

∗
1, δ2) + c−1

n ε
)

Σ3
1

)
Σ
−1/2
1 Σ1/2

ε

]
+O(τ)

=τ−1σ2
εθ1 + 2(µ(σxσβ, δ

∗
1, δ2) + c−1

n ε)σ2
εθ3 +O(τ) + o(c−1

n ), (C15)

where the last equation follows by Assumption 5. By the same argument, it follows that:

α2τ 2

n
Tr
[(

Σ−1
1 − τµ(σxσβ, δ

∗
1, δ2)I− τc−1

n εI
)−2
]

= σ2
xσ

2
βθ4 +O(τ) + o(c−1

n ).

Applying the above estimates to the left-hand-side of (C14), we can deduce that:

cnτf(τµ(σxσβ, δ
∗
1, δ2) + τc−1

n ε)− cnδ
2τ

4

=2cn(µ(σxσβ, δ
∗
1, δ2) + c−1

n ε)σ2
εθ3 + cnσ

2
xσ

2
βθ4 −

cnδ
∗
1δ2

2
+ oP(1).

By the definition of µ(σxσβ, δ
∗
1, δ2), the right-hand side of the above equation is positive

19



w.p.a.1. The proof of the other inequality is similar. Hence, we have proved

cnτ
−1µn(α, δ)− cnµ(σxσβ, δ

∗
1, δ2)

P−→ 0. (C16)

Next, to analyze Q̃n, we first investigate the limiting behavior of:

−δ
2

4
µn(α, δ) +

1

n

(
τ 1/2αg − τ−1Σ

−1/2
1 ε

)> (
Σ−1

1 − µn(α, δ)I
)−1
(
τ 1/2αg − τ−1Σ

−1/2
1 ε

)
.

By (C16), we have ‖µn(α, δ)Σ1‖ = OP(τ). Applying Lemma 4 again, we deduce:

‖
(
Σ−1

1 − µn(α, δ)I
)−2 − Σ2

1 − 2µn(α, δ)Σ3
1 − 3µ2

n(α, δ)Σ4
1‖ .P τ

3

‖
(
Σ−1

1 − µn(α, δ)I
)−1 − Σ1 − µn(α, δ)Σ2

1 − µ2
n(α, δ)Σ3

1‖ .P τ
3.

Furthermore, by the fact that ‖τ 1/2αg − τ−1Σ
−1/2
1 ε‖ = OP(nτ−1) and Eq. (C9), we have

δ2

4
µn(α, δ) =

1

n
(τ 1/2αg − τ−1Σ

−1/2
1 ε)>(µn(α, δ)Σ2

1 + 2µ2
n(α, δ)Σ3

1)(τ 1/2αg − τ−1Σ
−1/2
1 ε) +OP(τ).

With a similar approach, we have

1

n

(
τ 1/2αg − τ−1Σ

−1/2
1 ε

)> (
Σ−1

1 − µn(α, δ)I
)−1
(
τ 1/2αg − τ−1Σ

−1/2
1 ε

)
=

1

n

(
τ 1/2αg − τ−1Σ

−1/2
1 ε

)> (
Σ1 + µn(α, δ)Σ2

1 + µ2
n(α, δ)Σ3

1

) (
τ 1/2αg − τ−1Σ

−1/2
1 ε

)
+OP(τ).

As a consequence, based on Lemmas 2 and 3, as well as the definition of α2 and the fact

that cnτ
−1µn(α, δ)− cnµ(σxσβ, δ

∗
1, δ2)

P−→ 0, we have:

− cnδ
2

4
µn(α, δ) +

cn
n

(
τ 1/2αg − τ−1Σ

−1/2
1 ε

)> (
Σ−1

1 − µn(α, δ)I
)−1
(
τ 1/2αg − τ−1Σ

−1/2
1 ε

)
=
cn
n

(
τ 1/2αg − τ−1Σ

−1/2
1 ε

)>
(Σ1 − µ2

n(α, δ)Σ3
1)
(
τ 1/2αg − τ−1Σ

−1/2
1 ε

)
+OP(cnτ)

= cnτ
−1σ2

xσ
2
β − cnσ2

εθ3µ
2(σxσβ, δ

∗
1, δ2) + 2σxσβα2 +

cnτ
−2

n
‖ε‖2 + oP(1). (C17)

Finally, we examine the remainder term that contributes to Q̃n:

c2
nλ

2

4

(
τ−3/2Σ

1/2
2 β0 +

α2δτ 1/2

√
nγ

h

)>(
λ

4
Σ2 +

cnα
2λ2

2γ
I
)−1(

τ−3/2Σ
1/2
2 β0 +

α2δτ 1/2

√
nγ

h

)
− cnτα

2δ2

2γn
‖h‖2.

20



Using Lemmas 2-3, p1/2τ−1n−1q−1/2 = o(1) by Assumption 4, and the assumptions on Σ2,

this term converges in probability to:

c2
nλ

2τ−2σ2
β

4p
Tr

[
Σ

1/2
2

(
λ

4
Σ2 +

cnα
2λ2

2γ
I
)−1

Σ
1/2
2

]
+ cnτ Tr

[
cnλ

2α4δ2

4nγ2
h

(
λ

4
Σ2 +

cnα
2λ2

2γ
I
)−1

− α2δ2

2γn
I

]

=
cnγn1

2
τ−1 − γ2

1

4σ2
βλ
θ2 −

γ1α2

σxσβ
− τ−1 (δ∗1)2σ2

xcn
4λ

− cnσ
2
xδ
∗
1δ2

2λ
+

(δ∗1)2γ1σ
2
x

8λ2σ2
β

θ2 + on(1),

where we apply Lemma 4 and the same argument in proving Eq. (C15). Combining this

estimate with (C17) we conclude that

Q̃n = −δ
2
3θ1

4θ3

+ 2σxσβα2 −
γ2

1

4σ2
βλ
θ2 −

γ1α2

σxσβ
+

(δ∗1)2γ1σ
2
x

8λ2σ2
β

θ2 + oP(1).

We now proceed to establish Claims (i) to (ii) in Eq. (29). Fix α2 ∈ A and γ1 > 0,

and observe that limδ3→±∞ Q̃(α2, δ3, γ1) → −∞. By the concave version of Lemma 9, we

conclude that maxδ3∈Kδ3 Q̃n(α2, δ3, γ1)
P−→ maxδ3∈R Q̃(α2, δ3, γ1). Since Q̃n is jointly concave

in (δ3, γ1), after maximizing with respect to δ3, the function should remain concave in γ1.

Moreover, consider the following equation: maxδ3∈R Q̃(α2, δ3, γ1) = 2σxσβα2− γ21
4σ2
βλ
θ2− γ1α2

σxσβ
+

(δ∗1)2γ1σ2
x

8λ2σ2
β
θ2. As a result, limγ1→∞maxδ3∈R Q̃(α2, δ3, γ1) → −∞. By Lemma 8, we conclude

that max γ1>0
δ3∈Kδ3

Q̃n(α2, δ3, γ1)
P−→ max γ1>0

δ3∈R
Q̃(α2, δ3, γ1). Since Q̃n(α2, δ3, γ1) is convex in α2,

it should retain its convexity in α2 after being maximized with respect to δ2 and γ1. Since

the above equation holds for any α2 ∈ A, by Lemma 7, we conclude that Claim (i) holds.

The first-order condition implies a unique solution: α∗2 := arg minα2
max γ1>0

δ3∈R
Q̃(α2, δ3, γ1),

which is given by θ2σ
3
x

(
σ2
εθ1

2λ2σβ
− σβ

λ

)
. Thus, Claim (ii) holds true, concluding the proof.

Lemma 19. Under the conditions of Theorem 3, there exists a constant c̃ > 0 that depends

solely on fixed constants, such that w.p.a.1, inequality (32) holds. In addition, as n → ∞,

for any given fixed λ > 0, Eq. (33) holds.

Proof. Under the condition that λn ≥ ε, using (30) and (31), we have, w.p.a.1,

‖β̂iλn‖2 =

∥∥∥∥∥ 1

n

(
1

n
X>(−i)X(−i) + cnλnI

)−1

X(−i)y(−i)

∥∥∥∥∥
2

≤ ‖X(−i)y(−i)‖2

c2
nε

2n2
≤ 2C2σ

2
ε(1 +

√
cn)2

c2
nε

2
,

‖β̂iλ1 − β̂iλ2‖2 = c2
n(λ1 − λ2)2

∥∥∥∥∥ 1

n

(
1

n
X>(−i)X(−i) + cnλ2

)−1(
1

n
X>(−i)X(−i) + cnλ1

)−1

X(−i)y(−i)

∥∥∥∥∥
2
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≤ (λ1 − λ2)2

n2c2
nλ

2
1λ

2
2

‖X(−i)y(−i)‖2 ≤ 2C2σ
2
ε(1 +

√
cn)2(λ1 − λ2)2

c2
nε

4
. (C18)

With the inequalities above and triangle inequalities, we obtain, w.a.p.1,

|R̂K−CV (λ1)− R̂K−CV (λ2)| = 1

n

∣∣∣∣∣
K∑
i=1

(
‖y(i) −X(i)β̂

i
λ1
‖2 − ‖y(i) −X(i)β̂

i
λ2
‖2
)∣∣∣∣∣

≤ 2

n

K∑
i=1

‖X(i)‖‖β̂iλ1 − β̂iλ2‖
(
‖y(i)‖+

2C
1/2
2 σε(1 +

√
cn)

cnε
‖X(i)‖

)
≤ C̃|λ1 − λ2|, (C19)

where C̃ is some fixed constant.

Let us fix a constant c̃ such that the inequality
c22σ

2
ε

2Kc̃2
− 4C2

2
(1+
√
cn)2

cnc̃
> 100 remains true as

n, p→∞. This is possible because (1 +
√
cn)2/cn is bounded as n, p→∞. In addition, let

S := {λj = ε+ p−9(j − 1) : 1 ≤ j ≤ 1 + [p9(c̃τ−1 − ε)]}. Given τ−1 = o(p), the cardinality of

the set satisfies |S| ≤ p10. By definition, for any λ ∈ [ε, c̃τ−1], there exists a λj∗ ∈ S such that

|λ − λj∗| ≤ p−9. By Eq. (C19), we have |R̂K−CV (λ) − R̂K−CV (λj∗)| ≤ C̃|λ − λj∗| ≤ C̃p−9.

Therefore, if we show that

inf
λj∈S

{
R̂K−CV (λj)−

1

n
‖ε‖2 − ‖Σ1/2

2 β0‖2

}
> np−1τ 2 (C20)

holds w.p.a.1, we have

inf
λ∈[ε,c̃τ−1]

{
R̂K−CV (λj)−

1

n
‖ε‖2 − ‖Σ1/2

2 β0‖2

}
> np−1τ 2 − C̃p−9 >

np−1τ 2

2
, (C21)

which implies Eq. (32). By the definition of R̂K−CV , it is easy to verify that we need prove:

inf
λj∈S

{
n−1K‖Z(i)Σ

1/2
2 (β̂iλj − β0)‖2 − 2n−1Kε(i)Z(i)Σ

1/2
2 (β̂iλj − β0)− ‖Σ1/2

2 β0‖2
}
> np−1τ 2

holds w.p.a.1 for all i = 1, . . . , K. By the independence of Z(i) and β̂iλj , the first term on the

left-hand-side is distributed as: n−1K‖Z(i)Σ
1/2
2 (β̂iλj − β0)‖2 d

= n−1Kχ2 (K−1n) ‖Σ1/2
2 (β̂iλj −

β0)‖2, where χ2 (K−1n) denotes a Chi-squared random variable with K−1n degrees of free-

dom. Consequently, we can deduce that:

P

(∣∣∣n−1K‖Z(i)Σ
1/2
2 (β̂iλj − β0)‖2 − ‖Σ1/2

2 (β̂iλj − β0)‖2
∣∣∣ ≥ log(p)√

n
‖Σ1/2

2 (β̂iλj − β0)‖2

)
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= P

(∣∣n−1Kχ2
(
K−1n

)
− 1
∣∣ ≥ log(p)√

n

)
≤ 2 exp(−c̃1 log2(p)),

where the last step uses Lemma 5, and c̃1 is a fixed positive constant. Analogously, we have:

P

(∣∣∣n−1Kε(i)Z(i)Σ
1/2
2 (β̂iλj − β0)

∣∣∣ ≥ log(p)√
n
‖Σ1/2

2 (β̂iλj − β0)‖
)
≤ 2 exp(−c̃2 log2(p)),

with c̃2 being another fixed positive constant. For simplicity, we consolidate the constants

c̃1 and c̃2 into a unified constant denoted as c̃1. By the union bound inequality, we have that

with probability exceeding 1− 4p10 exp(−c̃1 log2(p)), the following relation holds:

inf
λj∈S

{
n−1K‖Z(i)Σ

1/2
2 (β̂iλj − β0)‖2 − 2n−1Kε(i)Z(i)Σ

1/2
2 (β̂iλj − β0)− ‖Σ1/2

2 β0‖2

}
≥ inf

λj∈S

{(
1− log(p)√

n

)
‖Σ1/2

2 (β̂iλj − β0)‖2 − log(p)√
n
‖Σ1/2

2 (β̂iλj − β0)‖ − ‖Σ1/2
2 β0‖2

}
.

Assume for now that ‖Σ1/2
2 (β̂iλj − β0)‖2 − ‖Σ1/2

2 β0‖2 ≥ 50np−1τ 2 holds. In this sce-

nario,
(

1− log(p)√
n

)
‖Σ1/2

2 (β̂iλj − β0)‖2 − log(p)√
n
‖Σ1/2

2 (β̂iλj − β0)‖ is monotonically increasing in

‖Σ1/2
2 (β̂iλj − β0)‖ since log(p)/

√
n = o(τ), hence it achieves its minimum when ‖Σ1/2

2 (β̂iλj −
β0)‖2 − ‖Σ1/2

2 β0‖2 = 50np−1τ 2. As a result, it can be shown that
(

1− log(p)√
n

)
‖Σ1/2

2 (β̂iλj −
β0)‖2 − log(p)√

n
‖Σ1/2

2 (β̂iλj − β0)‖ − ‖Σ1/2
2 β0‖2 ≥ np−1τ 2. Therefore, we only need to prove

infλj∈S{‖Σ1/2
2 (β̂iλj − β0)‖2 − ‖Σ1/2

2 β0‖2} ≥ 50np−1τ 2 holds w.p.a.1.

We now establish a uniform lower bound for ‖Σ1/2
2 (β̂iλj − β0)‖2 − ‖Σ1/2

2 β0‖2, which can

be written as: ‖Σ1/2
2 β̂iλj‖2 − 2β>0 Σ2β̂

i
λj

. By direct calculation, we have for each i,

‖Σ1/2
2 β̂iλj‖2 ≥ c2‖β̂iλj‖2 = c2

∥∥∥ 1

n

(
1

n
X>(−i)X(−i) + cnλjI

)−1

X(−i)y(−i)

∥∥∥2

≥ c2

n2

∥∥∥∥ 1

n
X>(−i)X(−i) + cnλjI

∥∥∥∥−2 ∥∥X(−i)y(−i)
∥∥2 ≥ c2

n2

(
C2(1 +

√
cn)2 + cnλj

)−2 ‖X>(−i)y(−i)‖2.

Further, by Lemmas 2 and 3, we have

‖X>(−i)y(−i)‖2 = σ2
ε Tr(X(−i)X

>
(−i)) + p−1τσ2

β Tr(X>(−i)X(−i)X
>
(−i)X(−i)) + oP(n−1/2).

By the fact that λmin(A) Tr(B) ≤ Tr(AB) ≤ λmax(A) Tr(B) when A,B are positive semidef-

inite, we have c2 Tr(Z(−i)Z
>
(−i)) ≤ Tr(X(−i)X

>
(−i)) ≤ C2 Tr(Z(−i)Z

>
(−i)), which, along with
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(np)−1 Tr(Z(−i)Z
>
(−i))

P−→ (K − 1)/K and Eq. (30), imply that

p−1τ Tr(X>(−i)X(−i)X
>
(−i)X(−i)) ≤ p−1τ‖X>(−i)X(−i)‖Tr(X>(−i)X(−i)) .P τpn = oP(np).

Therefore, w.p.a.1, we obtain

c2σ
2
εpn

2K
≤ ‖X>(−i)y(−i)‖2 ≤ 2C2σ

2
εpn. (C22)

Consequently, uniformly over λj ∈ S, we deduce:

‖Σ1/2
2 β̂iλj‖2 ≥ c2

2σ
2
εp

2nK

(
C2(1 +

√
cn)2 + cnλj

)−2
. (C23)

On the other hand, we have

|β>0 Σ2β̂
i
λj
| ≤ 1

n

∣∣∣∣∣β>0 Σ2

(
1

n
X>(−i)X(−i) + cnλjI

)−1

X>(−i)X(−i)β0

∣∣∣∣∣
+

1

n

∣∣∣∣∣ε>(−i)X(−i)

(
1

n
X>(−i)X(−i) + cnλjI

)−1

Σ2β0

∣∣∣∣∣ =: L1 + L2. (C24)

To bound L1, note that Tr(AB) ≤ ‖AB‖ rank(AB) ≤ ‖A‖ ‖B‖ rank(B), which implies

1

n
Tr

(
Σ2

(
1

n
X>(−i)X(−i) + cnλjI

)−1

X>(−i)X(−i)

)

≤ ‖Σ2‖
∥∥∥∥∥
(

1

n
X>(−i)X(−i) + cnλjI

)−1
1

n
X>(−i)X(−i)

∥∥∥∥∥ rank(X>(−i)X(−i)) ≤
nC2

2(1 +
√
cn)2

C2(1 +
√
cn)2 + cnλj

,

where the last inequality uses λ1((A+ I)−1A) = (λ1(A) + 1)−1λ1(A) and n−1‖X>(−i)X(−i)‖ ≤
C2(1 +

√
cn)2. In addition, by Lemma 5 and the fact that the sub-exponential norm of b0,i

is of order O(q−1/2), we have, with probability exceeding 1− 2p10 exp(−c̃1 log2(p)),

sup
λj∈S

∣∣∣∣∣L1 −
p−1τ

n
Tr

(
Σ2

(
1

n
X>(−i)X(−i) + cnλjI

)−1

X>(−i)X(−i)

)∣∣∣∣∣ ≤ q−1p−1τn1/2 log(p).

Combining the above two inequalities, we have

L1 ≤ np−1τC2
2

(1 +
√
cn)2

C2(1 +
√
cn)2 + cnλj

+ q−1p−1τn1/2 log(p), ∀λj ∈ S.
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To bound L2 in (C24), by definition, we have L2 = |n−1p−1/2τ 1/2q−1/2z>(−i)X(−i)(
1
n
X>(−i)X(−i)+

cnλjI)−1Σ2(
√
qb0)|. Using the facts that λmin(n−1X>(−i)X(−i) + cnλjI) ≥ cnλj ≥ cnε, ‖A‖F ≤√

rank(A) ‖A‖, and Eq. (30), we have

∥∥X(−i)
( 1

n
X>(−i)X(−i) + cnλjI

)−1
Σ2

∥∥ ≤ C2c
−1
n ε−1‖X(−i)‖ . np−1/2,∥∥X(−i)

( 1

n
X>(−i)X(−i) + cnλjI

)−1
Σ2

∥∥2

F
. rank(X(−i))n

2p−1 . n3p−1.

Therefore, by Lemma 5 and the fact that
√
qb0,i has bounded sub-exponential norm, it

holds that, for some constant c̃1, P
(
L2 > q−1/2n1/2τ 1/2p−1 log(p)

)
≤ 2 exp(−c̃1 log2(p)). As

a consequence, with probability at least 1 − 2p10 exp(−c̃1 log2(p)), we have supλj∈S L2 ≤
q−1/2n1/2τ 1/2p−1 log(p). Therefore, taking bounds for L1 and L2 together, we have, w.p.a.1,

|β>0 Σ2β̂
i
λj
| ≤ np−1τC2

2

(1 +
√
cn)2

C2(1 +
√
cn)2 + cnλj

+ p−1q−1τn1/2 log(p) + q−1/2n1/2τ 1/2p−1 log(p)

≤ 2np−1τC2
2

(1 +
√
cn)2

C2(1 +
√
cn)2 + cnλj

, (C25)

for each λj ∈ S. In the last inequality, we use p−1q−1τn1/2 log(p), q−1/2n1/2τ 1/2p−1 log(p) =

o(np−1τ 2) by the assumptions of Theorem 3. With (C23) and (C25), we have

‖Σ1/2
2 (β̂iλj − β0)‖2 − ‖Σ1/2

2 β0‖2 = ‖Σ1/2
2 β̂iλj‖2 − 2β>0 Σ2β̂

i
λj

≥c
2
2σ

2
εp

2nK

(
C2(1 +

√
cn)2 + cnλj

)−2 − 4np−1τC2
2

(1 +
√
cn)2

C2(1 +
√
cn)2 + cnλj

.

This inequality holds w.p.a. 1 as n, p→∞ uniformly for all λj ∈ S. Given our initial choice

for c̃, it is easy to check that the right-hand side exceeds 50np−1τ 2, which implies Eq. (32).

To prove Eq. (33), note that

1

n
‖y(i) −X(i)β̂

i
τ−1λ‖2 − 1

n
‖ε(i)‖2 =

1

n
‖Z(i)Σ

1/2
2 (β̂iτ−1λ − β0)‖2 +

2

n
ε>(i)Z(i)Σ

1/2
2 (β̂iτ−1λ − β0).

By the facts Z(i) ⊥ β̂iτ−1λ − β0 and n−1χ2(K−1n) = K−1 +Op(n
−1/2), we have

1

n
‖Z(i)Σ

1/2
2 (β̂iτ−1λ − β0)‖2 d

=
1

n
χ2(K−1n)‖Σ1/2

2 (β̂iτ−1λ − β0)‖2

=
1

K
‖Σ1/2

2 (β̂iτ−1λ − β0)‖2 +OP

(
1√
n
‖Σ1/2

2 (β̂iτ−1λ − β0)‖2

)
.
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Additionally, by Theorem 2, we deduce:

‖Σ1/2
2 (β̂iτ−1λ − β0)‖2 − ‖Σ1/2

2 β0‖2 =
2(K − 1)

K
np−1τ 2θ2σ

4
x

(
σ2
ε

2λ2
−
σ2
β

λ

)
+ oP(τ 2np−1).

Hence, using the fact that ‖Σ1/2
2 β0‖2 �P τ , we derive the following equation:

1

n

K∑
i=1

‖Z(i)Σ
1/2
2 (β̂iτ−1λ−β0)‖2−‖Σ1/2

2 β0‖2 =
2(K − 1)

K
np−1τ 2θ2σ

4
x

(
σ2
ε

2λ2
−
σ2
β

λ

)
+oP(τ 2np−1).

Thus, to prove Eq. (33), it remains to show that: 2
n
ε(i)Z(i)Σ

1/2
2 (β̂iτ−1λ − β0) = oP(τ 2np−1).

Given that ε(i) ⊥ Z(i)Σ
1/2
2 (β̂iτ−1λ − β0) and n−3/2τ−3/2p→ 0 by Assumption 4, we have

2

n
ε(i)Z(i)Σ

1/2
2 (β̂iτ−1λ − β0)

d
=

2

n
‖Σ1/2

2 (β̂iτ−1λ − β0)‖ε>(i)x = OP(n−1/2τ 1/2) = oP(τ 2np−1),

where x is a standard Gaussian vector independent of ε(i). This concludes the proof.

Lemma 20. There exists a constant C̃1 such that, w.p.a.1, uniformly for µ1, µ2 ∈ [0, c̃−1],

pn−1τ−2|R̃K−CV (µ1)− R̃K−CV (µ2)| ≤ C̃1|µ1 − µ2|+ oP

(
pn−1τ−2

)
.

Proof. By the Woodbury identity, we deduce that(
1

n
X>(−i)X(−i) + cnτ

−1µ−1I
)−1

− c−1
n τµI = −c

−2
n τ 2µ2

n
X>(−i)

(
I +

c−1
n τµ

n
X(−i)X

>
(−i)

)−1

X(−i).

Hence, we arrive at:

sup
1≤i≤K
µ∈[0,c̃−1]

cnτ
−3 log−1(p)

∥∥∥( 1

n
X>(−i)X(−i) + cnτ

−1µ−1I
)−1

− c−1
n τµI +

c−2
n τ 2µ2

n
X>(−i)X(−i)

∥∥∥
= sup

1≤i≤K
µ∈[0,c̃−1]

c−1
n µ2τ−1 log−1(p)

∥∥∥ 1

n
X>(−i)

[(
I +

c−1
n τµ

n
X(−i)X

>
(−i)

)−1

− I
]
X(−i)

∥∥∥
≤ sup

1≤i≤K
µ∈[0,c̃−1]

µ3c−2
n log−1(p)

∥∥∥∥ 1

n
X>(−i)X(−i)

∥∥∥∥2
P−→ 0. (C26)

The last inequality is a consequence of Eq. (30) and the fact that
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∥∥∥∥∥
(
I +

c−1
n τµ

n
X(−i)X

>
(−i)

)−1

− I

∥∥∥∥∥ ≤
∥∥∥∥∥
(
I +

c−1
n τµ

n
X(−i)X

>
(−i)

)−1
∥∥∥∥∥ · c−1

n τµ

∥∥∥∥ 1

n
X>(−i)X(−i)

∥∥∥∥
≤ c−1

n τµ

∥∥∥∥ 1

n
X>(−i)X(−i)

∥∥∥∥ .
On the other hand, by direct calculation we have that R̃K−CV (µ1)− R̃K−CV (µ2) equals:

K∑
i=1

(
1

n
‖X(i)β̂

i
τ−1µ−1

1
‖2 − 1

n
‖X(i)β̂

i
τ−1µ−1

2
‖2

)
− 2

n
y>(i)X(i)(β̂

i
τ−1µ−1

1
− β̂i

τ−1µ−1
2

)

=:
K∑
i=1

W1i(µ1, µ2)−W2i(µ1, µ2).

We next investigate W1i(µ1, µ2) and W2i(µ1, µ2) separately. For W1i(µ1, µ2), we have

W1i(µ1, µ2) =
1

n
(β̂i

τ−1µ−1
1
− β̂i

τ−1µ−1
2

)>X>(i)X(i)β̂
i
τ−1µ−1

1
+

1

n
β̂i
τ−1µ−1

2
X>(i)X(i)(β̂

i
τ−1µ−1

1
− β̂i

τ−1µ−1
2

)

≤ 1

n

∥∥∥X(i)(β̂
i
τ−1µ−1

1
− β̂i

τ−1µ−1
2

)
∥∥∥ · ‖X(i)β̂

i
τ−1µ−1

1
‖+

1

n
‖X(i)β̂

i
τ−1µ−1

2
‖ ·
∥∥∥X(i)(β̂

i
τ−1µ−1

1
− β̂i

τ−1µ−1
2

)
∥∥∥ .

Define β̃i
τ−1µ−1

1

= 1
n

[
c−1
n τµ1I− c−2

n τ2µ21
n

X>(−i)X(−i)

]
X>(−i)y(−i). Observe that

sup
µ1∈[0,c̃−1]

1√
n

∥∥∥X(i)β̂
i
τ−1µ−1

1
−X(i)β̃

i
τ−1µ−1

1

∥∥∥
≤ sup

µ1∈[0,c̃−1]

1

n3/2

∥∥X(i)

∥∥∥∥∥∥∥
(

1

n
X>(−i)X(−i) + cnτ

−1µ−1
1

)−1

− c−1
n τµ1I +

c−2
n τ 2µ2

1

n
X>(−i)X(−i)

∥∥∥∥∥
×
∥∥X>(−i)y(−i)

∥∥ = OP(τ 3 log(p)) = oP(c−1/2
n τ), (C27)

where we use Eq. (C26), Eq. (30), and Eq. (C22). Additionally, it is easy to verify that

sup
µ1∈[0,c̃−1]

1√
n

∥∥∥∥ 1

n
X(i)β̃

i
τ−1µ−1

1

∥∥∥∥ = sup
µ1∈[0,c̃−1]

1√
n

∥∥∥∥ 1

n
X(i)

[
c−1
n τµ1I−

c−2
n τ 2µ2

1

n
X>(−i)X(−i)

]
X>(−i)y(−i)

∥∥∥∥
≤ c−1

n τ c̃−1

n
√
n

∥∥X(i)X
>
(−i)y(−i)

∥∥+
c−2
n τ 2c̃−2

n2
√
n

∥∥X(i)X
>
(−i)X(−i)X

>
(−i)y(−i)

∥∥ .
For the first term, by Eq. (C22), it equals

c−1
n τ c̃−1

n
√
n

∥∥∥Z(i)Σ
1/2
2 X>(−i)y(−i)

∥∥∥ d
=
c−1
n τ c̃−1

n
√
n

√
χ2(n/K)

∥∥∥Σ
1/2
2 X>(−i)y(−i)

∥∥∥ ≤ C̃1

2
c−1/2
n τ,
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w.p.a.1 for some constant C̃1 that only depends on fixed constants. The second term can be

bounded in the same way. Therefore, we have

sup
µ1∈[0,c̃−1]

1√
n
‖X(i)β̂

i
τ−1µ−1

1
‖ ≤ C̃1c

−1/2
n τ + oP(c−1/2

n τ). (C28)

Analogously, we can prove that 1√
n
‖X(i)(β̂

i
τ−1µ−1

1

− β̂i
τ−1µ−1

2

)‖ ≤ C̃1|µ1−µ2|c−1/2
n τ+oP(c

−1/2
n τ)

holds uniformly for µ1, µ2 ∈ [0, c̃−1], where C̃1 is a fixed constant that may vary from line to

line. In light of this, we deduce that: sup1≤i≤KW1i(µ1, µ2) ≤ C̃2
1c
−1
n τ 2|µ1 − µ2| + oP(c−1

n τ 2)

holds w.p.a.1 uniformly for µ1, µ2 ∈ [0, c̃−1].

To bound W2i(µ1, µ2), we first define W̃2i(µ1, µ2) = 2
n
y>(i)X(i)(β̃

i
τ−1µ−1

1

− β̃i
τ−1µ−1

2

). By Eq.

(C27), it holds that

sup
µ1,µ2∈[0,c̃−1]

|W̃2i(µ1, µ2)−W2i(µ1, µ2)| ≤ 2

n
‖y>(i)‖‖X(i)(β̃

i
τ−1µ−1

1
− β̂i

τ−1µ−1
1

)‖

+
2

n
‖y>(i)‖‖X(i)(β̃

i
τ−1µ−2

1
− β̂i

τ−1µ−1
2

)‖ = OP(τ 3 log(p)) = oP(c−1
n τ 2).

Moreover, employing a similar argument to that used in proving Eq. (C28), we have

sup
µ1,µ2∈[0,c̃−1]

|W̃2i(µ1, µ2)|

= sup
µ1,µ2∈[0,c̃−1]

∣∣∣∣ 2ny>(i)X(i)
1

n

[
c−1
n τ(µ1 − µ2)I− c−2

n τ 2(µ2
1 − µ2

2)

n
X>(−i)X(−i)

]
X>(−i)y(−i)

∣∣∣∣
. |µ1 − µ2|

c−1
n τ

n2

∣∣y>(i)X(i)X
>
(−i)y(−i)

∣∣+ |µ1 − µ2|
c−2
n τ 2

n3

∣∣y>(i)X(i)X
>
(−i)X(−i)X

>
(−i)y(−i)

∣∣ .
For the first term, by Lemmas 2 and 3, it is easy to verify that

c−1
n τ

n2

∣∣y>(i)X(i)X
>
(−i)y(−i)

∣∣ ≤ c−1
n τ

n2

∣∣ε>(i)X(i)X
>
(−i)ε(−i)

∣∣+
c−1
n τ

n2

∣∣ε>(i)X(i)X
>
(−i)X(−i)β0

∣∣
+
c−1
n τ

n2

∣∣β>0 X>(i)X(i)X
>
(−i)ε(−i)

∣∣+
c−1
n τ

n2

∣∣β>0 X>(i)X(i)X
>
(−i)X(−i)β0

∣∣ ≤ C̃1c
−1
n τ 2,

for some constant C̃1 w.p.a.1. The second term can be shown analogously. As a result, we

have sup1≤i≤KW2i(µ1, µ2) ≤ C̃1c
−1
n τ 2|µ1 − µ2| + oP(c−1

n τ 2) w.p.a.1, uniformly for µ1, µ2 ∈
[0, c̃−1]. Combining the bounds for W1i(µ1, µ2) and W2i(µ1, µ2) concludes the proof.

Lemma 21. A1 to A3 defined in (34) converge to zero w.p.a. 1.

Proof. For A1, by using the same argument as Eq. (C18) and noting that λoptn � τ−1,
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λ̂K−CVn �P τ
−1 and τ(λoptn − λ̂K−CVn ) = oP(1), we have

|A1| . cnτ
−2‖β̂cv − β̂opt‖‖β̂cv‖ .P cnτ

−2 · c−1/2
n |λoptn − λ̂K−CVn |τ 2 · c−1/2

n τ = oP(1).

Similarly, A2 = oP(1). To prove A3 = oP(1), define β̃(λn) = 1
n

[
c−1
n λ−1

n I− c−2
n λ−2

n

n
X>X

]
X>y

and write β̃(λ̂K−CVn ) as β̃cv and β̃(λoptn ) as β̃opt for simplicity. By using a similar result as Eq.

(C26) as well as the fact n−1‖X>y‖ . n−1‖X‖‖y‖ .P c
1/2
n according to Lemma 6, we have

cnτ
−2|(β̂opt − β̃opt)>Σ2β0| . cnτ

−2‖β̂opt − β̃opt‖‖β0‖

.cnτ
−2

∥∥∥∥∥
(

1

n
X>X + cnλ

opt
n I
)−1

− c−1
n (λoptn )−1I +

c−2
n (λoptn )−2

n
X>X

∥∥∥∥∥
∥∥∥∥ 1

n
X>y

∥∥∥∥ · ‖β0‖

=oP(cnτ
−2 · c−1

n τ 3 log(p) · c1/2
n · τ 1/2) = oP(c1/2

n τ 3/2 log(p)) = oP(1),

where the last equation holds by Assumption 4. Similarly, cnτ
−2|(β̂cv − β̃cv)>Σ2β0| = oP(1).

Therefore, A3 = oP(1) follows by cnτ
−2(β̃opt − β̃cv)>Σ2β0 = oP(1). Note that

cnτ
−2(β̃opt − β̃cv)>Σ2β0 = n−1τ−2

(
(λ̂K−CVn )−1 − (λoptn )−1

)
β>0 Σ2X

>y

− n−2c−1
n τ−2

(
(λ̂K−CVn )−2 − (λoptn )−2

)
β>0 Σ2X

>XX>y =: B1 +B2.

By Lemma 2 and Lemma 3, we have

B1 = n−1τ−2
(
(λ̂K−CVn )−1 − (λoptn )−1

)
β>0 Σ2X

>Xβ0 + n−1τ−2β>0 Σ2((λ̂K−CVn )−1 − (λoptn )−1)X>ε

�Pn
−1τ−1p−1

(
(λ̂K−CVn )−1 − (λoptn )−1

)
Tr(Σ2X

TX) = oP(τ−1
(
(λ̂K−CVn )−1 − (λoptn )−1)

)
= oP(1).

The same argument proves B2 = oP(1), leading to A3 = oP(1), which concludes the proof.

Lemma 22. The objecive function in (36) is convex with respect to α and jointly concave

with respect to (δ, γ). Additionally, as long as Eq. (38) holds, we have Eq. (35).

Proof. Define Snw = {w
∣∣cnτ−1σxσβ + cα/4σβ ≤ cn‖w‖ ≤ cnτ

−1σxσβ + Cα/σβ}. Analogous to

the result proved by Lemma 15, if the solution ŵB to the following problem

min
w∈Snw

cn
n
‖τ 1/2Σ

1/2
1 Zw̃ − τ−1ε‖2 +

cnτ
−1/2λn√
n

‖Σ−1/2
2 w + τ−3/2β0‖1 −

cnτ
−2

n
‖ε‖2 − Cφ

n (C29)

satisfies cn‖ŵB‖ − cnτ−1σxσβ ∈ [cα/2σβ + ε, Cα/2σβ − ε] w.a.p.1, then the same holds true

for ŵ, which leads to the desired result, (35). In light of this, without ambiguity we now
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directly focus on (C29), and refer to ŵB as ŵ for ease of notation.

Note that for any vector x, it holds that ‖x‖2 = maxu
√
nu>x − n‖u‖2/4, and

‖x‖1 = max‖v‖∞≤1 v
>x. By applying these equations to ‖τ 1/2Σ

1/2
1 Zw̃ − τ−1ε‖2 and

‖Σ−1/2
2 w + τ−3/2β0‖1, and letting ũ := Σ

1/2
1 u, the problem (C29) can be reformulated as:

min
w∈Snw

max
ũ

‖v‖∞≤1

cnτ
1/2

√
n
ũ>Zw − cnτ

−1

√
n
ũ>Σ

−1/2
1 ε− cn‖Σ−1/2

1 ũ‖2

4
+
cnτ

−2λn√
n

v>β0

+
cnτ

−1/2λn√
n

v>Σ
−1/2
2 w − cnτ

−2

n
‖ε‖2 − Cφ

n . (C30)

For convenience, we shall continue to employ u in place of ũ throughout the remainder of

the proof. Let Snu = {u
∣∣‖u‖ ≤ 4τ−1

√
C1Cε}. Similar to the proof of Lemma 14, w.a.p.1,

min
w∈Snw

max
u∈Snu
‖v‖∞≤1

cnτ
1/2

√
n
u>Zw − cnτ

−1

√
n
u>Σ

−1/2
1 ε− cn‖Σ−1/2

1 u‖2

4
+
cnτ

−2λn√
n

v>β0

+
cnτ

−1/2λn√
n

v>Σ
−1/2
2 w − cnτ

−2

n
‖ε‖2 − Cφ

n (C31)

is equivalent to Eq. (C30). Next, we construct an auxiliary optimization problem:

φ(g, h) = max
0≤δ≤4τ−1

√
C1Cε

‖v‖∞≤1

min
w∈Snw

max
‖u‖=δ

Rn(w, v, u), where

Rn(w, v, u) =
cnτ

1/2

√
n
‖w‖g>u− cnτ

1/2

√
n
‖u‖h>w − cnτ

−1

√
n
u>Σ

−1/2
1 ε− cn‖Σ−1/2

1 u‖2

4

+
cnτ

−2λn√
n

v>β0 +
cnτ

−1/2λn√
n

v>Σ
−1/2
2 w − cnτ

−2

n
‖ε‖2 − Cφ

n ,

(C32)

and both g ∈ Rn and h ∈ Rp are standard Gaussian vectors, independent of all other random

variables. Moreover, let S̃n := {w
∣∣cα/2σβ + ε < cn‖w‖ − cnτ−1σxσβ < Cα/2σβ − ε}, define

φS̃cn(g, h) as the optimal value of the optimization problem (C32), with w ∈ Snw ∩ S̃cn.

Lemma 23 characterizes the limiting behavior of the optimal solution to (C31), ŵ, and

in turn, proves the desired (35), under conditions pertaining to the optimization problem

(C32). Therefore, we only need show that conditions outlined in Lemma 23 hold as long as

(38) holds. That is, under (38), we need to prove the existence of the constants φ̄ < φ̄S̃cn
such that for all η > 0, w.a.p.1, φ(g, h) < φ̄+ η and φS̃cn(g, h) > φ̄S̃cn − η.

Following the same argument as in the proof of Lemma 14, after maximizing over the

direction of u and minimizing over the direction of w, Eq. (C32) becomes equivalent to:
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max
0≤δ≤4τ−1

√
C1Cε

‖v‖∞≤1

min
α∈Kα

− cnδ
2

4
µn(α, δ) +

cn
n

(τ 1/2αg − τ−1Σ
−1/2
1 ε)>(Σ−1

1 − µn(α, δ)I)−1

× (τ 1/2αg − τ−1Σ
−1/2
1 ε)− cn

∥∥∥n−1/2τ 1/2δh− n−1/2τ−1/2λnΣ
−1/2
2 v

∥∥∥α
+
cnτ

−2λn√
n

v>β0 −
cnτ

−2

n
‖ε‖2 − Cφ

n ,

where Kα = {α|cnα−cnτ−1σxσβ ∈ [cα/4σβ, Cα/σβ]}. By Lemma 17, the objective function of

the above optimization problem is convex in α and jointly concave in (δ, v). Consequently,

we can interchange the order of min and max by applying Corollary 3.3 in Sion (1958).

Applying ‖x‖ = minγ>0
1

2γ
‖x‖2 + γ

2
to
∥∥∥n−1/2τ 1/2δh> − n−1/2τ−1/2λnv

>Σ
−1/2
2

∥∥∥α, and By

completing the square for terms associated with v, we can rewrite this problem as (36). As

a consequence, we conclude that (36) is convex with respect to α and jointly concave with

respect to (δ, γ).

Finally, based on the above argument, we conclude that under (38), for all η > 0, w.a.p.1,

φ(g, h) < φ̄ + η and φS̃cn(g, h) > φ̄S̃cn − η by choosing φ̄ = − Cλ
8C2

and φ̄S̃cn = − Cλ
100C2

, thereby

verifying conditions outlined in Lemma 23.

Next, we introduce a lemma that resembles Lemma 16.

Lemma 23. Let ŵ denote an optimal solution of Eq. (C31). Regarding φ(g, h) and φS̃cn(g, h),

as introduced and discussed in relation to Eq. (C32), suppose there are constants φ̄ and

φ̄S̃cn with φ̄ < φ̄S̃cn, such that for all η > 0, the following hold w.a.p.1 as n → ∞: (a)

φ(g, h) < φ̄+ η, (b) φS̃cn(g, h) > φ̄S̃cn − η. Under these conditions, we have ŵ ∈ S̃n w.p.a.1.

Lemma 24. There exists some sufficiently small ε > 0, such that for any η > 0, w.p.a.1,

the inequalities in (38) hold.

Proof. By Eq. (C17) in Lemma 18, we have the following result:

− cnδ
2

4
µn(α, δ) +

cn
n

(
τ 1/2αg − τ−1Σ

−1/2
1 ε

)> (
Σ−1

1 − µn(α, δ)I
)−1
(
τ 1/2αg − τ−1Σ

−1/2
1 ε

)
= cnτ

−1σ2
xσ

2
β − cnσ2

εθ3µ
2(σxσβ, δ

∗
1, δ2) + 2σxσβα2 +

cnτ
−2

n
‖ε‖2 + oP(1).

Additionally, by Lemmas 2-3 and p1/2τ−1n−1q−1/2 = o(1) by Assumption 4, we deduce that

− cnγ
2

+ cnγτ−3

2α2 β0Σ2β0 + cnτ−1δ√
n
h>Σ

1/2
2 β0

P−→ − γ1α2

σxσβ
. In the sequel, we examine the asymptotic

behavior of the remaining term in Q̃n(α2, δ3, γ1):
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min
‖v‖∞≤1

{
cnα

2

2γ

∥∥∥n−1/2τ−1/2λnΣ
−1/2
2 v − n−1/2τ 1/2δh− γ

α2
τ−3/2Σ

1/2
2 β0

∥∥∥2
}
. (C33)

By using ‖Σ−1
2 ‖ ≤ c−1

2 , we see (C33) is upper bounded by

cnα
2

2γc2

min
‖v‖∞≤1

{∥∥∥n−1/2τ−1/2λnv − n−1/2τ 1/2Σ
1/2
2 δh− γ

α2
τ−3/2Σ2β0

∥∥∥2 }
=
cnα

2

2γc2

∥∥∥∥(∣∣∣n−1/2τ 1/2Σ
1/2
2 δh+

γ

α2
τ−3/2Σ2β0

∣∣∣− n−1/2τ−1/2λn

)
+

∥∥∥∥2

.

Similarly, with λminΣ−1
2 ≥ C−1

2 , (C33) is lower bounded by cnα2

2γC2

∥∥(|n−1/2τ 1/2Σ
1/2
2 δh +

γ
α2 τ

−3/2Σ2β0| − n−1/2τ−1/2λn
)

+

∥∥2
. Together with Lemma 25, we deduce that, w.p.a.1, (C33)

lies in
[
σ2
xσ

2
β

4γ1C2
Cλ,

σ2
xσ

2
β

γ1c2
Cλ

]
.

Recall that Q̃n(α2, δ3, γ1) is defined in (37). We introduce Q̃upper
n (α2, δ3, γ1), defined as:

− cnδ
2

4
µn(α, δ) +

cn
n

(τ 1/2αg − τ−1Σ
−1/2
1 ε)>(Σ−1

1 − µn(α, δ)I)−1(τ 1/2αg − τ−1Σ
−1/2
1 ε)

− cnγ

2
−

σ2
xσ

2
β

4γ1C2

Cλ +
cnγτ

−3

2α2
β0Σ2β0 +

cnτ
−1δ√
n

h>Σ
1/2
2 β0 −

cnτ
−2

n
‖ε‖2 − Cφ

n .

Similarly, we define Q̃lower
n with the term − σ2

xσ
2
β

4γ1C2
Cλ in Q̃upper

n being replaced by −σ2
xσ

2
β

γ1c2
Cλ.

Consequently, Q̃lower
n ≤ Q̃n ≤ Q̃upper

n . Note also that Q̃lower
n (α2, δ2, γ1) and Q̃upper

n (α2, δ3, γ1)

maintain their convexity in α2 and joint concavity in (δ3, γ1). By employing a similar line

of reasoning as presented in Lemma 18, alongside the definitions of cα and Cα, it becomes

evident that there exists a sufficiently small ε > 0 such that

min
α2∈[ cα

4σβ
,Cα
σβ

]
max
γ1>0
δ3∈Kδ3

Q̃upper
n

P−→ min
α2∈[ cα

4σβ
,Cα
σβ

]
max
γ1>0
δ3∈Kδ3

−δ
2
3θ1

4θ3

+ 2σxσβα2 −
γ1α2

σxσβ
−

σ2
xσ

2
β

4γ1C2

Cλ = − Cλ
8C2

,

and min
α2∈[ cα

4σβ
, cα
2σβ

+ε]∪[ Cα
2σβ
−ε,Cα

σβ
]

max
γ1>0
δ3∈Kδ3

Q̃lower
n

P−→ − Cλ
100C2

.

These results immediately yield the desired inequalities.

Lemma 25. For any α2, δ3 ∈ R and γ1 > 0, w.p.a.1, we have

Cλ
2
≤ cnτ

−1

∥∥∥∥(∣∣∣n−1/2τ 1/2Σ
1/2
2 δh+

γ

α2
τ−3/2Σ2β0

∣∣∣− n−1/2τ−1/2λn

)
+

∥∥∥∥2

≤ 2Cλ. (C34)

Proof. We first establish the following:
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cnn
−1τ−2

{∥∥∥(∣∣∣Σ1/2
2 δ∗1h

∣∣∣− λn)
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∥∥∥2

− E
∥∥∥(∣∣∣Σ1/2

2 δ∗1h
∣∣∣− λn)

+

∥∥∥2
}

P−→ 0. (C35)

Let h̃ := Σ
1/2
2 h ∼ N (0,Σ2). Let us denote the (i, j)-th element of Σ2 as Σ2,ij, thus we have

h̃j|h̃i d
= Σ2,ijΣ

−1
2,iih̃i +

√
Σ2,jj − Σ−1

2,iiΣ
2
2,ijg1, where g1 is a standard Gaussian random variable

independent of h̃i. Consequently, Cov
(

(|δ∗1h̃i| − λn)2
+, (|δ∗1h̃j| − λn)2

+

)
equals

E
{

(|δ∗1h̃i| − λn)2
+E
[
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+|h̃i
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=E
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+E
[
η(h̃i)

2 − η(g2)2
∣∣∣h̃i]} ,

where η(x) :=
(∣∣∣δ∗1 (Σ2,ijΣ

−1
2,iix+

√
Σ2,jj − Σ−1

2,iiΣ
2
2,ijg1

)∣∣∣− λn)
+

and g2 ∼ N (0,Σ2,ii) is in-

dependent of both g1 and h̃i. In addition, note that
∣∣∣η(h̃i)

2 − η(g2)2
∣∣∣ ≤ |δ∗1Σ2,ijΣ

−1
2,ii(h̃i−g2)| ·∣∣∣η(h̃i) + η(g2)

∣∣∣ . Applying the Cauchy-Schwarz inequality to the above inequality yields

E
[
η(h̃i)

2 − η(g2)2
∣∣∣h̃i] . (E(|Σ2,ijΣ

−1
2,ii(h̃i − g2)|2
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(
E
(
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2
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. |Σ2,ijΣ
−1
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√

Σ2,ii + h̃2
i

√
Σ2

2,ijΣ
−2
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2
i + EY∼N (0,1)(|δ∗1Σ2,jjY | − λn)2
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(
|Σ2,ij||h̃i|+

√
EY∼N (0,1)(|δ∗1Σ2,jjY | − λn)2

+

)
,

where the last step is due to c2 ≤ Σ2,ii ≤ C2. Therefore, by Lemma 11, we have

Cov
(

(|δ∗1h̃i| − λn)2
+, (|δ∗1h̃j| − λn)2

+

)
.|Σ2,ij|(λn + 1)

√
EY∼N (0,1)(|δ∗1Σ2,jjY | − λn)2

+E(|δ∗1h̃i| − λn)2
+ + Σ2

2,ij(λ
2
n + λn)E(|δ∗1h̃i| − λn)2

+.

Further, by Lemma 10 and Eq. (9), we have λn = o(log(p)). The above inequality leads to:

Var

(
cnn

−1τ−2

∥∥∥∥(∣∣∣Σ1/2
2 δ∗1h

∣∣∣− λn)
+

∥∥∥∥2
)

=
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nn
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nn
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+
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≤ c2
nn
−2τ−4

{
log(p)C2
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i=1

E(|δ∗1h̃i| − λn)2
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(
p∑
j=1
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+
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+ (log(p))2C2
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}
= O

(
c1/2
n n−1/2τ−1 log(p) + cnn

−1τ−2 log2(p)
)

= on(1),

where we use
∑p

j=1 Σ2
2,ij ≤ C2

2 and Cauchy–Schwartz inequality in the second step. This

leads to Eq. (C35). Using the same approach, we can prove∥∥∥∥(∣∣∣Σ1/2
2 δ∗1h

∣∣∣− λn + log−1(p)
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)
+
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= oP(c−1
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Now we are ready to establish Eq. (C34). Note that w.p.a.1, we have

cnτ
−1

∥∥∥∥(∣∣∣n−1/2τ 1/2Σ
1/2
2 δh+

γ

α2
τ−3/2Σ2β0
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)
+

∥∥∥∥2
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∣∣∣− λn + log−1(p)
)

+

∥∥∥∥2

,

where the inequality is given by Lemma 12 and the facts that τ log4(p) = o(1) and

n1/2τ 1/2p−1/2q−1/2 log2(p) = o(1) by Assumption 4. Similarly, the left-hand-side is lower

bounded by 1
2
cnn

−1τ−2E
∥∥(∣∣Σ1/2

2 δ∗1h
∣∣ − λn − log−1(p)

)
+

∥∥2
w.p.a.1. Finally, by Lemma

10 and the fact that λn = o(log(p)), it is not hard to verify that E
∥∥(|Σ1/2

2 δ∗1h| −
λn − log−1(p)

)
+

∥∥2
= E
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. Together with the definition that Cλ =

limn→∞ pn
−2τ−2E
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)
+

∥∥2
given by Eq. (9), we conclude the proof.

Lemma 26. Eq. (43) defined in the proof of Theorem 5 holds as n→∞.

Proof. Note that ‖β̂ − β̃‖2 is upper bounded by

2

n2
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>MW (Uβ0 + ε)−RUU
>(Uβ0 + ε)‖2 +

2

n2
‖(RU − R̃U)U>(Uβ0 + ε)‖2

≤ 4

n2
‖RUU

>MW ε−RUU
>ε‖2 +

4

n2
‖RUU
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+
4

n2
‖(RU − R̃U)U>ε‖2 +

4

n2
‖(RU − R̃U)U>Uβ0‖2.
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For the first term, using ‖RU‖ .P np
−1τ , ‖U>U‖ .P p, and Lemma 2, we have

4

n2
‖RUU

>MW ε−RUU
>ε‖2 �P

1

n2
Tr((MWU − U)R2

U(U>MW − U>))

=
1

n2
Tr(U>W (W>W )−1W>UR2

U) ≤ 1

n2
‖R2

U‖‖U>U‖Tr(W (W>W )−1W>) .P p
−1τ 2 rank(W ).

Similarly, it can be shown that the second term is of order OP(p−1τ 2 rank(W )). In addition,

by Lemma 2, and using the fact that Tr(AB) ≤ ‖A‖Tr(B) and ‖R̃U‖ .P np
−1τ , we have

4

n2
‖(RU − R̃U)U>ε‖2 �P

1

n2
Tr(U(RU − R̃U)2U>) ≤ 1

n2
‖U>U‖Tr((RU − R̃U)2)
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p

n2
Tr((RU(R̃−1

U −R−1
U )R̃U)2) =

p

n4
Tr((RUU

>W (W>W )−1W>UR̃U)2)

≤ p

n4
‖RU‖2‖R̃U‖2‖U>U‖2 Tr(W (W>W )−1W>) .P p

−1τ 4 rank(W ).

Similarly, the final term is of order OP(p−1τ 4 rank(W )). To sum up, we have ‖β̂ − β̃‖2 =

O(p−1τ 2 rank(W )) = o(n2p−2τ 3), since rank(W ) = o(n2p−1τ).
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