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Abstract

I study finite-state sender-receiver games with nearly independent preferences. Recent
literature shows persuasive communication is possible when sender preferences are public
and state-independent. I demonstrate such communication is fragile to perturbations intro-
ducing privacy to the sender’s utility, but may become robust under slightly state-dependent
perturbations. Developing a novel representation of equilibria as communication graphs, I
show equilibria become robust if and only if their communication graph exhibits specific
geometries consistent with the sender’s state-dependence. I apply this result to show when
empathy improves/impedes communication, and when money-burning benefits senders with
state-dependent preferences, despite not benefiting senders with state-independent preferences.

In many settings, agents with plausibly independent preferences seek to influence one another.
Salespeople incentivized by a commission steer consumers toward more expensive purchases,
regardless of whether those purchases satisfy the consumers’ needs. Stockbrokers receive brokerage
fees determined by the trade volume of their client, independent of the wisdom of such trades.
Politicians campaign for votes regardless of their ability or intention to advance their constituents’
interests.
In such environments, communication seems intuitively non-credible. However, recent lit-

erature (Chakraborty and Harbaugh 2010; Lipnowski and Ravid 2020) has characterized how
persuasion is possible in the canonical sender-receiver game when the sender’s preference is strictly
independent of their private information — so-called ‘transparent’ preferences.
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Transparent preferences, however, are a knife-edge scenario, realistically a sender’s preference
will be affected by some private information: salespeople may have private information about their
compensation schemes; stockbrokers may have idiosyncratic biases towards buying or selling; the
value a politician places on winning an election will not be known to the public. In these cases the
sender’s preference is no longer transparent, but remains statistically independent of the receiver’s
preference: whether or not an action benefits the receiver is irrelevant to the sender’s valuation.
The starting point for this paper is a fragility result: persuasion is impossible between parties

with independent preferences if the sender’s preference is even slightly private.1 Since perfect
knowledge of another’s preference is implausible, these earlier-studied equilibria do not describe
realistic communication between parties with independent preferences.
In this paper, we instead interpret these fragile equilibria as approximations of the communi-

cation that occurs when the sender’s preference is slightly state-dependent. Examples include a
salesperson who feels slight sympathy for the buyer; a broker who is slightly lying averse when
making their recommendation; a politician who places value on being true to their principles.
This interpretation does not apply to all equilibria: some equilibria cannot be approximated

for any type of state-dependence; similarly, for some types of state-dependence persuasion is
impossible. Our main result is a precise characterization of the relationship between an equilibrium
and the types of state-dependence that preserve it: given an equilibrium, what types of state-
dependencies are necessary to make it robust; and given a state-dependence, which equilibria can
be robustly approximated.
Formally, we consider the canonical sender-receiver game where the sender possesses two

dimensions of private information, denoted (𝜃,𝜔). Only the first component, 𝜃, is relevant to the
receiver; this represents the state in our model. The second component, 𝜔, introduces idiosyncratic
randomness/privacy to the sender’s preference. We consider sender utilities 𝑢𝜀𝑉 composed of a
transparent utility 𝑢0 and a perturbation 𝑉:

𝑢𝜀𝑉 (𝑎 ,𝑚 |𝜃,𝜔) = 𝑢0(𝑎 ,𝑚) + 𝜀𝑉 (𝑎 ,𝑚|𝜃,𝜔) (1)

where𝑚 is the sender’smessage—ourmodel thus nests cheap talk, money burning, and signalling.2
We assume 𝜃 and 𝑎 belong to finite sets.
When 𝜀 = 0 the sender’s preference is transparent (𝑢0), and the equilibria of this model are

the equilibria studied by Lipnowski–Ravid. We call these candidate equilibria. Transparent
preferences mean that the sender has no incentive for ‘honesty’ in candidate equilibria: the sender
must be indifferent between all equilibrium messages, even those messages that are off-path in their

1Diehl and Kuzmics 2021 prove an early result specific to the Chakraborty–Harbaugh model. Steg et al. 2023 is
another closely related paper. Both are discussed in the literature review.

2Cheap talk occurs when the utility is independent of the message 𝑚, money burning is when there are costs
associated with different messages 𝑚 independent of the action 𝑎 and state 𝜃, signalling refers to models where the
cost of a message 𝑚 varies across states 𝜃.

2



particular state. This strong reliance on indifference makes candidate equilibria tractable, but also
leads to their fragility.
The idiosyncrasy 𝜔 serves the role of a robustness check in our model. To illustrate, consider

a candidate equilibrium 𝜎0. A desirable property is that as 𝜀𝑉 → 0, we obtain equilibria 𝜎𝜀𝑉
that approximate 𝜎0; thus, a slight miscalibration of the sender’s preference does not significantly
disturb the equilibrium. We find that persuasion is generally impossible when 𝑉 is 𝜃-independent.
In this case, the sender’s preference is only affected by their private idiosyncrasy 𝜔, and thus only
𝜔 will determine their choice of message. The resulting messages are then uninformative about the
state 𝜃. The only equilibria that survive this robustness check resemble babbling.
We then consider the case of slightly state-dependent sender preferences. To analyze how

this affects equilibria, we consider perturbations 𝑉 lying within some fixed open set 𝒪 of state-
dependent perturbations. If a candidate equilibrium can be approximated with such perturbations,
we say it is 𝒪-robust. The set 𝒪 captures the types of state-dependence that can be introduced into
the sender’s preference while preserving communication (even if the sender’s preference is slightly
idiosyncratic).
The main result of this paper is a precise characterization of 𝒪-robustness. A core and novel

element of our analysis is the communication graph, a bipartite graph that describes the sender’s
strategy. Its vertices are the states and messages, with edges connecting states with each message
sent from that state with positive probability. Such a graph is a coarse representation of the
equilibrium, as it omits the probability with which each message is sent; nevertheless, it contains
sufficient data to study 𝒪-robustness.
In Section 3, we show that under weak (generic) conditions, the communication graphs corre-

sponding to candidate equilibria must be connected and/or contain a cycle.
Studying the incentive problem of the sender, we find that a candidate equilibrium is 𝒪-robust,

for some open set𝒪, iff its communication graph is acyclic. Generically then, such communication
graphs are acyclic and connected — ie. tree graphs. Notably, this precludes separating equilibria.
We then characterize the sets 𝒪 for which a candidate equilibrium is 𝒪-robust. This is a joint

condition on the communication graph and perturbations that we call graph monotonicity.3 Any
state-dependence that satisfies this monotonicity condition for a given communication graph thus
preserves the associated candidate equilibrium.
In Section 5, we consider the implications of this work, focusing on the natural modification

of empathy. Our results show that empathy is effective at preserving communication in models
with quantitative actions (formally defined later), where the sender seeks to influence the receiver
to take ‘extreme’ actions. An example is a broker seeking to persuade an investor to make trades,
either buying or selling large quantities of an asset.

3Graphmonotonicity is closely related toMechanismDesign’s ‘cyclic monotonicity’. We omit the ‘cyclic’ adjective
to avoid confusion with the acyclicity of communication graphs. The relationship is further discussed in Appendix
B.3.
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However empathy can be an impediment to communication if the receiver’s actions are more
qualitative. An example is an insurance broker persuading a consumer to buy policies, offering
nested levels of coverage, and trying to persuade the consumer to purchase the more expensive
options. In such settings, persuasive candidate equilibria exist, but cheap talk may be unpersuasive
if the sender is empathetic.
We use this example to show howmoney burning can be a useful communication technology for

the sender, despite never benefiting a sender with transparent preferences. This is because money-
burning allows the sender to persuade the receiver using distinct communication graphs, more
compatible with their preference. In our example with qualitatively different insurance policies this
allows the sender to discretely increase their equilibrium utility.
Lastly, we consider two signalling perturbations. The first perturbs the sender’s preference

toward lying aversion, which only preserves a few simple geometries of communication. Our
last perturbation preserves all acyclic candidate equilibria. This perturbation is interpreted as a
low-credibility disclosure technology — it corresponds to perturbing the transparent preference
model toward a model of verifiable disclosure.

Related Literature

This work primarily lies at the intersection of cheap talk communication models and the Harsanyi
purification literature.
The original cheap talk model (Crawford and Sobel 1982) specifically studies the case where

the state/action space isΘ = A = [0, 1], the sender’s preference is state-dependent, and the receiver
has a unique preferred action for every belief. The existence of informative equilibria is a question
of the parametric ‘alignment’ between the sender and receiver preferences — loosely resembling
our notion of empathy. This requires state-dependence in the sender’s preference: if the sender has
a strict, state-independent preference (e.g. higher actions are better), then no information can be
communicated in equilibrium — if two messages led to different actions, the sender would always
want to deviate to send the message corresponding to the preferred action.
Chakraborty and Harbaugh 2010 are the first (to my knowledge) to study the intriguing pos-

sibility of communication with state-independent preferences. They consider models with multi-
dimensional state/action space Θ = A ⊆ R𝑛 (𝑛 > 1) where the receiver has quadratic preferences,
and show that there exists an informative equilibrium for any transparent sender preference. Their
argument uses hyperplanes to partition the state space into sets whose induced actions the sender
is indifferent between. This requires a multi-dimensional space, as these partitions are obtained by
continuously rotating a dividing hyperplane. The sender having a public preference is essential —
Diehl and Kuzmics 2021 show that these equilibria vanish under slight uncertainty in the sender’s
preference, as Harsanyi’s purification fails to apply (discussed more below). Our fragility theorem
adapts this result to general finite-action environments.
The model with a public sender preference is extended to general state spaces by Lipnowski and
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Ravid 2020. They adopt a belief-based approach (as pioneered by Kamenica and Gentzkow 2011),
showing that communication can be understood in terms of the quasiconcave and quasiconvex
envelopes of the sender’s indirect utility over receiver beliefs. This shows that equilibria with
communication exist iff there exists some Blackwell experiment that guarantees the sender a
better/worse ex post payoff than babbling. This result applies to models with finite state- and
action-spaces, which is the environment we focus on.
Independent of the current paper, Steg et al. 2023 consider a similar question of which

Lipnowski–Ravid equilibria can be robustly approximated in binary-state models. Their notion
of robustness subtly differs from our own, as they study perturbations to a slightly state-dependent
sender preference (with no idiosyncrasy). The resulting equilibria may be sensitive to the specific
state-dependent preference that is being perturbed.4 In contrast, we require equilibria to be approx-
imated from an open set of perturbations. This slightly stronger condition allows us to (1) obtain
equilibria that are robust to slight/idiosyncratic changes in the direction of state-dependence, and
(2) more tractably analyze models with multiple states.
Our notion of robustness is derived from the notion Harsanyi purification, first developed in

Harsanyi 1973 asks when mixed-strategy equilibria can be interpreted, not as players randomizing,
but as players choosing pure strategies based on small idiosyncrasies in their preference. This
idiosyncrasy results in players almost always having a strict best response to the (seemingly) mixed
strategies of other players.
Harsanyi shows that, for generic utility functions in finite normal form games, any equilibrium

of the game without idiosyncrasies can be approximated by equilibria of the game with slight
idiosyncrasies (as a lower hemicontinuity result).
This result may fail for specific player utilities — one such case is communication games with

transparent preferences, another is cheap talk models in general. In Section 2 we discuss the reason
why purification fails in these situations (more severely in the first case), and how adding state
dependence allows purification to apply. We develop novel techniques to approach this problem in
extensive-form games with incomplete information.

1 Model
We consider the canonical sender-receiver game where the sender begins by observing their private
information then chooses a message to send to the receiver. Upon reception, the receiver chooses
an action, determining the utility obtained by both parties.
The sender’s private information (𝜃,𝜔) is drawn from a two dimensional probability space

4In the notation of eq. 1, Steg et al. 2023 studies equilibria that are approximated as perturbations converge to a
given 𝑉 when 𝜀 is a fixed small number — sensitivity occurs when the approximation error is constant as 𝜀 → 0. We
essentially reverse the order of limits, studying equilibria that can be approximated as 𝜀 → 0 whenever 𝑉 is in an open
set 𝒪. These notions of robustness are compared in more detail in Appendix B.2.

5



(Θ × Ω, 2Θ ⊗ F𝜔,P = 𝜇 ⊗ P𝜔). The finite set Θ contains the receiver-relevant state distributed
according to the prior 𝜇—henceforth we will use state exclusively to refer to these objects—while
Ω contains sender idiosyncrasy types distributed according to P𝜔. This imposes independence
between states and idiosyncrasies are independent. We assume that (Ω,F𝜔,P𝜔) is a rich probability
space.
After seeing the state and their idiosyncrasy, the sender chooses a message from the message

space 𝑀. We impose little a priori structure on 𝑀, only equipping it with the discrete topology.
The reader may consider this message space to be some countable set of messages/signals.
The receiver observes this message (but not the state nor idiosyncrasy), then chooses from the

set of mixed actions ∆A where the underlying pure action set A is finite. We represent general
actions in ∆A by 𝑝 to emphasize their possibly mixed nature, reserving 𝑎 for actions that are
restricted to be pure.
The sender and receiver have respective utility functions over pure actions

𝑢𝜀𝑉 :(A ×𝑀) × (Θ ×Ω) → R
𝑢𝑅 :A × Θ → R.

With slight abuse of notation we also use 𝑢𝜀𝑉 ,𝑢𝑅 to denote their von Neumann–Morgenstern
extensions to mixed actions 𝑝 ∈ ∆A.
It is convenient to adopt a compact designation for an action-message pair: 𝜋 ≡ (𝑝,𝑚) ∈

∆A ×𝑀, or 𝛼 ≡ (𝑎 ,𝑚) ∈ A ×𝑀 when the action is constrained to be pure. We sometimes refer
to such 𝜋 as a message or an action to emphasize the relevant component.
We decompose the sender’s preference into a transparent (ie. public, state-independent)

component 𝑢0, and a perturbation 𝑉:

𝑢𝜀𝑉 (𝜋 |𝜃,𝜔) = 𝑢0(𝜋) + 𝜀𝑉 (𝜋 |𝜃,𝜔)

where 𝜀 controls how far the preference is from being transparent. We focus on the case where
𝜀 is small. Since state-dependence and idiosyncrasy both factor through the perturbation 𝑉, they
should be understood as a second order concerns, reflecting slight biases of the sender.
We will say a sender preference is idiosyncratic if it depends on the idiosyncrasy 𝜔 ∈ Ω.

Idiosyncratic perturbations will be denoted with a capital 𝑉, emphasizing their interpretation as a
random variable. Non-idiosyncratic perturbations will be denoted v, these are elements ofRA×𝑀×Θ

and will be refered to as modifications.
While this paper focuses on cheap talk models, we allow the sender’s utility to also feature

message dependence. This allows us to extend our analysis to money-burning models (where
𝑢0 depends on the message), and ‘weak’ signalling models (where 𝑉 depends on the message).
Readers may find it convenient to primarily consider cheap talk models in the technical sections of
this paper, with the understanding that these techniques generally extend to broader settings.
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Our interest is in Perfect Bayesian Equilibria of this sender-receiver game. Formally, these are
triplets 𝜎 ≡ (M, 𝜈,P) composed of a sender strategy M : Θ × Ω → ∆𝑀, a receiver posterior
belief function 𝜈 : 𝑀 → ∆Θ,5 and a receiver action P : 𝑀 → ∆A such that

𝑚 ∈ argmax
𝑚′∈𝑀

𝑢𝜀𝑉 (P(𝑚′),𝑚′|𝜃,𝜔) for 𝑚 ∈ supp(M(𝜃,𝜔)) (2a)

𝜈(𝜃 |𝑚) =P [𝜃 |𝑚] for 𝑚 ∈ supp(M) (2b)

P(𝑚) ∈ argmax
𝑝∈∆A

∫
𝑢𝑅 (𝑝 |𝜃) 𝑑𝜈(𝜃 |𝑚). (2c)

We denote the set of these equilibria by Σ(𝑢𝜀𝑉 ,𝑢𝑅) if 𝑢𝑅 is allowed to vary, and Σ(𝑢𝜀𝑉) when 𝑢𝑅 is
fixed. The topology on equilibria is inherited from the distribution space ∆(Θ×𝑀×∆A): 𝜎𝑛 → 𝜎
if (1) the distribution of sender strategies

∫
M(·,𝜔) 𝑑P𝜔 converge, and (2) receiver strategies

converge when restricted to on-path messages.

Definition 1. A candidate equilibrium 𝜎0 is an equilibrium of the model with transparent sender
preference (𝜀 = 0), ie. 𝜎0 ∈ Σ(𝑢0,𝑢𝑅).

Upper hemicontinuity ensures that candidate equilibria will be the limit of the equilibria 𝜎𝜀 ∈
Σ(𝑢𝜀𝑉 ,𝑢𝑅) in our model as 𝜀 → 0.
We are particularly interested in non-trivial equilibria where the sender successfully persuades

the receiver with positive probability. Formally:

Definition 2. An equilibrium 𝜎 is persuasive if there is positive probability that the receiver
chooses an action that is not a best response to their prior belief:

P

[
P(M(𝜃,𝜔)) ∈ argmax

𝑝∈∆A

∫
𝑢𝑅 (𝑝 |𝜃) 𝑑𝜇(𝜃)

]
< 1.

We maintain the following assumption throughout the paper:

Assumption (S). For any pair of distinct pure actions 𝑎 ≠ 𝑎 ′ and messages 𝑚 ≠ 𝑚′, we have
𝑢0(𝑎 ,𝑚) ≠ 𝑢0(𝑎 ′,𝑚′).

Within cheap talk this is merely the assumption that 𝑢0 is injective on the set of pure actions A.
The content of this assumption is that the sender is never indifferent between messages that

lead to different pure actions — this will make mixed actions a necessary feature of persuasive
equilibria.

5For simplicity, we omit the belief over Ω, as sender idiosyncrasy is irrelevant to the receiver
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1.1 Candidate Equilibria
We follow the belief-based approach of Lipnowski and Ravid 2020 to characterize candidate
equilibria 𝜎0 ∈ Σ(𝑢0,𝑢𝑅).
With transparent sender preference 𝑢0, eq. 2a becomes

𝑚 ∈ argmax
𝑚∈∆𝑀

𝑢0(P(𝑚),𝑚) for 𝑚 ∈ supp(M). (3)

That is every on-path message must result in the same expected sender-utility 𝑢. Assumption (S)
implies that if multiple messages attain this maximum, they cannot result in distinct pure actions.
Consequently at most one pure action can feature in a candidate equilibrium.
The power of transparent preferences is that this constraint is state-independent. This means

that, for fixed P satisfying eq. 3, the set of equilibrium posteriors B𝜎 := supp(𝜈 ◦ M) is only
constrained to satisfy

𝜇 ∈ co(B𝜎), (4a)

where co(·) is the convex hull operation on sets.
The last constraint to check is receiver optimality. In particular, for a posterior belief 𝜈 induced

by the message 𝑚, this constrains the sender-utility to lie in the following set

𝑢∗(𝜈,𝑚) :=
{
𝑢0(𝑝,𝑚);𝑝 ∈ argmax

𝑝′∈∆A

∫
𝑢𝑅 (𝑝′|𝜃) 𝑑𝜈(𝜃)

}
.

The attainability (and incentive compatibility) of the sender-utility 𝑢 as described by eq. 3 may
then be rewritten as

𝑢 ∈
⋂

𝑚∈supp (M)
𝑢∗(𝜈(𝑚),𝑚) (4b)

𝑢 ≥max
𝑚∈𝑀

min
𝜈∈∆Θ

{𝑢∗(𝜈,𝑚)}. (4c)

This says that the sender can be made indifferent over on-path messages, while preferring them to
off-path messages. Together, eqs. 4abc characterize candidate equilibria.
Two notable transparent communication technologies are cheap talk (analyzed by Lipnowski

and Ravid 2020), and money burning (analyzed in Appendix B.1). In the cheap talk case, the
sender’s preference is message-independent, so eq. 4c is trivial. The equilibrium can then be
characterized by a set of beliefs B𝜎 ⊆ ∆Θ and a sender utility 𝑢 satisfying eqs. 4a and 4b.
Consequently, persuasive cheap talk equilibria exist whenever |𝑀 | ≥ |Θ| and 𝜇 lies in the convex
hull of posteriors that attain at least utility 𝑢, as illustrated by the following example:
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Figure 1: The sender’s indirect utility in Example 1. The shaded region is the range of utilities
attainable by cheap talk for a given prior.

Example 1 (Binary-state salesperson). Suppose there is a salesperson trying to convince a consumer
to make a purchase between two products 𝐴 and 𝐵. There are two possible states of the world: in
state 𝜃 = 𝜃𝑎 product 𝐴 is good while product 𝐵 is bad, while in state 𝜃 = 𝜃𝑏 product 𝐵 is good
while product 𝐴 is bad. The consumer believes each state is equally likely: their prior belief is
𝜇 = 1

2 (𝜃𝑎 ⊕ 𝜃𝑏). We represent a belief 𝜈 ∈ ∆{𝜃𝑎 , 𝜃𝑏} by the probability 𝜈(𝜃𝑏) it puts on state 𝜃𝑏.
The salesperson knows which product is of good quality, but only cares about their commision,

which is higher for product 𝐵 than for product 𝐴. Based on the salesperson’s recommendation, the
consumer can purchase either product, or walk away without making a purchase — we label their
action by the product purchased A = {𝐴,𝐵, ∅}, where ∅ means no purchase. This leads to the
following utility tables for the receiver (consumer) and sender (salesperson) respectively:

𝜃∖
𝑎 𝐴 ∅ 𝐵

𝑢𝑅 ( · |𝜃𝑎 ) 1 3/4 0
𝑢𝑅 ( · |𝜃𝑏) 0 3/4 1

𝐴 ∅ 𝐵
𝑢0 1/2 0 1

The sender’s indirect utility for this problem is illustrated in Fig. 1. Notably, full-revelation
ex post dominates babbling. Attainable sender-utilities for a given prior are given by the shaded
region above the prior. The sender can obtain utility 𝑢 only if 𝑢 ∈ [0, 1/2], since these are the only
utilities supported on both sides of the prior belief.
This can be done by inducing the beliefs 𝜈0 = 1/4 and 𝜈1 = 3/4, convincing the receiver

to choose P(𝜈0) = 2𝑢𝐴 ⊕ (1 − 2𝑢)∅ and P(𝜈1) = 𝑢𝐵 ⊕ (1 − 𝑢)∅ respectively. These posteriors
correspond to the sender playing themixed strategyM(𝜃𝑎 ) = 3

4𝑚0⊕ 1
4𝑚1 andM(𝜃𝑏) = 1

4𝑚0⊕ 3
4𝑚1.

The utility 𝑢 = 1/2 can also be obtained by inducing posteriors 𝜈0 ≤ 1/4 and 𝜈1 = 3/4,
convincing the receiver to play P(𝜈0) = 𝐴 and P(𝜈1) = 1

2 (𝐵 ⊕ ∅) respectively. This corresponds
to the sender playing the mixed strategyM(𝜃𝑎 ) = 2(1−𝜈0)

3−4𝜈0 𝑚0 ⊕ 1−2𝜈0
3−4𝜈0𝑚1 andM(𝜃𝑏) = 2𝜈0

3−4𝜈0𝑚0 ⊕
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3−6𝜈0
3−4𝜈0𝑚1. The case 𝜈0 = 0 deserves particular attention: it is in some sense the ‘simplest’
equilibrium, corresponding to partial revelation, and furthermore both receiver- and sender-optimal.

To obtain persuasive equilibria the sender must change their strategy dependent on the state 𝜃
which is irrelevant to their preference.
Note that there are a continuum of equilibria in this example. This is true for candidate equilibria

more generally, as either 𝑢∗ is never a singleton on B𝜎, in which case eq. 4b is an interval, or 𝑢∗ is
a singleton at some posterior belief 𝜈0 ∈ B𝜎, in which case eq. 4a permits 𝜈0 to vary over an open
set while inducing the same action. One consequence of our work will be to refine this continuum
set to a finite set of persuasive equilibria.
We pause to note the role of our finite-ness assumptions. Using a finite action spaceA ensures

that 𝑢∗ is well-behaved, obeying certain technical regularity conditions. Our techniques and results
generally extend to equilibria of non-pathological models with infinite actions— those that are well-
approximated by finite-action models. In contrast, our assumption of finite states is fundamental
to our robustness analysis in later sections. While we may be able to approximate infinite-state
settings with finite states, our notions of robustness may lose validity.

2 Fragility
Our first question is whether candidate equilibria are robust to slight privacy in the sender’s
preference. This is important as public knowledge of another’s preference is generally implausible.
For this section it suffices to consider state-independent perturbations to the senders utility:

𝑈 : ∆A ×𝑀 ×Ω → R. Consider the perturbed utility functions

𝑢𝜀𝑈 (𝜋 |𝜔) := 𝑢0(𝜋) + 𝜀𝑉 (𝜋 |𝜔).

We understand a candidate equilibrium as approximating an environment with idiosyncrasy when
the following condition (developed as ‘purification’ by Harsanyi 19736) is satisfied:

Definition 3 (Harsanyi robustness). An equilibrium 𝜎0 ∈ Σ(𝑢0,𝑢𝑅) is Harsanyi-robust if for all
bounded perturbations𝑉, there exist equilibria 𝜎𝜀 ∈ Σ(𝑢𝜀𝑉 ,𝑢𝑅) of the game with sender preference
𝑢𝜀𝑉 such that 𝜎𝜀 → 𝜎0 in distribution as 𝜀 → 0.

Harsanyi showed that this notion of robustness is a property of Nash equilibria in generic finite
games. While these idiosyncrasies change an individual player’s preference, other players, ignorant
to the realization of these idiosyncrasies, will observe little difference in probabilistic behaviour.
This provides an interpretation of mixed strategy equilibria as manifestations of unobserved id-
iosyncrasy.

6Harsanyi’s condition is actually stronger, considering perturbations to all players’ utilities.
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For an equilibrium to be Harsanyi-robust, every strategy the sender randomizes over should be a
strict best response to some local variation in the receiver’s actions (constrained to their equilibrium
best responses). This relies on the strategy space not featuring ‘invariances’ which may prevent
best responses from being unique. For example:

1. In cheap talk the sender’s utility is invariant to relabelling of messages.

2. With transparent preferences the sender’s utility is invariant to ‘informativeness’. Fixing an
arbitrary receiver strategy P, the sender’s utility is equal under the following strategies:

(a) Informative strategy: send each message𝑚 with a state-dependent probabilityM𝑚 (𝜃).
(b) Uninformative strategy: send each message 𝑚 with the state-independent probability∑

𝜃 M𝑚 (𝜃)𝜇(𝜃).

The fragility associated with the first redundancy is easily resolved — either by selecting equilibria
without redundant messages, or equivalently by forcing the model to remain in the realm of cheap
talk with message-independent idiosyncrasies.
In contrast, the second type of redundancy is endemic to persuasive candidate equilibria:

Theorem 1 (Adaptation of Diehl and Kuzmics 20217). No persuasive equilibria of communication
games where the sender and receiver have independent preferences is Harsanyi-robust:

1. No persuasive equilibrium exists if the sender’s utility can be decomposed

𝑢𝜀𝑈 (𝑎 ,𝑚|𝜔) = 𝑢̃(𝑎 ,𝑚|𝜔) + 𝑈̃ (𝑎 |𝜔), (5)

with 𝑈̃ distributed according to a density on RA when conditioned on 𝑢̃ ∈ RA×𝑀 .

2. For fixed receiver utility 𝑢𝑅, persuasion is (topologically) generically impossible over the set
of preferences ∆RA×𝑀 under the weak-∗ topology.

Equation 5 represents preferences where the utility of an action is not completely determined by
the message that induces it— in cheap talk this says persuasion is impossible whenever the sender’s
preference is distributed according to a state-independent density, no matter how concentrated.
Furthermore, even if persuasion is possible for some rare utility 𝑢̃, this persuasion can be destroyed
by adding even a small idiosyncratic perturbation that is independent of 𝑢̃.
The intuition behind this result is that a sender who first observes their idiosyncrasy 𝜔 will, w.p.

1, have a strict preference over equilibrium messages, and thus will choose a message independent
of their observation of 𝜃.

7The referenced result establishes the fragility of persuasive equilibrium in the Θ = A = R𝑛 cheap talk model of
Chakraborty and Harbaugh 2010. We adapt these techniques to finite pure action models where their Condition (S)
may not hold.
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These results rely only on the state-independence of 𝑢𝜀𝑈 and the finiteness of A, and can be
extended to settings with infinite state spaces and idiosyncratic receivers (ie. where the receiver’s
preference 𝑢𝑅 depends on an idiosyncrasy𝜔𝑅 distributed independently of the sender’s idiosyncrasy
𝜔). In this paper we are primarily interested in finite message equilbiria:

Proof of (1) when 𝑀 is finite. Suppose there exists a persuasive equilibrium 𝜎 ≡ (M, 𝜈,P), and let
𝑝∗ be an action that the receiver chooses with positive probability. Let𝑀∗ := P−1(𝑝∗) be the set of
messages that induce this action,Π∗ := 𝑀∗×{𝑝∗} be the corresponding set of message-actions, and
𝑀𝑐 := 𝑀 \𝑀∗ and Π𝑐 := {(𝑚,P(𝑚));𝑚 ∈ 𝑀𝑐} be the remaining equilibrium message-actions.
The equilibrium probability that a message in𝑀∗ is sent in state 𝜃 is then bounded between the

probabilities that a message in𝑀∗ is a strict and weak best response:

P
[
max
𝜋∈Π∗

𝑢𝜀𝑈 (𝜋) > max
𝜋′∈Π𝑐

𝑢𝜀𝑈 (𝜋′)
]
≤ P [M ∈ 𝑀∗ |𝜃] ≤

P
[
max
𝜋∈Π∗

𝑢𝜀𝑈 (𝜋) > max
𝜋′∈Π𝑐

𝑢𝜀𝑈 (𝜋′)
]
+ P

[
max
𝜋∈Π∗

𝑢𝜀𝑈 (𝜋) = max
𝜋′∈Π𝑐

𝑢𝜀𝑈 (𝜋′)
]
,

where we suppress 𝜔 in our notation. The last term is dominated by the probability that the sender
is indifferent between any pair (𝜋,𝜋′) ∈ Π∗ ×Π𝑐:∑︁

(𝑚,𝑚′)∈𝑀∗×𝑀𝑐

E
[
P
[
𝑈̃ (𝑝∗) − 𝑈̃ (P(𝑚′)) = 𝑢̃(𝑝∗,𝑚) − 𝑢̃(P(𝑚′),𝑚′)

���𝑢̃] ] = 0.

This is zero, because when conditioned on 𝑢̃, the difference of 𝑈̃ terms is distributed with a density
and the difference of 𝑢̃ terms is a constant. Thus every equilibrium action is chosen with a positive
state-independent probability, and hence must be optimal under the prior belief.8 □

The result of this section is that persuasion is impossible with state-independent sender pref-
erences if there is any fuzziness about what these preferences are. Since perfect knowledge of
other agents is impossible in reality, this suggests that to understand communication, we must
understand the state-dependence inherent in a setting, for example state-dependent biases in the
sender’s preference.

3 Communication Graphs
While persuasion is generally impossible when the senders preference is state independent, robust
persuasion is possible when preferences are slightly state-dependent. Some candidate equilibria

8This proof does not extend to cases where a continuum of messages are sent. In this case, each sender 𝜔 may be
indifferent between messages 𝜋𝜔,𝜋

′
𝜔 varying with 𝜔, and randomizes between these messages in an informative way.

Such messages are each sent with probability zero, but cumulatively are sent with positive probability. This general
case is treated in Appendix A.
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Figure 2: Example communication graphs (top) and corresponding induced beliefs (bottom) in a
three-state game. The nodes of the graphs correspond to states {𝜃𝑖} and messages {𝜋𝑖} inducing
the beliefs illustrated below. The line/shaded regions within the simplices correspond to the priors
that render the given posteriors plausible — ie. the convex hull of these posteriors. Only (a,b) are
acyclic; only (a,c) are connected.

can be approximated by introducing state-dependence, but other’s cannot be robustly approximated
for any state-dependence. To characterize which equilibria can be approximated, we develop a
novel graph-theoretic representation of equilibria.
Formally, given a strategy profile (M,P), define 𝜎(𝜃) := {(𝑝,𝑚);𝑚 ∈ suppP𝜔 (M(𝜃)),𝑝 ∈

P(𝑚)} to be the equilibrium paths induced by the event that the state 𝜃 is realized — ie. message-
action pairs that occur when the state is 𝜃.

Definition 4. The communication graph 𝐺(𝜎) associated with an equilibrium 𝜎 is the undirected
bipartite graph whose nodes are Θ ⊔ 𝜎(Θ) and whose edges are

{
{𝜃,𝜋}; 𝜃 ∈ Θ,𝜋 ∈ 𝜎(𝜃)

}
.

A communication graph (and the equilibrium it represents) is

• connected if it contains a path between any two nodes,

• acyclic if it contains at most one path between any two nodes,

• a tree if it is both acyclic and connected,

• a forest if it is acyclic but not connected.

Communication graphs thus connect states with the messages sent by a sender in that state.
Some example communication graphs, and corresponding beliefs, are illustrated in Figure 2.
Note that communication graphs are a coarse representation of strategies, as they do not specify

probability with which a message is sent, merely what states the posterior belief designates as
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plausible (ie. within its support). Nevertheless it captures sufficient detail for our robustness
analysis.9
Acyclic equilibria can loosely be thought as a class of ‘simple’ equilibria, not requiring a

complex network of sender indifferences.
Non-connected equilibria are separating. For such equilibria there is a partition Θ = Θ1 ⊔ Θ2

that is communicated with certainty, ie. for all posteriors 𝜈 ∈ B𝜎, either supp(𝜈) ⊆ Θ1 or
supp(𝜈) ⊆ Θ2. In connected equilibria there must be a message that is sent from states in both
elements of the partition.
To get a feel for the constraints that are generically imposed on candidate equilibria communi-

cation graphs, consider the subset of pure strategy equilibria (ie. |𝜎(𝜃) | = 1 for all states).10 These
equilibria are acyclic, and, when persuasive they are also non-connected — thus forests. The need
for randomization imposed by Assumption (S) means that pure sender strategies are only able to
persuade the receiver if the receiver has a very specific preference. In particular:

Observation. Persuasive, pure-strategy candidate equilibria exist only if there is a partition of
states Θ = Θ0 ⊔ · · · ⊔ Θ𝑛 such that the conditional beliefs

𝜇Θ𝑖 := 𝜇[·|Θ𝑖]

induce mixed actions for 𝑖 ≥ 1.

For example, if 𝜋2 is a pure action in Figure 2b, then this graph can only describe a persuasive
equilibrium if the receiver is indifferent between two actions at the precise belief 𝜇{𝜃0,𝜃1} corre-
sponding to 𝜋0. This requires very specific receiver utilities: if this indifference occurs, a slight
perturbation to the receiver’s preference 𝑢𝑅 will invalidate the indifference at this specific belief,
making such an equilibrium impossible.
Fundamentally, this is because pure strategies are only capable of generating a finite number of

posterior belief sets B𝜎 ⊂ ∆Θ which are unlikely to coincide with the (usually) measure-0 set of
posteriors that induce randomization. Using dimensionality arguments, we extend this analysis to
the class of acyclic equilibria:

Lemma 1. For generic receiver preferences 𝑢𝑅 ∈ RA×Θ every connected component of an acyclic
candidate equilibrium’s communication graph

(i) includes at least one message which has a unique pure action 𝑎∗ as its best response,

(ii) if the component has a unique such message, then

9Moreover, we will see that these additional details are uniquely identified from the equilibrium’s communication
graph for the acyclic candidate equilibria we will study.

10Green and Stokey 2007 provide a notable analysis of pure equilibria in finite-state/-action models.
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𝜃5𝑏

𝜃5𝑐
𝜃1𝑏 . . .

Figure 3: An example tree component of a communication graph. Nodes are indexed alphanumer-
ically, with the numeric component indicating the node’s depth, ie. the distance from the ‘root’ 𝛼0.

(a) every other message on the connected component has precisely two pure best responses,
(b) the connected component corresponds to a unique sender strategy (when restricted to

states on this component).

These generic conditions are the same that are necessary to ensure the equilibrium is robust to
perturbations to the receiver’s preference. The restriction to acyclic equilibria is motivated in the
next section, where we find that it is a necessary property for 𝒪-robustness. In Appendix A, we
show these properties are also obtained for generic prior 𝜇, under mild assumptions on 𝑢𝑅.

Sketch of proof. We outline the proof by contradiction for the specific tree in Figure 3 (where 𝜋0 is
an arbitrary action), under the assumption that every action on the tree is mixed — and fixing the
actions the receiver is randomizing over for different messages.
We assume that the receiver has a unique best response to every pure state (true for generic

𝑢𝑅). Consequently every terminal node (𝜃5𝑎 ; 𝜃5𝑏, 𝜃5𝑐) must be a state that sends its parent message
(𝜋4𝑎 ;𝜋4𝑏) with probability 1. The posteriors associated with 𝜋4𝑎 ,𝜋4𝑏 are thus constrained to a
1-dimensional subspace of ∆Θ, parametrized by the probability their parent state (𝜃3) sends their
message. These subspaces generically intersect the hyperplane of beliefs where the receiver is
indifferent between two given actions at most once, and never intersect beliefs where the receiver
is indifferent between 3 actions. Thus there is a unique probability with which the sender can send
these messages from 𝜃3, and correspondingly a unique probability with which the sender in state
𝜃3 sends the message 𝜋2. Holding this probabiliy fixed, there is likewise a unique probability that
the sender in state 𝜃1𝑎 sends 𝜋2 to induce randomization, and a unique probability 𝜃1𝑎 sends 𝜋0.
Repeating this process for the branch of the tree below 𝜃1𝑏, we also obtain a unique probability with
which 𝜃1𝑏 sends 𝜋0. This results in a unique posterior 𝜈0 ∈ ∆{𝜃1𝑎 , 𝜃1𝑏} associated with 𝜋0 that is
completely determined by the rest of the tree. Since mixed actions are generically a best response
to a measure-0 set of posteriors, the best response to 𝜈0 is generically a pure action, contradicting
our assumption.
If 𝜋0 is the unique pure action then this argument demonstrates (ii) as well.
By repeating this argument for all (finitely many) tree geometries and ways to assign pairs of

randomization actions to messages, the proof is concluded.
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A key property of cheap talk equilibria is that messages that result in the same action can
be merged without changing sender incentives. This allows us to assume that there is a unique
message resulting in the action 𝑎∗: |P−1(𝑎∗) | = 1. This property implies the conditions of (ii), and
combined with (i) ensures that acyclic equilibria are generically trees.11

Definition 5. A candidate equilibrium is injective if on-path pure actions are induced by a unique
message, ie. |P−1(𝑎) | = 1 for any 𝑎 ∈ A ∩ P(supp(M)).

By assumption (S) there is at most one on-path pure action in an equilibrium. An additional
property of injective equilibria is that we can assume off-path messages are not a temptation —
since off-path messages do not result in 𝑎 , we can assume they result in a strictly worse pure action.
Injectivity can be assumed whenever the perturbation is message-independent (ie. cheap talk

and money burning) in which case merging messages is WLOG. However, in signalling models it
is important to keep messages distinct; candidate equilibrium injectivity can still be assured if 𝑢0 is
injective onA ×𝑀. In Appendix B.4 we extend our analysis to non-injective candidate equilibria.
In the injective case we obtain the following corollary to Lemma 1:

Theorem 2 (The generic case). For generic receiver preferences 𝑢𝑅 ∈ RA×Θ, the set of injective
acyclic candidate equilibria (as a subset of Σ(𝑢0,𝑢𝑅)) satisfies the following properties:

(a) all such candidate equilibria are connected (ie. trees),

(b) the receiver’s strategy uses precisely one pure action, with their other actions being binary
(ie. 𝑝 with |supp(𝑝) | = 2),

(c) there are finitely many such equilibria (up to information equivalence12), each uniquely
identified by its communication graph.

This says that tree equilibria are generically the simplest injective candidate equilibria: (a)
says that it is impossible to obtain communication with simpler indifference constraints (ie. forests
communication graphs, which have fewer edges), (b) says that these equilibria involve the minimum
amount of receiver randomization, (c) says that these equilibria are precisely described by the
communication graph, without requiring additional data.
In future sections, we will frequently constrain ourselves to the generic domain where these

properties hold.

11This turns out to be the only property we need to directly apply our results to signalling equilibria:
12Two equilibria are informationally equivalent if they induce the same distribution of posterior beliefs in the receiver.
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4 𝒪-Robustness
In previous sections we have argued that (1) state-dependence is essential for understanding com-
munication in games, and (2) we can limit our (initial) analysis to injective candidate equilibria that
are either cyclic and/or connected.
In this section we introduce a notion of𝒪-robustness, capturing the idea of an equilibrium being

robustly approximated for a given state-dependent perturbation, without considering idiosyncrasy.
We then establish three main results. Firstly, cyclic equilibria are never𝒪-robust, this means that the
only equilibria that can be robustly approximated are generically both acyclic and connected, hence
not separating. Secondly we will characterize precisely types of state-dependence that permit
𝒪-robustness. Our most general result then extends the notion of 𝒪-robustness to idiosyncratic
perturbations, showing that our results extend to settings where the sender’s perturbation is private.
We start by studying non-idiosyncratic perturbations to the sender’s preference (ie. modifica-

tions v : A ×𝑀 × Θ → R, extended to mixed actions via von Neumann–Morgenstern):

𝑢𝜀v (𝜋 |𝜃) = 𝑢0(𝜋) + 𝜀v(𝜋 |𝜃).

Such state-dependencies are often naturally occuring: for examples, senders may be lying averse,
sympathetic to the receiver, or face different resource constraints in different settings, skewing the
sender’s preference in a state-dependent direction. When these types of systematic biases occur,
Harsanyi robustness may no longer be the appropriate notion of robustness, instead we propose the
following:

Definition 6. For a nonempty open set of modifications 𝒪 ⊆ R(A×𝑀)×Θ, we say a candidate
equilibrium 𝜎0 ∈ Σ(𝑢0) is𝓞-robust if for any modification v ∈ 𝒪 there exist equilibria 𝜎𝜀 ∈ Σ(𝑢𝜀v)
of the game with sender preferences 𝑢𝜀v such that 𝜎𝜀 → 𝜎0 as 𝜀 → 0.

This definition parallels Harsanyi robustness13, while weakening the condition in two distinct
ways: (1) we consider only non-idiosyncratic perturbations, and (2) we allow ourselves to constrain
these perturbations to𝒪. To avoid knife-edge scenarios, we only consider open constraint sets𝒪. In
Section 4.1 we consider a version of 𝒪-robustness that allows for idiosyncrasy and obtain parallel
results, showing relaxation (1) is merely simplifying while (2) is essential. The importance of (2)
is also demonstrated by the following proposition:

Proposition 1. Let the sender’s preference be 𝑢0− 𝜀𝑢𝑅 where 𝜀 > 0, 𝑢𝑅 is the receiver’s preference,
and 𝑢0 is transparent. In any equilibrium all on-path actions are best responses to the prior 𝜇.

13𝒪-robustness is also closely related to the notion of ‘essential equilibria’ developed by Wu and Jiang 1962,
stipulating that the equilibrium correspondence Σ is lower hemicontinuous at 𝜎0 in the space of non-idiosyncratic
preferences.
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This shows that meaningful communication is impossible if parties’ interests are even slightly
opposed14, and persuasive candidate equilibria are never𝒪-robust for any neighbourhood𝒪 ∋ −𝑢𝑅.
To establish intuition for how a modification affects an equilibrium, consider the following first

order approximation of the sender’s utility as the receiver shifts their action after the message 𝜋𝑖 by
an amount ∆𝑝𝑖:

𝑢𝜀v (𝜋𝑖 + ∆𝑝𝑖 |𝜃) = 𝑢0(𝜋𝑖) + 𝜀v(𝜋𝑖 |𝜃) + (𝑢0) · ∆𝑝𝑖 + 𝑂(𝜀∆𝑝𝑖) (6)

where (𝑢0) ∈ RA×𝑀 is a vector of pure outcome utilities and ∆𝑝𝑖 ∈ RA×𝑀 captures a change in
receiver’s action after the message 𝜋𝑖 15— what is important is that the effect ∆𝑝𝑖 has on utility is
independent of the state 𝜃 (to the first order).
For a candidate equilibrium 𝜎0 ∈ Σ(𝑢0), the zero-th order term 𝑢0(𝜋𝑖) is constant across

𝜋𝑖 ∈ 𝜎0(Θ); the preference over equilibrium messages is determined by higher order terms.
Suppose (𝜋1, 𝜃2,𝜋2) is a path on the communication graph 𝐺(𝜎0). To maintain the sender’s
indifference between 𝜋1,𝜋2 in state 𝜃2, we then must have

v(𝜋1 |𝜃2) − v(𝜋2 |𝜃2) = (𝑢0) ·
(
∆𝑝2−∆𝑝1

𝜀

)
+ 𝑂(∆𝑝).

If (𝜋1, 𝜃2, . . . , 𝜃𝑁 ,𝜋𝑁) is a path on 𝐺(𝜎0), we sum the corresponding constraints to get
𝑁∑︁
𝑖=2

v(𝜋𝑖−1 |𝜃𝑖) − v(𝜋𝑖 |𝜃𝑖) = (𝑢0) ·
(
∆𝑝𝑁−∆𝑝1

𝜀

)
+ 𝑂(∆𝑝). (7)

But the righthand side also appears in the difference of utilities between the messages 𝜋1 and 𝜋𝑁 .
Consequently, if 𝜋1 ∈ 𝜎0(𝜃1), we must have

v(𝜋1 |𝜃1) − v(𝜋𝑁 |𝜃1) ≥ (𝑢0) ·
(
∆𝑝𝑁−∆𝑝1

𝜀

)
+ 𝑂(∆𝑝) =

𝑁∑︁
𝑖=2

v(𝜋𝑖−1 |𝜃𝑖) − v(𝜋𝑖 |𝜃𝑖) + 𝑂(∆𝑝). (8)

This inequality must be strict to hold over a neighbourhood of v, as 𝒪-robustness requires.
Simplifying this inequality inspires the following definition:

Definition 7 (𝐺-Graph Monotonicity16). For a communication graph 𝐺, we say v is 𝑮-graph

14It is important that the baseline sender preference is transparent. In Example 3 we study a game where adding
slight antipathy to a state-dependent preference actually increases communication possibilities.

15Formally, if 𝜋𝑖 = (𝑝𝑖 ,𝑚𝑖) then (∆𝑝𝑖)𝑎 ,𝑚′ is 0 when𝑚′ ≠ 𝑚𝑖 , and otherwise is the difference in weight the receiver
puts on the pure action 𝑎 after the message 𝑚𝑖 relative to 𝑝𝑖 .

16This has a strong connection to the notion of ‘cyclic monotonicity’ developed by Rochet 1987 for mechanism
design with linear transfers. This can be understood through the first-order analogy(

𝜎0 (𝜃)
(𝑢0) · ∆𝑝𝑖

)
⇐⇒

(
decision rule

transfer mechanism

)
.

See Appendix B.3 for a discussion of this relationship, along with a path-minimizing interpretation of monotonicity.
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monotone (or v ∈ 𝓜𝑮 (𝑮)) if for any path (𝜃1,𝜋1, . . . , 𝜃𝑁 ,𝜋𝑁 =: 𝜋0) on 𝐺 with 𝑁 ≥ 2 we have

𝑁∑︁
𝑖=1

v(𝜋𝑖 |𝜃𝑖) − v(𝜋𝑖−1 |𝜃𝑖) > 0. (9)

A simple result characterizes existence:

Proposition 2. ℳ𝐺 (𝐺) = ∅ iff 𝐺 contains a cycle.

The ‘if’ case is deduced by observing that eq. 9 for a path around a cycle (ie. 𝜋𝑁 ∈ 𝜎(𝜃1))
changes sign if we flip the orientation of the path. Conversely, if 𝐺 is acyclic, we may construct a
modification inℳ𝐺 (𝐺) by making the v(𝜋𝑁 |𝜃1) term sufficiently negative on each path — due to
acyclicity this term appears only in the inequality associated with the unique path from 𝜃1 to 𝜋𝑁 .
An immediate consequence of this proposition (byTheorem2) is that𝐺(𝜎0)-graphmonotonicity

for a candidate equilibrium 𝜎0 generically implies 𝐺(𝜎0) is a tree.
Our main result is that graph-monotonicity precisely characterizes 𝒪-robustness:

Theorem 3. Within the generic case established by Theorem 2, an injective candidate equilibrium
𝜎0 ∈ Σ(𝑢0,𝑢𝑅) is 𝒪-robust iff 𝒪 ⊆ ℳ𝐺 (𝐺(𝜎0)).

Proof. Necessity: Suppose 𝒪 ⊈ℳ𝐺 (𝐺(𝜎0)). Since 𝒪 is open, it contains a modification ṽ that is
not in the closure ofℳ𝐺 (𝐺(𝜎0))— ie. for some path (𝜃1,𝜋1, . . . , 𝜃𝑁 ,𝜋𝑁) on 𝐺(𝜎0) we have

0 >

𝑁∑︁
𝑖=1

ṽ𝑖 (𝜋𝑖) − ṽ𝑖 (𝜋𝑖−1) (10)

where 𝜋0 := 𝜋𝑁 and we adopt the shorthand ṽ𝑖 (𝜋) := ṽ(𝜋 |𝜃𝑖). Since ṽ is continuous in 𝜋, this
inequality holds over a neighbourhood 𝑁𝜋 of 𝜋.
Now suppose our equilibrium can be approximated with actions 𝜋̂ ∈ 𝑁𝜋. For the message 𝜋̂𝑖

to be optimal for the sender in state 𝜃𝑖, we must have

𝑢0(𝜋̂𝑖) − 𝑢0(𝜋̂𝑖−1) + 𝜀 (ṽ𝑖 (𝜋̂𝑖) − ṽ𝑖 (𝜋̂𝑖−1)) ≥0 for 𝑖 ∈ {1, . . . ,𝑁}.

Summing these equations, we obtain a contradiction of eq. 10.
Sufficiency: Injectivity allows us to assume off-path messages are strictly inferior to the sender.

Thus we can constrain our analysis to on-path actions.
From Proposition 2 and Theorem 2, it suffices to check tree graphs containing a single pure

action 𝛼0. Fix the vertex associated with the pure action as the root of the 𝐺(𝜎0) (in Figure 3, this
means 𝜋0 is pure and denoted 𝛼0).
We adopt the following notation: for a node 𝑘 on a rooted tree (𝐺(𝜎0),𝛼0):
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• 𝑘↓ is the set of 𝑘’s children (ie. its neighbours that are further from the root)

• 𝑘↑ is the parent node of 𝑘 (ie. its unique neighbour closer to the root)

This notation will often be pushed to subscripts.
Let 𝜃𝑘 be a state and fix its parent action 𝜋̂𝑘↑, for its child actions 𝜋𝑗 let 𝐼𝑗 ⊆ supp(𝜋𝑗) be

intervals such that

min
𝜋′
𝑗∈𝐼𝑗

𝑢𝜀v (𝜋′
𝑗 |𝜃𝑘) ≤ 𝑢𝜀v (𝜋̂𝑘↑ |𝜃𝑘) ≤ max

𝜋′
𝑗∈𝐼𝑗

𝑢𝜀v (𝜋′
𝑗 |𝜃𝑘) for all 𝑗 ∈ 𝑘↓. (11)

Then by the Intermediate Value Theorem, for all 𝑗 ∈ 𝑘↓ there exists 𝜋̂𝑗 ∈ 𝐼𝑗 such that the sender
in state 𝜃𝑘 is indifferent between 𝜋̂𝑘↑ and 𝜋̂𝑗 . As 𝜀 → 0 and 𝜋̂𝑘↑ → 𝜋𝑘↑, these inequalities can
be satisfied with 𝐼𝑗 → {𝜋𝑗} and thus 𝜋̂𝑗 → 𝜋𝑗 . Applying this inductively down the tree gives us
𝜋̂ → 𝜋.
This describes a potential equilibrium 𝜎̂𝜀 → 𝜎0 (where in fact the sender employs the same

strategy in 𝜎̂𝜀 and 𝜎0). To show this is an equilibrium, it remains to show that these neighbouring
indifferences generate preferences for neighbouring actions as 𝜀 → 0. Suppose 𝜀 is sufficiently small
that the actions 𝜋̂ are within a neighbourhood 𝑁𝜋 ∋ 𝜋 where eq. 9 holds (ie. v ∈ ℳ𝐺 (𝐺(𝜎̂𝜀))),
then for any path (𝜃1, 𝜋̂1, . . . , 𝜋̂𝑁) on 𝐺(𝜎̂𝜀) the sender in state 𝜃1 strictly prefers its neighbour 𝜋̂1

to 𝜋̂𝑁 :

𝑢0(𝜋̂1) − 𝑢0(𝜋̂𝑁) + 𝜀 (v1(𝜋̂1) − v1(𝜋̂𝑁)) >
𝑁∑︁
𝑖=2

𝑢0(𝜋̂𝑖−1) − 𝑢0(𝜋̂𝑖) + 𝜀 (v𝑖 (𝜋̂𝑖−1) − v𝑖 (𝜋̂𝑖))

=

𝑁∑︁
𝑖=2

𝑢𝜀v (𝜋̂𝑖−1 |𝜃𝑖) − 𝑢𝜀v (𝜋̂𝑖 |𝜃𝑖) = 0,

(12)

where the last equality follows from 𝜋̂ being defined to generate this indifference. □

Proposition 2 and Theorem 2 provide two immediate corollaries to this result:

Corollary 1. Within the generic case established by Theorem 2

1. An injective candidate equilibrium 𝜎0 ∈ Σ(𝑢0,𝑢𝑅) is 𝒪-robust for some non-empty set of
modifications 𝒪 iff its communication graph 𝐺(𝜎0) is acyclic.

2. There are finitely many candidate equilibria (up to information equivalence) that are𝒪-robust
for some non-empty set of modifications 𝒪.

The second statement applies to non-injective equilibria as well, where graph-monotonicity is
not sufficient for 𝒪-robustness. We apply our techniques to this case in Appendix B.4.
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4.1 Harsanyi 𝒪-Robustness
To establish that the previous result is robust to slight idiosyncrasy, consider a sender preference
with a state-dependent idiosyncratic perturbation 𝑉:

𝑢𝜀𝑉 (𝜋 |𝜃,𝜔) = 𝑢0(𝜋) + 𝜀𝑉 (𝜋 |𝜃,𝜔).

It is without loss of generality to assume that (𝑉 (·|𝜃))𝜃 are mutually independent.17 We extend the
definition of 𝒪-robustness to idiosyncratic perturbations:

Definition 8. For a nonempty open set of modifications 𝒪 ⊆ R(A×𝑀)×Θ, we say a candidate
equilibrium 𝜎0 ∈ Σ(𝑢0) is Harsanyi 𝓞-robust if, for any perturbation 𝑉 with (𝑉 (·|𝜃))𝜃 mutually
independent and compactly supported on 𝒪, there exists equilibria 𝜎𝜀 ∈ Σ(𝑢𝜀𝑉) to the game with
sender preference 𝑢𝜀𝑉 such that 𝜎𝜀 → 𝜎0 as 𝜀 → 0.

Note that Harsanyi robustness is equivalent to Harsanyi R(A×𝑀)×Θ-robustness. Moreover,
Harsanyi 𝒪-robustness is a stronger condition than 𝒪-robustness. Nevertheless, our result ends up
closely mirroring Theorem 3:

Theorem 4. For an injective candidate equilibrium 𝜎0 ∈ Σ(𝑢0), in the generic case established by
Theorem 2:

1. 𝜎0 is Harsanyi 𝒪-robust iff 𝒪 ⊆ ℳ𝐺 (𝐺(𝜎0)).

2. The approximating equilibria in Theorem 3 are Harsanyi robust18: if v ∈ ℳ𝐺 (𝐺(𝜎0)) and
𝑉𝑛 → v uniformly, there exist 𝑁, 𝜀 > 0, equilibria 𝜎𝜀𝑉𝑛 ∈ Σ(𝑢𝜀𝑉𝑛) and 𝜎𝜀v ∈ Σ(𝑢𝜀v) such
that

(𝑎) 𝜎𝜀𝑉𝑛 → 𝜎𝜀v as 𝑛 → ∞, for 𝜀 < 𝜀, and
(𝑏) 𝜎𝜀𝑉𝑛 ,𝜎𝜀v → 𝜎0 as 𝜀 → 0, for 𝑛 > 𝑁.

The first statement in the theorem says that a slight idiosyncratic perturbationwithinℳ𝐺 (𝐺(𝜎0))
will allow us to approximate the candidate equilibrium 𝜎0.
The proof has a similar structure to the proof of Theorem 3. The novel difficulty is obtaining the

equilibrium actions 𝜋̂, as it is no longer possible to choose actions that make the sender indifferent
as in eq. 11. We replace this step with a multi-dimensional analog of the Intermediate Value
Theorem described in Appendix A.

17By redefining the idiosycrasy space as the product probability space Ω̃ := ΩΘ, we can define a preference
𝑉̃ (·|𝜃, 𝜔̃ = (𝜔𝜃1 , . . . ,𝜔𝜃𝑁 )) := 𝑉 (·|𝜃,𝜔𝜃) that satisfies this independence and is identically distributed to 𝑉 (·|𝜃). In
this case 𝜔̃ can no longer be interpreted as corresponding to an individual whose preference may be correlated across
states. In Appendix A we show how Harsanyi𝓞-robustness translates to correlated perturbations.

18Other candidate equilibria may also have Harsanyi-robust approximating equilibria. Such cases, and their compli-
cations, are discussed in Appendix B.2 in the context of an example.
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5 Applications
In this section, we present three applications of our results to specific modifications. Two of the
modifications we consider represent moral considerations of a sender (empathy and lying aversion),
and one represents a weak technical constraint to the message space, resembling a disclosure
game with the ability to cheaply fabricate information. We also show how money burning can
significantly benefit a sender with slightly state-dependent preferences, despite not benefitting a
sender with transparent preferences.
Moral modifications seem intuitively likely to favour communication. Indeed they generally

make full revelation strategies more attractive. However, candidate equilibria differ from revelation
in generically requiring some obfuscation of the state (as seen in Theorem 2), and these obfuscations
can conflict with senders’ moral concerns.
For a modification v ∈ R(A×𝑀)×Θ, we say the candidate equilibrium 𝜎0 is v-robust if 𝜎0 is

𝒪-robust for some neighbourhood 𝒪 ∋ v.

5.1 Empathetic Senders
When faced with a decision that has little effect on their material utility, even the most egoistic
sender may consider the effect their actions will have on others as a deciding factor. We model this
as empathy (perturbation 𝑉 ≡ 𝑢𝑅), effectively aligning the interests of the two parties.
A common rule-of-thumb in communication games is that preference alignment increases the

possibilities of communication: a sender with a stronger interest in the receiver will seek to ensure
the receiver makes more accurate decisions, and thus better inform them.
The previous sections illustrate that this intuition is validated when the geometry of the com-

munication structure (represented by 𝐺(𝜎0)) is compatible with the monotonicity of the receiver’s
preference. We illustrate in the case where this geometry is linear. In particular, let ≻ be a linear
order on the state space Θ:

Definition 9. We say the receiver utility 𝑢𝑅 is ≻-single crossing if

𝜃 ↦→ 𝑢𝑅 (𝑎 |𝜃) − 𝑢𝑅 (𝑎 ′|𝜃)

is ≻-strictly monotone for any distinct 𝑎 , 𝑎 ′ ∈ A.
A candidate equilibrium 𝜎0 ∈ Σ(𝑢0) is an ≻-interval equilibrium if the sender’s strategy is

≻-ordered: for 𝜋,𝜋′ ∈ 𝜎0(Θ) the states that send one message are weakly higher than the states
that send the other, ie.

𝜎−1
0 (𝜋) ⪯𝜎−1

0 (𝜋′) or 𝜎−1
0 (𝜋) ⪰𝜎−1

0 (𝜋′).

The single crossing condition induces a linear order ≻A on the action space A such that ≻A-
higher actions have a comparative advantage in ≻-high states. Interval equilibria describe situations
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where there are ≻-thresholds between messages: only lower states send one message, and only
higher states send the other. Such equilibria are necessarily acyclic.
Combining these structures ensures that the equilibrium will be 𝑢𝑅-robust:

Proposition 3. Let 𝑢0 be a transparent sender preference, and 𝑢𝑅 be a ≻-single crossing receiver
preference in the generic class established by Theorem 2. Any ≻-interval candidate equilibrium
𝜎0 ∈ Σ(𝑢0,𝑢𝑅) is then 𝑢𝑅-robust.

If further (1) 𝑢𝑅 is such that the receiver is only ever indifferent between ≻A-neighbouring ac-
tions, and (2) 𝑢0 is a ≻A-single-dipped preference, then the sender-preferred candidate equilibrium
is the unique (non-babbling) candidate equilibrium that is 𝑢𝑅-robust.

We term the latter set of models as having quantitative actions. These are settings where as
their posterior changes, the receiver’s best-response shifts incrementally: they are never indifferent
between two non-neighbouring actions. Single-dipped preferences describe senders that benefit
from the receiver taking ≻A-extreme actions, which correspond to ≻-extreme beliefs. This is a
natural setting for communication, as the sender benefits most from splitting the receiver’s prior
into one low and one high posterior.
1-dimensional quadratic preference models are a classic example of quantitative actions, as

illustrated in the following example studied by Lipnowski and Ravid 2020:

Example 2 (Advice on Investing in an Asset). An investor consults a broker about what share of
their wealth to invest in an asset. The action space is thus a proportion of their wealthA = [0, 1],19
with the investor holding an initial position 𝑎0 ∈ [0, 1]. The broker is aware of some information
𝜃 ∈ Θ (drawn from the prior 𝜇 with finite support), indicating the investor’s optimal position is
actually 𝑎∗(𝜃) ∈ [0, 1], and receives a fee proportional to the investor’s trade volume paid by the
investor. The investor (receiver) and broker (sender) material preferences are thus

𝑢𝑅 (𝑎 |𝜃) = − 1
2 (𝑎 − 𝑎∗(𝜃))2 − 𝜅 |𝑎 − 𝑎0 | 𝑢0(𝑎) =|𝑎 − 𝑎0 |

We assume that the investor’s initial position is optimal under their prior knowledge, 𝑎0 =

E𝜇 [𝑎∗(𝜃)]. Note that the investor’s preference satisfies single crossing when the states are ordered
by their optimal positions 𝑎∗(𝜃). Furthermore the investor’s best response shifts continuously along
this order as their posterior varies, matching the description of quantitative actions.20
Candidate equilibria in this setting consist of two recommendations: buy an additional amount 𝛿

of the assset, or sell that same amount. There are a continuum of candidate equilibria corresponding
to different broker profits 𝛿.

19This action space is continuous. Because the utilities (in particular 𝑢∗) are well behaved our results still apply.
The skeptical reader may assume a finite approximation of this space.

20The notion of quantitative actions can be formally extended to continuous action models through the more
general condition: for any two beliefs 𝜈1 ≻FOSD 𝜈0 the image of the receiver’s best-response over any ≻FOSD-path
𝛾 ⊂ ∆Θ between 𝜈0, 𝜈1 does not depend on the path. For example, in the 𝜅 = 0 case, this image is always
[E𝜈0 [𝑎∗ (𝜃)] ,E𝜈1 [𝑎∗ (𝜃)]].
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A tree candidate equilibrium in this setting has only one state 𝜃∗ randomizing between the
two messages, with every other state sending only one message. For this candidate equilibrium to
have an interval structure, every state above 𝜃∗ must recommend buying, while every state below
𝜃∗ recommends selling. There is a unique candidate equilibrium with this structure — the only
non-babbling candidate equilibrium that is 𝑢𝑅-robust— which is also the candidate equilibrium
that maximizes the broker’s profit 𝛿.

With two states Proposition 3 shows that every tree candidate equilibrium is 𝑢𝑅-robust. How-
ever there are simple three state models where empathy is not 𝐺(𝜎0)-graph monotone for any
persuasive candidate equilibrium 𝜎0 ∈ Σ(𝑢0). This changes as we move to settings with ‘vertically-
differentiated’ actions, for example a salesperson selling nested bundles of products:

Example 3 (Selling Nested Products). An insurance salesperson advises a consumer about which
policy to buy. There are two policies, an expensive full insurance policy 𝐹 that covers a wide range
of outcomes, and a cheaper partial insurance policy 𝑃 that covers a few specific risks. The consumer
possesses the outside option ∅, representing some minimal insurance plan. The optimal policy for
the consumer depends on their type, the salesperson knows the optimal policy (due to specialized
knowledge of the policies, and a proprietary algorithm on the consumer’s demographics), but the
consumer has a prior 𝜇.
Specifically, the consumer may be type 𝜃𝑛 in which case the outside option of minimal coverage

is optimal; if the consumer’s type is 𝜃𝑝 then their specific risks are covered by both policies, and
the partial policy is optimal due to its cheaper cost; if the consumer’s type is 𝜃𝑓 their risks are not
covered by the partial policy, and the full insurance is optimal.
The salesperson is evaluated by the number of policies they sell, with an additional bonus for

each full coverage policy sold.
Specifically, the consumer (receiver) and salesperson (sender) to have the following material

preferences, normalizing the value of the outside option to 5:

𝜃∖
𝑎 ∅ 𝑃 𝐹

𝑢𝑅 ( · |𝜃𝑛) 5 3 0
𝑢𝑅 ( · |𝜃𝑝) 5 7 6
𝑢𝑅 ( · |𝜃𝑓) 5 3 6

∅ 𝑃 𝐹
𝑢0 0 3 4

These preferences lead to the indirect utility illustrated in Figure 4a.
With cheap talk, persuasive candidate equilibria involve the receiver choosing the partial policy

𝑃 after one message, and randomizing between the high coverage policy and the outside option
after the other message 𝑝𝐹 = 3

4𝐹 ⊕ 1
4∅. This can persuade a receiver who would otherwise

choose the outside option if the receiver’s prior is in the hashed region of the figure. The unique
acyclic candidate equilibrium for such priors involves the sender pooling some 𝜃𝑛-consumers
with 𝜃𝑝-consumers to convince them to purchase the specific policy, and to pool the remaining
𝜃𝑛-consumers with 𝜃𝑓-consumers to rationalize the randomization action.
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𝑃 𝜈𝐹
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𝜃𝑝 𝜃𝑓

𝜃𝑛

𝜃𝑓
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𝑝𝐹

(a)

𝜈𝑃
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𝜃𝑛

𝜃𝑓
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𝜃𝑛

𝐹

𝑝𝑃

(b)

Figure 4: The sender’s indirect utility over the receiver’s belief simplex in Example 3, with darker
hues indicating higher utility. (a) demonstrates the unique acyclic cheap talk equilibrium, which is
not𝑢𝑅-robust. (b) demonstrates themoney-burning equilibrium that is𝑢𝑅-robust. These correspond
to the illustrated communication graphs, and induce posteriors 𝜈 in the orange boundary regions.
These candidate equilibria benefit the sender when the prior 𝜇 is in the cross-hatched region.

While this candidate equilibrium superficially resembles the acyclic equilibrium of Example
1, if we look deeper we see that this candidate equilibrium is somewhat counterintuitive from the
consumer’s perspective. According to this candidate equilibrium, 𝜃𝑛-consumers often end up with
their worst insurance policy 𝐹. Given these equilibrium actions, it seems more natural to pool
the consumers that benefit from the full insurance policy together to choose policy 𝑝𝐹 , ie. 𝜃𝑝-
with 𝜃𝑓-consumers as in Figure 4b. However this pooling can never rationalize the mixed action
𝑝𝐹 , indeed the action arising from this pooling will weakly dominate the action chosen from the
complementary 𝜃𝑝-𝜃𝑛 pooling, violating incentive constraints.
Applying Theorem 3, we find that this counter-intuitive nature is precisely why this candidate

equilibrium is not 𝑢𝑅-robust, in particular graph-monotonicity fails for the path (𝜃𝑝,𝑃, 𝜃𝑛,𝑝𝐹):

Proposition 4 (Uncooperative empathy). For any prior 𝜇, no candidate equilibrium 𝜎0 of Example
3 is 𝑢𝑅-robust. If the prior is in the cross-hatched region there are persuasive candidate equilibria
𝜎0 ∈ Σ(𝑢0) that are 𝒪-robust for an open set 𝒪 of modifications that excludes empathy.

Note that this is despite the candidate equilibrium being a pareto improvement.
Empathy can even be harmful to communication in this setting. Suppose the prior belief is in the

cross-hatched region of Figure 4a, and consider an acyclic persuasive candidate equilibrium 𝜎0 with
a modification v ∈ ℳ𝐺 (𝐺(𝜎0)) that permits persuasion. Adding a sufficient amount of empathy
will shift the modification outside of the setℳ𝐺 (𝐺(𝜎0)), removing the possibility of persuasion. In
this way, increasing preference alignment decreases the receiver’s information. Conversely, making
the sender more antipathic undoes this alignment and increases communication possibilities.
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If we allow the sender to burn money there exist candidate equilibria that are 𝑢𝑅 robust, as we
discuss below.

The numbers for this example are chosen for simplicity and plausibility. We enumerate the
general properties that permit this result:

(1) policy 𝑃 is never a best response on ∆{𝜃𝑛, 𝜃𝑓}.

(2) policy 𝐹 provides value over ∅ in state 𝜃𝑓 and 𝜃𝑝 due to its broad coverage.

(3) policy 𝑃 provides value over policy 𝐹 in state 𝜃𝑝 and 𝜃𝑛 due to its cheaper cost.

(4) 𝑢0(𝑃) is ‘close’ to 𝑢0(𝐹).

Note that while 𝑢𝑅 in our example does not obey single-crossing (for any ordering of states) it is
possible to obtain these properties with a receiver utility that satisfies single-crossing relative to
the order 𝜃𝑛 ≺ 𝜃𝑝 ≺ 𝜃𝑓. (1) is thus the essential property distinguishing qualitative actions from
models with quantitative actions where Proposition 3 applies.
Property (1) ensures that a persuasive candidate equilibrium exists, as the receiver can be made

indifferent between ∅ and 𝐹. (2-3) ensure that 𝑢𝑅 will fail to be graph monotone when the mixed
action 𝑝𝐹 is close to 𝐹, as implied by (4).

5.2 Money-Burning
Money-burning is well-known technique in communication games to relax incentive constraints —
previously studied in cheap talk settings by Austen-Smith and Banks 2000; Kartik 2007. A sender
may profit significantly from the receiver taking an action 𝑎 , but this profit prevents the sender
from credibly recommending 𝑎 . If the sender publicly burns a portion of their future profits, the
incentive to mislead the receiver to take this action is reduced, potentially restoring credibility to
the recommendation.
One question is whether this process benefits the sender, or if it requires the sender to burn all of

their profit, providing no benefit over cheap talk equilibria. The latter occurs when preferences are
transparent: while money burning greatly expands the set of candidate equilibria in such settings,
none of these equilibria deliver a higher utility to the sender than cheap talk.21 This is surprising, as
many interpretations of money-burning (e.g. expensive advertising campaigns, wining and dining
potential clients, lobbyists expending effort to build relationships with lawmakers) focus on settings
where preferences are fairly transparent.
Moving to nearly transparent preferences, money burning can be advantageous for the sender

through two distinct mechanisms.

21See Appendix B.1 for details.
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Firstly, only enough money needs to be burnt to dissuade defection. Since states that send a
message have a relative bias towards that message, they retain some excess profit. However, since
this relative bias is a product of state-dependence, the increase in utility will only be proportional
to the degree of state-dependence 𝜀.
A larger benefit occurs when cheap talk candidate equilibria require garbling posteriors in ways

that are incompatible with the state-dependent sender preference, while money-burning equilibria
persist by permitting different communication graphs. We see this in Example 3 where empathy is
incompatible with cheap talk candidate equilibria:

Example 3 (continued). If the sender is able to accompany a message with the burning money
in discrete increments, they are able to create a new type of candidate equilibrium that involve
the receiver choosing the action 𝐹 after the sender accompanies the message with burning a value
𝑀𝑏 ∈]1, 3[ of wealth, and choosing the mixed action 𝑝𝑃 := 3−𝑀𝑏

2 𝑃 ⊕ 𝑀𝑏−1
2 ∅ after observing a

message where the sender does not burn any wealth.
Such candidate equilibria exist for the same range of prior beliefs as the cheap talk equilibrium

exists (ie. priors in the cross-hatched region of Figure 4a), but for prior beliefs in the cross-hatched
region of Figure 4b it enables communication graphs with a new geometry. In particular, this
allows an equilibrium where 𝜃𝑝-consumers are pooled with each of the two other types, matching
our earlier argued intuition. This candidate equilibrium is 𝑢𝑅-robust.
This allows the sender to obtain a material utility of 3 −𝑀𝐵 ∈]0, 2[. When the increments of

money are small, the sender-preferred equilibrium gives them a utility of almost 2, where without
money-burning they would be unable to persuade the receiver and be left with a utility of 0. The
consumer also obtains a positive ex ante benefit of 𝜇[𝜃𝑓] + 𝜇[𝜃𝑝] − 𝜇[𝜃𝑛] relative to babbling22.
Note that this equilibrium only exists for a strict subset of prior beliefs for which persuasive

candidate equilibria exist. For priors outside of this cross-hatched region persuasive candidate
equilibria fail to be 𝑢𝑅-robust.

The advantage of money burning in this setting relies on the properties (2-4) discussed above,
and a stronger version of (1):

(1∗) ∅ provides value over policy 𝑃 in states 𝜃𝑛 and 𝜃𝑓.

This property ensures that the cross-hatched region of Figure 4b is non-empty. Along with (2-3),
this precludes 𝑢𝑅 from satisfying a single-crossing condition.

5.3 Weak Signalling Models
Weak signalling models involve modifications that are message independent. We consider two
examples: lying aversion, which we will find is only capable of preserving specific geometries

22The cross-hatched region of priors where this equilibrium is valid constrains 𝜇[𝜃𝑝] − 𝜇[𝜃𝑛] ≥ 0.
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Figure 5: The two types of communication structures stabilized by the lying-averse modification
vLA defined in eq. 13.

of communication; and weakly verifiable disclosure which preserves general acyclic candidate
equilibria. In this case the assumption of injective equilibria has some bite — we use results from
Appendix B.4 to extend our results to non-injective equilibria.

5.3.1 Lying Aversion

Consider a cheap talk sender concerned with honesty, opting to break their indifferences in favour
of the truth. In this case, the message space is identified with the state space through a bijection
𝜓 : 𝑀 ↔ Θ where a message𝑚 is the claim ‘The state is 𝜓(𝑚).’ The sender views the moral cost
of lying through the following modification

vLA(𝑚|𝜃) :=
{
0 𝜓(𝑚) = 𝜃

ℓ𝜃 𝜓(𝑚) ≠ 𝜃,
(13)

where ℓ𝜃 < 0 for all 𝜃. This supposes all lies from a state 𝜃 are equally costly.23
Theorem 2 shows that candidate equilibria will generically involve lying. The challenge with

lying averse senders is ensuring that they are only incentivized to send the ‘right’ lies. This
significantly constrains communication:

Proposition 5. For generic receiver utilities 𝑢𝑅, an injective24 candidate equilibrium 𝜎0 iff 𝐺(𝜎0)
is one of the graphs illustrated in Figure 5.

When a communication graph features long paths it becomes impossible to incentivize a specific
lie from one state without tempting other states to make the same lie. As a result, there can only be
one lying message (making the other message a ‘single-disclosure’) as in Figure 5a, or there can
only be one state that lies (garbling the revelation of other messages) as in Figure 5b.

23This model of lying is similar to Kartik 2009, which applies a more general version to Crawford-Sobel cheap talk.
24In Appendix B.4 we show that non-injective candidate equilibria can be vLA-robust for additional communication

graph geometries. These geometries are composed of multiple connected components, one resembling Figure 5a or b,
and all other components have the form of a single state 𝜃𝑘 truthfull disclosing their state with the message 𝜓−1 (𝜃𝑘).
These equilibria exist only if each of these states have the same receiver best response 𝑎∗ (𝜃𝑘).
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5.3.2 Weakly Verifiable Disclosure

Our last application is a modification to the communication technology. As with lying aversion
this turns our communication game into a signalling game, where the signal cost is only weakly
state-dependent.
Consider a weakly verifiable disclosure game25 where the sender discloses ‘pieces of evidence’

𝑒 ∈ 𝐸 to the receiver, each of which rules out a corresponding state 𝜓(𝑒) — however the verifi-
cation process is extremely unreliable, allowing the sender to fabricate information at vanishing
cost/likelihood of being caught. The message space is thus𝑀 = 2𝐸 where 𝜓 : 𝐸 ↔ Θ is a bijection.
The corresponding modification is then the sum of the cost of presenting the evidence plus the

cost of fabricating any false evidence. For a message 𝑚 ⊆ 𝐸 providing evidence the state is not in
𝜓(𝑚), the modification takes the form

vWD(𝑚 |𝜃) :=
{
𝜏𝑚 𝜃 ∉ 𝜓(𝑚)
ℓ𝑚,𝜃 𝜃 ∈ 𝜓(𝑚),

(14)

where 𝜏𝑚 > ℓ𝑚,𝜃 for all 𝜃 ∈ 𝑚 and messages 𝑚.
This model allows flexibility in the message content, making this maximally stabling:

Proposition 6. Let 𝜎0 ∈ Σ(𝑢0) be an acyclic candidate equilibrium of a cheap talk model (identified
up to relabelling of messages). If there is evidence corresponding to every state 𝜓(𝐸) = Θ, then
vWD ∈ ℳ𝐺 (𝐺(𝜎0)).

The key fact in this argument is that acyclicity implies equilibrium beliefs have distinct supports,
and thus every belief in such an equilibrium may be associated with a distinct truthful message.

6 Discussion
In this paper we propose that transparent preferencemodels should be interpreted as approximations
of models with slightly state-dependent preferences. This interpretation is only valid for a limited
subset of candidate equilibria, depending on the type of state-dependence in the preference, through
a relationship that we characterize.
In abstract terms, we study the continuities and (lower hemi-)discontinuities of the equilibrium

correspondence at transparent sender preferences. This discontinuity in equilibria also allows for
many ‘discontinuities’ in the properties of candidate equilibria: for example, money-burning is not
useful if the sender has transparent preferences, but can be significantly useful in some settings
with slight state-dependence. Similarly there will be discontinuities in other properties of candidate

25We reach verifiable disclosure games as 𝜀 → ∞. Note that we consider a model allowing vague disclosure.
Bertomeu and Cianciaruso 2018 provide a broad analysis of such games.
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equilibria — eg. long/mediated cheap talk provide no additional value to a sender with transparent
preferences, but can be shown to provide significant value to a sender in some models with slightly
state-dependent preferences. Adapting our techniques to these communication technologies may
provide insight as to whether there are specific state-dependencies that preserve these properties,
and if there are realistic classes of models where these technologies can provide significant value.26
While we focus on finite states, it seems natural that our model should be able to approximate

interval equilibria in one-dimensional communication games (Θ,A ⊆ R) as we increase the
number of states/actions. It is unclear whether our robustness techniques can be extended to
multidimensional continuous state games (Θ ⊆ R𝑛). Our analysis does not straight-forwardly apply
— connectedness tends to imply cyclicity with such state-topologies — however monotoncity may
still be relevant, especially when using finite approximations of state space.
Our analysis focuses on the limiting case of nearly transparent preferences 𝜀 → 0. In a

work-in-progress, we show that these results can be extended to ‘ordinally transparent’ preferences
(specifically, sender preferences that order A ×𝑀 according to a transparent ranking) that satisfy
a graph version of ‘increasing differences’.
To outline the scope of our approach, recall that in Bayesian Perfect Equilibria of communication

games the receiver’s decision is determined through the following causal process:

1. The sender observes the state and chooses a message,

2. The receiver observes the message and forms a belief,

3. The receiver chooses an action that is a best response to their belief.

We focus on perturbations that introduce small state dependence in to the sender’s preference over
the first and third steps. Since both correspond to adding a state-dependent component to the
sender’s utility, they can be studied within the same framework.
The reader might wonder what would be the effect of adding state-dependence to the second

step. One way to interpret this is as a psychological modification (in the sense of Geanakoplos,
Pearce, and Stacchetti 1989) where the sender’s utility is dependent on the receiver’s belief. This
might be induced through a variation on lying aversion where the sender feels guilt for inducing
a misleading belief (see e.g. Khalmetski and Sliwka 2019), or an ‘effort’ associated with shifting
the receiver’s beliefs. Since this too is a modification of message-induced subgame utility, it can
be treated within the above framework.
A distinct way to introduce state-dependence in the second step is if messages induce beliefs

in a state dependent manner. This naturally occurs if the receiver is partially informed from an
independent source. For example, the receiver observes an informative signal that is (conditional
on the state) independent from the sender’s message. Since this signal is informative, it will affect
the receiver’s ‘prior’ belief. But this informativeness also means that the likelihood of various

26I thank Johannes Hörner in particular for bringing these questions to my attention.
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signal realizations — which induce different priors — varies across states, thereby introducing
state-dependence in the sender’s incentives. Arieli, Gradwohl, and Smorodinsky 2023 study this
mechanism in binary-state environments. Ideas developed in this paper may help to analyze this
mechanism more generally.
While we limit our attention to one-shot games, state-dependence can also arise from weak

reputation costs in a repeated game setting. Weak reputation costs can be understood as arising in
a population model with random matching. This work then informs the types of punishments that
can sustain communication.
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density with support independent of 𝜔𝑥 (𝜔) (e.g. full support), then persuasion is impossible.

Proof of Theorem 1. Proof of (1): Let 𝜎 be an equilibrium with strategy profile (M,P) and 𝑎∗

be a pure action played with positive probability. That is, if𝑀∗ := P−1{𝑝; 𝑎∗ ∈ supp(𝑝)} is the set
of messages leading to 𝑎∗ being played with positive probability, then the sender sends messages
in𝑀∗ with positive probability, ie. P [M(𝜃,𝜔) ∈ 𝑀∗] > 0.
Let Π∗ := {(𝑚,P(𝑚));𝑚 ∈ 𝑀∗} be the set of equilibrium paths leading to action 𝑎∗, and

Π𝑐 := {(𝑚,P(𝑚));𝑚 ∉ 𝑀∗} be the remaining equilibrium paths. We obtain the following bounds:

P

[
max
𝜋∈Π∗

𝑢(𝜋) > max
𝜋′∈Π𝑐

𝑢(𝜋′)
]
≤ P [M(𝜃,𝜔) ∈ 𝑀∗ |𝜃] ≤ P

[
max
𝜋∈Π∗

𝑢(𝜋) ≥ max
𝜋′∈Π𝑐

𝑢(𝜋′)
]
.

However

P

[
max
𝜋∈Π∗

𝑢(𝜋) = max
𝜋′∈Π𝑐

𝑢(𝜋′)
]
= E

[
P

[
max
𝜋∈Π∗

𝑢(𝜋) = max
𝜋′∈Π𝑐

𝑢(𝜋′)
����𝑢̃, (𝑈̃ (𝑎))𝑎≠𝑎∗

] ]
.

Since𝑢(𝜋′) is determined by (𝑢̃, (𝑈̃ (𝑎))𝑎≠𝑎∗), the conditional probability amounts to the probability
that max𝜋∈Π∗ 𝑢(𝜋) is equal to a constant. But max𝜋∈Π∗ 𝑢(𝜋) is strictly increasing in 𝑈̃ (𝑎∗), so
there is a unique value of 𝑈̃ (𝑎∗) that will yield this equality. Since the utility admits a density, the
conditional probability of 𝑈̃ (𝑎∗) being precisely this value is 0, allowing us to conclude

P [M(𝜃,𝜔) ∈ 𝑀∗ |𝜃] = P
[
max
𝜋∈Π∗

𝑢(𝜋) > max
𝜋′∈Π𝑐

𝑢(𝜋′)
]

is state-independent. As P [M(𝜃,𝜔) ∈ 𝑀∗] > 0, this means the average posterior that induces
a randomization including 𝑎∗ is equal to the prior 𝜇. Thus the prior is a convex combination of
beliefs to which 𝑎∗ is a best response, indicating 𝑎∗ is a best response to the prior. Thus pure
actions are either sent with probability zero, or are a best response to the prior. Since there are
finite pure actions, the total probability of one of the former actions being played is zero, making
the equilibrium unpersuasive.

Proof of (2): Meagreness is a corollary of (1), under the following two observations:

1. The set of preferences described by eq. 5 is dense.

2. The set of preferences that permit persuasive equilibria is the countable union of closed sets.

The first property is trivial. To observe the second, consider the set of persuasive equilibria where
an action 𝑎∗ that is not a best response to the prior is chosen w.p. at least 1

𝑛 . This is a closed
set of equilibria, by upper-hemicontinuity the corresponding set of preferences is also closed. We
know that the complement is then open, and by the first property includes a dense set, thus these
equilibria only occur over a nowhere dense set of preferences.
By taking the union of these preferences over 𝑛, we find that persuasion is only possible within

a meagre set (ie. a countable union of nowhere dense sets). □
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Note that the topological properties invoked in the last proof are desirable for any topology
on random preferences: the first is a consequence of preferences converging as a perturbation
vanishes, the second is implied by best responses being upper hemicontinuous. Thus persuasion is
generically impossible for any ‘reasonable’ topology, not just the weak-∗ topology.

Generic Structure of Communication Graphs
We state our alternate result for fixed 𝑢𝑅 and generic prior beliefs. We make the following weak
(generic) assumption:

Assumption (R). [Receiver Distinguishes between Best Responses.] If 𝑎 , 𝑎 ′ ∈ A are distinct
receiver-best responses to a belief 𝜈 ∈ ∆Θ then there exists a state 𝜃 ∈ supp(𝜈) such that 𝑢𝑅 (𝑎 |𝜃) ≠
𝑢𝑅 (𝑎 ′|𝜃).

An immediate consequence of this assumption is that pure beliefs have unique best responses.
More generally, this says that when restricted to any subset Θ1 ⊆ Θ, if two actions are equivalent
to the reciever (ie. they yield identical utilities for all states in Θ1), they must be irrelevant (ie. they
are never best responses for beliefs in Θ1). As a result the set of beliefs in ∆Θ1 where the receiver
is indifferent between two best responses has codimension 1.
There is also a slightly stronger version of this assumption that we will also use:

Assumption (R∗). [Receiver Distinguishes within 3-Best Responses.] Let 𝑎 , 𝑎 ′, 𝑎 ′′ ∈ A be
(possibly non-distinct) receiver-best responses to a belief 𝜈 ∈ ∆Θ. If 𝑝,𝑝′ ∈ ∆{𝑎 , 𝑎 ′, 𝑎 ′′} and
𝑢𝑅 (𝑝 |𝜃) = 𝑢𝑅 (𝑝′|𝜃) for all 𝜃 ∈ supp(𝜈), then 𝑝 = 𝑝′.

This can be equivalently stated in terms of the preference over pure actions as follows: if 𝑎 is
equivalent to a convex combination of 𝑎 ′, 𝑎 ′′ (when restricted to any Θ1 ⊆ Θ) then 𝑎 is irrelevant
(over ∆Θ1).
This implies that for any Θ1 ⊆ Θ, (i) the set of beliefs in ∆Θ1 where the receiver is indifferent

between two best responses has codimension 1, and (ii) the set of beliefs in ∆Θ1 where the receiver
is indifferent between three best responses has codimension 2.
These assumptions are necessary conditions for an equilibrium involving such mixed actions to

be Harsanyi-robust to perturbations in the receiver’s utility. They are generically satisfied on the
function space RA×Θ.

Theorem 2’. If Assumptions (S) and (R∗) are satisfied and the sender has transparent preferences,
then properties (a-c) of Theorem 2 hold over the set of injective acyclic candidate equilibria for
generic priors 𝜇 ∈ ∆Θ.

This is a corollary to the following version of Lemma 1, under the observation that Assumption
(S) and injectivity implies that candidate equilibria contain at most one pure action.
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Lemma 1’. Under Assumptions (S,R), for generic 𝜇 ∈ ∆Θ every connected component of an acyclic
candidate equilibrium’s communication graph

(i) includes at least one message whose best response is a unique pure action 𝑎∗,

(ii) in the case where this message is unique and (R∗) holds, then

(a) every other message on the connected component has best responses that are a binary
lottery,

(b) this connected component corresponds to a unique sender strategy (when restricted to
states on this component).

To prove this lemma (and Lemma 1), we first establish some notation:
For a rooted tree 𝐺0, for a node 𝑗, we denote the set of 𝑗’s children by 𝑗↓ and its parent by

𝑗↑. This will often be pushed to subscripts — eg. a message 𝜋𝑗 will have children from the set
of states Θ𝑗↓, whereas a state 𝜃𝑗 will have children Π𝑗↓. The set of 𝑗’s neighbours will be denoted
N(𝑗) := {𝑗↑} ∪ 𝑗↓.
We also require notation for the sets of beliefs where the receiver is indifferent between multiple

actions. For a set of pure actions 𝐴 ⊆ A, define

I(𝐴) :=
{
𝜈 ∈ ∆Θ;𝐴 ⊆ argmax

𝑎∈A
E𝜃∼𝜈 [𝑢𝑅 (𝑎 , 𝜃)]

}
to be the set of beliefs such that the receiver is willing to randomize over 𝐴 (ie. choosing an action
𝑝 ∈ int (∆𝐴)).
We let

I2 :={I(𝐴); |𝐴| = 2} I3+ :={I(𝐴); |𝐴| ≥ 3}

refer to collections of these sets where the receiver is willing to randomize between 2 actions, and
3 or more actions respectively. Assumption (R) implies every set in I2 has codimension 1, while
(R∗) implies every set in I3+ has codimension at least 2.

Proof of Lemma 1 and 1’. We first prove Lemma 1’, before showing how this proof can be trans-
lated to show Lemma 1.
WLOG we limit ourselves to priors 𝜇 ∈ int (∆Θ). Suppose there is an acyclic connected

component 𝐺0 ⊆ 𝐺 of the communication graph that does not include a pure action. We turn 𝐺0

into a rooted tree with arbitrary message root 𝜋0. We make an inductive argument up the tree to
the root:
1. Leaf Case: We begin with the vertices furthest from the root. Since there are no pure actions
in 𝐺0, all the leaves are states (otherwise they are actions corresponding to a known state — thus
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pure under Assumption (R)). The deepest vertex is thus a state connected to a single message, say
𝜋𝑗 , which it recommends w.p. 1 in equilibrium. Since this is a deepest action, all its other children
𝜃𝑘 ∈ Θ𝑗↓ also recommend it w.p. 1.
The only degree of freedom that𝐺 admits in the belief 𝜈𝑗 is the probability that it is recommended

from its parent state 𝜃𝑗↑. Thus for a fixed prior, the set of possible 𝜈𝑗 corresponding to this graph
has dimension 1.
Letting the probability 𝜇𝑗↓ of child states occuring vary, the set of possible posteriors 𝜈𝑗 under

𝐺 is a subset of

P𝑗 :=

{
1

𝜆+|𝜇
𝑗↓ |

(
𝜆𝛿𝜃

𝑗↑
+ 𝜇𝑗↓

)
; 𝜆 ∈

]
0, 1

[
,𝜇𝑗↓ ∈ int

(
∆Θ𝑗↓

)}
⊆ int

(
∆ΘN(𝑗)

)
,

where the denomonator is normalization. Note that this set is an open subset of ∆ΘN(𝑗) , hence has
codimension 0. Thus it is trivially transversal to any best response set.
Applying the transversality theorem, for a.a. 𝜇𝑗↓ ∈ ∆Θ𝑗↓, the set

P𝑗 (𝜇𝑗↓) :=
{

1
𝜆+|𝜇

𝑗↓ |

(
𝜆𝛿𝜃

𝑗↑
+ 𝜇𝑗↓

)
; 𝜆 ∈]0, 1[

}
is transversal to any I(𝐴). Thus, within this generic set, P𝑗 (𝜇𝑗↓) intersects 𝐼 ∈ I2 at finitely many
points (by convexity, at most one), and, under assumption (R∗), never intersects the codimension 2
sets 𝐼 ∈ I3+.
Fixing such a 𝜇𝑗↓, there are finite probabilities that the sender can send the message 𝜋𝑗 from

state 𝜃𝑗↑ and induce a mixed action, and by convexity a single probability for a given mixed action.
2. Induction step: We now let 𝜋𝑗 be a non-root message further up the tree 𝐺0, and 𝜃𝑗↑ be its
parent state. Our inductive assumption is that there are finite probabilities 𝜆𝑗↓ that its child states
𝜃𝑘 ∈ Θ𝑗↓ recommend their own child actions 𝜋𝑘↓ while rationalizing these actions. We then claim
that fixing this 𝜆𝑗↓, there are finite probabilities 𝜆 that its parent state can send the message 𝜋𝑗 to
make the receiver indifferent between two actions.
Indeed, fixing the posteriors generated in descendent actions, we find that the range of posteriors

that can be generated by the message 𝜋𝑗 is a subset of

P𝑗 :=
{

1
𝜆+|𝜇

𝑗↓−𝜆𝑗↓ |

(
𝜆𝛿𝜃

𝑗↑
+ (𝜇𝑗↓ − 𝜆𝑗↓)

)
; 𝜆 ∈

]
0, 1[

[
,𝜇𝑗↓ > 𝜆𝑗↓, |𝜇𝑗↓ | < 1

}
⊆ int

(
∆ΘN(𝑗)

)
.

where 𝜆𝑗↓ is fixed. This set has codimension 0 in ∆ΘN(𝑗) .
Applying the transversality theorem once more, the set of feasible posteriors

P𝑗 (𝜇𝑗↓) :=
{

1
𝜆+|𝜇

𝑗↓−𝜆𝑗↓ |

(
𝜆𝛿𝜃

𝑗↑
+ (𝜇𝑗↓ − 𝜆𝑗↓)

)
; 𝜆 ∈]0, 1[

}
is thus transversal to any I(𝐴) for a.a. 𝜇𝑗↓ ∈ ∆Θ𝑗↓. As a result, P𝑗 (𝜇𝑗↓) intersects any 𝐼 ∈ I2 at
most once, and (under assumption (R∗)) never intersects any 𝐼 ∈ I3+ within this generic set.
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3. Conclusion: This shows that generically (non-root) actions have support of at most two. But
if we consider the rooted message, the above reasoning shows that there are finite posteriors that
can be generated when all its descendants are constrained to generate mixed actions. Applying the
transversality theorem (as above, but with no 𝜆 as there is no parent state) we find that for a.a. 𝜇𝑗↓

the posteriors do not intersect any set 𝐼 ∈ I2 of posteriors inducing a mixed action. Thus one action
must be pure.
Since there are finite acyclic communication structures (up to choice of 𝜋), the set of priors that

admit a forest candidate equilibrium is the finite union of measure-0 sets, and hence is measure-0.
Moreover, fixing the indifferences required by each message (I2)𝑀 , there is a at most one sender

strategy capable of generating these indifferences within the acyclic communication graph, giving
us property (ii).

Translation to proof of Lemma 1: To show the above results also hold for fixed 𝜇 and generic
𝑢𝑅, we make Assumption (R∗) (recalling that it holds for generic receiver preferences), and note
that the above theorem can be reproduced by holding 𝜇𝑗↓ fixed at each step, and varying 𝐼 (𝐴) ∈ I2
through the receivers utility.
Observe that the set {𝐼 (𝐴;𝑢𝑅)} can be perturbed in any direction by adjusting 𝑢𝑅 within this

set of utilities, hence it is trivially transversal to P𝑗 (𝜇𝑗↓). Thus, for generic 𝑢𝑅, 𝐼 (𝐴;𝑢𝑅) is
transversal to P𝑗 (𝜇𝑗↓). Since the latter is one dimensional (parametrized solely by the probability
𝜆), and the former has codimension one when |𝐴| = 2 (by Assumption (R∗)), this means that
the intersection consists of a finite set of weights the parent state can send the message with
that will induce randomization over two actions (and no weights that will induce higher support
randomizations). □

𝒪-robustness Proofs
Proposition 1 is an immediate corollary of the more general proposition:

Proposition 7. Any pair of equilbirium paths (𝑝0,𝑚0), (𝑝1,𝑚1) taken in an equilibium where the
senders preference is 𝑢0 − 𝜀𝑢𝑅 (with 𝜀 > 0) satisfy 𝑢0(𝑝0,𝑚0) = 𝑢0(𝑝1,𝑚1) and 𝑢𝑅 (𝑝0 |𝜃) =

𝑢𝑅 (𝑝1 |𝜃) for 𝜇-a.a. 𝜃.

We prove this result in the more general setting where the state belongs to an arbitrary measure
space, and actions belong to an arbitrary set, possibly infinite.

Proof. Let one equilibrium action 𝑝0 be associated with the message 𝑚0 and posterior 𝜈0, and
another equilibrium action 𝑝1 be associated with message 𝑚1 and posterior 𝜈1. For these to be
optimal messages for the sender it must be the case that

0 ≤𝑢−𝜀𝑢𝑅 (𝑝0,𝑚0 |𝜃0) − 𝑢−𝜀𝑢𝑅 (𝑝1,𝑚1 |𝜃0) for 𝜈0-a.a. 𝜃0
0 ≤𝑢−𝜀𝑢𝑅 (𝑝1,𝑚1 |𝜃1) − 𝑢−𝜀𝑢𝑅 (𝑝0,𝑚0 |𝜃1) for 𝜈1-a.a. 𝜃1.

(15)
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Integrating these inequalities over their respective posteriors and summing, we obtain

0 ≤ −
∫

𝜀(𝑢𝑅 (𝑝0 |𝜃0) − 𝑢𝑅 (𝑝1 |𝜃0)) 𝑑𝜈0(𝜃0) −
∫

𝜀(𝑢𝑅 (𝑝1 |𝜃1) − 𝑢𝑅 (𝑝0 |𝜃1)) 𝑑𝜈1(𝜃1) ≤ 0,

where the last inequality is obtained from 𝑝𝑖 being a best response to 𝜈𝑖. This implies eq. 15 holds
with equality 𝜈0-/𝜈1-a.e. If there are only two messages we are done.
Otherwise repeat the above procedure, comparing 𝑝0,𝑝1 to other equilibrium actions 𝑝′ corre-

sponding to the message 𝑚′ and posterior 𝜈′ to find

𝑢−𝜀𝑢𝑅 (𝑝0,𝑚0 |𝜃) = 𝑢−𝜀𝑢𝑅 (𝑝′,𝑚′|𝜃) = 𝑢−𝜀𝑢𝑅 (𝑝1,𝑚1 |𝜃) for 𝜈′-a.a. 𝜃.

Integrating over the equilibrium distribution of posteriors then shows that 𝑢−𝜀𝑢𝑅 (𝑝0,𝑚0 |𝜃) =

𝑢−𝜀𝑢𝑅 (𝑝1,𝑚1 |𝜃) and 𝑢𝑅 (𝑝0 |𝜃) = 𝑢𝑅 (𝑝1 |𝜃) for 𝜇-a.a. 𝜃. □

Harsanyi 𝒪-robustness Proofs

If we wish to work with perturbations that do not satisfy mutual independence, we must separate
out the distribution of perturbations conditional on each state — these conditional distributions are
what actually determines the likelihood a message is sent from a particular state. We define the
state-factored support (denoted supp(·|𝚯)) of an idiosyncratic perturbation 𝑉:

supp(𝑉 |Θ) :=
?
𝜃∈Θ
suppP𝜔 (𝑉 (·|𝜃)) ⊆ R(A×𝑀)×Θ. (16)

This is the smallest ‘rectangular’ set that contains suppP𝜔 (𝑉). If 𝑉̃ is the reparametrization of
𝑉 that satisfies mutual independence (defined in footnote 17), then supp(𝑉̃) = supp(𝑉 |Θ). This
means that the definitionn of Harsanyi 𝒪-robustness can be extended to 𝑉 that are not mutually
independent by replacing supp(𝑉) with supp(𝑉 |Θ) in the definition, allowing us to retain the
interpretation of 𝜔 as reflecting an individual’s preference.
The following lemma is essential for the proof of Theorem 4, essentially replacing the use of

intermediate value theorem in the proof of Theorem 3.

Lemma 2 (Neighbour Incentive Compatability). Let 𝑢𝜀𝑉 : ∆A×𝑀0 ×Ω → R be an idiosyncratic
sender preference (fixing the state), where 𝑀0 is finite. Fix the action 𝜋0 associated with some
message 𝑚0 ∈ 𝑀0, and for 𝑗 ≠ 0, let 𝐵𝑗 ⊆ ∆supp(𝜋𝑗) be closed, convex intervals satisfying

inf
𝜋′∈𝐵𝑗

P𝜔
[
𝑢𝜀𝑉 (𝜋′) > 𝑢𝜀𝑉 (𝜋0)

]
=0 sup

𝜋′∈𝐵𝑗

P𝜔
[
𝑢𝜀𝑉 (𝜋′) > 𝑢𝜀𝑉 (𝜋0)

]
=1. (17)

For any mixed sender strategy M ∈ ∆𝑀0 there exists a profile of actions 𝜋̂+ ∈ >
𝑗≠0 𝐵𝑗 that induce

the sender population best response M.
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This generalizes intermediate value theorem in the sense that eq. 17 is equivalent to each pure
strategyM ∈ 𝑀0 being the unique best response to some action profile 𝜋+, and we conclude that
every mixed strategy in ∆𝑀0 also a best response to some action profile.

Proof of Lemma 2. Fix the message-action associated with 𝑚0 to be 𝜋0 and denote 𝐵0 := {𝜋0}.
Given actions 𝜋+ ∈ >

𝑗≠0 𝐵𝑗 , the probability the sender sends the message 𝜋𝑗 is described by the
correspondence M̂ : 𝐵 ⇒ ∆𝑀0 bounded27 by

P𝜔

[
𝑢𝜀𝑉 (𝜋𝑗) ≥ max

𝑗 ′≠𝑗
𝑢𝜀𝑉 (𝜋𝑗 ′)

]
≥ M̂𝑗 (𝜋) ≥ P𝜔

[
𝑢𝜀𝑉 (𝜋𝑗) > max

𝑗≠𝑗 ′
𝑢𝜀𝑉 (𝜋𝑗)

]
.

Order 𝐵𝑗 so that higher actions are more attractive to the sender, so that

𝜋𝑗 := argmin
𝜋′∈𝐵𝑗

{
P𝜔

[
𝑢𝜀𝑉 (𝜋′) > 𝑢𝜀𝑉 (𝜋0)

]}
𝜋𝑗 := argmax

𝜋′∈𝐵𝑗

{
P𝜔

[
𝑢𝜀𝑉 (𝜋′) > 𝑢𝜀𝑉 (𝜋0)

]}
are the lower/upper bound of 𝐵𝑗 . By eq. 17, the action 𝜋𝑗 makes it a best response to never send its
message: 0 ∈ M̂𝑗 (𝜋𝑗 ,𝜋−𝑗) for any 𝜋−𝑗 ∈ 𝐵−𝑗 :=

>
𝑗 ′≠𝑗 𝐵𝑗 ′; while a receiver having the strategy

corresponding to 𝜋𝑗 ensures that it is optimal to never send 𝜋0 in equilibrium, ie. 0 ∈ M̂0(𝜋𝑗 ,𝜋−𝑗).
Define the correspondence 𝑔∗𝑗 : 𝐵−𝑗 ⇒ 𝐵𝑗

𝑔∗𝑗 (𝜋−𝑗) :=
{
{𝜋𝑗} M̂𝑗 (𝜋𝑗;𝜋−𝑗) < M𝑗

{𝜋′
𝑗 ∈ 𝐵𝑗; M̂𝑗 (𝜋′

𝑗;𝜋−𝑗) = M𝑗} otherwise.

Note this is never empty-valued — since M̂𝑗 (·,𝜋′
−𝑗) is increasing, convex valued, and up-

per hemicontinuous it satisfies an intermediate value theorem, furthermore eq. 17 implies
M̂𝑗 (𝜋𝑗;𝜋−𝑗) < M𝑗 for any 𝜋−𝑗 . Together these properties show that 𝑔∗𝑗 is upper-hemicontinuous
and interval-valued.
Define the self-map 𝑔 : 𝐵 ⇒ 𝐵

𝑔(𝜋) =
?
𝑗≠0

𝑔∗𝑗 (𝜋−𝑗)

By Kakutani fixed point theorem, there exists a fixed point 𝜋∗ of this map. Suppose this fixed
point does not solve M̂𝑗 (𝜋∗) = M𝑗 , then 𝜋∗

𝑗 = 𝜋𝑗 for at least one 𝑗. But then M̂0(𝜋∗) < M0, as
earlier observed. As a result there must be a message 𝑗′ (not necessarily 𝑗) sent with probability
M̂𝑗 ′ (𝑔∗𝑗 ′ (𝜋∗

−𝑗 ′);𝜋∗
−𝑗 ′) > M𝑗 ′, contradicting the definition of 𝑔∗𝑗 ′. □

27No insight is lost by assuming 𝑢 admits a density, hence M̂ is single-valued. More generally M̂(𝜋) is the
intersection of the simplex ∆𝑀0 with the ‘box’ in [0, 1]𝑀0 whose sides are described by the given interval.
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Proof of Theorem 4. We use the same rooted tree and notation as in the proof of Theorem 3.
1. The Neighbour Problem: To ensure each state on the tree randomizes over its neighbouring

messages to the desired degree, first constrain each state to neighbouring messages. Suppose
𝑁𝑗 ∋ 𝜋𝑗 are interval neighbourhoods of 𝜋𝑗 for all non-pure actions 𝜋𝑗 (let 𝑁0 := {𝛼0} for the pure
action). We assume 𝜀 is sufficiently small that the sender’s ordinal preference over pure actions is
independent of idiosyncrasy.
We seek 𝜀 > 0 and interval neighbourhoods 𝐵𝑗 such that

min𝑢𝜀𝑉 (𝐵𝑗 |𝜃𝑘) < 𝑢𝜀𝑉 (𝜋𝑘↑ |𝜃𝑘) < max𝑢𝜀𝑉 (𝐵𝑗 |𝜃𝑘) P𝜔-a.a., for all 𝜋𝑘↑ ∈ 𝐵𝑘↑, 𝜃𝑘, 𝜀 < 𝜀. (18)

for all 𝑗 ∈ 𝑘↓. This allows us to apply Lemma 2 to find mixed actions 𝜋̂ ∈ 𝐵 :=
>

𝐵𝑗 such that
each state sends its neighbouring messages with the desired probability.
Beginning with mixed actions 𝜋𝑗 without grandchildren, define 𝐵𝑗 := 𝑁𝑗 . We denote the

endpoints of 𝐵𝑗 =: [𝜋𝑗 ,𝜋𝑗] where actions on the right side of the interval are unanimously prefered
to actions to their left. Moving up the tree, for mixed actions 𝜋𝑗 with grandchildren, define

𝐵𝑗 :=
⋂
𝑘∈𝑗↓

⋂
𝑗 ′∈𝑘↓

{𝜋′ ∈ 𝑁𝑗;𝑢
𝜀𝑉 (𝜋𝑗 ′ |𝜃𝑘) ≤ 𝑢𝜀𝑉 (𝜋′|𝜃𝑘) ≤ 𝑢𝜀𝑉 (𝜋𝑗 ′ |𝜃𝑘) w.p. 1}.

to be the constraint imposed by its grandchild actions 𝑗↓↓. This set may be empty for some 𝜀, but
observe that if 𝜋𝑗 ′ ∈ 𝐵𝑗 ′ for all 𝑗′ ∈ 𝑗↓↓, then 𝐵𝑗 → 𝑂𝑗 as 𝜀 → 0 where

𝑂𝑗 :=

{
𝜋′ ∈ 𝑁𝑗;𝑢

0(𝜋′) ∈
]
max
𝑗 ′∈𝑗↓↓

min𝑢0(𝐵𝑗 ′), min
𝑗 ′∈𝑗↓↓

max𝑢0(𝐵𝑗 ′)
[}

∋ 𝜋𝑗 ,

since 𝐵𝑗 ′ ∋ 𝜋𝑗 ′. Thus when 𝜀 is sufficiently small, 𝐵𝑗 is a neighbourhood of 𝜋𝑗 . Applying this
inductively up the tree, we simultaneously have neighbourhoods around every mixed action, and
can apply Lemma 2 to find actions 𝜋̂ that make senders in each state 𝜃 send each neighbouring
message with the prescribed probability.

1.1 Harsanyi robustness To get the limit (1) in the second part of the theorem, bound 𝜀 < 𝜀 so
that the proof of Theorem 3 ensures states have strict preferences for their own limit equilbirium
actions at v. Then repeat the above step with 𝑉 → v in distribution instead of 𝜀 → 0, and 𝜋
representing the equilibrium actions of 𝑢0 + 𝜀v rather than 𝑢0.

2 Non-neighbouring deviations Assume that the neighbourhoods 𝑁𝜋 collectively solve eq.
9. Once we have actions 𝜋̂ that induce the desired degree of randomization when constrained
to on-path messages, we need to check that agents are not tempted by off-path messages. To
observe a sender in state 𝜃1 will w.p. 1 have a strict preference for neighbouring messages,
consider a sequence (𝜃1, 𝜋̂1, . . . , 𝜋̂𝑁). Applying intermediate value theorem, we find amodification
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v̂ ∈ co(supp(𝑉 |Θ)) ⊆ ℳ𝐺 (𝐺(𝜎0)) that is indifferent over each message is this sequence. Consider
the realized modification

v𝜔 (𝜋 |𝜃) :=
{
v̂(𝜋 |𝜃) 𝜃 ≠ 𝜃1

𝑉 (𝜋 |𝜃1,𝜔) 𝜃 = 𝜃1.

Since v𝜔 ∈ ℳ𝐺 (𝐺(𝜎̂)) w.p. 1 we can apply Theorem 3 to conclude that non-neighbouringmessages
are not attractive. □

Proofs for Applications
Proof of Proposition 3. We will show that for any path (𝜃0,𝜋0, . . . , 𝜃𝑁 ,𝜋𝑁) where (𝜃0, . . . , 𝜃𝑁) is
≻-monotone (WLOG increasing), we have

𝑢𝑅 (𝛼0 |𝜃0) − 𝑢𝑅 (𝛼𝑁 |𝜃0) > 𝑢𝑅 (𝛼0 |𝜃1) − 𝑢𝑅 (𝛼𝑁 |𝜃1)

for all 𝛼𝑖 ∈ supp(𝜋𝑖). Single-crossing implies that for a fixed 𝛼0,𝛼𝑁 pair either

𝑢𝑅 (𝛼0 |𝜃) − 𝑢𝑅 (𝛼𝑁 |𝜃) > 𝑢𝑅 (𝛼0 |𝜃′) − 𝑢𝑅 (𝛼𝑁 |𝜃′) for all 𝜃′ ≻ 𝜃, or
𝑢𝑅 (𝛼0 |𝜃) − 𝑢𝑅 (𝛼𝑁 |𝜃) < 𝑢𝑅 (𝛼0 |𝜃′) − 𝑢𝑅 (𝛼𝑁 |𝜃′) for all 𝜃′ ≻ 𝜃.

Note that our equilibrium requires that 𝛼𝑁 is a best response to a belief supported on states 𝜃′ ⪰ 𝜃𝑁 ,
and that 𝛼0 is a best response to a (non-degenerate) belief supported on states 𝜃 ⪯ 𝜃𝑁 . This is
incompatible with the second possibility, so the first must hold. This implies that

𝑢𝑅 (𝜋𝑖 |𝜃𝑖) − 𝑢𝑅 (𝜋𝑁 |𝜃𝑖) > 𝑢𝑅 (𝜋𝑖 |𝜃𝑖+1) − 𝑢𝑅 (𝜋𝑁 |𝜃𝑖+1)

for all paths (𝜃0,𝜋0, . . . , 𝜃𝑁 ,𝜋𝑁) on 𝐺(𝜎0) and 𝑖 ∈ {0, . . . ,𝑁 − 1}. By rearranging and summing
this inequality over 𝑖 = 0 to 𝑖 = 𝑁 − 1 we obtain graph monotonicity:

𝑁−1∑︁
𝑖=0

𝑢𝑅 (𝜋𝑖 |𝜃𝑖) − 𝑢𝑅 (𝜋𝑁 |𝜃𝑖) − 𝑢𝑅 (𝜋𝑖 |𝜃𝑖+1) + 𝑢𝑅 (𝜋𝑁 |𝜃𝑖+1) =
𝑁∑︁
𝑖=0

𝑢𝑅 (𝜋𝑖 |𝜃𝑖) − 𝑢𝑅 (𝜋𝑖 |𝜃𝑖−1) > 0.

Quantitative model, uniqueness: First note that because the receiver only randomizes between
≻A neighbouring actions, equilibrium actions can be ordered by ≻A . Since 𝑢0 is ≻A-single-dipped,
there are at most two actions that the sender is ever indifferent between. Consider the state that
randomizes between the two recommendations. For Graph Monotonicity to hold, this equilibrium
must have a threshold structure: every state that recommends the higher (lower) action must be
higher (lower) than this state. interval equilibria will thus be threshold equilibria where onemessage
induces high belief 𝜈 and the other a low belief 𝜈.
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Define ∆𝑇 to be the set of posteriors that can be induced by a threshold equilibrium28, this set
is linearly ordered by ≻FOSD. The set of threshold strategies can be parametrized by 𝑡 = (𝜃∗,𝑝)
where 𝜃∗ is the threshold and 𝑝 is the probability of sending the high message from the threshold
state, note that if we order 𝑡 lexicographically then 𝑡 ↦→ (𝜈(𝑡),−𝜈(𝑡)) is monotonically increasing.
Let 𝜈̂ ∈ argmin𝜈∈∆𝑇

𝑢∗(𝜈) be the posterior where the sender’s least preferred action is induced.
WLOG 𝜈̂ ⪰FOSD 𝜇. Let 𝑡 := 𝜈−1(𝜈̂). A candidate equilibrium must have 𝜈 ≻FOSD 𝜈̂ ≻FOSD 𝜈,
otherwise the utility from one posterior dominates the other. This implies that the threshold satisfies
𝑡 ≥ 𝑡, But 𝑡 ↦→ 𝑢∗(𝜈(𝑡)) − 𝑢∗(𝜈(𝑡)) is monotonically increasing for 𝑡 ≥ 𝑡 (only constant when both
posteriors induce pure actions). Thus there is a unique 𝑢𝑅-robust equilibrium.

Sender-preferred-ness: Consider any non-interval candidate equilibrium. Due to our assump-
tions on 𝑢𝑅 and 𝑢0, this involves two actions that are ≻A-ordered, induced by posteriors 𝜈2, 𝜈2.
One of these actions is mixed 𝑝 ∈ ∆{𝑎 , 𝑎}. There will be a threshold posterior 𝜈0 that induces this
mixed action as well (with complementary posterior 𝜈0). We assume (WLOG) that 𝑎 ≺A 𝑎 , 𝜈2
corresponds to this mixed action, and 𝜈0 is a lower threshold interval.
We claim that 𝜈0 ≻FOSD 𝜈2. In this case 𝑢∗(𝜈0) ≥ 𝑢∗(𝜈2). If this holds with equality, then we

have found an interval equilibrium that obtains the same sender utility. If this holds with a strict
inequality, then by shifting the threshold lower, we increase 𝑢∗(𝜈0) and decrease 𝑢∗(𝜈0), eventually
attaining equality between the two, at a higher sender-utility.
To show that 𝜈0 ≻FOSD 𝜈2, we parametrize the sender’s strategyℳ by the probability 𝑚(𝜃)

that it sends the high message in each state 𝜃. For the mixed action 𝑝 to be a best response to the
low message, this strategy must solve∑︁

𝜃∈Θ

[
𝑢𝑅 (𝑎 |𝜃) − 𝑢𝑅 (𝑎 |𝜃)

] [
1 −𝑚(𝜃)

]
=0

0 ≤ 𝑚(𝜃) ≤1
(19)

Let 𝜃𝑎 := min{𝜃;𝑢𝑅 (𝑎 |𝜃) > 𝑢𝑅 (𝑎 |𝜃)} be the first state where the receiver prefers the action 𝑎 to 𝑎 .
The threshold strategy 𝑚0 corresponding to 𝜈0 is characterized by solving eq. 19 and having

the structure of being 1 above some state 𝜃∗ and 0 below it, where single-crossing implies 𝜃∗ ⪰ 𝜃𝑎 .
We consider an intermediate solution 𝑚1 of eq. 19 that for some 𝜃∗∗ satisfies

𝑚1(𝜃) = 𝑚2(𝜃) 𝜃 ≺ 𝜃∗∗

𝑚1(𝜃) ∈ [𝑚0(𝜃),𝑚2(𝜃)] 𝜃 = 𝜃∗∗

𝑚1(𝜃) = 𝑚0(𝜃) 𝜃 ≻ 𝜃∗∗

where 𝜃𝑎 ⪯ 𝜃∗∗ ⪯ 𝜃∗ (intermediate value theorem assures such a solution exists). Intuitively, we
are splitting the transformation into two steps: (1) moving from𝑚0 to𝑚1 focuses on changes below
the threshold 𝜃∗, (2) moving from 𝑚1 to 𝑚2 focuses on changes above the threshold 𝜃𝑎 .

28Formally ∆𝑇 :=
⋃

𝜃∗∈Θ co({𝜇 |𝜃≻𝜃∗ }, {𝜇 |𝜃⪰𝜃∗ }); 𝜃∗ ∈ Θ} ∪ co({𝜇|𝜃≺𝜃∗ }, {𝜇|𝜃⪯𝜃∗ }); 𝜃∗ ∈ Θ}
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The change in posteriors from the first step is

𝜈0(𝜃) − 𝜈1(𝜃) =
𝑚0(𝜃)
𝑝0

− 𝑚1(𝜃)
𝑝1

where 𝑝𝑖 =
∑︁
𝜃′

ℳ𝑖 (𝑚|𝜃′).

Note that 𝑝0 < 𝑝1, making 𝜈0(𝜃) − 𝜈1(𝜃) negative before 𝜃∗∗ and positive after. This implies
𝜈0 ≻FOSD 𝜈1.
The second shift only affects states weakly above 𝜃∗∗ (therefore weakly above 𝜃𝑎 ). Since both

strategies solve eq. 19, 𝜃 ↦→ 𝑢𝑅 (𝑎 |𝜃) − 𝑢𝑅 (𝑎 |𝜃) is increasing, and sgn(𝑚2 −𝑚1) has a threshold
structure (being positive until 𝜃∗ and negative after), the high message is sent more often in the
second strategy: 𝑝2 > 𝑝1. We then apply the above reasoning to deduce that 𝜈2 ≺FOSD 𝜈1. □

Proof of Proposition 4. Acyclic candidate equilibria that attain a non-zero payoff will involve two
messages: one recommending mixed action 𝑝𝐹 , enacting policy 𝐹 and ∅ with equal probability;
and one recommending policy 𝑃.29
Observe that a receiver only chooses 𝑃 if 𝜃𝑝 is in the support of their posterior, likewise for 𝐹

and 𝜃𝑓. However

v𝐸 (𝑝𝐹 |𝜃𝑓) − v𝐸 (𝑃 |𝜃𝑝) = 11
4 > v𝐸 (𝑝𝐹 |𝜃𝑝) − v𝐸 (𝑃 |𝜃𝑝) = −5

4 > v𝐸 (𝑝𝐹 |𝜃𝑛) − v𝐸 (𝑃 |𝜃𝑛) = −7
4 .

Suppose there is a persuasive candidate equilibrium:

• If state 𝜃𝑛 recommends 𝑝𝐵 with positive probability, then graph monotonicity implies that
state 𝜃𝑎 only recommends 𝑝𝐵 , contradicting our previous observation.

• If 𝜃𝑛 only recommends 𝐴, then 𝑝𝐵 is induced by a message sent only by states 𝜃𝑎 , 𝜃𝑏.
However ∅ (hence 𝑝𝐵) is never a best response on ∆{𝜃𝑎 , 𝜃𝑏}.

There are evidently acyclic candidate equilibria whose convex hull contains priors in the cross-
hatched region, which can thus be preserved by appropriate modifications. □

The following lemma is essential to the proof of Proposition 5:

Lemma 3 (N-Shaped Subgraphs). Consider a lying averse model, and a candidate equilibrium 𝜎0
with communication graph 𝐺(𝜎0) containing an N-shaped subgraph, in that two states 𝜃1, 𝜃2 both
send a message 𝑚1 and one of them (𝜃2) sends another message 𝑚2. If vLA ∈ ℳ𝐺 (𝐺(𝜎0)), then
𝜓(𝑚1) = 𝜃1 or 𝜓(𝑚2) = 𝜃2.

The N-shaped subgraph is illustrated in Figure 6a. We will say such an ‘N’ is spanned by
its endpoints — in this case 𝜃1-𝑚2. The content of this lemma is intuitive: for lying aversion to
be monotone relative to this ‘N’, the sender in state 𝜃1 must be biased towards the message they
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Figure 6: In (a), the communication sub-graph referred to in Lemma 3. In (b), (c) are the two
sub-graphs the lemma rules out.

send more than the sender in state 𝜃2. The only way this can happen is if they are telling the truth
(𝜓(𝑚1) = 𝜃1) or the other message is the truth for the sender in state 𝜃2 (𝜓(𝑚2) = 𝜃2).
The two other possibilities — (1) 𝜓(𝑚1) = 𝜃2, or (2) all messages are lies (ie. 𝜓(𝑚1) ≠ 𝜃1, 𝜃2

and 𝜓(𝑚2) ≠ 𝜃2) are easily verified to fail graph monotonicity:

vLA(𝑚1 |𝜃2) − vLA(𝑚2 |𝜃2) ≥ 0 ≥ vLA(𝑚1 |𝜃1) − vLA(𝑚2 |𝜃1).

Proof of Proposition 5. (2)⇒(1) is easily verified by computation. It remains to show that (1)⇒(2),
ie. if vLA ∈ ℳ𝐺 (𝐺(𝜎0)) then 𝐺(𝜎0) is one of the graphs in Figure 5.
We show the previous lemma rules out the subgraphs illustrated in Figures 6b, 6c, which

constricts the communication graph’s half squares.30
We use the assumption of generic 𝑢𝑅 to assume that the graph is a tree and the receiver has

a unique best response to each state. By injectivity and Assumption (S), this means at most one
state can be disclosed in equilibrium. This implies that if 𝐺2 [𝑀] is not complete, 𝐺 must have a
subgraph of the form of Figure 6b.
The impossibility of Figure 6c shows that if three states send a message, then every state sends

that message — knowing that there is at least one state that sends every message, this implies that
𝐺2 [Θ] is either a star or a complete graph.
The impossibility of these figures are obtained by repeated applications of Lemma 3:

Impossibility of Figure 6b: Applying the lemma to the ‘N’ spanned by 𝜃1-𝑚3 implies that
𝜓(𝑚2) ≠ 𝜃2.
With this knowledge, examining the ‘N’ spanned by 𝜃2-𝑚1, we find 𝜓(𝑚1) = 𝜃1.
Revisiting 𝜃1-𝑚3, knowing that 𝜓(𝑚2) ≠ 𝜃1, we deduce 𝜓(𝑚3) = 𝜃2.
But this makes graph monotonicity on the ‘N’ spanned by 𝜃3-𝑚2 impossible.

29A measure 0 of priors will also allow an equilibrium where mixed action 𝑝𝑃 is recommended. These equilibria
are fragile to perturbations to the receiver’s utility. Nevertheless the proposition extends to these equilibria.

30The half square 𝐺2 [𝑋] of a bipartite graph 𝐺 contains all the vertices of one side 𝑋 of the bipartition, and draws
edges between vertices that share a neighbour in 𝐺.
Single-disclosure captures communication graphs whose half-squares 𝐺2 [Θ] and 𝐺2 [𝑀] are both complete.
Garbled-revelation describes communication graphs whose state half-square 𝐺2 [Θ] is a star and whose message

half-square 𝐺2 [𝑀] is complete.
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Impossibility of Figure 6c: for the two ‘N’ shapes spanned by 𝜃3-𝑚1 and 𝜃4-𝑚1 to hold, we must
have 𝜓(𝑚1) = 𝜃2 (since 𝜓(𝑚2) cannot simultaneously be both 𝜃3 and 𝜃4).
But as before this contradicts the ‘N’ shape spanned by 𝜃1-𝑚2. □

Proof of Proposition 6. Let the equilibrium message inducing a belief 𝜈 correspond to the comple-
ment of its support 𝑚 = 𝜓−1(supp(𝜈)𝑐). Then for a path (𝜃0,𝜋0, . . . , 𝜃𝑁 ,𝜋𝑁), we have{

vWD(𝜋𝑖 |𝜃𝑖) − vWD(𝜋𝑖−1 |𝜃𝑖) = 0 𝑖 > 0

vWD(𝜋𝑖 |𝜃𝑖) − vWD(𝜋𝑖−1 |𝜃𝑖) > 0 𝑖 = 0. □

B Supplemental Material

B.1 Money Burning Example
We illustrate this technique in constructing equilibria of the money burning model:

Example 4. Consider the message space 𝑀 = 𝑀1 ×𝑀2 where 𝑀1 denotes cheap talk messages,
and𝑀2 = N0 denotes a discrete quantity of money burnt that accompanies the message. Suppose
the sender’s utility takes the form

𝑢0(𝑎 , (𝑚1,𝑚2)) = 𝑢̃(𝑎) − 𝑚2

𝑁

for some 𝑁 (representing currency increments). By assuming the currency space is discrete we
maintain Assumption (S).
When 𝑁 is large, this model allows us to attain the maximum set of candidate equilibrium:

Proposition 8. Suppose |𝑀1 | ≥ |Θ|, then for sufficiently large 𝑁, any Bayes-plausible set of
posterior beliefs that induces at most one pure action corresponds to a money-burning equilibrium.

However these equilibria cannot improve the sender’s utility beyond the best cheap talk equi-
libria.

Note that this applies whenever persuasion is possible (ie. for some belief the receiver would
prefer an action that is not a best response to the prior— for generic𝜇 this is equivalent to the receiver
not possessing a dominant action across all states). In particular, this permits communication even
when the sender has monotonic preferences over the receiver’s beliefs.

Proof. LetB be a plausible set of posterior beliefs, withB+ ⊆ B the set of posterior beliefs inducing
a mixed action. We show how to design scheme of money-burning that satisfies sender-incentive
compatibility. Let 𝑁 be such that

2

𝑁
≤min

𝜈∈B+
{max 𝑢̃∗(𝜈) −min 𝑢̃∗(𝜈)}
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where 𝑢̃∗(𝜈) is the range of utilities attained by a belief 𝜈 assuming no money is burnt. For
convenience define 𝑢 := min𝜈∈B{max 𝑢̃∗(𝜈)}. Our analysis at this point diverges depending on
where this minimizing belief is in B+.

The minimizing belief is in B+: If the minimizing belief induces a mixed action, then
𝑢 − 2

𝑁 ≥ min 𝑢̃∗(𝜈). This establishes the bound of utility for eq. 4c.
For posteriors 𝜈 ∈ B+ with min 𝑢̃(𝜈) ≤ 𝑢 − 1

𝑁 , we allow the belief to be induced without
burning money. Otherwise, we require the sender to burn an amount 𝑚𝜈

𝑁 so that

𝑢 − 2
𝑁 < min 𝑢̃∗(𝜈) − 𝑚𝜈

𝑁 ≤ 𝑢 − 1
𝑁

Then [𝑢 − 1
𝑁 ,𝑢] ⊆ 𝑢̃∗(𝜈) − 𝑚𝜈

𝑁 for all beliefs 𝜈 inducing a mixed action. For the message that
induces the pure action 𝑎 , we require burning an amount of money 𝑚

𝑁 so that 𝑢̃(𝑎) −
𝑚
𝑁 ∈ [𝑢− 1

𝑁 ,𝑢].
This gives us eq. 4b.

The minimizing belief is not in B+: If the minimizing belief leads to a pure action, then
𝑢 ≥ min 𝑢̃∗(𝜈). This establishes the bound of utility for eq. 4c.
For posteriors 𝜈 ∈ B+, we require the sender to burn an amount 𝑚𝜈

𝑁 so that

𝑢 − 1
𝑁 ≤ min 𝑢̃∗(𝜈) − 𝑚𝜈

𝑁 < 𝑢

ensuring eq. 4b is solved by 𝑢.
Compared with cheap talk: To see that this cannot improve the sender’s utility beyond the

best cheap talk case, suppose a money-burning equilibrium improves on the utility generated by the
prior. Utility is maximized when there is at least one message where money isn’t burnt, attaining
the candidate equilibrium 𝑢. But then every message involving the burning of money must lead to
a strictly higher utility. By garbling these messages to move their posteriors towards the prior, the
intermediate value theorem ensures that at some point the posterior have a best response leading to
sender utility 𝑢, meaning no money need be burnt to send this message. □

This construction subsumes the cheap talk equilibria as the special casewheremax𝜈∈B min 𝑢̃∗(𝜈) ≤
min𝜈∈B max 𝑢̃∗(𝜈) and no burning of money is required.
An advantage of money-burning over cheap talk is that it allows persuasion when the sender’s

payoff is monotonic in the receiver’s belief space. For example: a salesperson exists in two possible
states: 𝜃𝑎 their product is good, 𝜃𝑛 their product is bad; and the receiver has two actions: 𝐴 buy the
product, or ∅ buy nothing. Persuasive cheap talk is impossible in such a model, but money-burning
can be persuasive in convincing the receiver to purchase the product.
It is interesting to note that money burning with continuum quantities of money literally trans-

lates communication into mechanism design with linear transfers, where beliefs map to allocations
whose utility is given by 𝑢∗(𝜈 |𝜃) with the feasibility constraint E [𝜈] = 𝜇.
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Figure 7: The indirect utility considered in Example 5.

B.2 Weak Robustness
Consider the following notion of stability:

Definition 10. We say a candidate equilibrium 𝜎0 is weakly-stabilized by a modification v if there
exists Harsanyi-robust equilibria 𝜎𝜀 to the game with preference 𝑢 + 𝜀v such that 𝜎𝜀 → 𝜎0.

For contrast, we say a candidate equilibrium 𝜎0 is strongly-stabilized by a modification v if 𝜎0
is 𝒪-robust for some 𝒪 ∋ v.
If we decompose our sender utility as

𝑢0(𝜋) + 𝜀v(𝜋 |𝜃) +𝑈𝜀 (𝜋 |𝜃,𝜔)

then strong stability requires that there exists an 𝑁 such that an equilibrium approximates 𝜎0
whenever ∥𝑈𝜀 ∥∞ < 𝑁𝜀 asymptotically. This inequality indicates the degree by which dependency
must dominate idiosyncrasy for the desired communication to be an equilibrium.
Weak stability requires merely that there is some strictly positive function 𝑓 such that an

equilibrium approximates 𝜎0 whenever ∥𝑈𝜀 ∥∞ < 𝑓(𝜀) asymptotically. Thus weak-stability may
demand that state-dependency dominate idiosyncrasy by an arbitrary degree of magnitude.
We use the following example to illustrate the fundamental difference between candidate equi-

libria that can only be weakly stabilized and those that may be strongly stabilized:

Example 5 (Weak Stabilization). Consider cheap talk with the indirect utility 𝑢∗ illustrated in
blue in Figure 7, similar to Example 2 of Steg et al. 2023. Utility will be normalized so that
modifications only adjust the utility of 𝑏1, 𝑏0. There are three separate types of candidate equilibria
we will analyze:

1. The dotted red line illustrates the unique candidate equilibrium that can be strongly stabilized,
which involves a message 𝑚𝑏 that induces action 𝑏0, and a message 𝑚𝑎 that induces the
appropriate degree of randomization 𝑝𝑎 between [𝑎0, 𝑎1].
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2. There is also a range of candidate equilibria that can only be weakly stabilized—- an example
is given by the dashed red line — that involve a message𝑚𝑏 that induces a randomization 𝑝𝑏

strictly between ]𝑏0, 𝑏1 [, and another message 𝑚𝑎 that induces the corresponding degree of
randomization 𝑝𝑎 between [𝑎0, 𝑎1].

3. There are additional candidate equilibria cannot be even weakly stabilized — these are the
candidate equilibria that involve the receiver randomizing between [𝑎0, 𝑏1] after onemessage,
and [𝑎0, 𝑎1] or [𝑏0, 𝑏1] after another message.

In what follows, we label message-action pairs by their action for simplicity.
Candidate Equilibrium 1: The first situation is analyzed in the general case of Section 4 (as

is the inability of the remaining equilibria to be strongly stabilized).
Candidate Equilibria 2: The second situation can be weakly stabilized in the following

manner, illustrated in Figure 8: by shifting the utility of either 𝑏0, 𝑏1 — in this case 𝑏1 — above
the normalized line [𝑎0, 𝑎1] and moving the other below this line, we create an intersection point.
This intersection represents a degree of randomization 𝑝𝑎 ,𝑝𝑏 between the two pairs of actions that
is necessary to make the sender in each state indifferent between the messages 𝑚𝑎 ,𝑚𝑏. Observe
that this modification can be interpreted as making one message riskier in one state compared with
another (in this case message 𝑚𝑏 has a better best outcome and worse worst outcome in state 𝜃1
than in state 𝜃0).
Given a small degree of sender idiosyncrasy, we can then locally manipulate the two variables

𝑝𝑎 ,𝑝𝑏, until we get the appropriate degree of mixing from the senders in each state (a two-
dimensional problem), to produce the desired posteriors.
The reason this equilibrium is only weakly stabilized is that this degree of randomization 𝑝𝑎 ,𝑝𝑏

is highly sensitive to the modification. If we adjust the utility of 𝑢𝜀v (𝑏1 |𝜃0) slightly (holding every-
thing else constant), the intersection, and thus degree of randomization, will shift a proportionate
amount. This constant of proportionality explodes as preferences approach transparency, where we
are finding the intersection of nearly incident lines— unlike Candidate Equilibrium 1 (and strongly
stable equilibria more generally) where the proportionality remains constant as 𝜀 → 0.

Candidate Equilibria 3: The third family of candidate equilibria cannot even be weakly
stabilized. This is because, in their situation, weak stabilization requires creating dual indifference
between twomixed actionswhose support only differ in one action. This is illustrated in Figure 9. To
create dual indifference it is necessary that 𝑏1 lies precisely on the normalized (state-independent)
line [𝑎0, 𝑎1]. That is, such communication requires state-independence, which we already know is
fragile to idiosyncrasy.

Four types of complexity This example illustrates many of the complexities required and de-
manded by weak (but not strong) stabilization: (1) a higher degree of complexity in the equilibrium
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Figure 8: An illustration of a modification that can weakly stabilize the candidate equilibrium
in Example 5. The axes are the utilities in the two states. The dotted line indicates the utility
of mixed actions between [𝑎0, 𝑎1] (normalized to be state independent), while the dashed line
indicates the state-dependent preference of mixed actions [𝑏0, 𝑏1] (the modification is illustrated
by the small grey arrows). This creates a point of dual indifference 𝑝 at the intersection of the two
lines, determining the degree of receiver randomization after each message.

𝑎1

𝑎0

𝑏1

𝑢𝜀v (·|𝜃1)

𝑢𝜀v (·|𝜃0)

Figure 9: An illustration of how the third type of equilibria in Example 5 require state independence
to create a point of dual indifference, and hence are inherently fragile. The dotted line is the state-
independent utility from 𝑎0, 𝑎1 (determined by normalization), which 𝑢𝜀v (𝑏1 |𝜃) must lie on to
create the point of dual indifference. Otherwise (as in the dashed line) they only intersect at the
same action (𝑎0), and the action is message independent (ie. no persuasion occurs).
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message structure, (2) a complex receiver environment, (3) complex modifications, and (4) (even
small) uncertainty plays a role in which equilibria can be stabilized:

(1) Message Structure: The presence of cyclicity in the message structure demands more
complex indifferences from the sender’s perspective (and more strategic complexity) as well as
being in a less informative family of equilibria from the receiver’s perspective (acyclic equilibria
are a more informative class of equilibria). In the above example the strongly stabilized equilibrium
is strictly more Blackwell-informative than the weakly stabilized equilibrium.

(2) Receiver environment: As the third family shows, not all candidate equilibria can be
weakly stabilized: weak stabilization requires the presence of additional actions, and will not differ
from strong stability for equilibria where a single pure action is in the support of all equilibrium
actions.

(3) Modification: Furthermore, the reason these additional actions are necessary is that the
requiredmodifications are slightlymore complex: they require adjusting the ‘riskiness’ of amessage
in a state dependent way. This can be constrasted with strong stabilization where only the state-
dependent attractiveness of equilibrium messages needs to modified. To observe the complexity
of the required modifications, note that action-independent modifications can never produce this
effect on riskiness.31

(4) Uncertainty: Lastly, this necessity of adjusting the riskiness means that pure actions are
typically not present in weakly stabilized equilibria (as shown with the second family). The precise
mixing required by an equilibrium is also highly sensitive to the direction of the sender’s state
dependence, unlike in strongly stabilized equilibria.
These points do not show that weak stabilization is impossible, but rather that it is distinct from

strong stabilization and, in some informal sense, demands more from both the environment and the
parties involved.

B.3 Relations with Mechanism Design
Our first order approximation very closely parallels the notion of mechanism design with linear
transfers. In this section we will consistently use terminology frommechanism design, but maintain
our notation from the body of the paper to make these parallels clear:
In mechanism design 𝜎 : Θ ⇒ ∆A is an allocation correspondence, that maps types 𝜃 ∈ Θ to

allocations 𝜋 ∈ ∆A. Each type 𝜃 has a preference v(·|𝜃) : ∆A → R.
The allocation map 𝜎 is implementable if there exists a transfer 𝑇 : 𝜎(Θ) → R+ such that

v(𝜋 |𝜃) + 𝑇 (𝜋) ≥ v(𝜋′|𝜃) + 𝑇 (𝜋′) for all 𝜋 ∈ 𝜎(𝜃), 𝜃 ∈ Θ,𝜋′ ∈ 𝜎(Θ)

A necessary and sufficient condition for implementability, related by Rochet 1987, closely
relates to our notion of graph monotonicity:

31Empathy is also incapable of producing this effect in two-state environments, but may with more states.
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Definition 11 (𝜎-CyclicMonotonicity). For a strategy profile𝜎, a utility v is𝜎-cyclically monotone
if, for any sequence (𝜃1, . . . , 𝜃𝑁−1, 𝜃𝑁 =: 𝜃0) with 𝑁 ≥ 2, and any 𝜋𝑖 ∈ 𝜎(𝜃𝑖) \ {𝜋𝑖−1} we have

𝑁∑︁
𝑖=1

v(𝜋𝑖 |𝜃𝑖) − v(𝜋𝑖−1 |𝜃𝑖) ≥ 0. (20)

If the inequality is strict for all paths then v is strictly 𝜎-cyclic-monotone (or v ∈ ℳ(𝜎)).

The conditions 𝑁 ≥ 2 and 𝜋𝑖 ≠ 𝜋𝑖−1 are to avoid trivial equations.
To parallel our definition of graph monotonicity, we interpret this as a constraint on preferences

with the allocation as fixed, whereas the standard definition takes eq. 20 as a constraint on
allocations with preferences fixed.
This differs from graph monotonicity in that the sequence does not have to follow chains of

indifferences. As a result this is a stronger condition. However in the situations that we consider in
this paper, the notions coincide:

Proposition 9. In general ℳ(𝜎) ⊆ ℳ𝐺 (𝐺(𝜎)), with equality iff one of the following holds:

1. 𝐺(𝜎) is cyclic, in which case the sets are empty.

2. 𝐺(𝜎) is a tree, in which case the sets are non-empty.

The first property immediately follows from ℳ𝐺 (𝐺(𝜎)) being empty in such situations, as
shown in Proposition 2.
The second property results from the inequalities of eq. 9 forming a basis for the inequalities

of eq. 20 when 𝐺(𝜎) is connected.
A slightmodification to our proof of Theorem3will show that cyclicmonotonicity is a necessary

condition for sender 𝒪-robustness, as such it is a ‘tighter’ condition than graph monotonicity.
However, in light of Theorem 2 showing that the situations where these sets differ are fragile
and rare, we opt for the simpler concept, which is more relevant to our proof strategies. This is
further justified by Appendix B.4, where we find that cyclic monotonicity is no longer relevant
for 𝒪-robustness of non-injective equilibria, nevertheless we can still extend our techniques to this
setting.

Shortest Paths and Incentive Graphs

Suppose the allocation map 𝜎 is single-valued. In this case Vohra 2011 proposes an alternate
graph-theoretic interpretation of eq. 20, as an incentive graph.

Definition 12A (Incentive Graphs). The transfer incentive graph 𝐺𝑇 (𝜎; v) associated with an
allocation map 𝜎 and utility v is the directed weighted graph with nodes Θ. Between any pair of
nodes 𝜃0, 𝜃1 there is a directed edge from 𝜃0 to 𝜃1 with weight v(𝜎(𝜃1) |𝜃1) − v(𝜎(𝜃0) |𝜃1).

51



We can see that v is 𝜎-cyclic monotone iff every cycle on𝐺𝑇 (𝜎; v) has weakly positive length—
where length of a directed path is equal to the sum of weights of the edges on the path. This graph
has the property that the linear transfer map 𝑇 necessary to make the allocation map 𝜎 incentive
compatible solves

𝑇 (𝜎(𝜃1)) − 𝑇 (𝜎(𝜃0)) = 𝑑𝐺𝑇 (𝜃, 𝜃0) + 𝐶

where 𝑑(𝜃, 𝜃0) is the length of the shortest path between 𝜃 and 𝜃0.
Transfer incentive graphs cannot be defined if 𝜎 is multi-valued. Instead we modify the

definition by identifying edges with actions — this requires a multi-graph (ie. a graph allowing
multiple edges between nodes):

Definition 12B (Utility Incentive Graph). The utility incentive graph 𝐺𝑈 (𝜎; v) associated with an
allocation map 𝜎 and utility v is the directed weighted multi-graph with nodes Θ. The set of edges
from 𝜃0 to 𝜃1 is 𝐸 (𝜃0, 𝜃1) := {𝜋0;𝜋0 ∈ 𝜎(𝜃0)} where the weight associated with the edge 𝜋0 is
v(𝜋0 |𝜃0) − v(𝜋0 |𝜃1).

As before, the utility v is 𝜎-cyclic monotonicity iff every cycle on 𝐺𝑈 (𝜎; v) has weakly positive
length. Unlike transfer incentive graphs, the shortest path between two nodes defines the difference
in utility obtained by these two states:

[v(𝜋1 |𝜃1) + 𝑇 (𝜋1)] − [v(𝜋0 |𝜃0) + 𝑇 (𝜋0)] = 𝑑𝐺𝑈 (𝜃1, 𝜃0)

Implementability can also be verified by seeing how the communication graph 𝐺(𝜎) embeds in
𝐺𝑈 (𝜎; v). Formally, for a communication graph define the embedding proj𝑈 (𝐺; v) to be the graph
with nodes Θ and edges from 𝜃0 to 𝜃1 given by the allocations {𝜋 ∈ 𝜎(𝜃0) ∩ 𝜎(𝜃1)} with weight
v(𝜋 |𝜃0) − v(𝜋 |𝜃1).
This takes the communication graph and maps the allocations 𝜋 into edges.32 Note that

proj𝑈 (𝐺(𝜎); v) ⊆ 𝐺𝑈 (𝜎; v). The embedding proj𝑈 (𝐺(𝜎); v) may contain a cycle even if 𝐺(𝜎) is
acyclic, — if more than two types are mapped to the same allocation — but all cycles will have
length zero, and the embedding will be a graph, with at most one edge from one vertex to another.
One last key property is that edges are anti-symmetric, in that the weight on the edge from 𝜃0 to 𝜃1
is the negative of the weight on the edge from 𝜃1 to 𝜃0.

Proposition 10. Let 𝜎 be an allocation map such that 𝐺(𝜎) is connected.

1. The utility v is 𝜎-cyclic monotone for the connected communication graph 𝐺(𝜎) iff every
path on proj𝑈 (𝐺(𝜎); v) is a shortest path on 𝐺𝑈 (𝜎; v).

2. The utility v is strictly 𝜎-graph monotone iff 𝐺(𝜎) is acyclic and the paths on proj𝑈 (𝐺(𝜎); v)
are precisely the shortest paths on 𝐺𝑈 (𝜎; v).

32This essentially results in the half-square graph 𝐺2 (𝜎) [Θ], with bidirectional weighted edges.
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Proof. Let (𝜃1, . . . , 𝜃𝑁) be a path in the embedding with length 𝐿. Suppose there is a shorter path
in 𝐺𝑈 (𝜎; v), WLOG from 𝜃1 to 𝜃𝑁 with length 𝐿′ < 𝐿. Then the cycle from (𝜃𝑁 , . . . , 𝜃1, 𝜃𝑁) along
these paths has length 𝐿′ − 𝐿 < 0. Moreover, every cycle in 𝐺𝑈 (𝜎; v) can be decomposed into the
sum of cycles with all but one edge in the embedded graph (similar to Proposition 9), so if all these
cycles are weakly postive, then all cycles on 𝐺𝑈 (𝜎; v) will be weakly positive.
To obtain strict 𝜎-graph monotonicity, every cycle on 𝐺𝑈 (𝜎; v) with non-positive length must

correspond to a single action. This can fail if there is an equally short path that is not included,
following the above logic with weak inequality, or if 𝐺(𝜎) has a cycle. If 𝐺(𝜎) has no cycles, then
all cycles on in the embedding are connected by a single action (and exempt from the strict cyclic
monotonicity definition), this shows that strict cyclic monotonicity applies for cycles contained
withing the embedded graph. Cycles not entirely contained within the embedded graph can be
decomposed into cycles with at most one edge outside the connected graph, showing that these
conditions are equivalent. □

B.4 𝒪-Robustness of Non-Injective Equilibria
We use injectivity three times in our results:

1. To assume eq. 4c does not bind.
This affects our analysis: when studying the worst candidate equilibria from the sender’s
perspective. In at least one state they will attain their minimum equilibrium payoff, in other
states they do at most 𝑂(𝜀) better.
Required Adjustment: perturbations must be constrained to ensure off-path messages are
unattractive.

2. For Lemma 1ii and Theorem 2 to apply. The former ensures that each connected component
includes at most one pure action, the latter ensures there is a unique connected component in
acyclic equilibrium.
When this affects our analysis: it turns out that Lemma 1ii is necessary for robustness.
However there may be multiple connected components, each rooted at a different message
with the same pure action component. This is possible only if the receiver has the same
best response to two disjoint beliefs, ie. there exist 𝜈, 𝜈′ with supp(𝜈) ∩ supp(𝜈′) = ∅ and
𝑎∗(𝜈) = 𝑎∗(𝜈′).
Required Adjustment: the perturbation must be adjusted to make comparisons on different
trees.

3. So the receiver never chooses a pure action at a posterior where they have multiple best
responses (when Lemma 1iia applies).
Required Adjustment: the perturbation must shift the sender’s utility in a direction that can
be compensated by receiver randomization (which now can only move in one direction).
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Of course it is also possible that multiple reasons may hold at once, which requires combining the
constraints we discuss below. We leave our reasoning informal, the same proof techniques from
Theorem 3 can be used to formally prove these results.

1. Off-path Temptations

In our proofs we can prescribe the receiver responds to off-path messages with the least attractive
action to the sender: P(𝑚) ∈ argmin𝑎 {𝑢0(𝑎 ,𝑚)} whenever 𝑚 ∉ supp(M). However, if eq. 4c
binds, this action may not decrease the utility of the sender with transparent utility 𝑢0, and thus may
still tempt senders with perturbed utility 𝑢𝜀v

𝑆 . This occurs for example, if an equilibrium requires a
lying averse sender to lie and gives them the least preferred action — this is worse than the utility
the sender can obtain by telling the truth and obtaining their least preferred action.
Working in the generic case of Lemma 1, we know that these equilibria involve a pure message-

action 𝛼, which thus must maximinimize the right side of eq. 4c. Ie., 𝛼 = (𝑎 (𝑚),𝑚) where

𝑎 (𝑚) ∈ argmin
𝑎∈A

𝑢0(𝑎 ,𝑚) 𝑚 ∈ argmax
𝑚∈𝑀

𝑢0(𝑎 (𝑚),𝑚).

If there is a unique maximizing message 𝑚, then eq. 2a is obtained by verifying that each state
prefers their message-action to the message-action 𝛼 corresponding to𝑚. This is done in the main
theorem, and requires no additional analysis.
However, if there are multiple maximizing messages then different states may be tempted by

different messages, resulting in an additional constraint. Note that Assumption (S) implies that
𝑎 (𝑚) ≡ 𝑎∗ is then constant over these messages. Define

𝛼(𝜃) :=(𝑎∗,𝑚(𝜃)) 𝑚(𝜃) ∈ argmax
𝑚∈𝑎−1 (𝑎∗)

v(𝑎∗,𝑚|𝜃)

to be the most tempting off-path messages for a state 𝜃.
To obtain eq. 2a, it is then necessary that for a path (𝜃1,𝜋1, . . . , 𝜃𝑁 ,𝜋𝑁 = 𝛼) from the state

𝜃1 to the pure root action 𝛼 the sender in state 𝜃1 prefers 𝜋1 to 𝛼(𝜃1). Equation 7 shows that the
equilibrium perturbation to 𝑝1 must solve〈

(𝑢0𝛼),∆𝑝1

〉
= 𝜀

𝑁∑︁
𝑖=2

v(𝜋𝑖 |𝜃𝑖) − v(𝜋𝑖−1 |𝜃𝑖) + 𝑂(𝜀2). (21)

in order to preserve indifferences.
Thus for the off-path message 𝛼(𝜃1) to be suboptimal, it is necessary that

v(𝜋1 |𝜃1) − v(𝛼(𝜃1) |𝜃1) +
𝑁∑︁
𝑖=2

v(𝜋𝑖 |𝜃𝑖) − v(𝜋𝑖−1 |𝜃𝑖) > 0 (22)
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This is just an alteration to the definition of graph monotonicity so that 𝜋0 := 𝛼(𝜃1) — by the
definition of 𝛼(𝜃1) this results in a stronger inequality. In contrast to Graph Monotonicity, this
must also hold for 𝑁 = 1 to ensure that states that recommend 𝛼 still attain their lowest utility (in
this case the sum is empty).

In lying aversion this means that only 𝑚∗ and 𝑚∗ can result in this minimal action (otherwise
multiple actions send this minimal action and eq. 22 with 𝑁 = 1 fails). The 𝑚∗ case is always
stabilized by lying aversion, while 𝑚∗ requires that ℓ𝜃∗ > ℓ𝜃 for all 𝜃 ≠ 𝜓(𝑚∅).

2. Two messages with same pure best response

Suppose there are two equilibrium posteriors for which the pure action 𝑎∗ is a unique best response
— corresponding to the message-actions 𝛼,𝛼′. If 𝜃, 𝜃′ send message 𝛼,𝛼′ respectively, then it is
necessary that v(𝛼 |𝜃) > v(𝛼′|𝜃) to ensure that state 𝜃 will not deviate to send 𝛼′.

Same connected component Suppose 𝛼,𝛼′ lie on the same connected component of 𝐺(𝜎0). If
they are the unique actions on this connected component then there is a state 𝜃 that randomizes
between the two messages. To retain indifference it must be the case that

v(𝛼 |𝜃) = v(𝛼′|𝜃)

which does not hold on any open set of modifications.
If there is a message 𝜋1 on this connected component to which 𝑎∗ is not the unique best

response, then there are two paths on 𝐺(𝜎0) for which eq. 21 must hold. In particular, there are
paths (𝜋1, 𝜃2, . . . , 𝜃𝑁 ,𝜋𝑁) and (𝜋1, 𝜃̃2, . . . , 𝜃̃𝑀 , 𝜋̃𝑀) on 𝐺(𝜎0) with 𝜋𝑁 = 𝛼, and 𝜋𝑀 = 𝛼′. It is
then necessary that

𝑁∑︁
𝑖=2

v(𝜋𝑖 |𝜃𝑖) − v(𝜋𝑖−1 |𝜃𝑖) =
𝑁∑︁
𝑖=2

v(𝜋̃𝑖 |𝜃𝑖) − v(𝜋̃𝑖−1 |𝜃𝑖)

where 𝜋̃1 = 𝜋1. Since this cannot be satisfied on an open set of modifications, this cannot be
𝒪-stable — this overdetermines ∆𝑝1.

Different Connected Components In this case the negative result from Theorem 3 applies,
allowing us to restrict our attention to forest equilibria. Lemma 1 implies that (generically) every
connected component of the communication graphs includes a pure action (as there is a posterior
with unique best response). By Assumption (S) these must all be the same pure action.
Graph monotonicity ensures that no state will deviate to send a message in the same connected

component, it remains to check that states will not deviate to send messages in different connected
components.
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Consider a path (𝜃1,𝜋1, . . . , 𝜃𝑀 ,𝜋𝑀) on 𝐺(𝜎0) from 𝜃1 to the pure action 𝜋𝑀 ≡ 𝛼 in its
component, and a path (𝜋′

𝑀 , 𝜃𝑀+1, . . . , 𝜃𝑁 ,𝜋′
𝑁) from the pure action 𝜋′

𝑀 ≡ 𝛼′ in 𝜋′
𝑁’s component

to 𝜋′
𝑁 . Applying eq. 21, we require

v(𝜋1 |𝜃1) +
𝑀∑︁
𝑖=2

v(𝜋𝑖 |𝜃𝑖) − v(𝜋𝑖−1 |𝜃𝑖) > v(𝜋′
𝑁 |𝜃1) +

𝑁∑︁
𝑖=𝑀+1

v(𝜋′
𝑖−1 |𝜃𝑖) − v(𝜋′

𝑖 |𝜃𝑖)

or, defining 𝜋𝑚 := 𝜋′
𝑚 for 𝑚 > 𝑀:

v(𝜋𝑀 |𝜃𝑀+1) − v(𝜋′
𝑀 |𝜃𝑀+1) +

𝑁∑︁
𝑖=1

v(𝜋𝑖 |𝜃𝑖) − v(𝜋𝑖−1 |𝜃𝑖) > 0. (23)

where 𝜃𝑀+1 := 𝜃1 if𝑁 = 𝑀. Note that the first two terms correspond to substituting v(𝛼′|𝜃𝑀+1) for
v(𝛼 |𝜃𝑀+1). Since these have the same action component 𝑎∗, this does not affect cheap talk models.
This is equivalent to graph monotonicity on the communication graph that merges messages

that result in the same pure action into a single message action 𝛼∗ with

v(𝛼∗ |𝜃𝑖) := v(𝛼𝑖 |𝜃𝑖)

for the unique pure 𝛼𝑖 on the connected component containing 𝜃𝑖.
This situation requires that the pure action 𝑎∗ appears on distinct components of the communi-

cation graph, so 𝑎∗ must be a best response to disjoint beliefs (𝜈, 𝜈′ with supp(𝜈) ∩ supp(𝜈′) = ∅).
In lying aversion forest equilibria provide states another way to recommend a pure action 𝑎∗:

by disclosing the state. To be stabilized by vLA each message that results in 𝑎∗ must be truthful,
and thus have a single state sending it.
If we have a forest equilibrium then by Proposition 5 each connected component of the commu-

nication graph must resemble either Figure 5ab (with 𝑚∗,𝑚∗ inducing the pure action). Suppose
two states 𝜃1, 𝜃2 recommend 𝑎∗ through truthful disclosure, and 𝜃2 also recommends another action
𝜋, then the path from 𝜃1 to 𝜋 gives us the constraint

ℓ2 − ℓ1 > 0.

Note that if 𝜃1 also recommends another action, we obtain the reverse inequality: at most one state
can send multiple messages. In this case our communication graph is a subgraph of Figure 5ab,
where 𝜃∗, 𝜃∗ must be the state that minimizes −ℓ𝜃 from all those that recommend the pure action
𝑎∗.

3. A pure action is non-unique best response Let 𝛼1 be this action. In this case, Lemma 1’
implies that (generically) there is another pure action 𝛼𝑁 on the same connected component that is
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a unique best response to its associated posterior (by Assumption (S) 𝛼1,𝛼𝑁 have the same action
component, but differ in their message).
Suppose that 𝛼′

1 is the receiver’s other best response (unique by Lemma 1) to the posterior
associated with 𝛼1 satisfies 𝑢0(𝛼′

1) > 𝑢0(𝛼1). Applying eq. 21, we find the necessary condition
that for the path (𝜋1, 𝜃2, . . . , 𝜃𝑁 ,𝜋𝑁) with 𝜋𝑁 = 𝛼𝑁 we have

𝑁∑︁
𝑖=2

v(𝜋𝑖 |𝜃𝑖) − v(𝜋𝑖−1 |𝜃𝑖) > 0

in addition to the other required inequalities. If𝑢0(𝛼′
1) < 𝑢0(𝛼1), we require the opposite inequality.

In lying aversion graph monotonicity requires a subgraph of Figure 5ab. In this case the state
𝜃0 := 𝜃∗, or 𝜃∗ recommends 𝑎∗ through two messages: one where it is the unique best response,
and the other where it is not. If both of these messages are lies (ie. not 𝑚0 := 𝜓−1(𝜃0)), then the
equilibrium is not stabilized by lying aversion, if one is a lie, it necessary that this message can be
made relatively more attractive through changing the action. Thus if 𝑚0 induces the belief where
multiple actions are best responses, then it must be the case that 𝑢0(𝛼′

1) < 𝑢0(𝛼1), otherwise it is
necessary (and sufficient) that 𝑢0(𝛼′

1) < 𝑢0(𝛼1).
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