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Abstract
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1 Introduction

Information acquisition is paramount in common value auctions: It can make the difference
between submitting a winning or losing bid and between securing a great deal or overbidding.
However, in many settings, buyers cannot access pivotal information about the seller’s good
without her approval. For example, in the context of mergers and acquisitions, the internal
reports of a company for sale are not publicly available. Similarly, in the real estate market,
potential buyers of a house cannot examine its structural integrity without the owner’s permis-
sion. Should the seller grant access to her confidential information? If so, should she grant such
access before or after buyers submit their bids?

In many high-stakes environments, like the sale of a company or a house, the seller grants access
to information via due diligence, i.e., after a price has been agreed upon with the buyer. In
turn, the buyer can use this information to decide whether to execute the transaction or renege
from the purchase.1 While allowing for due diligence is common business practice,2 there is
little theoretical foundation explaining the widespread adoption of this procedure. This paper
fills some of this gap: We provide a revenue-based rationale for the use of due diligence in the
canonical context of common value auctions.

In common value settings, buyers’ information choices are strategic substitutes. The reason is
that information benefits a buyer only if no other buyer has access to the same information. This
creates significant strategic uncertainty if the seller allows buyers to conduct research, i.e., to
acquire information before bidding. In particular, buyers find it optimal to remain uninformed if
they believe that another buyer will conduct research, which may result in conservative bidding
and a low expected revenue for the seller. As a result, if the seller deals conservatively with
strategic uncertainty, we show that she prefers granting no access to information over granting
such access via research.

Allowing only the auction winner to perform due diligence after the price is set avoids these
issues, since buyers are symmetrically uninformed when bidding. However, two novel effects
with opposing implications on the seller’s revenue arise in this case. On the one hand, buyers
may bid more aggressively, as the possibility of conducting due diligence carries option value.
On the other hand, if the auction winner conducts due diligence, the seller’s expected revenue
is lower than the winning offer: The winner closes the deal only if the valuation exceeds his bid.
Our main result shows that the size of the stakes, i.e., the size of the potential gains and losses
from trade, determines which of these two effects dominates. In particular, granting access to
information via due diligence maximizes the seller’s revenue guarantee whenever the stakes are
sufficiently high.

1In mergers and acquisitions, “due diligence” refers to the collection and processing of confidential information
about the target company. Typically, this is done only after indicative bids have been submitted and at least
a “Letter of Intent” outlining the main terms of the deal has been signed. While these terms could technically
be renegotiated ex post, this is usually not done unless there is hard evidence about misrepresentations by the
seller or objective changes in the market environment. This price rigidity can be justified by the softness of the
information acquired by the buyer, which opens the door to renegotiations in bad faith. Our model captures this
by assuming that due diligence can result only in a go or no-go decision, i.e., the price cannot be renegotiated.

2See Gole and Hilger (2009) for an extensive treatment of the role of due diligence in mergers and acquisitions.
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Our model introduces the possibility of information acquisition into an informal common value
auction. Multiple symmetric buyers submit bids to a seller, who subsequently selects the auction
winner. Initially, all agents are symmetrically uninformed about the buyers’ common valuation
of the good for sale, which is distributed according to a regular distribution with positive and
negative realizations net of the seller’s reservation value.3 The seller chooses whether and when
to grant access to confidential information. This access allows the buyers to learn the valuation
at a cost. We assume that this cost is not prohibitively large and that buyers’ information
choices are publicly observed. Whenever trade occurs, the price paid by the auction winner
equals his bid.

To understand the scenarios our model aims to capture, consider the following motivating ex-
ample: An owner-managed firm is up for sale. The current owner runs the business to the best
of her capabilities. Multiple financial investors, such as private equity firms, are interested in
acquiring the firm and believe that they might be able to increase its market value by improving
management practices or the business strategy. This allows for the possibility of gains from
trade. However, if such improvements are negligible, trade is inefficient due to the presence
of transaction costs. To uncover whether and to what extent improvements are possible, the
buyers need access to the firm’s internal documents. The owner understands that the investors
may be able to increase profits. Yet, she does not know whether this is the case or how to do
so. (Otherwise, she could have implemented the improvements herself.)

This motivating example highlights some key features of our model. First, buyers have a com-
mon valuation: Due to their similarity in expertise, they would implement almost identical
strategies to improve the profitability and, therefore, the market value of the firm. Second, the
information about the firm is confidential, i.e., it cannot be accessed or acquired without the
seller’s permission. Finally, while the seller has access to the information, she cannot anticipate
how buyers would react to it.4

Depending on the seller’s choice of the timing of information acquisition, different dynamic
games arise. If the seller does not allow for information acquisition, our model is outcome-
equivalent to a first-price common value auction with symmetrically uninformed buyers. Thus,
the winning bid and the seller’s revenue are equal to the expected valuation of the good in
every equilibrium.5 Alternatively, the seller can allow buyers to become informed before bids
are submitted, an action we call research, or after bids have been submitted and an offer has
been accepted, namely via due diligence. In turn, if the auction winner conducts due diligence,
he can use the information to decide whether to renege from the purchase, in which case the

3Thus, trade can be inefficient in our model. There are several reasons why this can be the case in practice.
In mergers and acquisitions, for instance, transaction and integration costs can be substantial. In the real estate
market, sellers can be sentimentally attached to their property. Furthermore, since real estate is often used as
collateral, the sale of a house can result in the inefficient termination of an advantageous mortgage. More broadly,
in various high-stakes situations – such as government auctions or the sale of subsidiaries by bankruptcy advisors
– the buyers’ use and evaluation of the good for sale may differ significantly from the seller’s.

4This assumption distinguishes our model from informed seller problems. With an informed seller, the timing
of information acquisition could also be used as a signaling device. To isolate the effect of the timing of information
acquisition on equilibrium revenue, we therefore abstract away from such signaling considerations.

5Our solution concept is Perfect Bayesian Equilibrium under a standard "no signaling what you don’t know"
refinement, which we call equilibrium for short.
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seller keeps the good.

Due to the existence of multiple equilibria, how the seller evaluates allowing for research depends
on her attitude toward strategic uncertainty. In the main analysis, we focus on a seller who deals
conservatively with this uncertainty, i.e., who maximizes her worst-case equilibrium revenue.
We show that such a seller always prefers forbidding information acquisition over allowing for
research. To see this, note that information is valuable to a buyer only when no other buyer
conducts research: If two or more buyers become symmetrically informed, they compete away
all their possible gains from trade. Because of this strong strategic externality, there always
exists an equilibrium in which only one buyer conducts research. The resulting information
asymmetry between the buyers leads to conservative bidding due to the winner’s curse and,
therefore, to a seller revenue strictly below the good’s expected value. In other words, granting
access to information before bidding reduces the seller’s revenue guarantee across equilibria.

The above conclusion seems at odds with the seminal linkage principle. This principle, first
shown by Milgrom and Weber (1982), states that the seller increases her expected revenue
by always giving buyers access to her confidential information before bidding. However, this
assumes that all the buyers automatically acquire and process the disclosed information. In
contrast, we consider settings in which the buyers do so only when it is in their best interest,
i.e., when the value of the information exceeds its cost. Since information about the common
valuation benefits a buyer only if all others remain uninformed, this implies that no equilibrium
exists where multiple buyers acquire information with certainty. In turn, the linkage principle
fails: Granting access to information can reduce the seller’s equilibrium revenue.

When the seller allows for due diligence, information acquisition occurs after, rather than before
offers are submitted. Concretely, the auction winner has a choice: He can buy the good sight
unseen or he can conduct due diligence and renege if the valuation is less than his bid. Thus,
the winner trades off the cost of acquiring information against the benefit of avoiding overpaying
for the good. Because this benefit is increasing in his bid, the winner conducts due diligence
if and only if his bid is above some threshold x̂. This decision creates a discontinuity in the
seller’s expected revenue. If the seller chooses a winner who offers x̂ or less, the good is sold
with certainty, and the revenue is equal to the winning bid. Instead, if she chooses a winner
who offers more than x̂, she sells the good only if the valuation is larger than the winning bid,
resulting in an expected revenue smaller than this bid. Thus, the seller might no longer select
the buyer making the highest offer as the winner.

We show that the seller’s worst-case equilibrium outcome under due diligence can be of two
forms. If the information cost is low, all equilibria feature the same winning bid and a winner
who conducts due diligence. The winning bid maximizes the seller’s revenue over the relevant
range, i.e., over all bids such that the winner receives a weakly positive expected payoff. Instead,
if the information cost is high, the seller’s least preferred equilibrium outcome features sure-trade.
In such an equilibrium, the winning bid is equal to x̂, the largest bid that induces the winner
to buy the good sight unseen. This can occur either because x̂ is large enough to maximize
the seller’s revenue over the relevant range, or because multiple equilibrium outcomes exist,
of which the one featuring sure-trade yields the lowest expected revenue. The multiplicity of
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equilibrium outcomes is possible since, to outbid x̂, a buyer needs to submit an offer high
enough to compensate the seller for the revenue losses due to the risk of reneging. Such a
discrete deviation in bids may not be profitable if all buyers already win with a sufficiently high
probability when bidding x̂.

Our main result states that, whenever the stakes are sufficiently high, the seller maximizes
her worst-case equilibrium revenue by allowing for due diligence. Intuitively, in high-stakes
environments, the option value of conducting due diligence is large, so buyers have an incentive
to bid aggressively in equilibrium. At the same time, high stakes also imply that the probability
of the winner reneging on a substantial offer is relatively low, since the valuation is frequently
even larger. Thus, the increase in buyers’ bids when they can conduct due diligence more than
offsets the potential revenue losses due to the winner reneging in high-stakes environments.
Formally, we establish this result in two steps. First, we characterize conditions that are both
necessary and sufficient for due diligence to be optimal. Then, we show that the economic force
behind these conditions is the size of the stakes.

The seller prefers to allow for due diligence if and only if two conditions hold. The first condition
requires that the information cost be low enough so that no sure-trade equilibrium exists. The
second condition ensures that buyers are willing to submit bids that lead to an expected revenue
larger than the good’s expected valuation. This characterization enables us to derive comparative
statics on the seller’s preference for due diligence. In particular, we show that an increase in
the number of buyers, a decrease in the information cost, a scaling up of the buyers’ valuations,
or an increase in the seller’s reservation value, all make the seller more inclined to choose this
timing of information acquisition.

Whether the conditions for the optimality of due diligence are satisfied depends on the size
of the stakes. To show this, we consider the family of mean-preserving scalings of any given
distribution. A mean-preserving scaling alters the stakes while holding fixed both the shape and
mean of the distribution. Within such a family, we obtain a single-crossing result: Due diligence
is preferred if and only if the stakes are sufficiently high.

Returning to our motivating example, our results imply that the seller of a firm should allow
for due diligence whenever she is concerned about strategic uncertainty and the transaction can
lead to large gains and losses. Similarly, our results can also help to explain why sellers often opt
to allow for home inspections after an offer has been accepted, rather than before: Real estate
transactions are not only some of the most important economic decisions of most households,
but also incur high transaction costs, fees, and taxes. Thus, home sales fit our definition of high
stakes. On the other hand, our results also provide an explanation for the lack of information
acquisition in settings with comparatively low stakes, such as online car auctions.

In the Discussion, we analyze how our main predictions change as we vary our modeling as-
sumptions. First, we consider the consequences of changing the seller’s attitude toward strate-
gic uncertainty. Concretely, we allow the seller to not only choose the timing of information
acquisition but also the equilibrium that is selected in the resulting game. Such a seller aims to
maximize her best-case equilibrium revenue. We show that which timing of information acquisi-
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tion is best-case optimal depends on the size of the information cost: Research is preferred when
the cost is low, while for high cost either no-information or due diligence is optimal. We then
consider a variant of our model, where the seller can repeat the informal auction if the initial
winner reneges, and show that such repeated due diligence is preferred to not allowing for infor-
mation acquisition and to allowing for research, whenever the stakes are high enough. Next, we
show that our results continue to hold if buyers observe a noisy signal of the common valuation,
as long as the noise is small relative to the information cost. Finally, we show that the seller’s
preference for due diligence is strengthened if buyers can commit to buy the good sight-unseen.
This is often the case in real-estate markets, where buyers can increase the perceived value of
their offer by waiving their right to an inspection.

Related literature. Since the influential work of Milgrom (1981), information acquisition in
auctions has become a prominent area of economic research. While much of this literature has
focused on how different auction formats shape bidders’ incentives to gather information about
the item for sale, the role of the seller in guiding these information decisions has received less
attention. Highlighting that in many instances the seller holds confidential information critical
to the buyers to revise their valuation, our paper is among few that analyze the seller’s incentives
to provide buyers access to such information.6 In particular, we are the first to explore the timing
of information access, framing the problem as a design choice by the seller to maximize revenue.

So far, the literature on information acquisition in auctions (e.g., Milgrom, 1981; Lee, 1984;
Hausch and L. Li, 1993; Persico, 2000; Shi, 2012; J. Kim and Koh, 2020; K. Kim and Koh, 2022;
Bobkova, 2024; Gleyze and Pernoud, 2024) has mainly focused on investigating the impact of
buyers’ information acquisition before bids are submitted, a procedure we call research.7 Our
approach differs in at least two aspects. First, we allow for due diligence, i.e., the possibility that
buyers can acquire information only after bids are submitted and a winner is selected. Second,
we model buyers’ research decision as an overt, rather than covert, action.8 This assumption is
motivated by the economic applications we wish to capture, namely, those where the information
buyers seek is proprietary to the seller. In these settings, the seller can keep track of how many
buyers decide to access her confidential information and has a strong ex post incentive to disclose
this number to preserve the competitive pressure in the auction.9

Despite its prominent use in practice, due diligence has received little academic attention to date.
To the best of our knowledge, the only theoretical work discussing due diligence is a recent paper
by Daley, Geelen, and Green (2024). From a technical viewpoint, we depart from their work in
how information acquisition is modeled: While we adopt a search-cost framework, they use a
Brownian information revelation process. A more significant distinction lies in the objective of
each paper. Daley, Geelen, and Green’s (2024) primary goal is to provide a detailed equilibrium

6Among the few exceptions, see Lee (1984) and Hausch and L. Li (1993).
7This modeling restriction is not confined to auction theory. More broadly, the literature on information

acquisition in mechanisms has mainly analyzed the cases where agents can acquire information only ex ante, i.e.,
before participating in the mechanism. See, e.g., Bergemann and Välimäki (2002) and Y. Li (2019).

8In this regard, our approach aligns with Milgrom (1981) and Lee (1982). In particular, our analysis of
research generalizes Lee (1982) to a setting with a continuum of valuations and an arbitrary number of buyers.

9Lack of commitment power is not necessary for this disclosure result: As Lee (1984) shows, a seller may
benefit from disclosing the number of informed buyers even if she could commit to remaining silent.
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analysis of the dynamics of due diligence, offering comparative statics on the likelihood and
expected time-to-completion of a deal. In contrast, we provide a revenue-based rationale for
the widespread use of due diligence in common value auctions.10 Due to a shortage of available
structured data, due diligence is also relatively unexplored empirically. Among the few empirical
papers discussing the topic, see Marquardt and Zur (2015) and Wangerin (2019).

The possibility of reneging on an accepted offer, inherent in the due diligence process, links
our work to the literature on optimal return policies in retail markets (Courty and Hao, 2000;
Matthews and Persico, 2007; Inderst and Ottaviani, 2013; Krähmer and Strausz, 2015; Haber-
man and Jagadeesan, 2024). However, our analysis of due diligence differs from this literature
in two important ways. First, while buyers typically learn their valuation for free once the
contract is signed and the good is purchased in return policy models, due diligence entails a
significant cost of information processing in the settings we consider. Second, in return policy
models, sellers directly set contract terms ex ante. Instead, in our model, the price of the good
is determined in equilibrium through an informal auction.

Finally, the idea that information choices can be strategic substitutes when agents’ equilibrium
incentives in a continuation game are considered is not specific to our framework and known
at least since Grossman and Stiglitz (1980). In fact, this finding connects our work to the
large literature on information acquisition in coordination games stemming from Hellwig and
Veldkamp (2009) (see, e.g., Myatt and Wallace, 2012; Colombo, Femminis, and Pavan, 2014;
Herskovic and Ramos, 2020). Our analysis adds to these earlier studies by demonstrating that, in
the context of common value auctions, the seller can adjust the timing of information acquisition
to mitigate the issues originating from the strategic substitutability of information acquisition
and avoid potentially unfavorable equilibrium outcomes.11

Outline. The remainder of the paper is organized as follows. Section 2 describes the model. In
Section 3, we show that the seller prefers granting no access to information over allowing buyers
to conduct research if she is concerned about strategic uncertainty. Section 4 analyzes the due
diligence game and shows when due diligence is the optimal timing of information acquisition.
Finally, in Section 5, we discuss how our predictions change if we allow for trade to be ex ante
inefficient or consider a seller who aims to maximize her best-case equilibrium revenue, and
consider several model extensions. All omitted proofs are in the Appendix.

2 Model

We consider a common value setting where N ≥ 2 symmetric buyers (he) compete for the
purchase of an indivisible good from a seller (she). The buyers, indexed by i ∈ I := {1, ..., N},

10While Daley, Geelen, and Green (2024) state information acquisition and provision costs as the economic
reasons for why due diligence is observed in practice, they do not explain this justification formally. Relatedly,
Hansen (2001) explains why the seller might want to limit the number of bidders in an auction of a company
because of informational externalities, but does not consider the timing of information acquisition. Thus, our
work complements these papers by providing a formal justification that explains not only why due diligence can
be the optimal timing of information acquisition, but also when.

11Relatedly, Liu, Ma, and Veldkamp (2023) show that a data seller can also alleviate the issues stemming
from the strategic substitutability of information acquisition by changing the market structure, in their case by
switching from the direct sale of data to the sale of data subscriptions.
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participate in an informal auction, where they simultaneously submit bids (equivalently, offers)
xi ∈ X := {∅} ∪ R+ to the seller. We denote abstaining from bidding by xi = ∅. A buyer is
inactive if his bid satisfies xi = ∅, and active otherwise. After observing the bids, the seller
selects a winner among the active buyers. If trade occurs, the winner pays his bid. If no buyer
is active, the seller keeps the good and the game is over. Model details are listed below.

Valuation. The buyers share a common valuation for the good, denoted by ṽ. We assume that
ṽ is distributed according to a cumulative distribution function (cdf) F with strictly positive
and continuous density f over the compact support V := [v, v̄] ⊆ R. We normalize the seller’s
reservation value to be equal to 0. Thus, ṽ represents the gains from trade that are available in
the economy.

Information. Initially, neither the buyers nor the seller know the realization v of ṽ. However,
the seller can choose whether and when to grant buyers access to her confidential information.
When they have access, each buyer can process this information at a cost c > 0 and (privately)
learn the realization v. Buyers’ information choices are publicly observed.12 We formalize the
seller’s problem of choosing the optimal timing of information acquisition in Section 2.1.

Preferences. Let 1i
info be the indicator of buyer i’s information choice, i.e., 1i

info = 1 if and
only if buyer i acquires information. All agents are risk-neutral expected utility maximizers with
payoff functions specified as follows. Suppose buyer i ∈ I won the auction with a bid of x ∈ R+.
If trade occurs, the seller’s payoff is Π = x, while the winner’s payoff is ui = v − x − c · 1i

info.
If trade does not occur, the seller’s payoff is Π = 0, while the winner’s payoff is ui = −c · 1i

info.
Finally, all losing bidders j ̸= i always receive a payoff of uj = −c · 1j

info.

Model assumptions. Throughout, we impose the following assumptions on the model’s prim-
itives.

Assumption 1. Gains from trade are uncertain: v < 0 < v̄.

Assumption 2. F is regular, i.e., v 7→ v − 1−F (v)
f(v) is strictly increasing.

Assumption 3. Information costs are not too large: c < c̄ :=
∫ µ

v (µ − v) dF (v).

Assumption 4. Trade is ex ante efficient: µ := EF [ṽ] > 0.

Assumption 1 states that the buyers’ valuation can be negative. Given our normalization of
the seller’s opportunity cost, this assumption captures the fact that trade can be inefficient ex
post. In Section 2.3, we show that the seller would never allow for any kind of information
acquisition if this assumption were not satisfied. Assumption 2 is a standard technical condition
generating some concavity in the seller’s preferences. Assumption 3 guarantees that buyers

12In the applications that motivate our analysis, at least the seller observes how many buyers gained access
to her confidential information. If she can verifiably disclose the number of informed buyers, she wants to do
so unless only one buyer is informed. However, standard unraveling arguments imply that this is equivalent to
perfect transparency. See also footnote 9.
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might benefit from acquiring information, i.e., that information is not prohibitively expensive.13

Finally, Assumption 4 streamlines our exposition as it allows us to focus on the most interesting
parametric case.14

2.1 The Timing of Information Acquisition

Our goal is to understand how the timing of information acquisition affects equilibrium outcomes.
Should the seller grant buyers access to her confidential information? If so, should this access
be granted before or after the bidding phase? Of course, these choices change the timing of the
model and, therefore, induce different games. In the no-information benchmark, buyers do not
have access to the seller’s confidential information. In the research game, the buyers can acquire
information only before bidding. Finally, in the due diligence game, the buyers can acquire
information only after bidding. We describe the details of these games below.

No-information benchmark. The no-information benchmark is outcome-equivalent to a
common value first-price auction with symmetrically informed buyers. The following sequence
of events illustrates the structure of this game (see also Figure 1):

0. Nature draws buyers’ common valuation v ∈ V according to F , but nobody observes it.

1. Bidding phase: Buyers simultaneously submit their bids or abstain.

2. Winner selection phase: The seller selects a winner if at least one buyer is active. Other-
wise, the seller keeps the good and the game ends.

3. Trading phase: Trade occurs between the seller and the winner at a price equal to the
winner’s bid.

ṽ ∼ F Bidding Winner Selection Trading

0 1 2 3

Figure 1: No-information Timeline.

Research game. In the research game, buyers can acquire information before submitting
their bids, an action we call conducting research. The following sequence of events illustrates
the structure of this game (see also Figure 2):

0. Nature draws buyers’ common valuation v ∈ V according to F , but nobody observes it.

1. Research phase: Buyers simultaneously and publicly choose whether to conduct research;
those who conduct research privately observe v.

2. Bidding phase: Buyers simultaneously submit their bids or abstain.
13In particular, as we show in Section 4.1, the threshold c̄ is the lowest information cost such that no buyer

would ever prefer conducting due diligence over buying the good without acquiring information or abstaining.
14As we show in the Discussion, our main results still hold under the complementary assumption µ ≤ 0.
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3. Winner selection phase: The seller selects a winner if at least one buyer is active. Other-
wise, the seller keeps the good and the game ends.

4. Trading phase: Trade occurs between the seller and the winner at a price equal to the
winner’s bid.

ṽ ∼ F Research Bidding Winner Selection Trading

0 1 2 3 4

Figure 2: Research Timeline.

Due diligence game. In the due diligence game, only the auction winner can conduct due
diligence, i.e., information acquisition is allowed only after bids are submitted and a winner is
selected. The following sequence of events illustrates the structure of this game (see also Figure
3):

0. Nature draws buyers’ common valuation v ∈ V according to F , but nobody observes it.

1. Bidding phase: Buyers simultaneously submit their bids or abstain.

2. Winner selection phase: The seller selects a winner if at least one buyer is active. Other-
wise, the seller keeps the good and the game ends.

3. Due diligence phase: The winner chooses whether to conduct due diligence or not.

4. Trading phase: If the winner conducts due diligence, he can choose whether to renege on
his offer, in which case the seller keeps the good, or to execute the transaction. If the
winner does not conduct due diligence, trade occurs immediately. If trade occurs, the
price is equal to the winner’s bid.

ṽ ∼ F Bidding Winner Selection Due Diligence Trading

0 1 2 3 4

Figure 3: Due Diligence Timeline.

2.2 The Seller’s Problem

We adopt Perfect Bayesian Equilibrium (PBE) under a “no signaling what you don’t know”
(NSWDK) refinement as our solution concept.15 This refinement ensures that the buyers and

15See Fudenberg and Tirole (1991) for a formal definition of NSWDK.
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the seller do not change their beliefs about ṽ in response to surprising moves by agents who have
no private information.

We refer to any PBE satisfying NSWDK as an equilibrium. Note that under this refinement,
agents’ equilibrium beliefs about ṽ are pinned down uniquely both on- and off-path at all in-
formation sets where these beliefs influence best responses.16 As a result, when characterizing
equilibria, we do not specify agents’ belief systems and describe only their equilibrium strategies.

We interpret the seller’s task as a design problem in which she must decide whether and when
to allow the buyers to acquire information about ṽ. In our main analysis, we focus on the
case in which the seller deals conservatively with strategic uncertainty, i.e., she evaluates her
options as if the buyers were coordinating on her least preferred equilibrium.17 Formally, for
all τ ∈ {re, dd, no}, let Eτ be the set of equilibria in the research game, due diligence game and
under the benchmark case of no information acquisition, respectively. It can be verified that
these sets are non-empty. The seller’s problem is given by

VΠ := max
τ∈{re,dd,no}

inf
σ∈Eτ

Π(σ), (P)

where Π(σ) denotes the seller’s payoff under the strategy profile σ. We say that the timing of
information acquisition τ∗ is optimal if it solves Problem (P), and that it is strictly optimal if
it is the unique solution.

2.3 Benchmark: No Information

To better understand the trade-offs the seller faces when choosing the timing of information
acquisition, it is useful to first establish a benchmark case in which information acquisition is
not permitted. The following proposition characterizes the unique equilibrium revenue in this
case.

Proposition 0. All equilibria of the no-information benchmark are payoff equivalent and feature
at least two buyers bidding µ. In particular, Π(σ) = µ for all σ ∈ Eno.

Without the possibility of acquiring information, buyers effectively compete for the expected
valuation of the good. Standard Bertrand forces then drive buyers’ expected payoffs to zero,
implying that the seller extracts all the ex ante gains from trade in any equilibrium. Thus,
allowing for information acquisition could not improve the seller’s revenue if Assumption 1 were
not satisfied. (Note that Proposition 0 would still apply in this case.) To see why, consider the

16For any measurable space Z, let δz ∈ ∆(Z) denote the Dirac measure on z ∈ Z. Under NSWDK, an agent’s
equilibrium belief about ṽ always coincides with either F or δv, unless such agent observed the action of an
informed buyer. Note that the only case where this is possible is in the winner selection phase of the research
game if at least one of the buyers conducted research before bidding. However, the seller’s best response in the
research game is to accept the highest bid, irrespective of her belief about ṽ.

17This selection criterion coincides with selecting the equilibrium that maximizes the buyers’ joint payoff and,
in the case of research, with considering only equilibria where the buyers use pure strategies in the research phase.
In Section 5, we discuss the case in which the seller evaluates her choices according to the best-case equilibrium
revenue they may induce.
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maximal expected social surplus trade can generate

S := EF [max{ṽ, 0}] =
∫ v̄

0
v dF (v). (1)

If v ≥ 0, then S = µ. As a result, the seller could already extract the full surplus by letting
the buyers compete for their expected valuation of the good without allowing for information
acquisition.

3 The Research Game

In this section, we analyze the research game, i.e., the setting where buyers can acquire infor-
mation before bidding. The following proposition shows that a seller who is concerned about
strategic uncertainty never wants to allow for research.

Proposition 1. The seller strictly prefers granting no access to information over allowing
buyers to conduct research, i.e.,

inf
σ∈Ere

Π(σ) < µ = inf
σ∈Eno

Π(σ).

We prove Proposition 1 by showing that the research game admits an equilibrium inducing an
expected revenue strictly below µ, i.e., strictly less than what the seller can guarantee by not
allowing for information acquisition. Recall that the research game consists of the research phase
followed by an informal auction. Consider now the strategic situations starting from the bidding
phase. These are well-defined (Bayesian) continuation games for any given set of chosen actions
in the research phase, since the buyers’ information choices are public and their equilibrium
beliefs about ṽ must be equal to the prior F for uninformed buyers and equal to the Dirac
measure δv on the realized valuation v ∈ V for informed buyers. Therefore, we can analyze
the research game using a backward induction approach. First, we characterize the buyers’
equilibrium payoffs in the continuation games starting from the bidding phase. Then, we use
these payoffs to understand buyers’ equilibrium incentives in the research phase.

Consider the continuation game where exactly the buyers in J ⊆ I acquired information in
the research phase, and let ΠJ and UJ

i denote the seller’s and buyer i’s equilibrium payoff if
this continuation game is reached. If J = ∅, i.e., no buyer conducted research, the situation
is strategically equivalent to the no-information benchmark. Thus, the buyers compete à la
Bertrand for the expected value of the good and receive an expected payoff of U∅

i = 0, while
the seller receives a revenue of Π∅ = µ. The interaction also resembles a standard Bertrand
competition game if |J | ≥ 2, i.e., at least two buyers are informed. In this case, the equilibrium
winning bid equals the realized valuation v whenever it is positive, while all buyers abstain
from bidding if v < 0. Hence, the seller extracts the maximum available social surplus, i.e.,
her equilibrium revenue satisfies ΠJ = S. In contrast, buyers do not realize any trade surplus.
Thus, if |J | ≥ 2, buyer i’s overall payoff equals UJ

i = 0 if i /∈ J and UJ
i = −c if i ∈ J , since

information expenditure is sunk at this point.

It remains to analyze the continuation game where only one buyer conducted research, i.e.,
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J = {i} for some i ∈ I. In this case, buyer i can exploit his informational advantage. In
particular, in equilibrium, he shades his bid while all uninformed buyers either abstain or submit
a random bid. The uninformed buyers do not know the exact valuation and, therefore, are
subject to the winner’s curse: Since the informed buyer’s bidding strategy is increasing in the
observed valuation v, any buyer j ̸= i wins with a bid of x ≥ 0 only if v is sufficiently low such
that buyer i offers less than x. As a result, buyer j bids conservatively and never more than the
expected valuation µ, since any higher bid would result in a negative payoff. In turn, buyer i has
no incentive to bid above µ either, since a bid of µ would already win the auction with certainty.
Thus, the winning bid is below µ almost surely, implying that the seller’s expected revenue from
reaching this continuation game, Π{i}, satisfies Π{i} < µ. Furthermore, the uninformed buyers
receive an expected payoff of U

{i}
j = 0, while his informational advantage allows buyer i to

achieve a payoff of U
{i}
i > 0, even net of the information cost.18

To establish Proposition 1, we show that only buyer i becoming informed constitutes an equi-
librium for any i ∈ I. By conducting research, the informed buyer achieves a payoff of U

{i}
i > 0,

while his expected payoff would fall to U∅
i = 0, if he deviated and did not conduct research,

instead. At the same time, no uninformed buyer has an incentive to conduct research: If they
changed their decision, they would receive a payoff of U

{i,j}
j = −c, which is worse than their

expected payoff from staying uninformed U
{i}
j = 0. Intuitively, buyers’ research decisions are

strategic substitutes, since research creates an informational advantage only if no other buyer
becomes informed. Thus, an equilibrium where only one buyer acquires information always ex-
ists.19 As discussed above, the resulting informational asymmetry leads to conservative bidding
due to the winner’s curse, and therefore to a low expected revenue for the seller.

4 The Due Diligence Game

In the due diligence game, the seller grants information access to the winner of the informal
auction. The winner can then conduct due diligence and use the resulting information to decide
whether to renege on his offer. This section analyzes the equilibrium implications of due diligence
and characterizes when allowing for this timing of information acquisition is preferred by the
seller.

4.1 Equilibrium Analysis of Due Diligence

Allowing for due diligence effectively changes the informal auction to one that allocates an option
to buy the good at a strike price equal to the winning bid, instead of allocating the good directly.
Therefore, when choosing which offer to accept, the seller must consider that the auction winner
might renege on his offer ex post after a negative due diligence process. In other words, the
seller must take into account the winner’s incentives during the due diligence phase.

Due diligence phase. Suppose a buyer with bid x ≥ 0 has been chosen as the winner of
the auction. At this stage of the game, the winner faces the following two options: Either (i)

18See the proof of Proposition 1 in the Appendix for detailed derivations of ΠJ and UJ
i .

19Note that this equilibrium exists regardless of how costly research is, as long as Assumption 3 holds. Moreover,
the information cost c affects only the informed buyer’s equilibrium payoff, but not the seller’s revenue.
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purchase the good “sight unseen”, i.e., without conducting due diligence, for an expected payoff
of

W su(x) := µ − x,

or (ii) conduct due diligence for a cost of c > 0, and purchase the good if and only if the realized
valuation v is larger than the bid x. In this case, the expected payoff to the winner is given by

W dd(x) := −c +
∫ v̄

x
(v − x) dF (v).

In equilibrium, the winner conducts due diligence only when it is payoff maximizing. Therefore,
the winner’s continuation value at the beginning of the due diligence phase is given by

W (x) := max
{

W su(x), W dd(x)
}

.

Observe that W (x) is a strictly decreasing function of x ∈ [0, v̄]: Irrespective of whether he
decides to buy the good sight unseen or only after a positive due diligence process, the winner
always strictly prefers to pay a lower price.

For all c > 0, let x̂ = x̂(c) be the (possibly negative) bid making the winner indifferent between
buying the good sight unseen and conducting due diligence, i.e., W su(x̂) = W dd(x̂).20 The
following lemma uses x̂ to characterize the best response of the winner during the due diligence
phase.

Lemma 1. During the due diligence phase, if the winning bid is x ≥ 0, the winner buys the
good sight unseen whenever x < x̂, and conducts due diligence whenever x > x̂.

Figure 4 provides a graphical representation of Lemma 1: When the winning bid is low (x < x̂),
the winner is relatively confident that his ex post payoff conditional on trade, v − x, will turn
out to be positive and therefore decides to buy the good sight unseen to economize on the cost
of conducting due diligence. Conversely, when the winning bid is high (x > x̂), the benefit of
avoiding overpaying for the good more than compensates the winner for the due diligence cost.
As a result, the winner prefers to conduct due diligence over buying the good sight unseen.

Whether the winner finds conducting due diligence optimal depends on the magnitude of the
due diligence cost c. To see this, note that an increase in c leads to a one-to-one decrease in
the payoff of conducting due diligence but does not affect the payoff of buying the good sight
unseen. Therefore, as c increases, the sight-unseen region – i.e., the subset of non-negative bids
inducing the winner to buy the good sight unseen – expands, while the due-diligence region
– i.e., the subset of non-negative bids inducing due diligence – shrinks. Put differently, the

20The threshold bid x̂ = x̂(c) is implicitly defined by the equation∫ x̂

v

(x̂ − v) dF (v) = c. (2)

Note that x̂ = x̂(c) is a well-defined continuously differentiable strictly increasing function of c > 0: The inter-
mediate value theorem guarantees a solution x̂ ∈ (v, ∞) to (2) exists for all c > 0. Its uniqueness follows from
the strict monotonicity of x 7→

∫ x

v
(x − v) dF (v). Finally, the Implicit Function Theorem ensures that c 7→ x̂(c) is

strictly monotone and continuously differentiable.
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x̂ v̄
-c
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W su(x)

W dd(x)

x

W

Figure 4: Winner’s value W (·) = max
{

W su(·), W dd(·)
}

when ṽ ∼ U
(
−1

2 , 3
2

)
and c ≈ 0.14.

threshold bid x̂(c) is strictly increasing in c > 0. This monotonicity also implies that the sight-
unseen region can be empty. This is the case whenever the due diligence cost is so small that
x̂(c) < 0.21 Intuitively, since trade can be ex post inefficient, the winner always finds conducting
due diligence optimal when c is small enough.

We are interested in studying the impact of due diligence on equilibrium outcomes. Of course,
if the information cost c > 0 were so large that W (x̂) ≤ 0, due diligence would produce no
equilibrium effect. In this case, any bid in the due-diligence region leads the winner to experience
a strictly negative expected payoff, so no buyer would rationally submit a bid in this region if he
thinks that it might win the auction. Assumption 3, which characterizes the conditions under
which W (x̂) > 0, rules out exactly this case.22

Winner selection phase. We now investigate the seller’s selection of a winner. Let p(x) be
the equilibrium trade probability if the seller selects a winner whose bid is x ≥ 0. Lemma 1
implies that this probability is given by:23

p(x) =

1 if x ≤ x̂

1 − F (x) otherwise.

For low bids (x ≤ x̂), the winner buys sight unseen, implying that his purchase probability is 1.
For high bids (x > x̂), the winner conducts due diligence, implying that he purchases the good
if and only if the realized valuation v is larger than x.

21From equation (2) in footnote 20, one can verify that x̂(c) → v < 0 as c ↓ 0.
22Note that W (x̂) > 0 is equivalent to x̂ < µ. Thus, Assumption 3 guarantees that the cutoff bid x̂ is lower

than the expected valuation of the good µ.
23Technically, Lemma 1 does not pin down the winner’s behavior when x = x̂. However, to simplify the

exposition, we assume that whenever indifferent between buying the good sight unseen and conducting due
diligence, the winner chooses to buy the good sight unseen. This assumption is innocuous for the equilibrium
analysis. If a continuation game where the winning bid is equal to x̂ is reached, this tie-breaking rule must be
satisfied in equilibrium: Otherwise, the auction winner could strictly benefit from submitting a slightly lower bid.
Moreover, for any equilibrium where this tie-breaking rule is not satisfied in some continuation game that is not
reached on-path, one can find an outcome-equivalent equilibrium that satisfies the tie-breaking rule both on- and
off-path.
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0 x̂(cL) x̄ v̄ x

Π

0 x̂(cH) x̄ v̄ x

Π

Figure 5: The seller’s revenue curve Π(·) when ṽ ∼ U
(
−1

2 , 3
2

)
for two values of c ∈ {cL, cH}

such that cL < cH < c̄.

In equilibrium, the seller anticipates the buyers’ incentives during the due diligence phase. As
a result, the equilibrium revenue to the seller associated with selecting any offer x ≥ 0 as the
winning bid is given by

Π(x) := x · p(x).

Let βi(x⃗) ∈ [0, 1] denote the probability that buyer i is selected as the winner when the buyers’
profile of bids is x⃗ ∈ XN \ {(∅, ....,∅)}, i.e., when at least one buyer is active. Sequential
rationality requires that the seller selects a winner among buyers whose offers maximize her
revenue. Therefore,

Lemma 2. In equilibrium, βi(x⃗) > 0 only if xi ≥ 0 maximizes Π(·) among all active bids in x⃗.

Bidding phase. As Lemma 2 indicates, a buyer’s offer is accepted in equilibrium only if it
maximizes Π(·) among all submitted bids. Hence, to investigate the buyers’ incentives during
the bidding phase, it is useful to first understand the shape of the seller’s revenue curve. If c is
so small that x̂ ≤ 0, then Π(x) = x · [1 − F (x)] for all x ≥ 0. Since F is regular (Assumption 2),
x 7→ x · [1 − F (x)] is single-peaked around a strictly positive maximum point

x̄ := arg max
x≥0

x · [1 − F (x)].

If instead x̂ > 0, then Π(x) = x for all x ≤ x̂, and Π(x) = x · [1 − F (x)] for all x > x̂. In
particular, the discontinuity of Π(·) at x̂ implies that the seller’s revenue curve may admit two
local maximum points, x̂ and x̄, whenever c is not too small.

Figure 5 elucidates this fact by plotting the seller’s revenue curve for the same distribution F

under two distinct values of the due diligence cost. The figure shows that Π(·) can admit both
x̂ and x̄ as local maximum points. It also shows that how the seller ranks these bids depends
on c itself. In particular, since x̂ strictly increases with c, one can have that Π(x̂) > Π(x̄) when
the due diligence cost is large enough.

While the seller evaluates bids according to Π(·), buyers evaluate any bid x ≥ 0 according to
the value of winning with such a bid, W (x), weighted by the associated winning probability,
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x̂ xo
xdd v̄

0
x

Π(x)

x̂ xo
xdd v̄

-c

0
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W (x)

Figure 6: Seller’s revenue Π(·) and Winner’s value W (·) as a function of the winning bid x

when ṽ ∼ U
(
−1

2 , 3
2

)
, c ≈ 0.14, and N = 2. In bold, we highlight offers that can be supported

as winning bids in equilibrium.

which depends on the seller’s winner selection rule β. Since due diligence is costly and reneging
requires conducting due diligence, high bids may lead to a strictly negative payoff for the buyers
if the seller accepts them. Of course, even if such bids result in a high revenue for the seller,
they are not attractive to the buyers, as they prefer abstaining over winning with such a bid.
Thus, the relevant bidding range is

R := {x ≥ 0 : W (x) ≥ 0}.

In the Appendix, Lemma 6 shows that R is a non-trivial compact interval, and that, over this
range, Π(·) can be maximized only at two bids, either x̂ or

xdd := arg max
x∈R

x · [1 − F (x)]. (3)

That is, it holds that
Xmax := arg max

x∈R
Π(x) ⊆ {x̂, xdd}. (4)

Equilibrium characterization. The set Xmax plays an important role in the equilibrium
analysis of due diligence. In particular, any x∗ ∈ Xmax can be supported as an equilibrium
winning bid of the due diligence game: If at least one buyer submits a bid of x∗, it is a best
response for the seller to reject all other bids in R. In turn, this implies that it is optimal for
all other buyers to also bid x∗.

However, bids that do not maximize the seller’s expected revenue can also be supported as
winning bids in equilibrium. To see this, consider the setting with two buyers and a uniformly
distributed valuation ṽ ∼ U

(
−1

2 , 3
2

)
depicted in Figure 6. At the information cost of c ≈ 0.14,

the expected revenue is maximized over the relevant range at xdd. Nevertheless, both buyers
bidding x̂ can be supported as an equilibrium outcome. The reason lies in the discontinuity of
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Π(·) at x̂, which implies that to outbid x̂, a buyer has to offer more than

xo := min{x ≥ 0 : x · [1 − F (x)] = x̂} > x̂.

Winning with a bid of x̂ leads to a payoff that exceeds that of winning with a bid of xo by a
factor of

ρ := W (x̂)
W (xo) . (5)

As long as both buyers win with probability 1
ρ or higher by bidding x̂, they prefer not to outbid

their competitor. Of course, this is only possible if ρ is sufficiently large.

By extending the above logic to more than two buyers, the following proposition characterizes
the seller’s least preferred equilibrium of the due diligence game as a function of the information
cost c > 0.

Proposition 2. There exists a unique information cost threshold c∗ ∈ (0, c̄) such that:

• If c < c∗, the winning bid is xdd and the winner conducts due diligence in every equilibrium.

• If c ≥ c∗, an equilibrium where the winning bid is x̂ and the winner buys the good sight
unseen exists, and no equilibrium leads to a lower revenue than this sure-trade equilibrium.

Moreover, as a function of the number of buyers N , c∗(N) is weakly increasing in N and satisfies
limN↑∞ c∗(N) < c̄.

Whenever the due diligence cost c is sufficiently low, the winning bid is xdd and the winner
conducts due diligence in any equilibrium. Instead, if c is above the threshold c∗, there exists a
sure-trade equilibrium where the winning bid is x̂ and the winner buys the good sight unseen.
Even though the winner does not conduct due diligence in this equilibrium, the possibility of
acquiring information still influences the equilibrium outcome: The resulting winning bid is less
than the expected valuation, i.e., x̂ < µ.

A key step in the proof of Proposition 2 is to show, using regularity, that the ratio ρ, as defined
in (5), is increasing in c. Thus, when c < c∗, x̂ is negative or ρ is small. Therefore, all equilibria
feature a winning bid of xdd. Instead, a large information cost enables the existence of a sure-
trade equilibrium where x̂ is the winning bid – either because ρ is sufficiently large, or because
x̂ ∈ Xmax. Whenever such an equilibrium exists, it is the seller’s least preferred one: Since the
expected revenue is continuous below x̂, no bid in that range can win in equilibrium because of
standard overcutting arguments. Similarly, no equilibrium can feature a winning bid above x̂

that leads to a lower revenue, since then a buyer would rather offer x̂, thus increasing both his
winning probability and his expected payoff conditional on winning.

Proposition 2 also shows that the cost threshold c∗ is weakly increasing in the number of buyers
N . Recall that a sure-trade equilibrium can exist for two reasons: Either the seller’s expected
revenue is maximized at x̂ (x̂ ∈ Xmax), or all buyers are content with bidding x̂ as they all
win with a probability of 1

ρ or higher when they do so.24 Of course, the second scenario is only
24The seller’s expected revenue Π(·), the winner’s expected payoff W (·) and, therefore, also ρ, are independent

of the number of buyers N .
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possible if ρ > N . Thus, as N increases, it becomes harder to sustain a sure-trade equilibrium,
implying that the cost threshold c∗ is weakly increasing in the number of buyers. Nevertheless,
regardless of the number of buyers, a sure-trade equilibrium always exists for sufficiently high
information costs.

Comparative statics. We conclude the equilibrium analysis of due diligence by discussing
the comparative statics in c and N , which are the main parameters of the model. To do so,
for any c > 0, denote by xw(c), Πw(c), and W w(c) the winning bid, the seller’s revenue, and
the winner’s payoff (which coincides with the buyers’ joint payoff) under worst-case equilibrium
selection, respectively.25 Proposition 2 implies that

xw(c) =

xdd(c) if c < c∗

x̂(c) otherwise,

Πw(c) = Π(xw(c)|c), and W w(c) = W (xw(c)|c).26 Note that an increase in the information
cost c weakly decreases the winner’s payoff W (x|c) for any bid x. Thus, the relevant range
R(c) = {x : W (x|c) ≥ 0} shrinks, implying that xdd(c) := arg max

x∈R(c)
x · (1 − F (x)) is non-

increasing in c. Conversely, the highest bid with which the auction winner prefers buying the
good sight unseen, x̂(c), is strictly increasing in c > 0 since higher information costs make due
diligence less attractive. Jointly, these properties imply that the winning bid xw(c) is weakly
decreasing for c < c∗ and strictly increasing otherwise. Furthermore, xw(c) discontinuously
jumps downward at c∗ since

xdd(c∗) > Π(xdd(c∗)|c∗) ≥ Π(x̂(c∗)|c∗) = x̂(c∗).

The comparative statics of Πw(c) mimic those of xw(c) except that there need not be a downward
jump at c∗. How W w(c) changes with c > 0 can also be derived from these observations. In par-
ticular, W w(c) is always weakly decreasing, except at c∗, where it jumps upward discontinuously.
The following corollary summarize this discussion.

Corollary 1. The comparative statics with respect to the information cost c in the seller’s
worst-case equilibrium of the due diligence game are as follows:

• For c ∈ (0, c∗), the winning bid xw(c), the seller’s revenue Πw(c), and the winner’s payoff
W w(c) are weakly decreasing in c;

• For c ∈ (c∗, c̄), the winning bid xw(c) and the seller’s revenue Πw(c) are strictly increasing
25The proof of Proposition 2 shows that the winning bid must be equal to x̂ in the worst-case equilibrium for

almost all c ≥ c∗. The only exception is at the cost parameter c = c1, where it holds that Π(x̂) = Π(xdd). In
this case, there exist equilibria where the winning bid is x̂, xdd, or a mixture of the two, which all result in the
same equilibrium revenue to the seller. To facilitate the exposition of the comparative statics, we proceed with
the analysis by selecting the worst-case equilibrium with a winning bid equal to x̂ even when c = c1.

26With the notation Π(·|c) and W (·|c), we highlight how the equilibrium objects depend on the cost c. In
particular, the winner’s expected payoff W (·) is affected by c not only through the resulting changes in the
winning bid but also directly when due diligence is conducted. Similarly, Π(·) depends on the trade probability
p(·), which in turn depends on the information cost through the cutoff x̂(c). Since we consider a fixed environment
(and therefore, a fixed information cost) in most of the remaining analysis, we typically suppress such dependencies
to simplify notation.
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Figure 7: The winning bid xw(·) (left panel), seller’s revenue Πw(·), and winner’s payoff W w(·)
(right panel) in the seller’s worst-case equilibrium as a function of the information cost c when
ṽ ∼ U (−3, 4) and N = 2.

in c, while the winner’s payoff W w(c) is strictly decreasing in c.

Furthermore,

lim
c↑c∗

xw(c) > xw(c∗), lim
c↑c∗

Πw(c) ≥ Πw(c∗), and lim
c↑c∗

W w(c) < W w(c∗).

Figure 7 provides a graphical representation of Corollary 1 for a uniform distribution of the
valuation. In particular, it shows that xw(·), Πw(·), and W w(·) are all weakly decreasing in c

for c < c∗. However, it also indicates that this region can be split up further: There exists an
information cost threshold č < c∗, such that for information costs c ≤ č, the worst-case winning
bid and revenue for the seller are constant, while the winner’s payoff is strictly decreasing. This
is because, for such parameters, the relevant range R(c) is large enough to contain the global
maximum of the expected revenue curve x̄ > 0. Instead, when c ∈ (č, c∗), bidding x̄ is no longer
individually rational as information is too expensive. Thus, the restriction to the relevant range
is binding, implying that the winner receives an expected payoff of 0, and that the winning bid
and seller’s revenue are strictly decreasing in c.

Finally, since c∗ = c∗(N) is non-decreasing in the number of buyers N (Proposition 2), and N

does not enter the equilibrium objects except through the cost threshold c∗(N), Corollary 1 also
implies that an increase in the number of buyers always (weakly) increases the winning bid and
(weakly) benefits the seller at the expense of the buyers under worst-case equilibrium selection.

4.2 Optimality of Due Diligence

The results from the previous subsection allow us to analyze when due diligence is strictly
optimal. Recall that the seller always prefers not providing any information, which results in an
expected payoff of µ, over allowing the buyers to conduct research. Therefore, due diligence is
strictly optimal if and only if it guarantees an equilibrium revenue strictly larger than µ.
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From Proposition 2, we know that the seller’s worst-case equilibrium can be of only two different
types: Either the winning bid is x̂ and trade occurs with certainty, or the winning bid is xdd

and the winner performs due diligence. If a sure-trade equilibrium exists, due diligence is
not optimal since Π(x̂) = x̂ < µ. From Proposition 2, we know that this equilibrium exists
whenever the information cost is high (c ≥ c∗). Instead, if this cost is small enough (c <

c∗), the winner conducts due diligence in every equilibrium. For due diligence to lead to an
expected revenue larger than µ, it must therefore be the case that maxx≥0 x · [1 − F (x)] > µ.
However, this condition ignores that the buyers are unwilling to win with bids that lead to a
negative expected payoff. In particular, when c < c∗, the seller’s equilibrium revenue is given
by Π(xdd) = maxx∈R x · [1 − F (x)]. Therefore, due diligence is strictly optimal whenever Π(xdd)
exceeds µ and the information cost is low enough. The following proposition summarizes this
reasoning.

Proposition 3. Due diligence is strictly optimal if and only if

(i) c < c∗, and

(ii) maxx∈R x · [1 − F (x)] > µ.

While Proposition 3 provides necessary and sufficient conditions for the optimality of due dili-
gence that depend only on the model’s primitives F , c, and N , it is difficult to understand
the underlying economic reasons from these conditions alone. Therefore, the remainder of this
section aims to clarify the implicit trade-offs. As a first step, the following proposition provides
comparative statics on the optimality of due diligence.

Corollary 2. Suppose due diligence is strictly optimal. Then, the same is true if

• The number of buyers increases, i.e, N ′ > N ;

• The buyers’ information cost decreases, i.e., c′ < c;

• The buyers’ common valuation is scaled up, i.e., ṽ′ = K · ṽ for some K > 1;

• The buyers’ common valuation is shifted to the left, i.e., ṽ′ = ṽ − ω for some ω ∈ (0, µ).

A change in the number of buyers affects only the cost threshold for the existence of the sure-
trade equilibrium outcome, c∗. Since c∗ is increasing in N , condition (i) of Proposition 3 is
easier to satisfy the larger the number of buyers. Similarly, a decrease in the information cost c

makes both conditions in Proposition 3 easier to satisfy. For condition (i), this is obvious. For
condition (ii), recall that a decrease in c expands the relevant range R and therefore (weakly)
increases the expected revenue at xdd. Since the model is invariant to the units in which the
valuations and costs are denominated, scaling up the valuations has the same effect as a decrease
in the cost of information. Finally, a leftward shift in the distribution of the valuation ṽ makes
due diligence (weakly) more attractive compared to trading the good sight unseen to both the
winner and the seller.

Extending on these comparative statics, we can relate the optimality of due diligence to the
size of the stakes, i.e., the size of the potential gains and losses from trade. Specifically, we
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consider changes to the size of the stakes that keep the shape and the mean of the distribution
of valuations unchanged. We call such an operation a mean-preserving scaling.

Definition 1. Fix a random variable X with finite expectation µX . For any constant k > 0, we
say that Y is a mean-preserving k-scaling of X if Y = µX + k · (X − µX).

Our main theorem provides a single-crossing result within any family of mean-preserving scalings.

Theorem 1. For every distribution F and information cost c > 0, there exists a unique k∗ > 0
such that, whenever ṽ is replaced by its mean-preserving k-scaling ṽ′

k := µ + k · (ṽ − µ), the
following holds:

• No-information is strictly optimal if k < k∗;

• Due diligence is strictly optimal if k > k∗.

Intuitively, in high-stakes environments, due diligence is attractive to buyers as it carries a high
option value. Thus, it holds that c < c∗, and the unique equilibrium features due diligence.
At the same time, in high-stakes environments, high bids lead to high expected revenue for the
seller: Even though the winner might renege on high bids, the probability that he does so is not
too large.27 As a result, the upside potential of selling for a high price more than offsets the
seller’s revenue loss due to the winner reneging with positive probability.

A key step in proving Theorem 1 is to show that due diligence is strictly optimal whenever
the stakes, measured as the expected absolute value of the buyers’ valuation EF [|ṽ|], are high
enough. Concretely, in the Appendix, we show that this is the case when the following inequality
holds:

EF [|ṽ|] > µ ·
[
1 + 2 ln

(
v̄

µ

)]
+ 2c. (6)

To gain some intuition for inequality (6), suppose for a moment that information were costless,
i.e., c = 0. Then, condition (i) of Proposition 3 would be satisfied trivially, and the relevant
range R would coincide with all positive bids. Thus, due diligence would be strictly optimal
unless x · [1 − F (x)] ≤ µ for all x ≥ 0. This inequality implies a lower bound on the cdf of the
common valuation: For all x ≥ 0, it would have to be the case that F (x) ≥ max

{
1 − µ

x , 0
}

.
This restricts the thickness of the right tail of the distribution, and implies that due diligence
is preferred unless the expected absolute value of the valuation is small enough, i.e., unless
EF [|ṽ|] ≤ µ ·

[
1 + 2 ln

(
v̄
µ

)]
.28 In the Appendix, we show that this bound has to be replaced by

inequality (6) to incorporate positive information costs.

A mean-preserving upward scaling affects both sides of inequality (6): The expected absolute
valuation E[|ṽ|] and the upper end of the distribution v̄ both increase with the scaling parameter
k. Nevertheless, since v̄ enters logarithmically and EF [|v|] is asymptotically linear in k, inequality

27Specifically, for any fixed bid x > µ, the probability that a buyer reneges after winning with such a bid, i.e.,
that ṽ′

k < x, is decreasing in the scaling parameter k.
28In particular, 1 − F (x) ≤ µ

x
for all x ≥ µ implies that∫ v̄

µ

x dF (x) = µ · (1 − F (µ)) +
∫ v̄

µ

[1 − F (x)] dx ≤ µ ·
[

1 − F (µ) + ln
(

v̄

µ

)]
,

where the equality follows from integration by parts.
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(6) must hold for k arbitrarily high. This shows that a large enough mean-preserving scaling
is sufficient for the optimality of due diligence. The single-crossing result in Theorem 1 then
follows from Corollary 2. In particular, a mean-preserving scaling is a combination of a scaling
and a shift in the buyers’ valuation. Thus, Corollary 2 implies that if due diligence is strictly
optimal under a scaling parameter of k, the same is true under any k′ > k.

Theorem 1 has an important economic implication: In any high-stakes common value setting,
the seller prefers allowing for due diligence over selling the good sight unseen or allowing for
research if she is concerned about strategic uncertainty. Since both real estate transactions and
mergers and acquisitions frequently exhibit high stakes, this provides a possible rationale for
the widespread use of ex post information acquisition in these markets. Moreover, our analysis
shows that when due diligence is strictly optimal, the winner always conducts due diligence.
Thus, our results predict that we should observe due diligence and, possibly, trade failure in
such settings.

5 Discussion

We conclude by discussing how our predictions change if we allow for trade to be ex ante
inefficient and for the seller to evaluate her options as if she could select her preferred equilibrium.
We then show how our results remain valid when considering several model extensions, such as
allowing for repeated informal auctions, for noisy information processing, and for the buyers’
commitment to buy the good sight unseen.

5.1 Negative Expected Gains from Trade

Assumption 4 requires that trade is a-priori efficient, i.e., µ > 0. Even though this assumption
streamlines the analysis, it is not necessary. In fact, our main takeaway is strengthened in the
opposite case: If µ ≤ 0, the seller always finds due diligence weakly optimal, regardless of the
information cost. Moreover, due diligence is strictly optimal if the information cost is small
enough such that buyers might benefit from conducting due diligence. A necessary condition
for this to be the case is that the information cost c is lower than the maximum available social
trade surplus S. While this condition is implied by Assumption 3 when µ > 0, this is no longer
the case when µ < 0. Therefore, we need to assume c < S directly when considering settings
where µ ≤ 0.29

Proposition 4. If Assumptions 3 and 4 are replaced with c < S and µ ≤ 0, respectively, due
diligence is strictly optimal.

When µ ≤ 0, an equilibrium resulting in a revenue of 0 exists in both the no information
benchmark and the research game. If the buyers cannot acquire information, they choose to
abstain, since winning with any positive bid leads to a negative payoff. In the research game,
an equilibrium exists where only one buyer becomes informed and bids 0 whenever he learns
that the valuation is positive, while all remaining buyers abstain. On the contrary, the expected
revenue is strictly positive in all equilibria of the due diligence game as long as due diligence

29If µ = 0, Assumption 3 and c < S are equivalent.
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matters: If c < S, the relevant range R is non-empty, and the unique equilibrium winning bid
is xdd > 0.30 Thus, as Proposition 4 states, due diligence is strictly optimal if µ ≤ 0 and c < S.

5.2 Best-case Selection

Our main analysis focuses on a seller who is concerned about strategic uncertainty and wants
to maximize her worst-case equilibrium payoff. The settings we aim to capture, such as the sale
of a company or house, typically involve buyers who compete against each other frequently in
the purchase of similar assets and a seller who seldom sells such goods.31 Thus, it seems more
plausible that the buyers coordinate on their preferred equilibrium, rather than the seller’s.
Since the buyers’ and the seller’s incentives are not aligned, this provides a motivation for our
assumption that the seller deals conservatively with strategic uncertainty.32,33

For comparison, it is also interesting to ask: What is the optimal timing of information acqui-
sition if the seller evaluates the alternatives using her best-case equilibrium revenue? Toward
answering this question, we analyze the following alternative of the seller’s problem in this
subsection:

max
τ∈{re,dd,no}

(
sup
σ∈Eτ

Π(σ)
)

. (P’)

Problem (P’) is identical to Problem (P), except that the infimum over equilibrium revenues is
replaced by the supremum. The following proposition characterizes the best-case optimal timing
of information acquisition when the information cost is small or large, respectively.34 In this
proposition, we allow trade to be ex ante efficient, as in our main analysis, or ex ante inefficient,
as in Section 5.1 above.

Proposition 5. Suppose Assumptions 1 and 2 hold. Then,

• there exists an information cost threshold c′ ∈ (0, min{c̄, S}) such that research is strictly
best-case optimal whenever c < c′.

Furthermore,

• If µ > 0, there exists a cost threshold c′′ ∈ [c′, S − µ] such that no-information is strictly
best-case optimal whenever c ∈ (c′′, c̄).

• If µ ≤ 0, there exists a cost threshold c′′ ∈ [c′, S) such that due diligence is strictly best-case
30The assumption c < S guarantees that W dd(0) > 0 > W su(0) and therefore, that x̂ < 0. This implies that

the expected revenue function Π(·) has a unique local maximum over the relevant range R at xdd. Thus, the
equilibrium winning bid is pinned down uniquely.

31In mergers and acquisitions, most buyers are institutional investors, who trade companies professionally.
In the housing market, the buyers are mainly private individuals. Nevertheless, when they are in the market
for a house, they typically submit bids on multiple properties before they are successful and leave the market.
Moreover, similar houses in the same area typically attract the same group of potential buyers, leading to repeated
competition between them.

32Our analysis shows that the seller’s least preferred equilibrium coincides with the one that maximizes buyers’
joint payoffs in all the games we study.

33There are several other reasons motivating a conservative approach toward strategic uncertainty. Perhaps
most importantly, no uncontentious theory of equilibrium selection exists to date. Hence, we cannot rule out the
possibility of the seller attaching a high probability to her worst-case equilibrium being played.

34We say that a timing of information acquisition is best-case optimal if it solves Problem (P’) and that it is
strictly best-case optimal if it is the unique solution.
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optimal whenever c ∈ (c′′, S).

Proposition 5 shows a major difference between best-case selection and our main analysis: Re-
search can be optimal. In fact, for any distribution of valuations, this is the case as long as the
information cost c is small enough. In the research game, there always exists an equilibrium in
which all buyers randomize between conducting and not conducting research. As the informa-
tion cost c vanishes, the probability that each buyer conducts research in such an equilibrium
increases to 1. Thus, in the limit as c → 0, at least two buyers become informed almost surely,
implying that the seller extracts the entire available social surplus S in her preferred equilibrium.
On the other hand, in the no-information benchmark and the due diligence game, equilibrium
revenue is bounded away from S.

When information is sufficiently costly, the above conclusion is reversed: For high c, either
no-information or due diligence maximizes the seller’s best-case equilibrium revenue, depending
on whether the expected valuation is positive or negative. When µ > 0 and c > S − µ,
information acquisition is socially inefficient: In that case, the information cost is larger than
the efficiency gains of avoiding trade when the valuation is negative. Accordingly, in such
settings, not allowing for information acquisition is revenue maximizing. Instead, when µ ≤ 0,
not granting information access leads to a revenue of 0, which makes selling the good sight
unseen suboptimal irrespective of the information cost. At the same time, research leads to
a positive revenue only if multiple buyers become informed. When c is large, the probability
of this happening is so small in any equilibrium that the seller is better off allowing for due
diligence rather than research.

A corollary of Proposition 5 is that due diligence is strictly best-case optimal when the buyers’
valuation is shifted far enough to the left. Such a shift can be understood as an increase in the
transaction cost or the seller’s reservation value.

Corollary 3. For every distribution F and information cost c, there exists a nonempty open
interval (ω′, ω′′) ⊆ R+ such that, whenever the buyers’ common valuation is shifted to the left
by ω ∈ (ω′, ω′′), i.e., ṽ is replaced by ṽ′ = ṽ − ω, due diligence is strictly best-case optimal.

Corollary 3 follows from Proposition 5 since a left-shift reduces the maximal available social
trade surplus S, while keeping the information cost c unchanged. Thus, if the distribution of
valuations is shifted far enough to the left such that S approaches c, due diligence must be
preferred.

Proposition 5 might suggest that µ ≤ 0 is necessary for the best-case optimality of due diligence.
However, this is not case: As Figure 8 shows, due diligence can be best-case optimal for a set of
intermediate cost parameters also when µ > 0. Whether this is the case depends on the shape
of the distribution. In particular, in Appendix C we show that for any c > 0 and µ > 0, one
can find a distribution of valuations F consistent with µ such that the seller prefers to allow for
due diligence, even if she aims to maximize her best-case equilibrium revenue. To understand
this, note that there are two reasons why the seller cannot achieve a revenue equal to the
available social surplus S. First, the final allocation of the good may be inefficient. Second, the
seller cannot extract the entire social trade surplus whenever (there is a positive chance that) a
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Figure 8: Seller’s best-case equilibrium revenue for c ∈ (0, c̄) when ṽ ∼ U(−3, 4) and N = 2.

buyer acquires information since the buyers have to be at least reimbursed for their information
expenditure. Under due diligence there is at most one buyer incurring the information cost.
Thus, due diligence results in a higher equilibrium revenue than any equilibrium of the research
game whenever the distribution of valuations is such that the allocative inefficiency induced
under due diligence is small.

5.3 Other Model Extensions

In this subsection, we show how our results remain valid when extending our model to allow for
repeated informal auctions, for noisy information processing, and for the buyers’ commitment
to buy the good sight unseen.

Repeated Due Diligence. In the due diligence game, we assume that the seller keeps the
good and the game ends if the auction winner reneges, even though gains from trade may still
be possible.35 Thus, we implicitly assume that the seller can commit not to auction off the good
again after a negative due diligence. To show that this assumption is not driving our results,
we now consider a model of repeated due diligence, where the seller can rerun the due diligence
game with the remaining buyers in case the initial winner does not close the deal.

The analysis of repeated due diligence differs in two ways from our main model. For any given
bid in the initial auction, the seller achieves a weakly higher expected revenue, since she may be
able to sell the good for a positive price even if the first transaction fails. On the other hand,
the buyers now may receive a positive payoff from losing the initial auction and being able to
participate in the second round, which depresses their willingness to bid aggressively in the first
period. While the combination of these two effects makes the revenue comparison of one-shot
and repeated due diligence ambiguous, we show in Appendix D that the main insights from our

35Instead, in the no-information benchmark and the research game, trade always occurs in any equilibrium as
long as it is efficient, i.e., as long as v > 0.

25



analysis continue to hold: The seller strictly prefers repeated due diligence over no-information
and research as long as the stakes are sufficiently high.

Noisy Information Processing. The information technology in our main model is noiseless:
Any two buyers who process information form identical posterior beliefs. In particular, they
both learn the realized valuation v. We now discuss how our results change if we relax this
assumption and instead allow for noisy information processing. In particular, we consider the
case where a buyer who processes information observes a signal si = v + θεi, where εi

i.i.d.∼ Gε is
a noise term whose distribution admits a strictly log-concave density,36 and θ scales the size of
the noise term.

For due diligence, only the distribution of the posterior expected valuation matters, which is
now distributed according to Fθ, which depends on θ and Gε. Our analysis of due diligence
continues to hold for Fθ. Moreover, as the size of the noise θ decreases, Fθ converges uniformly
to F . Therefore, the seller’s worst-case equilibrium revenue also converges to that implied by
Proposition 2 as θ ↓ 0.

Under research, adding relatively little noise may alter the equilibrium predictions. In the
limit, as c ↓ 0, any noise generates large enough information rents such that all buyers opt to
become informed. However, as we show formally in Appendix E, for any fixed information cost,
Proposition 1 remains valid as long as the resulting information rents are smaller than the cost
of information acquisition.

Commitment to Buy Sight Unseen. So far, we considered buyers who do not have com-
mitment power. In particular, in the due diligence game, buyers decide whether to conduct due
diligence only after they have been selected as the winner. However, in some settings, buyers
may be able to commit not to conduct due diligence. This is common, for example, in the
housing market, where buyers often waive their right to a home inspection. Of course, they do
so because it makes the offer more valuable to the seller: If she accepts such an offer, she is
guaranteed to receive a revenue equal to the bid.

It turns out that the buyers’ ability to commit to waiving due diligence benefits the seller at the
expense of the buyers. Thus, due diligence becomes a more attractive option for the seller when
the buyers can commit to buying the good sight unseen. Formally, in Appendix F, we show that
condition (ii) of Proposition 3 alone is necessary and sufficient for due diligence to be strictly
optimal given this alternative model specification. Consequently, the remainder of our baseline
analysis also applies.

36Strict log-concavity of gε := G′
ε ensures that the buyers’ signals are strongly affiliated in the sense of Milgrom

and Weber (1982).
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Appendix

The Appendix is organized as follows. Appendix A contains the omitted proofs from Sections
3 and 4.37 Appendix B considers the case where the expected gains from trade are negative
studied in Section 5.1. Appendix C analyzes the seller’s problem under best-case equilibrium
selection of Section 5.2. The extensions we consider in Section 5.3 are discussed formally in
the Supplementary Appendix. Concretely, Appendix D discusses the possibility of repeated due
diligence, Appendix E pertains to the case of noisy information processing, and in Appendix F
we allow the buyers to commit to buying the good sight unseen in the due diligence game.

A Main Proofs

To simplify notation, throughout this Appendix we change the range of possible bids for the
buyers from X = {∅} ∪ R+ to X = {−1} ∪ R+, i.e., we replace the notation xi = ∅ with
xi = −1, every time we need to specify a buyer’s random strategy during the bidding phase.
This change allows us to define a possibly mixed bidding strategy of a buyer by the cumulative
distribution function Gi : X → [0, 1] it induces. Moreover, it implies that when a buyer abstains
from bidding with strictly positive probability, his cdf Gi displays a probability mass at −1
given by Gi(−1) > 0. In light of this change of notation, we also extend the definitions of the
functions W (·), p(·) and Π(·) to the whole domain X by setting W (−1) := 0, p(−1) := 0 and
Π(−1) := 0.

Proof of Proposition 1

As we describe in Section 3, we prove Proposition 1 by showing that there exists an equilibrium
of the research game where the seller’s payoff is strictly less than µ > 0. To do so, we use a
backward induction approach. As a first step, note that the seller’s equilibrium behavior in the
winner selection phase of the research game is trivial: She always accepts one of the highest
available offers. Given this observation, from now on we can focus on the buyers’ equilibrium
incentives in the previous phases of the game. Specifically, in Part 1 of this proof, we establish
buyers’ equilibrium behavior during the bidding phase taking their research-phase information
choices as given. In Part 2, we use this equilibrium continuation behavior to study agents’
incentives during the research phase and prove the result.

Proof of Proposition 1: Part 1

For every subset J ⊆ I, let ΓJ denote the continuation (bidding) game that follows a research
phase where the buyers doing research are exactly those in J . As shown below, ΓJ always admits
an equilibrium for every J . Given this, denote with UJ

i buyer i’s payoff, and with ΠJ the seller’s
revenue in a particular equilibrium of the continuation game ΓJ , respectively. The following
sequence of lemmas characterizes these payoffs as a function of the cardinality of J .

Lemma 3. Suppose |J | = 0, i.e., J = ∅. Then, in any equilibrium of the continuation game
Γ∅, the payoffs are given by U∅

i = 0 and Π∅ = µ.
37We omit the proof of Lemma 1 and 2 as they follow directly from arguments in the main text.
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Proof of Lemma 3. If no buyer acquired information during the research phase, the continua-
tion game Γ∅ is strategically equivalent to the no-information benchmark. Therefore, invoking
Proposition 0 is sufficient to prove the result.

Lemma 4. Suppose |J | ≥ 2. Then, in any equilibrium of the continuation game ΓJ , the payoffs
are given by UJ

i = 0 if i ̸∈ J , UJ
i = −c if i ∈ J , and ΠJ = S.

Proof of Lemma 4. By standard arguments, if at least two buyers learned the valuation v, none
of them can achieve a positive equilibrium payoff, since one of the other buyers would have a
strictly positive deviation otherwise. If v < 0, the informed buyers must submit a bid with
which they never win. For any v > 0, at least two of the informed buyers must submit a bid
of x∗

i (v) = v, unless an uninformed buyer bids more than v with certainty. However, this is
impossible since if any uninformed buyer did so, at least one of them would receive a strictly
negative payoff, which is impossible in equilibrium since buyers can abstain from bidding. To
see this, fix any of these uninformed buyers, say buyer j ∈ I. At his lowest submitted bid
xj ≥ v > 0, he can only win if ṽ ≤ xj , which implies that he receives a strictly negative payoff
conditional on winning. Since at least one of these uninformed buyers must win with strictly
positive probability when submitting the bid xj , we reached a contradiction. Thus, for any
v > 0, at least two informed buyers bid x∗

i (v) = v.

Therefore, all equilibria of this continuation game must be payoff equivalent to the outcome
induced by the following strategies:

• After observing the valuation v ∈ V , any informed buyer i ∈ J bids x∗
i (v) given by

x∗
i (v) =

v if v ≥ 0,

∅ otherwise;

• Any uninformed buyer i ∈ I \ J abstains from bidding, i.e., x∗
i = ∅.

The above profile of strategies constitutes an equilibrium of ΓJ since no buyer has a strict
incentive to deviate from his equilibrium bid. Moreover, it holds that UJ

i = 0 if i ̸∈ J , UJ
i = −c

if i ∈ J , and ΠJ = S, as required.

Lemma 5. Suppose |J | = 1, i.e., J = {i} for some i ∈ I. Then, in any equilibrium of the
continuation game Γ{i} the payoffs are given by U

{i}
i > 0, U

{i}
j = 0 for j ̸= i, and Π{i} < µ.

Proof of Lemma 5. As a first step, we establish the following claim.

Claim 1. A strategy profile constitutes an equilibrium of Γ{i} if and only if:
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• After observing the valuation v ∈ V , the informed buyer bids x∗
i (v) given by

x∗
i (v) =

max
{
E
[
ṽ
∣∣∣ ṽ < v

]
, 0
}

if v > 0,

∅ if v < 0;

• The maximum bid of the uninformed buyers, maxj ̸=i x∗
i is distributed according to the cdf

G given by

G(x) =


exp

(
−
∫ µ

0
1

v̂(t)−t dt
)

if x = −1,

exp
(
−
∫ µ

x
1

v̂(t)−t dt
)

if x ∈ [0, µ),

1 if x ≥ µ,

where v̂(x) ∈ (0, v̄) is defined as the unique solution to

E
[
ṽ
∣∣∣ ṽ < v̂(x)

]
= x (7)

for all x ∈ (0, µ).

• No uninformed buyer j ̸= i has a strict incentive to deviate from x∗
j .

Proof of Claim 1. Except for the presence of a reservation value, Γ{i} is equivalent to a special
case of the model analyzed by Engelbrecht-Wiggans, Milgrom, and Weber (1983). As a result,
a straightforward extension of the proof of Theorem 1 in Engelbrecht-Wiggans, Milgrom, and
Weber (1983) suffices to prove Claim 1.

Here, for the sake of completeness, we illustrate the sufficiency part of Claim 1. In particular,
we show that an equilibrium exists where buyer i behaves as described in the claim, some buyer
j ̸= i randomizes according to the distribution G, and all buyers m ∈ I \ {i, j} abstain from
bidding with certainty. We need to show that no buyer has a strict incentive to deviate from
this strategy profile given the behavior of the other agents. We start by investigating buyer j’s
equilibrium incentives.

Buyer j: From an inspection of the support of G, we deduce that either buyer j abstains from
bidding (G(−1) > 0), or places an offer xj such that xj ∈ [0, µ]. In what follows, we show that
any bid xj ∈ [0, µ] ∪ {∅} leads buyer j to earn an expected payoff of 0 given the other buyers’
strategies. Instead, bidding any xj > µ would induce a strictly negative payoff. This would
prove that bidding according to G is indeed a best response for j.

Suppose first that buyer j bids xj > µ. Given the other buyers’ strategies, buyer j would win
the auction with certainty with this bid. (The informed buyer never bids above µ.) Therefore,
buyer j’s expected payoff would equal µ − xj < 0 under such a bid, as required.

If buyer j abstains from bidding, i.e., xj = ∅, then his payoff would be 0. Thus, we are left to
show that any bid xj ∈ [0, µ] also leads to an expected payoff of 0. To do so, fix any xj ∈ [0, µ].
Notice that under this bid, buyer j wins the auction if and only if x∗

i (ṽ) < xj .38 Therefore,
38This holds since x∗

i (ṽ) = xj is a probability zero event, which implies that the seller’s winner selection in
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buyer j’s expected payoff conditional on winning is

U∗
j (xj) = E

[
ṽ
∣∣∣x∗

i (ṽ) < xj

]
− xj .

However, by construction it holds that x∗
i (ṽ) < xj if and only if ṽ < v̂(xj), where v̂(x) is defined

according to equation (7). This implies that U∗
j (xj) = 0, as required.

Buyer m ∈ I \{i, j}: Since buyer j’s equilibrium behavior is statistically independent of buyer
i’s equilibrium behavior (and thus of his private information), each buyer m ∈ I \{i, j} faces the
following equilibrium trade-off: Bidding any xm ∈ [0, µ] ∪ {∅} would yield an expected payoff
of 0, while bidding any xm > µ would yield a strictly negative expected payoff. It follows that
abstaining from bidding with probability 1 is a best response for all such buyers, as required.

Buyer i: Finally, consider buyer i’s equilibrium incentives. Suppose first that buyer i observed
a strictly negative valuation when he acquired information during the research phase, i.e., v < 0.
Since buyer j abstains from bidding with strictly positive probability (G(−1) > 0), while each
buyer m ∈ I \ {i, j} abstains from bidding with certainty, any positive bid would induce buyer
i to win the auction with strictly positive probability. However, this would result in a strictly
negative payoff for him. Therefore, it must be that x∗

i (v) = ∅ for v < 0, as required.

We are left to show that x∗
i (v) = max

{
E
[
ṽ
∣∣∣ ṽ < v

]
, 0
}

is a best response for buyer i when v

is strictly positive. To do so, fix v ∈ (0, v̄] arbitrarily. Given the other buyers’ strategies, buyer
i would never bid xi > v or abstain since he can guarantee a positive payoff by bidding xi = 0.
Instead, if buyer i bids xi ∈ [0, v], he gets a payoff equal to

Ui(xi|v) = G(xi) · (v − xi).

Note that ∂
∂xi

U(xi|v) ≥ 0 if and only if v ≥ v̂(xi), whenever xi ∈ [0, v]. In turn, v ≥ v̂(xi) is
equivalent to E

[
ṽ
∣∣∣ ṽ < v

]
≥ xi. Therefore, we conclude that

x∗
i (v) = max

{
E
[
ṽ
∣∣∣ ṽ < v

]
, 0
}

is in fact a best response for buyer i when v is strictly positive, as required. This completes the
proof of equilibrium existence in Claim 1.

To conclude the proof of Lemma 5, fix any equilibrium of Γ{i}. We want to show that U
{i}
i > 0,

U
{i}
j = 0 for j ̸= i, and Π{i} < µ. That all uninformed buyers earn an equilibrium payoff of

0 follows immediately from the informed buyer’s bidding function x∗
i (v) described in Claim 1.

That Π{i} < µ instead follows from the fact that the buyers make offers strictly below µ almost
surely. Finally, to see why buyer i earns a strictly positive overall equilibrium payoff U

{i}
i , notice

that, by definition, his equilibrium strategy v 7→ x∗
i (v) must be better than always abstaining

case of a tie does not matter.
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whenever v < µ, and bidding exactly µ otherwise. Since the uniformed buyers never bid above
µ according to G, this alternative strategy would yield buyer i an overall expected payoff of

Ūi = −c +
∫ v̄

µ
(v − µ) dF (v).

Now, recall from Assumption 3 that c < c̄, where

c̄ :=
∫ µ

v
(µ − v) dF (v).

Thus, Ūi = c̄ − c > 0. Since, U
{i}
i ≥ Ūi, we conclude that U

{i}
i > 0, as required.

Proof of Proposition 1: Part 2

We now discuss the buyers’ equilibrium incentives during the research phase. In particular,
consider the game’s outcome where only buyer i acquires information during the research phase,
i.e., the play reaches the continuation game Γ{i}, with certainty. Given Lemmas 3, 4, and 5,
no buyer has a strict incentive to deviate from this outcome during the research phase. Thus,
only one buyer becoming informed followed by any equilibrium behavior consistent with Claim
1 constitutes an equilibrium of the research game. Observe that Lemma 5 implies that the seller
earns a revenue strictly less than µ in this equilibrium. Therefore,

inf
σ∈Ere

Π(σ) < µ,

as required. This concludes the proof of Proposition 1.

Q.E.D.

Proof of Proposition 2

The proof of Proposition 2 is divided into three parts. In Part 1, we provide a characterization
of the relevant bidding range R = {x ≥ 0 : W (x) ≥ 0}, and prove some useful properties that
the set Xmax defined in equation (4) satisfies. In Part 2, we analyze how Xmax affects the
equilibrium outcomes of the due diligence game. In Part 3, we use the results of Parts 1 and 2
to show how these equilibrium outcomes behave as a function of the buyers’ information cost
parameter c > 0, completing the proof.

Proof of Proposition 2: Part 1

Let x̌ = x̌(c) be the (possibly negative) bid such that W dd(x̌) = 0, and recall the properties of
x̂ = x̂(c) established in footnote 20. In this part of the proof, we state and prove the following
preliminary lemma.

Lemma 6. The following statements hold:

(i) x̌ = x̌(c) is a well-defined continuously differentiable function of c > 0. Moreover, it is
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strictly decreasing in c > 0, and satisfies

lim
c↓0

x̌(c) = v̄ and lim
c↑∞

x̌(c) = −∞.

(ii) x̌(c) > 0 for all c ∈ (0, c̄).

(iii) x̂(c) = x̌(c) if and only if c = c̄. Therefore, x̂(c) < x̌(c) for all c ∈ (0, c̄).

(iv) R = [0, x̌].

(v) Xmax ⊆ {x̂, xdd} ∩ (0, ∞).

Proof of Lemma 6. By definition, x̌ = x̌(c) satisfies the equation

c =
∫ v̄

x̌
(v − x̌) dF (v). (8)

Given this, all the assertions made in statement (i) hold: The intermediate value theorem
guarantees that a solution x̌ ∈ (−∞, v̄) to equation (8) exists for all c > 0. Uniqueness of this
solution follows from the strict monotonicity of x 7→

∫ v̄
x (v − x) dF (v). The Implicit Function

Theorem ensures that x̌(c) is continuously differentiable. Finally, that x̌(c) is strictly decreasing
in c > 0, and satisfies limc↓0 x̌(c) = v̄ and limc↑∞ x̌(c) = −∞ follows immediately from equation
(8).

To prove statement (ii), it is sufficient to show that W dd(0) = S − c > 0 for all c ∈ (0, c̄), where
S is defined by equation (1). Recall that, c̄ =

∫ µ
v (µ − v) dF (v) by definition (see Assumption 3).

Hence, c̄ < S if and only if ∫ µ

0
(−v) dF (v) < µ · (1 − F (µ)).

Assumption 4 ensures that µ > 0, which implies that the above strict inequality holds. Thus,
W dd(0) > 0 for all c ∈ (0, c̄), as required.

To prove statement (iii), note that x̂(c) = µ = x̌(c) whenever c = c̄. This proves the “if ” part.
The “only if ” part and the fact that x̂(c) < x̌(c) for all c ∈ (0, c̄) instead follow from the fact
that c 7→ x̂(c) − x̌(c) is a strictly increasing function of c > 0 (see footnote 20).

Statement (iv) follows from the definition of x̌, and the fact that W (x) ≥ 0 if and only if
W dd(x) ≥ 0.

Finally, Π(·) can admit at most two local maxima over R: One at x̂ if x̂ > 0, and one at xdd if
xdd > x̂. To see why, note that Π(·) is strictly increasing on [0, x̂], and that by regularity of F ,
x 7→ x · [1 − F (x)] is first strictly increasing, then strictly decreasing in x. Since, furthermore,
Π(0) = 0 and Π(x) > 0 for all x ∈ (0, x̌), statement (v) follows.

This concludes the proof of Lemma 6.
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Proof of Proposition 2: Part 2

The following lemma analyzes the equilibrium outcomes of the due diligence game in terms of
the elements of Xmax.

Lemma 7. Consider the due diligence game. The following statements hold:

(a) If Xmax = {x̂} the winning bid is x̂, and the winner buys the good sight unseen in every
equilibrium. Thus, the seller’s equilibrium revenue is unique and given by Π∗ = Π(x̂) = x̂.

(b) If Xmax = {xdd}, multiple equilibria may exist. In particular,

(i) There always exists an equilibrium where the winning bid is xdd and the winner con-
ducts due diligence. In this equilibrium, the seller’s equilibrium revenue is given by
Π∗ = Π(xdd) = xdd · (1 − F (xdd)).

(ii) An equilibrium where the winning bid is x̂ and the winner buys the good sight unseen
exists if and only if x̂ > 0 and W (x̂) ≥ N ·W (x) for all x ̸= x̂ such that Π(x) ≥ Π(x̂).
In any such equilibrium, the seller’s equilibrium revenue is given by Π∗ = Π(x̂) = x̂.

(iii) An equilibrium inducing an outcome where the winning bid is non-random can only
be of a type described in statements (b.i) or (b.ii) above.

(iv) An equilibrium inducing an outcome where the winning bid is random can only exist
if x̂ > 0 and W (x̂) ≥ N · W (x) for all x ≥ 0 such that Π(x) > Π(x̂). In any such
equilibrium, the seller’s expected payoff lies in the range [Π(x̂), Π(xdd)].

(c) Otherwise, i.e., if Xmax = {x̂, xdd}, the seller’s equilibrium revenue is given by Π∗ =
Π(x̂) = Π(xdd) in any equilibrium. Moreover, an equilibrium where the winning bid is x̂

and the winner buys the good sight unseen exists.

Proof of Lemma 7. We first prove part (a).

Proof of (a): Suppose Xmax = {x̂}. Note that statement (v) of Lemma 6 implies that x̂ > 0.
We first show that no bid x > x̂ can win with positive probability. For x /∈ R, this is the case
since buyers can always abstain. To see why x ∈ R is also impossible, note that any buyer strictly
prefers winning the auction with a bid of x̂ to winning with a bid of x > x̂, and that the seller
strictly prefers accepting x̂ over accepting any x ∈ R such that x > x̂. Thus, if some bidder had
a positive probability of winning with a bid of x ∈ R such that x > x̂, he could profitably deviate
to bidding x̂, which would weakly increase his winning probability while strictly increasing his
expected payoff conditional on winning. On the other hand, standard Bertrand arguments show
that no bid x < x̂ can win with positive probability. Thus, the winning bid equals x̂ in every
equilibrium.39 Given this, the fact that the winner buys the good sight unseen follows from
Lemma 1 (see also footnote 23). This completes the proof of part (a).

39In particular, at least two buyers bid exactly x̂ in every equilibrium. Furthermore, all buyers bidding x̂ can
be supported as an equilibrium outcome.
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Proof of (b): We now move to the proof of part (b). To do so, for the remainder of this proof,
assume that Xmax = {xdd}, where xdd is defined as in (3).

Proof of statement (b.i): Consider any winner selection rule β : XN \ {(∅, ...,∅)} → ∆(I)
such that, whenever a profile of bids x⃗ ∈ RN containing xdd is submitted, β(x⃗) selects a winner
among the buyers bidding xdd uniformly at random. That is,

βi(x⃗) = 1
|Jdd

x⃗ |
· 1(i∈Jdd

x⃗ ),

for all x⃗ ∈ RN such that xdd ∈ x⃗, where Jdd
x⃗ := {j ∈ I : xj = xdd} is the set of buyers

bidding xdd in x⃗. Note that since Π(xdd) > Π(x) for all x ∈ R, such a winner selection rule is
consistent with Lemma 2 and, therefore, can be played in equilibrium by the seller. Given this
rule, suppose all buyers respond by bidding xdd. We show that x⃗ = (xdd, ..., xdd) constitutes an
equilibrium profile of bids. To see this, note that no buyer has a strict incentive to bid outside
of the relevant bidding range R. Moreover, given β and x−i = x⃗ \ {xi}, if buyer i bids any price
xi ∈ R such that xi ̸= xdd, he will surely lose the auction obtaining a payoff of 0, while if he
offers xi = xdd, he will get an expected payoff of 1

N W (xdd) ≥ 0. This proves that an equilibrium
of the due diligence game where the winning bid is xdd always exists. Finally, note that since
xdd · (1 − F (xdd)) > x̂, it holds that x̂ < xdd. Therefore, in this equilibrium, the winner must
conduct due diligence (Lemma 1). This concludes the proof of statement (b.i).

Proof of statement (b.ii): We first show that the “if ” direction holds. To do so, suppose
that x̂ > 0 and that W (x̂) ≥ N · W (x) for all x ̸= x̂ such that Π(x) ≥ Π(x̂). Consider
the following strategic situation: Every buyer submits a bid xi = x̂ and buys the good sight
unseen if selected as the winner. On the other hand, the seller responds to the profile of bids
x⃗ = (x̂, ..., x̂) by selecting a winner uniformly at random, i.e.,

βi(x⃗) = 1
N

, ∀i ∈ I,

while he responds to any other profile of bids x⃗′ ∈ XN \ {(∅, ...,∅)} in a way that is consistent
with Lemma 2. We show that this configuration of strategies constitutes an equilibrium of the
due diligence game. First, during the due diligence phase, buyers behave as prescribed by Lemma
1. Second, the winner selection rule described above is consistent with Lemma 2. Finally, no
buyer has a strict incentive to deviate from offering xi = x̂ during the bidding phase. To see
this, observe that given x−i = x⃗ \ {xi} and β, if buyer i bids xi = x̂, he will receive a payoff of
1
N W (x̂), which is strictly positive by Assumption 3. If he bids xi ̸= x̂ such that Π(xi) < Π(x̂),
he will not be selected as the winner, implying that he will receive a payoff of 0. Finally, if he
bids xi ̸= x̂ such that Π(xi) ≥ Π(x̂), he will be selected as the winner with probability of at
most 1. However, by assumption, his payoff will satisfy W (xi) ≤ 1

N W (x̂). This completes the
proof of the “if ” direction.

We now prove the “only if ” direction. As a first step, we show that it must be that x̂ > 0.
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Lemma 8. Suppose an equilibrium inducing with positive probability a winning bid different
from xdd exists. Then, it holds that x̂ > 0.

Proof of Lemma 8. By contradiction, suppose that x̂ ≤ 0. Then, Π(x) = x · [1 − F (x)], and
W (x) = W dd(x) for all x ≥ 0. Since both x 7→ x · [1 − F (x)] and x 7→ W dd(x) are continuous
functions of x ≥ 0, standard Bertrand arguments show that the winning bid is non-random
and equals the offer x∗ ≥ 0 that maximizes the seller’s revenue curve subject to the constraint
W dd(x∗) ≥ 0 in every equilibrium. When x̂ ≤ 0, this is the case if and only if x∗ = xdd. Thus,
an equilibrium outcome inducing a winning bid different from xdd can only exist if x̂ > 0, as
required.

Given Lemma 8, let x̂ > 0, and suppose by contradiction that there exists x∗ ≥ 0 such that
Π(x∗) > Π(x̂), but W (x̂) < N ·W (x∗).40 Also, suppose an equilibrium with x̂ as the winning bid
exists. According to Lemma 2, no buyer must be bidding any bid x ̸= x̂ such that Π(x̂) < Π(x)
with positive probability in this equilibrium. Now, fix any buyer that is selected as the winner
in this equilibrium with a probability weakly lower than 1

N . (Such buyer necessarily exists.)
Without loss of generality, suppose one such buyer is buyer i ∈ I. By assumption, buyer i

cannot be earning an equilibrium payoff larger than 1
N W (x̂). However, if he deviates to xi = x∗,

his bid will be selected with certainty, implying that he will earn a payoff of W (x∗) > 1
N W (x̂).

This contradicts the optimality of buyer i’s equilibrium strategy. This proves the “only if ”
direction of statement (b.ii), as required.

Proof of statement (b.iii): Suppose by contradiction that an equilibrium where the winning
bid x∗ ≥ 0 is non-random and such that x∗ ̸∈ {x̂, xdd} exists. If x∗ /∈ R, any winning buyer
would find it strictly optimal to deviate from their strategy and abstain with certainty. To see
why x∗ ∈ R is also impossible, recall that only x̂ and xdd can be local maximum points of Π(·)
in the relevant range R (Lemma 6). Therefore, because the winner’s value function x 7→ W (x)
is continuous in x ≥ 0, standard Bertrand arguments imply that we can always find at least one
buyer who has a strict incentive to make an offer x′ such that Π(x′) = Π(x∗) + ε to be selected
as the winner with certainty, as long as ε > 0 is small enough,.

Proof of statement (b.iv): Fix any equilibrium of the due diligence game inducing an out-
come where the winning bid is random. For every i ∈ I, denote with Gi the cdf over bids induced
by buyer i’s equilibrium strategy, and with U∗

i buyer i’s equilibrium payoff. Also, denote with
Xi := supp Gi the support of Gi, and with J∗ ⊆ I the subset of buyers that are selected by
the seller as a winner with positive probability in equilibrium. From Lemma 8, we know that it
must be the case that x̂ > 0. Given this, let

xo := min{x ≥ 0 : x · [1 − F (x)] = x̂}.

40Note that by regularity of F , the set {x ̸= x̂ : Π(x) ≥ Π(x̂)} is an interval strictly above x̂. Thus, by the
continuity of W (·), if there exists x ̸= x̂ such that N · W (x) > W (x̂) and Π(x) ≥ Π(x̂), there also exists x′ ̸= x̂
such that N · W (x′) > W (x̂) and Π(x′) > Π(x̂).
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Note that xo is a well-defined non-negative bid, and satisfies x̂ < xo ≤ xdd and Π(xo) = Π(x̂).41

Since x 7→ W (x) is a decreasing function of x ≥ 0, to prove statement (b.iv), it is sufficient to
show that W (x̂) ≥ N · W (xo), and that the seller earns more than Π(x̂) in equilibrium. We do
so below, after first establishing a series of preliminary lemmas.

Lemma 9. An equilibrium inducing an outcome where the seller’s equilibrium revenue is strictly
random must satisfy |J∗| ≥ 2.

Proof of Lemma 9. Suppose by contradiction that |J∗| = 1,42 i.e., there is only one buyer that
is selected by the seller as the winner of the auction in equilibrium. Without loss of generality,
suppose such buyer is buyer 1. Since, by assumption, the winning bid is random, it must be
that G1 is non-degenerate, i.e., X1 is not a singleton. We show that this leads to a contradiction.
To see this, note that if X1 is not a singleton, buyer 1 must be indifferent between winning with
any bid in X1. This is only possible when X1 ⊆ [v̄, ∞), since W (x) is constant for all x ≥ v̄

while it is strictly decreasing in x ∈ [0, v̄). However, in this case, buyer 1 would strictly gain by
abstaining from bidding. Hence, it must be the case that |J∗| ≥ 2, as required.

Lemma 10. An equilibrium inducing an outcome where the seller’s equilibrium revenue is
strictly random must satisfy U∗

j > 0 for all j ∈ J∗.

Proof of Lemma 10. Fix j ∈ J∗ arbitrarily. Since buyers can always abstain from bidding, it
must be that U∗

i ≥ 0 for all i ∈ I. Now, suppose by contradiction that U∗
j = 0. Since no buyer

would submit a bid x > x̌ in equilibrium if he believes such bid will be accepted with positive
probability, it must be that buyer j wins the auction only when he offers xj = x̌. There are
two cases: Either x̌ = xdd or x̌ ̸= xdd. If x̌ ̸= xdd, then x̌ > xdd by Lemma 6, which implies
that xε

j := min{x ≥ 0 : Π(x) = Π(x̌) + ε} would be a strictly profitable deviation for buyer
j for ε > 0 small enough.43 Indeed, according to Lemma 2, xε

j has a weakly higher chance of
being selected by the seller than x̌. Furthermore, it also satisfies W (xε

j) > 0 = W (x̌). This
shows that x̌ ̸= xdd is impossible. We are left to show that xdd = x̌ is also impossible. Toward a
contradiction, suppose that xdd = x̌ holds. Since the winning bid is random in the equilibrium
under consideration, and Xmax = {xdd} = {x̌}, it must be the case that no buyer submits the
offer xdd with certainty in equilibrium. But then, buyer j has a strict incentive to replace x̌ with
xε

j := x̌ − ε for ε > 0 small enough. To see this, note that since Π∗ = Π(xdd) with probability
strictly smaller than 1, there must exist ε > 0 small enough such that xε

j is selected by the
seller with positive probability if the other buyers play according to their equilibrium strategies.
However, W (xε

j) > 0 = W (x̌) for all ε > 0. This is a contradiction. We conclude that U∗
j > 0

for all j ∈ J∗, as required.
41This follows from the continuity of Π(x) for x > x̂, and the fact that x̂ > 0 and xdd ∈ Xmax.
42Clearly, |J∗| ≥ 1, since J∗ cannot be empty by definition.
43Since Xmax = {xdd}, xε

j is well defined and satisfies xε
j < xdd < x̌ whenever ε > 0 is small.
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For every i ∈ I, denote with Si ∈ ∆(R+) the cdf over the expected revenue that the seller would
receive if she accepted buyer i’s equilibrium offer with probability 1, i.e.,

Si(θ) := Gi

({
x ∈ Xi : Π(x) ≤ θ

})
, ∀θ ≥ 0.44

Let si := inf (supp Si) ≥ 0 for every i ∈ I.

Lemma 11. An equilibrium inducing an outcome where the seller’s equilibrium revenue is
strictly random must satisfy

sj = s, ∀j ∈ J∗. (9)

Proof of Lemma 11. By contradiction, suppose that (9) does not hold. Then, there must exist
j1, j2 ∈ J∗, with j1 ̸= j2,45 such that sj1 < sj2 . Note that this implies that buyer j1 submits with
positive probability a bid that the seller will reject with probability 1. Since buyer j1 must be
indifferent between all his equilibrium bids, it follows that U∗

j1 = 0. However, this is impossible
by Lemma 10. Thus, equation (9) must hold, as required.

Lemma 12. An equilibrium inducing an outcome where the winning bid is random must satisfy

s = Π(x̂) = x̂. (10)

Proof of Lemma 12. We prove the statement by contradiction. Suppose first that s > x̂. Then,
equilibrium winning bids must all be in the range (x̂, x̌]. Note that, in this range, Π(x) =
x · [1 − F (x)] and W (x) = W dd(x). Therefore, arguments similar to those employed in the proof
of Lemma 8 imply that no equilibrium where the implied seller’s revenue is strictly random can
exist, a contradiction.

Alternatively, suppose that s < x̂. Fix j ∈ J∗ arbitrarily, and let xj ∈ Xj be any bid in the
support of Gj such that s ≤ Π(xj) < x̂.46 Buyer j must win the auction with strictly positive
probability when playing this bid since, otherwise, he would earn a payoff of 0 in equilibrium,
contradicting Lemma 10. But then, it must be the case that xj < x̂, i.e., xj is located on the
linear segment of the revenue curve Π(·). Otherwise, buyer j would find it strictly profitable to
deviate and replace xj with x′

j such that x′
j = Π(xj) + ε < xj for ε > 0 arbitrarily small. Since

this is true for all j ∈ J∗ and for all xj ∈ Xj such that s ≤ Π(xj) < x̂, we conclude that

inf Xj = s, ∀j ∈ J∗. (11)

Given this, the following claim holds:

Claim 2. If s < x̂ and j ∈ J∗, Gj places a probability mass on s.

44Throughout the proof of statement (b.iv), for each measurable set E ⊆ X, we abuse notation and write
Gi(E) to denote the probability assigned by Gi to E.

45Recall from Lemma 9 that J∗ ⊆ I contains at least two elements.
46Such a bid exists by assumption.
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Proof of Claim 2. Recall that |J∗| ≥ 2 (Lemma 9) and, without loss of generality, assume that
{1, 2} ⊆ J∗. Toward a contradiction, suppose that G1 does not place probability mass on s.
In what follows, we show that buyer 2 earns an equilibrium expected payoff of 0, contradicting
Lemma 10.

Since G1 does not place probability mass on s, it follows that for all n ∈ N, there exists εn > 0
such that G1(s + εn) < 1

n . Since lim supn εn = 0, it is without loss of generality to assume that
(εn)n is a decreasing sequence. Fix n large enough so that s+εn < x̂, and take any xn

2 ∈ X2 such
that s ≤ xn

2 < s + εn. (Equation (11) implies that xn
2 must exist.) Since buyer 1 submits a bid

leading to expected revenue of more than xn
2 with probability greater than 1 − 1

n , the expected
payoff buyer 2 earns in equilibrium when offering xn

2 can be no greater than 1
n ·µ > 0.47 Buyer 2

is indifferent between all bids in X2, which implies that buyer 2’s equilibrium payoff is no greater
than 1

n ·µ > 0. However, since this is true for all sufficiently large n ∈ N, we conclude that buyer
2’s equilibrium payoff U∗

2 is equal to 0, as required.

Given Claim 2, it follows that a configuration of bids where all buyers in J∗ submit the same bid
s has a strictly positive chance to arise in equilibrium. Fix any buyer in J∗ that (on average)
is selected as a winner with a probability weakly smaller than 1

|J∗| under such configurations
of bids. (Such a buyer necessarily exists.) We now show that such buyer j ∈ J∗ has a strict
incentive to deviate from Gj . To see this, observe that by bidding s, buyer j earns an expected
payoff no greater than

1
|J∗|

·

 ∏
i∈J∗\{j}

Gi(s)

 · W (s) ≥ 0.

However, by replacing s with xε
j := s + ε, buyer j would earn an expected payoff greater than

or equal to  ∏
i∈J∗\{j}

Gi(s)

 · W (s + ε) >
1

|J∗|
·

 ∏
i∈J∗\{j}

Gi(s)

 · W (s),

as long as ε > 0 is sufficiently small (Lemma 2). Since this contradicts the optimality of Gj , we
conclude that s = Π(x̂), as required.

Lemma 13. An equilibrium inducing an outcome where winning bid is random must satisfy
Xj ⊆ {x̂} ∪ [xo, xdd] for all j ∈ J∗.

Proof of Lemma 13. Suppose by contradiction that there exists xj ∈ Xj such that xj < x̂, or
xj > xdd, or xj ∈ (x̂, xo) for some j ∈ J∗. Because Π(x) = x < x̂ = Π(x̂) for all x < x̂,
Lemma 12 implies that xj < x̂ is impossible. We now show that xj > xdd is also impossible.
There are two cases: Either xdd = x̌ or xdd < x̌. First, assume that xdd < x̌. We show that
there exists a strictly profitable deviation from xj . Let xε

j := min{y ≥ 0 : Π(y) = Π(xj) + ε},
for some ε > 0 sufficiently small. It is easy to see that since xj > xdd, xε

j exists and satisfies
47Since xn

2 < x̂, W (xn
2 ) = µ − xn

2 < µ by Lemma 1.
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xε
j < min{xj , x̌}. Furthermore, xε

j induces a strictly higher revenue than xj and also implies a
strictly higher expected payoff conditional on winning, because W (xε

j) > W (xj). Therefore, xε
j is

a strictly profitable deviation from xj , a contradiction. Now, suppose that xdd = x̌. If xj > xdd

and xj is accepted with positive probability, buyer j could profitably deviate to x′
j = ∅ which

secures a payoff of 0, a contradiction. Instead, if xj is accepted with probability 0, it follows
that buyer j receives a payoff of U∗

j = 0 in equilibrium, contradicting Lemma 10. Finally, to see
that xj ∈ (x̂, xo) is also impossible, note that xj can be replaced by xε

j := Π(xj) + ε. As long as
ε > 0 is small enough, such deviation would be strictly profitable for buyer j, since it decreases
the bid while increasing revenue. Thus, Xj ⊆ {x̂} ∪ [xo, xdd], as required.

Lemma 14. An equilibrium inducing an outcome where the winning bid is random must satisfy
that, for all i ∈ J∗, Si admits a strictly positive probability mass on Π(x̂). Furthermore, each
such Si admits no other mass point.

Proof of Lemma 14. Fix i ∈ J∗ arbitrarily. To see why Si must admit a strictly positive mass
on Π(x̂), suppose by contradiction that this is not the case. Then, for all n ∈ N, there exists
εn > 0 such that Si(Π(x̂) + εn) < 1

n . By using steps analogous to those employed in the proof
of Claim 2, one can verify that this implies that some buyer j ∈ J∗ \ {i} obtains a payoff of 0 in
equilibrium. However, this would contradict Lemma 10.

Finally, standard Bertrand arguments imply that all buyers’ winning probabilities have to be
continuous for x > x0 and, therefore, that Si cannot admit another mass point in its support.
For the sake of brevity, we omit the details.

Lemma 15. An equilibrium inducing an outcome where the winning bid is random must satisfy
|J∗| = N , i.e., J∗ = I.

Proof of Lemma 15. Denote with S the cdf over the realized expected revenue accrued by the
seller in equilibrium and induced by the profile of buyers’ strategies (Gi)i∈I . In other words, S
is the cdf of Π∗. By Lemma 13, it holds that supp S ⊆ [Π(x̂), Π(xdd)]. Moreover, since for every
i ∈ J∗, Si places a strictly positive probability mass on Π(x̂) (Lemma 14), it follows that S does
so as well. Given this, suppose by contradiction that there exists i ∈ I \ J∗. Clearly, U∗

i = 0.

However, by submitting with certainty a bid xi such that Π(xi) = Π(x̂) + ε, buyer i would win
the auction with strictly positive probability and obtain a payoff conditional on winning equal
to W (xi) > 0, as long as ε > 0 is small enough.48 Since this contradicts the optimality of Gi

given G−i, we conclude that |J∗| = N , as required.

Lemma 16. An equilibrium inducing an outcome where the winning bid is random must be such
that Gi puts strictly positive probability mass on x̂ for all i ∈ I.

48The existence of such a small ε > 0 follows from the fact that at least one buyer j ∈ J∗ must win the auction
with a bid xj ∈ [xo, xdd] (Lemma 13), and the fact that U∗

j > 0 (Lemma 10).
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Proof of Lemma 16. From Lemmas 14 and 15, we know that each Gi induces a strictly positive
probability mass on the revenue Π(x̂). Observe that, by Lemma 13, there exist only two bids
that induce such revenue and can be in Xi: Namely, x̂ and xo. In what follows, we show that
no Gi can place no probability mass on x̂, proving the statement.

By contradiction, suppose buyer 1 only places probability mass on xo, but not on x̂, in equilib-
rium. Given this, let x⃗ ∈ RN be any profile of bids that arises with strictly positive probability
in equilibrium such that x1 = xo and Π(xj) = Π(x̂) for all j ̸= 1. The following claim holds:

Claim 3. It holds that β1(x⃗) = 1.

Proof of Claim 3. If β1(x⃗) < 1, buyer 1 would find it strictly profitable to deviate from xo and
bid x1 = xo + ε for ε > 0 sufficiently small instead. In fact, in this way, buyer 1 would discretely
increase his probability of winning the auction given G−i, while only marginally reducing his
payoff conditional on winning. Thus, β(x⃗) = 1, as required.

Claim 3 implies that any buyer j ̸= 1 always loses against buyer 1 when submitting a bid xj such
that Π(xj) = Π(x̂). Thus, U∗

j = 0 for all j ̸= 1. However, this is impossible since it contradicts
Lemmas 10 and 15.

Using Lemmas 8,..., 16, we are ready to prove that

W (x̂) ≥ N · W (xo). (12)

To see why (12) holds, let i ∈ I be any buyer selected as a winner with probability weakly
smaller than 1

N when the seller receives the profile of bids x⃗ = (x̂, ..., x̂).49 In equilibrium, buyer
i ∈ I must weakly prefer bidding x̂ to any bid x′

i such that Π(x′
i) > Π(x̂). This can be the

case only if 1
N W (x̂) ≥ W (xo). Thus, inequality (12) holds, as required. Finally, that the seller’s

expected payoff lies in the range [Π(x̂), Π(xdd)]. follows immediately from Lemma 13.

Proof of (c): Part (c) follows from arguments almost identical to those of (b.iii) and (b.iv).
In particular, every equilibrium must feature either deterministic winning bids equal to x̂, xdd,
or a mixture over these two bids. For the sake of brevity, we omit the details. This completes
the proof of Lemma 7.

49By Lemma 16, this event occurs with strictly positive probability.
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Proof of Proposition 2: Part 3

Recall from equation (3) the definition of xdd. Observe that since R = [0, x̌] and x̌ = x̌(c)
(Lemma 6), also xdd depends on c > 0, i.e., xdd = xdd(c).50 Given this, define c0 > 0 as the
unique solution to the equation x̂(c0) = 0, and c1 > 0 as the unique solution to the equation
x̂(c1) = xdd(c1) ·

(
1 − F (xdd(c1))

)
. Both c0 and c1 are well defined information cost thresholds

and satisfy 0 < c0 < c1 < c̄.

Recall that xo = xo(c) is given by

xo(c) := min{x ≥ 0 : x · [1 − F (x)] = x̂(c)}, ∀c ∈ (c0, c1).

Observe that the regularity of F implies that 0 < x̂(c) < xo(c) < xdd(c) for all c ∈ (c0, c1).
Given this, define the real-valued function ρ : (c0, c1) → R+ as follows:

ρ(c) := W su(x̂(c))
W dd(xo(c)) .

The Implicit Function Theorem, together with the observation that W su(x̂(c)) ∈ (0, µ) and
W dd(xo(c)) ∈ (0, S − c) for all c ∈ (c0, c1), implies that ρ(c) is a well-defined continuously
differentiable function of c ∈ (c0, c1). Below, Claim 17 characterizes some key properties of this
function.

Lemma 17. The following holds:

(i) limc↓c0 ρ(c) = 1,

(ii) limc↓c0 ρ′(c) > 0,

(iii) ρ′(c) > 0 for all c ∈ (c0, c1).

Proof of Claim 17. To see why (i) holds, notice that as c ↓ c0, we have that x̂(c), xo(c) → 0.

This implies that W su(x̂(c)) = µ − x̂(c) → µ. Thus, we just need to show that also W dd(xo(c))
converges to µ as c ↓ c0. To see this, notice that, c0 =

∫ 0
v (−v) dF (v) by construction. Therefore,

W dd(xo(c)) = −c+
∫ v̄

xo(c)

(
v −xo(c)

)
dF (v) → −c0 +

∫ v̄

0
v dF (v) =

∫ v̄

0
v dF (v)+

∫ 0

v
v dF (v) = µ,

as c ↓ c0, as required.

We now prove (ii). Fix c ∈ (c0, c1) arbitrarily. Note that ρ′(c) > 0 if and only if(
∂

∂c
W su(x̂(c))

)
· W dd(xo(c)) >

(
∂

∂c
W dd(xo(c))

)
· W su(x̂(c)). (13)

Repeated applications of the Implicit Function Theorem show that

∂

∂c
W su(x̂(c)) = − ∂

∂c
x̂(c) = − 1

F (x̂(c)) < 0, (14)

50In particular, it is easy to see that c 7→ xdd(c) is weakly decreasing in c > 0, and satisfies xdd(c) = x̄ if
x̌(c) ≥ x̄, and xdd(c) = x̌(c) otherwise, where x̄ > 0 is the unique maximizer of x 7→ x · [1 − F (x)].
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and that
∂

∂c
W dd(xo(c)) = −

[
1 +

(
1 − F (xo(c))

)
· ∂

∂c
xo(c)

]
< 0. (15)

Thus, inequality (13) is equivalent to

∂
∂cW su(x̂(c))
∂
∂cW dd(xo(c))

<
W su(x̂(c))
W dd(xo(c)) = ρ(c). (16)

In what follows, we show that inequality (16) is satisfied whenever c ↓ c0. To see this, observe
that, by definition, xo(c) ·

(
1 − F (xo(c))

)
= x̂(c). Therefore:

∂

∂c
xo(c) = ∂

∂c
x̂(c) · 1

1 − F (xo(c)) − xo(c) · f(xo(c)) > 0, (17)

where the strict inequality follows from the regularity of F and the fact that

xo(c) < xdd(c) ≤ x̄ := arg max
x≥x

x · [1 − F (x)]

for all c ∈ (c0, c1).

Equation (15), together with equation (17), implies that:

∂

∂c
W dd(xo(c)) = −

[
1 + ∂

∂c
x̂(c) · A(c)

]
,

where
A(c) := 1 − F (xo(c))

1 − F (xo(c)) − xo(c) · f(xo(c)) > 1, ∀c ∈ (c0, c1).

Since, by equation (14), it holds that ∂
∂c x̂(c) = 1

F (x̂(c)) > 0 for all c ∈ (c0, c1), we conclude that

∂
∂cW su(x̂(c))
∂
∂cW dd(xo(c))

=
∂
∂c x̂(c)

1 + ∂
∂c x̂(c) · A(c)

< 1,

for all c ∈ (c0, c1). Because ρ(c) → 1 as c ↓ c0, inequality (16) is satisfied eventually, i.e., for c

close enough to c0. This implies that limc↓c0 ρ′(c) > 0, as required.

Finally, to see why statement (iii) holds, observe that:

(a) Together, statements (i) and (ii) imply that ρ(c) > 1 for all c close enough to c0.

(b) The arguments used to prove statement (ii) also show that ρ′(c) > 0 whenever ρ(c) ≥ 1.

Statement (iii) follows from the above observations (a) and (b), and the fact that c 7→ ρ(c) is
continuously differentiable.
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To complete the proof of Proposition 2, define the c∗ > 0 as follows:

c∗ =

ρ−1(N) if limc↑c1 ρ(c) > N,

c1 otherwise.

From Lemma 17, it is easy to see that c∗ > 0 is a well-defined information cost threshold.
Moreover, it satisfies c∗ ≤ c1 with c∗ < c1 if and only if limc↑c1 ρ(c) > N . In the remainder of
this proof, we show that c∗ > 0 satisfies all the properties mentioned in Proposition 2.

As a first step, fix any c < c∗. Since c < c1, it holds that Π(x̂) = x̂ < Π(xdd), which implies that
Xmax = {xdd}. Moreover, it also holds that either ρ(c) < N in case c > c0, or x̂ ≤ 0 in case
c ≤ c0. In both cases, by part (b) of Lemma 7, we conclude that the winning bid is xdd and the
winner conducts due diligence in every equilibrium of the due diligence game.

Now, fix any c ≥ c∗. If c > c1, then Xmax = {x̂}, and therefore the assertion that the winning
bid is x̂ and the winner buys the good sight unseen in the seller’s least preferred equilibrium
trivially holds by part (a) of Lemma 7. Thus, from now on suppose that c ≤ c1, so that
xdd ∈ Xmax. Because c ≥ c∗, statements (b.ii) and (c) of Lemma 7 imply that there exists
an equilibrium where the winning bid is x̂ and the winner buys the good sight unseen. That
no other equilibrium leads to a lower revenue than that of the sure-trade equilibrium outcome
follows directly from statements (b.iii), (b.iv), and (c) of Lemma 7.

Finally, since ρ(·) is strictly increasing in c ∈ (c0, c1) by Lemma 17, N 7→ c∗ = c∗(N) is a weakly
increasing function of N ≥ 2. Moreover, as N ↑ ∞, we have that c∗(N) → c∗(∞) = c1 < c̄.
This concludes the proof of Proposition 2.

Q.E.D.

Proof of Corollary 1

Proposition 2 implies that

xw(c) =

xdd(c) if c < c∗

x̂(c) otherwise,

Πw(c) = Π(xw(c)|c), and W w(c) = W (xw(c)|c).

Note that xdd(c) = min{x̌(c), x̄}, where x̄ := arg max
x≥0

x · [1 − F (x)] and W (x̌(c)|c) = 0. Lemma

6 shows that x̌(c) is strictly decreasing. Thus, ∂
∂cxdd(c) ≤ 0. Since xw(c) = xdd(c) for c ∈ (0, c∗),

this implies ∂
∂cxw(c) ≤ 0 for such costs. To the contrary, when c ∈ (c∗, c̄), xw(c) = x̂(c), which

is strictly increasing. Moreover, by Lemma 7 and Proposition 2, it must be that

Π(xdd(c)|c) = xdd(c) ·
(
1 − F (xdd(c))

)
> x̂(c)

for all c < c∗. Together with the continuity of x̂(c), this shows that

lim
c↑c∗

xw(c) ≥ xw(c∗)
1 − F (limc↑c∗ xw(c)) > xw(c∗).
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Proposition 2 implies that Πw(c) = xw(c) · (1 − F (xw(c))) for c < c∗ and Πw(c) = xw(c) for
c ≥ c∗. Moreover, by regularity, x 7→ x · [1 − F (x)] is increasing in x for x < x̄. Thus, the
comparative statics of Πw(c) follow from those of xw(c), continuity of x̂(c), and the fact that
xdd(c) ·

(
1 − F (xdd(c))

)
> x̂(c) for all c < c∗.

Further, note that W (x̄|c) is decreasing in c, and that W (x̌(c)|c) = 0. Thus, ∂
∂cW w(c) ≤ 0 for

c < c∗. The remaining comparative statics of W w(c) follow from the fact that W (x|c) is strictly
decreasing in x and weakly decreasing in c.

Proof of Proposition 3

Because of Propositions 0 and 1, it is sufficient to show that infσ∈Edd Π(σ) > µ if and only if
(i) c < c∗ and (ii) maxx∈R x · [1 − F (x)] > µ. To see why this is true, note that Proposition 2
implies that

inf
σ∈Edd

Π(σ) =

xdd ·
(
1 − F (xdd)

)
, if c < c∗,

x̂, if c ≥ c∗.

Given this, Proposition 3 follows from the definition of xdd given by equation (3), and the fact
that Assumption 3 implies that x̂ < µ.

Q.E.D.

Proof of Corollary 2

As a first step, it is important to notice that, for any fixed profile of model primitives (F, c, N),
none of the parameter changes listed in Corollary 2 can violate the assumptions of Section
2. Given this, fix any profile of primitives of the model (F, c, N) such that due diligence is
strictly optimal. From Proposition 3, we know that this is equivalent to (i) c < c∗ and (ii)
maxx∈R x · [1 − F (x)] > µ. In what follows, we show that these conditions still hold once we
apply each of the changes in model primitives listed in Corollary 2.

More competition: Consider an increase in the number of buyers, i.e., N ′ > N . This change
does not affect condition (ii). Instead, it relaxes condition (i) since, by Proposition 3, it holds
that c∗(N) ≤ c∗(N ′). We conclude that conditions (i) and (ii) continue to hold after this
parameter change, as required.

Cost decrease: Suppose the information cost decreases, i.e., c′ < c. Condition (i) trivially
still holds after this change. To see why the same is true for condition (ii), recall from Lemma
3 in the proof of Proposition 2 that R = [0, x̌] and that x̌ = x̌(c) is strictly decreasing in c > 0.
Therefore, condition (ii) is effectively relaxed after this change.

Scale-up of valuation: Multiplying ṽ by a scalar K > 1 is equivalent to multiplying c by 1
K .

Thus, the arguments used above for a cost decrease suffice to prove this case.

Leftward shift of valuation. Finally, consider a leftward shift of the buyers’ common valua-
tion ṽ, i.e., consider ṽnew = ṽ − ω for some ω ∈ (0, µ). Denote with Fnew(v) := F (v + ω) the cdf
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of ṽnew, and let vnew := v − ω and v̄new := v̄ − ω be the corresponding endpoints of its support.
The following lemma will be used extensively in the remainder of this proof.

Lemma 18. Fix any x ≥ 0. The following statements hold:

(a) W su
new(x) = W su(x + ω),

(b) W dd
new(x) = W dd(x + ω),

(c) x · (1 − Fnew(x)) > (x + ω) · (1 − F (x + ω)) − ω.

Proof of Lemma 18. To see why statement (a) holds, observe that

W su
new(x) := µnew − x = µ − ω − x = W su(x + ω).

Statement (b) follows because

W dd
new(x) :=

∫ v̄new

x
(v − x) dFnew(x) − c

=
∫ v̄

x+ω
(v − ω − x) dF (v) − c

= W dd(x + ω).

Finally, statement (c) holds since F (x + ω) > 0 and

x · (1 − Fnew(x)) = x · (1 − F (x + ω))

= (x + ω) · (1 − F (x + ω)) − ω · (1 − F (x + ω))

> (x + ω) · (1 − F (x + ω)) − ω.

Now, let x̂new and x̌new be defined implicitly by W su
new(x̂new) = W dd

new(x̂new) and W dd
new(x̌new) = 0.

From Lemma 18, one can easily verify that x̂new = x̂ − ω and x̌new = x̌ − ω.

Given this, consider the bid x′ = xdd − ω, where xdd ·
(
1 − F (xdd)

)
= maxx∈R x · [1 − F (x)].

Observe that x′ is a relevant bid under ṽnew, i.e., it holds that 0 ≤ x′ ≤ x̌new.51 Moreover, by
statement (c) of Lemma 18, it holds that

x′ ·
(
1 − Fnew(x′)

)
> xdd ·

(
1 − F (xdd)

)
− ω > µ − ω = µnew, (18)

where the second inequality holds by assumption. In turn, this implies that

xdd
new ·

(
1 − Fnew(xdd

new)
)

= max
x∈Rnew

x · (1 − Fnew(x)) > µnew.

We now show that condition (i) holds under ṽnew as well, i.e., c < c∗
new. To see why this is

51That x′ ≤ x̌new is obvious. To see why x′ is positive, notice that xdd ·
(
1 − F (xdd)

)
≥ µ implies that xdd > µ.

Therefore, xdd − ω > 0 since µnew = µ − ω > 0 by assumption.
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the case, recall from Proposition 2 that c < c∗
new if and only if the due diligence game admits

a unique equilibrium outcome where the winning bid is xdd
new and the winner conducts due

diligence. According to Lemma 7 in the proof of Proposition 2, this is the case if and only if
Xmax

new = {xdd
new} and one of the following two conditions hold: Either x̂new ≤ 0, or x̂new > 0 and

W su
new(x̂new) < N · W dd

new(xo
new), (19)

where
xo

new := min{x ≥ 0 : x · (1 − Fnew(x)) = x̂new}.

That Xmax
new = {xdd

new} holds follows from the fact that xdd
new ·

(
1 − Fnew(xdd

new)
)

> µnew > x̂new.

Hence, if x̂new ≤ 0, we are done, i.e., c < c∗
new.

Thus, for the remainder of this proof assume that x̂new > 0. To see why inequality (19) holds,
observe that statement (a) of Lemma 18 implies that Wnew(x̂new) = W (x̂). Furthermore, note
that since by assumption c < c∗ and x̂ > x̂new > 0, it must be the case that

W (x̂) < N · W (xo).

Therefore, to prove that c < c∗
new, it is sufficient to show that Wnew(xo

new) ≥ W (xo). However,
that this is the case follows from statement (c) of Lemma 18 and the regularity of F , since they
jointly imply that xo

new < xo − ω.52 This concludes the proof of Corollary 2.

Q.E.D.

Proof of Theorem 1

This proof proceeds in three parts. In Part 1, we characterize when due diligence is (weakly)
optimal. In Part 2, we establish a sufficient condition for the strict optimality of due diligence
which depends on the size of the stakes relative to a function of µ. In Part 3, we use this
groundwork to prove our main result.

Proof of Theorem 1: Part 1

Observe that, together, Propositions 0 and 1 imply that research cannot be optimal. The
following lemma characterizes when due diligence is (weakly) optimal. Moreover, it shows that
when this is the case, any leftward shift in the buyers’ valuation makes due diligence strictly
optimal. Formally:

Lemma 19. The following statements hold:

(a) Due diligence is optimal if and only if c < c∗ and maxx∈R x · [1 − F (x)] ≥ µ.

(b) Suppose due diligence is optimal. Then,

– If the buyers’ valuation is scaled-up, i.e., it holds that ṽnew = K · ṽ for some K > 1,
due diligence remains optimal.

52Recall that x 7→ W dd
new(x) is a decreasing function.
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– If the buyers’ valuation is shifted to the left, i.e., it holds that ṽnew = ṽ − ω for some
ω ∈ (0, µ), due diligence becomes strictly optimal.

Proof of Lemma 19. A straightforward modification of the arguments used in the proof of Propo-
sition 3 suffices to prove the characterization in statement (a). In turn, given this character-
ization, the same arguments used in the proof of Corollary 2 can be employed to show that
statement (b) holds as well.53 This completes the proof of the lemma.

Proof of Theorem 1: Part 2

In this part of the proof of Theorem 1, we prove the following lemma.

Lemma 20. Due diligence is strictly optimal whenever

E[|ṽ|] > µ ·
(

1 + 2 ln
(

v̄

µ

))
+ 2c.

Proof of Lemma 20. By Proposition 1, we know that due diligence is strictly optimal if and only
if it holds that infσ∈Edd Π(σ) > µ. Observe that

E[|ṽ|] = S −
∫ 0

v
v dF (v) and

∫ 0

v
v dF (v) = µ − S.

This allows us to rewrite
E[|ṽ|] = 2S − µ. (20)

In what follows, we show that

inf
σ∈Edd

Π(σ) ≤ µ =⇒ S ≤ µ ·
(

1 + ln
(

v̄

µ

))
+ c. (21)

Since by equation (20), the inequality on the right side of (21) is the opposite of inequality (6),
proving the implication given in (21) is sufficient to show that Lemma 20 holds.

From now on, suppose throughout that infσ∈Edd Π(σ) ≤ µ. There are two possibilities:

C1: It holds that supσ∈Edd Π(σ) ≤ µ, i.e., no equilibrium resulting in expected revenue for the
seller strictly higher than µ exists (i.e., condition (ii) of Proposition 3 is violated).

C2: It holds that supσ∈Edd Π(σ) > µ, which implies that infσ∈Edd Π(σ) < supσ∈Edd Π(σ) (i.e.,
condition (i) of Proposition 3 is violated).

We proceed to show that both cases imply that S ≤ µ ·
(
1 + ln

(
v̄
µ

))
+ c.

Case C1: Assume supσ∈Edd Π(σ) ≤ µ. From Lemma 7 in the proof of Proposition 2, one can
verify that this is the case only if either the buyers’ payoff from bidding any x ≥ 0 such that

53In particular, the conclusion regarding a left shift in the buyers’ valuation follows from the fact that
maxx∈Rnew x · (1 − F (xnew)) > µnew still holds even if the second inequality in (18) is replaced by an equal-
ity.
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(1 − F (x)) · x > µ is strictly negative, or no such bid x exists.

Suppose first that
x · (1 − F (x)) ≤ µ for all x ≥ 0. (22)

Note that

S =
∫ v̄

0
v dF (v)

=
∫ v̄

0

(
1 − F (v)

)
dv

≤
∫ µ

1−F (0)

0

(
1 − F (0)

)
dv +

∫ v̄

µ
1−F (0)

(
µ

v

)
dv

= µ ·
[
1 + ln

(
v̄

µ
·
(
1 − F (0)

))]
≤ µ ·

(
1 + ln

(
v̄

µ

))
,

where the second equality follows from integration by parts and the first inequality from the
monotonicity of F and inequality (22). We conclude that S ≤ µ ·

(
1 + ln

(
v̄
µ

))
+ c, as required.

Next, suppose that Xµ := {x ≥ 0 : x · (1 − F (x)) > µ} ≠ ∅ but W (x) < 0 for all x ∈ Xµ.
Let xµ := inf Xµ. Observe that xµ > µ, which implies that W (xµ) = W dd(xµ). By continuity
of x 7→ x · (1 − F (x)) and x 7→ W (x), it holds that xµ · (1 − F (xµ)) = µ and W (xµ) ≤ 0.
Furthermore, since µ = xµ · (1 − F (xµ)) ≤ xµ · (1 − F (0)), we have 0 < µ

1−F (0) ≤ xµ < v̄. This
allows us to write the socially optimal trade surplus S > 0 as follows:

S =
∫ v̄

0
v dF (v) =

∫ xµ

0
v dF (v) +

∫ v̄

xµ

v dF (v).

We now separately bound both integrals from above. By definition, x · [1 − F (x)] ≤ µ for all
x ∈ (0, xµ). Therefore,∫ xµ

0
v dF (v) = −xµ · (1 − F (xµ)) +

∫ xµ

0

(
1 − F (v)

)
dv

= −µ +
∫ µ

1−F (0)

0

(
1 − F (v)

)
dv +

∫ xµ

µ
1−F (0)

(
1 − F (v)

)
dv

≤ −µ +
∫ µ

1−F (0)

0

(
1 − F (0)

)
dv +

∫ xµ

µ
1−F (0)

(
µ

v

)
dv

= µ · ln
(

xµ

µ
·
(
1 − F (0)

))
≤ µ · ln

(
v̄

µ

)
,

where the first equality follows from integration by parts, the second equality follows from
xµ · (1 − F (xµ)) = µ, the first inequality follows from x · [1 − F (x)] ≤ µ for all x < xµ and the
monotonicity of F , and the last inequality holds since xµ · (1 − F (0)) < xµ ≤ v̄.
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At the same time, since W (xµ) = −c +
∫ v̄

xµ
(v − xµ) dF (v) ≤ 0, we know that

∫ v̄

xµ

v dF (v) ≤ (1 − F (xµ)) · xµ + c = µ + c.

In combination, this shows that

S =
∫ xµ

0
v dF (v) +

∫ v̄

xµ

v dF (v) ≤ µ ·
(

1 + ln
(

v̄

µ

))
+ c,

as required.

Case C2: Assume supσ∈Edd Π(σ) > µ, which implies infσ∈Edd Π(σ) < supσ∈Edd Π(σ). In this
case, by Lemma 7 in the proof of Proposition 2, there exists an equilibrium of the due diligence
game where the winning bid is x̂ and the winner buys the good sight unseen. Moreover, it holds
that x̂ > 0 and W (x̂) ≥ N · W (x) for all x ≥ 0 such that Π(x) > Π(x̂).

Observe that Π(x) > Π(x̂) if and only if x · [1 − F (x)] > x̂. Thus, if x · [1 − F (x)] > x̂, it follows
that x > x̂ and, therefore, W (x) = W dd(x). Recall that xo := min{x ≥ 0 : x · [1 − F (x)] = x̂}.
By continuity of x 7→ W (x), we have that W (xo) ≤ 1

N W (x̂). Furthermore, since x̂ = xo · (1 −
F (xo)) ≤ xo · (1 − F (0)), we have that x̂

1−F (0) ≤ xo < v̄.

By definition, for all x ∈ (0, xo), it holds that [1 − F (x)] · x ≤ x̂. Therefore,
∫ xo

0
v dF (v) = −xo · (1 − F (xo)) +

∫ xo

0

(
1 − F (v)

)
dv

≤ −x̂ +
∫ x̂

1−F (0)

0

(
1 − F (0)

)
dv +

∫ xo

x̂
1−F (0)

(
x̂

v

)
dv

= x̂ ·
(

ln
(

xo

x̂
· (1 − F (0))

))
≤ x̂ · ln

(
v̄

x̂

)
≤ µ · ln

(
v̄

µ

)
,

where the first equality follows from integration by parts, the first inequality follows from the
fact that xo · (1 − F (xo)) = x̂ and that x · [1 − F (x)] ≤ x̂ for all x < xo, the second inequality
follows from xo · (1 − F (0)) < xo ≤ v̄, and the final inequality is implied by x̂ ≤ µ and the fact
that x 7→ x ·

(
ln
(

v̄
x

))
is strictly increasing for all x < v̄.

Next, since W dd(xo) = −c +
∫ v̄

xo(v − xo) dF (v) ≤ 1
N W (x̂) = 1

N (µ − x̂), it holds that

∫ v̄

xo
v dF (v) ≤ (1 − F (xo)) · xo + 1

N
(µ − x̂) + c = µ · 1

N
+ N − 1

N
· x̂ + c ≤ µ + c.

Combining the above two inequalities, we obtain that

S =
∫ xo

0
v dF (v) +

∫ v̄

xo
v dF (v) ≤ µ ·

(
1 + ln

(
v̄

µ

))
+ c,
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as required. This concludes the proof of Lemma 20.

Proof of Theorem 1: Part 3

We are now ready to prove our main result. Fix any distribution F and information cost c > 0
satisfying the Assumptions in Section 2. Let Eτ

k be the set of equilibrium strategy profiles
induced by τ ∈ {no, re, dd} whenever ṽ is replaced by its mean-preserving k-scaling ṽ′

k, and
define V k

Π ≥ 0 by

V k
Π := max

τ∈{no,re,dd}

(
inf

σ∈Eτ
k

Π(σ)
)

.

Since no-information always dominates research (Proposition 1), to prove Theorem 1 it is suffi-
cient to show that there exists k∗ > 0 such that

{dd} = arg max
τ∈{no,re,dd}

(
inf

σ∈Eτ
k

Π(σ)
)

, ∀k > k∗,

and
inf

σ∈Edd
k

Π(σ) < V k
Π , ∀k ∈ (0, k∗).

As a first step, we show that there exists k̄ > 0 such that

{dd} = arg max
τ∈{no,re,dd}

(
inf

σ∈Eτ
k

Π(σ)
)

, ∀k > k̄. (E)

To do so, recall from Lemma 20 that due diligence is strictly optimal whenever inequality (6)
holds, which is equivalent to

S > µ ·
(

1 + ln
(

v̄

µ

))
+ c. (23)

Thus, it is sufficient to prove that inequality (23) is satisfied eventually as k ↑ ∞, once ṽ is
replaced by its mean-preserving k-scaling ṽ′

k.

When ṽ is replaced by ṽ′
k, the RHS of (23) becomes

RHS(k) = µ ·
(

1 + ln(k) + ln
(

v̄ − k − 1
k

µ

))
+ c ≤ µ · ln(k) + M,

where M > 0 is some positive constant. On the other hand, the LHS of (23) becomes

LHS(k) = k ·
∫ v̄

k−1
k

µ

(
v − k − 1

k
µ

)
dF (v) ≥ k ·

∫ v̄

µ
(v − µ) dF (v) = k · c̄ > 0.

Since limk↑∞
ln(k)

k = 0, the existence of a threshold k̄ > 0 satisfying property (E) follows.

Now, let k∗ be defined by

k∗ := inf
{

k̄ > 0 : k̄ satisfies property (E)
}

.
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Observe that k∗ > 0 since any k̄ satisfying property (E) must be such that k̄ ≥ µ
µ−v > 0.54

Furthermore, by construction, it holds that

{dd} = arg max
τ∈{no,re,dd}

(
inf

σ∈Eτ
k

Π(σ)
)

, ∀k > k∗.

Thus, we are left to show that for all k̄ ∈ (0, k∗), if we replace ṽ with its mean-preserving
k̄-scaling ṽ′

k̄
, then due diligence is not weakly optimal, i.e., it holds that

inf
σ∈Edd

k̄

Π(σ) < V k̄
Π .

By contradiction, suppose that this is not the case, i.e., there exists k̄ ∈ (0, k∗) such that due
diligence is weakly optimal whenever we replace ṽ with its mean-preserving k̄-scaling ṽ′

k̄
. Let

ε > 0 be any strictly positive constant, and consider the mean-preserving (k̄ + ε)-scaling of ṽ.
Notice that ṽ′

k̄+ε
can be obtained from ṽ′

k̄
by applying a leftward shift and then scaling up the

valuation to keep µ > 0 constant. By Corollary 2 and statement (b) in Lemma 19, it follows that
due diligence becomes strictly optimal under ṽ′

k̄+ε
. Since this is true for all ε > 0, we conclude

that k̄ > 0 satisfies property (E). However, this is implies that k∗ ≤ k̄, a contradiction. This
completes the proof of the theorem.

Q.E.D.

B Negative Expected Gains from Trade

In this Appendix, we prove Proposition 4.

Proof of Proposition 4

We want to show that due diligence continues to be strictly optimal when µ ≤ 0 and c < S. To
do so, we proceed in order: First, we analyze the equilibrium implications of the no-information
benchmark. Then, we investigate the equilibria of the research game. Finally, we consider the
due diligence game.

No-information benchmark. Suppose information acquisition is not permitted, i.e., the
buyers play the no-information benchmark. The following lemma characterizes the revenue the
seller earns in every equilibrium of this game when µ ≤ 0. We omit the simple proof.

Lemma 21. If µ ≤ 0, the buyers earn a payoff of 0 and the seller earns a revenue of 0 in every
equilibrium of the no-information benchmark. Thus, it holds that Π(σ) = 0 for all σ ∈ Eno.

Research game. Suppose buyers can acquire information before bidding, i.e., they play the
research game. The following lemma shows that if µ ≤ 0 and c < S, the revenue guarantee the
seller accrues across all equilibria is equal to 0.

54If k̄ < µ/(µ − v), the lower-end of the support of ṽ′
k becomes strictly positive, implying that information

acquisition is socially inefficient. (See Section 2.3.) As a result, k̄ could not satisfy property (E).
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Lemma 22. Suppose µ ≤ 0 and c < S. Then, it holds that

inf
σ∈Ere

Π(σ) = 0.

Proof of Lemma 22. Let µ ≤ 0 and c < S. Our proof mirrors the proof of Proposition 1. In par-
ticular, once again we proceed via backward induction: Since the seller’s equilibrium incentives
are trivial, i.e., she always accepts one of the highest available offers, we first characterize buy-
ers’ equilibrium play during the bidding phase. Then, we study buyers’ equilibrium incentives
during the research phase.

For every subset J ⊆ I, let ΓJ denote the continuation (bidding) game that follows a research
phase where the buyers doing research are exactly those in J . Given this, denote with UJ

i and
ΠJ buyer i’s payoff and the seller’s revenue in an equilibrium of the continuation game ΓJ ,
respectively. The following sequence of claims characterizes these utility levels as a function of
the cardinality of J .

Claim 4. Suppose |J | = 0, i.e., J = ∅. Then, it holds that U∅
i = 0 and Π∅ = 0 in every

equilibrium of the continuation game Γ∅.

Proof of Claim 4. If no buyer acquired information during the research phase, the continua-
tion game Γ∅ is strategically equivalent to the no-information benchmark. Therefore, invoking
Lemma 21 is sufficient to prove the result.

Claim 5. Suppose |J | ≥ 2. Then, it holds that UJ
i = 0 if i ̸∈ J , UJ

i = −c if i ∈ J , and ΠJ = S

in every equilibrium of the continuation game ΓJ .

Proof of Claim 5. The proof of this result is identical to the proof of Lemma 4.

Claim 6. Suppose |J | = 1, i.e., J = {i} for some i ∈ I. Then, it holds that U
{i}
i > 0, U

{i}
j = 0

for j ̸= i, and Π{i} = 0 in every equilibrium of the continuation game Γ{i}.

Proof of Claim 6. Without loss of generality, assume J = {1}. We first show that buyer 1
must abstain when he observes a negative valuation v < 0. Since he cannot receive a positive
payoff from winning the auction in this case, he must either abstain or submit a bid that loses
with certainty. Towards a contradiction, suppose he does not always abstain after observing
a negative valuation. For i ̸= 1, let Gi(x) denote the cdf describing i’s bidding strategy, and
let xi = inf{x : G(x) > 0}. Let x = maxi ̸=1 xi. We know that x ≥ 0 since there exists a bid
with which buyer 1 loses with certainty. Note that since he can guarantee a positive payoff after
observing v > x, type v of buyer 1 never submits a bid of x1(v) < x, and never submits a bid
of x1(v) = x unless he is guaranteed to win the auction with such a bid. Now, without loss of
generality, let buyer 2 be such that (i) x2 = x and (ii) he wins with positive probability if he
submits a bid of x, or just above x in case he does not bid x with positive probability. The above
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arguments imply that buyer 2’s payoff of winning with a bid of x is at most
∫ x

v (v −x) dF (v) < 0.
Thus, it is suboptimal for buyer 2 to submit a bid of x, a contradiction.55 Thus, buyer 1 always
abstains after observing a negative valuation, which also implies that all uninformed buyers
abstain with probability 1.

Given that all uninformed buyers abstain, the unique best response for buyer 1 after observing
a valuation v > 0 is to submit a bid of x1(v) = 0. Thus, the equilibrium of Γ{1} is essentially
unique56 and given by the following profile of strategies:

• After observing the valuation v ∈ V , the informed buyer bids x∗
1(v) given by

x∗
1(v) =

0 if v ≥ 0,

∅ otherwise;

• Every buyer i ̸= 1 abstains from bidding, i.e., it holds that

x∗
i = ∅, ∀ ∈ I \ {1}.

To conclude the proof Claim 5, consider the equilibrium described in the bullet points above.
We want to show that U

{1}
1 > 0, U

{1}
j = 0 for j > 1, and Π{1} = 0. That all uninformed buyers

earn an equilibrium payoff equal to 0 follows immediately from the fact that they all abstain
from bidding. That Π{1} = 0 instead follows from the fact that the only active buyer, i.e., buyer
1, only makes an offer of 0 in equilibrium. Finally, to see why buyer 1 earns a strictly positive
overall equilibrium payoff U

{1}
1 , notice that by definition he earns a payoff of U

{1}
1 = S −c, which

is strictly positive by assumption.

To see why infσ∈Ere Π(σ) = 0, suppose that buyers expect that only buyer 1 acquires information
during the research phase. Because of Claims 4, 5, and 6, it is easy to verify that this outcome
can be supported in equilibrium. But then, Claim 6 implies that infσ∈Ere Π(σ) = 0, as required.

Due diligence game. Suppose µ ≤ 0 and c < S. Since c < S, it holds that x̂ < 0. Therefore,
Π(x) = x · (1 − F (x)) for all x ≥ 0, which implies that xdd is the unique equilibrium winning bid
of the due diligence game (see Lemma 8, which does not require Assumption 4). Furthermore,
since c < S, it holds that x̌ > 0. Therefore, we have that

inf
σ∈Edd

Π(σ) = Π(xdd) = max
x∈R

x · [1 − F (x)] = max
x∈[0,x̌]

x · [1 − F (x)] > 0,

55Technically, it could be that buyer 2 does not submit a bid of x with positive probability. However, then
a similar argument shows that his payoff conditional on winning with any bid close enough to x is negative,
contradicting the fact that x2 = x.

56After observing a valuation of v = 0, buyer 1 could either abstain or submit a bid of x1(0) = 0. However,
this is a probability-zero event and does not affect the agents’ payoffs.
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which implies that due diligence is strictly optimal, as required. This concludes the proof of
Proposition 4.

Q.E.D.

C Best-case Equilibrium Selection

In this Appendix, we consider the case where the seller’s goal is to maximize her best-case
equilibrium revenue, i.e., the case where her problem is given by (P’). Our analysis proceeds as
follows: We first prove Proposition 5 and Corollary 3. Then, we show that for any c > 0 and
µ > 0, we can always find a distribution F of buyers’ valuation consistent with µ such that due
diligence is strictly best-case optimal.

Proof of Proposition 5

This proof is divided into three parts, corresponding to the three bullet points in the statement
of the proposition. Throughout, we make extensive use of results in the proofs of Proposition 1,
Proposition 2 and Proposition 4.

Part 1: Our goal is to show that there exists a c′ ∈ (0, min{S, c̄}) such that research is
strictly best-case optimal whenever c < c′. As a first step, we show that the information choice
configuration where all buyers acquire information with the same probability

α∗ = 1 −
[

c

U
{i}
i + c

] 1
N−1

(24)

constitutes a symmetric equilibrium outcome of the research phase, irrespective of whether µ > 0
or µ ≤ 0.57 To see this, fix any buyer i ∈ I. Given the other buyers’ information choices, he
faces the following trade-off:

• If he does not acquire information during the research phase, Lemmas 3, 4 and 5 in case
µ > 0 (or Claims 4, 5 and 6 in case µ ≤ 0) imply that his payoff will be given by

Uno
i = 0.

• Instead, if he acquires information during the research phase, Lemmas 3, 4 and 5 in case
µ > 0 (or Claims 4, 5 and 6 in case µ ≤ 0) imply that his payoff will be given by

Uyes
i = (1 − α∗)N−1 · U

{i}
i − c ·

(
1 − (1 − α∗)N−1

)
.

Thus, buyer i is indifferent if and only if Uno
i = Uyes

i , which is equivalent to equation (24).
This proves that the information choice configuration where all buyers acquire information with
symmetric probability α∗ ∈ (0, 1) indeed constitutes an equilibrium outcome of the research
phase, irrespective of whether µ > 0 or µ ≤ 0.

57See Lemma 5 or Claim 6 for a definition of U
{i}
i > 0.
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Now, observe that as c ↓ 0, we have α∗ → 1. This implies that, holding fixed this equilibrium
of the research game σ∗ ∈ Ere, as the information cost becomes smaller, the probability that at
least two buyers become informed during the research phase converges to 1. In turn, because
the continuation equilibrium revenue for the seller is given by ΠJ = S whenever |J | ≥ 2, i.e.,
whenever at least two buyers are informed during the bidding phase (Lemma 4 or Claim 5), we
conclude that

lim
c↓0

sup
σ∈Ere

Π(σ) → S.

On the other hand, from Proposition 0, Proposition 2 and the proof of Proposition 4, we know
that there exists ε > 0 such that

sup
σ∈Eno

Π(σ) = max{0, µ} < S − ε

and
sup

σ∈Edd

Π(σ) ≤ max
{

µ, max
x≥0

x · (1 − F (x))
}

< S − ε

for all c > 0. This concludes the proof of Part 1.

Part 2: Suppose µ > 0. We want to show that there exists a cost threshold c′′ ∈ [c′, S − µ]
such that no-information is strictly best-case optimal whenever c ∈ (c′′, c̄). We first prove an
auxiliary lemma.

Lemma 23. Fix any c ∈ (0, c̄). The following holds:

sup
σ∈Ere

Π(σ) < max
{

µ, S − c − (c/S)2 (S − c − µ)
}

.

Proof of Lemma 23. In the equilibrium σ ∈ Ere where only one buyer conducts research with
positive probability, we have Π(σ) < µ, by Lemma 5. By Lemmas 3 and 5, no equilibrium exists
where no buyer conducts research with positive probability. Thus, it only remains to consider
equilibria where at least two buyers conduct research with positive probability. Fix any such
equilibrium σ∗ ∈ Ere. Because of Lemmas 3, 4 and 5, σ must feature a subset of buyers J ⊆ I

with |J | ≥ 2 such that all buyers i ∈ J conduct research with probability αi ∈ (0, 1), while all
buyers i /∈ J refrain from conducting research.

Any buyer i ∈ J must be indifferent between conducting research and not:

U
{i}
i

∏
j∈J\{i}

(1 − αj) − c ·

1 −
∏

j∈J\{i}
(1 − αj)

 = 0. (25)

Since U
{i}
i = U

{j}
j for all i, j ∈ J (Lemma 5), this implies that all buyers in J must conduct

research with the same probability, i.e., αi = α for all i ∈ J . In turn, this implies that α ∈ (0, 1)
solves

(1 − α)|J |−1 = c

U
{i}
i + c

. (26)
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Now, observe that in the continuation game after only one buyer became informed during the
research phase, the sum of the seller’s and buyers’ joint surplus generated by trade must be
strictly smaller than the maximum socially available surplus S, since trade occurs with positive
probability even if the valuation is negative (Lemma 5). Thus, it holds that Π{i}

i + U
{i}
i + c < S,

which implies:
Π{i}

i < S −
(
U

{i}
i + c

)
= S − c

(1 − α)|J |−1 , (27)

where the equality follows from equation (26).

The seller’s revenue under σ∗ is therefore given by:

Π(σ∗) = S − (1 − α)|J |(S − µ) + Jα(1 − α)|J |−1
(
Π{i}

i − S
)

< S − (1 − α)|J |(S − µ) − |J |αc

< S − c − (1 − α)|J |(S − µ − c)

= S − c −
(

c

U
{i}
i + c

) |J|
|J|−1

(S − µ − c)

< S − c − (c/S)
|J|

|J|−1 (S − µ − c)

≤ S − c − (c/S)2 (S − µ − c),

where the first inequality follows from (27), the second inequality follows from the fact that
(1 − α)|J | > 1 − |J |α, the third inequality follows from U

{i}
i + c < S, and the final inequality

obtains from the fact that |J |
|J |−1 ≤ 2 and c < c̄ < S. We conclude that

sup
σ∈Ere

Π(σ) < max
{

µ, S − c − (c/S)2 (S − c − µ)
}

,

as required.

Now, observe that

µ ≥ S − c =⇒ max
{

µ, S − c − (c/S)2 (S − c − µ)
}

= µ.

Thus, Lemma 23 shows that supσ∈Ere Π(σ) < µ whenever c ≥ S − µ.

On the other hand, note that Lemma 7 implies that supσ∈Edd Π(σ) = max{x̂, Π(xdd)}. Since
µ > 0, we have that x̂ < µ. Moreover, since W (xdd) = −c +

∫ v̄
xdd(v − xdd) dF (v) ≥ 0 and

Π(xdd) = xdd · (1 − F (xdd)), it holds that

Π(xdd) ≤ Π(xdd) + W (xdd) = −c +
∫ v̄

xdd
v dF (v) < S − c.

Thus, whenever c ≥ S − µ, we have:

sup
σ∈Edd

Π(σ) < max{µ, S − c} = µ.
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Since
sup

σ∈Eno
Π(σ) = µ,

the proof of Part 2 is now complete.

Part 3: Finally, suppose that µ ≤ 0. Our goal is to show that there exists a cost threshold
c′′ ∈ [c′, S) such that due diligence is the strictly best-case optimal whenever c ∈ (c′′, S). Since
no-information leads to an equilibrium revenue of 0, it cannot be optimal. We now prove
preliminary claims about research and due diligence.

Claim 7. When µ ≤ 0, the set of possible equilibrium revenues under research is given by{
Π(σ) : σ ∈ Ere

}
=
{

Π(σJ) : J ⊆ I, J ̸= ∅
}

,

for some Π(σJ) that satisfy limc↑S Π(σJ) = 0 and limc↑S
∂
∂cΠ(σJ) = 0.

Proof of Claim 7. From Claims 4, 5, and 6, we know that no equilibrium exists where no buyer
conducts research with positive probability. Similarly, these claims imply that in any equilibrium
σ{i} where only one buyer (namely, buyer i) conducts research with positive probability, this
buyer conducts research with probability 1, and the seller’s revenue is Π(σ{i}) = 0. Moreover,
in any equilibrium where one buyer conducts research with probability 1, all other buyers have
to conduct research with probability 0. Thus, in any remaining equilibrium candidate, a subset
of buyers J ⊆ I conducts research with positive probability αi(J) > 0, but not with certainty.
In fact, for any given J such that |J | ≥ 2, one can verify that unique equilibrium σJ with
these constraints exists. Fix any J with |J | ≥ 2 and the corresponding equilibrium σJ . In this
equilibrium, all buyers i ∈ J are indifferent between conducting research and not. Conducting
research leads to a payoff of S − c if no other buyer also conducts research and a payoff of −c

otherwise (Claims 5 and 6). On the other hand, remaining uninformed always leads to a payoff
of 0 (Claims 4, 5 and 6). Therefore,

S ·

 ∏
j∈J\{i}

(1 − αj(J))

− c = 0, ∀i ∈ J,

which implies that αi(J) = α(J) := 1 −
(

c
S

) 1
|J|−1 for all i ∈ J . In turn, the corresponding

equilibrium revenue is given by

Π(σJ) =
(
1 − (1 − α(J))|J | − |J |α(J)(1 − α(J))|J |−1

)
S = S ·

1 + (|J | − 1)
(

c

S

) |J|
|J|−1

− c|J |.

Note that limc↑S Π(σJ) = 0. Furthermore,

∂

∂c
Π(σJ) = −|J | ·

(
1 −

(
c

S

) 1
|J|−1

)
< 0,

which implies that limc↑S
∂
∂cΠ(σJ) = 0. Hence, all possible equilibrium revenues under research
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satisfy the properties stated in the claim.

Claim 8. When µ ≤ 0, in any equilibrium of the due diligence game σ ∈ Edd, the seller’s
equilibrium revenue is given by Π(σ) = Π(xdd) = xdd·

(
1 − F (xdd)

)
. Moreover, limc↑S Π(xdd) = 0

and limc↑S
∂
∂cΠ(xdd) = −1.

Proof of Claim 8. Suppose µ ≤ 0, and let σ ∈ Edd. From the proof of Proposition 4, we know
that Π(σ) = Π(xdd) = xdd ·

(
1 − F (xdd)

)
. Recall that

x̄ := arg max
x≥0

x · [1 − F (x)] > 0.

By Assumption 2, we have xdd = min{x̌, x̄}, where x̌ is the unique solution to W dd(x̌) = 0.
Since x̌ = x̌(c) is continuously decreasing in c and satisfies limc↑S x̌(c) = 0, there exists a c′ < S

such that xdd = x̌ whenever c ≥ c′. Note that

∂

∂c
x̌(c) = − 1

1 − F (x̌)

and
∂

∂c
Π(xdd) = ∂

∂c
xdd ·

(
1 − F (xdd) − xddf(xdd)

)
< 0.

Thus, Π(σ) → 0 as c ↑ S and

lim
c↑S

∂

∂c
Π(xdd) = −1 − F (0) − 0f(0)

1 − F (0) = −1.

This completes the proof of the claim.

To conclude the proof of Proposition 5, note that by Claim 7, the set of possible equilibrium
revenues under research can be described as a finite set given by{

Π(σJ) : J ⊆ I, J ̸= ∅
}

where Π(σJ) = 0 if |J | = 1, and

Π(σJ) = S ·

1 + (|J | − 1)
(

c

S

) |J|
|J|−1

− c|J |,

otherwise. On the other hand, the seller’s unique equilibrium revenue under due diligence is
Π(xdd) (Claim 8). Therefore, we need to show that Π(σJ) < Π(xdd) for all J ̸= ∅ as c ↑ S.

If |J | = 1, this is obvious. So, suppose |J | ≥ 2. Then, since Π(xdd) = xdd ·
(
1 − F (xdd)

)
> 0

for c ∈ (0, S), the ratio Π(σJ )
Π(xdd) is well-defined, non-negative, and continuous in c for c ∈ (0, S).

Moreover, by L’Hopital’s rule implies:

lim
c↑S

Π(σJ)
Π(xdd) = lim

c↑S

∂
∂cΠ(σJ)
∂
∂cΠ(xdd)

= 0.
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Thus, there exists c′′(J) ∈ [0, S) such that Π(σJ )
Π(xdd) < 1 for all c ∈ (c′′(J), S). Let c′′ :=

maxJ⊆I, J ̸=∅ c′′(J). Then

sup
σ∈Edd

Π(σ) = xdd ·
(
1 − F (xdd)

)
> max

J⊆I, J ̸=∅
Π(σJ) = sup

σ∈Ere
Π(σ)

for all c ∈ (c′′, S), as required.

Q.E.D.

Proof of Corollary 3

As ω → x̌, S ↓ c. The result then follows from Proposition 5

Q.E.D.

We now state and proof Proposition 6, which shows that due diligence can be best-case optimal
also when µ > 0.

Proposition 6. Under best-case selection, for any information cost c > 0 and expected valuation
µ > 0, there exists a distribution F consistent with µ such that due diligence is strictly best-case
optimal.

Proof of Proposition 6

By Lemma 23, we know that the equilibrium revenue under research is bounded above by a
number strictly smaller than S − c. We now show that under due diligence, we can find a
distribution F which achieves an equilibrium revenue arbitrarily close to S − c. Throughout, we
focus on distributions for which information acquisition is socially beneficial, i.e., S − c − µ > 0
since, otherwise, revenue would be maximized by not allowing for any information acquisition.

Lemma 24. Fix any µ > 0, c > 0, S > µ + c, and δ ∈
(
0, (S + c) −

√
2c(S + c)

)
.

Let

F (v) =



0 if v ≤ −K1A,

2δ
K2

1
· (v + K1A) if − K1A < v ≤ K1,

1 + 2 c
K2

2
· (v − K1 − K2) if K1 < v ≤ K1 + K2,

1 otherwise,

where K1 = S − c + δ (1 + 2A) > 0, K2 = 2c
1− 2δ

K1
(1+A) > 0, and A =

√
S−µ

δ > 0.

Then, supσ∈Edd Π(σ) ≥ S − c − δ.

Proof of Lemma 24. Note that, by construction, we have
∫ v̄

v v dF (v) = µ and
∫ v̄

0 v dF (v) = S.
Furthermore, together with c > 0, F satisfies the assumptions in Section 2.58

58F does not admit a continuous density. However, you can approximate it arbitrarily closely by a distribution

61



In what follows, we show that a bid of K1 > 0 leads to a non-negative expected payoff to the
winner (W (K1) ≥ 0) and an expected revenue of Π(K1) = S −c−δ. Since all buyers submitting
a bid equal to

arg max
x≥0:W (x)≥0

Π(x)

constitutes an equilibrium of the due diligence game, this would imply that

sup
σ∈Edd

Π(σ) ≥ Π(K1) = S − c − δ,

thus proving the lemma.

Toward this goal, note that

W dd(K1) = −c +
∫ K1+K2

K1
(v − K1) dF (v) = −c +

∫ K2

0

2c

K2
2

z dz = 0.

Thus, W (x) ≥ 0 for all x ∈ [0, K1]. Furthermore, a buyer who wins with a bid of K1 conducts
due diligence, since K1 > S − c > µ, and therefore W dd(K1) = 0 > µ − K1 = W su(K1).
Therefore,

Π(K1) = K1 · (1 − F (K1)) = K1 · 2c

K2
= S − c − δ,

as required.

To conclude the proof of Proposition 6, take any S > µ + c, and consider the distribution F

described in Lemma 24 for 0 < δ ≤ min
{ (

c
S

)2 (S − c−µ), (S + c)−
√

2c(S + c)
}

. Then, it holds
that

sup
σ∈Ere

Π(σ) < S − c − δ ≤ sup
σ∈Edd

Π(σ),

where the first inequality follows from Lemma 23 and µ < S − c, and the second inequality from
Lemma 24.

Q.E.D.

with a continuous denstity.
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Supplementary Appendix

D Repeated Due Diligence

In this Appendix, we consider a two-period extension of our baseline due diligence model where
the seller runs a second informal auction with the remaining buyers in case the winner of the
initial auction withdraws after due diligence. We call this model the repeated due-diligence
model. To streamline the exposition, we assume that there is no discounting, that buyers observe
the winning bid of the first round, and restrict attention to equilibria where buyers submit
deterministic bids.

The possibility of running a second auction produces two opposing effects on equilibrium revenue.
On the one hand, a second auction increases the overall probability of a sale, pushing revenue
up. On the other hand, since losing buyers can still hope to purchase the good in the second
period in case the initial winner reneges, buyer competition in the initial auction is dampened.
In what follows, we show that despite these equilibrium effects, our main result is unaffected:
Due diligence remains the strictly optimal timing of information acquisition whenever stakes are
sufficiently high. Formally:

Proposition 7. Fix any distribution F and information cost c > 0 satisfying the assumptions
of Section 2. There exists a threshold k∗ > 0 such that, if ṽ is replaced by its mean-preserving
k-scaling ṽ′

k, repeated due diligence produces a revenue strictly larger than µ whenever k > k∗.

Proof of Proposition 7

Fix any feasible distribution F and an information cost c > 0. From now on, we use k-subscripts
to indicate pieces of notation corresponding to the mean-preserving k-scaling ṽ′

k. For example,
we let Fk denote the cdf associated with ṽ′

k, while x̂k denotes the threshold bid defined by
equation (2). We begin by showing the following preliminary lemma.

Lemma 25. For all sufficiently large k > 0, it holds that x̂k < 0.

Proof of Lemma 25. By definition, it holds that

c =
∫ x̂k

vk

(x̂k − v) dFk(v).

Changing the variable of integration to y = 1
k [v + (k − 1)µ], we obtain that

c

k
=
∫ ak

v
(ak − y) dF (y),

where ak := 1
k [x̂k + (k − 1)µ]. Now, notice that ak = x̂(c/k), where x̂(·) is the function corre-

sponding to the cdf F defined implicitly by equation (2) (see footnote 20). Since limc↓0 x̂(c) = v,
we obtain that

x̂k

k
→ v − µ < 0, as k ↑ ∞.

But then, it must be that limk↑∞ x̂k = −∞, implying the result.
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Lemma 25 implies that it is without loss to assume that x̂ < 0 for the purpose of this proof.
Given Lemma 1, it follows that no buyer would ever buy the good sight unseen in equilibrium.
The remainder of this proof proceeds in two steps. First, we prove the proposition under the
assumption that there are only two buyers. We then show that, relative to this scenario, the
seller’s worst-case equilibrium revenue is larger when N ≥ 3.

Proof of Proposition 7: Part 1

Suppose that N = 2, i.e., I = {1, 2}. For every z ∈ [0, v̄], let F z denote the truncation of the
distribution F at z, i.e., F z(x) = F (x)/F (z) for all x ∈ [v, z]. Similarly, let x̂z, x̌z, Πz(x) and
W dd,z(x) be the mathematical objects corresponding to x̂, x̌, Π(x) and W dd(x), respectively.
One can verify that ∂

∂z x̂z > 0 and ∂
∂z x̌z > 0 for all z ∈ (0, v̄). Thus, given that by assumption

x̂ < 0, it holds that x̂z < 0 as well.

To analyze the two-period extension of our model, we use a backward induction approach.
Suppose in period t = 1, buyer i ∈ I won the initial auction with a bid of z ≥ 0 but, after
conducting due diligence, decided to renege on his offer. Because this buyer knew the seller
would exclude him from the second informal auction of period t = 2, it must be the case that
he reneged after observing a realized valuation of v < z (Lemma 1). In turn, this implies that
buyer j ̸= i (and the seller) perceives the good’s valuation as distributed according to Fz when
entering period t = 2. In other words, in period t = 2, buyer j is more pessimistic about the
good’s true valuation relative to the beginning of the game.

Now, observe that since N = 2, buyer j is the only bidder left in period t = 2. Therefore,
in no equilibrium, he would buy the good for a price larger than 0 in this continuation game.
However, it could be that buyer j has become so pessimistic about ṽ that he prefers to abstain
from bidding over the prospect of purchasing the good at a price of 0. (For example, this would
be the case if z = 0.) Thus, the remaining buyer always secures a continuation equilibrium
payoff of

uz := max
{

0, W dd,z(0)
}

in period t = 2, while the seller always collects a revenue of 0 in the same period.

The equilibrium payoff uz ≥ 0 is crucial to determine buyers’ bidding incentives in the initial
auction. To see this, note that no buyer would submit a bid x > 0 such that W dd(x) < uz in
period t = 1, unless he expects to lose the auction with certainty. This implies that buyers’
relevant range of initial bids is given by R(z) := [0, x̌∗(z)],59 where

W dd(x̌∗(z)) = uz.

At the same time, uz depends on z ≥ 0, which represents the winning bid in period t = 1.
Since standard Bertrand arguments imply that buyers must submit the offer that maximizes the

59Note that R(z) ⊆ R, i.e., the relevant range of bids shrank relative to the baseline model. This follows from
the possibility of purchasing the good in period t = 2, represented by uz ≥ 0.
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seller’s revenue Π(x) = x·[1−F (x)] among the bids in R(z) in any equilibrium, we conclude that
any initial equilibrium winning bid z∗ must be a solution to the following fixed-point problem:

z∗ = arg max
x∈R(z∗)

Π(x). (28)

Standard arguments show that the fixed-point problem in (28) admits a unique solution z∗ > 0.
Thus:

Lemma 26. In the repeated due diligence model, if N = 2 and x̂ < 0, the seller earns a revenue
equal to Π(z∗) in any equilibrium, where where z∗ is the unique solution to (28).

Given Lemma 26, our goal is to show that Π(z∗) > µ as k ↑ ∞.

Toward this goal, consider the bid xa = aµ, where a is a positive scalar such that a·(1−F (µ)) > 1.
As a first step, we show that Πk(xa) > µ for all sufficiently large k > 0, where

Πk(x) := x · (1 − Fk(x)).

To see this, notice that for all y ∈ R, we have that

Fk(y) = F

(1
k

(y + (k − 1) · µ

)
→ F (µ), as k ↑ ∞.

Therefore, as k ↑ ∞, it holds that

Πk(xa) = xa · (1 − Fk(xa)) → xa · (1 − F (µ)) > µ

since a · (1 − F (µ)) > 1 by assumption.

To complete the proof of Part 1, we are left to show that xa ∈ Rk(z∗
k) for all k > 0 sufficiently

large, where z∗
k is the unique equilibrium winning bid solving the fixed-point problem (28)

corresponding to Fk. To see why this is the case, suppose by contradiction that there exists a
sequence (kn)n with kn ↑ ∞ such that xa ̸∈ Rk(z∗

k), i.e., xa > x̌∗
kn

(z∗
kn

) for all n ∈ N. Observe
that W dd,z(0) ≤ W dd,z′(0) whenever z < z′. Therefore, since by definition z∗

kn
≤ x̌∗

kn
(z∗

kn
), we

obtain that
W

dd,z∗
kn

kn
(0) ≤ W dd,xa

kn
(0).

Now, notice that

W dd,xa

kn
(0) = −c +

∫ xa

0
v dF xa

kn
(v)

= −c + 1
Fkn(xa)

∫ xa

0
v · fkn(v) dv

≤ −c + f̄kn · 1
Fkn(xa)

∫ xa

0
v dv

= −c + f̄

kn
· 1

Fkn(xa) ·
(1

2 (xa)2
)

,
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where f̄k = maxv∈Vk
fk(v) for all k > 0, and f̄ = maxv∈V f(v) < ∞. Therefore,

lim
n↑∞

W dd,xa

kn
(0) = −c < 0.

In turn, this implies that u
z∗

kn
kn

= 0 for all n > 0 sufficiently large. But then, x̌∗
kn

(z∗
kn

) = x̌kn

eventually. Since x̌k → +∞ as k ↑ ∞, we derived a contradiction.

This shows that, when N = 2, as long as stakes are sufficiently high, repeated due diligence
leads to an expected revenue strictly larger than µ in every equilibrium, as required.

Proof of Proposition 7: Part 2

Now, suppose that N ≥ 3. In period t = 2, after an initial winning bid of z ≥ 0 is withdrawn,
the remaining buyers (and the seller) perceive the good’s valuation as drawn from the cdf F z.

Since F z is regular60 and x̂z ≤ x̂ < 0, arguments similar to those used in the proof of Lemma
7 can be used to conclude that, in any continuation equilibrium of period t = 2, the following
holds:

• If x̌z < 0, all buyers abstain, and the seller earns a revenue of Π2(z) = 0; or

• If x̌z ≥ 0, the winning bid is

xdd,z := arg max
x∈[0,x̌z ]

x · (1 − F z(x))

and the seller earns a revenue of Π2(z) = Πz(xdd,z) = xdd,z · (1 − F z(xdd,z)) ≥ 0.

The above result has the following two important implications: First, the seller’s continuation
revenue Π2(z) is weakly increasing in z ≥ 0.61 Second, the payoff any remaining buyer can obtain
in any continuation equilibrium of period t = 2 is bounded above by

uz :=

0 if x̌z < 0,

W dd,z(xdd,z) otherwise.

Now, let us consider the buyers’ bidding incentives in period t = 1. As a first step, note that
the buyers know that the seller would evaluate each initial offer z ≥ 0 according to the expected
equilibrium revenue Π1(z) that offer would induce, which is given by

Π1(z) := z · (1 − F (z)) + Π2(z).

Note that Π1(z) ≥ z · (1 − F (z)). Furthermore, since Π2(z) is weakly increasing in z ≥ 0, we
have that Π1(z) is strictly increasing in z whenever the same is true for z 7→ z · (1 − F (z)).

In any equilibrium, at least two buyers submit the same bid z∗ maximizing (at least locally)
60The regularity of F implies the regularity of F z.
61This follows from ∂

∂z
x̌z ≥ 0 and the fact that z 7→ y · (1 − F z(y)) increases with z ≥ 0 for all y ≥ 0.
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Π1(z) over a relevant range R(z∗) that includes the interval [0, x̌∗(z∗)], where

W dd(x̌∗(z∗)) = uz∗
.

Now, notice that, relative to the case where N = 2, when N ≥ 3, the payoff uz has increased.
In turn, this implies that the relevant range of initial bids when N ≥ 3 is a super-set of the
corresponding set in the case where N = 2. Given this, suppose that when N = 2, repeated due
diligence guarantees an equilibrium revenue z∗ · (1 − F (z∗)) strictly larger than µ to the seller.
(By Part 1 of this proof, this is the case whenever the stakes are sufficiently high.) We now show
that, when N ≥ 3, the seller cannot earn a strictly lower expected revenue in any equilibrium.
To see why this is the case, note that, when N ≥ 3, the following statements hold:

• Because Π2(z) is weakly increasing in z ≥ 0, the initial bid z∗ is located to the left of any
local maximum point of z 7→ Π1(z).

• The initial bid z∗ must be feasible in any equilibrium.

• We have that Π1(z∗) ≥ z∗ · (1 − F (z∗)) > µ.

Together, the above statements imply the seller earns a revenue strictly larger than µ in any
equilibrium when N ≥ 3. Since this must be true whenever the stakes are sufficiently high, the
proof of Proposition 7 is completed.

Q.E.D.
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E Noisy Information Processing

In this Appendix, suppose that after acquiring information, any buyer i receives a signal about
the common-valuation of the good given by si = sθ

i = v + θεi, where θ > 0 is a scale parameter
and εi

i.i.d.∼ Gε is a noise term. Throughout this Appendix, we assume that the distribution Gε

is symmetric around 0 and that log gε is strictly concave, where gε > 0 is the density of Gε. This
implies that buyers’ signals are (strongly) affiliated in the sense of Milgrom and Weber (1982).62

In what follows, we show that as long as θ is sufficiently small, (i) the equilibrium of the research
game where only one buyer acquires information while the other buyers remain uninformed
continues to exist, and (ii) the revenue the seller earns in this equilibrium is still bounded above
by µ. In other words, we prove the following proposition.

Proposition 8. When information processing is noisy, for every set of primitives (c, F, G),
there exists θ∗ > 0 such that the seller strictly prefers granting no access to information over
allowing the buyers to conduct research, i.e.,

inf
σ∈Ere

Π(σ) < µ = inf
σ∈Eno

Π(σ),

whenever θ < θ∗.

To prove Proposition 8, it is useful to generalize the notation used for the proof of Proposition
1 by making explicit the dependence of equilibrium variables on the scale parameter θ > 0. For
every subset J ⊆ I, let ΓJ(θ) denote the continuation (bidding) game that follows a research
phase where the buyers doing research are exactly those in J . Given this, denote with UJ

i (θ)
buyer i’s payoff, and with ΠJ(θ) the seller’s revenue in a particular equilibrium of the continua-
tion game ΓJ(θ), respectively. The following sequence of lemmas characterizes these payoffs as
a function of |J | ∈ {0, 1, 2} when θ is small.

Lemma 27. Suppose |J | = 0, i.e., J = ∅. Then, in any equilibrium of the continuation game
Γ∅(θ), buyers’ payoffs are given by U∅

i (θ) = 0.

The proof of Lemma 27 is identical to the one of Lemma 3. If no buyer acquired information
during the research phase, buyers compete à la Bertrand for the expected valuation of the good
µ during the bidding phase. Hence, noisy signals do not alter equilibrium predictions relative
to the perfect-information benchmark when |J | = 0.

Lemma 28. Suppose |J | = 2. Then, there exists θtwo
0 > 0 such that, for all θ ∈ (0, θtwo

0 ),
there exists an equilibrium of the continuation game ΓJ(θ) where buyers’ payoffs are given by
UJ

i (θ) = 0 if i ̸∈ J and UJ
i (θ) < 0 if i ∈ J .

Proof of Lemma 28. Fix some θ > 0, and without loss of generality, suppose that J = {1, 2}.
Denote by Hθ(·|y) the cdf of sθ

1 given that sθ
2 = y (i.e., Hθ(x|y) := P(sθ

1 ≤ x|sθ
2 = y) for all x ∈ R),

and let hθ(·|y) be the corresponding pdf of Hθ(·|y). Also, let wθ(x, y) := E[ṽ|sθ
1 = x, sθ

2 = y] be
the conditional expectation of ṽ given sθ

1 = x and sθ
2 = y. Note that wθ(·, ·) is strictly increasing

62For a proof of this statement, see, e.g., Lehmann, Romano, and Casella (1986).
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in both its arguments.63 In what follows, we show that as long as θ is sufficiently small, the
following profile of strategies constitutes an equilibrium of the continuation game ΓJ(θ):

• All uninformed buyers abstain from bidding, i.e., x∗
i = ∅ for all i ̸∈ J .

• Upon receiving signal sθ
i = y, buyer i ∈ J = {1, 2} submits a bid x∗

θ(y) given by

x∗
θ(y) :=

∅ if y < s∗
θ∫ y

s∗
θ

wθ(z, z) dLθ(z|y) if y ≥ s∗
θ

where s∗
θ is the unique solution to

∫ s∗
θ

−∞
wθ(s∗

θ, z) dHθ(z|s∗
θ) = 0,

and Lθ(z|y) is a cdf given by

Lθ(z|y) := exp
(

−
∫ y

z

hθ(t|t)
Hθ(t|t) dt

)
.

To prove that the above candidate equilibrium is indeed an equilibrium for θ sufficiently small, we
need to show that no buyer has a strict incentive to deviate. From Chapter 6.4 of Krishna (2009),
we know that given the candidate equilibrium strategies the other buyers play, the strategy each
informed buyer i ∈ J = {1, 2} plays is a best response. Therefore, it remains to show that no
uninformed buyer would strictly benefit by participating in the auction rather than abstaining.
To do so, we first prove the following two claims.

Claim 9. It holds that
lim inf

θ↓0
x∗

θ(y) ≥ y ∀y ∈ (0, v̄). (29)

Proof of Claim 9. Let (θn) be a decreasing sequence such that θn ↓ 0, and fix any y ∈ (0, v̄).
Observe that since s∗

θ → 0 as θ ↓ 0, we can assume that y > s∗
θn

for all n ∈ N. Given this, fix any
δ ∈ (0, y − s∗

θ1
). Because z 7→ wθ(z, z) is increasing, we know that wθ(z, z) ≥ 0 for all z ≥ s∗

θ.
Thus, it holds that

x∗
θn

(y) =
∫ y−δ

s∗
θn

wθn(z, z) dLθn(z|y) +
∫ y

y−δ
wθn(z, z) dLθn(z|y)

≥ wθn(y − δ, y − δ) ·
(
1 − Lθn(y − δ|y)

)
for all n ∈ N. Therefore,

lim inf
n

x∗
θn

(y) ≥
(

lim inf
n

wθn(y − δ, y − δ)
)

·
(
1 − lim sup

n
Lθn(y − δ|y)

)
.

Since lim infn wθn(y − δ, y − δ) = y − δ, it is sufficient to show that lim supn Lθn(y − δ|y) = 0.

63This follows from the strict concavity of log gε.
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Toward this goal, observe that the fact that z 7→ ez is increasing implies that

lim sup
n

Lθn(y − δ|y) = exp
(

− lim inf
n

∫ y

y−δ

hθn(t|t)
Hθn(t|t) dt

)
.

Thus, to prove that lim supn Lθn(y − δ|y) = 0, it is sufficient to verify that

lim inf
n

∫ y

y−δ

hθn(t|t)
Hθn(t|t) dt = ∞. (30)

Now, observe that

lim inf
n

∫ y

y−δ

hθn(t|t)
Hθn(t|t) dt ≥

∫ y

y−δ
lim inf

n

hθn(t|t)
Hθn(t|t) dt ≥

∫ y

y−δ
lim inf

n
hθn(t|t) dt

where the first inequality follows from Fatou’s lemma, and the second inequality comes from the
fact that Hθ(t|t) ∈ [0, 1] and hθ(t|t) ≥ 0 for all t ∈ (y − δ, y). In what follows, we show that

lim inf
n

hθn(t|t) = ∞

for all t ∈ (y − δ, y), thus proving equation (30). To do so, fix any t ∈ (0, v̄). One can verify that

hθ(t|t) = 1
θ

·
∫ v̄

v gε
(

t−v
θ

)2
f(v) dv∫ v̄

v gε
(

t−v
θ

)
f(v) dv

.

Now, let m > 0 be any positive number such that gε(m) > 0. Since gε(·) is unimodal and
symmetric around 0, it holds that

∫ v̄
v gε

(
t−v

θ

)2
f(v) dv∫ v̄

v gε
(

t−v
θ

)
f(v) dv

≥
gε(m) ·

(
minv∈[t−θm,t+θm] f(v)

)
·
(
Gε(m) − Gε(−m)

)
(

maxv∈[v,v̄] f(v)
)

·
(
Gε

(
t−v

θ

)
− Gε

(
t−v̄

θ

)) ,

where both the numerator and denominator are well-defined objects since f > 0 is continuous
by assumption. Thus,

lim inf
n

∫ v̄
v gε

(
t−v
θn

)2
f(v) dv∫ v̄

v gε

(
t−v
θn

)
f(v) dv

≥ lim inf
n

gε(m) ·
(

minv∈[t−θnm,t+θnm] f(v)
)

·
(
Gε(m) − Gε(−m)

)
(

maxv∈[v,v̄] f(v)
)

·
(
Gε

(
t−v
θn

)
− Gε

(
t−v̄
θn

))
= gε(m) · f(t) · (Gε(m) − Gε(−m))

maxv∈[v,v̄] f(v) > 0.

Given this observation, we conclude that lim infn hθn(t|t) = ∞ for all t ∈ (y − δ, y), as required.
This completes the proof of the claim.

Claim 10. For every θ > 0, let σ̃θ := max
{
sθ

1, sθ
2
}

be the maximum of the informed buyers’
signals, and denote by fσθ

(s) > 0 its corresponding density defined on the support (σθ, σ̄θ). Then,
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it holds that
lim
θ↓0

fσθ
(s) → f(s)

for all s ∈ (v, v̄).

Proof of Claim 10. For every s ∈ (v, v̄), we have that

fσθ
(s) = 1

θ

∫ v̄

v
2Gε

(
s − v

θ

)
· gε

(
s − v

θ

)
· f(v) dv.

By changing the variable of integration to ε = s−v
θ , we obtain that

fσθ
(s) =

∫ x−v

θ

s−v̄
θ

2Gε(ε) · gε(ε) · f(s − θε) dε.

Note that ∫ ∞

−∞
2Gε(ε) · gε(ε) dε = 1.

Therefore, since f > 0 is continuous, we can apply the Dominated Convergence Theorem to
conclude that fσθ

(s) → f(s) as θ ↓ 0, as required.

Now, fix x > 0 arbitrarily and suppose that an uninformed buyer, say buyer 3, offers such x.
Since informed buyers abstain with strictly positive probability, bidding x ≥ v̄ is strictly sub-
optimal. Thus, assume that x < v̄ from now on. Let Uθ(x) be the payoff buyer 3 would earn
if the other buyers play according to the candidate equilibrium strategies described above. Fix
any δ > 0 small. Since the bidding function s 7→ x∗

θ(s) of the informed buyers is increasing,
Claim 9 implies that for θ sufficiently small, buyer 3 can outbid them only if they both received
a private signal sθ

i = y such that y ≤ x + δ. Therefore, for θ sufficiently small, it holds that

Uθ(x) ≤
∫ x+δ

σθ

(
E[v|σθ = s] − x

)
· fσθ

(s) ds ≤
∫ x+δ

v

(
E[v|σθ = s] − x

)
· fσθ

(s) ds.

Given this, the Dominated Convergence Theorem, together with Claim 10, implies that:64

lim sup
θ↓0

Uθ(x) ≤
∫ x+δ

v
(v − x) dF (v) ≤

∫ x

v
(v − x) dF (v) + δ

(
F (x + δ) − F (x)

)
.

Because δ > 0 can be taken arbitrarily small, we conclude that

lim sup
θ↓0

Uθ(x) ≤
∫ x

v
(v − x) dF (v) < 0.

Therefore, for θ > 0 small enough, no uninformed buyer has a strict incentive to deviate from
abstaining. This shows that there exists θ0 > 0 such that for all θ < θ0, our candidate equilibrium
is indeed an equilibrium, as required.

To complete the proof of the lemma, we need to verify the statements about the buyers’ equilib-
64We can invoke this theorem since E[v|σθ = s] ≤ v̄ and fσθ (s) ≤ maxv∈[v,v̄] f(v) for every s ∈ (σθ, σ̄θ). See

also Claim 10.

71



rium payoff. Fix any θ < θ0. Since the uninformed buyers abstain in the equilibrium described
above, it holds that UJ

i (θ) = 0 for all i ̸∈ J . Finally, to see why the informed buyers i ∈ J

instead obtain a payoff UJ
i (θ) < 0 for θ small enough, note that Claim 9 implies that

lim sup
θ↓0

(
E[ṽ|sθ

i = x] − x∗
θ(x)

)
≤ 0.

This shows that if θ is sufficiently small, no informed buyer can earn a trade surplus that is
larger than the information cost in equilibrium, as required.

Lemma 29. Suppose |J | = 1, i.e., J = {i} for some i ∈ I. Then, there exists θone
0 > 0 such

that, for all θ ∈ (0, θone
0 ), an equilibrium of the continuation game Γ{i} exists where the payoffs

are given by U
{i}
i (θ) > 0, U

{i}
j (θ) = 0 for j ̸= i. Furthermore, Π{i}(θ) < µ.

Proof of Lemma 29. The proof of this statement follows from the results in Engelbrecht-Wiggans,
Milgrom, and Weber (1983),65 and Lemma 5. We omit the details.

We are now ready to prove Proposition 8.

Proof of Proposition 8

Let θ∗ = min{θone
0 , θtwo

0 }, where θone
0 , θtwo

0 > 0 are the thresholds defined in the statements of
Lemmas 29 and 28, respectively. Proposition 8 follows from Lemmas 27, 28 and 29, which jointly
imply that when θ < θ∗, there exists an equilibrium of the overall research game where only one
buyer acquires information while the other buyers remain uninformed. In particular, by Lemma
29, in this equilibrium the seller earns a revenue strictly smaller than µ. Thus, it holds that

inf
σ∈Ere

Π(σ) < µ = inf
σ∈Eno

Π(σ),

whenever θ < θ∗, as required.

Q.E.D.

65In particular, Engelbrecht-Wiggans, Milgrom, and Weber (1983) prove that uninformed buyers always earn
a payoff of 0 in equilibrium. In contrast, the informed buyer’s equilibrium payoff and the seller’s equilibrium
revenue are continuous in θ. While their analysis does not incorporate a reservation value for the seller, their
results do extend to such a setting directly. See also Hendricks, Porter, and Wilson (1994).
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F Commitment to Buy Sight Unseen

In this Appendix, we analyze the due diligence game with buyer commitment. Specifically, a bid
now consists of two elements: the price offer and whether the buyer buys the good sight unseen
or conducts due diligence. Thus, a bid can be represented as a pair (x, m) ∈ X × {su, dd}. Of
course, in equilibrium, a buyer would never commit to conducting due diligence if she preferred
to buy the good sight unseen following that bid. This is because conducting due diligence only
lowers the seller’s expected revenue and therefore her evaluation of the bid. Therefore, this
variant of the model is outcome equivalent to only allowing the buyers to commit to buying the
good sight unseen.

Let W (x, m) := W m(x), R := {(x, m) : W (x, m) ≥ 0}, and

Π(x, m) =

x if m = su,

x · [1 − F (x)] if m = dd.

We now prove the following proposition.

Proposition 9. If the buyers can commit to buying the good sight unseen, due diligence is
strictly optimal if and only if

max
x∈R

x · [1 − F (x)] > µ.

Proof of Proposition 9

As a first step, note that an adjusted version of Lemma 2 continues to hold: A buyer’s offer is
accepted in equilibrium only if it maximizes Π(·, ·) among all submitted bids. Furthermore, any
winning bid (x∗, m∗) must satisfy W (x∗, m∗) ≥ 0. Given this, that maxx∈R x · [1 − F (x)] > µ is
necessary follows since, otherwise, there exists no (x, m) such that W (x, m) ≥ 0 and Π(x, m) > µ.

It remains to prove sufficiency, i.e., that when maxx∈R x · [1 − F (x)] > µ any equilibrium of the
due diligence game σ results in an equilibrium revenue of Π(σ) > µ. We proceed to show that,
in fact, when this is the case, the winning bid has to be equal to (xdd, dd) in any equilibrium,
and thus result in an equilibrium revenue of

xdd ·
[
1 − F (xdd)

]
= max

x∈R
x · [1 − F (x)] > µ.

Claim 11. If xdd ·
[
1 − F (xdd)

]
> µ, in any equilibrium of the due diligence game with buyer

commitment where the winning bid is non-random, the winning bid is (xdd, dd).

Proof of Claim 11. Toward a contradiction, suppose an equilibrium σ with a non-random win-
ning bid of (x∗, m∗) ̸= (xdd, dd) exists. Note that Π(x∗, m∗) < Π(xdd, dd) since, otherwise,
W (x∗, m∗) < 0. This implies that no buyer submits a bid (x, m) ∈ X × {su, dd} such that
Π(x, m) > Π(x∗, m∗). Now, let

(x′, m′) = arg max
(x,m):Π(x,m)=Π(x∗,m∗)

W (x, m).
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The bid (x′, m′) exists since, for fixed m ∈ {su, dd}, both x 7→ W (x, m) and x 7→ Π(x, m) are
continuous functions. Furthermore, it holds that W (x′, m′) > 0.

In the equilibrium σ, at least one buyer, say buyer i, receives a payoff of less than 1
N W (x′, m′).

This implies that buyer i has a strictly profitable deviation: He can bid (x′+ε, m′) for some small
ε > 0 instead. Since Π(x′+ε, m′) > Π(x′, m′) = Π(x∗, m∗), this results in a payoff of W (x′+ε, m′)
to buyer i. Since W (·, m) is continuous, and W (x′, m′) > 0, we know that for ε small enough,
W (x′ + ε, m′) > 1

N W (x′, m′). This contradicts that σ is, in fact, an equilibrium.

Fix any equilibrium of the due diligence game with buyer commitment inducing an outcome
where the winning bid is random. For every i ∈ I, denote with Bi ∈ ∆(X × {su, dd}) the buyer
i’s possibly random equilibrium bidding strategy, with U∗

i buyer i’s equilibrium payoff, and with
J∗ ⊆ I the subset of buyers that are selected by the seller as a winner with positive probability
in equilibrium. Further, for every i ∈ I, denote with Si ∈ ∆(R+) the cdf over the expected
revenue that the seller would receive if she accepted buyer i’s equilibrium offer with probability
1, i.e.,

Si(θ) := Bi

({
(x, m) ∈ X × {su, dd} : Π(x, m) ≤ θ

})
, ∀θ ≥ 0.

Let si := inf (supp Si) ≥ 0 for every i ∈ I

Claim 12. If xdd ·
(
1 − F (xdd)

)
> µ, any equilibrium of the due diligence game with buyer

commitment where the winning bid is random must satisfy |J∗| ≥ 2.

Proof of Claim 12. Suppose by contradiction that J∗ = {i} for some i ∈ I. By definition, all
buyers j ̸= i must satisfy U∗

j = 0. Furthermore, note that si < Π(xdd, dd) since buyer i’s bid
must be random, he cannot submit offers outside of R, and there is only one bid in R that
results in an expected revenue of Π(xdd, dd) by regularity. But then, there exists x′ > 0 such
that Π(x′, dd) > si and W (x′, dd) > 0.66 However this is impossible since, otherwise, any buyer
j ̸= i could profitably deviate to submitting (x′, dd), which results in a strictly positive expected
utility.

Claim 13. If xdd ·
(
1 − F (xdd)

)
> µ, any equilibrium of the due diligence game with buyer

commitment where the winning bid is random must satisfy U∗
j > 0 for all j ∈ J∗.

Proof of Claim 13. Fix j ∈ J∗ arbitrarily. Since buyers can always abstain from bidding, it
must be that U∗

i ≥ 0. Now, suppose by contradiction that U∗
j = 0. Since no buyer would

submit a bid (x, m) with W (x, m) < 0 in equilibrium if he believes that such bid will be
accepted with positive probability, it must be that buyer j wins the auction only when he offers
a bid (x, m) such that W (x, m) = 0. There are two such bids: (µ, su) and (x̌, dd). We first
show that it cannot be that buyer j wins with positive probability after submitting (µ, su). Let
x′ = min{x ≥ 0 : Π(x, dd) = µ}. Note that x′ < xdd and, therefore, W (x′, dd) > W (xdd, dd) ≥ 0.
Thus, buyer j has a profitable deviation to bidding (x′ + ε, dd) for some small ε > 0 instead of
(µ, su), since this bid guarantees a strictly positive expected utility as long as ε is small enough.
Similarly, it can be shown that it cannot be that buyer j wins with positive probability after

66In particular, let x′ = xdd − ε for some small ε > 0.
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submitting (x̌, dd) by arguments identical to those in Lemma 10. We conclude that U∗
j > 0 for

all j ∈ J∗, as required.

Claim 14. If xdd ·
(
1 − F (xdd)

)
> µ, any equilibrium of the due diligence game with buyer

commitment where the winning bid is random must satisfy sj = s for all j ∈ J∗.

The proof of Claim 14 is identical to the proof of Lemma 11.

Claim 15. If xdd ·
(
1 − F (xdd)

)
> µ, an equilibrium of the due diligence game with buyer

commitment where the winning bid is random does not exist.

Proof of Claim 15. From Claims 12, 13, and 14, we can deduce that Si(s) > 0 for all i ∈ J∗

since, otherwise, some buyer j ∈ J∗ \{i} would receive a payoff of zero.67 Thus, all buyers i ∈ J∗

submit a bid that results in an expected revenue of s with positive probability. Let

(x′, m′) = arg max
(x,m):Π(x,m)=s

W (x, m).

Note that s < xdd ·
(
1 − F (xdd)

)
and that no buyer ever submits a bid (x′′, m′′) such that

Π(x′′, m′′) = s and W (x′′, m′′) < W (x′, m′) since, otherwise, this buyer could deviate to bidding
(x′ + ε, m′) for ε > 0 small, which satisfies Π(x′ + ε, m′) > Π(x′′, m′′) and W (x′ + ε, m′) >

W (x′′, m′′). Note that it is a positive-probability event that all buyers i ∈ J∗ submit a bid that
leads to an expected revenue of s. Fix any buyer in J∗ that (on average) is selected as a winner
with a probability weakly smaller than 1

|J∗| under such configurations of bids. (Such a buyer
necessarily exists.) We now show that such buyer j ∈ J∗ has a strict incentive to deviate from
Bj . To see this, observe that by submitting bids resulting in an expected revenue of s, buyer j

earns, on average, an expected payoff no greater than

1
|J∗|

·

 ∏
i∈J∗\{j}

Si(s)

 · W (x′, m′) ≥ 0.

However, by replacing (x′, m′) with (x′ + ε, m′), buyer j would earn an expected payoff greater
than or equal to ∏

i∈J∗\{j}
Si(s)

 · W (x′ + ε, m′) >
1

|J∗|
·

 ∏
i∈J∗\{j}

Si(s)

 · W (x′, m′),

as long as ε > 0 is sufficiently small. This contradicts the optimality of Bj . We conclude that
an equilibrium where the winning bid is random does not exist, as required.

Claims 11 and 15 together show that, whenever xdd ·
(
1 − F (xdd)

)
> µ, the winning bid must

be equal to (xdd, dd) in any equilibrium of the due diligence game with commitment.

Q.E.D.

67This follows from arguments identical to those in Claim 2.
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