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Abstract. We study the implications of trade uncertainty for reshoring, automation, and

U.S. labor markets. Rising trade uncertainty creates incentives for firms to reduce exposure

to foreign suppliers by moving production and distribution processes to domestic producers.

However, we argue that reshoring does not necessarily bring jobs back to the home country or

boost domestic wages, especially when firms have access to labor-substituting technologies

such as automation. Automation improves labor productivity and facilitates reshoring,

but it can also displace jobs. Furthermore, automation poses a threat that weakens the

bargaining power of unskilled workers in wage negotiations, depressing their wages and

raising the skill premium and wage inequality. Our model predictions are in line with

industry-level empirical evidence.

I. Introduction

The COVID-19 pandemic has exposed important vulnerabilities in global supply chains.

Ongoing trade tensions as well as increasing risks from climate change and geopolitical con-

flicts are making global production strategies riskier than in the past. In this new economic
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environment, moving some production and distribution processes from abroad back to do-

mestic suppliers (i.e., reshoring) is becoming an increasingly attractive option to mitigate

the risks of supply chain disruptions.1

How this process will unfold and what the impacts on labor markets will be remain highly

uncertain. One possibility is that reshoring could increase jobs in the home country and

boost wages for domestic workers, reversing the effects of the China shock originally studied

by Autor et al. (2013). In this paper, we argue that reshoring may not necessarily increase

domestic employment and wages when labor-substituting technologies, such as automation,

are available for firms to lower production costs.

Over the past three decades, advanced economies that offshored production processes

have also experienced a steady increase in the adoption of automation technologies, such as

artificial intelligence, machine learning, and robotics. Empirical evidence suggests that au-

tomation raises labor productivity (Graetz and Michaels, 2018) and reduces unit labor costs

and worker wages (Acemoglu and Restrepo, 2020). The increased ability to automate labor-

intensive production processes could reduce firms’ need to offshore production to contain

labor costs. In line with these changing incentives, import growth has slowed significantly

relative to GDP since the trade collapse during the Great Recession.

Coupled with a greater ability to automate, recent increases in trade uncertainty may have

accelerated the trend in reshoring. While reshoring tends to raise domestic labor demand and

real wages, firms’ options to automate help mitigate the increase in labor costs, since it acts

as a threat against workers—especially unskilled workers who can be easily substituted by

robots—in wage bargaining. This automation threat channel—originally studied by Leduc

and Liu (2024)—helps contain the rise in labor costs, reinforcing the incentive for reshoring.

Since robots substitute for unskilled workers and complement skilled workers, increased

automation spurred by reshoring may also raise the skill premium and income inequality.

In this paper, we formalize this perspective by developing a macro framework featur-

ing automation, heterogeneous worker skills, and international trade frictions. We use this

framework to examine the impacts of a rise in trade uncertainty on reshoring, automation,

and domestic labor markets. We generalize the automation threat channel to a small open

economy with trade in intermediate inputs. Trade is subject to time-varying iceberg costs

with stochastic volatility meant to capture trade uncertainty arising from geopolitical, cli-

mate, and trade policy risks. To produce a final good, firms use a mixture of domestic and

1According to a Thomas Industrial Survey, about two-thirds of North American manufacturers reported

they are likely to bring manufacturing production and sourcing back to North America because of concerns

about the global supply chain disruptions following the COVID-19 pandemic. In addition, about a quarter

of those manufacturers are considering expanding industrial automation.

https://www.iredelledc.com/thomas-survey-two-thirds-of-manufacturers-likely-to-reshore-as-a-result-of-pandemic/
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foreign intermediate goods. We capture the interaction between reshoring and automation

by assuming that domestic intermediate goods producers can use two types of technologies:

a labor-only technology that uses unskilled workers and an automated process that uses both

robots and skilled workers as inputs.2

We assume that unskilled workers search for jobs in a frictional labor market, subject to

search frictions as in the standard Diamond-Mortensen-Pisarides (DMP) framework. Un-

skilled wages are determined by Nash bargaining between a firm and a worker. Because firms

have the option to automate unfilled vacancies, the threat of automation acts as an outside

option for the firm and weighs on bargained wages.3 This effect is compounded when firms

do actually automate, since the associated productivity boost lowers domestic marginal costs

of production further.

In our framework, heightened trade uncertainty operates through three key channels.

First, trade uncertainty has an expenditure-switching effect that redirects the demand for

intermediate goods toward domestic producers (i.e., reshoring).4 This expenditure-switching

effect stimulates automation investment, raising the demand for skilled workers. While the

expenditure-switching effect and a greater use of automated processes have a job-creating

effect through raising the value of unfilled vacancies, this channel is more than offset by

the job-displacing effect of automation on unskilled workers. To elaborate, in a frictional

labor market with long-term employment relations, firms respond to heightened uncertainty

by reducing hiring and increasing automation to meet the increased demand for domestic

goods. Second, trade uncertainty also generates greater precautionary savings, which reduces

the real interest rate and further stimulates automation. Third, heightened trade uncertainty

raises the option value of waiting, discouraging automation investment.

We show that, with our calibration, the positive effects from expenditure switching and

precautionary savings dominate the negative option-value effect, such that trade uncertainty

2We focus on automation decisions at the business cycle frequency. However, automation can also be

the result of long-run technological improvements that can allow the automation of tasks previously done

by labor. We view this form of automation as occurring relatively infrequently and instead focus on an

environment with fixed production technologies.
3Unlike the standard DMP framework, we assume that vacancy creation incurs a random fixed cost

(Fujita and Ramey, 2007), such that an unfilled vacancy retains value in equilibrium and captures the firms’

outside option and ability to automate in the future.
4To keep the analysis tractable, we model reshoring or offshoring in a reduced-form way. We do not

model firms’ choices of production locations. We interpret importing of intermediate goods as production

that could have been done domestically but is instead offshored. Similarly, we interpret a decline in imports

of intermediate goods as reshoring.
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boosts automation, raises unemployment for unskilled workers, and also raises the skill pre-

mium. These effects of trade uncertainty are amplified for an economy that is more open to

trade, has more automated production, or faces more persistent trade uncertainty.

Our model produces a rich set of empirically testable predictions. First, the model predicts

that an increase in trade uncertainty increases reshoring and stimulate automation invest-

ment. Second, increased automation triggered by trade uncertainty raises labor productivity

and value added. Third, the threat of automation depresses wages and employment of un-

skilled workers while raising wages of skilled workers, resulting in an increase in the skill

premium. These effects should be stronger in an economy more open to international trade.

The model predictions are consistent with empirical evidence from industry-level data. We

use data on industrial robots, intermediate goods imports, employment, value-added, and

wages in two-digit International Standard Industrial Classification (ISIC, Rev. 4) industries

from 1997 to 2022 to construct measures of automation, offshoring, labor productivity, and

the skill premium.5 We measure trade uncertainty using aggregate trade policy uncertainty

(TPU) constructed by Caldara et al. (2020), interacted with a measure of initial exposure

to offshored production. We show that, controlling for industry and time fixed effects, an

increase in trade uncertainty is associated with larger increases in automation and larger

declines in offshoring in industries that are more exposed to offshoring.6

We also find that an increase in trade uncertainty is associated with larger increases in

labor productivity and value added in industries that are more exposed to offshoring and that

these effects work partly through an automation channel. We examine the channeling effects

using a two-stage least squares approach (Bertrand and Mullainathan, 2001). In the first

stage, we regress a measure of automation (robot density) on trade uncertainty, controlling

for industry and time fixed effects. In the second stage, we regress each variable of interest

(including labor productivity, employment, value-added, and the skill premium) on robot

5Due to data limitations, this paper focuses on industrial robots, a specific type of automation technology.

We use the terms “automation” and “robots” interchangeably. Robotics constitute an important component

of the automation technology. According to the 2019 Annual Business Survey, 8.7% of U.S. manufacturing

firms, which account for 45% of manufacturing employment, utilize robotics in their production processes

(Acemoglu et al., 2022).
6Our model’s prediction that trade uncertainty raises automation investment does not necessarily con-

tradict the empirical finding of Caldara et al. (2020) that trade uncertainty reduces business investment

(such as nonresidential structures and general capital equipment). It would be straightforward to generalize

our model to incorporate business investment. For example, one could modify the traditional technology

(i.e., the non-automation technology) that uses unskilled labor as the only input in our baseline model by

assuming that both capital and labor are required as input factors. We conjecture that, in such a model,

an increase in trade uncertainty could boost automation investment, which in turn could displace unskilled

jobs and reduce business investment, in line with the findings of Caldara et al. (2020).
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density predicted from the first-stage regression. The estimated coefficient in the second-

stage regression indicates the sensitivity of each of the macroeconomic variables to changes

in robot density that comes from trade policy uncertainty. We find that an increase in robot

density driven by trade uncertainty is associated with an increase in labor productivity, value

added, and the skill premium.7

Our work contributes to a relatively new but growing literature on the effects of reshoring.

Empirically, drawing clear conclusions about the effects of reshoring has been challenging

given the novelty of the practice and thus the lack of data. Nonetheless, a few papers

have assessed the empirical links between reshoring and automation. For instance, Dachs

et al. (2019) find a positive relationship between reshoring and investment in Industry 4.0

technologies for 1,700 firms in Austria, Germany, and Switzerland. More broadly, our paper

is also related to the literature on the effects of trade policy on the structure of trade and

global supply chains (Fajgelbaum et al., 2021; Alfaro and Chor, 2023; Utar et al., 2023;

Grossman et al., 2024).8

By emphasizing the effects of uncertainty on reshoring and automation, our paper comple-

ments recent work that examines the effects of changes in automation on trade. In particular,

a growing body of literature has documented the interaction between automation and off-

shoring and showed that automation tends to reduce offshoring (De Backer et al., 2018;

Artuc et al., 2019; Stemmler, 2019; Faber, 2020; Carbonero et al., 2020; Krenz et al., 2021;

Bonfiglioli et al., 2022).9 Mandelman and Zlate (2022) argue that offshoring and automation

reduce employment and wages of middle-skill occupations but enhance those for high-skilled

ones. We examine the nexus between offshoring and automation from a different angle by

showing how trade uncertainty induces reshoring and boosts automation investment and

how the interactions between reshoring and automation affect the responses of domestic

labor market variables to trade uncertainty.

Our paper also adds to an extensive literature on the effects of trade policy uncertainty

(e.g., Handley and Limão, 2015, 2017, 2022; Feng et al., 2017; Crowley et al., 2018; Alessan-

dria et al., 2019, 2021; Poilly and Tripier, 2023; Choi et al., 2023; Correa et al., 2023; Alessan-

dria et al., 2024; Rodrigue et al., 2024), and more broadly, on the macroeconomic effects of

7While these results are broadly in line with our theoretical predictions, we note that we are using a

relatively small sample of industries over a relatively short time period and therefore one should interpret

our empirical results with caution.
8The literature has also studied the importance of global supply chains in optimal trade policy; see, for

example, Blanchard et al. (2017); Grossman et al. (2023); Antràs et al. (2024).
9Artuc et al. (2023) show that, by increasing productivity, robotization in the North increases imports

from the South. Baur et al. (2023) document that the impact of automation on trade depends on input-

output linkages.
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uncertainty (e.g., Bloom, 2009; Fernández-Villaverde et al., 2011; Alessandria et al., 2015;

Leduc and Liu, 2016; Basu and Bundick, 2017; Greenland et al., 2019; Dur et al., 2024; Kim

and Lee, 2024). Related to our study, Novy and Taylor (2020) argue that trade flows can

be more sensitive to uncertainty shocks than domestic production because of higher fixed

costs of orders of foreign inputs. Caldara et al. (2020) show that an increase in TPU reduces

business investment, both in the data and in an open-economy model. Faber et al. (2023)

empirically show that country-level uncertainty in the developing world induces reshoring

to developed countries, but only if automation technology is available. Complementary to

these studies, our paper highlights how trade uncertainty can drive three-way interactions

between reshoring, automation, and labor markets.

II. The model

This section presents a small open economy model featuring labor search frictions, en-

dogenous decisions of automation, and offshoring.

II.1. Key features in the model. Final consumption goods are produced using interme-

diate goods that are imported or domestically produced. Domestic intermediate goods can

be produced using two types of technologies, a labor-only technology that uses unskilled

workers as the only input and an automation technology that uses both robots and skilled

workers as inputs.

We assume that a firm that chooses to use the automation technology can adopt a robot

at a random sunk cost and hire a skilled worker from a competitive spot skilled labor market.

If the firm chooses to operate the labor-only technology, then it can hire an unskilled worker

subject to labor market search frictions in the spirit of the standard DMP framework.

In the beginning of a period t, firms carry over the stock of unfilled vacancies from the

previous period, a fraction of which is automated by adopting robots. The stock of vacancies

vt available for hiring workers consists of the remaining vacancies after automation, the jobs

separated in the beginning of the period, and newly created vacancies. The job seekers (the

mass of which is ut) randomly match with the vacancies (vt) in the labor market, with the

number of new matches (mt) determined by a matching technology. Production then takes

place, using either a labor-only or an automation technology. The unfilled vacancies and the

pool of employed workers at the end of the period are carried over to the next period, and

the same sequence of economic activities repeats in period t+ 1.

Compared to the standard DMP model, our model introduces four new features. First,

we replace the free-entry assumption in the DMP model with costly vacancy creation, as in

Fujita and Ramey (2007) and Leduc and Liu (2020). Since creating a new vacancy incurs

a fixed cost, a vacancy has a positive value even if it is not filled by an unskilled worker.
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The number of vacancies becomes a slow-moving state variable (instead of a jump variable,

as in the standard DMP framework), enabling our model to match the persistent vacancy

dynamics in the data.

Second, we introduce endogenous automation decisions. In the beginning of period t, each

firm draws a sunk cost of automation, which determines whether the firm will automate

production or post the vacancy for hiring a worker. If the automation cost lies below a

threshold value, then the firm automates production by adopting a robot and hiring skilled

workers to operate the robot. In that case, the firm obtains the automation value and the

vacancy would be taken offline. If the automation cost exceeds the threshold, then the firm

posts the vacancy for hiring an unskilled worker.

Third, we allow for worker skill heterogeneity, with skilled and unskilled workers, who

are all members of the representative household. In our model, robots and skilled workers

are complementary inputs, whereas they are substitutes for unskilled workers. This feature

allows us to examine the joint effects of automation and offshoring on employment of workers

with different skills and also on income inequality stemming from the skill premium.

Fourth, we introduce offshoring by allowing final goods producers to import intermediate

goods. Changes in trade costs caused by, for example, global supply chain disruptions or

trade wars can affect the effective costs of offshoring, which in turn affects the relative demand

for intermediate goods that are imported versus domestically produced. Such changes in

relative demand in turn drive changes in automation decisions, employment, and income

distribution.

II.2. The frictional labor market for unskilled workers. At the beginning of period t,

there are Nt−1 existing job matches for unskilled workers. The measure of unemployed job

seekers is given by

ut = 1− (1− δ)Nt−1, (1)

where δ ∈ (0, 1) denotes the job separation rate and we have assumed full labor force

participation with the size of unskilled labor normalized to one.

The stock of vacancies vt at the beginning of period t consists of unfilled vacancies carried

over from period t− 1 that are not automated plus the separated employment matches and

newly created vacancies. The law of motion for vacancies is given by

vt = (1− qvt−1)(1− qat )vt−1 + δNt−1 + ηt, (2)

where qvt−1 denotes the job filling rate in period t− 1, qat denotes the automation probability

in period t, and ηt denotes newly created vacancies (i.e., entry).
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In the labor market, new job matches (denoted by mt) are formed between job seekers

and open vacancies based on the matching function

mt = µuαt v
1−α
t , (3)

where µ is a scale parameter that measures matching efficiency and α ∈ (0, 1) is the elasticity

of job matches with respect to the number of job seekers.

The flow of new job matches adds to the employment pool, whereas job separations sub-

tract from it. Aggregate employment evolves according to the law of motion

Nt = (1− δ)Nt−1 +mt. (4)

At the end of period t, the searching workers who failed to find a job remain unemployed.

Thus, unemployment is given by

Ut = ut −mt = 1−Nt. (5)

For convenience, we define the job finding probability qut as

qut =
mt

ut
. (6)

Similarly, we define the vacancy filling probability qvt as

qvt =
mt

vt
. (7)

II.3. The representative household. The representative household has the utility func-

tion

E
∞∑
t=0

βt (lnCt − χNt) , (8)

where E [·] is an expectation operator, β ∈ (0, 1) is a subjective discount factor, Ct denotes

consumption, and Nt denotes the fraction of unskilled household members who are employed.

The representative household faces the sequence of budget constraints

Ct +Bt = rt−1Bt−1 + wntNt + wsts̄+ ϕ(1−Nt) + dt − Tt, ∀t ≥ 0, (9)

where Bt denotes the household’s holdings of a risk-free bond (in units of final goods) at the

real interest rate rt; wnt and wst denote the real wage rates of unskilled and skilled workers

(also in units of final consumption goods), respectively; dt denotes the household’s share of

firm profits; and Tt denotes lump-sum taxes. The parameter ϕ measures the flow benefits of

unemployment. For simplicity, we assume that the aggregate supply of skilled labor is fixed

at s̄.
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Denote by Vt(Bt−1, Nt−1) the value function for the representative household. The house-

hold’s optimizing problem can be written in the recursive form

Vt(Bt−1, Nt−1) ≡ max
Ct,Nt,Bt

lnCt − χNt + EtDt,t+1Vt+1(Bt, Nt), (10)

subject to the budget constraint (9) and the employment law of motion (4) for unskilled

workers, which can be written as

Nt = (1− δ)Nt−1 + qut ut, (11)

where we have used the definition of the job finding probability qut with the measure of job

seekers ut. In the optimizing decisions, the household takes the economy-wide job finding

rate qut as given.

The stochastic discount factor (SDF) is given by

Dt,t+1 ≡ β
Λt+1

Λt

, (12)

where Λt denotes the Lagrange multiplier for the budget constraint (9).

We define the employment surplus (i.e., the value of employment relative to unemploy-

ment) as SH
t ≡ 1

Λt

∂Vt(Bt−1,Nt−1)
∂Nt

. The optimizing decision for employment implies that the

employment surplus satisfies the Bellman equation

SH
t = wnt − ϕ− χ

Λt

+ EtDt,t+1(1− qut+1)(1− δ)SH
t+1. (13)

The employment surplus has a straightforward economic interpretation. If the household

adds a new unskilled worker in period t, then the current-period gain would be wage income

net of the opportunity costs of working, including unemployment benefits and the disutility of

working. The household also enjoys the continuation value of employment if the employment

relation continues. Having an extra unskilled worker today adds to the employment pool

tomorrow (provided that the employment relation survives job separation); however, adding

a worker today would also reduce the pool of searching workers tomorrow, a fraction qut+1

of whom would be able to find jobs. Thus, the marginal effect of adding a new worker in

period t on employment in period t+1 is given by (1− qut+1)(1− δ), resulting in the effective

continuation value of employment shown in the last term of Eq. (13).

Finally, the household’s optimizing consumption-savings decision implies the intertemporal

Euler equation

1 = EtDt,t+1rt. (14)
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II.4. Final goods production. A homogeneous final good is produced using two types

of intermediate inputs, one produced by domestic firms (denoted by Ydt) and the other

imported from the foreign country (Yft). Importing goods is subject to a delivery lag such

that imported intermediate goods today can be used for final goods production tomorrow.10

The production function of final goods is given by

Yt =
[
α

1
θ
d Y

θ−1
θ

dt + (1− αd)
1
θY

θ−1
θ

f,t−1

] θ
θ−1

, (15)

where the parameter θ measures the elasticity of substitution between home-produced and

imported intermediate goods, and the parameter αd measures the importance of domestic

intermediate goods for final goods production. We assume that intermediate goods are

tradable while final goods are nontradable. To keep the analysis tractable, we interpret

importing of intermediate goods as part of the production that could have been undertaken

domestically but is instead offshored.11

We denote by pdt and pft the relative prices of intermediate goods (i.e., in units of final

consumption goods) produced domestically and imported, respectively. The relative price of

imported goods faced by domestic final goods producers is given by

pft =
τtP

∗
t

Pt

= τtQt, (16)

where τt denotes an iceberg trade cost, Pt is the price of final consumption goods, P ∗
t is the

foreign price level, and Qt ≡ P ∗
t

Pt
is the real exchange rate (RER). The small open economy

takes the foreign price level P ∗
t as exogenously given. Without loss of generality, we normalize

P ∗
t = 1 such that the real exchange rate is isomorphic to the domestic price level.

We assume that, for every unit of goods delivered to the destination, τt > 1 units of goods

need to be shipped. The trade cost τt is an exogenous process with a time-varying volatility,

which captures trade uncertainty related to factors such as trade wars, geopolitical tensions,

or climate change risks that might cause global supply chain disruptions. Sepecifically, we

assume that the trade cost follows the stationary stochastic process

ln(τt) = (1− ρτ ) ln(τ̄) + ρτ ln(τt−1) + στtετt, (17)

where τ̄ is the mean of τt, ρτ ∈ (−1, 1) is a persistence parameter, and ετt is a white noise

innovation. The term στt is a stochastic volatility of the trade cost shock, which we interpret

10We incorporate delivery lags for imported inputs to enhance the realism of our model. As demonstrated

in Appendix D, the results remain qualitatively similar even when these delivery lags are excluded.
11In addition, we treat the rest of the world as a uniform area subject to the same degree of trade

uncertainty. Thus, we abstract from the possibility that higher trade uncertainty in a specific region could

lead firms to diversify the sourcing of their products to other regions. While that is an interesting and

relevant issue, it is beyond the scope of this paper.
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as trade uncertainty, and it follows the process

στt = (1− ρστ )στ + ρστστ,t−1 + ητuτt. (18)

Here, ρστ ∈ (−1, 1) is the persistence and ητ is the standard deviation of the trade uncertainty

shock, uτt is a white noise innovation, and στ is the average standard deviation of the trade

cost shock.12

Final goods producers take all prices as given and choose Ydt and Yft to maximize the

expected present value of profit flows. The optimizing problem is described by the Bellman

equation

Vt(Yf,t−1) = max
Ydt,Yft

Yt − pdtYdt − pftYft + EtDt,t+1Vt+1(Yft), (19)

subject to the technology constraint (15), where Vt(Yf,t−1) denotes the value function, which

depends on the state variable Yf,t−1. The first-order conditions for this optimizing problem

are given by

pdt =
∂Yt
∂Ydt

, pft = EtDt,t+1V
′
t+1(Yft). (20)

The envelope condition implies that

V ′
t (Yf,t−1) =

∂Yt
∂Yf,t−1

. (21)

Combining (20) and (21), we obtain

pdt =

(
αdYt
Ydt

) 1
θ

, pft = EtDt,t+1

(
(1− αd)Yt+1

Yft

) 1
θ

. (22)

The domestic intermediate good is itself a Constant Elasticity of Substitution (CES) aggre-

gate of two types of intermediate goods produced using labor-only technology and automa-

tion technology. In particular, the quantity of domestically produced intermediate goods Qdt

is given by

Qdt =
[
α

1
σ
n Y

σ−1
σ

nt + (1− αn)
1
σY

σ−1
σ

at

] σ
σ−1

, (23)

where Ynt denotes the intermediate goods produced using the labor-only technology, Yat

denotes the intermediate goods produced using the automation technology, the parameter

σ is the elasticity of substitution between the two types of intermediate goods, and the

parameter αn governs the relative importance of Ynt in the aggregation technology.

Some domestically produced intermediate goods are exported to the foreign country. Thus,

we have

Qdt = Ydt + τtXt, (24)

where Xt denotes the quantity of exports.

12Appendix D.2 shows that the effects of a second-moment shock to the tariff rate are similar to those of

a second-moment shock to the iceberg costs.
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The optimal choices of domestic intermediate goods producers imply that

pnt
pdt

=

(
αnYdt
Ynt

) 1
σ

,
pat
pdt

=

(
(1− αn)Ydt

Yat

) 1
σ

. (25)

The zero-profit condition for domestic intermediate goods producers implies that

pdt =

[
αn p

1−σ
nt + (1− αn) p

1−σ
at

] 1
1−σ

. (26)

Discussion. To maintain tractability, our model abstracts from a few potentially important

adjustment channels. On the household side, we exclude potential effects of automation

on labor force participation (e.g., Grigoli et al., 2020) or the reallocation of workers to

the services sector (Autor and Dorn, 2013). However, these adjustment channels are more

likely to be quantitatively important in the longer term rather than at the business cycle

frequency, which is the focus of our paper. Taking these additional adjustment channels into

account would likely reduce the impact of trade uncertainty on unemployment in the long

run. On the production side, we abstract from firms’ ability to smooth unexpected changes

in demand arising from trade uncertainty through variations in inventories (e.g., Alessandria

et al., 2019).

II.5. Domestic production of intermediate goods. A firm makes automation decisions

at the beginning of the period t. Adopting a robot requires a sunk cost ν in units of

consumption goods, which is drawn from the i.i.d. distribution G(ν).13 A firm chooses to

adopt a robot if and only if the cost of automation is less than the benefit. For any given

benefit of automation, there exists a threshold value ν∗t in the support of the distribution

G(ν), such that automation occurs if and only if ν ≤ ν∗t . If the firm adopts a robot to replace

the job position, then the vacancy will be taken offline and will not be available for hiring

a worker. Thus, the automation threshold ν∗t depends on the value of automation (denoted

by Ja
t ) relative to the value of a vacancy (denoted by Jv

t ). In particular, the threshold for

automation decision is given by

ν∗t = Ja
t − Jv

t . (27)

The probability of automation is then given by the cumulative density of the automation

costs evaluated at ν∗t . That is,

qat = G(ν∗t ). (28)

13The assumption that adopting a robot requires a sunk cost implies that the automation decision is

irreversible. This irreversibility tends to reduce the incentive to automate in response to trade uncertainty,

making our results conservative. In contrast, if the automation decision was reversible (e.g., involving a

per-period fixed cost of automation), the automation response to trade uncertainty would likely be stronger,

as the option value of delaying automation would no longer exist in this case.
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The flow of automated job positions adds to the stock of automated positions (denoted by

At), which becomes obsolete at the rate ρo ∈ [0, 1] in each period. Thus, At evolves according

to the law of motion

At = (1− ρo)At−1 + qat (1− qvt−1)vt−1, (29)

where qat (1− qvt−1)vt−1 is the number of newly automated job positions.14

If the firm adopts a robot, then it optimally chooses the input of skilled workers st, with

the production function

yat = Ztζ
γas1−γa

t , (30)

where γa ∈ (0, 1) denotes the elasticity of output with respect to the robot input, Zt denotes

a total factor productivity (TFP) shock, and ζ denotes an automation-specific productivity.15

TFP follows a stationary AR(1) stochastic process

ln(Zt) = (1− ρz) ln(Z̄) + ρz ln(Zt−1) + σzεzt, (31)

where Z̄ is the mean of Zt, ρz ∈ (−1, 1) is a persistence parameter, εzt is a white noise

innovation, and σz is the standard deviation of the TFP shock.16

The firm takes the skilled real wage rate wst as given and chooses st to maximize the profit

before paying the robot operation cost κa. The value of automation is then given by

Ja
t = πa

t (1− κa) + (1− ρo)EtDt,t+1J
a
t+1, (32)

where πa
t ≡ maxst patZtζ

γas1−γa
t − wstst = γapatZtζ

γas1−γa
t .

If the automation sunk cost exceeds the threshold ν∗t , then the firm chooses not to adopt

a robot and instead chooses to post the vacancy in the labor market for hiring an unskilled

worker. In addition, newly separated jobs and newly created vacancies add to the stock of

vacancies for hiring unskilled workers. We assume that creating a new vacancy incurs an

entry cost e in units of consumption goods, which is drawn from an i.i.d. distribution F (e).

A new vacancy is created if and only if the net value of entry is non-negative. The benefit

of creating a new vacancy is the vacancy value Jv
t . Thus, the number of new vacancies ηt is

given by the cumulative density of the entry costs evaluated at Jv
t . That is,

ηt = F (Jv
t ). (33)

14If a vacancy is “filled” by a robot, it will be taken offline once and for all. Even if the robot later

becomes obsolete, the vacated position does not return to the stock of vacancies.
15In our baseline model, the use of robots is not subject to trade costs. However, in practice, firms’

automation technology may partly be imported and thus subject to trade costs and trade uncertainty. We

consider this more general case in a robustness exercise below.
16We focus on trade uncertainty in the main analysis, although we also examine the effects of TFP

uncertainty, which is measured by time-varying volatility of the TFP shock (see Appendix D).
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Posting a vacancy incurs a per-period fixed cost κ (in units of final consumption goods).

If the vacancy is filled (with probability qvt ), the firm obtains the employment value Je
t .

Otherwise, the firm carries over the unfilled vacancy to the next period, which will be

automated with the probability qat+1. If the vacancy is automated, then the firm obtains the

automation value Ja
t+1 net of the expected robot adoption costs; otherwise, the vacancy will

remain open, and the firm receives the vacancy value Jv
t+1. Thus, the vacancy value satisfies

the Bellman equation

Jv
t = −κ+ qvt J

e
t + (1− qvt )EtDt,t+1

{
qat+1J

a
t+1 −

∫ ν∗t+1

0

νdG(ν) + (1− qat+1)J
v
t+1

}
. (34)

If a firm successfully hires an unskilled worker, then it can produce Zt units of intermediate

goods. The value of employment satisfies the Bellman equation

Je
t = pntZt − wnt + EtDt,t+1

{
(1− δ)Je

t+1 + δJv
t+1

}
. (35)

Hiring a worker generates a flow profit pntZt−wnt in the current period (in final consumption

units). If the job is separated in the next period (with probability δ), then the firm receives

the vacancy value Jv
t+1. Otherwise, the firm receives the continuation value of employment.

II.6. The Nash bargaining wage. When a job match is formed, the wage rate is deter-

mined through Nash bargaining. The bargaining wage splits the joint surplus of a job match

between the unskilled worker and the firm. The worker’s employment surplus is given by

SH
t in equation (13). The firm’s surplus is given by Je

t − Jv
t . The possibility of automation

affects the value of a vacancy and thus indirectly affects the firm’s reservation value and its

bargaining decisions.

The Nash bargaining problem is given by

max
wnt

(
SH
t

)b
(Je

t − Jv
t )

1−b , (36)

where b ∈ (0, 1) represents the bargaining weight for workers.

Define the total surplus as

St ≡ Je
t − Jv

t + SH
t . (37)

Then the bargaining solution is given by

Je
t − Jv

t = (1− b)St, SH
t = bSt. (38)

The bargaining outcome implies that the firm’s surplus is a constant fraction 1 − b of the

total surplus St and the household’s surplus is a fraction b of the total surplus.
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The bargaining solution (38) and the expression for household surplus in equation (13)

together imply that the Nash bargaining wage wN
nt satisfies the Bellman equation

b

1− b
(Je

t − Jv
t ) = wN

nt − ϕ− χ

Λt

+EtDt,t+1(1− qut+1)(1− δ)
b

1− b
(Je

t+1 − Jv
t+1). (39)

In the baseline model, we assume that real wages are flexible and are given by the Nash

bargaining wage (i.e., wnt = wN
nt).

II.7. Export demand. To close the model, we follow Chang et al. (2015) and specify the

export demand schedule

Xt =

(
τt
Pdt

P ∗
t

)−θ

X∗
t =

(
τtpdt
Qt

)−θ

X∗
t , (40)

where X∗
t denotes an exogenous foreign demand shifter. Demand for exported intermediate

goods is inversely related to the effective price of exports, consisting of both the relative

price pdt, converted to foreign goods units by the real exchange rate, and the iceberg trading

cost τt. We assume that the demand elasticity for home exports is identical to the demand

elasticity for imported intermediate goods (both elasticities are given by θ).

II.8. Government policy and search equilibrium. The government finances unemploy-

ment benefit payments ϕ for unemployed workers through lump-sum taxes. We assume that

the government balances the budget in each period such that

ϕ(1−Nt) = Tt. (41)

In a search equilibrium, the markets for final goods, intermediate goods, and skilled labor

all clear. We also assume that trade is balanced such that export revenue equals the import

costs.

Market clearing for domestic intermediate goods along with that for skilled labor implies

that

Ynt = ZtNt, Yat = Zt(ζAt)
γa s̄1−γa . (42)

Final goods market clearing requires that consumption spending, vacancy posting costs,

robot operation costs, robot adoption costs, and vacancy creation costs add up to aggregate

final goods output. The aggregate robot operation cost is given by γapatYat. Thus, the

aggregate resource constraint is

Ct + κvt + κaγapatYat + (1− qvt−1)vt−1

∫ ν∗t

0

νdG(ν) +

∫ Jv
t

0

edF (e) = Yt. (43)
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Table 1. Calibrated parameters

Parameter Description value

β Subjective discount factor 0.99

α Elasticity of matching function 0.50

ϕ Unemployment benefit 0.25

b Nash bargaining weight 0.50

δ Job separation rate 0.10

ρo Automation obsolescence rate 0.03

κa Flow cost of automated production 0.98

µ Matching efficiency 0.6606

κ Vacancy posting per-period fixed cost 0.1128

αn Share of worker-produced intermediate goods 0.39

σ Elasticity of substitution between domestic intermediate goods 2.03

ē Scale of vacancy creation cost distribution 3.07

ν̄ Scale of automation cost distribution 8.57

αd Weight on domestic intermediate input (home bias) 0.85

θ Substitution elasticity between domestic and imported goods 0.8

τ̄ Average iceberg trade cost 1.74

Z̄ Average level of TFP 1

s̄ Supply of skilled workers 0.3

γa Share of automation equipment in production 0.32

ζ Automation-specific productivity 3.4422

χ Disutility of working 0.3741

ρz Persistence of TFP shock 0.95

σz Volatility of TFP shock 0.01

ρτ Persistence of first-moment trade cost shock 0.99

στ Volatility of first-moment trade shock 0.00215

ρστ Persistence of trade uncertainty shock 0.96

ητ Volatility of trade uncertainty shock 0.37

We focus on a balanced-trade equilibrium. In such an equilibrium, the revenue from

exporting intermediate goods equals the costs of importing foreign intermediate goods, such

that

τtpdtXt = pftYft. (44)

We assume that the initial foreign asset holdings are B−1 = 0. Then, with balanced trade,

the current account balance is also zero for all periods, and we have Bt = 0 for all t.

Appendix A summarizes the equilibrium conditions.

III. Parameter calibration

We use our model to study the macroeconomic impact of trade uncertainty shocks. We

solve the model based on third-order approximations to the equilibrium conditions. To

solve the model requires assigning values to the parameters. Table 1 shows the calibrated

parameter values.

We have a quarterly model. We set the subjective discount factor to β = 0.99, such

that the steady-state real interest rate is 4 percent per year. We set the matching function

elasticity to α = 0.5, in line with the literature (Blanchard and Gaĺı, 2010; Gertler and

Trigari, 2009a). Following Hall and Milgrom (2008), we set the worker bargaining weight
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to b = 0.5 and the unemployment benefit parameter to ϕ = 0.25. Based on the data from

the Job Openings and Labor Turnover Survey (JOLTS), we calibrate the steady-state job

separation rate to δ = 0.10 at the quarterly frequency. We set ρo = 0.03, so that automation

equipment depreciates at an average annual rate of 12 percent, in line with the depreciation

rate of industrial robots used by the International Federation of Robotics (IFR) for estimating

the average life span of robots and for constructing their measure of the operation stocks of

robots. We calibrate the vacancy posting cost κ = 0.1128 such that the flow cost of vacancy

posting is about 1 percent of aggregate output. We set the matching efficiency parameter

to µ = 0.6606 such that the quarterly job filling rate is qv = 0.71 in the steady state, as

calibrated by den Haan et al. (2000).

We assume that the distribution functions F (e) for vacancy creation costs and G(ν) for

automation costs both follow a uniform distribution, such that

F (e) =
e

ē
, G(ν) =

ν

ν̄
. (45)

We calibrate the scale of the automation cost function to ν̄ = 8.57 such that the model

implies a steady-state automation probability of qa = 0.096, or about 38 percent at the

annual frequency, which lies within the range of firm-level estimates. For example, in a

recent study based on the 2019 Annual Business Survey (ABS) of the U.S. Census Bureau,

Acemoglu et al. (2022) report that, in total, 30.4 percent of U.S. workers are employed at

firms using advanced technologies for automating tasks. Exposure to automation is higher in

manufacturing, with 52 percent of manufacturing workers employed at firms using advanced

technologies for automation. Outside of manufacturing, the exposure to automation is lower,

at 28.3 percent. The model-implied automation probability in the steady state (38 percent),

which corresponds to the measured automation exposure, lies within this empirical range.

Furthermore, we follow Leduc and Liu (2024) and calibrate the scale parameter of the vacancy

creation cost function to ē = 3.07, set the flow cost of automation to κa = 0.98, and calibrate

the output elasticity with respect to automation equipment to γa = 0.32.

Based on Firooz et al. (2025), we calibrate the weight of worker-produced intermediate

goods in final goods production to αn = 0.39 and the elasticity of substitution between

intermediate goods produced by automation equipment and by workers to σ = 2.03.17

We normalize the average level of TFP to Z̄ = 1. We also normalize the supply of skilled

workers to s̄ = 0.3, matching the median ratio of employment of college-educated workers to

aggregate employment in the period from 2000 to 2019. We calibrate the average level of the

automation-specific productivity to ζ = 3.4422 such that the model implies a steady-state

17Firooz et al. (2025) calibrate these two parameters to target the 2016 level of robot density in the U.S.

manufacturing sector of 0.02 and the cumulative increase of robot density of about 300 percent from 2002

to 2016 while the relative price of robots declined by 40 percent during the same period.
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skill premium of 55 percent, in line with the observed ratio of median weekly earnings of

workers with a bachelor’s degree or higher to those with some college or associate degrees

reported by the Bureau of Labor Statistics.

We set the average iceberg trade cost to τ̄ = 1.74, which lies within the range of empirical

estimates as surveyed by Anderson and van Wincoop (2004). We calibrate the weight on

domestically produced intermediate goods in the aggregation technology for final goods to

αd = 0.85, reflecting home bias in goods consumption. We calibrate the elasticity of sub-

stitution between domestic goods and imported goods to θ = 0.8, which is in line with the

empirical literature. For example, Boehm et al. (2023) find that the elasticity of trade flows

to exogenous changes in tariffs is about -0.76 in the short run and about -2 in the long run

(see also di Giovanni et al., 2023; Corsetti et al., 2008). Since our model focuses on the

short-run fluctuations induced by trade uncertainty, our calibration of θ = 0.8 is consistent

with the short-run elasticity estimated by Boehm et al. (2023). We normalize the export

demand shifter to X∗
t = 1, which implies a steady-state export share of about 10.8 percent

of GDP.

We calibrate the disutility of working to χ = 0.3741 such that the model implies a steady-

state unemployment rate of 5.9 percent, matching the average unemployment rate from 2000

to 2019.

For the parameters in the TFP shock processes, we set ρz = 0.95 and σz = 0.01, in line

with the real business cycle literature. For the first-moment shock to trading costs, we set

ρτ = 0.99 and στ = 0.00215 based on the estimates of Caldara et al. (2020). The trade

uncertainty shock parameters are also calibrated based on the study of Caldara et al. (2020).

Specifically, we set ρστ = 0.96 and ητ = 0.37.

IV. Macroeconomic effects of trade uncertainty

To study the macroeconomic effects of trade uncertainty, we use our calibrated parameters

and solve the model based on third-order perturbations around the steady-state equilibrium.

We then compute impulse responses to a trade uncertainty shock following the approach

of Fernández-Villaverde et al. (2011).18 To illustrate the model’s mechanism, we perform

several counterfactual exercises.

IV.1. Trade uncertainty in the baseline model. Figure 1 presents the impulse responses

of several key macroeconomic variables following a one-standard-deviation shock to trade

uncertainty. An increase in trade uncertainty reduces imports, redirecting production of

18The impulse responses of a given variable to a trade uncertainty shock are measured by the differences

between the values of that variable in the presence of the shock and its value in the stochastic steady state

(i.e., its ergodic mean).
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Figure 1. Impulse responses to a trade uncertainty shock in the baseline

model

intermediate goods from foreign sources toward domestic producers (i.e., reshoring). This

expenditure-switching effect stimulates automation investment. Trade uncertainty further

boosts automation through a precautionary-savings channel, which lowers the real interest

rate and therefore raises the present value of automation. However, trade uncertainty could

discourage automation through an option-value channel. Under our calibration, the positive

effects from expenditure switching and precautionary savings dominate the option-value

effect, such that trade uncertainty leads to an increase in automation measured by the robot

density.

Increased automation raises labor productivity, stimulating the incentive for creating new

vacancies. However, with our calibration, this job-creating effect is more than offset by the

job-displacing effect of automation, leading to an increase in unemployment of unskilled

workers. Nonetheless, aggregate output and consumption both rise persistently because the

productivity gains stemming from automation outweigh the drags from lowered imports and

domestic production by unskilled workers. The automation-driven productivity gains also

lowers the domestic price level, leading to a real exchange rate depreciation (i.e., an increase

in Qt).

The increased threat of automation also weakens the bargaining power of unskilled workers

in wage negotiations, lowering their wages. In contrast, skilled workers are a complementary
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Figure 2. Impulse responses to a trade uncertainty shock: Constant automa-

tion probability vs. the baseline model.

input with automation equipment. Thus, automation raises demand for skilled workers,

pushing up the skilled wage while depressing the unskilled wage, resulting in a higher skill

premium.

IV.2. Transmission channels. The model embeds two important transmission channels

for trade uncertainty shocks: an automation channel and a trade channel.

IV.2.1. The automation channel. To examine the importance of the automation channel, we

consider a counterfactual version of the model with a constant automation probability. In

particular, we keep the automation probability qat fixed at the steady-state level.

Figure 2 shows the impulse responses to a trade uncertainty shock in the counterfactual

model with a constant automation probability (red dashed line) compared to those in the

baseline model (blue solid line). Absent adjustments in the automation probability, the

effects of trade uncertainty on the macroeconomic variables are more muted than in the

baseline model. Furthermore, in the counterfactual model, trade uncertainty reduces unem-

ployment because it creates an expenditure switching effect, boosting demand for domestic

goods. Since firms cannot adjust automation investment, they can meet the increased de-

mand for domestic goods only by raising domestic employment. Thus, absent the automation
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Figure 3. Impulse responses to a trade uncertainty shock: Higher openness

vs. the baseline model.

channel, the labor-market effects of reshoring (driven by trade uncertainty) mimic a reversal

of the “China shock.”

IV.2.2. Trade openness. Exposure to trade (or equivalently, offshoring) is also important for

the transmission of trade uncertainty shocks. To illustrate this, we consider a counterfactual

with high openness to international trade. Specifically, we lower the home-bias parameter

αd to 0.6 from the baseline value of 0.85.

Figure 3 shows the impulse responses in this counterfactual (red dashed line) versus those

in the baseline model (blue solid line). When the economy is more open to international

trade, the effects of trade uncertainty are amplified. Trade uncertainty leads to larger declines

in imports and larger increases in robot density, unemployment, productivity, consumption,

and the skill premium.

IV.3. Robustness. The main results are robust to several variations of our model.

IV.3.1. Capital flows. Our model features a closed capital account such that the interest

rate is endogenous. As an extension, we consider an alternative framework where interna-

tional capital flows are allowed. In particular, the small open economy can borrow from

or lend to the rest of the world at an exogenous world interest rate r∗t (in units of foreign

consumption goods). To capture the frictions in capital markets, we assume that changes



RESHORING, AUTOMATION, AND LABOR MARKETS UNDER TRADE UNCERTAINTY 22

Figure 4. Impulse responses to a trade uncertainty shock in the model with

capital flows.

in capital flows are subject to an adjustment cost. Since the real interest rate is fixed, the

precautionary-savings channel is absent in this alternative model, and therefore, trade un-

certainty boosts automation through the expenditure-switching channel only. Appendix B

presents this alternative framework and equilibrium conditions.

Figure 4 shows the impulse responses to a trade uncertainty shock in the model with

capital flows.19 Increased trade uncertainty reduces imports and capital outflows, triggering

an expenditure-switching effect that boosts automation. The resulting increase in robot

density raises the unemployment of unskilled workers. Increased automation also boosts

labor productivity, aggregate output, and the skill premium. This in turn leads to a rise

in consumption and a real exchange rate depreciation. Overall, these impulse responses

are qualitatively and quantitatively similar to those obtained in our baseline model under

financial autarky.

IV.3.2. Imported intermediate inputs for automated production. In our baseline model, a

firm that operates the automation technology uses robots and skilled workers for production.

However, in practice, firms’ automation technology may also rely on imported intermediate

goods (e.g., robot parts or other automation equipment). To incorporate this channel, Ap-

pendix C considers a generalization of the baseline model to include imported intermediate

19We calibrate the bond adjustment cost parameter to ψ = 2 for solving the model.
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Figure 5. Impulse responses to a trade uncertainty shock in the model with

imported equipment for automated production

goods for automating firms. In particular, we assume that imported intermediates are a

complement input to robots in the automation technology.

Figure 5 plots the impulse responses to a trade uncertainty shock in this model. The

impulse responses are similar to those in our baseline model. Trade uncertainty reduces

imports and raises demand for domestic goods through an expenditure-switching effect.

Since employment is a long-term relation, firms reduce hiring as the option value of waiting

increases. To meet the increased demand for domestic intermediate goods, firms rely more

on automation, raising the demand for robots. All else being equal, an increase in trade

uncertainty would lower demand for imported equipment in the automation sector. However,

the increased reliance on robots for producing domestic intermediate goods raises the demand

for imported equipment since imported intermediate inputs complement robots. Overall,

trade uncertainty reduces imported goods and domestic employment, and raises robot density

and imported equipment for automated production. As in the baseline model, the increased

automation also boosts labor productivity and the skill premium.

IV.3.3. Persistence of trade uncertainty. Trade uncertainty may be more persistent than

past data suggest for the calibration of the baseline model. Trade tensions, geopolitical con-

flicts, and climate change risks may be part of a new normal with persistently elevated trade
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Figure 6. Impulse responses to a trade uncertainty shock: More persistent

trade uncertainty shock vs. the baseline model.

uncertainty. We consider a counterfactual case with a higher persistence of the trade uncer-

tainty shock by raising the persistence parameter ρστ from 0.96 in the baseline calibration

to 0.99, proxying for a quasi-permanent regime with higher trade uncertainty.

Figure 6 shows the impulse responses in this counterfactual case (red dashed line) versus

those in the baseline model (blue solid line). Near-permanent trade uncertainty generates a

stronger expenditure-switching effect, resulting in greater reshoring (i.e., larger declines in

imports) and a larger increase in automation investment. The stronger expenditure-switching

effect in this case is such that it raises domestic employment of unskilled workers in the short

run, although the job displacing effects of automation dominates over time, leading to a rise

in unemployment. The larger boom in automation investment also results in greater gains in

productivity and larger increases in the skill premium and consumption than in the baseline

model.

IV.3.4. The role of wage rigidity. In the baseline model, we assume that real wages are

flexible. We now examine the robustness of the results to wage stickiness. Following the

literature (Hall, 2005a; Shimer, 2005), we assume that the real wage of unskilled workers

is a geometrically weighted average of the Nash bargaining wage and the wage rate in the

previous period, such that

wnt = wγw
n,t−1(w

N
nt)

1−γw , (46)
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Figure 7. Impulse responses to a trade uncertainty shock: Sticky wages vs.

the baseline model.

where γw ∈ (0, 1) represents the degree of real wage rigidity. We follow Leduc and Liu (2016)

and set the real wage rigidity parameter to γw = 0.8, which is in line with Gertler and Trigari

(2009b), who calibrate the probability of nonrenegotiation of wage contracts at 0.89.

Figure 7 compares the impulse responses from the case with wage rigidities (red dashed

line) to those in the baseline case with flexible wages (blue solid line). As in the standard

DMP framework, wage rigidities amplify the increase in unemployment following the trade

uncertainty shock, reflecting the Shimer volatility puzzle (Shimer, 2005; Hall, 2005b). The

impulse responses of the other macroeconomic variables are similar to those in the baseline

model.

IV.3.5. Delivery lags. In the baseline model, we assume that importing intermediate inputs

for final goods production requires a delivery lag. Appendix D.1 presents a version of the

model without delivery lags. The impulse responses to trade uncertainty in the model

without delivery lags are similar to those obtained in the baseline model. In particular,

trade uncertainty reduces imports, and increases unemployment and robot density. We note

that trade uncertainty in this version of the model still activates the expenditure-switching

channel because of the curvature in the import demand schedule.
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IV.3.6. Tariff uncertainty. Our benchmark model includes iceberg trade costs. Appen-

dix D.2 presents a model with tariffs on imported intermediate goods, instead of iceberg

costs. We show that the effects of a second-moment shock to tariffs are similar to those

of a second-moment shock to the iceberg costs, although the magnitude of the responses is

smaller.

IV.3.7. Other shocks. Appendix D.3 presents the macroeconomic effects of other shocks, in-

cluding first-moment shocks to trade costs and both first- and second-moment shocks to TFP.

The impulse responses to these shocks are quite different from those to trade uncertainty.

IV.4. Welfare consequences of automation. The labor search frictions in our model lead

to a congestion externality as in the standard DMP model, implying that the competitive

equilibrium allocations are not necessarily Pareto optimal. More importantly, fluctuations in

the automation probability lead to endogenous fluctuations in the workers’ relative bargain-

ing power in wage negotiations (Leduc and Liu, 2024). Thus, even if the Hosios condition

holds (i.e., the bargaining weight b is equal to the elasticity of the matching function α,

which is true under our calibration), endogenous variations in the worker bargaining power

driven by fluctuations in automation could push the equilibrium allocations away from the

social optimum.

To examine the welfare consequences of endogenous automation, we compute the wel-

fare gains of moving from our baseline model to a counterfactual economy with a con-

stant automation probability (i.e., the counterfactual model that we have examined in Sec-

tion IV.2.1). Under our calibrated parameters, allowing automation to fluctuate (as in our

baseline model) incurs a modest welfare loss of about 0.75 percent of consumption equiv-

alent.20 This result is driven by the fact that automation amplifies macroeconomic fluctu-

ations as shown in Figure 2 and thus reduces the welfare of the risk-averse representative

household.21

20The welfare gain (or loss) of keeping the automation probability constant relative to the baseline econ-

omy is measured by a constant ∆ such that

Vt =

∞∑
t=0

βt
[
log(C̃t(1 + ∆))− χÑt

]
=

log(1 + ∆)

1− β
+ Ṽt, (47)

where Vt and Ṽt denote, respectively, the welfare in the baseline economy and the counterfactual and C̃t and

Ñt denote the consumption and employment in the counterfactual.
21Our framework can be extended to study the welfare implications of tax policies in a model with

automation and labor search frictions, which is an important subject for future research.
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V. Empirical Evidence

Our theoretical model predicts that trade uncertainty can stimulate automation invest-

ment and reduce imported intermediate goods. The increased automation driven by trade

uncertainty in turn raises labor productivity, value added, and the skill premium and re-

duces domestic employment. We now present some empirical evidence supporting the model

predictions.

V.1. Data. We measure trade uncertainty using the U.S. TPU index constructed by Caldara

et al. (2020), which is based on the frequency of articles in several major U.S. newspapers

that discuss economic policy uncertainty and contain one or more phrases related to trade

policy (such as “import tariffs,” “import barriers,” “WTO,” “trade policy,” and “trade

agreement”). The monthly TPU index is available starting from 1960.22

We measure automation using robot density in U.S. industries. Specifically, we define

robot density in industry j and year t (Robotjt) as the operational stock of industrial robots

per thousand employees. We obtain data on industrial robots for each two-digit ISIC industry

from the International Federation of Robotics (IFR). We obtain employment data for three-

digit North American Industry Classification System (NAICS 2017) industries from the

Bureau of Labor Statistics (BLS) and cross-walk these industries to ISIC codes. The matched

sample contains 14 industries (at the ISIC two-digit level) for the years 2004 to 2022.

To help explore the differential effects of trade uncertainty across industries with different

exposure to offshoring, we construct a measure of industry-level offshoring exposure using

the initial share of imported intermediate goods in gross output (i.e., in the beginning year

of our sample) for two-digit ISIC industries. We obtain data on the gross imports of inter-

mediate products from OECD Trade in Value-Added, and on gross output from the Bureau

of Economic Analysis (BEA). For each industry-year pair, we also use the import-weighted

average of tariffs that the U.S. imposes on its imports from the World Integrated Trade

Solution (WITS). The annual sample of imports covers 14 two-digit ISIC industries for the

years from 1997 to 2020.

We measure labor productivity for a two-digit ISIC industry by the ratio of real value

added to total employment in that industry, with value-added data sourced from the BEA.

We construct a measure of the skill premium using data from the Current Population Survey

(CPS). In particular, the skill premium is measured by the earnings per hour of skilled

workers (i.e., with a college degree or above) divided by those of unskilled workers (with a

high school degree). The annual sample covers the period from 1997 to 2022.

22Caldara et al. (2020) also develop a firm-level measure of TPU and another aggregate measure of TPU

based on a stochastic volatility model for U.S. import tariffs.
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Table 2. Summary Statistics

Mean Count SD Min Max IQR

log Robot density -.222 258 2.906 -7.079 5.027 4.341

log TPU×
Initial share of intermediate imports .428 390 .373 .002 1.977 .275

log Share of intermediate imports -2.414 360 1.514 -7.695 -.445 1.049

log Labor Productivity -1.957 364 .999 -3.734 .823 1.358

log Employment 6.778 364 .998 4.168 8.572 1.357

log Real Value-Added 4.947 390 .851 3.211 6.839 1.199

log Skill premium .464 390 .105 .192 .768 .157

log(1+Tariff) .018 364 .022 0 .114 .014

Note: The table shows the summary statistics of the variables used in the regressions.

Robot density is defined as the operation stock of industrial robots per thousand employ-

ees in each industry. The share of intermediate imports is the ratio of imported interme-

diate goods to gross output in each industry. TPU is the trade policy uncertainty index,

which is an aggregate time series constructed by Caldara et al. (2020). Labor productiv-

ity is the ratio of value-added to employment in each industry. Skill premium is the ratio

of hourly earnings of workers with a college degree or above to those with a high school

education. Tariff is the industry-year-specific import-weighted average of tariffs that the

U.S. imposes on its imports. See the text for data sources.

Since we have annual data on industrial robots and imports of intermediate goods, we

aggregate the TPU index from a monthly frequency to an annual frequency by taking the

within-year average.

Table 2 reports the summary statistics of our data. Robot density (in log units) in the data

displays substantial variations across industries and time, with a standard deviation of 2.91,

which is over 10 times its sample mean (in absolute value). The interaction between TPU (in

log units) and the initial share of intermediate imports also exhibits significant variations,

with a standard deviation of about 90 percent of its mean. The share of imported interme-

diate goods (in log units)—our measure of offshoring activity—has more modest variations

across industries and over time, with a standard deviation of about 60 percent of its mean

(in absolute value). The real outcome variables, including labor productivity, employment,

value-added, and the skill premium, are relatively stable, with standard deviations between

15 and 50 percent of their respective means.

V.2. Trade uncertainty, automation, and offshoring. To examine the empirical rela-

tionship between automation and offshoring with trade uncertainty, we consider the following

empirical specification

lnRobotjt = α0 + α1ImpSharej × lnTPUt + α2 ln(1 + Tariffjt) + ηj + θt + εjt, (48)

where ImpSharej is the share of imported intermediate goods in gross output for industry

j at the beginning of our sample (2004), as a proxy for the initial exposure of the industry

to offshoring. The terms ηj and θt denote industry and time fixed effects, respectively, and

εjt denotes the regression residuals. In the regression, we include industry-level tariffs (i.e.,
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Table 3. Trade policy uncertainty, automation, and offshoring

(1) (2)

log(Robot density) log(Import share)

Initial import share × log(TPU) 2.857∗ -0.941∗∗

(1.464) (0.396)

log(1+Tariff) 34.99 -7.344

(59.09) (8.649)

Industry fixed effect ✓ ✓
Time fixed effect ✓ ✓
Observations 241 336

R2 0.923 0.956

Years 2004:2022 1997:2020

No. of industries 14 14

Note: Column (1) reports the estimates of the regression of robot density on

trade uncertainty proxied by the interaction between TPU and initial exposure

to offshoring. Column (2) reports the estimates of the regression of the share

of imported intermediate goods in gross output on trade uncertainty. Both

regressions control for industry and time fixed effects as well as industry-time-

specific tariffs that the U.S. imposes on its imports. Standard errors clustered

at the industry level are shown in parentheses. The levels of statistical signif-

icance are denoted by asterisks: *** for p < 0.01, ** for p < 0.05, and * for

p < 0.1.

ln(1 + Tariffjt)) as an additional control variable to mitigate potential confounding effects

of changes in trade barriers.

The key parameter of interest is α1, which measures the sensitivity of an industry’s robot

density to changes in trade policy uncertainty, depending on the industry’s initial exposure

to offshoring. In what follows, we refer to the interaction between TPU (in log units) and the

import share as “trade uncertainty exposures.” Our theory suggests that an increase in trade

uncertainty should be associated with an increase in robot density, and this response should

be stronger for industries that are more exposed to offshoring. Specifically, the impulse

responses in Figure 3 show that, in a more open economy, trade uncertainty should lead to

a larger increase in robot density. Thus, the theory predicts that α1 > 0.

This prediction is supported by the data, as shown in Table 3 (Column (1)). The table

shows that, after controlling for the industry and time fixed effects as well as tariffs, an

increase in TPU is associated with a larger increase in robot density in industries that are

more exposed to offshoring. This correlation is statistically significant at the 90 percent

confidence level and economically important. A one-standard-deviation increase in trade

uncertainty exposures is associated with an increase in robot density of about 1.07 log points

(2.857× 0.373 ≈ 1.07), which is about a third of the standard deviation of the logarithm of

the robot density (2.91).

Our model also predicts that heightened trade uncertainty reduces offshoring, especially in

industries that are initially more exposed to offshoring (see the impulse response of imports
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Table 4. Trade policy uncertainty, offshoring, and macroeconomic variables

(1) (2) (3) (4)

log(Labor productivity) log(Employment) log(Value Added) log(Skill premium)

Initial import share × log(TPU) 0.876∗∗∗ -0.009 0.867∗∗∗ 0.102

(0.268) (0.215) (0.202) (0.0648)

log(1+Tariff) -0.087 -0.208 -0.295 1.915

(5.528) (9.788) (7.924) (1.696)

Industry fixed effect ✓ ✓ ✓ ✓
Time fixed effect ✓ ✓ ✓ ✓
Observations 364 364 364 364

R2 0.971 0.979 0.944 0.767

Years 1997:2022 1997:2022 1997:2022 1997:2022

No. of industries 14 14 14 14

Note: Columns (1), (2), (3), and (4) report the results of regressing labor productivity, employment, value-added, and skill

premium, respectively, on the interaction between TPU and initial exposure to offshoring. All regressions control for indus-

try and time fixed effects as well as industry-level tariffs imposed by the U.S.. Standard errors clustered at the industry level

are shown in parentheses. The levels of statistical significance are denoted by asterisks: *** for p < 0.01, ** for p < 0.05,

and * for p < 0.1.

to trade uncertainty in Figure 3). This model prediction aligns well with the empirical

evidence. Table 3 (Column (2)) shows that, controlling for industry and time fixed effects as

well as industry tariffs, an increase in TPU is associated with a larger decline in offshoring

for industries that are initially more exposed to importing of intermediate goods.23 The

estimated negative correlation between trade uncertainty and imports of intermediate goods

is also economically meaningful. A one-standard-deviation increase in trade uncertainty

exposures is associated with a reduction in the share of imported intermediate goods of

about 0.35 log points (−0.941 × 0.373 ≈ −0.35), which is almost a quarter of the standard

deviation of the import share.

V.3. Trade uncertainty and other macroeconomic variables. Our model further pre-

dicts that heightened trade policy uncertainty should increase labor productivity, the skill

premium, and value added, while reducing employment (see Figure 1). These model predic-

tions are broadly consistent with the data, as shown in Table 4.

The table shows the same regressions as in equation (48), where we replace the dependent

variable with each of the macroeconomic variables of interest. As shown in the table, an

increase in TPU is associated with a greater increase in labor productivity and value added

in industries more exposed to offshoring in the initial period. These effects are statistically

significant and economically important. In particular, a one-standard-deviation increase in

23We show in the Appendix that TPU has heterogeneous effects on imports from different origin countries.

In particular, Table E.1 shows that an increase in TPU is associated with a large and significant decline in

imports from China, partly reflecting the effects of sharp increases in bilateral trade tensions (beyond that

explained by tariffs) between the United States and China.
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trade uncertainty exposures is associated with an increase in labor productivity of about

0.33 log points (0.876 × 0.373 ≈ 0.33), which is about a third of the standard deviation of

labor productivity. The same increase in trade uncertainty exposures is associated with an

increase in value added of about 0.32 log points (0.867 × 0.373 ≈ 0.32), which is about 38

percent of the standard deviation of value added.

The correlation between TPU and employment and that between TPU and skill premium

are imprecisely estimated, reflecting the noise in the relatively small sample. However, the

sign of the estimated coefficients are in line with our theoretical predictions.

V.4. The automation channel. In our model, the effects of trade uncertainty on em-

ployment, labor productivity, output, and the skill premium work through the automation

channel. Specifically, as shown in Figure 2, the automation channel amplifies the responses

of labor productivity and the skill premium to a trade uncertainty shock. Trade uncertainty

also reduces low-skilled employment in our baseline model, whereas it raises employment in

the counterfactual economy with a constant automation probability.

We now present some empirical evidence that is consistent with our model’s automation

channel. Trade uncertainty can influence macroeconomic variables through multiple chan-

nels. To highlight the automation channel, we follow the two-stage estimation procedure

of Bertrand and Mullainathan (2001). In the first stage, we regress robot density on the

interactions of TPU with initial exposure to offshoring, controlling for industry and time

fixed effects. In the second stage, we regress the variables of interest (labor productivity,

skill premium, etc.) on the predicted robot density from the first-stage regression, con-

trolling for industry tariffs. We interpret the estimated coefficient on the predicted robot

density in the second-stage regression (shown in Table 5) as reflecting the sensitivity of those

macroeconomic variables to trade policy uncertainty through the automation channel.

Table 5 shows that an increase in robot density driven by an increase in trade uncertainty is

associated with a statistically significant increase in labor productivity, value added, and skill

premium. An increase in robot density driven by trade uncertainty also reduces employment,

although it is not statistically significant.

The responses of labor productivity, value added, and the skill premium to trade un-

certainty through the automation channel are economically important. A one-standard-

deviation increase in trade uncertainty exposures is associated with an increase in robot

density of 1.07 log points (as shown in the first-stage regression). Working through this

automation channel, trade uncertainty raises labor productivity by about 30 percent of its

standard deviation (1.07 × 0.279/0.999 ≈ 0.3). Trade uncertainty also raises value added

by about 21 percent, or a quarter of its standard deviation (1.07× 0.2/0.851 ≈ 0.25) and it

increases the skill premium by about 6 percent, which is 58 percent of its standard deviation
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Table 5. Two-stage least squares: Empirical importance of automation

(1) (2) (3) (4)

log(Labor productivity) log(Employment) log(Value Added) log(Skill premium)

Predicted log(Robot density) 0.279∗∗ -0.0799 0.200∗∗ 0.0568∗∗

(0.119) (0.0541) (0.0961) (0.0289)

log(1+Tariff) -13.72 0.411 -13.31 2.493

(10.86) (4.831) (10.60) (4.200)

Industry fixed effect ✓ ✓ ✓ ✓
Time fixed effect ✓ ✓ ✓ ✓
Observations 241 241 241 241

Years 2004:2022 2004:2022 2004:2022 2004:2022

No. of industries 14 14 14 14

Note: This table shows the second-stage regressions using the robot density predicted from the first-stage regression

shown in Column (1) of Table 3 as the regressor. All regressions control for industry and time fixed effects as well as

industry-time-specific tariffs that the U.S. imposes on its imports. Standard errors clustered at the industry level are

shown in parentheses. The levels of statistical significance are denoted by asterisks: *** for p < 0.01, ** for p < 0.05,

and * for p < 0.1.

(1.07×0.057/0.105 ≈ 0.58). These results suggest that the automation channel is empirically

important for the transmission of trade policy uncertainty.

VI. Conclusion

Trade uncertainty has risen in recent years, stemming from risks associated with tariffs,

geopolitical tensions, and climate change. This uncertainty has led to a reconsideration of

the costs and benefits of offshoring to lower production costs.

In this paper, we have examined how automation affects domestic labor markets when

trade uncertainty creates the incentive to reshore production processes from foreign sources

back to the domestic market. In our model, domestic firms can produce intermediate goods

using either a labor-only technology or an automation technology. Through an expenditure-

switching effect, heightened trade uncertainty raises domestic production but not necessarily

domestic employment because automation is a labor-substituting technology. Although au-

tomation raises productivity and thus labor demand, the job-displacing effect dominates

under our calibration. As such, trade uncertainty boosts automation investment while rais-

ing unemployment of unskilled workers. Increased automation also leads to a higher skill

premium.

Our model’s predictions are in line with industry-level empirical evidence. Our evidence

suggests that, in industries more exposed to offshoring, heightened trade uncertainty reduces

offshoring while stimulating automation relative to other industries. Consistent with our

model’s predictions, this translates into higher productivity and pushes up the skill premium

while lowering employment.

We focus on the positive aspects of the interactions between reshoring, automation, em-

ployment, and wages, taking government policy as given. Our model implies that the threat
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of automation (e.g., stemming from trade uncertainty) could weaken the bargaining power

of unskilled workers. Such endogenous variations in workers’ bargaining power can create a

potential source of inefficiency that may call for policy interventions. Studying policy impli-

cations in a theoretical framework like ours is a promising avenue for future research, and it

would complement the recent work of Grossman et al. (2023), who examine optimal policy

in a model with critical production input in the face of global supply chain disruptions.
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di Giovanni, J., Kalemli-Özcan, A. Silva, and M. A. Yildirim (2023): “Pandemic-

Era Inflation Drivers and Global Spillovers,” Tech. rep., National Bureau of Economic

Research.

Dur, A., I. T. Kandilov, and A. Leblebicioglu (2024): “Policy Uncertainty and

Foreign Investment: Heterogeneous Impacts on the Mode of Entry,” Available at SSRN

4789254.

Faber, M. (2020): “Robots and reshoring: Evidence from Mexican labor markets,” Journal

of International Economics, 127, 103384.

Faber, M., K. Kilic, G. Kozliakov, and D. Marin (2023): “Global Value Chains in

a World of Uncertainty and Automation,” Available at SSRN 4661011.

Fajgelbaum, P., P. K. Goldberg, P. J. Kennedy, A. Khandelwal, and

D. Taglioni (2021): “The US-China trade war and global reallocations,” Tech. rep.,

National Bureau of Economic Research Cambridge, MA.

Feng, L., Z. Li, and D. L. Swenson (2017): “Trade policy uncertainty and exports:

Evidence from China’s WTO accession,” Journal of International Economics, 106, 20–36.

Fernández-Villaverde, J., P. Guerrón-Quintana, K. Kuester, and J. Rubio-
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Appendices

This online appendix presents additional results in the paper “Reshoring, Automation, and

Labor Markets under Trade Uncertainty” by Firooz, Leduc, and Liu (2025).

Appendix A. Summary of equilibrium conditions

A search equilibrium is a system of 30 equations for 30 variables summarized in the vector

[rt, Ct, Yt, Yft, Ydt, Qdt, Yat, Ynt, Xt, At, pdt, pft,Qt, pat, pnt,mt, ut, vt, q
u
t , q

v
t , q

a
t , Nt, Ut, ηt,

Je
t , J

v
t , J

a
t , ν

∗
t , wnt, wst] .

We write the equations in the same order as in the dynare code.

(1) Household’s bond Euler equation:

1 = Etβ
Ct

Ct+1

rt, (A.1)

(2) Matching function

mt = µuαt v
1−α
t , (A.2)

(3) Job finding rate

qut =
mt

ut
, (A.3)

(4) Vacancy filling rate

qvt =
mt

vt
, (A.4)

(5) Employment dynamics

Nt = (1− δ)Nt−1 +mt, (A.5)

(6) Number of searching workers

ut = 1− (1− δ)Nt−1, (A.6)

(7) Unemployment

Ut = 1−Nt, (A.7)

(8) Vacancy dynamics

vt = (1− qvt−1)(1− qat )vt−1 + δNt−1 + ηt, (A.8)

(9) Automation dynamics

At = (1− ρo)At−1 + qat (1− qvt−1)vt−1, (A.9)
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(10) Employment value

Je
t = pntZt − wnt + Etβ

Ct

Ct+1

[
δJv

t+1 + (1− δ)Je
t+1

]
, (A.10)

(11) Vacancy value

Jv
t = −κ+ qvt J

e
t + (1− qvt )Etβ

Ct

Ct+1

{
(1− qat+1)J

v
t+1 + qat+1J

a
t+1 −

∫ ν∗t+1

0

νdG(ν)

}
. (A.11)

(12) Automation value

Ja
t = patγaZtζ

γa

(
s̄

At

)1−γa

(1− κa) + (1− ρo)Etβ
Ct

Ct+1

Ja
t+1, (A.12)

(13) Automation threshold

ν∗t = Ja
t − Jv

t , (A.13)

(14) Robot adoption

qat =

(
ν∗t
ν̄

)ηa

, (A.14)

(15) Vacancy creation

ηt =

(
Jv
t

ē

)ηe

, (A.15)

(16) Final goods output

Yt =
[
α

1
θ
d Y

θ−1
θ

dt + (1− αd)
1
θY

θ−1
θ

f,t−1

] θ
θ−1

, (A.16)

(17) Domestic intermediate goods production

Qdt =
[
α

1
σ
n Y

σ−1
σ

nt + (1− αn)
1
σY

σ−1
σ

at

] σ
σ−1

, (A.17)

(18) Domestic intermediate goods feasibility constraint.

Qdt = Ydt + τtXt, (A.18)

(19) Intermediate goods produced by workers

Ynt = ZtNt, (A.19)

(20) Intermediate goods produced by robots

Yat = Zt(ζAt)
γa s̄1−γa , (A.20)

(21) Demand for domestically produced intermediate goods

pdt =

(
αdYt
Ydt

) 1
θ

, (A.21)
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(22) Demand for imported intermediate goods

pft = Etβ
Ct

Ct+1

(
(1− αd)Yt+1

Yft

) 1
θ

(A.22)

(23) Relative price of worker-produced domestic intermediate goods

pnt
pdt

=

(
αnYdt
Ynt

) 1
σ

, (A.23)

(24) Relative price of robot-produced domestic intermediate goods

pat
pdt

=

(
(1− αn)Ydt

Yat

) 1
σ

, (A.24)

(25) Foreign demand for exported intermediate goods

Xt =

(
τtpdt
Qt

)−θ

X∗
t , (A.25)

(26) Balanced trade condition:

τtpdtXt = pftYft, (A.26)

(27) Import price:

pft = τtQt, (A.27)

(28) Resource constraint

Ct + κvt + κaγapatYat + (1− qvt−1)vt−1

∫ ν∗t

0

νdG(ν) +

∫ Jv
t

0

edF (e) = Yt. (A.28)

(29) Nash bargaining wage

b

1− b
(Je

t − Jv
t ) = wnt − ϕ− χCt + Etβ

Ct

Ct+1

(1− qut+1)(1− δ)
b

1− b
(Je

t+1 − Jv
t+1), (A.29)

(30) Skilled wage

wst = (1− γa)patZt

(
ζ

s̄

)γa

. (A.30)
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Appendix B. Capital flows

The baseline economy has a closed capital account, such that the interest rate is en-

dogenous. Now we consider an alternative framework where international capital flows are

allowed.

The small open economy can borrow from or lend to the rest of the world at the exogenous

world interest rate r∗t (in units of foreign consumption goods). Denote by B∗
t the net capital

outflows (i.e., lending to the rest of the world). To capture the frictions in capital markets, we

assume that changes in capital flows are subject to an adjustment cost. In this environment,

the budget constraint for the representative household is given by

Ct+QtB
∗
t +

ψ

2
Qt(B

∗
t −B̄∗)2 = r∗t−1QtB

∗
t−1+wntNt+wsts̄+ϕ(1−Nt)+dt−Tt, ∀t ≥ 0, (B.1)

where Qt denotes the real exchange rate (units of domestic consumption goods per unit of

foreign consumption goods), ψ ≥ 0 is a parameter measuring the size of the bond adjustment

costs, and B̄∗ denotes the steady-state level of foreign lending.

The intertemporal Euler equation is given by

1 + ψ(B∗
t − B̄∗) = EtDt,t+1

Qt+1

Qt

r∗t . (B.2)

The Euler equation is a generalization of the standard uncovered interest parity (UIP) con-

dition. The presence of bond adjustment costs implies an upward-sloping supply curve of

foreign lending: the amount of foreign lending (relative to the steady-state level) increases

with the world interest rate r∗t adjusted for expected real exchange rate depreciation.

In equilibrium, the balance-of-payment condition implies that the current account balance

(i.e., net capital outflows) should be equal to the trade balance (i.e., net exports) plus net

interest payments received from abroad. This balance-of-payments condition is given by

Qt(B
∗
t −B∗

t−1) = τtpdtXt − pftYft + (r∗t − 1)QtB
∗
t−1. (B.3)

The aggregate resource constraint is given by

Ct + τtpdtXt − pftYft = Yt − κvt − κaγapatYat−

(1− qvt−1)vt−1

∫ ν∗t

0

νdG(ν)−
∫ Jv

t

0

edF (e)− ψ

2
Qt(B

∗
t − B̄∗)2, (B.4)

where the left side gives the real GDP, which equals consumption plus net exports.

B.1. Summary of equilibrium conditions. A search equilibrium is a system of 30 equa-

tions for 30 variables summarized in the vector

[Bt, Ct, Yt, Yft, Ydt, Qdt, Yat, Ynt, Xt, At, pdt, pft,Qt, pat, pnt,mt, ut, vt, q
u
t , q

v
t , q

a
t , Nt, Ut, ηt,

Je
t , J

v
t , J

a
t , ν

∗
t , wnt, wst] .
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We write the equations in the same order as in the dynare code.

(1) Household’s bond Euler equation:

1 + ψ(B∗
t − B̄∗) = EtDt,t+1

Qt+1

Qt

r∗t (B.5)

(2) Matching function

mt = µuαt v
1−α
t , (B.6)

(3) Job finding rate

qut =
mt

ut
, (B.7)

(4) Vacancy filling rate

qvt =
mt

vt
, (B.8)

(5) Employment dynamics

Nt = (1− δ)Nt−1 +mt, (B.9)

(6) Number of searching workers

ut = 1− (1− δ)Nt−1, (B.10)

(7) Unemployment

Ut = 1−Nt, (B.11)

(8) Vacancy dynamics

vt = (1− qvt−1)(1− qat )vt−1 + δNt−1 + ηt, (B.12)

(9) Automation dynamics

At = (1− ρo)At−1 + qat (1− qvt−1)vt−1, (B.13)

(10) Employment value

Je
t = pntZt − wnt + Etβ

Ct

Ct+1

[
δJv

t+1 + (1− δ)Je
t+1

]
, (B.14)

(11) Vacancy value

Jv
t = −κ+ qvt J

e
t + (1− qvt )Etβ

Ct

Ct+1

{
(1− qat+1)J

v
t+1 + qat+1J

a
t+1 −

∫ ν∗t+1

0

νdG(ν)

}
. (B.15)

(12) Automation value

Ja
t = patγaZtζ

γa

(
s̄

At

)1−γa

(1− κa) + (1− ρo)Etβ
Ct

Ct+1

Ja
t+1, (B.16)

(13) Automation threshold

ν∗t = Ja
t − Jv

t , (B.17)
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(14) Robot adoption

qat =

(
ν∗t
ν̄

)ηa

, (B.18)

(15) Vacancy creation

ηt =

(
Jv
t

ē

)ηe

, (B.19)

(16) Final goods output

Yt =
[
α

1
θ
d Y

θ−1
θ

dt + (1− αd)
1
θY

θ−1
θ

f,t−1

] θ
θ−1

, (B.20)

(17) Domestic intermediate goods production

Qdt =
[
α

1
σ
n Y

σ−1
σ

nt + (1− αn)
1
σY

σ−1
σ

at

] σ
σ−1

, (B.21)

(18) Domestic intermediate goods feasibility constraint.

Qdt = Ydt + τtXt, (B.22)

(19) Intermediate goods produced by workers

Ynt = ZtNt, (B.23)

(20) Intermediate goods produced by robots

Yat = Zt(ζAt)
γa s̄1−γa , (B.24)

(21) Demand for domestically produced intermediate goods

pdt =

(
αdYt
Ydt

) 1
θ

, (B.25)

(22) Demand for imported intermediate goods

pft = Etβ
Ct

Ct+1

(
(1− αd)Yt+1

Yft

) 1
θ

(B.26)

(23) Relative price of worker-produced domestic intermediate goods

pnt
pdt

=

(
αnYdt
Ynt

) 1
σ

, (B.27)

(24) Relative price of robot-produced domestic intermediate goods

pat
pdt

=

(
(1− αn)Ydt

Yat

) 1
σ

, (B.28)

(25) Foreign demand for exported intermediate goods

Xt =

(
τtpdt
Qt

)−θ

X∗
t , (B.29)
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(26) Balance of payments condition:

Qt(B
∗
t −B∗

t−1) = τtpdtXt − pftYft + (r∗t − 1)QtBt−1 (B.30)

(27) Import price:

pft = τtQt, (B.31)

(28) Resource constraint

Ct + τtpdtXt − pftYft = Yt − κvt − κaγapatYat−

(1− qvt−1)vt−1

∫ ν∗t

0

νdG(ν)−
∫ Jv

t

0

edF (e)− ψ

2
Qt(B

∗
t − B̄∗)2 (B.32)

(29) Nash bargaining wage

b

1− b
(Je

t − Jv
t ) = wnt − ϕ− χCt + Etβ

Ct

Ct+1

(1− qut+1)(1− δ)
b

1− b
(Je

t+1 − Jv
t+1), (B.33)

(30) Skilled wage

wst = (1− γa)patZt

(
ζ

s̄

)γa

. (B.34)



Online Appendix: Reshoring, Automation, and Labor Markets under Trade Uncertainty 8

Appendix C. Imported intermediate inputs for automated production

This section considers a generalization of the baseline model to include imported interme-

diate goods for automating firms.

C.1. Changes relative to the baseline model. Denote by xat the imported input for an

automating firm. The production function for a firm that operates an automation technology

is given by

yat = Zt

(
ζ1−γfx

γf
at

)γa
s1−γa
t , (C.1)

where 1−γa denotes the share of skilled labor and γf denotes the share of imported non-labor

(equipment) input.

The firm takes as given the relative price of imported inputs pft and the real wage rate

wst of skilled workers and chooses xat and st to maximize the profit before paying the robot

operation cost κa. The value of automation is then given by

Ja
t = πa

t (1− κa) + (1− ρo)EtDt,t+1J
a
t+1, (C.2)

where

πa
t ≡ max

xat,st
patZt

(
ζ1−γfx

γf
at

)γa
s1−γa
t − pftxat − wstst = γa(1− γf )pat

Yat
At

,

where we have imposed the market clearing condition that Yat = Atyat.

The aggregate output of all automating firms is given by

Yat = Zt (ζAt)
(1−γf )γa X

γfγa
at s̄1−γa , (C.3)

where Xat = Atxat denotes the aggregate imports of intermediate input used by all automat-

ing firms.

The input demand functions can be written in terms of aggregate variables and they are

given by

pft = γfγapat
Yat
Xat

(C.4)

wst = (1− γa)pat
Yat
s̄
. (C.5)

The trade balance condition in the baseline model needs to be modified accordingly and

it is now given by

τtpdtXt = pft(Yft +Xat). (C.6)

Compared to the baseline model, we have an extra endogenous variable Xat and an extra

equation (C.4). There is an extra parameter γf to be calibrated. We set it to γf = 0.15,

such that the home bias in the automation sector is the same as in the final goods sector.



Online Appendix: Reshoring, Automation, and Labor Markets under Trade Uncertainty 9

C.2. Summary of equilibrium conditions. A search equilibrium is a system of 31 equa-

tions for 31 variables summarized in the vector

[rt, Ct, Yt, Yft, Ydt, Qdt, Yat, Ynt, Xt, At, pdt, pft,Qt, pat, pnt,mt, ut, vt, q
u
t , q

v
t , q

a
t , Nt, Ut, ηt,

Je
t , J

v
t , J

a
t , ν

∗
t , wnt, wst, Xat] .

We write the equations in the same order as in the dynare code.

(1) Household’s bond Euler equation:

1 = Etβ
Ct

Ct+1

rt, (C.7)

(2) Matching function

mt = µuαt v
1−α
t , (C.8)

(3) Job finding rate

qut =
mt

ut
, (C.9)

(4) Vacancy filling rate

qvt =
mt

vt
, (C.10)

(5) Employment dynamics

Nt = (1− δ)Nt−1 +mt, (C.11)

(6) Number of searching workers

ut = 1− (1− δ)Nt−1, (C.12)

(7) Unemployment

Ut = 1−Nt, (C.13)

(8) Vacancy dynamics

vt = (1− qvt−1)(1− qat )vt−1 + δNt−1 + ηt, (C.14)

(9) Automation dynamics

At = (1− ρo)At−1 + qat (1− qvt−1)vt−1, (C.15)

(10) Employment value

Je
t = pntZt − wnt + Etβ

Ct

Ct+1

[
δJv

t+1 + (1− δ)Je
t+1

]
, (C.16)

(11) Vacancy value

Jv
t = −κ+ qvt J

e
t + (1− qvt )Etβ

Ct

Ct+1

{
(1− qat+1)J

v
t+1 + qat+1J

a
t+1 −

∫ ν∗t+1

0

νdG(ν)

}
. (C.17)
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(12) Automation value

Ja
t = γa(1− γf )pat

Yat
At

(1− κa) + (1− ρo)Etβ
Ct

Ct+1

Ja
t+1 (C.18)

(13) Automation threshold

ν∗t = Ja
t − Jv

t , (C.19)

(14) Robot adoption

qat =

(
ν∗t
ν̄

)ηa

, (C.20)

(15) Vacancy creation

ηt =

(
Jv
t

ē

)ηe

, (C.21)

(16) Final goods output

Yt =
[
α

1
θ
d Y

θ−1
θ

dt + (1− αd)
1
θY

θ−1
θ

f,t−1

] θ
θ−1

, (C.22)

(17) Domestic intermediate goods production

Qdt =
[
α

1
σ
n Y

σ−1
σ

nt + (1− αn)
1
σY

σ−1
σ

at

] σ
σ−1

, (C.23)

(18) Domestic intermediate goods feasibility constraint.

Qdt = Ydt + τtXt, (C.24)

(19) Intermediate goods produced by workers

Ynt = ZtNt, (C.25)

(20) Intermediate goods produced by robots

Yat = Zt (ζAt)
(1−γf )γa X

γfγa
at s̄1−γa , (C.26)

(21) Demand for domestically produced intermediate goods

pdt =

(
αdYt
Ydt

) 1
θ

, (C.27)

(22) Demand for imported intermediate goods

pft = Etβ
Ct

Ct+1

(
(1− αd)Yt+1

Yft

) 1
θ

(C.28)

(23) Relative price of worker-produced domestic intermediate goods

pnt
pdt

=

(
αnYdt
Ynt

) 1
σ

, (C.29)
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(24) Relative price of robot-produced domestic intermediate goods

pat
pdt

=

(
(1− αn)Ydt

Yat

) 1
σ

, (C.30)

(25) Foreign demand for exported intermediate goods

Xt =

(
τtpdt
Qt

)−θ

X∗
t , (C.31)

(26) Balanced trade condition:

τtpdtXt = pft(Yft +Xat). (C.32)

(27) Import price:

pft = τtQt, (C.33)

(28) Resource constraint

Ct + κvt + κaγapatYat + (1− qvt−1)vt−1

∫ ν∗t

0

νdG(ν) +

∫ Jv
t

0

edF (e) = Yt. (C.34)

(29) Nash bargaining wage

b

1− b
(Je

t − Jv
t ) = wnt − ϕ− χCt + Etβ

Ct

Ct+1

(1− qut+1)(1− δ)
b

1− b
(Je

t+1 − Jv
t+1), (C.35)

(30) Skilled wage

wst = (1− γa)pat
Yat
s̄

(C.36)

(31) Demand for imported input by automating firms

pft = γfγapat
Yat
Xat

(C.37)
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Figure D.1. Impulse responses to a trade uncertainty shock: No delivery

lags.

Appendix D. Additional model results

D.1. No delivery lags. In the baseline model, we assume that importing intermediate

inputs for final goods production requires a delivery lag. To show that our main results do

not depend on this assumption, we consider a version of the model without delivery lags.

The final goods production function (15) is replaced by

Yt =
[
α

1
θ
d Y

θ−1
θ

dt + (1− αd)
1
θY

θ−1
θ

ft

] θ
θ−1

. (D.1)

The demand for imported intermediate goods in Eq. (22) is replaced by

pft =

(
(1− αd)Yt

Yft

) 1
θ

. (D.2)

The rest of the equilibrium conditions remain the same.

We use the same calibrated parameters to simulate the impulse responses to a trade

uncertainty shock. Figure D.1 shows that the impulse response are qualitatively similar to

those in the baseline model shown in Figure 1., although the magnitude of the responses are

slightly different. For example, compared to the baseline model, trade uncertainty in the

model without delivery lags leads to a smaller expenditure-switching effect. Thus, imports

decline less, unemployment rises more, and robot density increases less.
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D.2. Tariff uncertainty. We consider a version of the model with tariffs on imported

intermediate goods, instead of iceberg transportation costs.

Denote by τt the time-varying tariff rate. Following Caldara et al. (2020), we assume that

the home and the foreign countries impose the same tariff rate.

The relative price of imports in Eq. 16 in the baseline model is replaced by

pft = (1 + τt)Qt. (D.3)

The export demand function (40) in the baseline model is replaced by

Xt =

(
(1 + τt)pdt

Qt

)−θ

X∗
t . (D.4)

The balanced trade condition (44) becomes

(1 + τt)pdtXt = pftYft. (D.5)

Since there is no iceberg cost, exported goods do not incur resource costs, such that the

total demand for domestically produced intermediate goods (Eq. (24) in the baseline model)

is replaced by

Qdt = Ydt +Xt. (D.6)

Figure D.2 shows the impulse responses to a second-moment shock to the tariff rate from

the model presented in Section D.2. The general patterns of these impulse responses are

similar to those in the baseline model with a second-moment shock to the iceberg costs,

although the magnitude of the responses is smaller.

D.3. Other shocks. The effects of trade uncertainty are different from those of a first-

moment shock to trade costs. Figure D.3 shows the impulse responses to a first-moment

trade cost shock. When the trade cost rises, imports fall persistently. The increase in trade

costs worsens the terms of trade, raising the cost of final goods production and resulting

in lower automation and higher unemployment. The decline in automation reduces labor

productivity, further exacerbating the recessionary effects of the shock, leading to persistent

drops in consumption. The decline in automation also reduces the demand for skilled workers,

resulting in a fall in the skill premium.

Figure D.4 shows that, unlike trade uncertainty, TFP uncertainty encourages offshoring,

resulting in an increase in imports. TFP uncertainty has a recessionary effect, raising un-

employment and reducing consumption. Unlike trade uncertainty that boosts automation,

TFP uncertainty lowers to persistent declines in robot density after the initial increases.

Accordingly, labor productivity declines persistently following initial increases.

Figure D.5 shows the impulse responses to a first-moment shock to TFP. An increase

in TFP lowers unemployment and stimulates automation investment, leading to persistent
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Figure D.2. Impulse responses to a second-moment shock to the tariff rate

Figure D.3. Impulse responses to a first-moment trade cost shock.
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Figure D.4. Impulse responses to a TFP uncertainty shock.

increases in productivity and aggregate consumption. The rise in automation also leads to a

higher skill premium. The increase in productivity leads to real exchange rate depreciation

(not shown in the figure), resulting in lower imports.

Appendix E. Additional Empirical Results

Table E.1 shows that TPU has a greater negative effects on the import shares of industries

that are more exposed to offshoring in the three largest trading partners of the United States:

Mexico, Canada, and China. The effects for China are statistically significant at the 99

percent level, possibly reflecting the sharp increases in bilateral trade tensions between the

United States and China since 2016.
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Figure D.5. Impulse responses to a first-moment TFP shock.

Table E.1. Trade policy uncertainty and import shares from different origins

(1) (2) (3) (4)

log(Mexico) log(Canada) log(China) log(Vietnam)

Initial Import Share × log(TPU) -1.039 0.107 -2.453∗∗∗ -3.025

(0.970) (0.244) (0.541) (3.251)

log(1+Tariff) 5.016 -12.51 -4.705 38.30

(4.991) (7.723) (35.71) (62.83)

Industry fixed effect ✓ ✓ ✓ ✓
Time fixed effect ✓ ✓ ✓ ✓
Observations 336 336 336 327

R2 0.972 0.973 0.891 0.813

Years 1997:2020 1997:2020 1997:2020 1997:2020

No. of industries 14 14 14 14

Note: Each column reports the results of regressing the import share from a particular origin

on the interaction between TPU and initial exposure to offshoring. China import share, for

example, measures U.S. intermediate imports from China in a particular industry divided by

gross output in that industry. All regressions control for industry and time fixed effects as well

as industry-time-specific tariffs that the U.S. imposes on its imports. Standard errors clustered

at the industry level are shown in parentheses. The levels of statistical significance are denoted

by asterisks: *** for p < 0.01, ** for p < 0.05, and * for p < 0.1.


	I. Introduction
	II. The model
	II.1. Key features in the model
	II.2. The frictional labor market for unskilled workers
	II.3. The representative household
	II.4. Final goods production
	II.5. Domestic production of intermediate goods
	II.6. The Nash bargaining wage
	II.7. Export demand
	II.8. Government policy and search equilibrium

	III. Parameter calibration
	IV. Macroeconomic effects of trade uncertainty
	IV.1. Trade uncertainty in the baseline model
	IV.2. Transmission channels
	IV.3. Robustness
	IV.4. Welfare consequences of automation

	V. Empirical Evidence
	V.1. Data
	V.2. Trade uncertainty, automation, and offshoring
	V.3. Trade uncertainty and other macroeconomic variables.
	V.4. The automation channel

	VI. Conclusion
	References
	Appendix A. Summary of equilibrium conditions
	Appendix B. Capital flows
	B.1. Summary of equilibrium conditions

	Appendix C. Imported intermediate inputs for automated production
	C.1. Changes relative to the baseline model
	C.2. Summary of equilibrium conditions

	Appendix D. Additional model results
	D.1. No delivery lags
	D.2. Tariff uncertainty
	D.3. Other shocks

	Appendix E. Additional Empirical Results

