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Abstract

We use a marginal treatment effect (MTE) representation of a fuzzy regression
discontinuity setting to propose a novel estimation approach. The estimator
can be thought of as extrapolating a traditional fuzzy regression discontinu-
ity estimate or as an observational study that adjusts for endogenous selection
into treatment using information at the discontinuity. We show in a frequentist
framework that it is consistent for the true MTE function under weaker as-
sumptions than existing approaches and then discuss conditions in a Bayesian
framework under which it can be considered the posterior mean given the ob-
served conditional moments. We then use this approach to examine the effects
of early grade retention. We show that the benefits of early grade retention
policies are larger for students with lower baseline achievement and smaller for
low-performing students who are exempt from retention. These findings imply
that (1) the benefits of early grade retention policies are larger than have been
estimated using traditional fuzzy regression discontinuity designs but that (2)
retaining additional students would have a limited effect on student outcomes.
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I Introduction

The past three decades have witnessed a surge in the use of regression discontinuity

designs (RDDs) in applied economic research (Lee and Lemieux, 2010). Nowhere is

this more apparent than in the economics of education, where the fact that many

high-stakes educational decisions rely on student test scores with predetermined cut-

offs has meant that RDDs could be used to evaluate a number of important policies.1

Examples include admissions to selective or specialized public schools2; remedial or

advanced course-taking in middle and high school3; high school graduation4; assign-

ment to English learner, special education, or gifted education programs5; admission

to elite colleges6; and many others. These decisions often incorporate exemptions to

the test score rule, meaning that researchers use the discontinuity as an instrument

to estimate the effects, i.e., use a fuzzy RDD for causal inference.

While fuzzy RDDs generally provide compelling evidence of a treatment effect, the

resulting estimates are limited in the sense that the estimated effects only apply to

students arbitrarily close to the discontinuity for whom being on the treatment side of

the cutoff determines treatment status, i.e., the compliers at the cutoff (Bertanha and

Imbens (2020)). Yet understanding treatment effects beyond compliers at the cutoff

is almost always important from a public policy perspective. Doing so is required,

for example, if one wants to determine whether explicit exemptions indeed identify

students less likely to benefit from treatment or examine the effect of the treatment

on students away from the cutoff. More generally, moving beyond the local average

treatment effect (LATE) is important if one is interested in either assessing the overall

effect of an existing policy or predicting how changing the policy would affect reading

scores in the district.

In this study, we propose a new estimator, which we call Global RDD, for use

in a fuzzy regression discontinuity setting and then use this approach to study how

1In fact, the study that introduced RDD examines the effects of merit awards on students’
academic outcomes (Thistlethwaite and Campbell, 1960).

2e.g., Abdulkadiroğlu et al. (2014); Brunner et al. (2023); Clark (2010); Dobbie and Fryer (2011);
Estrada and Gignoux (2017); Lucas and Mbiti (2014); Ozier (2018); Pop-Eleches and Urquiola
(2013)

3e.g., Cortes and Goodman (2014); Figlio and Ozek (2024); McEachin et al. (2020); Özek (2021)
4e.g., Clark and Martorell (2014); Papay et al. (2022)
5e.g., Bui et al. (2014); Card and Giuliano (2016); Onda and Seyler (2020); Umansky (2016)
6e.g., Hastings et al. (2013); Zimmerman (2019)
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global treatment effect estimates differ from LATE in an important education policy

application: test-based grade retention. The Global RDD jointly models the two

potential outcomes and selection into treatment using a marginal treatment effect

(MTE) specification and then restricts the set of potential functions to ensure that

our estimator converges to a unique MTE function. The result is an estimator that

naturally builds on existing approaches used in other empirical contexts. For example,

the estimator can be thought of as an extrapolation of the traditional fuzzy regression

discontinuity estimate, where the extrapolation to the non-compliers at the threshold

is done using existing approaches usually employed in the RCT setting (e.g., Brinch et

al. (2017); Kowalski (2023)) and extrapolation away from the threshold is done using

the assumption that the selection process does not vary away from the discontinuity.

Alternatively, the estimator can be interpreted as starting with an observational study

and then adjusting for bias using information at the discontinuity in a similar fashion

as Bertanha and Imbens (2020).

We then turn to the formal motivation of the estimator. We first show the con-

ditions under which it converges to the true marginal treatment effect function are

weaker than existing approaches that aim to extrapolate fuzzy RDD estimates. Using

a Bayesian model in which the true conditional moments are themselves distributed

according to some prior distribution, we also consider the conditions under which the

proposed estimator can be thought of as the researchers’ “best guess” of the MTE

function given the observed data, i.e., the mean posterior. Of note, we show that

unless the researcher has strong priors in how the MTE deviate from being linear

functions of the variables, the proposed estimator is nearly identical to the mean

posterior if one is only interested in extrapolating to non-compliers and individuals

whose scores are near (but not at) the discontinuity.

We then turn our attention to grade retention policies. Determining whether or

not to retain a poorly performing student is one of the more important decisions

that parents, teachers, and principals face regarding a child’s education. On one

hand, there is strong empirical evidence that retaining marginal students in early

grades could increase their future test scores, especially if retention is coupled with

additional instructional support. On the other hand, retaining a student is also quite

costly, both in terms of the financial cost for the district and (potentially) the social

cost for the individual student retained. This question is also particularly salient

for education policy in the United States, since many states currently require school
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districts to retain students whose test scores show that they are struggling to meet

basic standards, although many of these states provide several exemptions.7 While

there is growing literature examining the effects of these policies using fuzzy RDDs

(e.g., Greene and Winters (2007); Winters and Greene (2012); Özek (2015); Schwerdt

et al. (2017); Figlio and Özek (2020); Hwang and Koedel (2022); Mumma and Winters

(2023)), we know very little about their effects on students other than compliers right

around the retention cutoffs.

Using student-level data from a large urban school district (LUSD) in Florida,

we show that the benefits of retention are (1) larger for students with lower base-

line reading achievement and (2) smaller for students exempt from retention. These

findings imply that existing studies on early grade retention policies which rely on

traditional fuzzy RD designs significantly underestimate the benefits of retention; for

example, we show that the ATT estimates are roughly 20 percent larger than the

LATE estimates on reading scores. This does not imply that more students should

be retained, however, since we also find that the predicted effects that would come

from removing the exemptions or increasing the passing threshold, i.e., the average

treatment effect on the control (ATC), are negligible. We find that, as currently

implemented, retaining students increases those students’ sixth grade reading scores

by 0.69σ, but further increasing the threshold by 50 points (roughly equivalent to

moving the threshold from Level 2 to Level 3 on the third-grade reading test) and

removing exemptions would have no impact on the sixth grade reading scores of the

newly retained students.

II Model Assumptions and Estimation Approach

II.A Underlying Model and Assumptions

We use as our base model one of the canonical models used to consider the effect of

a binary treatment on a single outcome, the model that forms the basis for marginal

treatment effect (MTE) estimation (e.g., Heckman (2010); Heckman and Vytlacil

(2007a,b); Brinch et al. (2017); Mogstad et al. (2018); Kline and Walters (2019)).

Specifically, we assume that each individual is defined by four variables: their outcome

7For example, by 2020, about half of states required or encouraged school districts to retain
students based on their third-grade reading scores. https://www.ecs.org/50-state-comparison-state-
k-3-policies-2023/, accessed on 12/13/2024.
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if they are not treated, the effect that the treatment has on their outcome, their

implied cost of enrolling in the treatment, and their value of the running variable; we

denote these as µi, τi, ηi, and Zi, respectively. In other words, we use µi to denote

individual i’s outcome in the absence of treatment and τi to denote the causal effect

of the treatment on individual i’s outcome; clearly µi + τi is then their outcome if

they are treated.8

Letting Ti be a dummy variable denoting whether someone is in the treatment or

control group, the observed outcome can be written as: Yi = µi+τiTi. We then follow

the conventional specification of the MTE model and specify that the treatment is

determined according to the following choice equation: Ti = 1(ν(Zi) ≥ ηi) for some

function of the running variable ν(Zi). As researchers, we observe Yi, Ti, and Zi, but

do not observe the latent variables µi, τi, and ηi nor do we observe the function ν(.).

Having specified the way individuals select into the treatment, we next assume

that:

µi = µ∗(ηi, Zi) + ϵµ,i and τi = τ ∗(ηi, Zi) + ϵτ,i (1)

where the error terms are independently distributed according to some mean-zero

distribution (ϵµ,i, ϵτ,i) ∼ Fi. Non-random selection into treatment is therefore cap-

tured by the fact that both µ∗ and τ ∗ can depend on the (unobserved) latent variable

ηi, which also determines whether individual i selects into treatment. The function

τ ∗(η, Z), in particular, corresponds to the marginal treatment effect (MTE) function

as defined in Heckman and Vytlacil (1999, 2005) and is generally the object of interest

itself or, more commonly, the objects of interest can be derived from it. For example,

full knowledge of the function τ ∗(η, Z) would allow one to calculate the overall average

treatment effect (ATE), the average treatment effect on the treated (ATT), and the

average treatment effect on the compliers (LATE), and other estimands of interest.

We use the star notation, i.e., denoting the functions as µ∗ and τ ∗, to distinguish

the true conditional moment functions from generic potential conditional moment

functions µ and τ .

While the conditional moment functions in Equation (1) correspond most closely

to the objects of interest, they are a bit removed from what is observed in the data.

We therefore also define two additional conditional moments, which are more closely

8In Appendix B we discuss how to add additional covariates Xi to the analysis, but for exposi-
tional simplicity omit these for now.
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related to what we observe. These moments are defined as follows:

y∗0(η, Z) =
1

1− η

∫ 1

η

µ∗(η̃, Z)dη̃ and y∗1(η, Z) =
1

η

∫ η

0

µ∗(η̃, Z) + τ ∗(η̃, Z)dη̃

(2)

Note that these moments are redundant with the ones defined in Equation (1),

i.e., if one knows the functions µ∗ and τ ∗ it is clearly possible to calculate y∗0 and

y∗1 and, similarly, if one knows y∗0 and y∗1 it is possible to compute µ∗ and τ ∗. For

example, one can transform y0 and y1 to τ via the linear transformation:9

T (y0, y1) = y1 − y0 + η
∂y1
∂η

+ (1− η)
∂y0
∂η

(3)

One of the main challenges in the regression discontinuity setting is that – even

ignoring estimation error – we only observe the functions y∗0(η, Z) and y∗1(η, Z) at a

select number of points. This means that making empirical statements about any

estimand of interest other than the LATE requires, at a fundamental level, some

extrapolation away from the observed conditional moments. To formally analyze this

extrapolation, we will follow Opper (2024) and add a Bayesian hierarchical model

on top of the traditional MTE framework. Specifically, we will assume that the true

conditional moments are themselves distributed according to a Gaussian process.

That is, we specify that:

y∗0(η, Z) ∼ GP(α0 + β0ν + γ0Z,C0) (4)

y∗1(η, Z) ∼ GP(α1 + β1ν + γ1Z,C1) (5)

[α0, β0, γ0, α1, β1, γ1]
′ ∼ N(0, σ2I) with σ2 → ∞ (6)

where GP(m,C) corresponds to a Gaussian process with mean m and covariance

function C, and I corresponds to the identity matrix.

Since our main approach – as discussed below – will not be to estimate the fully

Bayesian model, but to use the specification as a way to analyze the behavior of our

estimator, we will not delve too deep into the intricacies of Gaussian processes; for

the interested reader, Rasmussen and Williams (2006) provides an excellent intro-

9Another way to write this transformation is that T (y0, y1) =
∂
∂η

(
ηy1

)
+ ∂

∂η

(
(1−η)y0

)
. Similarly,

there is way to transform y0 and y1 to µ, but this linear transformation is less important since
researchers are generally interested in estimating the treatment effects.
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duction to Gaussian processes in general and Opper (2024) provides a more detailed

discussions of Gaussian processes in the context of a marginal treatment effect model.

There are, however, some important notes about the model as specified in Equa-

tions (4) - (6). First, by specifying that the mean of the Gaussian processes are linear

functions of η and Z – and using an uninformative prior limit for the linear terms

– we specify that the baseline is a linear function of η and Z rather than function

that equals zero at every point. In practice, this means that in the absence of more

information the model extrapolates using a linear function of η and Z, rather than

shrinking the predictions toward zero.

Second, the specification of the covariance functions Ck determine both the set of

feasible functions as well as the relatively likelihood of functions within that set. For

intuition, consider the case of a single parameters θ ∈ R distributed according to some

prior pdf f(θ). By specifying that f(θ) ∼ N(0, σ2) we would not place any bounds

on the set of possible values for θ but specify that values close to zero are more likely

than values far away from zero; in contrast, by specifying that f(θ) ∼ U(θ, θ), we

would be assuming that θ ∈ (θ, θ) while not specifying that any value within that set

is more likely than any other. Similarly, based on our choice of C1 we can restrict the

set of functions y∗1 to be, for example, polynomial functions; in contrast, by specifying

that C1 is a squared-exponential kernel we can place very few restrictions on the set

of potential functions y∗1, but capture the intuition that smooth functions are more

likely than functions which oscillate wildly.

Given this general framework, we now make the following three assumptions that

we will hold throughout:

Assumption 1. ηi|Zi ∼ U(0, 1)

Assumption 2. ν(Z) ∈ (0, 1) for all Z and is a continuous function at every point

except for a single Z∗, where:

lim
Z↑Z∗

ν(Z) ≡ pl < ph ≡ lim
Z↓Z∗

ν(Z)

Assumption 3. The covariance functions C0 and C1 are both twice-differentiable

functions of (η, Z).

Assumption 1 is relatively benign assumption and is common assumption in the

MTE literature. The fact that ηi is distributed uniformly between zero and one is a
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normalization as long as one is willing to assume that ηi is continuously distributed

conditional on Zi. This standard normalization is useful, as it implies that the cutoff

value ν(Zi) is equal to Pr(Ti|Zi), i.e. to the propensity score. This normalization also

means that we can essentially think of ηi as being a ranking of how willing individual

individual i is to opt-in to the treatment, relative to other individuals with the same

value Zi, with lower values indicating a higher willingness (or, equivalently, a lower

cost).

Assumption 2 captures the fact that it is a fuzzy RD context, in that that for

every value of the running variable there are both treated and untreated individuals

(i.e., ν(Z) ∈ (0, 1)) and that there is a single point Z∗ at which the probability of

treatment jumps discontinuously.10 One advantage of the method is that it can be

naturally extended to cases in which there are multiple discontinuities. For ease of

exposition, however, we focus on the case with a single discontinuity and discuss in

Appendix B how the method and results can be tweaked when there are multiple

discontinuities.

Finally, by assuming that the covariance functions are twice-differentiable func-

tions, Assumption 3 ensures that any realization of the Gaussian process (and hence

the true potential outcome functions y∗0 and y∗1) results in differentiable functions of

ηi and Zi. This can be thought of as a natural extension of the standard assumption

required for RD designs that the potential outcome functions are continuous func-

tions around the discontinuity, although it extends this assumption so that it applies

globally (since we are interested in global effect estimates) and so that the functions

are differentiable (so we can move from y∗k(η, Z) to τ(η, Z) using Equation (3)).

We conclude this section with one final assumption that we will relax in Section

IV, which is listed below:

Assumption 4. The researcher observes the conditional moments: E[Ti|Zi = Z, y∗0, y
∗
1],

E[Yi|Ti = 1, Zi = Z, y∗0, y
∗
1], E[Yi|Ti = 0, Zi = Z, y∗0, y

∗
1] at every point Z ̸= Z∗.

Assumption 4 specifies that the researcher observes the true conditional moments,

rather than needing to estimate them. While apparently quite a strong assumption,

this is meant to clarify the main ideas by allowing us to focus on questions of iden-

tification and extrapolation in the subsequent discussion of the estimator. We then

10The assumption also specifies that the probability increases as one moves across the threshold
from left to right, but this is without loss of generality.
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return to questions of estimation in Section IV; in that section, we show that if one

replaces Assumption 4 with a common set of assumptions one can (roughly speaking)

invoke the law of large numbers to show that replacing the true expectations with

estimates of these moments does not affect the theoretical justification, as long as we

take an asymptotic perspective.

Finally, note that the moments specified in Assumption 4 are conditional on the

realization of the Gaussian process. Thus, we can view the expectations in the conven-

tional frequentist context, where the true values are held as fixed and the expectations

are taken over the error terms ϵi,µ, ϵi,τ , and ηi. In the rest of the paper we will gen-

erally leave this conditioning as implicit and simply write, for example, E[Ti|Zi = Z].

In cases where we do not condition on the realization of the Gaussian process, we will

use the notation EGP to make explicit that the expectation is taken over the Gaussian

process.

II.B Proposed Estimator

A natural next step is to estimate the Bayesian model outlined in Section II.A. This

would involve more precisely specifying the covariance functions of the Gaussian pro-

cess (and potentially some hyperpriors over the hyperparameters that govern these

functions) and replacing Assumption 4 with assumptions about the sampling scheme,

i.e., about Fi. It would then be possible to use the known characteristics of Gaus-

sian processes to estimate posterior distributions of the MTE function and/or other

estimands of interest.

While this approach has some advantages, it also has its downsides. In partic-

ular, the approach requires explicit specification of the priors (i.e., the covariance

functions) and it is not entirely clear how the specification of the priors affects the

resulting estimates. We therefore take an alternative approach in this paper. Instead

of estimating the fully Bayesian model, we first propose an estimator and show that

it is both feasible and well-defined. We then show that it translates the observed

moments into the estimated MTE function in a natural way and one that can be

thought of as naturally extending the existing alternatives. Finally, we explore both

the conditions on the specified prior under which the resulting estimate converges

to the true MTE function and the conditions under which it converges to the “best

guess” of the true MTE function, i.e., the mean of the posterior, given our limited
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set of observations.

With that outline, we now formally define our estimator, which we refer to as the

“Global Regression Discontinuity Design” (Global RDD) and denote as τ ∗GRDD. The

definition is as follows:

Definition 1. Define τ ∗GRDD as:

τ ∗GRDD ≡ ŷ∗1 − ŷ∗0 + η
ŷ∗1
∂η

+ (1− η)
∂ŷ∗0
∂η

(7)

where ŷ∗0 and ŷ∗1 are defined such that for k ∈ {0, 1}:

1. ŷ∗k(η, Z) = βk + γk(Z) for some βk ∈ R and continuous function γk(Z)

2. ŷ∗k(ν(Z), Z) = E[Yi|Ti = k, Zi = Z] for all Z ̸= Z∗

There are two important points about the above definition. First, the estimator

defined above is feasible, in that it does not rely on any data other than that which

is assumed to be observed by the researcher. Second, τ ∗GRDD is well-defined, in that

under the assumptions outlined in Section II.A there is guaranteed to be a single

function τ ∗GRDD that meets that above definition. We state this as a proposition

below:

Proposition 1. Under the model outlined in Section II.A and Assumptions 1 - 4,

the Global RDD as specified in Definition 1 can be implemented using the observed

conditional moments and is well-defined.

While we leave the formal proof to Appendix A, it is worth highlighting that

the discontinuity at Z∗ is precisely what ensures τ ∗GRDD to be well-defined; without

the discontinuity, we would only observe a single point at every value of Z and so

even under the restriction that yk(η, Z) = βkη + γk(Z) it would be impossible to

pin down both βk and the function γk(Z) based on the observed data. To see this,

and to provide some intuition of how the Global RDD mechanically transforms the

observed moments into the resulting estimates, we can consider a simplified example

– illustrated in Figure 1 – in which we are only concerned with the function y1(η, Z).

The analysis for the function y0(η, Z) is identical and, as mentioned above, together

the functions y1(η, Z) and y0(η, Z) pin down the MTE function τ(η, Z).

We can start by looking at the relationship between the running variable – shown

on the x-axis in Figure 1a – and the probability of treatment – shown on the y-axis.
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Note that we observe this function, i.e., E[Ti|Zi = Z], in the data and that this

corresponds exactly to the function ν(Z). We indicate ten points on the function

with dots, which we use in the other figures, and label six of them.

In the next two panels, we turn our attention to the observed conditional means,

i.e., to E[Yi|Zi = Z, Ti = 1]. We plot these observed moments for the ten points we

highlighted in the previous panel in Figure 1b, labelling the same six points as in

Figure 1a, with the running variable (i.e, Z) on the x-axis. We do not draw a line

through each of these points to emphasize that – unlike in Figure 1a – we are not

directly concerned with how function E[Yi|Zi = Z, Ti = 1] varies as a function of Z.

Instead, we are concerned with the question of how y1(η, Z) varies as a function of

both η and Z and so can think of these points we observe as being y1(η(Z), Z).

We can similarly plot the observed points with the value of η, rather than Z on the

x-axis, i.e., as y1(η, ν
−1(η)). We do so in Figure 1c, again highlighting and labelling the

same points as before. It is this formulation that best highlights how the Global RDD

transforms the observed moments into the resulting estimate of ŷ1(η, Z). To start,

we will only concern ourselves with estimating the function ŷ1(η, 0). As discussed

above, at this value of Z we observe two separate points: ŷ1(pl, 0), which is identified

as point C in Figure 1b, and ŷ1(ph, 0), which is identified as point D in the Figure

1b. Without any restrictions, there are clearly many functions ŷ1(η, 0) that would go

through both point C and D; if we restrict ourselves to linear functions, however, the

two points completely determine the function ŷ1(η, 0). Note that this follows directly

the discussion in Brinch et al. (2017). This is shown in Figure 1d.

Of course, we also need to determine the functions ŷ1(η,−1), ŷ1(η,−0.9), ...,

ŷ1(η, 0.8), ŷ1(η, 0.0), ŷ1(η, 1). If we restrict this set of functions to both all be linear

functions of η as well as all have the same slope, i.e., for ŷ1(η, Z) = βη + γ(Z), then

– after pinning down the slope using behavior at the discontinuity – we can adjust

γ(Z) such that ŷ1(η, Z) goes through every point. Again, we can see this by the

functions y1(η, 1), y1(η, 0), and y1(η,−1) all consisting of parallel lines in Figure 1d.

Thus, the combination of: (a) the assumption that y1(η, 0) is a linear function of η

and (b) y1(η, Z) is separable (i.e., the linear slope does not change away from the

discontinuity) uniquely define the function y1(η, Z).

We conclude here by noting that we have not yet made any statements about

how τ ∗GRDD is related the the true MTE function τ ∗ and only have shown that τ ∗GRDD

is well-defined. There is, however, an intimate connection between the notion of an
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Figure 1: Identification Intuition

(a) First Stage
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(c) Observed Moments
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(d) Linear Selection
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Note: This figure illustrates the intuition of how the Global RDD transforms the ob-
served moments into treatment effect estimates. Panel (a) illustrates the relationship
between the running variable and the probability of treatment, indicating 10 points
with circles and labelling six of them. Panel (b) and (c) then both show the mean
outcome of the treated individuals for each of these points; Panel (b) uses the running
variable as the x-axis and panel (c) uses η as the x-axis. Panel (d) then shows how
the Global RDD uses the information in these ten points to generate estimates of
ŷ1(η, Z).
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estimator being “well-defined” and a parameter being “point-identified,” as both are

fundamentally about there being a unique function that satisfies the restrictions. In

fact, while we leave the discussion of this to Section IV, the fact that τ ∗GRDD is well-

defined basically implies that the true MTE function τ ∗ is point identified if one is

willing to assume that the conditional moments y0 and y1 are additively separable

and linear in η.

II.C Alternative Definitions of the Estimator

In the previous section, we introduced the Global RDD and showed that it is both

feasible and well-defined. In this section, we start by highlighting that even though

the conditional moment functions in this estimator may be mis-specified, the proposed

estimator gives the true local average treatment effect. Formally, we get thefollowing

theorem:

Proposition 2. Let τ ∗ denote the true MTE function, for any realization of the

Gaussian process under any choice of C0 and C1. Then the estimated effect on the

set of compliers at the Z∗ is equal to the true effect on that set, i.e.:

1

ph − pl

∫ ph

pl

τ ∗GRDD(η, Z
∗)dη =

1

ph − pl

∫ ph

pl

τ ∗(η, Z∗)dη (8)

This result is essentially the RD version of Theorem 1 of Kline and Walters (2019)

and shows the Global RDD estimate of the local average treatment effect (LATE)

corresponds to the true LATE even if the true y∗k(η, Z) functions are not in fact

additively separable and linear in η.

Of course, if all one was concerned about was the local average treatment effect,

one could simply use a traditional fuzzy RDD. In contrast to a traditional fuzzy RDD,

however, the Global RDD also provides effect estimates away from the complier pop-

ulation at the cutoff. The question is therefore whether the particular extrapolation

approach implied by the estimator defined in Section II is a good one.

Our formal answer to that question comes in the next section, where we discuss the

restrictions on the covariance functions of the Gaussian processes and the treatment

probabilities that either imply that the Global RDD converges to the true MTE

function or (absent that) at least the best guess of true MTE function given the

observed data. For another perspective, we now consider two natural alternatives: (1)

13



II.C Alternative Definitions of the Estimator Opper and Özek

an observational study in which one compares the treatment average to the control

average at every point Z ∈ Z and (2) a traditional fuzzy regression discontinuity

design. Formally, we get that:

τ ∗obs(Z) = E[Yi|Ti = 1, Zi = Z]− E[Yi|Ti = 0, Zi = Z] (9)

τ ∗RDD =
1

ph − pl

(
lim
Z↓Z∗

E[Yi|Zi = Z]− lim
Z↑Z∗

E[Yi|Zi = Z]

)
(10)

Here we show that it is also possible to think of the Global RDD as reflecting a

natural way to extrapolate the fuzzy RDD to both the non-compiler population and

to individuals away from the discontinuity. To do so, consider initially on the question

of how extrapolate the LATE to other estimands of interest at the discontinuity. This

is the same as extrapolating from the LATE to other estimands in an RCT or more

general IV context. A natural approach is therefore to use the linear extrapolation

approach as discussed in Brinch et al. (2017) and Kowalski (2023). Next, consider

how to extrapolate away from the discontinuity; here, a natural approach to this

extrapolation is to compare how the (potentially biased) observational study estimates

vary, i.e., to compare τ ∗obs(Z) to τ ∗obs(Z
∗
h). While formulated quite differently than

Definition 1, as stated in the following Remark this is precisely how the Global RDD

extrapolates away from the observed moments.

Remark 1. Let τ ∗GRDD be the estimate generated by the Global Regression Discon-

tinuity Design, as defined in Section II.B, and τ ∗obs(Z) and τ ∗RDD be the estimates

generated from the traditional observational study and a traditional regression discon-

tinuity design, as defined in Equation (9). Then if ν(Z) = ph, we get that:

τ ∗GRDD(η, Z) = τ ∗RDD + extrap(η) + extrap(Z)

where

extrap(η) = 2 ·
(
β∗
1 − β∗

0

)
·
(
η − ph + pl

2

)
extrap(Z) = τ ∗obs(Z)− τ ∗obs(Z

∗
h)

In a similar fashion, instead of starting with the traditional RDD we could start

with a traditional observational study. A downside of such an observational study

14



II.C Alternative Definitions of the Estimator Opper and Özek

is that we might be concerned that individuals endogenously choose (or are chosen)

to enroll in the treatment. This would cause bias in the observational study and so

one could imagine trying to “debias” the observational study; of course, this begs the

question of how one could do so.

To see how one might use information at the discontinuity to do so, we first note

that in the framework presented in Section II.A, endogenous selection stems from

the fact that the conditional moments depend on the cost of enrollment, i.e., on ηi.

Specifically, note that we can write τ ∗obs(Z) as being equal to y
∗
1(ν(Z), Z)−y∗0(ν(Z), Z),

whereas the true conditional average treatment effect (CATE) is equal to y∗1(1, Z)−
y∗0(0, Z). Thus, if we can understand how y∗1(η, Z) and y∗0(η, Z) vary based on η we

could debias the observational study. Of course, this is not trivial; however, we can

use the fact that – due to the discontinuity – we observe y∗1(η, Z
∗) and y∗0(η, Z

∗) at

two different values of η to attempt such an adjustment.

Next, we will use β∗
0 to denote the slope of the implied function ŷ∗0(η, Z

∗) and β∗
1

be the slope of the implied function ŷ∗1(η, Z
∗), i.e.,

β∗
0 ≡ y∗0(ph, Z

∗)− y∗0(pl, Z
∗)

ph − pl
(11)

β∗
1 ≡ y∗1(ph, Z

∗)− y∗1(pl, Z
∗)

ph − pl
(12)

Again, we can then use the linear extrapolation approach as discussed in Brinch et al.

(2017) and Kowalski (2023) to adjust ŷ1(ν(Z), Z) and ŷ0(ν(Z), Z) based on β∗
0 and

β∗
1 , in hopes that it would improve the estimates that result from the observational

study. Again, although specified differently this is an equivalent formulation of the

Global RDD estimate. We specify this in the following Remark:

Remark 2. Let τ ∗GRDD be the estimate generated by the Global Regression Disconti-

nuity Design, as defined in Section II.B, and τ ∗obs(Z) be the estimate generated from

the traditional observational study, as defined in Equation (9). We then have:

τ ∗GRDD(η, Z) = τ ∗obs(Z)− b (13)

where b is a measure of the bias in the observational estimates. Specifically, defining
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β∗
0 and β∗

1 as in Equation (11) and (12), we have:

b =
(
ν(Z)− 2η

)
·
(
β∗
1 − β∗

0

)
− β∗

0 (14)

= ξh ·
(
τ ∗RDD − τ ∗obs(Z

∗
h)
)
+ ξl ·

(
τ ∗RDD − τ ∗obs(Z

∗
l )
)

(15)

where ξk ∈ R is a function of ph, pl and ν(Z), τ ∗obs(Z
∗
h) = limZ↓Z∗ τ ∗obs(Z), and

τ ∗obs(Z
∗
l ) = limZ↑Z∗ τ ∗obs(Z).

There are two implications of the above remark. First, while we center most of

the discussion around how our approach extends a traditional fuzzy RDD, you could

also think of it as an approach to debias a traditional observational study design.

Second, we can write the bias term as a linear combination of the the traditional

fuzzy RDD and observational study estimates at Z∗; see Equation (15). In other

words, we can caluclate the expected bias in τ ∗obs(Z) by comparing the fuzzy RD

estimate of the LATE to the τ ∗obs(Z) estimates at the discontinuity. The intuition for

this formulation follows from the idea that if fuzzy RD estimates are identical to the

observational estimates at the cutoff, this suggests that the observational estimates

have minimal bias and so need almost no correction.11 In contrast, if the fuzzy RD

design diverges from them at the cutoff, this suggests that the observational estimates

estimates are quite biased and therefore need significant bias adjustment.

Thus far, we have motivated our extrapolation approaches as being “natural”

and/or being an application of earlier approaches. Using the Bayesian model specified

in Section II.A, however, we can go beyond this motivation and show formally that

the Global RDD indeed corresponds to adjusting the observational studies using “best

guess” of the bias based on what is observed at discontinuity regardless of the choice

of prior. Letting D(A) denote the observed conditional moments at points Z ∈ A,

we state this in the following proposition:

Proposition 3. Define to b∗obs(η, Z) be the bias in the observational study, i.e.,

b∗obs(η, Z) = τ ∗obs(Z)− τ ∗(η, Z) (16)

11This is reiterates the point initially made in Battistin and Rettore (2008), which use a fuzzy
RDD to validate the observational estimates; one way to view our paper is to develop an approach
researches can take if their test that the observational study is unbiased, or the test proposed in
Bertanha and Imbens (2020) that the local effect is generalizable to the non-compliers, is rejected.
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where τ ∗obs(Z) is defined in Equation (9). Then:

τ ∗GRDD(η, Z) = τ ∗obs(Z)− EGP
[
b∗obs(η, Z)

∣∣D({Z∗, Z})
]

(17)

for any (η, Z) and any choice of C0 and C1.

We build on this result in the next section, where we formally motivate the esti-

mator.

III Comparing the GRDD to the True Treatment

Effect Function

In the previous sections, we have introduced the model, proposed the estimator,

showed that it was feasible and well-defined, and then discussed how it extrapolates

away from the observed moments. In this section, we discuss conditions on the set of

potential conditional moment functions and/or the prior likelihood of functions within

this set that guarantees the proposed estimator either equals the true treatment effect

function or is the “best guess”, i.e., the mean of the posterior, of the true treatment

effect function given the observed data.

III.A When does the GRDD Identify the True MTE Func-

tion?

As discussed at the end of Section II.B, the question of point identification is closely

related to the question of whether the proposed estimator is well-defined. In fact,

from the proof that the GRDD is well-defined, we can directly conclude that if the

conditional moments are indeed additively separable and linear in η then the global

RDD does equal the true MTE function. This result can be stated succinctly in the

following proposition:

Proposition 4. Suppose that Ck = Ck,Z(Z,Z
′) for k ∈ {0, 1}. Then for any choice

of Ck,Z, we have that τ ∗GRDD(η, Z) = τ ∗(η, Z).

Absent any covariates, the assumption required for Proposition 4 is, in our opinion,

relatively strong. With the addition of covariates, which we discuss how to do in Ap-

pendix B, the assumption may become much more tenable. Furthermore, it identifies
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the true MTE under weaker assumptions than two of the main existing alternatives:

(a) ignoring the discontinuity and relying instead on a selection-on-observables as-

sumption and (b) the Angrist and Rokkanen method (Angrist and Rokkanen, 2015),

which we discuss more below.12

Proposition 5. Letting τAR denote the Angrist and Rokkanen estimator, as defined

in Angrist and Rokkanen (2015), we have the following two results:

1. Suppose Ck is such that τ ∗obs(Z) =
∫ 1

0
τ ∗(η, Z)dη for every realization of y∗.

Then
∫ 1

0
τ ∗GRDD(η, Z) =

∫ 1

0
τ ∗(η, Z)dη

2. Suppose Ck is such that τ ∗AR(Z) =
1

ph−pl

∫ ph
pl

τ ∗(η, Z)dη for every realization of

y∗. Then
∫ ph
pl

τ ∗GRDD(η, Z)dη =
∫ ph
pl

τ ∗(η, Z)dη.

While we leave the formal proof to Appendix A, we highlight here some nice

similarity in the reasoning why the Global RDD relaxes the assumptions required for

a traditional observational study and those required for the Angrist and Rokkanen

method. In particular, the traditional observational study assumes that there is no

endogenous selection into the treatment which, in the MTE formulation, amounts

to the assumption that yk(η, Z) does not depend on η. The Angrist and Rokkanen

method, in contrast, allows for endogenous selection into the treatment but assumes

that the moments do not depend on the running variable; in the MTE formulation,

this amounts to the assumption that yk(η, Z) does not depend on Z. The Global RDD

therefore relies on weaker assumptions since it allows for the conditional moments to

depend on both η and Z, although it does put restrictions on how they do so.

It is worth highlighting that an important advantage of the Angrist and Rokkanen

method is that it can be used in the context of a sharp RDD, i.e., when ν(Z) ∈ {0, 1}.
Thus, a more precise statement would be that the Global RDD relies on weaker as-

sumptions in the context of a fuzzy RDD. Similarly, the real advantage of an obser-

vational study is that it can be used even in the case where there is no treatment

discontinuity. Thus, the proposition above stems in many ways from the fact that, in

the specific context of a fuzzy RDD, neither approach is using the full set of observed

12While these are not the only two methods used, the others we are aware of either focus on a
marginal change in the threshold (Dong and Lewbel (2015), Cerulli et al. (2017)) or rely on additional
information, such as additional covariates/measures (Mealli and Rampichini (2012), Wing and Cook
(2013), Rokkanen (2015)) or multiple discontinuities (Cattaneo et al. (2021), Bertanha (2020)). We
discuss our method in a context with multiple discontinuities in Section B.
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data, while the Global RDD does. Relaxing the necessary assumptions does have a

cost; however, by relaxing the assumptions in the Global RDD the model is exactly

identified and hence untestable. We discuss in Appendix B.C how the MTE formula-

tion outlined in this paper also be used to specify intermediate models, which relax

the assumptions in Angrist and Rokkanen and/or traditional observational studies

but still allow for some of the assumptions to be testable.

III.B When is the GRDD the Best Guess?

Even though the Global RDD converges to the true MTE under weaker assumptions

than the main alternative approaches, one may still not be comfortable with the as-

sumptions required to identify the true MTE function. Motivated by the researchers’

own experience, we therefore now consider in this section what happens when the

researcher is not willing to assume that the functions are necessarily additively sepa-

rable and linear in η, but also does not have a strong intuition on how they deviate

from it. In particular, we now explore the conditions on the priors in which the Global

RDD may still correspond to the researchers’ “best guess” at the MTE function given

the observed data, even if it is not necessarily the true MTE function.13

Much of the intuition for our analysis here stems from Proposition 3, which showed

that the bias-adjustment implicit in the Global RDD corresponds to the expected

bias based on what is observed at the discontinuity. An equivalent statement is that

regardless of the choice of Ck the Global RDD corresponds to the mean posterior

of the MTE function based on the moments observed at the discontinuity and one

additional point. Again letting D(A) denote the observed conditional moments at

points Z ∈ A, this proposition is stated below:

Proposition 6. For any choice of C0 and C1 and any point Z̃ ̸= Z∗, we get that:

τ ∗GRDD(η, Z) = EGP
[
τ ∗(η, Z)|D({Z̃, Z∗})] (18)

for every η and Z ∈ {Z̃, Z∗}.

This result seems quite promising; however, we observe data at all points Z ∈ Z

and not just at two points and, unfortunately, Proposition 6 does not easily extend to

13Focusing on the mean posterior of the MTE function is important in part because the mean
posterior is the optimal estimator in a Bayesian decision theory model with a squared-loss function.
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show that τ ∗GRDD(η, Z) = EGP
[
τ ∗(η, Z)|D(Z)]. The reason is that it is the covariance

functions that determine whether one should ascribe deviations from linearity in the

observed yk(ν(Z), Z) to: (a) non-linearities in the relationship between Z and yk; (b)

non-linearities in the relationship between η and yk; or (c) interactions between η

and Z. The Global RDD instead ascribes all such deviations to non-linearities in the

relationship between Z and yk, which may not align with the covariance functions.

We therefore consider conditions under which we can indeed interpret the Global

RDD as the mean posterior conditional on all the observed data. Of course, one such

case is when we should ascribe all deviations to non-linearities in the relationship

between Z and yk, which occurs when Ck = Ck,Z(Z,Z
′). But the Global RDD

also corresponds to the mean posterior if the treatment thresholds do not vary away

from the discontinuity and one is willing to assume that the functions y∗k(η, Z) are

separable, e.g., that the way selection into treatment occurs does not vary based on

Z. Formally, this is stated in the following proposition:

Proposition 7. Suppose that Ck((η, Z), (η
′, Z ′)) = Ck,η(η, η

′) + Ck,Z(Z,Z
′) for both

k ∈ {0, 1} and that:

ν(Z) =

pl if Z < Z∗

ph if Z > Z∗
(19)

Then for any choice of Ck,η and Ck,Z, we get that:

τ ∗GRDD(η, Z) = EGP
[
τ ∗(η, Z)|D(Z)] (20)

for every (η, Z).

The two additional conditions specified in Proposition 7 – i.e., that ν(Z) is a step-

function and that the functions y∗k(η, Z) are separable – are particularly interesting

because in a small neighborhood around the discontinuity they are guaranteed to be

(nearly) satisfied. This implies that the Global RDD is (nearly) the mean posterior as

long as we restrict ourselves to a small enough neighborhood around the discontinuity.

We state this formally below for the conditional average treatment effects:

Proposition 8. Let τ ∗GRDD(Z) =
∫ 1

0
τ ∗GRDD(η, Z)dη and τ ∗(Z) =

∫ 1

0
τ ∗(η, Z)dη.

Then for any ϵ > 0, there exists a δ > 0 such that for all Z ∈ (Z∗ − δ, Z∗ + δ):∣∣∣τ ∗GRDD(Z)− EGP
[
τ ∗(Z)|D(Z∗ − δ, Z∗ + δ)

]∣∣∣ < ϵ (21)
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for every (η, Z).

IV Estimation, Inference, and Simulation Results

So far, we have assumed that the researchers observe the true conditional moment

functions, i.e., E[Yi|Ti = k, Zi = Z] and E[Ti|Zi = Z] for all Z ̸= Z∗ and k ∈ {0, 1}.
In practice, of course, these moments need to be estimated. Here, we first outline our

estimation approach and additional assumptions, discuss convergence rates and the

asymptotic distribution, and then highlight some important implementation details.

Finally, we conclude with a simulation that shows the theoretical justifications of the

Global RDD described above are backed up by impressive finite sample performance.

IV.A Estimation Approach, Sampling Assumptions, and the

Limiting Distribution

There is a vast literature on the non-parametric estimation of conditional moment

functions and our goal here is not to provide a detailed discussion of various non-

parametric estimation approaches. Rather, we aim to outline an estimation approach

and highlight how results from the existing literature can provide insights on the

limiting distribution of the Global RDD.

To do so, we start by outlining a general estimation approach that uses linear

smoothers to estimate the conditional moments and then uses the resulting estimates

of these moments to estimate the MTE function. For the latter, we use the formulation

of the Global RDD that specifies it is equivalent to a bias-adjusted observational study,

as outlined in Proposition 2.

Our focus on linear smoothers, means that we estimate the conditional moment

functions as:

Ê[Yi|Zi = Z, Ti = k] =
∑
∀i

ωk(Z,Zi, Ti) · Yi (22)

Ê[Ti|Zi = Z] =
∑
∀i

ων(Z,Zi) · Ti (23)

for some set of weighting functions ω0, ω1, and ων . Linear smoothers include most

conventional non-parametric (and parametric) estimators, including kernel regres-
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sions, smoothing splines, and series estimation. We assume that the weight functions

depend on a tuning parameter, which measures the complexity of the model and

which we denote as λ0, λ1, and λν . For example, in series or basis estimation these

λ’s measure the number of terms included in the linear specification, while in kernel

regressions they capture the inverse of the bandwidth. We allow the λ’s (and hence

the weight functions) to vary based on the sample size and allow them to depend

on the full set of observed values Zn = (Z1, ..., Zn) and T n = (Ti, ..., Tn) as well; for

notational convenience we omit this dependence when we write the weights.14 It is

useful to also define the following weighting functions, which are derived from the

ones specified above:

ωobs(Z,Zi, Ti) = ω1(Z,Zi, Ti)− ω0(Z,Zi, Ti) (24)

ω1(∆Z∗, Zi, Ti) = lim
Z↑Z∗

ω1(Z,Zi, Ti)− lim
Z↓Z∗

ω1(Z,Zi, Ti) (25)

with ω0(∆Z∗, Zi, Ti) and ων(∆Z∗, Zi) defined similarly.

Given these definitions, we define the Global RDD estimator for a general linear

smoother as follows:

Definition 2. Define τ̂GRDD as:

τ̂GRDD(η, Z) = τ̂obs(Z)−
(
ν̂(Z)− 2η

)
·
(
β̂1 − β̂0

)
− β̂0 (26)

where:

τ̂obs(Z) =
∑
∀i

ωobs(Z,Zi, Ti) · Yi (27)

ν̂(Z) =
∑
∀i

ων(∆Z∗, Zi) · Ti (28)

β̂1 =

∑
∀i ω1(∆Z∗, Zi, Ti) · Yi∑
∀i ων(∆Z∗, Zi) · Ti

(29)

β̂0 =

∑
∀i ω0(∆Z∗, Zi, Ti) · Yi∑
∀i ων(∆Z∗, Zi) · Ti

(30)

14A key assumption is that the weighting functions do not depend on the full set of outcomes
Y n = (Y1, ..., Yn). In practice, the weighting functions often include tuning parameters which are
chosen via cross-validation, which mean that they do depend on the Y n. We ignore this complication
here.
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Having defined the estimator, we now turn to the sampling scheme. As specified in

Section II.A, uncertainty comes from both the realization of the Gaussian process and

from the error terms: ϵµ,i, ϵτ,i, and νi. However, we will focus here on conventional

confidence intervals and condition on the realization of the Gaussian process.15 By

doing so, we are (roughly speaking) focusing here on how τ̂GRDD (as defined by

Definition 2) compares to τ ∗GRDD (as defined by Definition 1), while the previous

section was focused on how τ ∗GRDD compares to the true MTE function τ ∗.

In Section II, we assume that ϵµ,i, ϵτ,i ∼ Fi are distributed independently across

individuals as is ηi ∼ U(0, 1). To show that the linear smoothers converge to their

true values, we need a variety of additional regularity conditions, e.g., finite higher-

order moments, sufficiently flexible nonparametric estimation, and enough range in

the observed values Zn to ensure a large number of observations near the value of Z

we are interested in. Since these regularity conditions are well known, but vary based

on the specific estimator, we will follow Kennedy (2023), and simply assume that

estimators exhibit characteristics common to linear smoothers. These are specified

below in Assumptions 5 and 6, in which we follow convention and write that a ≲ b if

a ≤ c · b for some constant c that does not depend on the sample size.

Assumption 5. The weights on the linear smoothers are localized, in that:

ων(Z,Zi) = 0 if |Zi − Z| ≲ ·λ−1
ν (31)

ωk(Z,Zi, Ti) = 0 if |Zi − Z| ≲ ·λ−1
k for all Ti (32)

for k ∈ {0, 1} and for all Z ̸= Z∗.

Assumption 6. The linear smoothers exhibit the following bounds on their bias and

variance: ∣∣∣E[ν̂(Z)]− ν(Z)
∣∣∣ ≲ λ−1

ν V
(
ν̂(Z)

)
≲ λν · n−1 (33)∣∣∣E[ŷk(ν(Z), Z)]− y∗k(ν(Z), Z)

∣∣∣ ≲ λ−1
k V

(
ŷk(ν(Z), Z)

)
≲ λk · n−1 (34)

for k ∈ {0, 1} and for all Z ̸= Z∗.

These conditions are the same as specified in Kennedy (2023) and hold for a

number of common estimators under standard regularity conditions. Consider, for

15We will also condition on the vector of observed Zi’s, i.e., on Zn.
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example, the Nadaraya-Watson estimator of ν̂(Z) when using a uniform kernel with

bandwidth hk = λ−1
k . Assumption 5 then clearly holds and it is straightforward

to show that the bounds in Assumption 6 hold if we further assume that ν(Z) is

continuously differentiable at all Z ̸= Z∗. A more detailed discussion of the regularity

conditions for which these hold for other linear smoothers can be found in Belloni et

al. (2015) and Tsybakov (2009).

As is clear from the example of the Nadaraya-Watson estimator, the trick is to

choose complex enough models to ensure there is minimal bias (i.e., λk is large), while

not too complex so the variance is as small as possible (i.e., λk · n−1 is small). This

tradeoff is highlighted in the proposition below, which both specifies the conditions

needed for the resulting estimate to be asymptotically normal and computes the

asymptotic variance.

Proposition 9. Let τ̂GRDD be the estimate generated by the Global Regression Dis-

continuity Design, as defined in Definition 2, and τ ∗GRDD be the function defined in

Definition 1. Then under Assumptions 5 and 6 and the choice of tuning parameters

such that λk → ∞ and λk · n−1 → 0 for k ∈ {0, 1, ν}, we have that:

τ̂GRDD(Z, η)
p→ τ ∗GRDD(Z, η) (35)

for all η and Z ̸= Z∗. Further, if we assume that ωk(Z,Zi, k
′) = 0 if k ̸= k′, λk = λ

for all k and that λ−1
√
λ−1n → 0, we get that:

√
λ−1n ·

(
τ̂GRDD(Z, η)− τ ∗GRDD(Z, η)

)
→ N(0, V ) (36)

where the variance is equal to:

V = V
(
τ̂obs(Z)

)
+ V

(
ν̂(Z)

)
·
(
β∗
1 − β∗

0

)2
+ V

(
∆̂Y1

)
·
(
ν(Z)− 2η

∆p

)2

+

+ V
(
∆̂Y0

)
·
(
ν(Z)− 2η + 1

∆p

)2

+ V
(
∆̂p
)
·
((

ν(Z)− 2η
)
·
(
β∗
1 − β∗

0

)
− β∗

0

∆p

)2

(37)
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and where:

∆̂Y1 =
∑
∀i

ω1(∆Z∗, Zi, Ti) · Yi (38)

∆̂Y0 =
∑
∀i

ω0(∆Z∗, Zi, Ti) · Yi (39)

∆̂p =
∑
∀i

ων(∆Z∗, Zi) · Ti (40)

This proposition contains multiple results. First, as mentioned above it formalizes

the conditions required for the estimate to be consistent and asymptotically normal.

More interestingly, it also highlights that Assumption 5 implies that, asymptotically

at least, the the estimate of τ̂obs(Z) is independent from the estimate of the bias terms

β̂1 and β̂0; this is because the estimate of τ̂obs(z) relies on observations increasingly

close to Z while the estimates of β̂1 and β̂0 rely on observations increasingly close to

Z∗. Finally, in the expression of the the asymptotic variance it also shows that the

estimates τ̂obs(Z) and ν̂(Z) are also independent.

Proposition 9 is quite useful, but the parameter of interest is rarely a single point

on the MTE function and instead an average over many values of the MTE function.

For example, in the empirical example below we are interested in the effect of being

retained on the test scores of those students who do not receive an exemption, i.e., we

are interested in the average treatment effect on the treated (ATT). As we show in

the proposition below, the asymptotic variance for those estimands is dominated by

the bias terms: i.e., the estimates of β̂0 and β̂1 − β̂0, rather than the estimates of τ̂obs

and ν̂(Z). This also highlights that the Global RDD is estimated at the same rate

of convergence as a traditional RDD, with the differences being due to the different

weights they put on ∆̂Y1, ∆̂Y0, and ∆̂p.

Proposition 10. Let τ̂GRDD be the estimate generated by the Global Regression Dis-

continuity Design, as defined in Definition 2, and τ ∗GRDD be the function defined

in Definition 1. Next, suppose that
∫ 1

0
ω(η, Z)dη = ωz(Z) for some continuous

ωz(Z) ∈ [0,∞) with
∫
Z
ωz(Z) = 1.

Then under the assumptions in Proposition 9, we get that:

√
λ−1n·

(∫
Z

∫ 1

0

τ̂GRDD(η, Z)ω(η, Z)dηdZ−
∫
Z

∫ 1

0

τ ∗GRDD(η, Z)ω(η, Z)dηdZ

)
→ N(0, V )

(41)
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where the variance is equal to:

V = V
(
∆̂Y1

)
·
(

ξ

∆p

)2

+ V
(
∆̂Y0

)
·
(
1 + ξ

∆p

)2

+ V
(
∆̂p
)
·
(
ξ ·
(
β∗
1 − β∗

0

)
− β∗

0

∆p

)2
(42)

and where ξ =
∫
Z

∫ 1

0

(
ν(Z)− 2η

)
ω(η, Z)dηdZ.

IV.B Implementation Details

We estimate the conditional moments required for the Global RDD using penalized

smoothing splines. Formally, letting Z∗
i = 1(Zi ≥ Z∗), this means we estimate ν̂(Z)

as ν̂0(Z) · (1− Z∗
i ) + ν̂1(Z) · Z∗

i , where:

ν̂0, ν̂1 = argmin
ν0,ν1

{∑
∀i

(
Ti − Z∗

i · ν1(Zi)− (1− Z∗
i ) · ν0(Zi)

)2
+ κν

∫ (
ν ′′
0 (Z) + ν ′′

1 (Z)
)2
dZ

} (43)

Similarly, we estimate:

α̂0, α̂1, γ̂, ∆̂ = argmin
α0,α1,γ,∆

{∑
∀i

(
Yi −

(
Z∗

i · α0(Zi) + (1− Z∗
i ) · α1(Zi)

+ Ti · γ(Zi) + Ti ·∆ · Z∗
i

))2

+ κα

∫ (
α′′
0(Z) + α′′

1(Z)
)2
dZ + κγ

∫ (
γ′′(Z)

)2
dZ

} (44)

where α(Zi) = α0(Zi) ·(1−Z∗
i )+α1(Zi) ·Z∗

i , and then use these to construct estimates

of τ̂obs, β̂0, and β̂1 − β̂0, for use in Equation (71).16

There are a few important notes to make about this specification. Most im-

portantly, rather than add a complexity penalty on the two conditional moments

separately, we estimate the moments jointly using complexity penalties on α(Z) and

16In particular, τ̂obs(Zi) = γ̂(Zi) + ∆̂ · Z∗
i , β̂0 = α1(Z

∗)−α0(Z
∗)

ν̂1(Z∗)−ν̂0(Z∗) , and β̂1 − β̂0 = ∆̂
ν̂1(Z∗)−ν̂0(Z∗)
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γ(Z). In practice, this helps mitigate some issues that can arise when the distribution

of the running variable is significantly different for the treated and control individu-

als, e.g., that the estimated difference between the two conditional moment estimates

varies because of different amounts of smoothing that is used for the two conditional

moment estimates. Note also that by specifying that τ̂obs(Zi) = γ̂(Zi) + ∆̂ · Z∗
i , we

allow for τ̂obs(Zi) to jump discontinuously at Z∗ but require that its derivative, i.e.,

τ̂ ′obs(Zi), is continuous around the discontinuity. In contrast, we do not make this

assumption for α(Z) or ν(Z).

To implement this approach, we use the MGCV package in R. This automatically

chooses the smoothing parameters κα, κγ, and κν , specifies a low-rank approximation

to the minimization problem, and can account for the selection of the κ terms in

the estimated standard errors. See Wood (2017) for more information on the MGCV

package and a primer on the theory behind this particular approach to linear smooth-

ing. For inference, we do not use the asymptotic expressions of the variance specified

in the section above, since this assumes the bandwidths are fixed and the locality

restrictions may not hold in finite-samples. We do, however, use the delta method

and the fact that the estimated propensity score function is uncorrelated with the

estimates of the conditional moments.

Finally, we have developed an R package to implement this approach, which can

be found at: https://github.com/isaacopper/GlobalRDD. The package also can ac-

count for clustering in the error terms when estimating the standard errors and (as

discussed in Appendix B) allows for the addition of additional covariates and/or mul-

tiple discontinuities.

IV.C Monte Carlo Simulation

Before getting to the main empirical application, we conduct a simulation to compare

the finite sample performance of the proposed approach (i.e., the Global RD design)

with the two most natural alternatives – an observational study and a traditional

RD design. The advantage of the simulation is that we can compare the estimated

effect with the true effects, which allows us to generate estimates of the bias and

mean-squared error (MSE) of the resulting estimates.

A main argument in the paper is that the proposed estimator is a valuable alterna-

tive to other approaches even if it is not necessarily a consistent estimator, e.g., if one
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is not willing to assume that the true conditional moments are additively separable

and linear in η. For our simulation, we therefore do not assume that the true condi-

tional moments are linear in η or even additively separable in η and Z. Instead, we

assume that the true conditional moments are generated by a non-separable Gaussian

process where:

µ∗(η, Z) = αµη + βµZ + fµ(η) + gµ(Z) + hµ,η(η) · hµ,Z(Z) (45)

and αµ ∼ N(0, 1), βµ ∼ N(0, 1), fµ ∼ GP(0, Cµ,η), gZ ∼ GP(0, CZ,η), hµ,η ∼
GP(0, Cµ,η), and hµ,Z ∼ GP(0, Cµ,Z). For our covariance functions, we use a squared

exponential with length scale 1 for Cµ,η and Cτ,η and length scale 2 for Cµ,Z and Cτ,Z .

We use an output variance of 1 for Cµ,η and Cµ,Z and of 0.5 for Cτ,η and Cµ,Z to

capture the idea that the magnitude of treatment effects are (usually) a fraction of

the overall variance in outcomes.

After generating the true conditional moments using the specification described in

the previous paragraph, we then then simulate the data generating process by setting

the sample size to be N and randomly determining each individuals’ Zi ∼ U(−1, 1)

and ηi ∼ U(0, 1). We then determine their treatment status as:

Ti = 1
(
ηi < Φ

(
− 0.75 + 0.75 · Z + 0.75 · 1(Z > −.5)

))
where Φ(.) is the normal CDF and 1 represents the indicator function, and set their

observed outcome to be:

Yi = µ(ηi, Zi) + Ti · τ(ηi, Zi) + ϵi

where ϵi ∼ N(0, 1).

Finally, given the generated data, we use the Global RDD approach outlined in

this paper to estimate both the Average Treatment Effect (ATE) as well as the average

effect on the compliers (LATE). We also estimate the LATE using a traditional RDD

approach estimated via a local linear regression, both when using a fixed bandwidth

of 0.5 as well as when estimating the bandwidth using the RDRobust command

(Calonico et al. (2015a)). Finally, we also estimate the ATE using a propensity score

weighting approach, both when estimating the propensity weights as well as when

using the true propensity weights.
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After each draw of the true conditional moments, we simulate the data and esti-

mate the ATE/LATE 100 times. In doing so, we can separately estimate the squared

bias – i.e.,
(
τ − E[τ̂ ]

)2
– and the variance – i.e., E

[(
τ̂ − E[τ̂ ]

)2]
for each set of true

conditional moments, as well as the mean-squared error. We then do this for 100

randomly generated sets of true conditional moments and then report the average

squared-bias, the average variance, and the average mean-square error for each of the

estimators described above.

The results are shown in Table 1, which illustrate impressive performance by the

Global RDD. In the top panel, we see that the Global RDD generates better estimates

of the LATE than traditional RDD methods.17 This does not stem from reduced bias

– since the LATE is identified regardless of the true conditional moments, the squared-

bias converges to (nearly) zero for both the traditional RDD and the Global RDD –

but instead from lower variance. In other words, the estimation approach described

above appears to do a better job (at least in our setting) of estimating the size of the

discontinuity than using a locally linear approximation.

17In Table 1 we show the results of the local linear regression when using a fixed bandwidth, since
it has lower mean-squared error than the RDRobust command. We show the results when using the
RDRobust command to calculate the bandwidth in Appendix Table 6.
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Table 1: Monte Carlo Results

(a) Estimates of LATE

Squared Bias Variance Mean-Squared Error
Sample Size Local Lin. Global RD Local Lin. Global RD Local Lin. Global RD
1,000 3.29 0.10 343.3 1.11 346.6 1.20
2,500 0.85 0.03 82.9 0.36 83.7 0.39
5,000 0.0022 0.01 0.26 0.17 0.26 0.19
10,000 0.0023 0.006 0.12 0.09 0.12 0.10

(b) Estimates of ATE

Squared Bias Variance Mean-Squared Error
Sample Size PSWeight Global RD PSWeight Global RD PSWeight Global RD
1000 0.85 0.27 0.006 5.88 0.86 6.16
2500 0.85 0.12 0.003 0.67 0.85 0.80
5000 0.85 0.10 0.001 0.25 0.85 0.35
10000 0.85 0.09 0.0006 0.13 0.85 0.13

Note: This table shows the results of the Monte Carlo simulation described in Section
IV.C. In it, we generate 50 true conditional moments and for each of these, simulate
the rest of the data generating process 100 times and each time estimate the treatment
effects. We can then calculate the average squared-bias, variance, and mean-squared
error. “Local Lin.” is a traditional RDD estimate that uses a linear regression with
triangle weights and a bandwidth of 0.5. “PSWeight” is a propensity score weighting
approach using the true propensity scores. “Global RD” is the approach outlined in
this paper. The simulation results with other alternatives are shown in Appendix
Table 6.
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In the bottom panel, we see that the Global RDD also generates better estimates

of the ATE than traditional observational studies.18 In contrast to the logic above,

here the reduction stems not from increased precision and instead from reduced bias.

Since we have not assumed that the true conditional moments are additively separable

and linear in η, the squared-bias term does not disappear even as the sample size

increases. However, making the “best-guess” adjustment for endogenous selection into

the treatment does meaningfully reduce the bias relative to traditional observational

studies, leading to better estimates of the ATE (i.e., lower mean-squared errors) when

the sample size is sufficiently large.

Finally, note that the average variance is generally larger than the average squared-

bias for the Global RDD, especially when the sample size is relatively small. This

suggests that it may be worth tweaking the method to reduce the variance of esti-

mates, even if doing so may add some (expected) bias. We discuss how to do so in

Appendix B.D.

V The Effect of Grade Retention Policies

We now return to our empirical question about the effectiveness of grade retention

policies, where fuzzy RDDs have become popular given the increasing use of student

test score cutoffs to identify students to be retained. As we detail below, there is

extensive literature examining the effects of grade retention on student outcomes using

fuzzy RDDs; however, these estimated effects only apply to compliers (i.e., students

not exempt from retention) right below retention cutoffs. We now use the Global RDD

to determine whether the effects differ for exempt students and for lower-performing

students identified for retention. We then use these results to better understand both

the overall effect of the policy and if the policy could be designed to better improve

outcomes.

V.A Policy Background and Data

Calls to end social promotion in schools in the 1990s and an increased popularity

of educational accountability and standardized testing led to test-based retention

18In Table 1 we show the results when we use the true propsensity score weights. We show the
results when using the approach that estimates the propensity score in Appendix Table 6.
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policies in many states and school districts in the United States over the past three

decades. Perhaps the most influential of these policies has been Florida’s third grade

retention policy, which was enacted in 2002. This policy requires students who score

in the lowest achievement level on the statewide reading test to repeat third grade

and receive instructional support (e.g., additional instruction time in reading, being

assigned to highly effective teachers).

There are several “good cause exemptions” that allow students to be promoted

to the fourth grade despite failing to score at the Level 2 benchmark or above. In

particular, students in the lowest achievement level in reading can be promoted to

fourth grade if they: (1) have been in the English learner program for less than two

years; (2) have certain disabilities and have been already retained once until third

grade; (3) have received intensive reading remediation for two years and have already

been retained twice between kindergarten and third grade; (4) demonstrate that they

are reading at a level equal to or above a Level 2 on the statewide reading test by

performing at an acceptable level on an alternative standardized reading assessment

approved by the State Board of Education; or (5) demonstrate proficiency through a

teacher-developed portfolio.

Despite these exemptions, the policy has affected a significant share of third

graders in the state: in the first year of the policy, 21 percent of third graders were

flagged for retention (i.e., scored below the retention cutoff) and 15 percent had to re-

peat third grade (Licalsi et al. (2019)). Approximately half of the exemptions were due

to the special education exemption and half due to the student showing proficiency

either via an alternative test or via a teacher-developed portfolio, with the other two

reasons contributing to a very small fraction of the exemptions.19 While retention

rates have gradually declined, in part due to improvements in reading achievement

and in part due to an increase in exemption rates, they remain sizable and roughly

10 percent of the third graders were retained after the 2021-22 school year.

Several studies have examined the effects of being retained (and receiving in-

structional support) under Florida’s retention policy on student outcomes using the

discontinuity in retention likelihood and RD designs (Greene and Winters (2007),

Winters and Greene (2012), Özek (2015), Schwerdt et al. (2017), Figlio and Özek

19There are a large number of students in the English language learner program in Florida, but
the majority had been in the program for more than two years by third grade and so do not qualify
for the exemption.

32



V.A Policy Background and Data Opper and Özek

(2020)). The overarching conclusion is that retained students outperform their same-

age peers in the short term (one to three years), although these achievement gains

partially fade out over time. Even with this fade-out, however, the studies generally

find that retained students under Florida’s retention policy significantly outperform

their promoted peers when they reach the same grade level and are also less likely to

be retained in a later grade. While providing compelling evidence, by using traditional

RD designs these papers all focus on the complier population at the discontinuity.

In what follows, we present our proposed estimator to determine how these benefits

differ for students away from the cutoff and for students who were promoted to fourth

grade using exemptions.

In our analysis, we use student-level administrative data from a large, urban

school district (LUSD) in Florida. We use students who entered third grade for the

first time between 2005-06 and 2010-11 school years and follow them until 8th grade.

During this time period, the LUSD was approximately 30% White non-Hispanic, 30%

Black, and 30% Hispanic, with approximately 60% of students on free/reduced price

lunch. In our main analysis we restrict our attention to students without a disability,

which corresponds to roughly 87% of the overall sample. This means we focus on the

exemptions that are due to students’ showing proficiency via alternative approaches

and how the impact of retention varies away from the proficiency threshold. There

are two reasons for this restriction: first, these exemptions are the most subject to

debate; second, by focusing on a single type of exemption we lend more credibility to

the MTE model, in which unobserved selection is captured by a single latent variable.

Having said that, we find very similar results when we do not make this restriction;

those results are shown in Appendix Table 5.

In the LUSD during our time period, roughly 13 percent of all students without a

documented disability were flagged for retention and of those identified for retention,

44 percent were retained. Of those who were not flagged for retention, a small number

of students who scored above the proficiency threshold were retained and so there is

two-sided non-compliance in this setting.20 Figure 2 shows the first stage, e.g., how

the retention rate varies by third grade reading score. Our main outcomes of interest

are standardized reading scores in grades 4 through 8.21

20Approximately 1% of students directly above the proficiency threshold were retained.
21In the analysis that follows, we use a same-grade comparison: That is, we compare the test

scores of retained and promoted students when they reach the same grade level. Another approach
commonly used in the grade retention literature is to compare the test scores of treated and com-
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Figure 2: Probability of Being Retained
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Note: The figure plots how the likelihood of being retained varies with the running
variable. Each dot corresponds to the average retention rate of individuals with the
same score on their third-grade reading test.

parison students in years following the treatment (i.e., same-age comparison). We prefer the former
approach as we see additional time provided to retained students as part of the treatment; however,
we get similar results when doing a same-age comparison.
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V.B Results

The overarching conclusion from the analysis is that the impact of retaining students

is largest for those with lower third grade reading scores and for those who, conditional

on their third-grade reading score, are most likely to be retained.

To illustrate these results, we start with Figure 3, which shows how the condi-

tional average treatment effect on the treated individuals depends on their third grade

reading scores. The solid line shows how the estimated conditional average treatment

effect on the treated (CATT) – i.e., Ê[τi|Zi = Z, Ti = 1] – varies based on the value

of the running variable (third grade reading scale scores centered at the retention

cutoff) and the dashed lines indicate the 95 percent point-wise confidence interval.

The results in Figure 3 suggest that the positive effects of retention on fourth grade

reading scores monotonically declines with students’ baseline reading achievement.

At the cutoff, we find that retention increases fourth grade reading scores by roughly

0.9σ. This benefit grows to 1.2σ for students whose third grade reading scores fell

25 points below the cutoff, and to 1.4σ for students 50 points below the cutoff. In

contrast, the positive effects decline to 0.8σ for students 25 points above the cutoff

and to 0.6σ for those 50 points above. Since most students who are retained are

below the cutoff, these findings suggest that the LATE estimates presented in prior

RD studies in this context significantly underestimate the overall benefits of retention

in the short term.

Figure 3 also highlights that at the discontinuity, the conditional average effect

on the treated individuals jumps. This stems from the fact that the characteristics

of the treated population discontinuously change at the threshold. We illustrate the

effect of this more directly in Figure 4, which uses a contour map to show how τ̂(η, Z)

varies by both Z and η. In this exercise, ηi can be interpreted as a rank order of how

likely an individual is to be retained: a student is retained if and only if their ηi falls

below a given cutoff. In other words, effect estimates for higher values of ηi indicate

the retention effect for students who are least likely to be retained and vice versa. In

this graph, each line corresponds to a set of (ηi, Zi) values with the same estimated

effect.

There are two important takeaways from this figure. First, consistent with Fig-

ure 3, the estimated effect declines as students’ baseline reading achievement increases

(moving from left to right). Second, we also observe that students who are less likely

to receive an exemption and be promoted to fourth grade benefit significantly more
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Figure 3: Average Treatment Effect on the Treated
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Note: The figure plots how the estimated the conditional average treatment effect
on the treated varies with the running variable. Specifically, the solid line shows the
estimated Ê[τi|Zi = Z, Ti = 1] and the dashed lines indicated the 95% confidence
interval, estimated via a Bayesian bootstrap with school-level clustering.

from retention. This finding suggests that the exemptions to the retention rule incor-

porated into Florida’s policy indeed identify students who are least likely to benefit

from retention.

As mentioned, the fact that the estimated effect is larger for students with lower

reading test scores and for those with lower implied costs of retention (i.e., with lower

η) suggests that the local average treatment effect, as identified by a traditional fuzzy

RDD, underestimates the overall effect of the grade retention policy as it is currently

implemented. To quantify this, we next use the estimates to calculate the estimated

average effect of those retained under the realized retention decisions (i.e., the average

effect of the treatment on the treated, or ATT), the estimated average effect on the

complier population at the proficiency threshold (i.e., the LATE), and the estimated

average effect if those with a reading score under 50 who were not retained under the

current treatment assignment were in fact retained (i.e., the average treatment effect

on the controls or ATC).

36



V.B Results Opper and Özek

Figure 4: Estimates of τ(η, Z)
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Note: The figure illustrates how τ̂(η, Z) = E[τi|ηi = η, Zi = Z] varies with both Z
and η. Each line corresponds to a set of (η, Z) values with the same value of τ̂(η, Z).
Roughly speaking, ηi is a latent variable that serves as a measure of how likely an
individual is to enroll in the treatment; individuals’ with low values of ηi are more
likely to enroll than individuals with high values and so it is sometimes referred to as
the “latent cost” of enrolling. See Section II.A for the formal definition.

We show these estimates for reading scores in grades 4, 5, and 6 in Figure 5.

Focusing on fourth grade reading scores, the Global RDD estimates the LATE as

being 0.88σ, which is consistent with the effect sizes found in the previous literature

(Schwerdt et al. (2017), Figlio and Özek (2020)).22 While this suggests that retention

has a large positive effect on their outcomes, comparing the red bars to the blue

bars in Figure 5 makes clear that the average effect on the compliers is consistently

smaller than the estimated effect on all the students who are retained. For example,

the estimated ATT for fourth grade reading scores is 1.14σ. While the error bars

overlap, the two estimates are positively correlated with each other and we can reject

22This is also very similar to the LATE estimate that we get when using the rdrobust command
on our data (Calonico et al., 2015b). This comparison is shown for all grade levels in Appendix
Table 4.
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(at the 1% level) the null hypothesis that the two estimates are equal each other.23

Furthermore, the green bars shows that expanding the program by removing the

exemptions and moving the proficiency threshold up 50 points would have much

smaller effects.

Figure 5: Estimates of the ATT, LATE, and ATC
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Note: The error bars correspond to the 95% confidence intervals. Realized Assignment
is the average treatment effect of the realized assignment, which corresponds to the
average treatment on the treated (ATT). Local Effect corresponds to the effect of
the program on compliers at the treatment threshold (LATE). Program Expansion is
the average treatment effect if treatment expanded to the individuals not currently
receiving the treatment and corresponds to the average treatment on the controls
(ATC).

In fact, we show in Appendix Table 2 that the realized assignment is nearly equiv-

alent to the optimal assignment, defined as the policy that keeps the overall number

of students retained constant but retains students with the highest predicted effect

of retention. All of this suggests that Florida’s policy is remarkably successful in

identifying students most likely to benefit from retention.

23See Appendix Table 3 for estimates and confidence intervals of the differences between the
estimates.
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VI Conclusion

The trade-off between internal and external validity is a common issue in causal

inference. Nowhere is this more clear than in a fuzzy regression discontinuity context,

in which the local average treatment effect is identified under weak conditions but

nearly all policy relevant treatment effects require an understanding of the effects on

populations beyond compliers at the treatment discontinuity.

In this study, we propose a new method for use in fuzzy RD settings, which

we call the Global Regression Discontinuity Design, to address this issue. We show

that it extends existing approaches in natural ways and can be motivated in both a

frequentist framework (in that it is consistent under weaker assumptions than existing

approaches) or in a Bayesian framework (in that can be considered the posterior mean

given the observed conditional moments under more flexible conditions).

We then use this approach to examine the broader effects of early grade reten-

tion policies and show that understanding effects away from the discontinuity are

important from a policy perspective. In particular, our findings suggest that the ben-

efits of Florida’s grade retention policy are larger than previously suggested, but that

expanding the program would have a limited effect on the newly retained students.

We conclude by highlighting that the marginal treatment effect representation

of the fuzzy RDD provides a natural framework for researchers to consider ways

of extending the method presented above to slightly different contexts. While we

focus on the most simple design here, we discuss in Appendix B how the model can

be extended to a number of important ways. In particular, the model can handle

multiple discontinuities, incorporate additional covariances, provide alternative tests

for the external validity of the traditional RDD estimates, and be used to improve

the precision of the fuzzy RDD estimates.

39



REFERENCES Opper and Özek
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Social Programs, and to Forecast Their Effects in New Environments,” in J. J.

Heckman and E. E. Leamer, eds., Handbook of Econometrics, Vol. 6, Elsevier,

2007, chapter 71, pp. 4785–5143.

and Edward Vytlacil, “Local Instrumental Variables and Latent Variable Mod-

els for Identifying and Bounding Treatment Effects,” Proceedings of the National

Academy of Sciences, 1999, 96 (8), 4730–4734.

and , “Structural Equations, Treatment Effects, and Econometric Policy Eval-

uation,” Econometrica, 2005, 73 (3), 669–738.

Hwang, NaYoung and Cory Koedel, “Holding back to move forward: The effects

of retention in the third grade on student outcomes,” 2022.

Kennedy, Edward H., “Towards optimal doubly robust estimation of heterogeneous

causal effects,” Electronic Journal of Statistics, 2023.

Kline, Patrick and Christopher R. Walters, “On Heckits, LATE, and Number-

ican Equivalence,” Econometrica, March 2019, 87 (2), 677–696.

Kowalski, Amanda, “Reconciling Seemingly Contradictory Results from the Ore-

gon Health Insurance Experiment and the Massachusetts Health Reform,” Review

of Economics and Statistics, 2023, 105 (3), 646–664.
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A Proofs

Proposition 1. Under the model outlined in Section II.A and Assumptions 1 - 4,

the Global RDD as specified in Definition 1 can be implemented using the observed

conditional moments and is well-defined.

Proof. The fact that the Global RDD can be estimated using the observed data is

clear, so we focus the proof on showing that it is well-defined. that is, we want to

show that there is a single value βk ∈ R and continuous function γk(Z) that satisfies

βk + γk(Z) = E[Yi|Ti = k, Zi = z] for all Z ̸= Z∗ and k ∈ {0, 1}. We will focus on the

case where k = 0, but the proof for the case of k = 1 is identical.

To do so, we first highlight that although we do not observe the conditional mo-

ments at Z∗, any function ŷ0 that is additively separately and linear in η and which

satisfies the restriction that ŷ0(ν(Z), Z) = E[Ti = 0, Zi = Z] for all Z ̸= Z∗ also

needs satisfy the restriction that ŷ0(pl, Z
∗) = y∗0(pl, Z

∗) and ŷ0(ph, Z
∗) = y∗0(ph, Z

∗).

If not, it would be impossible to choose a continuous function γ(Z) such that both:

ŷ0(ν(Z
∗+ ϵ), Z∗+ ϵ) = E[Yi|Ti = 0, Zi = Z∗+ ϵ] and ŷ0(ν(Z

∗− ϵ), Z∗− ϵ) = E[Yi|Ti =

0, Zi = Z∗ − ϵ] for a small ϵ.

We can then use that there is a single choice of β∗
0 that goes through both y∗0(ph, Z

∗)

and y∗0(pl, Z
∗). Since Z∗ is the only point where we observe multiple values of y∗0(η, Z),

there is a single choice of γ, defined as γ∗(Z) = E[Yi|ν(Z), Z, Ti = 0]−β∗
0ν(Z), which

satisfies ŷk(ν(Z), Z) = E[Yi|Ti = 0, Zi = Z] for all Z ̸= Z∗. Finally, from the

assumption C0 is differentiable guarantees that is that µ∗(η, Z) is continuous for all

realizations of the Gaussian process and from the fact that ν(Z) and µ∗(η, Z) are

both continuous functions, it follows that γ∗(Z) is a continuous function.

Proposition 2. Let τ ∗ denote the true MTE function, for any realization of the

Gaussian process under any choice of C0 and C1. Then the estimated effect on the

set of compliers at the Z∗ is equal to the true effect on that set, i.e.:

1

ph − pl

∫ ph

pl

τ ∗GRDD(η, Z
∗)dη =

1

ph − pl

∫ ph

pl

τ ∗(η, Z∗)dη (8)

Proof. We start by noting that:∫ ph

pl

τ ∗(η, Z∗)dη =
(
phy

∗
1(ph, Z

∗)−ply
∗
1(pl, Z

∗)
)
−
(
(1−pl)y

∗
0(pl, Z

∗)−(1−ph)y
∗
0(pl, Z

∗)
)
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and we can similarly write∫ ph

pl

τ ∗GRDD(η, Z
∗)dη =

(
phŷ1(ph, Z

∗)−plŷ1(pl, Z
∗)
)
−
(
(1−pl)ŷ0(pl, Z

∗)−(1−ph)ŷ0(pl, Z
∗)
)

where ŷ corresponds to the estimated moments in the Global Regression Discontinuity

Design.

From the proof of Proposition 1, however, it follows that ŷ(η, Z) equals y∗(η, Z)

at both (ph, Z
∗) and (pl, Z

∗). The theorem thus follows.

Remark 1. Let τ ∗GRDD be the estimate generated by the Global Regression Discon-

tinuity Design, as defined in Section II.B, and τ ∗obs(Z) and τ ∗RDD be the estimates

generated from the traditional observational study and a traditional regression discon-

tinuity design, as defined in Equation (9). Then if ν(Z) = ph, we get that:

τ ∗GRDD(η, Z) = τ ∗RDD + extrap(η) + extrap(Z)

where

extrap(η) = 2 ·
(
β∗
1 − β∗

0

)
·
(
η − ph + pl

2

)
extrap(Z) = τ ∗obs(Z)− τ ∗obs(Z

∗
h)

Proof. To start, we will note that using the restriction that ŷ∗k(η, Z) = β∗
kη + γ∗

k(Z)

we can re-write Equation (7) to get that:

τ ∗GRDD(η, Z) =
(
β∗
1η + γ∗

1(Z)
)
−
(
β∗
0η + γ∗

0(Z)
)
+ ηβ∗

1 + (1− η)β∗
0

= γ∗
1(Z)− γ∗

0(Z) + 2η · (β∗
1 − β∗

0)− β∗
0

(46)

Next, we can write both the traditional RDD and the observational study in terms

of y∗k(η, Z) as follows:

τ ∗RDD =

(
ph · y∗1(ph, Z∗) + (1− ph) · y∗0(ph, Z∗)

)
−
(
pl · y∗1(pl, Z∗) + (1− pl) · y∗0(pl, Z∗)

)
ph − pl

(47)

τ ∗obs(Z) = y∗1(ν(Z), Z)− y∗0(ν(Z), Z) (48)

Finally, we get from the proof of Proposition 1 that β∗
0 and β∗

1 are defined such
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that:

β∗
0 =

y∗0(ph, Z
∗)− y∗0(pl, Z

∗)

ph − pl
and β∗

1 =
y∗1(ph, Z

∗)− y∗1(pl, Z
∗)

ph − pl
(49)

Combining these expressions, we thus get the following relationships between the

different estimators:24

τ ∗GRDD(η, Z) = τ ∗obs(Z)−
(
ν(Z)− 2η

)
· (β∗

1 − β∗
0) + β∗

0 (50)

τ ∗RDD = τ ∗obs(Z
∗
h) + pl · (β∗

1 − β∗
0) + β∗

0 (51)

where τ ∗obs(Z
∗
h) ≡ y∗1(ph, Z

∗)− y∗1(ph, Z
∗).

If we now consider the case where ν(Z) = ph, we get that:

τ ∗GRDD(η, Z) = τ ∗obs(Z)−
(
ph − 2η

)
· (β∗

1 − β∗
0) + β∗

0

= τ ∗RDD −
(
τ ∗obs(Z

∗
h) + pl · (β∗

1 − β∗
0) + β∗

0

)
+ τ ∗obs(Z)−

(
ph − 2η

)
· (β∗

1 − β∗
0) + β∗

0

= τ ∗RDD +
(
τ ∗obs(Z)− τ ∗obs(Z

∗
h)
)
+ (β∗

1 − β∗
0) · (2η − ph − pl)

Re-writing 2η − ph − pl = 2 · (η − ph+pl
2

) and we get the result.

Remark 2. Let τ ∗GRDD be the estimate generated by the Global Regression Disconti-

nuity Design, as defined in Section II.B, and τ ∗obs(Z) be the estimate generated from

the traditional observational study, as defined in Equation (9). We then have:

τ ∗GRDD(η, Z) = τ ∗obs(Z)− b (13)

where b is a measure of the bias in the observational estimates. Specifically, defining

β∗
0 and β∗

1 as in Equation (11) and (12), we have:

b =
(
ν(Z)− 2η

)
·
(
β∗
1 − β∗

0

)
− β∗

0 (14)

= ξh ·
(
τ ∗RDD − τ ∗obs(Z

∗
h)
)
+ ξl ·

(
τ ∗RDD − τ ∗obs(Z

∗
l )
)

(15)

where ξk ∈ R is a function of ph, pl and ν(Z), τ ∗obs(Z
∗
h) = limZ↓Z∗ τ ∗obs(Z), and

τ ∗obs(Z
∗
l ) = limZ↑Z∗ τ ∗obs(Z).

24For the derivation of the expression for τ∗RDD see the proof below.
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Proof. The fact that we can write τ ∗GRDD(η, Z) as τ ∗obs(Z) − b for a bias term b =(
ν(Z)− 2η

)
·
(
β∗
1 − β∗

0

)
− β∗

0 follows directly from the proof above. We will therefore

focus here on showing that we can re-write the bias term as ξh ·
(
τ ∗RDD − τ ∗obs(Z

∗
h)
)
+

ξl ·
(
τ ∗RDD − τ ∗obs(Z

∗
l )
)
where ξk ∈ R is a function of ph, pl and ν(Z), τ ∗obs(Z

∗
h) =

limZ↓Z∗ τ ∗obs(Z), and τ ∗obs(Z
∗
l ) = limZ↑Z∗ τ ∗obs(Z).

As before, we start by re-writing Equation (47) to get that:

τ ∗RDD =

(
ph · y∗1(ph, Z∗) + (1− ph) · y∗0(ph, Z∗)

)
−
(
pl · y∗1(pl, Z∗) + (1− pl) · y∗0(pl, Z∗)

)
ph − pl

= ph ·
y∗1(ph, Z

∗)− y∗0(ph, Z
∗)

ph − pl
+

y∗0(ph, Z
∗)− y∗0(pl, Z

∗)

ph − pl
− pl ·

y∗1(pl, Z
∗)− y∗0(pl, Z

∗)

ph − pl

=
ph

ph − pl
τ ∗obs(Z

∗
h) + β∗

0 − pl ·
y∗1(pl, Z

∗)− y∗0(pl, Z
∗)

ph − pl

= τ ∗obs(Z
∗
h) + β∗

0 − pl ·
y∗1(pl, Z

∗)− y∗0(pl, Z
∗)

ph − pl
+ pl ·

y∗1(ph, Z
∗)− y∗0(ph, Z

∗)

ph − pl

= τ ∗obs(Z
∗
h) + β∗

0 + pl ·
y∗1(ph, Z

∗)− y∗1(pl, Z
∗)

ph − pl
+ pl ·

y∗0(ph, Z
∗)− y∗0(pl, Z

∗)

ph − pl

= τ ∗obs(Z
∗
h) + β∗

0 + pl ·
(
β∗
1 − β∗

0

)
We can similarly show that we could also write τ ∗RDD as τ ∗obs(Z

∗
l )+β∗

0 + ph ·
(
β∗
1 −β∗

0

)
.

From this, we can set up the series of linear equations:[
1− ph ph

1− pl pl

][
β∗
0

β∗
1

]
=

[
τ ∗RDD − τ ∗obs(Z

∗
l )

τ ∗RDD − τ ∗obs(Z
∗
h)

]
(52)

which makes it clear that we can write β∗
0 as a linear combination of τ ∗RDD − τ ∗obs(Z

∗
l )

and τ ∗RDD − τ ∗obs(Z
∗
h), with the weights depending on ph and pl, and that the same

is true (with different weights) for β∗
1 . Plugging that into the expression that b =(

ν(Z)− 2η
)
·
(
β∗
1 − β∗

0

)
− β∗

0 we get that we can also write:

τ ∗GRDD(η, Z) = τ ∗obs(Z) + ξh ·
(
τ ∗RDD − τ ∗obs(Z

∗
h)
)
+ ξl ·

(
τ ∗RDD − τ ∗obs(Z

∗
l )
)

(53)

where ξk ∈ R is a function of ph, pl and ν(Z).
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Proposition 3. Define to b∗obs(η, Z) be the bias in the observational study, i.e.,

b∗obs(η, Z) = τ ∗obs(Z)− τ ∗(η, Z) (16)

where τ ∗obs(Z) is defined in Equation (9). Then:

τ ∗GRDD(η, Z) = τ ∗obs(Z)− EGP
[
b∗obs(η, Z)

∣∣D({Z∗, Z})
]

(17)

for any (η, Z) and any choice of C0 and C1.

Proof. The proof is straightforward, but requires some additional notation. First, we

will let h(η, Z) be a 3× 1 vector equal to [1, η, Z] and θ to be 3× 1 coefficient vector

equal to [αk, βk, γk]
′. Thus, the linear portion of the modified GP can be written

as h(η, Z)′θ. We also let H denote a matrix constructed by stacking the values of

h(η, Z)′ of all the observed data and Y denote a vector of the observed outcomes.

Next, we introduce a succinct way to denote the covariance terms of the rest of

the GP. If we use (as in the main paper) D to denote the observed data and letN

be the number of observed data points, we then let Ck

(
(η, Z),D

)
be a N × a vector

where the ith row is equal to Ck

(
(η, Z), (ηi, Zi)

)
. We similarly let Ck

(
D
)
be a N ×N

matrix where the (i, j) value of the matrix is equal to Ck

(
(ηi, Zi), (ηj, Zj)

)
.

Given this notation, we can write the mean posterior as:

E
[
yk(η, Z)

∣∣D({Z̃, Z∗}
)]

= h(η, Z)′θ̂ + Ck

(
(η, Z),D

)′
Ck

(
D
)−1

r (54)

where θ̂ =
(
H ′Ck(D)−1H

)−1
H ′Ck(D)−1Y and r = Y −H ′θ̂.

Note that since we condition only on D
(
{Z̃, Z∗}

)
, we only consider the case in

which we observe three data points: (ν(Z̃), Z̃), (pl, Z
∗), and (ph, Z

∗). The linear

model can therefore perfectly explain the observed outcomes, i.e., r = 0, which implies

that: E
[
yk(η, Z)

∣∣D({Z̃, Z∗}
)]

= h(η, Z)′θ̂.

As outlined in Proposition 1, we also know that the only way to perfectly fix the

observed outcomes is to have the slope on the η term equal β∗
k = yk(ph,Z

∗)−yk(pl,Z
∗)

ph−pl

and so we get that:

E
[
yk(η, Z)

∣∣D({Z̃, Z∗}
)]

= (η − ν(Z))β∗
k + yk

(
ν(Z), Z

)
(55)

for Z ∈ {Z̃, Z∗}, which gives the equivalent formulation as ŷk(η, Z) as generated by
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the Global RDD. From the fact that the transformation from y to τ is linear, we

therefore get that E[τ ∗(η, Z)|D
(
{Z̃, Z∗}

)
] = τ ∗GRDD(η, Z) for all η and Z ∈ {Z̃, Z∗}.

Proposition 4. Suppose that Ck = Ck,Z(Z,Z
′) for k ∈ {0, 1}. Then for any choice

of Ck,Z, we have that τ ∗GRDD(η, Z) = τ ∗(η, Z).

Proof. By restricting the covariance function to be Ck = Ck,Z(Z,Z
′) for k ∈ {0, 1},

we can infer that the realization of the Gaussian process is additively separable and

linear in η. The result then follows from the fact that, as shown in Proposition 1, the

ŷ resulting from the Global Regression Discontinuity Design are the only y that is

both additively separable and linear in η, while also matching y∗ at all of the observed

moments.

Proposition 5. Letting τAR denote the Angrist and Rokkanen estimator, as defined

in Angrist and Rokkanen (2015), we have the following two results:

1. Suppose Ck is such that τ ∗obs(Z) =
∫ 1

0
τ ∗(η, Z)dη for every realization of y∗.

Then
∫ 1

0
τ ∗GRDD(η, Z) =

∫ 1

0
τ ∗(η, Z)dη

2. Suppose Ck is such that τ ∗AR(Z) =
1

ph−pl

∫ ph
pl

τ ∗(η, Z)dη for every realization of

y∗. Then
∫ ph
pl

τ ∗GRDD(η, Z)dη =
∫ ph
pl

τ ∗(η, Z)dη.

Proof. We start by formally defining a version of the Global RDD that includes a set

of covariates, which we denote as Xi for individual i.
25 To extend the model, we will

let ν(Z,X) = Pr(Ti = 1|Zi = Z,Xi = X), as well as pl(X) = limZ↑Z∗ ν(Z,X) and

ph(X) = limZ↓Z∗ ν(Z,X).26 Finally, we will again set yk(η, Z,X) ≡ E[Yi|ηi = η, Zi =

Z,Xi = X].

It can then be defined as:

τ ∗GRDD(η, Z,X) = τ ∗obs(Z,X)− β∗
0,X · ν(Z,X)− β∗

1,X ·
(
1− ν(Z,X)

)
(56)

where τ ∗obs(Z,X) = E[Yi|Ti = 1, Zi = Z,Xi = X] − E[Yi|Ti = 1, Zi = Z,Xi = X],

β∗
0,X = y0(ph(X),Z∗,X)−y0(pl(X),Z∗,X)

ph(X)−pl(X)
and β∗

1,X = y1(ph(X),Z∗,X)−y1(pl(X),Z∗,X)
ph(X)−pl(X)

.

25Roughly speaking, this formulation simply involves separately estimating the Global RDD as
specified in Section II separately for each set of potential covariates. In practice, estimation of such
a model is likely be infeasible and so we implement a different approach to “control” for covariates
in Appendix B.A.

26We extend Assumption 2 to be that ph(X) ̸= pl(X) for all X.
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From here, the proof is straightforward. First, it follows that τ ∗obs(Z,X) = τ ∗(Z,X)

if and only if yk(η, Z,X) does not depend on η for k ∈ {0, 1}. If that is the case,

then β∗
0(X) = β∗

1(X) = 0 and so τ ∗GRDD(η, Z,X) = τ ∗obs(Z,X) = τ ∗(η, Z,X). It also

clear that there exist formulations of yk(η, Z,X), namely those that are additively

separable in η and (Z,X) and linear in η, under which τ ∗GRDD(η, Z,X) = τ ∗(η, Z,X)

but where τ ∗obs(Z,X) ̸= τ ∗(Z,X). Thus, the assumption required for the Global RDD

to converge to the true conditional average treatment effect function is strictly weaker

than the assumption required for the observational study to do so.

Next, we turn to the assumptions of Angrist and Rokkanen (2015). In our nota-

tion, their Generalized conditional independence assumption (GCIA) can be written

as the assumption that:

yk(η, Z,X) = yk(η,X) (57)

ν(Z,X) = ph(X) · 1(Zi > Z∗) + pl(X) · 1(Zi < Z∗) (58)

and the Conditional first stage being that ph(X) ̸= pl(X) for all X.27 Under this

assumption, it follows that:

1

ph(X)− pl(X)

∫ ph(X)

pl(X)

τ ∗GRDD(ν,X)dν =
1

ph(X)− pl(X)

∫ ph(X)

pl(X)

τ ∗(ν,X)dν (59)

for any X, with the proof being identical to the one for Proposition 2. Again, it

is also clear that there exist formulations of yk(η, Z,X) such that τ ∗GRDD converges

to the true treatment effect function, but the Angrist and Rokkanen estimator does

not. Thus, the assumption required for the Global RDD to converge to the true local

average treatment effect are strictly weaker than the assumptions required for the

Angrist and Rokkanen estimator to do so.

Proposition 6. For any choice of C0 and C1 and any point Z̃ ̸= Z∗, we get that:

τ ∗GRDD(η, Z) = EGP
[
τ ∗(η, Z)|D({Z̃, Z∗})] (18)

for every η and Z ∈ {Z̃, Z∗}.

Proof. This follows directly from Proposition 3.

27As shown in Vytlacil (2002), the monotonicity assumption is implicit in the generalized Roy
model introduced in Section II.A.
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Proposition 7. Suppose that Ck((η, Z), (η
′, Z ′)) = Ck,η(η, η

′) + Ck,Z(Z,Z
′) for both

k ∈ {0, 1} and that:

ν(Z) =

pl if Z < Z∗

ph if Z > Z∗
(19)

Then for any choice of Ck,η and Ck,Z, we get that:

τ ∗GRDD(η, Z) = EGP
[
τ ∗(η, Z)|D(Z)] (20)

for every (η, Z).

Proof. We start by re-casting mean posterior of the Gaussian process as:

E
[
yk(η, Z)

∣∣D(Z)] = h(η, Z)′θ̂ + ˆ̃y(η, Z) (60)

where the parameters θ̂ and ˆ̃y are the solutions to:

argmin
θ,y

||y|| s.t. h(ν(Z), Z)′θ + y(ν(z), Z) = yk(ν(Z), Z) ∀Z (61)

and the norm ||y|| depends on the chosen kernel Ck. Next, from the assumption that

Ck = Ck,η + Ck,Z we know that ỹ(η, Z) = f(η) + g(Z) and ||y|| = ||f ||+ ||g||.
We then use the assumption that ν(Z) is a step function to get that g(Z) is is

completely determined by α̂k, δ̂k, and the constraint that h(ν(Z), Z)′θ+ y(ν(z), Z) =

yk(ν(Z), Z) for all Z. Importantly, this means that we choose βk and f without

consideration of αk, δk and g, i.e., we can re-write Equation 61 as:

argmin
βk,f

||f || s.t. βkν(Z) + f(ν(Z)) = yk(ν(Z), Z)−
(
αk + γkZ + g(Z)

)
∀Z (62)

Finally, as outlined in Proposition 1, there is a unique β∗
k , equal to

yk(ph,Z
∗)−yk(pl,Z

∗)
ph−pl

,

that allows ||f || = 0 and hence satisfies the minimization. Thus, we get that:

E
[
yk(η, Z)

∣∣D(Z)] = (η − ν(Z))β∗
k + yk

(
ν(Z), Z

)
(63)

which gives the equivalent formulation as ŷk(η, Z) as generated by the Global RDD.

From the fact that T is linear, we therefore get that E[τ ∗(η, Z)|D] = τ ∗GRDD(η, Z) for

all η and Z.
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Proposition 8. Let τ ∗GRDD(Z) =
∫ 1

0
τ ∗GRDD(η, Z)dη and τ ∗(Z) =

∫ 1

0
τ ∗(η, Z)dη.

Then for any ϵ > 0, there exists a δ > 0 such that for all Z ∈ (Z∗ − δ, Z∗ + δ):∣∣∣τ ∗GRDD(Z)− EGP
[
τ ∗(Z)|D(Z∗ − δ, Z∗ + δ)

]∣∣∣ < ϵ (21)

for every (η, Z).

Proof. We will show that for any ϵ > 0 there exists a δ > 0 such that:

|ŷ∗k(η, Z)− EGP [y
∗
k(η, Z)|D(Z∗ − δ, Z∗ + δ)]| < ϵ (64)

for k ∈ {0, 1} and all (η, Z). Clearly, the conclusion follows from this. To do so, we

will use that fact that we can approximate EGP [y
∗
k(η, Z)|D(Z∗− δ, Z∗+ δ)] arbitrarily

well using the formula:

EGP [y
∗
k(η, Z)|D(Z∗ − δ, Z∗ + δ)] ≈ Cy∗k(η,Z),Y obs

(
CY obs + Σ

)−1
Y obs (65)

where Y obs is an M×1 vector defined as [y∗k(ν(Z
∗−δ), Z∗−δ), y∗k(ν(Z

∗−δ+∆), Z∗−
δ + 2 ∗∆), Z∗ − δ + 2 ∗∆), ..., y∗k(ν(Z

∗ + δ), Z∗ + δ)] for a small enough ∆ and where

Cy∗k(η,Z),Y obs is the covariance function.

By choosing δ, we can make the weights arbitrarily close to an additively sep-

arable covariance and ν(Z) arbitrarily close to a step-function. Since the function

Cy∗k(η,Z),Y obs

(
CY obs+Σ

)−1
Y obs is continuous in the weights, we can therefore – by choos-

ing δ – make the resulting values of EGP [y
∗
k(η, Z)|D(Z∗−δ, Z∗+δ)] arbitrarily close to

what they would be if using an additively separable covariance function and if ν(Z)

was a step-function. From the last proof, the value of EGP [y
∗
k(η, Z)|D(Z∗− δ, Z∗+ δ)]

in that case is precisely the Global RDD estimates of ŷ∗k(η, Z). Thus, by choosing δ,

we can make ŷ∗k(η, Z) arbitrarily close to EGP [y
∗
k(η, Z)|D(Z∗ − δ, Z∗ + δ)].

Proposition 9. Let τ̂GRDD be the estimate generated by the Global Regression Dis-

continuity Design, as defined in Definition 2, and τ ∗GRDD be the function defined in

Definition 1. Then under Assumptions 5 and 6 and the choice of tuning parameters

such that λk → ∞ and λk · n−1 → 0 for k ∈ {0, 1, ν}, we have that:

τ̂GRDD(Z, η)
p→ τ ∗GRDD(Z, η) (35)
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for all η and Z ̸= Z∗. Further, if we assume that ωk(Z,Zi, k
′) = 0 if k ̸= k′, λk = λ

for all k and that λ−1
√
λ−1n → 0, we get that:

√
λ−1n ·

(
τ̂GRDD(Z, η)− τ ∗GRDD(Z, η)

)
→ N(0, V ) (36)

where the variance is equal to:

V = V
(
τ̂obs(Z)

)
+ V

(
ν̂(Z)

)
·
(
β∗
1 − β∗

0

)2
+ V

(
∆̂Y1

)
·
(
ν(Z)− 2η

∆p

)2

+

+ V
(
∆̂Y0

)
·
(
ν(Z)− 2η + 1

∆p

)2

+ V
(
∆̂p
)
·
((

ν(Z)− 2η
)
·
(
β∗
1 − β∗

0

)
− β∗

0

∆p

)2

(37)

and where:

∆̂Y1 =
∑
∀i

ω1(∆Z∗, Zi, Ti) · Yi (38)

∆̂Y0 =
∑
∀i

ω0(∆Z∗, Zi, Ti) · Yi (39)

∆̂p =
∑
∀i

ων(∆Z∗, Zi) · Ti (40)

Proof. From Assumption 6, we get that:

√
λ−1n ·

(

τ̂obs(Z)− τ ∗obs(Z)− b1

ν̂(Z)− ν(Z)− b2

∆̂Y0 −∆Y0 − b3

∆̂Y1 −∆Y1 − b4

∆̂p−∆p− b5


)

→ N(0,Σ) (66)

where the bk terms are bias terms with bk ∈ [0,∞).

Next, from Assumption 5, we get that the conditional moments estimated at Z

are independent from the conditional moments estimated at Z∗, and so we can infer

55



Opper and Özek

that:

Σ =

[
Σ1 0

0 Σ2

]
(67)

where Σ1 is a two-by-two symmetric positive semi-definite matrix and Σ2 is a four-

by-four symmetric positive semi-definite matrix.

We next consider the covariance between the estimates of ∆̂Y1 and ∆̂Y0, which

(because of the assumption that the observations are independent) we can write as:

Cov(∆̂Y1, ∆̂Y0) =
∑
∀i

(
ω1(∆Z∗, Zi, Ti) · ω0(∆Z∗, Zi, Ti)

)
· V ar(Yi|Zi) (68)

which equals zero, since ω1(∆Z∗, Zi, Ti) · ω0(∆Z∗, Zi, Ti) = 0 regardless of Ti.

Finally, we get that the covariance between ∆̂Y1 and ∆̂p is zero from the fact that

we can write Yi = y∗1(ν(Zi), Zi) · Ti + y∗0(ν(Zi), Zi) · (1− Ti) + ei with E[ei|Ti, Zi] = 0

and that we can ignore the biases. To see how, note that we can write that:

∆̂Y1 =
∑
∀i

ω1(∆Z∗, Zi, Ti) · y∗1(ν(Zi), Zi) +
∑
∀i

ω1(∆Z∗, Zi, Ti) · ei

= ∆Y1 +
(∑

∀i

ω1(∆Z∗, Zi, Ti) · y∗1(ν(Zi), Zi)−∆Y1

)
+
∑
∀i

ω1(∆Z∗, Zi, Ti) · ei

= ∆Y1 + b∆̂Y1
+ e∆̂Y1

(69)

with b∆̂Y1
corresponding to the bias term and e∆̂Y1

to the error term with, importantly,

E[e∆̂Y1
|Zn, T n] = 0. We can similarly write ∆̂p = ∆p + b∆̂p + e∆̂p for some bias term

b∆̂p and error term with E[e∆̂p|Zn] = 0. We therefore get that:

Cov(∆̂Y1, ∆̂p) = E[∆̂Y1∆̂p]− E[∆̂Y1]E[∆̂p]

= E
[(
∆Y1 + b∆̂Y1

+ e∆̂Y1

)
·
(
∆p + b∆̂p + e∆̂p

)]
− E

[(
∆Y1 + b∆̂Y1

)
·
(
∆p + b∆̂p

)]
= E

[
e∆̂Y1

· e∆̂p

]
+ E

[
b∆̂Y1

· e∆̂p

]
(70)

where the last equation comes form the fact that ∆Y1, ∆p, and b∆̂p are all functions of

Zn (which we hold fixed for the expectation) and not T n or Y n (which the expectations

are taken over). We can further get that: E[e∆̂Y1
·e∆̂p] = E[E[e∆̂Y1

|T n] ·e∆̂p] = 0, since

E[e∆̂Y1
|T n] = 0 for all T n. Finally, from the assumption that λ−1

√
λ−1n → 0 we can
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get that b∆̂Y1
= 0 and so Cov(∆̂Y1, ∆̂p) = 0.

We can use a similar approach to show the rest of the covariances are likewise

equal to zero and the stated result then follows via the delta-method.

Proposition 10. Let τ̂GRDD be the estimate generated by the Global Regression Dis-

continuity Design, as defined in Definition 2, and τ ∗GRDD be the function defined

in Definition 1. Next, suppose that
∫ 1

0
ω(η, Z)dη = ωz(Z) for some continuous

ωz(Z) ∈ [0,∞) with
∫
Z
ωz(Z) = 1.

Then under the assumptions in Proposition 9, we get that:

√
λ−1n·

(∫
Z

∫ 1

0

τ̂GRDD(η, Z)ω(η, Z)dηdZ−
∫
Z

∫ 1

0

τ ∗GRDD(η, Z)ω(η, Z)dηdZ

)
→ N(0, V )

(41)

where the variance is equal to:

V = V
(
∆̂Y1

)
·
(

ξ

∆p

)2

+ V
(
∆̂Y0

)
·
(
1 + ξ

∆p

)2

+ V
(
∆̂p
)
·
(
ξ ·
(
β∗
1 − β∗

0

)
− β∗

0

∆p

)2
(42)

and where ξ =
∫
Z

∫ 1

0

(
ν(Z)− 2η

)
ω(η, Z)dηdZ.

Proof. From the formulation of the estimator, we get that:∫
Z

∫ 1

0

τ̂GRDD(η, Z)ω(η, Z)dηdZ =

∫
Z

τ̂obs(Z)ωz(Z)dZ

−
(
β̂1 − β̂0

)
·
∫
Z

(
ν̂(Z)− 1

)
ωz(Z)dZ

− β̂0

(71)

From the assumption that C0 and C1 are twice-continuously differentiable, we can

approximate the integrals
∫
Z
τ̂obs(Z)ωz(Z)dZ and

∫
Z

(
ν̂(Z)−1

)
ωz(Z)dZ via Riemann

sums. Further, from Assumption 5, the τ̂(Z) and ν̂(Z) estimates in these sums can

be thought of as independent random variables with finite variance. Thus, since the

weight on any one goes to zero as the number of terms increases, the variance of the

sum vanishes. Thus, the only uncertainty in the estimate stems from uncertainty in

β̂0 and β̂1.
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B Extensions

An advantage of using a marginal treatment effect representation of the fuzzy RDD

setting is that the flexibility provides a number of possible extensions to the method

presented above. We briefly touch on some of these extensions here as guidance

for those researchers who want to apply the method to one of these contexts. In

particular, we focus here on how the associated R package handles these extensions

and it to future papers to study whether there are better ways to extend the model.

B.A Covariates

As mentioned in Section III, the assumption required for τ ∗GRDD to be equal to the

true MTE function will potentially be more believable when one conditions on a

set of exogenous covariates. In one sense, extending the model to condition on a

set of covariates is straightforward and one can do so by simply saturating the model

with covariate interactions. In practice, however, estimating the conditional moments

non-parametrically, as we do in Section IV, quickly gets challenging as the number

of covariates increases and so implementing the method requires some additional

restrictions.

This raises the intriguing possibility that including covariates could lead to better

identification of the MTE functions. For example, if the size of the discontinuity in

ν(Z,X) at Z∗ differed depending on X and we keep the restriction that yk(η, Z,X)

is additively separable, we could relax the restriction that it is linear in η. This is

very similar to the discussion in Brinch et al. (2017), for example.

We view this, and especially the best way to extend the Bayesian model outlined

in Section III to account for additional covariates, to be an area ripe for further

exploration. The most straightforward approach, however, is to extend the restriction

on the conditional moments to be that:

ŷk(η, Z,X) = γk(Z,X) + βkη (72)

for k ∈ {0, 1}. We can then extend the formulation that the estimator is equal to a
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bias-adjusted observational study to be that:

τGRDD(η, Z,X) = τobs(Z,X)−
(
ν(Z,X)− 2η

)
·
(
β1 − β0)− β0 (73)

Here, the formulation that the estimator is equal to a bias-adjusted observational

study is quite useful if one wants to adjust for multiple covariates, since there are a

number of studies and statistical packages that discuss how best to flexibly estimate

conditional average treatment effects in an observational study context. Thus, one can

estimate τ̂obs(Z,X) and ν̂(Z,X) = E[Ti|Zi = Z,Xi = X] using standard parametric

or non-parametric approaches.

Note, however, that even under the assumption that γk(Z,X) is a continuous

function and that the pdf f(X|Z) is continuous around the discontinuity, it does

not follow that βk =
limZ↑Z∗E[Yi|Zi=Z,Ti=k]−limZ↓Z∗E[Yi|Zi=Z,Ti=k]

limZ↑Z∗E[Ti|Zi=Z]−limZ↓Z∗E[Ti|Zi=Z]
for k = {0, 1}. This is

because even if the pdf f(X|Z) is continuous around the discontinuity, the conditional

distribution f(X|Z, T = k) will not be if the variables X affect the probability of

treatment. Despite this complication there are multiple ways to estimate βk, such

as a covariate-adjusted regression discontinuity. Combining these estimates with the

estimates of τ̂obs(Z,X) and ν̂(Z,X) allows for the estimation of a covariate-adjusted

Global RDD.

B.B Multiple Discontinuities

It is often the case that there are multiple discontinuities and a growing body of

literature investigates how best to handle these cases (e.g., Cattaneo et al. (2021),

Bertanha (2020)). While we specify the model as having a single discontinuity the

Global RDD can also be applied to the case where there are multiple discontinuities.

We briefly discuss here how the presence of multiple discontinuities changes the results

in Section II and III and then use this to illustrate how we can extend the Global

RDD to handle multiple discontinuities.

The assumption that there is a single discontinuity was important for the previous

results because it ensured that the definition of τ ∗GRDD is well-defined, i.e., that there

exists a unique function ŷk that is additively seperable and linear in η such that

ŷk(ν(Z), Z) = E[Yi|Ti = k, Zi = Z] for all Z ̸= Z∗ and k ∈ {0, 1}. With multiple

discontinuities, in contrast, it is no longer guaranteed that there exists an additively

separable and linear in η conditional moment function that can match all of the
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observed moments. In response to this issue we have essentially two choices. We can

either: (a) relax the assumption that they are additively separable and linear in η

in a way that ensures there still exists a single function that matches every observed

moment or (b) use the multiple discontinuities to improve the precision with which

we estimate β̂0 and β̂1.

As an example of the first approach, with multiple discontinuities we can still

restrict the functions ŷk(η, Z) to be additively separable but allow the η term to be a

higher-order polynomial, with the order depending on how many discontinuities there

are (and how the probability of treatment changes at these points). In this case, how

much allowable flexibility in the η term we could allow due to the multiple discontinu-

ities is more or less identical to the analysis in Brinch et al. (2017). Alternatively, we

could still restrict that functions ŷk(η, Z) to be linear in η (for any Z), but allow the

slope to depend on Z. For example, we could specify that y∗k(η, Z) = δ(Z) + β(Z)η,

where β(Z) is some polynomial of Z; again, the flexibility in our specification of

β(Z), e.g., whether we allow it to be a constant, linear function of Z, or higher-order

polynomial, would depend on how many discontinuities there are.

An alternative is to keep the restriction that ŷk(η, Z) are additively separable and

linear in η even in the presence of multiple discontinuities. While this complicates

some of the motivation inherent in the Bayesian model, combining the discontinuities

may lead to a more precise estimation of the “average slope” and we believe this will

likely preferable in most contexts. It is this approach that we implement in the R

package.

We also note that if one continuous to restrict the estimated moments to be

additively separable and linear in η, the multiple discontinuities lead to the model

being over-identified. This, in turn, provides the ability to empirically test the null

hypothesis that the true model is additively separable and linear in η. We next

briefly discuss more generally how the MTE representation of the fuzzy RD provides

the ability to test a range of more restricted models.

B.C Testing Restricted Models

The main issue we have discussed in this paper is that the functions yk(η, Z) are not

identified in the fuzzy RD context without significant additional restrictions. We have

therefore proposed a particular restriction and then spent Section II discussing how
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this transforms the observed moments into the resulting estimates and III discussing

how to motivate this restriction. One downside of our choice of restrictions is that

because it perfectly explains the observed moments, there is no way to test empirically

whether this restriction is plausible or not.

We now turn briefly to an alternative use of the MTE representation, which is that

it suggests natural ways to test for potentially interesting null hypotheses.28 Roughly

speaking, by further restricting the set of plausible conditional moments we can get

an over-identified model, and therefore can conduct empirical tests of the restricted

model. We now discuss four null hypotheses, which we find are often of interest to

researchers and which we return as part of the accompanying R package.

For the first restricted model, we consider testing the null hypothesis that there

is no endogenous selection into treatment. In the MTE model, this is equivalent to

testing the null hypothesis that β̂0 = β̂1 = 0. While we feel like it is worthwhile to

mention this test and to include it in the output generated by the R package, we want

to highlight that this is the identical test as proposed in Bertanha and Imbens (2020)

and so encourage those particularly interested in testing this null to see Bertanha and

Imbens (2020) for more details on the test.29 Note also that, at least asymptotically,

the coefficients β̂0 and β̂1 are determined only using information at the discontinuity,

e.g., see Equations (11) and (12).

For the second restricted model, we relax the restriction that there is no endoge-

nous selection and instead test the null hypothesis that there is linear endogenous

selection and constant treatment effects. That is, we test the joint null hypothesis

that τ ∗(η, Z) = τ and µ∗(η, Z) = αη + γ̃(Z) for some α ∈ R and γ̃ : Z → R. It

is easy to show that this restriction corresponds the restriction that β̂1 = β̂0 and

δ̂(Z) = 0 for all Z and so therefore can be easily tested using the results from the

Global Regression Discontinuity Design outlined in Section IV. Unlike the previous

test we discussed, this null uses information both at the discontinuity – to test that

β̂1 = β̂0 – and away from the discontinuity – to test that δ̂(Z) = 0). However, it is

also worth emphasizing that rejecting the null hypothesis does not allow researchers

28Many thanks to the participants at the 2023 AEFP for their thoughtful comments on a (very!)
early version of this paper which initially motivated this section and to an anonymous referee who
helped convince us to include it in the paper.

29This is true asymptotically; in practice, the different ways in which we estimate the observed
conditional moments mean that the results may differ slightly in a finite-samples. If all you are
interested in is testing this null, we suggest you use the package put together by Bertanha and
Imbens (2020).
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to know whether that is due to heterogeneous treatment effects (which we believe

is the null hypothesis they are generally interested in) or to non-linear endogenous

selection (which is an additional restriction needed to over-identify the model). Still,

we believe that rejecting the null (or failing the reject the null) is informative and

so also include the results of this null hypothesis in the R output. We also include

a test of the related null hypothesis that there is linear endogenous selection and no

treatment effect for anyone.

Finally, the last two tests allow for some treatment effect heterogeneity, but restrict

the form it takes. For one of the hypothesis tests, we allow for treatment effect

heterogeneity in the unobserved propensity to enroll but not in Z, i.e., to relax the

previous restriction to be that τ ∗(η, Z) = α1η for some α1 ∈ R. For the second, we

allow for treatment effect heterogeneity in the running variable but not in η, i.e., we

relax the previous restriction to be that τ ∗(η, Z) = δ(Z) for some continuous function

δ. Note that, as in the previous test, both of these test the join null that the treatment

effect heterogeneity is restricted and that there is linear endogenous selection.

B.D Improving Precision at the Cost of Bias

As discussed in Section II, the proposed estimator can be thought of as a linear com-

bination of: (a) a potentially biased observational study using data away from the

discontinuity and (b) a consistent (but local) traditional regression discontinuity de-

sign using data at the discontinuity. Note that in this framing, it appears similar to

approaches that combine observational data with quasi-experimental data; however,

the motivation for these usually stem from the fact that the quasi-experimental esti-

mates are less precise than the observational estimates and so the researcher aims to

improve mean-square error of the estimates by reducing the variance at the expense

of moderate increases in the bias (e.g., Angrist et al. (2017) and Chetty and Hendren

(2018)). Here, in contrast, the weights reflect the fact that even without statistical

uncertainty, neither the observational estimate nor the RD estimate is perfect; the

observational estimates is biased due to selection bias and RD estimate is local to the

complier population at the cutoff.

In practice, of course, it is often the case that the RD estimate is not only local,

but imprecise. If one is concerned about the imprecision of the fuzzy RD estimates,

it makes sense to further reduce the weight the on the RD estimates, thereby moving
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the resulting estimates toward the observational estimates. While the intuition is

straightforward, it is not immediately obvious how should should do so given the

complex nature of ξh and ξl in Remark 1. Luckily, the approach outlined in Section

IV suggests a natural way to do so. In particular, it can be done by simply including

a penalty term for the linear components of yk(η, Z) in addition to the penalty term

needed to non-parametrically identify γ and δ. Note that this also corresponds to

a case in the Bayesian framework outlined in Section III where we assume that:

[αk, βk, γk]
′ ∼ N(0, σ2I) for some finite σ, rather than only considering the limiting

case where σ2 → ∞. See Mulhern et al. (2023) for more discussion of how a MTE

specification of the RD model can provide guidance on how to best combine noisy

and local fuzzy RD estimates with biased but precise propensity score estimates.

C Appendix Figures and Tables
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Table 2: Average Effect with Different Treatment Assignments

Optimal Realized Local Random Program
Assignment Assignment Effect Assignment Expansion

(ATT) (LATE) (ATE) (ATC)

Grade 4 1.15 1.14 0.88 0.24 0.13
(0.09) (0.09) (0.09) (0.26) (0.29)

Grade 5 0.90 0.87 0.72 0.52 0.48
(0.10) (0.10) (0.09) (0.23) (0.25)

Grade 6 0.69 0.68 0.57 0.21 0.15
(0.10) (0.09) (0.09) (0.22) (0.25)

Grade 7 0.52 0.51 0.41 0.14 0.09
(0.08) (0.08) (0.07) (0.20) (0.22)

Grade 8 0.59 0.57 0.48 0.35 0.33
(0.11) (0.07) (0.07) (0.26) (0.29)

Note: Standard errors are shown in parentheses and are clustered at the school level.
Optimal Assignment keeps the fraction of individuals treated fixed, but assigns the
individuals with the highest treatment effects to the treatment. Realized Assignment
is the average treatment effect of the realized assignment, which corresponds to the
average treatment on the treated (ATT). Local Effect corresponds to the effect of the
program on compliers at the treatment threshold (LATE). Random Assignment is the
average treatment effect if treatment was assigned randomly, which corresponds to the
overall average treatment on the treated (ATE). Program Expansion is the average
treatment effect if treatment expanded to the individuals not currently receiving the
treatment and corresponds to the average treatment on the controls (ATC).
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Table 3: Estimates of How the LATE Differs from Other Estimands

ATE vs LATE LATE vs ATC

Grade 4 0.16 0.90
(0.03) (0.32)

Grade 5 0.09 0.41
(0.04) (0.24)

Grade 6 -0.01 0.11
(0.03) (0.22)

Grade 7 -0.00 0.12
(0.03) (0.21)

Grade 8 -0.02 -0.09
(0.03) (0.25)

Note: Standard errors are shown in parentheses and are clustered at the school level.
ATE vs LATE is the estimated difference between the average treatment on the
treated (ATT) and the average effect of the program on compliers at the treatment
threshold (LATE). LATE vs ATC is the difference between the LATE and the average
treatment on the controls (ATC).
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Table 4: Global RDD vs. RD Robust

Global RDD RD Robust

Grade 4 0.87 1.09
(0.09) (0.30)

Grade 5 0.67 0.78
(0.10) (0.41)

Grade 6 0.48 0.76
(0.09) (0.45)

Grade 7 0.36 0.25
(0.08) (0.24)

Grade 8 0.35 0.84
(0.08) (0.44)

Note: Standard errors are shown in parentheses and are clustered at the school level.
Both estimates are of the LATE, i.e., the average effect of the program on compliers at
the treatment threshold. The Global RDD is estimated using the approach outlined
in the paper, with RD Robust using the approach of .
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Table 5: Estimated Effects When Including Students with a Documented Disability

Optimal Realized Local Random Program
Assignment Assignment Effect Assignment Expansion

(ATT) (LATE) (ATE) (ATC)

Grade 4 1.29 1.14 0.90 0.90 0.87
(0.10) (0.09) (0.08) (0.10) (0.11)

Grade 5 0.90 0.82 0.68 0.59 0.56
(0.09) (0.08) (0.08) (0.08) (0.08)

Grade 6 0.62 0.61 0.52 0.33 0.30
(0.08) (0.08) (0.07) (0.13) (0.14)

Grade 7 0.48 0.45 0.36 0.28 0.26
(0.07) (0.06) (0.06) (0.07) (0.07)

Grade 8 0.61 0.56 0.48 0.42 0.40
(0.07) (0.07) (0.07) (0.07) (0.07)

Note: Standard errors are shown in parentheses and are clustered at the school level.
Optimal Assignment keeps the fraction of individuals treated fixed, but assigns the
individuals with the highest treatment effects to the treatment. Realized Assignment
is the average treatment effect of the realized assignment, which corresponds to the
average treatment on the treated (ATT). Local Effect corresponds to the effect of the
program on compliers at the treatment threshold (LATE). Random Assignment is the
average treatment effect if treatment was assigned randomly, which corresponds to the
overall average treatment on the treated (ATE). Program Expansion is the average
treatment effect if treatment expanded to the individuals not currently receiving the
treatment and corresponds to the average treatment on the controls (ATC).
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Figure 6: Density Around the Distribution
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Note: The figure plots how many students scored each possible value of the third-
grade reading test around the proficiency threshold.
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Table 6: Additional Monte Carlo Results

(a) Estimates of LATE

Squared Bias Variance Mean-Squared Error
Sample Size rdrobust Global RD rdrobust Global RD rdrobust Global RD
1,000 9.53 0.10 659.8 1.10 669.4 1.20
2,500 1.53 0.03 126.6 0.36 128.2 0.39
5,000 0.16 0.01 9.77 0.17 9.94 0.19
10,000 0.11 0.006 0.75 0.09 0.76 0.10

(b) Estimates of ATE

Squared Bias Variance Mean-Squared Error
Sample Size PSWeight Global RD PSWeight Global RD PSWeight Global RD
1,000 0.70 0.27 0.007 5.88 0.71 6.16
2,500 0.70 0.12 0.003 0.67 0.71 0.80
5,000 0.70 0.10 0.001 0.25 0.71 0.35
10,000 0.70 0.09 0.0007 0.13 0.70 0.13

Note: This table shows the results of the Monte Carlo simulation described in Section
IV.C. In it, we generate 50 true conditional moments and for each of these, simulate
the rest of the data generating process 100 times and each time estimate the treatment
effects. We can then calculate the average squared-bias, variance, and mean-squared
error. “rdrobust” is a traditional RDD estimate that uses the rdrobust package to
calculate the bandwidth (Calonico et al., 2015a). “PSWeight” is a propensity score
weighting approach that estimates the true propensity scores using a simple logit
model. “Global RD” is the approach outlined in this paper. The simulation results
with other alternatives are shown in Appendix Table 1.
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