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Abstract

No, it can help. To support our argument, we show that economic forecast

models driven by latent factors are not sparse. This fact allows us to establish a

compelling result that including noise in predictions yields greater benefits than ex-

cluding it, which contradicts the common practice of removing noise from predictors

via variable selection techniques. Empirically, we apply a pseudo-OLS approach

to four real-data applications including forecasting the U.S. inflation rate. The

performance of our method that interpolates the in-sample data surpasses many

commonly used models that rely on dimension reduction.
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1 Introduction

In the realm of economic forecasting, the forecast outcome is typically shaped by a parsi-

monious set of low-dimensional economic factors summarizing the state of the macroecon-

omy, financial markets and policy-related indices. These factors are, however, unobserved

(latent) economic variables which cannot be directly used for economic forecasts. Instead,

economists often rely on high-dimensional predictors that are considered to contain pre-

dictive information regarding the outcome variable, implicitly assuming that they are

driven by the latent factors. The informativeness of these predictors often varies, with

some providing robust predictive signals and others serving as mere noise, exhibiting

minimal conditional predictive power. Consequently, it is customary for economists to

attempt variable selection and employ dimension reduction techniques to enhance the

precision of economic forecasts, including Lasso, Ridge, principal components analysis

(PCA), and partial least squares, among others (Sala-I-Martin, 1997; Connor and Kora-

jczyk, 1988; Stock and Watson, 2002; Bai and Ng, 2006; Belloni et al., 2014; Kelly and

Pruitt, 2013; Jurado et al., 2015). See Ng (2013) for an excellent review for variable

selections in economic forecasts and the references therein.

However, variable selection is often not innocuous and comes with at least three

challenges to empirical studies. First, as shown by many researchers, consistent variable

selection is difficult to achieve (Leeb and Pötscher, 2008; Belloni et al., 2012, 2014).

Secondly, recent empirical findings provide evidence that the sparsity assumption is fragile

in many economic settings, e.g., Giannone et al. (2021); Kozak et al. (2020); Kolesár

et al. (2023). Several recent empirical studies in economic forecasting have illuminated

the fact that optimal forecasting behavior is typically not achieved by sparse models. For

instance, using four empirical forecast exercises, Giannone et al. (2021) concluded that:

“the empirical support for low-dimensional models is generally weak... economic data are

not informative enough to uniquely identify the relevant predictors when a large pool of

variables is available to the researcher.” Kolesár et al. (2023) documented that the sparsity

assumption is fragile in empirical studies and rejected it in three empirical applications

when comparing with the ordinary least squares estimator. A parallel observation is also

supported by Kozak et al. (2020) in the context of asset pricing.

The third and perhaps most surprising challenge is that, variable selection, even if

perfectly conducted, may not yield optimal performance for predictions. Consider a hy-

pothetical scenario in which an economist has collected a large number of predictors —

some of them are informative for forecasting the outcome variable of interest, whereas
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others are pure noise. Assuming the economist has a priori knowledge distinguishing

informative predictors from noise, it is then widely accepted that the economist should

initiate variable selection by excluding all noise from the predictor set. In this hypothet-

ical scenario, variable selection is a straightforward task because she knows the identities

of the informative predictors and noise.

Strikingly, we argue that in most economic forecasting scenarios, the economist should

retain noise in her set of predictors. Formally, we prove a surprising result — under

some conditions including noise in predictions yields greater benefits than its exclusion.

Furthermore, if the total number of predictors is not sufficiently large, she should inten-

tionally add more noise. In doing so, the overall forecast performance will surpass that

of many benchmark predictors reliant on dimension reduction techniques such as Lasso,

Ridge, and PCA, even if these methods use the informative predictors only and discard

the uninformative features.

This paper makes three contributions. First, we formally show that a class of impor-

tant economic forecast models is better approximated by dense models rather than sparse

models (Theorem 1). We consider a large number of economic variables driven by a low-

dimensional factor structure, and are interested in forecasting one of the variables by the

others. As the low-dimensional latent variables (factors) are unobservable, in empirical

econometric applications the linear regression is the “go-to model” for such predictions;

it serves as a reduced-form “working model” for approximation. This is the scenario of

economic forecasting we consider throughout the paper. In response to the empirical

findings elucidated in previous studies, we provide a theoretical underpinning by showing

that the predictive signal is densely distributed among the high-dimensional regression

coefficients of the working model, instead of sparsely concentrating on few predictors.

This theoretical explanation sheds light on the non-sparse nature of economic forecasting

models as observed in the recent empirical literature.

As the second contribution, we show how economic forecasts can benefit from the

blessing of overfitting in the presence of many potentially uninformative predictors and

noise, given the non-sparse nature of economic forecasting models (Theorem 2). Rather

than attempting variable selection, we recommend intentionally increasing the dimension

by adding noise and using the pseudoinverse ordinary least squares (pseudo-OLS), which

simply replaces the inverse matrix in the usual definition of OLS by the Moore–Penrose

generalized inverse. This estimator is always well defined regardless of the dimensionality.

Pseudo-OLS is often referred to as “ridgeless regression” in the machine learning literature

(e.g., Hastie et al. (2022)), as it equals the limit of the ridge estimator with the penalty
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approaching zero.

Contrary to the conventional statistical wisdom, which asserts that overfitting sig-

nificantly undermines forecast performance by inflating out-of-sample variance, we show

that this is no longer the case when a substantial number of additional predictors are

included, even if these predictors constitute pure noise. The insight lies in the crucial

observation that, with a sufficiently large total number of predictors, denoted by p, the

overall variance is diversified away. Consequently, out-of-sample variance decays as p

approaches infinity. This phenomenon is the embodiment of the “double descent/benign

overfitting” phenomenon in the machine learning literature, e.g., e.g., Belkin et al. (2019)

and Arora et al. (2019). That is, as the model complexity exceeds the sample size and

continues increasing, a second descent of the prediction risk occurs in the extremely over-

parametrized regime. Contrary to the aforementioned statistical theories, in which all

features are important and intuitively each additional feature adds information, we work

in setting where the true model is low dimensional and the additional variables are pure

noise. This require the development of new techniques to establish a benign overfitting

results.1 We explore the intuition that the dense features of economic forecasting mod-

els diversify away overall variance, even when a significant proportion of predictors are

completely uninformative about the outcome, i.e. pure noise.

In practice, we must determine the total number of predictors (the sum of informative

and uninformative predictors) p as a tuning parameter. We propose a way to determine

the total number of predictors in a way such that the benefits derived from reducing

variance outweigh the costs associated with bias inflation. At the same time, it turns

out that the procedure remains quite robust with respect to the choice of p. We suggest

choosing p using standard cross-validation for both cross-sectional predictions and time-

series predictions and illustrate that it works remarkably well in many applications.

In one of the empirical illustrations, we apply pseudo-OLS with intentionally added

noise to forecast the annual U.S. equity premium, using the extensively utilized dataset

presented by Welch and Goyal (2008). We find that the addition of 300 ∼ 10, 000

noise into the original set of sixteen predictors yields a noteworthy 10% out-of-sample R2

accuracy. Remarkably, this finding remains highly robust to the number of included noise.

The performance surpasses many sophisticated machine learning models for forecasting

the U.S. equity premium.

The last contribution presents a compelling finding that forecasting relying on “per-

fect variable selections” does not lead to optimal forecasting performance (Theorem 3).

1We present a more elaborate discussion of the formal differences in Section 2.4.
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Specifically, we explore an ideal scenario when noise has been eliminated from the pre-

dictor set and all informative predictors have been retained. In this case, Ridge regres-

sion fails to achieve the optimal forecast mean squared error when predictive signals are

densely distributed among the informative predictors.2

Theoretical analysis on extremely overparametrized regime has received extensive at-

tentions in the recent statistical and econometric literature. Hastie et al. (2022); Lee

and Lee (2023); Chinot et al. (2022) studied the pseudo-OLS regressions in the over-

parametrized regime for linear forecasting models. Besides, Mei and Montanari (2019)

studied the bias-variance tradeoff in random feature regressions. Other related papers in

the economic literature include Spiess et al. (2023) for treatment effects studies, and Fan

et al. (2022) for asset pricing. Kelly et al. (2024) and Didisheim et al. (2023) observe an

interesting phenomenon, which they dub “the virtue of complexity”. They show that the

Sharpe ratio monotonically increases as model complexity grows in the overparametrized

regime. Most of the existing work, however, are concerned with weakly correlated de-

signs, whereas informative predictors in many economic forecasts are strongly correlated

due to the common economic factors. Finally, our result is related to the “training with

noise” literature (Sietsma and Dow, 1991; Bishop, 1995), who showed that addition of

random noise to the input data during training can lead to improvements in neural net-

work generalization. The difference is that in “training with noise”, random vectors are

being added to each input predictor, who “smear out” the importance of each single

data point, making the network just capture the overall pattern but be less affected by

individual data points. In contrast, we add noise as additional predictors and merge with

existing features thus increasing the dimension. In our setting, the increased forecasting

performance is mainly due to the variance diversification.

We adopt the following notation. Let ∥A∥ denote the ℓ2 norm if A is a vector, or the

operator norm if A is a matrix. Let σj(·) be the jth largest singular value of a matrix; and

let σmin(·) and σmax(·) respectively denote the minimum and maximum nonzero singular

values of the matrix. For two sequences ap,n and bp,n, we denote ap,n ≪ bp,n (or bp,n ≫ ap,n)

if ap,n = o(bp,n). Also, denote by ap,n ≍ bp,n if ap,n ≪ bp,n and ap,n ≫ bp,n.

2We focus on Ridge regression as the benchmark for our theoretical investigations, complemented by
comparisons with Lasso and PCA in our numerical analyses.

5



2 The Economic Forecast Model

2.1 The Oracle Model

The objective is to forecast an outcome variable yt. We assume that the true data

generating process (DGP) for yt is:

yt = ρ′ft + ϵy,t, t = 1, ..., n (true DGP) (2.1)

where ft is a vector of low-dimensional (dim(ft) = K) latent factors. The model admits an

intercept term by setting the first component of ft to one. Note that while observations are

indexed by subscript t, we allow cross-sectional forecasts, in which yt denotes the outcome

of the t-th subject, or the time series forecast where observations follow a temporal order.

In addition, the economist observes a set of high-dimensional regressors

Xt = (x1,t, ..., xp,t)
′, dim(Xt) = p

which potentially carries the predictive information about yt. We assume thatXt depends

on the common factors through the following factor model:

xi,t = λ′ift + ui,t, E(ui,t|ft, ϵy,t) = 0, i = 1, ..., p (2.2)

where λi is a vector of loadings for the i-th variable. The mean independence condition

E(ui,t|ft, ϵy,t) = 0 entails that the predictive power of xi,t stems from the latent factors

only. Linking yt andXt via a common factor structure is common in economic forecasting,

e.g. Forni and Reichlin (1998) and De Mol et al. (2008).

We emphasize that ft may be weak in the sense that some components of Xt may not

depend on ft. In this case Xt can be partitioned as:

Xt =

(
XI,t

XN,t

)
=

(
ΛI

0

)
ft + ut, (2.3)

where ΛI is a p0 ×K matrix of nonzero λi that loads on the factors. Hence

Xt :

informative predictors: XI,t = ΛIft + uI,t, dim(XI,t) = p0

noise: XN,t = uN,t, dim(XN,t) = p− p0.
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Here for ease of exposition we place XI,t into the first p0 elements of Xt; in practice the

forecast outcomes are invariant to re-ordering of the regressors. We allow the identities

of informative predictors and noise to be either known or unknown. Our methodology

treats the two cases equally, and we refrain from employing variable selection procedures

to screen off the noise.

Our paper considers the following scenarios that are routinely encountered in empirical

studies:

Scenario I: Many Predictors With Noise. In economic forecasting, researchers often

collect a large number of predictors which are potentially correlated with the outcome

variable of interest. But many of the collected predictors may contain little predictability.

Meanwhile, economic theory typically provides no clear guidance about which predictors

signifies the factors and which do not. As a result, even though the factors are strong

within the informative predictors, the strength can be diluted over all predictors due to

the presence of many noise variables. This is the case where the partition (X ′
I,t, X

′
N,t) is

unknown.

Scenario II: Intentionally Included Noise. Suppose researchers have a priori knowl-

edge that the collected p0 predictors are all informative, but p0 is not much larger than the

sample size. Traditional statistical wisdom suggests using only the informative predictors.

However, as a novel finding in this paper, we shall argue that many pure noise variables

should be intentionally included to make the total number of predictors Xt = (XI,t, XN,t)

much larger than the sample size. A key contribution of this paper is revealing the benefit

of including many noise variables in the economic forecast context. This is the case where

the partition (X ′
I,t, X

′
N,t)

′ is known.

The asymptotic regime. We require p0 → ∞, but p − p0 = dim(XN,t) can be either

a bounded constant (or zero) corresponding to the case that most (or all) predictors

are informative, or dim(XN,t) → ∞ much faster than p0 and n, corresponding to the

case of many pure noise variables. In addition, we explicitly require the total number of

predictors p be much larger than the sample size: p/n→ ∞. In the case that the number

of collected predictors are not that many, this means one can intentionally add pure noise

so that p/n→ ∞.

2.2 The Working Model

While (2.1) underlines the true DGP, it is infeasible in applications as the factors are

latent. One standard approach is first estimating the latent factors from model (2.2)
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using principal components analysis (PCA), dynamic factors, or partial least squares,

and then conducting forecast based on the estimated factors.

We proceed differently. We use the collected predictors Xt to forecast, potentially

with the inclusion of many noise variables, XN,t, in the following working model:

yt = X ′
tβ + et =

p∑
i=1

xi,tβi + et. (2.4)

The model (2.4) is estimated using pseudoinverse ordinary least squares (pseudo-OLS):

β̂ =

(
n∑
t=1

XtX
′
t

)+ n∑
t=1

Xtyt, (2.5)

where (
∑n

t=1XtX
′
t)

+
denotes the pseudoinverse of the design matrix.3 This estimator β̂

is exactly the ordinary least squares if p < n, whereas the pseudo-inverse makes sure that

it is well defined regardless of the p/n ratio, including dim(Xt) = p > n. This estimator

is also known as “ridgeless regression”, as is shown by Hastie et al. (2022):

β̂ = lim
λ→0+

(
n∑
t=1

XtX
′
t + λI

)−1 n∑
t=1

Xtyt.

We would like to emphasize that β̂ perfectly interpolates the in-sample data in the sense

that if p ≥ n,

yt = X ′
tβ̂, t = 1, ..., n (all in-sample data).

Let OOS denote a set of out-of-sample predictors, where we observe Xnew ∈ OOS.
We forecast its outcome variable using

ŷnew = X ′
newβ̂. (2.6)

Before we conclude this subsection, we add a remark about computation. To efficiently

compute β̂ in high-dimensions, respectively write X and Y as the n × p and n × 1

matrix and vector of Xt and yt. Then β̂ = (X ′X)+X ′Y, where (X ′X)+ is the pseudo-

inverse of a p × p dimensional matrix. In many numerical studies, we expect p to be of

3The pseudoinverse (or Moore–Penrose inverse) of a symmetric matrix A is defined as A+ = U1D
−1
1 U ′

1,
whereD1 is a diagonal matrix consisting of non-zero eigenvalues of A, and U1 is the matrix whose columns
are the eigenvectors corresponding to the nonzero eigenvalues.
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several thousands or even larger, so it is recommended to use the “reduced singular value

decomposition” (reduced-SVD) to efficiently compute the Moore-Penrose pseudoinverse:

Let Sn denote the n× n diagonal matrix of nonzero singular values of X; let Un denote

the n × n matrix of the left singular vectors, and Vn denote the p × n matrix of right

singular vectors corresponding to the top n singular values. Then

β̂ = VnS
−1
n UnY.

This only requires computing the reduced SVD instead of the full-sized SVD. When

the sample size is moderate, it is much faster than the usual pseudoinverse functions in

leading computing software, such as ‘pinv’ in Matlab.4

2.3 The Fundamental Questions and Main Results

The objective of this paper is to answer the following two fundamental questions: Is the

economic forecast model, as defined in Section 2.1, better approximated by a sparse or a

dense model? In addition, should economists attempt variable selection before conducting

forecasts?

2.3.1 Practical recommendations

Consider a hypothetical scenario where it is known that the first p0 (with p0 < n) pre-

dictors are all informative and the other p − p0 are pure noise. Then the well-accepted

statistical wisdom will naturally guide us to exclude the noise and use the informative

predictors only, namely to predict yt using the following model:

yt = X ′
I,tβI + et =

p0∑
i=1

xi,tβi + et.

The coefficients can be estimated using either OLS or Ridge regression. Indeed, we will

show that if the idiosyncratic components in ut in (2.2) are mutually uncorrelated, then

4The reduced SVD computes fast when n is not very large. The function is U, S, V =

np.linalg.svd(X, full matrices=False) in Python, and is [U, S, V] = svd(X,‘econ’) in Mat-
lab. Alternatively, one can use beta = np.linalg.svd(X)@Y in Python, because (X ′X)+X ′ = X+.
When the sample size is also large, however, it is faster than reduced-SVD by directly solving the system
of equations Aβ = B, where A = X ′X + ϵI for a very small ϵ > 0 and B = X ′Y . In Python, this can be
done via beta= np.linalg.solve(A, B).
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the true latent-factor-based DGP induces the following linear regression model:

yt = X ′
I,tβI +X ′

N,tβN + et, with βN = 0 if Cov(ut) is diagonal. (2.7)

Since the identities of XI,t and XN,t are known, the researcher may want to exclude XN,t

from the forecast.

Surprisingly, we shall argue that for the economic forecast problems under considera-

tion, if p0 < n it is better to retain the noise in the forecast model. In fact, the objective

of this paper is to argue for the following practical recommendations:

I. If it is believed that the informative predictors are driven by a set of latent economic

state variables (factors), then economists should retain all the predictors and use

pseudo-OLS (2.5)-(2.6), instead of attempting variable selections.

II. If the number of predictors is not sufficiently large, then the economist should inten-

tionally add more features until p is sufficiently large. This can be beneficial even

if the added features have little or no predictability, e.g., pure noise.

The insight lies in the observation that, driven by a few latent factors, the predictive

signals are densely distributed among high-dimensional coefficients. Consequently, the

overall variance of the forecast is diversified away, even when a significant proportion of

predictors consist of pure noise. Meanwhile, the dense predictive signals maintain the

forecast bias at a modest level.

2.3.2 An improvement: Noise-denoise procedure

As one of the practical recommendations, if the number of informative predictors in the

dataset is not sufficiently large relative to the sample size, we recommend adding noise

to intentionally increase the overall dimensionality. This rationalizes the idea that a

substantially overfit model reduces the out-of-sample variance. In the meantime, inspired

by the classical Rao-Blackwell argument in the statistical literature, this predictor can

be further improved.

Recall that (XI , Y ) denotes the in-sample data, where XI is the data matrix of the

original predictors. Write the out-of-sample features as

Xnew = (X ′
new,I , X

′
new,N)

′
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where Xnew,I denotes the set of pre-determined informative predictors that come with the

data, and Xnew,N is the intentionally added noise. Accordingly, we partition β̂ = (β̂′
I , β̂

′
N)

′

as the coefficients corresponding to (X ′
new,I , X

′
new,N)

′.

Noise-denoise forecast: After intentionally adding noise and obtaining β̂, we simply

forecast using

ŷnew,I := (X ′
new,I , 0

′)′ β̂ = X ′
new,I β̂I .

That is, we only pair the out-of-sample informative predictor Xnew,I with the trained

coefficient β̂I . Alternatively, we can also compute this ŷnew,I multiple times with different

sets of generated noise XN and then average the forecasts, as described in the following

algorithm:

Algorithm 1. Denoised estimator

Step 1 (adding noise): Generate n × (p − p0) i.i.d. N(0, 1) matrix as the noise XN .

Merge with XI so that X = (XI , XN), and β̂ = (X ′X)+X ′Y. Let β̂I be the subvector

of β̂ corresponding to XI and ŷnew,I := X ′
new,I β̂I .

Step 2 (denoising): Repeat Step 1 for B times to obtain ŷ1new,I , ..., ŷ
B
new,I . Forecast using

ŷ∗new := 1
B

∑B
b=1 ŷ

b
new,I .

The above algorithm is designed to approximate

E(ŷnew,I |XI , Y,Xnew,I),

which is a forecast insensitive to the realization of XN as its randomness is averaged out

via the B repetitions.

2.3.3 Overview of main results

We will establish the following three main results:

1. (Theorem 1) In the predictive model

yt = X ′
tβ + et, E(et|Xt) = 0,

the coefficient β is dense in the sense that ∥β∥ → 0.
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2. (Theorem 2) If (p0, p, n) satisfies (recall p − p0 is the number of noise variables in

the predictor set):
n

p
→ 0,

p

p0n
→ 0,

then pseudo-OLS can achieve the oracle predictive risk, that is, its predictive mean

squared error (MSE) asymptotically converges to that of the latent factors ft, as if

the factors were directly used for forecast.

3. (Theorem 3) In the case where p0/n→ c ∈ (0, 1), that is, there are moderately many

informative predictors and only informative predictors are used without adding

noise, the predictive MSE of both OLS and Ridge are strictly larger than the oracle

predictive risk and thus are sub-optimal.

These results provide a clear answer to the fundamental questions we raised in the

beginning of this paper: Economic forecasts can be better approximated by non-sparse

models, and moreover the inclusion of noise in predictions yields greater benefits than its

exclusion.

2.4 Relation with the linear double descent literature

Contrary to conventional statistical wisdom, which asserts that overfitting undermines

forecast performance by inflating out-of-sample variance, we show that this is no longer

the case when a substantial number of additional predictors are included. Instead, the

analysis moves into the new regime of the double descent phenomenon on the prediction

risk, which has gained increasing attention in the machine learning community. That is,

as the model complexity exceeds the sample size and continues to grow, a second descent

of the prediction occurs in the extremely overparametrized regime. It was first illustrated

in the empirical work by Belkin et al. (2019), Hastie et al. (2022), and Arora et al. (2019),

and its theory has been explored in linear models with Ridge regressions, e.g., Mei and

Montanari (2019); Belkin et al. (2020); Dobriban and Wager (2018); Lee and Lee (2023).

Our work differs from the latest statistical literature on overparametrized models. The

latter treats the high-dimensional regression model with random coefficient β drawn from

a prior distribution as the true underlying DGP of the outcome data. In addition, the

predictor design matrix is assumed to have bounded eigenvalues, implying that predictors

are nearly mutually independent. Our study distinguishes itself in three crucial aspects.

Firstly, many economic objectives for forecasts are inherently linked to only a few

latent factors determining the economic status of the forecasting environment. Inspired
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by this, we assume that model (2.1) is the true DGP, while treating model (2.4) as a

working model. Given this specification, the observed high-dimensional predictors Xt

do not “cause” the outcome variable yt but instead their predictive power is inherited

from the latent economic factors. As a direct consequence, we prove that the prediction

coefficients are densely distributed across predictors (∥β∥ → 0), which invalidates classical

forecasting methods based on dimension reductions. This observation is closely aligned

with empirical findings in Giannone et al. (2021).

Secondly, the latent factors deliver high mutual correlations among the informative

predictors, causing a distinctive approximate low-rank representation in the predictor

covariance matrix: there are a few eigenvalues growing fast to infinity. This structure is

typically excluded by the random matrix theory in the recent statistical literature of the

extreme overparametrization. For example, Hastie et al. (2022) derived the formula of

predictive mean squared errors under what they called “latent space model”, where the

eigenvalues of the covariance matrix Xt are assumes to be bounded. In sharp contrast,

this paper considers economic forecasting models with latent factors, where the top K

eigenvalues of Cov(Xt) diverge to infinity at an order
√
nψp,n, where ψp,n measures the

strength of factors.

Lastly, we specifically focus on the impact of including a substantial amount of noise

on economic forecasts and arrive at surprising results — adding noise transpires to be

advantageous rather than detrimental. In the regime of moderately many informative

predictors when p0 is proportional to n, in particular, using only the informative predictors

without intentionally added noise does not achieve the optimal forecast mean squared

error.

2.5 Why not Lasso or PCA?

When the collection of predictors contains many genuinely uninformative variables (noise),

the Lasso is one of the most popular forecasting methods, as the use of ℓ1-penalty can

often remove the noise and thereby achieving dimension reduction. This is no longer the

case, however, in economic forecasting exercises where the informative predictors carry

predictive information through latent economic factors, for instance as macroeconomic

variables and state variables. In addition, there are two key features that differentiate

(2.7) from the usual setting of the Lasso forecasts: first, the latent factors introduce

strong collinearity and substantially slowing down the statistical rate of convergence for

the Lasso (e.g., Hansen and Liao (2018)). Secondly, the latent factors make the predictive
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signals densely distributed among many informative predictors, under which Lasso can-

not select variables with satisfactory representation (Chernozhukov et al., 2017; Giannone

et al., 2021). In other words, the model is not sparse enough.

Meanwhile, PCA is another popular method to effectively extract the latent “indices”

(or factors) from the large set of predictors. The quality of the estimated factors critically

depends on the strength of the factors, in our notation, p0. When p0/p→ 0 fast, however,

it is practically very difficult to correctly estimate K, the number of factors. Even if K is

correctly specified, the factors are still estimated poorly. Above all, the presence of weak

factors poses fundamental challenges, and recent work in the literature aims at feature

selections to remove noise and therefore enhance the factor strength, e.g., Giglio et al.

(2023) and Chao and Swanson (2022).

In contrast, the pseudo-OLS forecast recommended in this paper does not require

variable selections or determining the number of factors and is robust to weak factors. It

works well so long as p0 → ∞ (sufficient informative predictors) and p is large. When p

is not large enough, just add noise!

3 Economic Forecasts are Non-Sparse: A Theoreti-

cal Perspective

Both the target of prediction yt and the predictors Xt in this paper’s model are driven

by low-dimensional latent variables:

yt = ρ′ft + ϵy,t (3.1)

Xt =

(
XI,t

XN,t

)
=

(
ΛI

0

)
ft + ut, (3.2)

where dim(Xt) = p, dim(XI,t) = p0 and dim(ft) = K. As the true factors are unobserv-

able, the economist carries out forecasts using

yt = X ′
tβ + et (working model, the model for practical forecast). (3.3)

Recently, a multitude of influential empirical studies have documented that compet-

itive economic forecast results are often aligned with non-sparse models. This section

aims to provide a theoretical understanding of this finding, by answering two questions:
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Question 1: Is β in (3.3) a dense or sparse coefficient vector?

Question 2: Can the working model generate forecasts with the same accuracy as if

the true factors were known?

In particular, Question 2 addresses the gap between the two models: if (β, ρ, ft),

could have been perfectly learned from the data, can the two models produce the same

predictive MSE? Note that MSE would respectively converge to the marginal variances

Var(ϵy,t) and Var(et) for the two models, hence this question is essentially asking whether

the two residual variances are asymptotically the same.

The answers to both questions are affirmative as p0 → ∞. There are economic theories

that imply models depending on low dimensional state variables (factors), e.g. Merton

(1973) or Lucas (1978). Empirically, these unobserved state variables can be approxi-

mated by high dimensional observable variables (Xt) collected by the economist. While

none of the observable variables perfectly substitute for the latent state variables, their

combination provides a strong approximation. This, in turn, implies that the empirical

economic model is better approximated by dense models. This approximation is analo-

gous to using many weak instruments to achieve strong identification power, where each

individual instrument alone offers weak identification power.

Let us assume the following DGP for Xt:

Assumption 1 (DGP of Xt). (i) The factor-strength among XI,t is denoted by ψp,n.

That is, there is a sequence ψp,n → ∞, ψp,n = O(p0), such that (Recall that σi(A)

denotes the i-th largest singular value of matrix A)

σK (Λ′
IΛI) ≍ σ1 (Λ

′
IΛI) ≍ ψp,n.

(ii) E(ρ′ft|Xt) = β′Xt for some β ∈ Rp.

(iii) The top K eigenvalues of Λ′Eftf ′
tΛ/ψn,p are distinct, where Λ = (Λ′

I , 0
′)′.

(iv) E(ϵy,t|ft, ut) = 0, and E(ut|ft, ϵy,t) = 0.

This assumption allows ψn,p/p0 to decay to zero, so that the informative predictors

may be “semi-strong”. In addition, to make the theoretical derivation transparent in

closed-forms E(ρ′ft|Xt) is assumed to be a linear function of Xt, which is commonly

imposed in classical regression theory.

The following theorem provides answers to both Questions 1 and 2 raised in this

section.
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Theorem 1. Suppose (3.1) and Assumption 1 holds. Also suppose the eigenvalues of

Cov(ut) are bounded away from both zero and infinity. In addition, ∥ρ∥ ≤ C for some

absolute constant C. Then (3.3) holds:

yt = X ′
tβ + et, with E(et|Xt) = 0,

where:

(i) β = Cov(ut)
−1Λ(Σ−1

f + Λ′ Cov(ut)
−1Λ)−1ρ, with

∥β∥2 = O(ψ−1
p,n).

(ii) Var(et) = Var(ϵy,t) +O(ψ−1
p,n) as ψn,p → ∞.

This theorem characterizes the high dimensional coefficient β on the collection of

predictors.5 The expression in result (i) yields an important insight: the working model

for economic forecasts is non-sparse. This theoretically supports the empirical observation

in Giannone et al. (2021), highlighting that in many economic forecast problems, signals

do not concentrate on a single sparse model, but rather “on a wide set of models that

often include many predictors.” As a result, forecasting based on sparse variable selection

(e.g., Lasso) will fail to fully capture the predictive power in the forecast coefficients.

In addition, Result (ii) of Theorem 1 shows that if the strength of the factors, indexed

by ψn,p, diverges as n, p → ∞, then predicting using the working model (Xt-based) will

be as good as using the oracle model with the unknown factors ft.

Below we provide an example, where Theorem 1 directly answers a critical question

in the asset pricing literature.

Example 1 (Stochastic Discount Factors). The stochastic discount factor (SDF) plays

a pivotal role in asset pricing theory (e.g., Cochrane (2009)). In an unconditional asset

pricing model, the SDF, Mt, satisfies

EMtRt = 0

for any asset’s excess return Rt. If asset returns are explained by a set of risk factors,

5Models (3.1)-(3.3) are also widely used in program evaluations using panel data, e.g., Hsiao et al.
(2012). Also see Shi and Huang (2023) for a variable selection approach for post-selection inference when
β is dense.
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ft, with factor risk premium λ, then it can be shown that

Mt = λ′ Cov(ft)
−1ft + ϵt + oP (1), dim(Rt) → ∞.

where ϵt depends on the idiosyncratic errors in Rt. The above expression decomposes

the SDF into a systematic component that is explained by the risk factors, and an un-

systematic component ϵt. One fundamental question in asset pricing is whether Mt is

explainable by assets’ characteristics. Let Xt be the high-dimensional returns of sorted

portfolios, which are asset returns constructed using firm characteristics. They depend

on the risk factors through

Xt = Λλ+ Λft + ut

where Λ is the matrix of exposures to systematic risk (“betas” of sorted portfolios). Ex-

plaining Mt using Xt through a linear model leads to the working model

Mt = X ′
tβ + et.

By applying Theorem 1, β is not a sparse vector. This answers the empirical question

raised by Kozak et al. (2020), who observed that SDF sparsely formed by characteristics

“cannot adequately summarize the cross-section of expected stock returns.”

4 The Blessing of intentional overfitting

4.1 Main results

The economist collects the in-sample data (X, Y ) where the p columns of X are parti-

tioned as:

X = ( XI︸︷︷︸
p0

, XN︸︷︷︸
p−p0

)

corresponding to informative features and noise, determined by whether its λi is zero or

not. She aims to forecast an out-of-sample outcome ynew using its feature Xnew, which

also includes both informative features and noise.

In a unified framework we allow Scenarios I and II in Section 2.1. In either scenario,

the economist makes forecasts using pseudo-OLS:

ŷnew := X ′
newβ̂, where β̂ = (X ′X)+X ′Y.
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Let the true out-of-sample outcome be generated by

ynew = ρ′fnew + ϵy,new.

The predictive MSE, conditioning on the in-sample data X := (X1, ..., Xn)
′, is given as

E[(ynew − ŷnew)
2|X] = E[(X ′

newβ − ŷnew)
2|X] + Var(enew)

where enew := ynew −X ′
newβ. Theorem 1 shows that Var(enew) → Var(ϵy,new). Therefore,

it suffices to focus on the first component of the MSE, which can be decomposed as:

E[(X ′
newβ − ŷnew)

2|X] = bias(ŷnew)
2 +Var[ŷnew − E(ŷnew|X,Xnew)|X].

where for any generic forecast, ŷ, the bias is defined as

bias(ŷ)2 := E[(X ′
newβ − E(ŷ|X,Xnew))

2|X].

We impose several technical assumptions below to establish the benefit of adding

noise for forecasts. While these assumptions facilitate proofs, they may be stronger than

necessary. As this paper aims to introduce new research on benign overfitting in economic

forecasting, we anticipate that these conditions can be relaxed in future research.

Assumption 2. Let e denote the n× 1 vector of in-sample et. Suppose:

(i) E(ϵnewXnew|X, e) = 0, E(e|Xnew, X) = 0.

(ii) E(XnewX
′
new|X) = EXtX

′
t, and Var(e|Xnew, X) = σ2

eI for some σ2
e > 0.

(iii) Var(enew) = Var(et) and Var(ϵy,new) = Var(ϵy,t).

(iv) ∥E(ee′|X,Xnew)∥ = OP (σ
2
e) for some σ2

e > 0.

Assumption 2 (i)–(iii) assume invariance of the training data and the new out-of-

sample data. (iv) is a simplifying condition to regularize the conditional covariance

matrix of the error term in the working model.6

Assumption 3. Recall that ui,t is the idiosyncratic noise in xi,t = λ′ift + ui,t, and U is

the n× p matrix of ui,t.

(i) ui,t is independent and identically distributed (i.i.d.) across both (i, t).

(ii) Eu4i,t < C, and c < minj≤p0 Var(uj,t) ≤ maxj≤p0 Var(uj,t) < C for some absolute

constants C, c > 0.

6As a demonstrative case, it is provable that Assumption 2 (iv) holds if (ft, ϵy,t, ut) are i.i.d. jointly
normal (Lemma 4 (i) in the Appendix.)
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Assumption 3 simplifies the technical arguments by assuming the idiosyncratic com-

ponents are i.i.d. over both the cross sectional and time dimensions, which yields a fast

rate of convergence for the prediction MSE.7 We have the following theorem.

Theorem 2. Suppose the assumptions of Theorem 1 and Assumptions 2 and 3 hold. In

addition, suppose p > n, p = o(ψp,nn) and n = o(p). Then:

(i) The forecast bias and variance:

bias(ŷnew)
2 = OP

(
p

ψp,nn

)
Var[ŷnew − E(ŷnew|X,Xnew)|X] = OP

(
1

n
+
n

p

)
.

(ii) As n, p→ ∞,

E[(ynew − ŷnew)
2|X] →P Var(ϵy,new).

Theorem 2 implies that we can achieve the oracle predictive MSE, as if the latent

factors were revealed by an oracle and used directly in forecasting. In addition, contrary

to conventional wisdom suggesting that the variance is amplified as p diverges, here the

variance diminishes. The reduction of variance requires no condition on the predictive

power, i.e., it does not matter whether the predictors are mostly noise or informative.

In the case that many components in X are added noise, the prediction can be further

improved by using either ŷnew,I = X ′
new,I β̂I or its average conditioning on the data:

ŷ∗new = E(ŷnew,I |XI , Y,Xnew,I).

This estimator, in terms of predictive MSE, is inspired by the classical Rao-Blackwell

argument in the statistical literature. To see this, note that

X ′
newβ − ŷ∗new = E(X ′

newβ − ŷnew|XI , Y,Xnew,I).

Using the law of iterated expectations we have

E[(X ′
newβ − ŷ∗new)

2|XI ] = E
{
[E(X ′

newβ − ŷnew|XI , Y,Xnew,I)]
2

∣∣∣∣XI

}
≤ E

{
E
[
(X ′

newβ − ŷnew)
2|XI , Y,Xnew,I

] ∣∣∣∣XI

}
7In the appendix we consider the more general case to allow cross-sectional heteroskedasticity and

dependencies among ui,t (Lemma 5 in the appendix).
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= E
[
(X ′

newβ − ŷnew)
2|XI

]
, (4.1)

which shows that ŷ∗new enjoys a smaller predictive MSE than that of ŷnew.

In practice if ŷ∗new is computationally intensive as it involves repeated pseudo-OLS

fitting given the realized noise in each round, we recommend the simple denoise predictor

ŷnew,I . The following theorem shows the improvement of ŷ∗new and ŷnew,I upon ŷnew.

Proposition 1 (Noise-denoise forecast). Consider Scenario II where the economist knows

the identity of informative predictors and intentionally adds noise. Suppose the assump-

tions of Theorem 2 hold.

(i) For the denoise predictor ŷnew,I ,

bias(ŷnew,I)
2 ≤ bias(ŷnew)

2,

Var[ŷnew,I − E(ŷnew,I |X,Xnew)|X] ≤ Var[ŷnew − E(ŷnew|X,Xnew)|X].

(ii) For the averaged denoise predictor ŷ∗new,

E[(X ′
newβ − ŷ∗new)

2|XI ] ≤ E[(X ′
newβ − ŷnew)

2|XI ].

4.2 Discussion

Figure 1 plots the theoretical curves of bias-variance (left panel) and predictive MSE

E[(ynew − ŷnew)
2|X] (right panel) in a 3-factor model. Here the first p0 = min{p, n}

predictors are informative, while the remaining p − p0 predictors are i.i.d. white noise

variables generated from N(0, 1). As is clearly illustrated, the variance monotonically

increases as p increases even though the first p0 added predictors are all informative, and

peaks at p = n where the in-sample data are perfectly interpolated. Meanwhile, after

p > n, the added predictors are pure noise, and the variance starts to decay. This is

consistent with our theory: as p → ∞, the variance continues to decrease until the 1/n

term becomes dominant.

In addition, the squared bias remains zero until p = n. Though after passing this

threshold it starts to increase, it is in a much smaller magnitude than that of the variance.

This is also consistent with what the theory predicts. The bias depicted on the left panel

of Figure 1 does not diminish because here we fix ψp,n ≍ n at n = 100 while we vary p

(up to 1000).

Overall, the predictive MSE (right panel) illustrates a double-descent phenomenon,
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Figure 1: Bias-Variance Tradeoff

Notes: Theoretical predictive variance and squared bias (left panel) and MSE (right panel), averaged
over 500 replications. The horizontal axis is the number of predictors increasing from 3 to 500, and we
fix n = 100. The first p0 = min{p, n} are informative predictors, generated using a 3-factor model of
strong factors. The remaining p− p0 are i.i.d. Gaussian noise. The vertical dashed line is where p
equals n, and the horizontal dashed line on the right panel refers to Var(ϵy,t), the oracle predictive
MSE. The red curve on the left panel plots Var(et)−Var(ϵy,t).

where the first descent occurs before p < 20, due to the decay of the gap Var(et)−Var(ϵy,t).

The second descent occurs after p > n, due to the decay of variance, and eventually the

MSE approaches the oracle MSE as if the latent factors were used for prediction.

4.3 How much noise to add?

Importantly, both Figure 1 and our theory indicate bias inflation when p becomes ex-

cessively large. We therefore propose a data-driven way to choose the number of added

noise. If it is believed that most of the informative predictors load strongly on the com-

mon factors, then p0 ≍ ψp,n and our theory shows:

E[(X ′
newβ − ŷnew)

2|X] = OP

(
p

p0n
+
n

p

)
.

The first term p
p0n

arises from the order of the bias, which inflates when too many noise

variables are added. We can choose the optimal number of predictors p by minimizing

21



the rate of convergence:

p = C × n
√
p0 ≍ argmin

p

(
p

p0n
+
n

p

)
,

where C is a constant to be chosen. This would also yield the optimal rate of convergence

E[(X ′
newβ − ŷnew)

2|X] = OP (p
−1/2
0 + n−1). A data-driven choice of C is available via

commonly used tuning strategies, which we now discuss.

For cross-sectional predictions where the ordering of data is unimportant, the “leave-

one-out” is a computationally attractive method. Suppose C is a candidate choice, then

denote the total number of predictors, p(C) := C × n
√
p0 (after adding noise). For each

t ≤ n, let β̂−t(C) denote the pseudo-OLS estimator using p(C) predictors and all data

except the t-th observation. Then the optimal C can be chosen by minimizing:

leave-one-out: C∗ := argmin
C

n∑
t=1

(
yt −X ′

tβ̂−t(C)
)2
.

Appealingly, we do not have to compute n leave-one-out β̂−t(C) for this procedure, thanks

to an elegant analytic formula given by Shen et al. (2023). They showed that the leave-

one-out procedure is equivalent to minimizing:

C∗ = min
C

∥Diag(G(C))−1G(C)Y ∥2, G(C) = (X(C)X(C)′)−1 (4.2)

where X(C) denotes the n × p(C) matrix of p(C) predictors, and Diag(G) takes the

diagonal elements of G. Here G(C) is invertible because rank(X(C)) = n < p(C), whose

computation is manageable so long as n is not very large.

For time-series predictions where there is a natural ordering of the data, we recom-

mend the usual training-testing tuning. Reserve a portion of observations at the start

of the time dimension, based on which we conduct one-period ahead forecast, and the

optimal C∗ is chosen to minimize the aggregated forecast error. After that, we carry C∗

over to the testing data for forecasting.

To illustrate the effectiveness of data-driven choices of pcv = p(C∗), Figure 2 plots

the predictive MSE of two simulated designs, where the DGP is generated as in one of

the simulation designs in Section 6.1 with weak factors. The first p0 = 200 predictors

are informative predictors (i.e. they load nontrivially on factors), whereas the rest p− p0

predictors are intentionally added noise variables. In both cases the data-driven choice

pcv suitably identifies a proper number of added noise.
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Figure 2: Predictive MSE and Data-driven Tuning

Notes: pcv = p(C∗) is averaged from 50 replications as the number of predictors increases. The first
p0 = 200 are informative predictors that generated from a factor model, whereas the rest p− p0
predictors are i.i.d. N(0, 1) random variables (noise). The sample size is fixed to 100. We use

ŷnew = X ′
newβ̂ where Xnew include both informative predictors and added noise. The left panel is a

cross-sectional prediction where factors are i.i.d. sequences. The right panel is a time series prediction
where factors satisfy a stationary autoregressive AR(1) model; the first fifty percent of the data are
used as tuning period. The dashed vertical line “pcv” is the average over 50 replications.

4.4 When n is very large: mini-batch

In applications of panel data models, economists often pool the data of many individuals

over several time periods, making the overall sample size n very large. Meanwhile, the

Pseudo-OLS requires n ≪ p to embrace the benign overfitting. When n and p are so

large that numerical calculation of the generalized inverse goes beyond our computing

capacity, one convenient solution is to randomly drop a fraction of the data to artificially

reduce the sample size.

The efficacy of this solution is indicated by the asymptotic result. Recall that the

proved rate of convergence of the out-of-sample forecast is

R(n) :=
p

p0n
+
n

p
.

For instance, if n/p converges to a positive constant asymptotically, then R(n) does not

diminish to zero. In contrast, if we reduce the sample size to ñ = p/
√
p0 by randomly

23



dropping many samples, it will yield a more desirable rate (by replacing n by ñ)

R(ñ) =
1

√
p0

+

√
p0

p
→ 0

which implies consistency.

Note that randomly dropping part of the data does not mean to waste data. Instead,

this procedure can be repeated several times and aggregated in a distributed manner.

The algorithm is summarized as follows.

Algorithm 2. Determine a reduced sample size ñ that is only moderately large. Then

Step 1 Randomly sample ñ rows (samples) from (X, Y ) without replacement, obtain a

reduced data set (X̃, Ỹ ).

Step 2 Apply pseudo-OLS on (X̃, Ỹ ) to obtain a forecast ŷnew.

Step 3 Repeat Step 2 for B times to obtain ŷ1new, ..., ŷ
B
new, and then forecast using 1

B

∑B
b=1 ŷ

b
new.

8

In machine learning this method is referred to as mini-batching, where the full dataset

is divided into several smaller batches. The model is then fitted separately on each batch

and the results are aggregated. This boosts computational efficiency. Our theory also

covers this method by replacing the sample size with ñ. Therefore, our results explicitly

interpret the success of the mini-batching procedure as a means of regularization in the

linear model: by dropping portions of the data, a substantially overfitting model embraces

benign overfitting in each batch.

5 Using only informative predictors is not optimal

To further shed light on the benefits of including idiosyncratic and artificial noise as

predictors for variance reductions, we now contrast the result to benchmark forecast

methods when the informative predictors are perfectly known but “not sufficiently many”.

The analysis is guided by the traditional statistical wisdom of the bias-variance trade-off.

Suppose it is revealed to the economist that only the first p0 of the predictors, XI,t,

load on the latent factors, and that the remaining p− p0 predictors are pure noise, that

8In time series forecasts where the natural ordering is important, we can sequentially divide the time
series into several non-overlapping batches (blocks). One can separately apply pseuod-OLS on each batch
and the results are aggregated (by taking the average of pseudo-OLS coefficients then multiplied with
the out-of-sample predictor).
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is, the following model is practically feasible:

yt = X ′
I,tβI + et, dim(XI,t) = p0 < n. (5.1)

Then excluding the noise, but just using XI,t to forecast, seems to be the “natural way”

to go. Consider the setting where p0/n → c ∈ (0, 1). Because p0 < n, both OLS and

Ridge regression are well defined:

OLS : ŷInew,ols = X ′
new,I(X

′
IX

′
I)

−1X ′
IY

Ridge : ŷInew,ridge(λ) = X ′
new,I(X

′
IX

′
I + λI)−1X ′

IY

where Xnew,I is a p0-dimensional out-of-sample observation of only the informative pre-

dictors.

We now show that in this setting, neither OLS nor the Ridge regression achieves

the oracle forecast. In contrast, Theorem 2 has established the optimality of using the

pseudo-OLS with intentionally added noise.

Theorem 3 (Only Informative predictors). Suppose the economist forecasts using model

(5.1) by either OLS or Ridge with ℓ2-penalty (λ). Suppose the assumptions in Theorem

2 hold, and p0/n→ c ∈ (0, 1).

(i) The predictive MSE of OLS and Ridge:

lim inf
n,p0

E[(ynew − ŷInew,ols)
2|X] > Var(ϵy,t)

lim inf
n,p0

inf
λ≥0

E[(ynew − ŷInew,ridge(λ))
2|X] > Var(ϵy,t).

(ii) In contrast, the pseudo-OLS ŷnew satisfies:

E[(ynew − ŷnew)
2|X] →P Var(ϵy,t).

Result (ii) is simply a restatement of Theorem 2, presented here to contrast with

the suboptimality of OLS and Ridge regression. The fundamental issue with the latter

methods is that when p0 is not sufficiently large, even if all the predictors are informative,

the predictor behaves as in the traditional asymptotic regime, which would suffer from the

classic overfitting issue. While Ridge regression attempts to properly choose the penalty

to balance the bias and variance, Result (i) shows that there is no λ ≥ 0 that makes both

bias and variance simultaneously decay to zero.
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In a very recent contribution to the properties of Ridge regression, He (2023) consid-

ered a dense factor augmented model in the asymptotic regime p0/n → c ∈ (0, 1), and

showed that Ridge regression is optimal among a set of regularized estimators. Theorem

3 complements his results by showing in this regime Ridge cannot reduce the prediction

risk all the way to the oracle level. If we jump out of the regime, nevertheless, by in-

tentionally adding enough noise so that p/n → ∞, the simple pseudo-OLS achieves the

oracle risk.

6 Simulation

We demonstrate the performance of intentional inclusion of white noise for forecasting

using Monte Carlo experiments. The outcome variable is generated from a 3-factor model:

yt = ρ′ft + ϵy,t. In addition, we generate p0 informative predictors and p− p0 noise:

xi,t =

λ′ift + ui,t, i = 1, ..., p0.

ui,t, i = p0 + 1, ..., p
, where λi = λi,0 × p−τ0 ,

where (ft, ϵy,t, λi,0, ui,t) are all standard normal. Here τ ∈ [0, 1/2] determines the strength

of the factors within the informative predictors, so that Λ′
IΛI ≍ ψp,n ≍ p1−2τ

0 ; the larger

is τ , the weaker are the factors. We set p to take values on a grid that are evenly spaced

from 1 to pmax = 1000. These generated xi,t are to be used to fit forecasting models,

and evaluated at additional 50 testing predictors Xnew to predictor their out-of-sample

outcomes.

We consider two scenarios in the simulation study, where the identities of informative

predictors are known in one scenario and unknown in the other.

6.1 Unknown identities of informative predictors

Suppose the economist does not know which predictors are informative, so she decides

to use all the collected predictors (including both informative ones and the p− p0 noise).

We set two values for τ ∈ {1/2, 1/4}, where τ = 1/2 corresponds to very weak factors

(i.e., Λ′
IΛI ≍ 1), and τ = 1/4 corresponds to relatively strong factors (i.e., Λ′

IΛI ≍ p
1/2
0 ).

Three methods are compared in this study: (i) Pseudo-OLS; (ii) Principal component

analysis (PCA), where the number of factors and the factors are estimated using all the

p predictors. Based on the in-sample estimated λ̂i, we estimate the out-of-sample factors
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f̂new by regressing Xnew on λ̂i, and forecast the outcome variables using f̂new; (iii) the

Lasso, whose penalty is chosen by 10-fold cross-validation.
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Figure 3: Simulation in Scenario I

Predictive MSE 1
50

∑50
j=1(yj − ŷj)

2 averaged from 50 replications as the number of predictors p
increases. The vertical red dashed line indicates the number of informative predictors p0; the black
dashed line indicates the sample size n = 100.

Figure 3 plots the predictive MSE, averaged over 50 replications, as the number of

predictors p increases. This means all predictors are informative when p ≤ p0, whereas

p−p0 noise variables are included when p > p0. The red dashed vertical line in each panel

indicates the number of informative predictors. Figure 3 conveys the following numerical

findings:

1. In the second panel, where all predictors are informative (p0 = 1000) but very

weak (τ = 1/2), the pseudo-OLS continuously benefits from the inclusion of these

predictors, even though they are weakly informative. The trend of decay in its

MSE persists even when p = 1000, outperforming the other methods. In contrast,
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the factors are so weak that PCA does not gain from the large p, resulting in a

predictive MSE curve that remains essentially flat. In the remaining three panels,

where p0 stops increasing at some point while p continues to grow, the MSE of

pseudo-OLS flattens out.

2. PCA works reasonably well when p ≤ p0, but its performance deteriorates as more

noise is introduced into the predictors. The MSE for PCA begins to increase after

p > p0, making it the worst among the three methods. Lasso performs well when

the number of informative predictors is relatively small. But when p0 = 500 or

1000, the common dependencies among predictors are stronger, leading to denser

regression coefficients in the working model. Consequently, Lasso’s performance

deteriorates.

6.2 Known identities of informative predictors

We now consider the “striking case” where the economist knows which predictors are

informative and which are not, and nevertheless she decides to keep all the predictors

and intentionally add many white noise variables to implement pseudo-OLS.

We compare four methods in this case: (i) The proposed pseudo-OLS which uses all p

predictors (when p > p0, the additional predictors are noise), and the denoised version as

described in Section 2.3 (labeled as “pseudo-OLS-denoise”); (ii) PCA; (iii) the Lasso, (iv)

Ridge regression. Except for the pseudo-OLS, all the other three methods are “oracle”

in the sense that they use only (and all of the) informative predictors, without any noise.

Figure 4 plots the predictive MSE as the number of predictors increases. Each of the

horizontal dashed lines represents the MSE of one of the oracle forecasting methods, and

the blue solid line is the MSE of the pseudo-OLS. We plot for p0 ∈ {200, 500} and for

selected τ as these cases are representative. We observe the following numerical findings:

1. The first two panels respectively fix p0 = 500 and compare the cases of weak factors

with relatively strong factors. Starting from p = p0, the pseudo-OLS performs

the best when τ = 1/2, and is on par with Ridge when τ = 1/4. As in the

previous study, when factors are very weak the pseudo-OLS continuously benefits

from the reduced variance as noise are added into predictions, even though new

direct predictive information is no longer available after p > p0. In addition, the

pseudo-OLS-denoise improves the pseudo-OLS.
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Figure 4: Simulation in Scenario II

Predictive MSE 1
50

∑50
j=1(yj − ŷj)

2 averaged from 50 replications as the number of predictors p
increases. The vertical red dashed line indicates the number of informative predictors p0; the vertical
blue dashed line pcv in the last panel indicates the averaged p chosen by the leave-one-out cross
validation.

2. When p0 is moderate as in the third panel, pseudo-OLS and pseudo-OLS-denoise

exhibit U-shaped predictive MSE after p > n, which reaches the minimum MSE

around p ∈ (400, 600) and starts to increase again. This is implied by our theory

that the moderate informative signal causes the rising bias to dominate the decaying

variance. Hence it is necessary to properly choose p in this case. Panel 4 in Figure

4 plots the predictive MSE, under the same setting as in Panel 3 for (τ, p0), but the

maximum amount of added noise pcv is chosen by the leave-one-out CV.

3. In contrast, even though the oracle forecasting methods — PCA, Lasso, and Ridge

— only use the informative predictors, they do not predict as well as the pseudo-

OLS with many artificial noise in many cases. PCA mainly suffers from weak factor

issues, whereas Ridge does not have sufficiently diversified variance if p0 is not large
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enough. In addition, in the first two panels, Lasso exhibits the poorest performance

due to the model’s high density, with half of the predictors being informative.

7 Empirical Applications

Our empirical illustrations include four economic forecasting applications: forecasting the

U.S. inflation rate, a group of countries’ GDP growth rates, the U.S. equity premium,

and the S&P firms earnings.

Throughout this section, we employ the noise-denoise forecast procedure as described

in Section 2.3, labeled as “pseudo-OLS-denoise” in all empirical applications.

7.1 U.S. inflation forecast

The Federal Reserve relies on inflation forecasts to guide monetary policy decisions, while

businesses, investors, and governments depend on these predictions for planning, invest-

ment, and budgeting. After recovering from the 2020 downturn, the U.S. economy expe-

rienced its highest rate of inflation since the 1980s. As inflation has begun to slow down

more recently, the Fed is considering lowering interest rates again. Accurate inflation

forecasts are essential for the effective functioning of the economy.

We use the FRED-MD dataset of McCracken and Ng (2016) to forecast the change

of the U.S. inflation rate, constructed based on the Consumer Price Index (CPI):

∆inflationt+1 = log(CPIt+1/CPIt)− log(CPIt/CPIt−1).

The data contains p0 = 103 macroeconomic predictors, ranging from 1959-June to 2024-

January. We use 120-month moving windows to estimate the forecast model and conduct

one-month-ahead forecast.

This macroeconomic dataset is widely recognized for its inherent challenge of rela-

tively weak factors and data-driven techniques for determining the number of factors,

e.g., Bai and Ng (2002), typically suggest 8-10 factors, explaining only 50-62% of the

total variations. As such, adopting cross-validation becomes desirable to determine the

optimal number of introduced noise, guarding against biases due to insufficient predictive

information.

We implement the pseudo-OLS as follows: generate p− p0 white noise variables from

the standard normal distribution as artificial predictors, and merge them with the original
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Figure 5: Inflation Predictive MSE

Inflation Predictive MSE using FRED-MD McCracken and Ng (2016). Data spans from 1959-June to
2024-January with p0 = 103 predictors and p− p0 added noise. We use rolling windows of n = 120
months for one-month horizon forecast. The vertical axis is 100× 1

n

∑
n(yn+1 − ŷn+1)

2, the horizontal
axis is log(p), and the horizontal tick is p. Regardless of p, the PCA, CV-Lasso and CV-Ridge use the
p0 macrovariables, whereas the pseudo-OLS uses additional p− p0 intentionally generated N(0, 1)
noise, and averaged over 50 times.

p0 macroeconomic variables. We let p take values on a grid that are evenly spaced on

a logarithmic scale from p0 to pmax where pmax = C × n
√
p0. To determine the optimal

C, the full data of 776 months is split into training and validation samples. The first

200 months are used as the training sample on which the constant C is determined via

cross-validation, and the remaining 576 months are used for forecasts fixing the chosen

C.9

The optimal number of predictors determined in this way is approximately pmax ≈
748. With the determined pmax, we conduct moving window forecasts of inflation on the

validation sample, and compute the predictive MSE. In addition, we implement PCA, CV-

Lasso, and CV-Ridge on the validation sample, where each uses all the p0 macroeconomic

variables regardless of p. The number of “factors” for PCA is determined using the PC1

criterion from Bai and Ng (2002), and the tuning parameters for CV-Lasso and CV-Ridge

are determined using 5-fold cross-validation.

Figure 5 plots the predictive MSE as p increases from 1 to pmax. Meanwhile, the

9On the training sample, for each candidate C we conduct rolling-window based one-month-ahead
forecasts and compute the overall out-of-sample MSE. Then choose the optimal C yielding the smallest
MSE on the training sample.
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pseudo-OLS stops when the total number of predictors reaches pmax, corresponding to

103 macro variables plus 645 added noise variables, and reaches lowest predictive MSE

among the comparing methods.

7.2 Growth forecasts

Economic growth is a fundamental issue that directly impacts human welfare and freedom.

Nobel laureate Robert Lucas famously stated, “Once one starts to think about [economic

growth], it is hard to think about anything else” (Lucas, 1988, p.5). While Lucas provided

a theoretical framework through parsimonious neoclassical models, real-world economic

growth involves a multitude of factors and was one of the earliest areas in economics that

benefited from big data analysis, e.g., Sala-I-Martin (1997).
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Figure 6: Growth Predictive MSE

Predictive MSE using p0 = 60 socio-economic and geographical characteristics from Barro and Lee
(1994), and p− p0 added noise. Data for the growth rate of GDP from 90 countries. We estimate the
model on a randomly selected sample of n = 45 countries, evaluating its predictions for the remaining
45 countries. We repeat this exercise 100 times. The vertical axis is 1

n

∑
n(yn+1 − ŷn+1)

2, the
horizontal axis is log(p), and the horizontal tick is p. Regardless of p, the PCA, CV-Lasso and
CV-Ridge use the p0 socio-economic variables, whereas the pseudo-OLS uses additional p− p0
intentionally generated N(0, 1) noise variables. The MSE equals 20.24 with the original 60 predictors.

In this application we use the data of Barro and Lee (1994) to predict the GDP growth

rates across countries. This well-known dataset consists of p0 = 60 socio-economic and

geographical characteristics from 90 countries spanning from 1960 to 1985. We estimate

the model on a randomly selected sample of n = 45 countries, evaluating its predictions
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for the remaining 45 countries. We repeat this exercise 100 times and compute the

predictive MSE averaged over the 100 random repetitions.

To implement pseudo-OLS, we generate p− p0 white noise variables and merge them

with the original 60 predictors. As in the previous exercises, p takes values on a grid

spaced on a logarithmic scale from p0 to pmax = C × n
√
p0. The predictors are known

to have strong predictability of the GDP growth rate, so we set a large C, which makes

pmax ≈ 34, 857. As usual, the competing methods, PCA, CV-Lasso, CV-Ridge only use

the original 60 predictors.

Figure 6 plots the predictive MSE of different methods. The MSE equals 20.24 when

we use only the original 60 predictors, which is not depicted on the plot. Pseudo-OLS

outperforms other methods after complete interpolation. Furthermore, it exhibits a high

degree of robustness to the number of added noise variables, stabilizing after 500 additions

and maintaining an MSE around 1.0 across p varying from 501 to 34,857.

7.3 U.S. equity premium prediction

Predictability of the U.S. equity premium is a central question in asset pricing research.

Many macro finance models imply time-varying discount rates as reviewed in Cochrane

(2011) and by now there is ample evidence that aggregate discount rates (expected re-

turns) are indeed time-varying. It is however of considerable dispute to what extent

this variation can be predicted. Welch and Goyal (2008) conducted a comprehensive

examination of prevailing working models at that time, ultimately asserting that “The

evidence suggests that most models are unstable or even spurious.” Since its publication,

academic research in forecasting time-varying future equity premia has significantly ad-

vanced (e.g., Hirshleifer et al. (2009); Atanasov et al. (2020); Chava et al. (2015); Jondeau

et al. (2019); Jones and Tuzel (2013); Kelly and Pruitt (2013)). Many of them introduced

new informative predictors, alongside innovative methodology such as Lasso, PCA, and

nonlinear machine learning. In light of these advancements, Goyal et al. (2023) con-

ducted a new comprehensive review of recently proposed prominent predictive models,

yet arriving at conclusions qualitatively consistent with their 2008 study. Notably, in

the context of an annual forecast horizon, the majority of models exhibit discouraging

predicting performance, with R2 either negative or only marginally positive.

As an empirical illustration, we employ the 16 main variables described by Welch and

Goyal (2008) to forecast the equity premium. Following the same exercise as Giannone

et al. (2021), we use annual data spanning from 1948 to 2015 with p0 = 16 original
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Figure 7: Out-of-sample R2 for predicting the U.S. equity premium

We use the p0 = 16 predictors described by Welch and Goyal (2008) and p− p0 added noise. Left
panel: annual prediction; Right panel: monthly prediction. pcv denotes the number of added noise
selected by time series cross-validation. The vertical axis is out-of-sample R2. For the annual data we
use rolling windows of n = 17 year for one-year horizon forecast and the horizontal axis is plotted as
log(p), and ticked using p; for the monthly data we use expanding windows for one-month horizon
forecast, and the horizontal axis is plotted as p. Regardless of p, both CV-Lasso and CV-Ridge use the
p0 macro variables, whereas the pseudo-OLS uses additional p− p0 intentionally generated N(0, 1)
noise, followed by the noise-denoise procedure as described in Section 2.3. The PCA performs too
poorly to be depicted along the y-axis.

predictors, and use moving windows with sample size n = 17. The first prediction occurs

for the 1965 observation, and is rolled over 51 times, each time expanding the training

sample by one year and shifting the evaluation sample accordingly.10

We intentionally add additional noise and merge it with the original 16 variables to

implement the denoise pseudo-OLS. We compare it with Lasso and Ridge, which use the

16 variables only and are tuned by the cross-validation. Figure 7 (left panel) graphs the

out-of-sample R2, defined as

R2 = 1−
∑

t+1(yt+1 − ŷt+1)
2∑

t+1(yt+1 − ȳt)2

where ȳt denotes the in-sample mean of the t-th rolling window. The number of added

noise variables p is chosen following the guidance of our theory by setting p = C ×
10In order to facilitate an easy comparison, we use the same sample as in the original studies, i.e. Welch

and Goyal (2008). For the annual data, we use the data from the Econometrica website to maintain
consistency with Giannone et al. (2021).
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n
√
p0, where C is chosen such that p takes values on a grid that are evenly spaced

on a logarithmic scale. This leads to in total 300 ∼ 10, 000 included noise for annual

prediction and 1, 000 ∼ 3, 000 included noise for monthly prediction as predictors. Then

we determine the data-driven pcv as the optimal choice of p on the range, which is also

plotted as the dotted blue vertical lines. Moreover, to study the robustness to the number

of added noise variables, we nevertheless calculate and plot the R2 up to the maximum

candidate p in the range (which is 10, 200 for annual prediction, and 3, 000 for monthly

prediction), even though pcv suggested early stopping.

As CV-Lasso and CV-Ridge use all 16 financial and macroeconomic variables, their

R2’s are depicted as dashed horizontal lines, and evaluated as −2.60 (CV-Lasso) and

−6.12 (CV-Ridge). We also implement PCA on the 16 variables, whose R2 is too low to

be depicted on the plot. In sharp contrast, the pseudo-OLS-denoise with intentionally

added noise performs strikingly well: when p goes beyond 16, it quickly comes back and

outperforms the benchmark (sample mean prediction) and the other methods when p is

around 200. After 400 noise are added its out-of-sample R2 reaches to 10%, and becomes

very stable even after more than 10, 000 noise are accumulated to annual prediction.11

The survey byWelch and Goyal (2008) shows that forecasting the U.S. equity premium

at the monthly frequency is even harder than at the annual frequency and hardly any

model in their study achieves a positive out-of-sample R2. We again use the original

predictors in Welch and Goyal (2008) variables, ranging from 1959-January to 2002-

December (downloaded from Ivo Welch’s data website), to conduct monthly forecast of

the equity premium using expanding windows. Data of the first 200 months are used for

tuning the number of intentionally added noise variables. We then implement the noise-

denoise procedure for the remaining data to conduct one-month ahead forecast. The right

panel of Figure 7 plots the predictive R2 (in percentage), which peaks at R2 = 1.22%

when about 1,000 noise variables are added to the model. Overall, the predictive R2 is

steady and robust to the number of added noise variables, despite a slight dip at the end.

When up to 3,000 noise variables are added, the out-of-sample R2 is approximately 0.75%.

The cross-validation method suggests stops at pcv = 2, 006 (depicted as the vertical blue

line on the Figure).

11We use the original 16 macroeconomic and financial variables only from the Welch and Goyal (2008)
dataset plus noise, maintaining a linear predictive model; the improved predictability from pseudo-OLS
is mainly due to the diversification of the out-of-sample variance. In comparison, Gu et al. (2020)
examined a variety of nonlinear machine learning methods with additional features. Using up to 94
firm level characteristics, they found a majority of the methods they examined, including random forest
and gradient boosting, reach less than ten percent annual R2. Their most prominent machine learning
predictor is neural networks, whose R2 ranges from 10 to 15 percent.
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7.4 Earnings forecasts

In capital market research, predicting corporate accounting earnings holds considerable

relevance for fundamental analysis and equity valuation. Essentially, accounting earnings

are a fundamental economic variable and precise predictions of earnings are crucial in

evaluating the intrinsic value of a company’s stock. This stance is underpinned by both

analytical and empirical evidence. Analytically, the accounting-based valuation frame-

work proposed by Ohlson (1995) and Feltham and Ohlson (1995) employs the expected

(predicted) earnings as direct inputs into the valuation formula.12 Empirically, extensive

research indicates that the accounting earnings are the payoff that investors forecast when

estimating equity value (Penman and Sougiannis, 1998; Ball and Nikolaev, 2022).

Early research in time-series forecasting indicates the superiority of the random walk

model. However, as discussed by Monahan (2018), the random walk model’s prediction

is misleading as it is inconsistent with standard assumptions about economics and ac-

counting.13 Researchers thus shift towards panel-data approaches, employing a broad

set of predictors such as financial statement information that are potentially informative

(Fairfield et al., 1996; Nissim and Penman, 2001; So, 2013). Recent work utilizes ma-

chine learning techniques to forecast accounting earnings, acknowledging the nonlinear

relationships between predictors and future earnings (Chen et al., 2022).

Following Chen et al. (2022), we use high-dimensional detailed financial data as pre-

dictors. Since 2012, the U.S. public companies have been obligated to utilize a new

reporting format, the so-called eXtensible Business Reporting Language (XBRL) tags,

for the presentation of quantitative data in their 10-K filings submitted to the SEC. Our

analysis incorporates both current and preceding year data, normalized by total assets,

and computes annual percentage changes. The focus is on financial data consistently re-

ported by a minimum of 10 percent of the firms over our sample period, yielding a total of

1,316 predictors. Furthermore, we use pro forma Earnings Per Share (EPS) data sourced

12Our emphasis on the residual income valuation model does not imply it is the sole or superior
method for equity valuation. Penman (1998) demonstrated that both dividend and cash-flow methods
yield valuations akin to those of the residual income approach under specific conditions. The residual
income model, rooted in accrual accounting, is especially useful for analyzing financial statements based
on accrual accounting. However, since cash flows and dividends are directly linked to accrual figures
through basic accounting principles, forecasting accrual accounting figures also facilitates the projection
of free cash flows and dividends (Nissim and Penman, 2001).

13As argued by Monahan (2018), “changes in a firm’s expected future earnings that accompany suc-
cessful innovations by its managers (competitors) are not permanent. This, in turn, implies that earnings
will not follow a random walk.” In addition, due to delayed recognition of economic news and the nature
of conservativeness of accounting, the random-walk model is not a proper economic model for earnings
prediction.
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from I/B/E/S as the target variable. We merge data from SEC XBRL documents and

I/B/E/S, emphasizing on companies possessing available share price information from

the Center for Research in Security Prices (CRSP), nonzero total assets, and XBRL doc-

ument filing promptly after the fiscal year-end. Consequently, our dataset encompasses

1,237 firm-year observations (829 for training and 408 for testing) for companies listed in

the S&P 500 index, spanning the years 2013 to 2015.
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Figure 8: Predictive MSE for predicting changes in annual earnings

We use n = 829 training samples of firm-year observations for S&P 500 companies from 2013 to 2015,
including p0 = 1, 316 predictors and p− p0 added noise variables. The vertical axis is
1
N

∑
n(yn+1 − ŷn+1)

2, the horizontal axis is showing the dimension of the features, p. PCA, CV-Lasso
and CV-Ridge use always p0 features, whereas pseudo-OLS-denoise uses additional p− p0 intentionally
generated N(0, 1) noise variables if p > p0.

Figure 8 plots the predictive MSE of the pseudo-OLS, CV-Ridge and CV-Lasso. For

the pseudo-OLS, we set the maximum value for p as pmax = C×n√p0, and choose C using

leave-one-out cross-validation. The result shows that the MSE of pseudo-OLS starts to

decrease as we add noise to the original p0 predictors, and surpasses that of Ridge and

Lasso when p = 2, 000. In addition, it is noteworthy that the predictive MSE is large

in magnitude. This observation aligns qualitatively with the recognition that predicting

earnings poses a formidable challenge, primarily attributable to the limited information

in the predictors and to the high persistence of earnings. Nevertheless, the pseudo-OLS

produces one of the best predictions among the competing methods.

37



8 Conclusion

We provide a theoretical justification that economic forecast models are not sparse. In

addition, we prove a compelling result that including noise in predictions yields greater

benefits than its exclusion. Furthermore, if the total number of predictors is not suffi-

ciently large relative to the sample size, intentionally adding noise yields superior fore-

cast performance, outperforming benchmark predictors relying on dimension reduction.

Therefore, economic forecasts can significantly benefit from benign overfitting even if a

significant proportion of predictors are pure noise.

Our empirical applications illustrate this principle in four areas of economic fore-

casting. For inflation forecasts, adding generated noise variables can improve over the

universe of variables in the FRED-MD database. In forecasting economic growth across

countries, our procedure helps surpasses the original socio-economic variables in the well-

studied Barro and Lee (1994) dataset. In financial economics, adding noise again improves

over the financial and macroeconomic variables and in the case of monthly data helps

to achieve a positive out-of-sample R2, which is not available directly from the original

predictors. We finally revisit the classic accounting problem of earnings prediction. Even

though many features are available in this domain, moving the problem to “even higher

dimensions” by including generated noise further boosts the empirical performance.
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A Proofs

A.1 Proof of Bias-variance expressions

The objective is to prove

E[(ynew − ŷnew)
2|X] = bias(ŷnew)

2 +Var(ŷnew −X ′
newβ|X) + Var(enew)

with

bias(ŷnew)
2 = β′AXEXtX

′
tAXβ, where AX := (X ′X)+X ′X − I

Var(ŷnew −X ′
newβ|X) = σ2

e tr(X
′X)+EXtX

′
tOP (1),

for some σ2
e > 0.

Proof. Let M := E[(X ′
newβ − ŷnew)

2|X]. Then

E[(ynew − ŷnew)
2|X] =M + E[e2new|X] + 2E[(X ′

newβ − ŷnew)enew|X].

The second term is E[e2new|X] = Var(et) by assumption. The third term is

E[(X ′
newβ − ŷnew)enew|X] = E[X ′

new(β − β̂)enew|X]

= E[β′Xnewenew|X]− E[enewX ′
newβ̂|X] = −E[enewX ′

new(X
′X)+X ′e|X]

= −E{E[enewX ′
new|X, e](X ′X)+X ′e|X} = 0

by the assumption E(enewXnew|X, e) = 0.

We now focus on M . Let

R = E(β̂|X) = (X ′X)+X ′Xβ + E[(X ′X)+X ′e|X] = (X ′X)+X ′Xβ,

then R− β = AXβ and β̂ −R = (X ′X)+X ′e. We decompose M into

M = E[(X ′
new(β̂ − β))2|X]

= E[(X ′
new(β̂ −R))2|X] + E[(X ′

new(R− β))2|X] + 2E[(R− β)′XnewX
′
new(β̂ −R)|X].

By the assumption E(e|X,Xnew) = 0, the third term is

E[(R− β)′XnewX
′
new(β̂ −R)|X] = β′AXE[XnewX

′
new(X

′X)+X ′e|X] = 0.
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The second term is “squared bias”, as

X ′
newR = X ′

newE(β̂|X) = X ′
newE(β̂|X,Xnew) = E(ŷnew|X,Xnew).

By the assumption E(XnewX
′
new|X) = E(XtX

′
t),

bias(ŷnew)
2 = E[(X ′

newβ − E(ŷnew|X,Xnew))
2|X]

= E[(X ′
new(R− β))2|X] = β′AXE(XnewX

′
new|X)AXβ = β′AXE(XtX

′
t)AXβ.

The first term is variance. The assumption that ∥E[ee′|X,Xnew]∥ = OP (σ
2
e) for some

σ2
e > 0 implies (verified by Lemma 4 below):

Var[ŷnew − E(ŷnew|X,Xnew)|X] = E [Var(ŷnew|X,Xnew)|X]

= E[(X ′
new(β̂ −R))2|X] = E[(X ′

new(X
′X)+X ′e)2|X]

= E{X ′
new(X

′X)+X ′E[ee′|X,Xnew]X(X ′X)+Xnew|X}
≤ E{∥X ′

new(X
′X)+X ′∥2|X}∥E[ee′|X,Xnew]∥

= σ2
eE{X ′

new(X
′X)+Xnew|X}OP (1) = σ2

e tr(X
′X)+EXtX

′
tOP (1).

Lemma 4. Suppose at least one of the two cases holds:

(i) E(Y |X,Xnew) = E(Y |X), and (ft, ϵy,t, ut, Xnew, t = 1...n) are i.i.d. and jointly

normal.

(ii) n = O(ψp,n), ∥Cov(ut)∥ = O(1), E(ϵy|U, F,Xnew) = 0 and ∥E(ϵyϵ′y|X,Xnew)∥ =

OP (1).

Then ∥E[ee′|X,Xnew]∥ = OP (1).

Proof. (i) Under the condition (e,X,Xnew) are jointly normal, as they can be written

as linear combinations of Xnew and (F, ϵy, U), the matrices of (ft, ϵy,t, ut). Moreover, the

assumption E(Y |X,Xnew) = E(Y |X) yields

E(e|X,Xnew) = E(Y |X,Xnew)−Xβ = E(Fρ|X)−Xβ = 0,

which implies, under joint normality, that e is independent of (X,Xnew); Hence E[ee′|X,Xnew] =

Eee′ = Cov(e). Furthermore, because of the i.i.d. assumption (i.e., (yt, Xt) and (ys, Xs)

are independent) we have Cov(et, es) = 0 for any t ̸= s. In this case we have an exact

expression E[ee′|X,Xnew] = σ2
eIn, where σ

2
e = Var(et).

(ii) Under the second set of conditions, let B := ϵy((ρ − Λ′β)′F ′ + β′U ′), C := Uβ,
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and D := F (ρ− Λ′β). Then the decomposition

ee′ = ϵyϵ
′
y + CC ′ +DD′ + CD′ +DC ′ +B +B′.

yields

∥E(ee′|X,Xnew)∥ ≤ ∥E(ϵyϵ′y|X,Xnew)∥+ 2∥E(B|X,Xnew)∥+ 2E(∥C∥2 + ∥D∥2|X,Xnew).

Our assumption ensures E(ϵy|U, F,Xnew) = 0 hence E(B|X,Xnew) = 0 and ∥E(ϵyϵ′y|X,Xnew)∥ =

OP (1). In addition,

E∥C∥2 = O(n)∥β∥2 = O(n/ψp,n), E∥D∥2 = O(n)∥ρ− Λ′β∥2 = O(n/ψ2
p,n),

by Theorem 1 (i). Hence ∥E(ee′|X,Xnew)∥ ≤ OP (1 + n/ψp,n) = OP (1).

A.2 Proof of Theorem 1

Proof. The condition E(ϵy,t|ft, ut) = 0 implies that in the oracle model (2.1) E(ϵy,t|Xt) = 0

as Xt follows the factor model (2.2). As a result, in the working model (3.3):

E(yt|Xt) = E(ρ′ft|Xt) + E(ϵy,t|Xt) = β′Xt

by the condition E(ρ′ft|Xt) = β′Xt. The error term E(et|Xt) = E(yt −X ′
tβ|Xt) = 0.

Part (i). Pre-multiplying both side of the condition E(ρ′ft|Xt) = β′Xt by Xt and take

unconditional expectation, we have E [XtE(f ′
tρ|Xt)] = E (XtX

′
t) β. The factor model

(2.2) implies that EXtX
′
t = ΛΣfΛ

′ + Cov(ut), where Σf := Eftf ′
t , is invertible. Thus we

solve

β = E(XtX
′
t)

−1EXtf
′
tρ = E(XtX

′
t)

−1ΛΣfρ.

Substituting the Woodbury matrix identity

E(XtX
′
t)

−1 = Cov(ut)
−1 − Cov(ut)

−1Λ(Σ−1
f + Λ′ Cov(ut)

−1Λ)−1Λ′Cov(ut)
−1

into the above expression yields

β = Cov(ut)
−1Λ

[
I − (Σ−1

f + Λ′ Cov(ut)
−1Λ)−1Λ′Cov(ut)

−1Λ
]
Σfρ

= Cov(ut)
−1Λ

[
(Σ−1

f + Λ′Cov(ut)
−1Λ)−1Σ−1

f

]
Σfρ
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= Cov(ut)
−1Λ(Σ−1

f + Λ′Cov(ut)
−1Λ)−1ρ.

Given the explicit expression of β, its l2 norm is bounded by

∥β∥ ≤ ∥Cov(ut)−1/2∥∥Cov(ut)−1/2Λ(Σ−1
f + Λ′ Cov(ut)

−1Λ)−1∥∥ρ∥

≤ ∥Cov(ut)−1/2∥∥(Σ−1
f + Λ′ Cov(ut)

−1Λ)−1/2∥∥ρ∥

≤ ∥Cov(ut)−1/2∥∥(Λ′ Cov(ut)
−1Λ)−1/2∥∥ρ∥

= O(1) ·O(ψ−1/2
p,n ) ·O(1) = O(ψ−1/2

p,n )

under Assumption 1.

Part (ii). By definition,

et = yt −X ′
tβ = (f ′

tρ+ ϵy,t)− (f ′
tΛ + u′t) β = ϵy,t + f ′

t(ρ− Λ′β)− u′tβ,

and thus

Var(et) = Var(ϵy,t) + Var(f ′
t(ρ− Λ′β)) + Var(u′tβ)

by the condition E(ϵy,t|ft, ut) = 0 and the orthogonality between ft and ut. It remains to

bound Var(f ′
t(ρ− Λ′β)) + Var(u′tβ).

We define Φ := Λ′ Cov(ut)
−1Λ/ψn,p. Since the eigenvalues of Cov(ut) is bounded away

from 0 and∞, under Assumption 1 we have σmax(Φ) ≍ σmax(Λ
′
IΛI)/ψp,n ≍ 1 and similarly

σmin(Φ) ≍ 1.

The explicit expression of β in Part (i) gives Λ′β = ρ−Σ−1
f (Σ−1

f +Λ′ Cov(ut)
−1Λ)−1ρ.

We have

Var(f ′
t(ρ− Λ′β)) = ρ(Σ−1

f + Λ′Cov(ut)
−1Λ)−1Σf (Σ

−1
f + Λ′ Cov(ut)

−1Λ)−1ρ

= ρ(Σ−1
f + Φψp,n)

−1Σf (Σ
−1
f + Φψp,n)

−1ρ

≤
∥∥∥(Σ−1/2

f + Σ
1/2
f Φψp,n)

−1
∥∥∥2 ∥ρ∥2

≤ ∥Σf∥∥ρ∥2∥Σ−1
f ∥2σmin(Φψp,n)

−2 = O(ψ−2
p,n).

Furthermore,

Var(u′tβ) = β′ Cov(ut)β =
∥∥Cov(ut)−1/2Λ(Σ−1

f + Λ′ Cov(ut)
−1Λ)−1ρ

∥∥2
≤

∥∥(Σ−1
f + Φψp,n)

−1ρ
∥∥2 ∥ψp,nΦ∥

≤ ψp,nσmin(Σ
−1
f + Φψp,n)

−2∥Φ∥ ∥ρ∥2
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≤ ψ−1
p,nσmin(Φ)

−2∥Φ∥ ∥ρ∥2 = O(ψ−1
p,n).

We thus conclude Var(et)− Var(ϵy,t) = Var(f ′
t(ρ− Λ′β)) + Var(u′tβ) = O(ψ−1

p,n).

A.3 Proof of Theorem 2

A.3.1 Bias

The bias rate of convergence then follows from the following lemma.

Lemma 5. Suppose ∥Cov(ut)∥ < C. Then

bias(ŷnew)
2 ≤ OP

(√
p

nψp,n
+

p

nψp,n

)
.

If in addition, Cov(ut) = σ2
uI for some σ2

u > 0, then

bias(ŷnew)
2 ≤ OP

(
p

nψp,n
+ (

p

nψp,n
)3/2
)
.

Proof. Recall bias(ŷnew)
2 = β′AXΣXAXβ, where ΣX := EXtX

′
t andAX := (X ′X)+X ′X−

I. Using the notations laid out in the main text, we apply the singular decomposition

X = UnSnV
′
n (notice Vn is a p× n matrix), and thus

X ′X = VnS
2
nV

′
n, (X ′X)+ = VnS

−2
n V ′

n

and AX = VnV
′
n− Ip = −VAV ′

A where VA is a p× (p− n) matrix, columns being eigenvec-

tors of the p×p matrix X ′X corresponding to the p−n eigenvalues. Therefore, V ′
AVn = 0.

We rewrite

bias(ŷnew)
2 = β′VAV

′
AΣXVAV

′
Aβ ≤ ∥V ′

AΣXVA∥ ∥V ′
Aβ∥

2
. (A.1)

Bounding ∥V ′
AΣXVA∥. We focus on the first factor of (A.1). Using matrix notation, the

factor model of the n× p matrix X is

X = FΛ′ + U, (A.2)

where F is n×K and Λ is p×K. Then

X ′X = nΛΣfΛ
′ + E + U ′U
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where E := −Λ (F ′F − nΣf ) Λ
′ + ΛF ′U + U ′FΛ′.

We first check the orders of ∥E∥. Under Assumption 3, ∥U ′U∥ = OP (p). Since

∥F ′F/n− Σf∥ = Op(n
−1/2), for all j ≤ K we have

∥Λ (F ′F − nΣf ) Λ
′∥ ≤ σmax (ΛΛ

′) ∥F ′F − nΣf∥ = Op

(√
nψp,n

)
.

and the cross term

∥U ′FΛ′∥ ≤
√
σmax (ΛF ′FΛ′)σmax (U ′U)

=
√
σmax (ΛΛ′)OP (n)σmax (U ′U) = O

(√
ψp,nnp

)
.

We obtain

∥E∥ = OP (
√
nψp,n +

√
ψp,npn) = OP (

√
ψp,npn)

where the order follows as
√
nψp,n√
ψp,npn

=

√
ψp,n
√
p

is bounded away from ∞ given ψp,n = O (p0)

and p0 ≤ p. We thus have

V ′
AΣXVA = V ′

A

(
X ′X

n
−
(
X ′X

n
− ΣX

))
VA

= V ′
AVnS

2
nV

′
nVA − V ′

A

(
X ′X

n
− ΣX

)
VA

= −V ′
A

(
X ′X

n
− ΣX

)
VA = V ′

A

(
Cov (ut)−

E

n
− U ′U

n

)
VA

where the third line follows by the fact that the columns of VA is orthogonal to the

columns of Vn, and thus we find the order of the first factor in (A.1):

∥V ′
AΣXVA∥ ≤

∥∥∥∥V ′
A

(
Cov (ut)−

E

n
− U ′U

n

)
VA

∥∥∥∥
≤ ∥Cov (ut)∥+

∥∥∥∥U ′U

n

∥∥∥∥+ ∥∥∥∥En
∥∥∥∥ ≤ OP

(√
ψp,np

n
+
p

n

)
.

Bounding ∥V ′
Aβ∥

2. Recall β = Cov(ut)
−1Λ(Σ−1

f + Λ′ Cov(ut)
−1Λ)−1ρ. First,

∥Σ−1
f + Λ′Cov(ut)

−1Λ)−1∥2 = OP (ψ
−2
p,n).

44



This implies

∥V ′
Aβ∥2 ≤ O(1)∥V ′

ACov(ut)
−1Λ∥2∥Σ−1

f +Λ′ Cov(ut)
−1Λ)−1∥2 = O

(
ψ−2
p,n∥V ′

ACov(ut)
−1Λ∥2

)
.

If Cov(ut) ̸= σ2
uI for some σ2

u > 0, then ∥V ′
ACov(ut)

−1Λ∥2 = O(ψp,n). This implies

bias(ŷnew)
2 ≤ OP

(
1

ψp,n

)
OP

(√
ψp,np

n
+
p

n

)
= OP

(√
p

nψp,n
+

p

nψp,n

)
.

On the other hand, if Cov(ut) = σ2
uI for some σ2

u > 0, then the bias rate can be

improved. Note

X ′X = nΛΣfΛ
′ + E + U ′U.

By the Davis-Khan theorem, the top K eigenvalues of X ′X/n and ΛΣfΛ
′, respectively

denoted by σj,X and σj for j ≤ K, are bounded by

max
j≤K

|σj,X − σj| ≤
∥∥∥∥U ′U

n

∥∥∥∥+ ∥∥∥∥En
∥∥∥∥ = OP

(√
ψp,np

n
+
p

n

)
.

Hence ψp,n ≫ p/n implies σj,X ≍ ψp,n for all j ≤ K. There exists an K ×K matrix H

such that columns of ΛH are eigenvectors of ΛΣfΛ
′, and ∥H−1∥ = OP (ψ

1/2
p,n ). Let VK

denotes the first K eigenvectors of X ′X/n. By the Sin-theta inequality,

∥VK − ΛH∥ ≤ OP (ψ
−1
p,n)

[∥∥∥∥U ′U

n

∥∥∥∥+ ∥∥∥∥En
∥∥∥∥] = OP

(
p

ψp,nn
+

√
p

ψp,nn

)
= OP

(√
p

ψp,nn

)
.

Also note that V ′
AVK = 0 because of the orthogonality. Hence

∥V ′
AΛ∥2 ≤ ∥V ′

AΛHH
′ΛVA∥∥H−1∥2 ≤ OP (ψp,n)∥ΛH − VK∥ = OP

(√
ψp,np

n

)
.

Hence ∥V ′
Aβ∥2 ≤ O(1)∥V ′

AΛ∥2∥Σ−1
f + Λ′ Cov(ut)

−1Λ)−1∥2 = OP

(√
ψp,np

n

)
ψ−2
p,n. We thus

conclude,

bias(ŷnew)
2 ≤ OP

(√
ψp,np

n
+
p

n

)
OP

(√
ψp,np

n

)
ψ−2
p,n

= OP

((
p

ψp,nn

)
+

(
p

ψp,nn

)3/2
)

= OP

(
p

ψp,nn

)
.
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A.3.2 Variance

The variance is

Var(ŷnew −X ′
newβ|X) = σ2

e tr
(
(X ′X)+ΣX

)
OP (1), where σ2

e := Var(et|Xn, X).

Since ΣX = ΛΣfΛ
′ + σ2

uIp under Assumption 3, we have

tr
(
(X ′X)+ΣX

)
= tr(Λ′(X ′X)+ΛΣf ) + σ2

u tr
(
(X ′X)

+
)

(A.3)

We focus on tr(Λ′(X ′X)+ΛΣf ) first. It follows that

∥Λ′ (X ′X)
+
Λ∥ = ∥Λ′ (X ′X)

+
(X − U)′ F (F ′F )

−1 ∥

= ∥Λ′ (X ′X)
+
(X − U)′ F/n∥OP (1)

≤
∥∥∥∥((X ′X)

+
)1/2

Λ

∥∥∥∥∥∥∥∥((X ′X)
+
)1/2

(X − U)′
F

n

∥∥∥∥OP (1)

where the first line follows by the expression Λ = (X − U)′ F (F ′F )−1 from the factor

model, the second line by (F ′F/n)−1 = OP (1), and the last inequality by the Cauchy-

Schwarz inequality. Rearrange the above inequality,

∥Λ′ (X ′X)
+
Λ∥

≤
∥∥∥∥((X ′X)

+
)1/2

(X − U)′
F

n

∥∥∥∥2OP (1)

≤ 2

{∥∥∥∥((X ′X)
+
)1/2

X ′F

n

∥∥∥∥2 + ∥∥∥∥((X ′X)
+
)1/2

U ′F

n

∥∥∥∥2
}
OP (1)

≤ 2
{
σmax

(
X (X ′X)

+
X ′
)
+ σmax

(
U (X ′X)

+
U ′
)} F ′F

n2
OP (1)

=
2

n

{
1 + σmax

(
U (X ′X)

+
U ′
)}

OP (1) (A.4)

where the last line follows by the fact that X (X ′X)+X ′ is idempotent. In the curly

bracket,

σmax

(
U (X ′X)

+
U ′
)
= σmax

((
X ′X

p

)+
)
σmax

(
UU ′

p

)

≤ Cuσmax

((
X ′X

p

)+
)

=
Cu

σmin (XX ′/p)
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as ∥U∥2 = OP (p) when p > n. Let v ∈ Rn with ∥v∥ = 1 be the eigenvector of the n× n

matrix XX ′ corresponding to its n th eigenvalue. Then

σmin (XX
′/p) = v′

XX ′

p
v = v′F

Λ′Λ

p
F ′v + 2v′F

Λ′U ′

p
v + v′

UU ′

p
v

≥ v′F
Λ′Λ

p
F ′v −

∣∣∣∣2v′F Λ′U ′

p
v

∣∣∣∣+ cu

≥ v′F
Λ′Λ

p
F ′v − 2

∥∥∥∥∥
(
Λ′Λ

p

)1/2

F ′v

∥∥∥∥∥
∥∥∥∥∥
(
Λ′Λ

p

)−1/2
Λ′

p
U ′v

∥∥∥∥∥+ cu

≥ α′α− 2∥α∥∥M∥+ cu

α :=

(
Λ′Λ

p

)1/2

F ′v, M :=

(
Λ′Λ

p

)−1/2
Λ′

p
U ′v (A.5)

where the first inequality follows under Assumption 3. Also, σmin(U
′U/p) > cu.

In addition,

∥Var (M) ∥ =

∥∥∥∥∥
(
Λ′Λ

p

)−1/2
Λ′ Cov(ut)Λ

p2

(
Λ′Λ

p

)−1/2
∥∥∥∥∥ ≤ C

p
,

and therefore the event
{
∥M∥ ≤

√
cu
2

}
holds with probability approaching one (w.p.a.1.)

as p, n→ ∞. Under this event, we continue (A.5):

σmin (XX
′/p) ≥ ∥α∥2 −

√
cu ∥α∥+ cu

=

(
∥α∥ −

√
cu
2

)2

+
3

4
cu ≥

3

4
cu. (A.6)

Hence σmax

(
U (X ′X)+ U ′) ≤ Cu/(0.75cu). Substituting it into (A.4) we have

∥Λ′ (X ′X)
+
Λ∥ ≤ 2

n

(
1 +

Cu
0.75cu

)
OP (1) = OP (1/n) .

Hence the first term in (A.3) is bounded by tr
(
Λ′ (X ′X)+ Λ

)
= OP (1/n).

For the second term in (A.3), we have

tr
(
(X ′X)

+
)
=

1

p
tr

((
X ′X

p

)+
)

=
1

p

n∑
j=1

1

σj (X ′X/p)

≤ 1

p
· n

σn (XX ′/p)
= OP

(
n

p

)
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by (A.6). We conclude that the variance is

Var(ŷnew −X ′
newβ|X) = OP

(
1

n
+
n

p

)
.

A.4 Proof of Proposition 1

Proof. Part (i). We write the denoise estimator as ŷnew,I = X ′
new,I β̂I = X ′

newQI β̂, where

QI := diag
(
(1′

p0
,0′

p−p0)
′). The expression of the bias becomes

bias (ŷnew,I)
2 = β′AXQlΣXQIAXβ

which implies the difference between bias (ŷnew)
2 and bias (ŷnew,I)

2 is

bias (ŷnew)
2 − bias (ŷnew,I)

2 = β′AX (ΣX −QlΣXQI)AXβ. (A.7)

Under the assumptions of Theorem 2, we have

ΣX =

(
ΛIΣFΛ

′
I + σ2

uIp0 0

0 σ2
uIp−p0

)
, QIΣXQI =

(
ΛIΣFΛ

′
I + σ2

uIp0 0

0 0

)

and therefore the term in the parenthesis of (A.7) is

ΣX −QlΣXQI =

(
0 0

0 σ2
uIp−p0

)
= σ2

u (Ip −QI) , (A.8)

which is semi-positive definite. Substitute it into (A.7) and we obtain

bias (ŷnew)
2 − bias (ŷnew,I)

2 ≥ 0.

In terms of the variance, we denote

ΣXe := X ′E [ee′|X]X =

 ΣXe,II
(p0×p0)

0
(p0×(p−p0))

0
((p−p0)×p0)

ΣXe,NN
((p−p0)×(p−p0))


where the off-diagonal blocks are 0 because under Scenario II XN,t is completely inde-

pendent of XI,t and ϵy,t. As a result, QIΣXeQI =

(
ΣXe,II 0

0 0

)
keep the upper-left block
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only. The variance

Var [ŷnew,I |X] = tr
(
(X ′X)

+
QIΣXeQI (X

′X)
+
)

= tr

(
(X ′X)

+

(
ΣXe −

(
0 0

0 ΣXe,NN

))
(X ′X)

+

)
≤ tr

(
(X ′X)

+
ΣXe (X

′X)
+
)

= Var [ŷnew|X] ,

where the inequality follows as

(
0 0

0 ΣXe,NN

)
is semi-positive definite.

Part (ii). Conditional on X, we have proved in Part (i) that the squared bias and

variance of ŷnew,I are both no larger than that counterparts of ŷnew. Therefore we obtain

the second inequality in the statement

E[(X ′
newβ − ŷnew,I)

2|XI ] ≤ E[(X ′
newβ − ŷnew)

2|XI ]

by the fact XI is a subset of X.

Next we show the first inequality. Let G := (XI , Y,Xnew,I). It is easy to see X ′
newβ =

X ′
new,IβI = E(X ′

new,IβI |G), and thus

X ′
newβ − ŷ∗new,I = E(X ′

new,IβI − ynew,I |G).

It follows that

E[(X ′
newβ − ŷ∗new)

2|XI ] = E
{[

E(X ′
new,IβI − ŷnew,I |G)

]2 ∣∣∣∣XI

}
≤ E

{
E
[
(X ′

new,IβI − ŷnew,I)
2|G
] ∣∣∣∣XI

}
= E

[
(X ′

new,IβI − ŷnew,I)
2|XI

]
.

A.5 Proof of Theorem 3

The closed-form solution of the Ridge estimator with the regressors in the set I is

β̂I(λ) = (X ′
IXI + λI)−1X ′

IY,
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where λ ≥ 0 is the tuning parameter. The population counterpart of the coefficient is

βI = Σ−1
X,IΛ

′
Iρ (A.9)

where ΣX,I = ΛIΛ
′
I + σ2

uIp0 is a p0 × p0 matrix, ΛI is a K × p0 matrix, and the K-

dimensional vector ρ is the same as the full model. In the restricted model on the set I

we have

biasI(λ)
2 = β′

IAIΣX,IAIβI (A.10)

where AI = (X ′
IXI + λI)−1X ′

IXI − Ip0 and

VarI(λ) = σ2
e tr
[
ΣX,I(X

′
IXI + λI)−1X ′

IXI(X
′
IXI + λI)−1

]
.

To simplify notation, we denote by σj = σj (X
′X) as the jth eigenvalue of X ′X.

Bias. Let SI be the diagonal matrix of the singular values of XI , and thus S2
I =

diag (σ1, . . . , σp0). We diagonalize X ′
IXI = VIS

2
IV

′
I and thus

(X ′
IXI + λI)−1 = VI

(
S2
I,p0

+ λIp0
)−1

V ′
I = VIdiag

({
(σj + λ)−1

}
j≤p0

)
V ′
I

and then

AI = VI
(
S2
I,p0

+ λIp0
)−1

S2
I,p0

V ′
I − Ip0 = −VIdiag

(
{λ/(σj + λ)}j≤p0

)
V ′
I . (A.11)

Substitute (A.9) and (A.11) into (A.10):

biasI (λ)
2 = ρ′Λ′

IΣ
−1
X,IVIdiag

({
λ

σj + λ

}
j≤p0

)
V ′
IΣX,IVIdiag

({
λ

σj + λ

}
j≤p0

)
V ′
IΣ

−1
X,IΛIρ.

If we drop the first K elements {λ/(σj + λ)}j≤K from diag
(
{λ/(σj + λ)}j≤p0

)
to pro-

duce diag

({
λ

σj+λ

}
−K

)
:= diag

({
λ

σj+λ

}
K<j≤p0

)
, in the above expression the associated

eigenvectors are also eliminated, which reduces V to VI . The bias becomes

biasI (λ)
2

≥ ρ′Λ′
IΣ

−1
X,IVI,−Kdiag

({
λ

σj + λ

}
−K

)
V ′
I,−KΣX,IVI,−Kdiag

({
λ

σj + λ

}
−K

)
V ′
I−KΣ

−1
X,IΛIρ

≥
(

λ

σK+1 + λ

)2

ρ′Λ′
IΣ

−1
X,IΛIρ =

(
λ

σK+1 + λ

)2

ρ′Λ′
I

(
ΛIΛ

′
I + σ2

uIp0
)−1

ΛIρ,
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where the second inequality holds as λ
σj+λ

≥ λ
σK+1+λ

for all K < j ≤ p0. Then we have

ρ′Λ′
I (ΛIΛ

′
I + ΣI,u)

−1
Λ′
Iρ ≥ ρ′ρ

σK(Λ
′
IΛI)

σK(Λ′
IΛI) + σ2

u

≥ ρ′ρ

2σ2
u

where the last inequality holds for sufficiently large sample size as σ2
u/σK(Λ

′
IΛI) → 0.

We conclude that bias

biasI (λ)
2 ≥

(
λ

σK+1 + λ

)2 ∥ρ∥2

2σ2
u

.

The computation of the variance is straightforward.

VarI(λ) = σ2
e tr

[
ΣX,IVI

(
S2
I + λIp0

)−1
S2
I

(
S2
I + λIp0

)−1
V ′
I

]
≥ σ2

e tr
[
Cov (uI,t)VI

(
S2
I + λIp0

)−1
S2
I

(
S2
I + λIp0

)−1
V ′
I

]
= σ2

eσ
2
u tr

[(
S2
I + λIp0

)−1
S2
I

(
S2
I + λIp0

)−1
]

= σ2
eσ

2
u

p0∑
j=1

σj
(σj + λ)2

≥ σ2
eσ

2
u

p0∑
j=K+1

σj
(σj + λ)2

≥ σ2
eσ

2
u (p0 −K) min

K<j≤p0

σj
(σj + λ)2

≥ σ2
eσ

2
u (p0 −K)

σp0
(σK+1 + λ)2

where in the first inequality we used: if A−B is semi-positive definite, then for any matrix

V , tr(AV V ′) − tr(BV V ′) = tr(V ′(A − B)V ) ≥ 0 because V ′(A − B)V is semi-positive

definite.

Summary. Given the lower bounds of the bias and variance, we have

biasI(λ)
2 +VarI(λ) ≥

(
λ

σK+1 + λ

)2 ∥ρ∥2

2σ2
u︸ ︷︷ ︸

LB

+σ2
eσ

2
u (p0 −K)

σp0
(σK+1 + λ)2︸ ︷︷ ︸

LV

.

It is governed by σK+1 and σp0 . We now show the order of these two eigenvalues.

For σK+1, let vK+1 be the p0-dim sample eigenvector associated with it. The quadratic

form

v′K+1

X ′
IXI

n
vK+1 = v′K+1ΛI

F ′F

n
Λ′
IvK+1 + 2v′K+1ΛI

F ′U ′

n
vK+1 + v′K+1

U ′
IUI
n

vK+1

≤ 2

(
v′K+1ΛI

F ′F

n
Λ′
IvK+1 + v′K+1

U ′
IUI
n

vK+1

)
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≤ 2v′K+1Λ
′
I

F ′F

n
ΛIvK+1 + 2Cu,p0 ,

where σmax(
U ′
IUI

n
) ≤ Cu,p0 because n ≍ p0.

Also, there is K×K matrix HI so that columns of ΛIHI are eigenvectors of ΛI
F ′F
n
Λ′
I ,

and ∥H−1
I ∥ = OP (ψ

1/2
p,n ). Let VK denote the p0 ×K matrix whose columns are the top K

eigenvectors of X ′
IXI . We have v′K+1VK = 0. The Sin-theta inequality guarantees that

∥∥v′K+1ΛI
∥∥ ≤

∥∥v′K+1ΛIHI

∥∥ ∥H−1
I ∥ ≤

∥∥v′K+1(ΛIHI − VK)
∥∥OP (ψ

1/2
p,n )

≤
√
ψp0,nOp(

√
p0/(ψp0,nn)) = OP (1). (A.12)

A lower bound of the smallest eigenvalue σp0 can be derived in a similar fashion as

that in the proof of Theorem 2. Let vp0 be the eigenvector associated with σp0 , We have

σp0
n

= v′p0
X ′
IXI

n
vp0

= v′p0Λ
′
I

FF ′

n
ΛIvp0 + 2v′p0Λ

′
I

FU

n
vp0 + v′p0

U ′U

n
vp0

≥ ∥ΛIvp0∥
2 (1 + op(1))− 2 ∥ΛIvp0∥

∥∥∥∥FUn vp0

∥∥∥∥+ cu,p0

≥ ∥ΛIvp0∥
2 − 2 ∥ΛIvp0∥

∥∥∥∥FUn vp0

∥∥∥∥+ cu,p0 + op(1)

where the last line holds given ∥ΛIvp0∥ = Op(1) as well. Conditional on this event{∥∥FU
n
vp0
∥∥ ≤

√
cu,p0
2

}
, which occurs with w.p.a.1. asymptotically, we continue the above

display expression

σp0
n

≥ ∥ΛIvp0∥
2 −√

cu,p0 ∥ΛIvp0∥+ cu,p0 + op(1)

≥ 3

4
cu,p0 + op(1) ≥

1

2
cu,p0

for sufficiently large sample size.

The above computation shows that there are two absolute constant cX , CX ∈ (0,∞)

such that the event

cXn ≤ σp0 ≤ σK+1 ≤ CXn

holds w.p.a.1. In other words, all eigenvalues {σj}K<j≤p0 are of order n. Hence

biasI(λ)
2 +VarI(λ) ≥ LB + LV
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where

LB ≥
(

λ

σK+1 + λ

)2 ∥ρ∥2

2σ2
u

≥
(

λ

CXn+ λ

)2 ∥ρ∥2

2σ2
u

and

LV ≥ σ2
eσ

2
u (p0 −K)

cXn

(CXn+ λ)2
.

Fix any constant C̄ > 0.

• If λ ∈ [0, nC̄], then LV ≥ σ2
eσ

2
u

cX
(CX+C̄)2

p0−K
n

≥ c0 for some c0 > 0.

• If λ > nC̄, then LB≥
(

C̄
CX+C̄

)2 ∥ρ∥2
2σ2

u
> c0 for some c0 > 0.

This implies infλ≥0[biasI(λ)
2 +VarI(λ)] ≥ c0 > 0.

The OLS estimator is a special case of Ridge regression with λ = 0, under which

AI = (X ′
IXI)

−1X ′
IXI − Ip0 = 0 leads to zero bias. But the variance does not vanish.
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