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Abstract

When policymakers implement mechanisms in real-world institutions, they often prefer strategy-proof

mechanisms over manipulable ones. The Boston School Committee, for instance, replaced the Boston

mechanism with the students-proposing deferred acceptance algorithm in July 2005 to eliminate students’

incentives to misrepresent their preferences over schools. However, strategy-proof mechanisms are not always

immune to manipulations by potential coalitions, even if these coalitions are small and easy to coordinate.

This danger is avoided under group strategy-proof mechanisms.

In this paper, we study group strategy-proofness of stable matching mechanisms in two-sided matching

markets when both sides of the market have strategic agents. In the context of a one-to-one matching market,

we show that incorporating strategy-proofness for any stable matching mechanism not only removes the

incentive for individual agents to manipulate, but also eliminates the incentive for any group of agents to

manipulate (the group may include agents from both sides of the market), therefore implying group strategy-

proofness. We establish this result assuming that the domain is sufficiently varied. We also explore the

possibility of extending our findings to many-to-one matching markets.
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1 Introduction

When designing mechanisms for strategic agents, it is crucial to ensure that the incentives are aligned. Strategy-

proofness is the standard requirement, which requires that it should be in every agent’s best interest to tell the

truth. However, even if a mechanism is strategy-proof, it could still be vulnerable to manipulation by coalitions

of agents, even if these coalitions are small and easy to coordinate. This is where group strategy-proofness

comes in – it ensures that no group of agents can benefit from dishonesty, even if they coordinate their

efforts. Therefore, while group strategy-proofness is a more stringent requirement than strategy-proofness, it

is also more desirable. After all, what use would it be to guarantee that no single agent could manipulate

if a few of them could jointly manipulate? This prompts some important questions. When is a mechanism

that is strategy-proof also group strategy-proof? What types of preference domains ensure that these two

requirements are equivalent? This paper provides a comprehensive solution to these questions for two-sided

matching markets.

The theory of two-sided matching markets has captured the attention of researchers due to its real-world

applications, such as assigning graduates to residency programs, students to colleges, or workers to firms.

In this paper, we primarily focus on the well-known marriage problem (Gale and Shapley, 1962), which is a

one-to-one matching market. This market comprises two finite and disjoint sets of agents, namely “men” and

“women”. Each agent on one side of the market has a (strict) preference over the agents on the other side and

the outside option, where the outside option refers to the possibility of remaining unmatched. A matching

between men and women is selected based on the agents’ preferences, where each agent on one side of the

market can only be matched with at most one agent on the other.

One important feature of our setting is that both strategy-proofness and group strategy-proofness are

defined for the entire market, not just for one side of the market. To better understand this, let us consider

the deferred acceptance (DA) algorithm (Gale and Shapley, 1962). While the DA algorithm is group strategy-

proof for the proposers’ side on the unrestricted domain (i.e., on the domain where every possible preference

for an agent is admissible for that agent), it does not even guarantee strategy-proofness for all agents (see

Dubins and Freedman (1981) and Roth (1982) for details). Henceforth, when we say a matching rule is (group)

strategy-proof, we mean that the matching rule is (group) strategy-proof for all agents. Additionally, it is

worth noting that a coalition may consist of both men and women.

1.1 Overview of our results

Before we delve into our results, let us first introduce the notion of stability (Gale and Shapley, 1962), which

has been considered a desirable property to be satisfied by any matching.1 A matching is stable if no individual

1In real-world applications, empirical studies have shown that stable mechanisms often succeed, while unstable ones fail. See
Roth (2002) for a summary of this evidence.
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agent prefers remaining unmatched to his/her current match, and no pair of agents – one on each side – would

rather be matched to each other than to their present match.

Our paper showcases that strategy-proofness and group strategy-proofness hold the same significance for

any stable matching rule, provided that the domain is sufficiently varied. We present two equivalence results

(Theorems 1 and 2) to support our claim. Before discussing these equivalence results, we first review some

results related to the DA algorithm, which establish the basis for the equivalence proofs. These results are

also significant in their own right.

Recall that the men-proposing DA (MPDA) algorithm cannot be manipulated by any coalition of men,

while it is not even strategy-proof for women on the unrestricted domain. Therefore, whenever a coalition

manipulates the MPDA algorithm, it must include at least one woman. In Proposition 1, we show that the

manipulative coalition not only contains at least one woman but must consist only of women, extending the

result of Dubins and Freedman (1981).

We further explore how manipulation by a coalition affects the MPDA algorithm from the agents’ perspec-

tive. Let us assume that a coalition of agents manipulates the MPDA algorithm. As per Proposition 1, we

know that this manipulative coalition comprises only women, and therefore, these women will strictly benefit

from the manipulation. In Proposition 2, we demonstrate a stronger result: every woman in the market, not

just those in the manipulative coalition, weakly benefits, while every man weakly suffers from the manipula-

tion. We also demonstrate that the manipulation does not affect the set of unmatched agents (Proposition

3). In other words, the set of unmatched agents before and after the manipulation remains the same. One

key implication of Proposition 3 is that an unmatched agent cannot be part of a manipulative coalition for

the DA algorithm.

We now focus on our main contribution – establishing the equivalence of strategy-proofness and group

strategy-proofness for any stable matching rule on sufficiently varied domains. As we mentioned earlier, two

equivalence results are presented to support this claim. The first equivalence result (Theorem 1) is obtained

assuming the domain satisfies a richness condition, called unrestricted tops with unique acceptability, for both

sides of the market. Unrestricted tops with unique acceptability for men roughly requires that for every man

and every woman, the man has an admissible preference that ranks the woman first and the outside option

second. For instance, if every possible preference is admissible for every man, the corresponding domain

satisfies unrestricted tops with unique acceptability for men. Other examples of such domains include when

the sets of admissible preferences for men comprise all single-peaked preferences (Black, 1948).

In our second equivalence result (Theorem 2), we require a stronger domain richness condition, called

unrestricted top pairs (Alva, 2017), but only for one side of the market, not both. Unrestricted top pairs

roughly requires that for every ordered pair of outcomes for an agent, there is an admissible preference that

ranks them first and second. For instance, if every possible preference is admissible for every man, the
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corresponding domain satisfies unrestricted top pairs for men. Other examples of such domains include when

the sets of admissible preferences for men comprise all double-peaked preferences (Flowers, 1975).

Our equivalence results are established on a characterization of the MPDA algorithm. In Theorem 3, we

show that the MPDA algorithm is the only stable matching rule that satisfies strategy-proofness for men

on a domain satisfying unrestricted tops with unique acceptability for men. To understand why this is the

case, consider a different stable matching rule, φ, that matches a man to a different woman than the MPDA

algorithm does. Due to the lattice structure of the stable matchings, the man in question prefers the match

by the MPDA algorithm to the one by φ. Therefore, he can manipulate the stable matching rule φ by

misreporting his preference by ranking his match by the MPDA algorithm first and the outside option second.

It is worth noting that by interchanging the roles of men and women in the MPDA algorithm, using a similar

argument, we can also infer that the women-proposing DA (WPDA) algorithm is the only stable matching rule

that satisfies strategy-proofness for women on a domain satisfying unrestricted tops with unique acceptability

for women.

We now provide informal outlines for the proofs of our equivalence results. To prove the first equivalence

result, let us assume a stable and strategy-proof matching rule, φ, exists on a domain that satisfies unrestricted

tops with unique acceptability for both sides of the market. Based on our characterization of the DA algorithm

(Theorem 3), we can conclude that φ is equivalent to both the MPDA and WPDA algorithms on that domain.

Moreover, since the manipulative coalitions for the MPDA algorithm can only consist of women, and the

manipulative coalitions for the WPDA algorithm can only consist of men (Proposition 1), the fact that φ is

equivalent to both the MPDA and WPDA algorithms implies that φ is group strategy-proof, thus concluding

Theorem 1.

Our second equivalence result is established in two steps. Firstly, we prove that if a stable and strategy-

proof matching rule exists on a domain satisfying unrestricted top pairs for men, it must be the MPDA

algorithm. This result follows from Theorem 3, as unrestricted top pairs is a stronger domain richness

condition than unrestricted tops with unique acceptability. Secondly, we demonstrate that if the MPDA

algorithm is strategy-proof on a domain satisfying unrestricted top pairs for men, then it must also be group

strategy-proof.

Notice that our equivalence results (Theorems 1 and 2) do not provide any information about the existence

of a stable and group strategy-proof matching rule. For example, no stable matching rule is strategy-proof

on the unrestricted domain (where the domain satisfies both richness conditions, i.e., unrestricted tops with

unique acceptability and unrestricted top pairs, for both sides of the market), as demonstrated by Roth (1982).

Therefore, our equivalence results are vacuously satisfied on the unrestricted domain.

To address this issue, we identify a domain condition that ensures the existence of a stable and group

strategy-proof matching rule. Alcalde and Barberà (1994) introduce a restriction on the domain, called top
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dominance, and demonstrate that top dominance for women is a sufficient condition for the MPDA algorithm

to be strategy-proof.2 In Proposition 4, we show that it is also sufficient for the MPDA algorithm to be group

strategy-proof, extending the result of Alcalde and Barberà (1994). Top dominance roughly requires that for

every triplet of outcomes for an agent, if there exists an admissible preference that favors the first outcome

over the second and the second over the third, then there cannot be another admissible preference that favors

the first outcome over the third and the third over the second.

In order to ensure a stable and group strategy-proof matching rule, we provide another domain restriction,

which is a constructive one. It is well-known that both the MPDA and WPDA algorithms are stable on the

unrestricted domain (see Gale and Shapley (1962)), and there are preference profiles at which both these

algorithms produce the same outcome. This means that only one stable matching exists at those preference

profiles (see McVitie and Wilson (1971) for details). Conversely, at all preference profiles where only one stable

matching exists, the MPDA and WPDA algorithms will produce the same outcome. Now, let us consider a

domain of preference profiles where each preference profile has only one stable matching. In such cases, the

MPDA algorithm, which is equivalent to the WPDA algorithm on the constructed domain, is both stable

and group strategy-proof on that domain (Corollary 2). To understand why this holds, let us assume that

the MPDA algorithm is not group strategy-proof on the constructed domain. This means that there exists

a manipulative coalition, which, according to Proposition 1, must consist of only women. However, since the

MPDA algorithm is equivalent to the WPDA algorithm on the constructed domain, by interchanging the roles

of men and women in Proposition 1, we can infer that the manipulative coalition consists only of men, which

contradicts the previous claim.

Finally, we explore the possibility of extending our findings to many-to-one matching markets. We consider

the college admissions problem (Gale and Shapley, 1962), a well-studied market for our discussion. As usual,

this market also comprises two finite and disjoint sets of agents: “colleges” and “students”. In this setting,

each student can only be matched with at most one college, while each college can be matched with more

than one student.

Let us begin with a positive result that extends Theorem 3 to the college admissions problem: When the

domain satisfies unrestricted tops with unique acceptability for students, the students-proposing DA (SPDA)

algorithm is the only stable matching rule that satisfies strategy-proofness for students (Theorem 4). How-

ever, apart from this, extending the rest of the results to the college admissions problem is impossible. We

demonstrate this impossibility through an example (Example 1). The reason behind this impossibility is the

asymmetric nature of the college admissions problem; colleges can be matched with more than one student

while students can be matched with at most one college.

2Top dominance for women is also a necessary domain restriction for the MPDA algorithm to be strategy-proof under two
domain conditions (see Theorem 4 in Alcalde and Barberà (1994)).
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To sum up, our main contribution in this paper is to identify conditions on domains where any stable

matching rule satisfying strategy-proofness must also be immune to manipulations by groups. Our findings

also highlight the advantages of implementing the DA algorithm in two-sided matching markets. Our research

demonstrates that when the domain is sufficiently rich, the DA algorithm is the only stable matching rule

that satisfies strategy-proofness for the proposers’ side of the market.

1.2 Related literature

Barberà et al. (2016) show the equivalence of strategy-proofness and group strategy-proofness in general

private good economies, which also encompasses the marriage problem. Their result is obtained under a

richness condition of the domain and two requirements of the rule, neither of which is stability. For the social

choice setting, Le Breton and Zaporozhets (2009) and Barberà et al. (2010) provide other domain conditions

that ensure the equivalence of strategy-proofness and group strategy-proofness.

Strong group strategy-proofness is another well-studied group incentive compatibility requirement. Alva

(2017) establishes that pairwise strong group strategy-proofness is equivalent to strong group strategy-

proofness in a framework that accommodates public as well as private goods. His equivalence result is

subject to a weaker richness condition than one of our richness conditions, which is unrestricted top pairs

(there is no inclusion or exclusion relation between his richness condition and our other richness condition

– unrestricted tops with unique acceptability). It is important to note that Alva’s finding and our equiva-

lence results (Theorems 1 and 2) are independent. This is because Alva’s result does not consider individual

strategy-proofness, and group strategy-proofness, combined with stability, does not imply (pairwise) strong

group strategy-proofness.

1.3 Organization of the paper

The paper is structured as follows: In Section 2, we introduce basic concepts and notations that we use

throughout the paper. We describe our model, define matching rules, and discuss their stability. Our main

equivalence result is presented in Section 3. In Section 4, we present the DA algorithm, along with the results

regarding this rule. Section 5 discusses the generalizability of our results to many-to-one matching markets.

Finally, Section 6 concludes the paper. The Appendix contains the proofs.
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2 Preliminaries

2.1 Basic notions and notations

For a finite set X, let L(X) denote the set of all strict linear orders over X.3 An element of L(X) is called a

preference over X. For a preference P ∈ L(X) and distinct x, y ∈ X, x P y is interpreted as “x is preferred

to y according to P”. For P ∈ L(X), let R denote the weak part of P , i.e., for any x, y ∈ X, x R y if and

only if
[
x P y or x = y

]
. Furthermore, for P ∈ L(X) and non-empty X ′ ⊆ X, let τ(P,X ′) denote the most

preferred element in X ′ according to P , i.e., τ(P,X ′) = x if and only if
[
x ∈ X ′ and x P y for all y ∈ X ′\{x}

]
.

For ease of presentation, we denote τ(P,X) by τ(P ).

2.2 Model

There are two finite disjoint sets of agents, the set of men M = {m1, . . . ,mp} and the set of women W =

{w1, . . . , wq}. Let A = M ∪ W be the set of all agents. Throughout this paper, we assume p, q ≥ 2. Let ∅

denote the outside option – the null agent.

Each man m has a preference Pm over W ∪{∅}, the set of all women and the outside option. The position

in which he places the outside option in the preference has the meaning that the only women he is willing to

be matched with are those whom he prefers to the outside option. Similarly, each woman w has a preference

Pw over M ∪ {∅}. We say that woman w is acceptable to man m if w Pm ∅, and analogously, man m is

acceptable to woman w if m Pw ∅.

We denote by Pa the set of admissible preferences for agent a ∈ A. Clearly, Pm ⊆ L(W ∪{∅}) for all m ∈ M

and Pw ⊆ L(M ∪ {∅}) for all w ∈ W . A preference profile , denoted by PA = (Pm1 , . . . , Pmp , Pw1 , . . . , Pwq),

is an element of the Cartesian product PA :=
p∏

i=1
Pmi×

q∏
j=1

Pwj , that represents a collection of preferences – one

for each agent. Furthermore, as is the convention, P−a denotes a collection of preferences of all agents except

for a. Also, for A′ ⊆ A, let PA′ denote a collection of preferences of all agents in A′ and P−A′ a collection of

preferences of all agents not in A′.

2.3 Matching rules and their stability

A matching (between M and W ) is a function µ : A → A ∪ {∅} such that

(i) µ(m) ∈ W ∪ {∅} for all m ∈ M ,

(ii) µ(w) ∈ M ∪ {∅} for all w ∈ W , and

(iii) µ(m) = w if and only if µ(w) = m for all m ∈ M and all w ∈ W .

3A strict linear order is a complete, asymmetric, and transitive binary relation.
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Here, µ(m) = w means man m and woman w are matched to each other under the matching µ, and µ(a) = ∅

means agent a is unmatched under the matching µ. We denote by M the set of all matchings.

A matching µ is individually rational at a preference profile PA if for every a ∈ A, we have µ(a) Ra ∅.

A matching µ is blocked by a pair (m,w) ∈ M ×W at a preference profile PA if w Pm µ(m) and m Pw µ(w).

A matching is stable at a preference profile if it is individually rational and is not blocked by any pair at

that preference profile.

A matching rule is a function φ : PA → M. For a matching rule φ : PA → M and a preference profile

PA ∈ PA, let φa(PA) denote the match of agent a by φ at PA.

Definition 1. A matching rule φ : PA → M is stable if for every PA ∈ PA, φ(PA) is stable at PA.

3 Equivalence between strategy-proofness and group strategy-proofness

under stability

In practice, matching rules are often designed to satisfy incentive properties. Two well-studied such require-

ments are strategy-proofness and group strategy-proofness.

Definition 2. A matching rule φ : PA → M is

(i) strategy-proof if for every PA ∈ PA, every a ∈ A, and every P̃a ∈ Pa, we have φa(PA) Ra φa(P̃a, P−a).

(ii) group strategy-proof if for every PA ∈ PA, there do not exist a set of agents A′ ⊆ A and a preference

profile P̃A′ of the agents in A′ such that φa(P̃A′ , P−A′) Pa φa(PA) for all a ∈ A′.

If a matching rule φ on PA is not group strategy-proof, then there exist PA ∈ PA, a set of agents A′ ⊆ A,

and a preference profile P̃A′ of the agents in A′ such that φa(P̃A′ , P−A′) Pa φa(PA) for all a ∈ A′. In such

cases, we say that φ is manipulable at PA by coalition A′ via P̃A′ , and we call such a coalition a manipulative

coalition. Note that a coalition can be a singleton; thus, group strategy-proofness implies strategy-proofness.

Additionally, a coalition may consist of both men and women.

Notice that all agents in the manipulative coalition must benefit from misreporting. We consider this

requirement compelling, since it ensures that every member of the coalition has a clear incentive to participate

in a collective deviation from truthful revelation.

In this paper, we establish a significant finding: any stable matching rule designed to eliminate individual

manipulation is also immune to manipulations by coalitions, provided that the domain is sufficiently varied.

We present two equivalence results in the following subsection to support our claim.
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3.1 Equivalence results

Our first equivalence result is obtained assuming the domain satisfies a richness condition, called unrestricted

tops with unique acceptability, for both sides of the market. Before presenting our equivalence result, we first

introduce this required richness condition.

Definition 3 (Unrestricted tops with unique acceptability). A domain of preference profiles PA satisfies

unrestricted tops with unique acceptability for men if for every m ∈ M and every w ∈ W , there exists

P̃ ∈ Pm such that w P̃ ∅ P̃ z for all z ∈ W \ {w}.

Note that whenever the sets of admissible preferences for men are unrestricted, the corresponding domain

satisfies unrestricted top pairs for men. Another instance of a domain satisfying unrestricted tops with unique

acceptability for men is when the sets of admissible preferences for men include all single-peaked preferences

(Black, 1948). We define unrestricted tops with unique acceptability for women in a similar way.

We now present the first main result of this paper. It shows the equivalence of strategy-proofness and

group strategy-proofness for any stable matching rule when the domain satisfies unrestricted tops with unique

acceptability for both sides of the market.

Theorem 1. Let PA satisfy unrestricted tops with unique acceptability for both sides of the market. Then,

any stable matching rule on PA is strategy-proof if and only if it is group strategy-proof.

The proof of this theorem is relegated to Appendix A.4.

In our second equivalence result, we require a stronger domain richness condition, but only for one side of

the market, not for both sides, unlike Theorem 1. We start by presenting unrestricted top pairs (Alva, 2017),

which is the required richness condition.

Definition 4 (Unrestricted top pairs). A domain of preference profiles PA satisfies unrestricted top pairs

for men if for every m ∈ M ,

(i) for every w,w′ ∈ W , there exists P ∈ Pm such that w P w′ P z for all z ∈ (W ∪ {∅}) \ {w,w′},

(ii) for every w ∈ W , there exists P̃ ∈ Pm such that w P̃ ∅ P̃ z for all z ∈ W \ {w}, and

(iii) there exists P ′ ∈ Pm such that τ(P ′) = ∅.

As usual, when the sets of admissible preferences for men are unrestricted, the corresponding domain

satisfies unrestricted top pairs for men. Another example of a domain that satisfies unrestricted top pairs for

men is when men’s admissible preferences include all double-peaked preferences (Flowers, 1975). We define

unrestricted top pairs for women in a similar manner.
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We now present our second equivalence result. It shows the equivalence of strategy-proofness and group

strategy-proofness for any stable matching rule when the domain satisfies unrestricted top pairs for at least

one side of the market.

Theorem 2. Let PA satisfy unrestricted top pairs for at least one side of the market. Then, any stable

matching rule on PA is strategy-proof if and only if it is group strategy-proof.

The proof of this theorem is relegated to Appendix A.5.

Note 1. In our equivalence results (Theorems 1 and 2), the richness conditions of the domain are only sufficient

to establish the equivalence of strategy-proofness and group strategy-proofness under stability. However, they

do not guarantee the existence of a stable and (group) strategy-proof matching rule. For instance, on the

unrestricted domain, where the domain satisfies both richness conditions (i.e., unrestricted tops with unique

acceptability and unrestricted top pairs) for both sides of the market, no stable matching rule is strategy-proof,

as demonstrated by Roth (1982). Therefore, our equivalence results are vacuously satisfied on the unrestricted

domain. It is worth noting that Roth (1982) proves his result in a setting without outside options and with

an equal number (at least three) of men and women. However, the result can be extended to our setting, i.e.,

with outside options and with arbitrary values (at least two) of the number of men and the number of women.

As mentioned in Note 1, our equivalence results do not provide any information about the existence of a

stable and group strategy-proof matching rule, which is equally important. To address this, in Section 4.3,

we establish a domain restriction that guarantees the existence of such a matching rule.

4 Deferred acceptance: Manipulative coalitions and group strategy-proofness

Deferred acceptance (DA) algorithm (Gale and Shapley, 1962) is the salient rule in two-sided matching markets

for its theoretical appeal. This rule also plays an instrumental role in our equivalence results. In this section,

we present a brief description of this rule, along with a few results that facilitate proving our equivalence

results. These results are also significant in their own right.

4.1 A formal description

There are two types of the DA algorithm: the men-proposing DA (MPDA) algorithm – denoted by DM ,

and the women-proposing DA (WPDA) algorithm. In the following, we provide a description of the MPDA

algorithm at a preference profile PA. The same of the WPDA algorithm can be obtained by interchanging

the roles of men and women in the MPDA algorithm.
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Step 1. Each man m proposes to his most preferred acceptable woman (according to Pm).4 Every woman w,

who has at least one proposal, tentatively keeps her most preferred acceptable man (according to Pw)

among these proposals and rejects the rest.

Step 2. Every man m, who was rejected in the previous step, proposes to his next preferred acceptable woman.

Every woman w, who has at least one proposal including any proposal tentatively kept from the earlier

steps, tentatively keeps her most preferred acceptable man among these proposals and rejects the rest.

This procedure is then repeated from Step 2 till a step such that for each man, one of the following two

happens: (i) he is accepted by some woman, (ii) he has proposed to all acceptable women. At this step, the

proposal tentatively accepted by women becomes permanent. This completes the description of the MPDA

algorithm.

Remark 1 (Gale and Shapley, 1962). On the unrestricted domain Lp(W ∪{∅})×Lq(M ∪{∅}), both the DA

algorithms are stable.

4.2 Structure of manipulative coalitions for the MPDA algorithm

Dubins and Freedman (1981) show that no coalition of men can manipulate the MPDA algorithm on the

unrestricted domain, while Roth (1982) shows that no stable matching rule on the unrestricted domain is

strategy-proof. Therefore, whenever a coalition manipulates the MPDA algorithm, it must include at least

one woman. In Proposition 1, we show that the manipulative coalition not only contains at least one woman

but must consist only of women.

Proposition 1. Suppose a coalition A′ ⊆ A manipulates the MPDA algorithm at some preference profile.

Then, A′ ⊆ W .

The result of Dubins and Freedman (1981) follows from Proposition 1 as a corollary.

Corollary 1 (Dubins and Freedman, 1981). On the unrestricted domain Lp(W ∪ {∅}) × Lq(M ∪ {∅}), no

coalition of men can manipulate the MPDA algorithm.

We further explore how manipulation by a manipulative coalition affects the MPDA algorithm from the

agents’ perspective. In our following result, we show that whenever a coalition manipulates the MPDA

algorithm, every woman in the market weakly benefits while every man in the market weakly suffers. Notice

that Proposition 1 follows from this result.

4That is, if the most preferred woman of a man is acceptable to that man, he proposes to her. Otherwise, he does not propose
to anybody.
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Proposition 2. On an arbitrary domain PA, suppose the MPDA algorithm DM is manipulable at PA ∈ PA

by coalition A′ ⊆ A via P̃A′ ∈
∏

a∈A′
Pa. Then,

(a) DM
m (PA) Rm DM

m (P̃A′ , P−A′) for all m ∈ M , and

(b) DM
w (P̃A′ , P−A′) Rw DM

w (PA) for all w ∈ W .

The proof of this proposition is relegated to Appendix A.1.

Our last result on manipulative coalitions demonstrates that the set of unmatched agents is not affected

by manipulation.

Proposition 3. On an arbitrary domain PA, suppose the MPDA algorithm DM is manipulable at PA ∈ PA

by coalition A′ ⊆ A via P̃A′ ∈
∏

a∈A′
Pa. Then, for every a ∈ A,

DM
a (PA) = ∅ ⇐⇒ DM

a (P̃A′ , P−A′) = ∅.

The proof of this proposition is relegated to Appendix A.2.

A key implication of Proposition 3 is that an unmatched agent cannot be in a manipulative coalition. Note

that by symmetry, Proposition 3 also holds for the WPDA algorithm.

Proposition 3 cannot be deduced from a result of McVitie and Wilson (1970), where they show that the set

of unmatched agents remains the same across the stable matchings at a preference profile. To see this, note

that in Proposition 3, the matching DM (PA) is not stable at (P̃A′ , P−A′), and the matching DM (P̃A′ , P−A′)

is not stable at PA in general.

4.3 Group strategy-proofness of the MPDA algorithm

Recall that our equivalence results (Theorems 1 and 2) do not provide any information about the existence

of a stable and group strategy-proof matching rule. In order to address this issue, we identify two domain

restrictions in this subsection that guarantee the existence of such a matching rule.

In their paper, Alcalde and Barberà (1994) introduce a restriction on the domain called top dominance.

They show that if the domain satisfies top dominance for women, the MPDA algorithm becomes strategy-

proof. Our following result extends their finding by proving that the domain satisfying top dominance for

women is also sufficient for the MPDA algorithm to be group strategy-proof. Before stating this result, we

first present the notion of top dominance.

Definition 5 (Top dominance). A domain of preference profiles PA satisfies top dominance for women if

for every w ∈ W , Pw satisfies the following property: for every x ∈ M and every y, z ∈ M ∪ {∅}, if there
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exists a preference P ∈ Pw with x P y P z and y R ∅, then there is no preference P̃ ∈ Pw such that x P̃ z P̃ y

and z R̃ ∅.

Proposition 4. Let PA be an arbitrary domain of preference profiles. If PA satisfies top dominance for

women, then the MPDA algorithm is stable and group strategy-proof on PA.

The proof of this proposition is relegated to Appendix B.

It is natural to wonder about the connection between the domain restriction of top dominance and the do-

main richness conditions of unrestricted top pairs and unrestricted tops with unique acceptability. As we have

previously discussed, unrestricted top pairs is a stronger richness condition than unrestricted tops with unique

acceptability. Moreover, if a domain satisfies unrestricted top pairs for women, it cannot satisfy top dominance

for women. Finally, there is no inclusion or exclusion relation between top dominance and unrestricted tops

with unique acceptability. Figure 1 summarizes a graphical representation of these relationships.

Unrestricted tops
with unique acceptability

Top dominance

Unrestricted
top pairs

Figure 1: Venn diagram

In order to ensure a stable and group strategy-proof matching rule, we have a second domain restriction

which is a constructive one. As mentioned earlier in Remark 1, both the MPDA and WPDA algorithms are

stable on the unrestricted domain. It is also well-known that there exist preference profiles at which both

these algorithms produce the same outcome. As a result, only one stable matching exists at those preference

profiles (see McVitie and Wilson (1971) for details). Conversely, at all preference profiles where only one

stable matching exists, the MPDA algorithm and WPDA algorithm will produce the same outcome, which is

a result of Remark 1.

Let us consider a domain of preference profiles PA, where each preference profile in PA has only one stable

matching. In such cases, the MPDA algorithm is equivalent to the WPDA algorithm on PA. This equivalence,

along with Proposition 1, proves that the MPDA algorithm is group strategy-proof on PA.

Corollary 2. Let PA be a domain of preference profiles such that every preference profile in PA has only one

stable matching. Then, the MPDA algorithm is stable and group strategy-proof on PA.

To understand why Corollary 2 holds, let us assume that the MPDA algorithm is not group strategy-

proof on PA. This means that there exists a manipulative coalition, which according to Proposition 1, must
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consist of only women. However, since the MPDA algorithm is equivalent to the WPDA algorithm on PA,

by interchanging the roles of men and women in Proposition 1, we can infer that the manipulative coalition

consists only of men, which contradicts the previous claim.

4.4 Uniqueness of the MPDA algorithm

In this subsection, we provide a crucial result that characterizes the MPDA algorithm, which also plays a vital

role in our equivalence results. The result states that if the domain satisfies unrestricted tops with unique

acceptability for men, then the MPDA algorithm is the only stable matching rule that satisfies strategy-

proofness for men.

Theorem 3. Let PA satisfy unrestricted tops with unique acceptability for men. Then, the MPDA algorithm

is the only stable matching rule on PA that satisfies strategy-proofness for men.

The proof of Theorem 3 is relegated to Appendix A.3; here we provide an outline of it. To understand why

Theorem 3 holds, consider a different stable matching rule, φ, that matches a man to a different woman than

the MPDA algorithm does. Due to the lattice structure of the stable matchings, the man in question prefers

the match by the MPDA algorithm to the one by φ. Therefore, he can manipulate the stable matching rule

φ by misreporting his preference by ranking his match by the MPDA algorithm first and the outside option

second.

Alcalde and Barberà (1994) show that whenever the sets of admissible preferences for men are unrestricted,

if a stable and strategy-proof matching rule exists, it must be the MPDA algorithm. Their result follows from

Theorem 3.

Corollary 3 (Theorem 3 in Alcalde and Barberà (1994)). Suppose Pm = L(W ∪ {∅}) for all m ∈ M . If a

stable and strategy-proof matching rule exists on PA, it must be unique and the MPDA algorithm.

The corollary below follows from the combination of Proposition 4 and Theorem 3.

Corollary 4. Suppose PA satisfies unrestricted tops with unique acceptability for men and top dominance for

women. Then, the MPDA algorithm is the unique stable and strategy-proof matching rule on PA, which also

satisfies group strategy-proofness on PA.

5 Discussion: Many-to-one matching markets

In this section, we describe the college admissions problem (Gale and Shapley, 1962), a well-known many-to-

one matching market, and discuss the possibility of extending our results to such a matching market.
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5.1 Model

There are two finite disjoint sets of agents, the set of colleges C and the set of students S. Let I = C ∪ S be

the set of all agents. Each college c has a quota qc ≥ 1 which represents the maximum number of students

for which it has places. Let Sq := {S̃ ⊆ S | |S̃| ≤ q} be the set of subsets of S with cardinality at most q.

Each college c has a preference Pc over Sqc and each student s has a preference Ps over C ∪ {∅}. We say

that student s is acceptable to college c if {s} Pc ∅, and analogously, college c is acceptable to student s if

c Ps ∅. We denote by Pi the set of admissible preferences for agent i ∈ I. A preference profile , denoted by

PI =
(
(Pc)c∈C , (Ps)s∈S

)
, is an element of the Cartesian product PI :=

∏
c∈C

Pc ×
∏
s∈S

Ps.

We impose a standard assumption on the preferences of colleges, called responsiveness (Roth, 1985). This

property demonstrates a natural way to extend the preferences of colleges from individual students to sets of

students.

Definition 6 (Responsiveness). A college c’s preference Pc satisfies responsiveness if for every S̃ ⊆ S with

|S̃| < qc,

(i) for every s ∈ S \ S̃,

(S̃ ∪ {s}) Pc S̃ ⇐⇒ {s} Pc ∅, and

(ii) for every s, s′ ∈ S \ S̃,

(S̃ ∪ {s}) Pc (S̃ ∪ {s′}) ⇐⇒ {s} Pc {s′}.

A (many-to-one) matching (between C and S) is a function ν : I → 2S ∪ C such that

(i) ν(c) ∈ Sqc for all c ∈ C,

(ii) ν(s) ∈ C ∪ {∅} for all s ∈ S, and

(iii) ν(s) = c if and only if s ∈ ν(c) for all c ∈ C and all s ∈ S.

A matching ν is blocked by a college c at a preference profile PI if there exists s ∈ ν(c) such that ∅ Pc {s}.

A matching ν is blocked by a student s at a preference profile PI if ∅ Ps ν(s). A matching ν is individually

rational at a preference profile PI if it is not blocked by any college or student. A matching ν is blocked by a

pair (c, s) ∈ C×S at a preference profile PI if c Ps ν(s) and either (i)
[
|ν(c)| < qc and {s} Pc ∅

]
, or (ii)

[
there

exists s′ ∈ ν(c) such that {s} Pc {s′}
]
. A matching ν is stable at a preference profile PI if it is individually

rational and is not blocked by any pair at that preference profile.

The DA algorithm naturally extends to the college admissions problem. In the following, we provide a

description of the students-proposing DA (SPDA) algorithm.
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Step 1. Each student s applies to her most preferred acceptable college. Every college c, which has at least

one application, tentatively keeps its top qc acceptable students among these applications and rejects

the rest (if c has fewer acceptable applications than qc, it tentatively keeps all of them).

Step 2. Every student s, who was rejected in the previous step, applies to her next preferred acceptable

college. Every college c, which has at least one application including any applications tentatively kept

from the earlier steps, tentatively keeps its top qc acceptable students among these applications and

rejects the rest.

This procedure is then repeated from Step 2 till a step such that for each student, one of the following two

happens: (i) she is accepted by some college, (ii) she has applied to all acceptable colleges. At this step, the

applications tentatively accepted by colleges become permanent. This completes the description of the SPDA

algorithm.

Remark 2 (Gale and Shapley, 1962). The SPDA algorithm produces a stable matching at every preference

profile PI ∈ PI .

5.2 (Im)possibility of extensions

Let us begin with a positive result that extends Theorem 3 to the college admissions problem: When the

domain satisfies unrestricted tops with unique acceptability for students, the SPDA algorithm is the unique

stable matching rule that satisfies strategy-proofness for students. To understand why this extension holds,

note that colleges having responsive preferences is a sufficient condition for the stable SPDA algorithm to be

strategy-proof for students (Roth, 1985).5 Additionally, the uniqueness of the SPDA algorithm follows from

a similar logic as for the proof of Theorem 3.

Theorem 4. Let PI satisfy unrestricted tops with unique acceptability for students. Then, the SPDA algorithm

is the only stable matching rule on PI that satisfies strategy-proofness for students.

We will now discuss whether Propositions 1, 2, 3, and 4, as well as Theorem 2, can be extended to the

college admissions problem. As previously mentioned, if colleges have responsive preferences, then the SPDA

algorithm is strategy-proof for students. Not only that, even a coalition of students cannot manipulate the

SPDA algorithm when colleges have responsive preferences.6 But what happens if a group of students colludes

with a non-empty group (possibly singleton) of colleges? Will that coalition be able to manipulate the SPDA

algorithm? Recall that in the case of the marriage problem (a one-to-one matching market), we get a negative

5Roth (1985) also shows that colleges having responsive preferences is not a sufficient condition for the colleges-proposing DA
algorithm to be strategy-proof for colleges.

6Mart́ınez et al. (2004) extend this result further. They show that no coalition of students can manipulate the SPDA algorithm
when the colleges’ preferences satisfy both substitutability (Kelso Jr and Crawford, 1982) and separability (Barberà et al., 1991).
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answer to such a question (Proposition 1). However, we obtain a different result for the college admissions

problem; a group of students can indeed manipulate the SPDA algorithm by colluding with a non-empty group

of colleges. Therefore, Proposition 1 cannot be extended to the college admissions problem. An example is

provided below to illustrate this.

Example 1. Consider a market with three colleges C = {c1, c2, c3} and five students S = {s1, . . . , s5}. College

c1 has a quota of 2 and other colleges have a quota of 1. Consider the preference profile PI such that

Ps1 : c3c1 . . . , Ps2 : c1c3 . . . , Ps3 : c1∅ . . . , Ps4 : c1c2 . . . , Ps5 : c2∅ . . . ,

Pc1 : {s1, s2} {s1, s3} {s1, s4} {s2, s3} {s2, s4} {s3, s4} {s1} {s2} {s3} {s4} ∅ {s1, s5} {s2, s5} {s3, s5} {s4, s5} {s5},

Pc2 : {s4} {s5} ∅ {s1} {s2} {s3}, and Pc3 : {s2} {s5} {s1} ∅ {s3} {s4}.

Clearly, the preferences of colleges satisfy responsiveness. The outcome of the SPDA algorithm at PI is

[
(c1, {s2, s3}), (c2, {s4}), (c3, {s1}), (s5, ∅)

]
.

Let I ′ be a coalition of student s5 and college c1. Consider the preference profile P̃I′ of this coalition such

that

P̃s5 : c3c2 . . . , and

P̃c1 : {s1, s4} {s2, s4} {s3, s4} {s1, s2} {s1, s3} {s2, s3} {s4} {s1} {s2} {s3} ∅ {s4, s5} {s1, s5} {s2, s5} {s3, s5} {s5}.

P̃c1 also satisfies responsiveness and the outcome of the SPDA algorithm at (P̃I′ , P−I′) is

[
(c1, {s1, s4}), (c2, {s5}), (c3, {s2}), (s3, ∅)

]
.

Combining all these facts, it follows that the coalition of student s5 and college c1 manipulates the SPDA

algorithm at PI via P̃I′ . ♢

Example 1 also shows the impossibility of extending Propositions 2 and 3 to the college admissions problem.

In fact, one important implication of Proposition 3 – an unmatched agent cannot be in a manipulative coalition

for the DA algorithm – does not hold for the college admissions problem either. To see this, notice that in

Example 1, student s5, an unmatched agent, is in the manipulative coalition.

Lastly, the main takeaway of this paper – the equivalence of strategy-proofness and group strategy-proofness

under stability (Theorem 2) – is also impossible to extend to the college admissions problem, and so is

Proposition 4. A detailed explanation is provided below. We use an additional notion for this explanation.

Given a preference Pc of a college c, let P ∗
c denote the corresponding induced preference over S ∪ {∅} where
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for every s, s′ ∈ S, (i) s P ∗
c s′ ⇐⇒ {s} Pc {s′} and (ii) s P ∗

c ∅ ⇐⇒ {s} Pc ∅.

Example 1 (continued). Construct a domain of preference profiles PI for the given market such that PI

satisfies unrestricted top pairs for students and

Pc1 = {Pc1 , P̃c1}, Pc2 = {Pc2}, and Pc3 = {Pc3}.

Notice that PI satisfies top dominance for colleges when judged by the induced preferences. Because of

this, and since colleges have responsive preferences, by Theorem 5 in Alcalde and Barberà (1994), the SPDA

algorithm is stable and strategy-proof on PI .

Recall that the coalition I ′ of student s5 and college c1 manipulates the SPDA algorithm at PI via P̃I′ .

Moreover, by construction, both PI and (P̃I′ , P−I′) are admissible preference profiles. Combining all these

facts, it follows that the SPDA algorithm is not group strategy-proof on PI , showing the impossibility of

extending Theorem 2 and Proposition 4 to the college admissions problem. ♢

6 Concluding remarks

Our main contribution in this paper is to identify conditions on domains where any stable matching rule

satisfying strategy-proofness must also be immune to manipulations by groups. Our findings also highlight

the advantages of implementing the DA algorithm in two-sided matching markets. Our research demonstrates

that when the domain is sufficiently rich, the DA algorithm is the only stable matching rule that satisfies

strategy-proofness for the proposers’ side of the market. Moreover, if the DA algorithm is strategy-proof for

the entire market, group strategy-proofness is automatically achieved.

Appendix A Proofs of Theorems 1, 2, and 3 and Propositions 2 and 3

We prove Theorems 1 and 2 using Propositions 2 and 3, as well as Theorem 3. Therefore, we will first present

the proofs of the two propositions and Theorem 3.

A.1 Proof of Proposition 2

To facilitate the proof of Proposition 2, we present a lemma formulated by J. S. Hwang and proved in Gale

and Sotomayor (1985).

Lemma A.1 (Blocking Lemma). Consider a preference profile PA ∈ Lp(W ∪{∅})×Lq(M∪{∅}). Let µ be any

individually rational matching at PA and M ′ := {m ∈ M | µ(m) Pm DM
m (PA)} the set of men who are strictly
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better off under µ than under DM (PA). If M ′ is non-empty, then there is a pair (m,w) ∈ (M \M ′)× µ(M ′)

that blocks µ at PA.

Completion of the proof of Proposition 2. Since DM is manipulable at PA by coalition A′ via P̃A′ , we

have

DM
a (P̃A′ , P−A′) Pa DM

a (PA) for all a ∈ A′. (A.1)

For ease of presentation, we denote the matching DM (PA) by µ and the matching DM (P̃A′ , P−A′) by µ̃ in this

proof.

Proof of part (a). We first show that µ̃ is individually rational at PA. Since µ̃ is stable at (P̃A′ , P−A′) (see

Remark 1), we have

µ̃(a) Ra ∅ for all a ∈ A \A′. (A.2)

Furthermore, µ being stable at PA (see Remark 1) implies that µ(a) Ra ∅ for all a ∈ A′. This, along with

(A.1), yields

µ̃(a) Pa ∅ for all a ∈ A′. (A.3)

(A.2) and (A.3) together imply that µ̃ is individually rational at PA.

We now proceed to complete the proof of part (a). Let M+ := {m ∈ M | µ̃(m) Pm µ(m)} be the set

of men who are strictly better off under µ̃ than under µ. Assume for contradiction that M+ is non-empty.

Since µ̃ is individually rational at PA and M+ is non-empty, by Lemma A.1, it follows that there is a pair

(m,w) ∈ (M \M+)× µ̃(M+) that blocks µ̃ at PA.

Claim A.1. m,w ∈ A \A′.

Proof of Claim A.1. Note that M ∩A′ ⊆ M+. Since m ∈ M \M+, this implies

m ∈ A \A′. (A.4)

Consider the man m′ such that µ̃(m′) = w. Note that m′ is well-defined since w ∈ µ̃(M+). Clearly,

m′ ∈ M+. The facts m′ ∈ M+ and µ̃(m′) = w together imply

w Pm′ µ(m′). (A.5)

Since µ is stable at PA, (A.5) implies µ(w) Pw m′. This, along with the fact µ̃(m′) = w and (A.1), yields

w ∈ A \A′. (A.6)

19



(A.4) and (A.6) together complete the proof of Claim A.1. □

Recall that µ̃ is stable at (P̃A′ , P−A′). By Claim A.1, it follows thatm and w do not change their preferences

from PA to (P̃A′ , P−A′). This, together with the fact that (m,w) blocks µ̃ at PA, implies that (m,w) blocks

µ̃ at (P̃A′ , P−A′), a contradiction to the fact that µ̃ is stable at (P̃A′ , P−A′). This completes the proof of part

(a) of Proposition 2.

Proof of part (b). Assume for contradiction that there exists w ∈ W such that

µ(w) Pw µ̃(w). (A.7)

We first show that µ(w) ∈ M . Note that (A.7) and (A.1) together imply w ∈ A \A′, which means woman

w does not change her preference from PA to (P̃A′ , P−A′). Since µ̃ is stable at (P̃A′ , P−A′) and woman w

does not change her preference from PA to (P̃A′ , P−A′), we have µ̃(w) Rw ∅, which, along with (A.7), yields

µ(w) Pw ∅. This, in particular, means µ(w) ∈ M .

Consider the man m such that µ(w) = m. By part (a) of this theorem, we have w Rm µ̃(m). Note also

that (A.7) implies µ̃(m) ̸= w. Combining the facts w Rm µ̃(m) and µ̃(m) ̸= w, we have

w Pm µ̃(m). (A.8)

It follows from (A.7) and (A.8) that (m,w) blocks µ̃ at PA. Recall that µ̃ is stable at (P̃A′ , P−A′) and

woman w does not change her preference from PA to (P̃A′ , P−A′). Also note that by Proposition 1, man m

does not change his preference from PA to (P̃A′ , P−A′). Combining all these facts, it follows that (m,w) blocks

µ̃ at (P̃A′ , P−A′), a contradiction to the fact that µ̃ is stable at (P̃A′ , P−A′). This completes the proof of part

(b) of Proposition 2. ■

A.2 Proof of Proposition 3

For ease of presentation, we denote the matching DM (PA) by µ and the matching DM (P̃A′ , P−A′) by µ̃ in this

proof.

Note that by Proposition 1, men do not change their preferences from PA to (P̃A′ , P−A′). Because of this,

and since µ̃ is stable at (P̃A′ , P−A′) (see Remark 1), we have µ̃(m) Rm ∅ for all m ∈ M . This, together with

Proposition 2.(a), implies

µ(m) Rm µ̃(m) Rm ∅ for all m ∈ M,
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which, in particular, means

{m ∈ M | m is matched under µ̃} ⊆ {m ∈ M | m is matched under µ}. (A.9)

Similarly, since µ is stable at PA (see Remark 1), we have µ(w) Rw ∅ for all w ∈ W . This, together with

Proposition 2.(b), implies

µ̃(w) Rw µ(w) Rw ∅ for all w ∈ W,

which, in particular, means

{w ∈ W | w is matched under µ̃} ⊇ {w ∈ W | w is matched under µ}. (A.10)

Furthermore, by the definition of a matching,

|{m ∈ M | m is matched under µ̃}| = |{w ∈ W | w is matched under µ̃}|, and

|{m ∈ M | m is matched under µ}| = |{w ∈ W | w is matched under µ}|.
(A.11)

(A.9), (A.10), and (A.11) together complete the proof of Proposition 3. ■

A.3 Proof of Theorem 3

Before proving Theorem 3, we present two results: one from Gale and Shapley (1962) and the other from

McVitie and Wilson (1970).

Remark 3 (Gale and Shapley, 1962). Every man weakly prefers the match by the MPDA algorithm to the

match under any other stable matching. Formally, for every PA ∈ Lp(W ∪ {∅})× Lq(M ∪ {∅}), every stable

matching µ at PA, and every m ∈ M , we have DM
m (PA) Rm µ(m).

Remark 4 (McVitie and Wilson, 1970). The set of unmatched agents remains the same across the stable

matchings at a preference profile. Formally, for every PA ∈ Lp(W ∪{∅})×Lq(M∪{∅}), every stable matchings

µ and ν at PA, and every a ∈ A, µ(a) = ∅ if and only if ν(a) = ∅.

Completion of the proof of Theorem 3. First, note that on any arbitrary domain, the MPDA algorithm

DM is stable (see Remark 1) and strategy-proof for men (see Dubins and Freedman (1981)).

Let φ be a stable and strategy-proof matching rule on PA. Assume for contradiction that φ ̸≡ DM on PA.

Then, there exist PA ∈ PA and m ∈ M such that φm(PA) ̸= DM
m (PA). Because of this, and since φ(PA) is

stable at PA, by Remark 3, we have DM
m (PA) ∈ W and

DM
m (PA) Pm φm(PA). (A.12)
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Consider the preference P̃m ∈ Pm such that DM
m (PA) P̃m ∅ P̃m w for all w ∈ W \ {DM

m (PA)}. Note that

P̃m is well-defined since PA satisfies unrestricted tops with unique acceptability for men and DM
m (PA) ∈ W .

Clearly, DM (PA) is stable at (P̃m, P−m).

However, since DM (PA) is stable at (P̃m, P−m), by Remark 4 and the construction of P̃m, we have

φm(P̃m, P−m) = DM
m (PA), which, together with (A.12), contradicts strategy-proofness of φ on PA. This

completes the proof of Theorem 3. ■

A.4 Proof of Theorem 1

Before proving Theorem 1, we present two remarks. The remarks follow from Proposition 1 and Theorem 3,

respectively, by interchanging the roles of men and women in the MPDA algorithm.

Remark 5. Suppose a coalition A′ ⊆ A manipulates the WPDA algorithm at some preference profile. Then,

A′ ⊆ M .

Remark 6. Let PA satisfy unrestricted tops with unique acceptability for women. Then, the WPDA algo-

rithm is the only stable matching rule on PA that satisfies strategy-proofness for women.

Completion of the proof of Theorem 1. The “if” part of the theorem follows from the respective defi-

nitions. We proceed to prove the “only-if” part. Suppose there exists a stable and strategy-proof matching

rule, φ, on PA. Since PA satisfies unrestricted tops with unique acceptability for both sides of the market, by

Theorem 3 and Remark 6, φ must be equivalent to both the MPDA and WPDA algorithms on PA.

Assume for contradiction that φ is not group strategy-proof on PA. Then, there exists a non-empty set of

agents A′ ⊆ A that manipulates φ at some preference profile PA ∈ PA. Since φ is equivalent to the MPDA

algorithm on PA and A′ manipulates φ at PA, by Proposition 1, we have A′ ⊆ W . Similarly, since φ is

equivalent to the WPDA algorithm on PA and A′ manipulates φ at PA, by Remark 5, we have A′ ⊆ M .

However, the facts A′ ⊆ W and A′ ⊆ M together contradict the fact that A′ is a non-empty set. This

completes the proof of Theorem 1. ■

A.5 Proof of Theorem 2

We first prove a lemma that we use in the proof of Theorem 2.

A.5.1 Lemma A.2 and its proof

Lemma A.2 identifies a richness condition of the domain for women under which stability and strategy-

proofness become incompatible whenever the domain satisfies unrestricted top pairs for men.
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Lemma A.2. Let PA satisfy unrestricted top pairs for men. Suppose there exists an alternating sequence

m1, w1,m2, w2, . . . ,mk, wk of distinct men and women such that

(i) for every i = 2, . . . , k, there exists Pwi ∈ Pwi with mi Pwi mi−1 Pwi ∅, and

(ii) there exist Pw1 , P̃w1 ∈ Pw1 with m1 Pw1 mk Pw1 ∅ such that for some z ∈ M ∪ {∅},

(a) mk Pw1 z, and

(b) z R̃w1 ∅ and m1 P̃w1 z P̃w1 mk.

Then, no stable matching rule on PA is strategy-proof.

Proof of Lemma A.2. Suppose there exists an alternating sequence m1, w1,m2, w2, . . . ,mk, wk of distinct

men and women such that

(i) for every i = 2, . . . , k, there exists Pwi ∈ Pwi with mi Pwi mi−1 Pwi ∅, and

(ii) there exist Pw1 , P̃w1 ∈ Pw1 with m1 Pw1 mk Pw1 ∅ such that for some z ∈ M ∪ {∅},

(a) mk Pw1 z, and

(b) z R̃w1 ∅ and m1 P̃w1 z P̃w1 mk.

Assume for contradiction that there exists a stable and strategy-proof matching rule on PA. Note that since

PA satisfies unrestricted top pairs for men, by Theorem 3, it must be the MPDA algorithm. We distinguish

the following two cases.

Case 1: Suppose z = ∅.

Since PA satisfies unrestricted top pairs for men, we can construct a collection of preferences P−{w1,...,wk}

of all agents except for women w1, . . . , wk such that

Pmi : wi+1wi . . . for all i = 1, . . . , k − 1,

Pmk : w1wk . . . , and

τ(Pm) = ∅ for all m /∈ {m1, . . . ,mk}.

(Recall that w1w2 . . . denotes a preference that ranks w1 first and w2 second.)

It is straightforward to verify the following facts.

DM (Pw1 , Pw2 , . . . , Pwk , P−{w1,...,wk}) =

(mk, w1), (mi, wi+1) ∀ i = 1, . . . , k − 1,

(a, ∅) ∀ a /∈ {m1, . . . ,mk, w1, . . . , wk}

 and

DM (P̃w1 , Pw2 , . . . , Pwk , P−{w1,...,wk}) =

(mi, wi) ∀ i = 1, . . . , k,

(a, ∅) ∀ a /∈ {m1, . . . ,mk, w1, . . . , wk}

 .

(A.13)
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However, (A.13) implies that w1 can manipulate the MPDA algorithm at (Pw1 , Pw2 , . . . , Pwk , P−{w1,...,wk}) via

P̃w1 , a contradiction to the fact that the MPDA algorithm is strategy-proof on PA. This completes the proof

for Case 1.

Case 2: Suppose z = m̃ for some m̃ ∈ M .

(i) Suppose m̃ /∈ {m1, . . . ,mk}.

Since PA satisfies unrestricted top pairs for men, we can construct a collection of preferences P−{w1,...,wk}

of all agents except for women w1, . . . , wk such that

Pmi : wi+1wi . . . for all i = 1, . . . , k − 1,

Pmk : w1wk . . . ,

Pm̃ : w1∅ . . . , and

τ(Pm) = ∅ for all m /∈ {m1, . . . ,mk, m̃}.

Using a similar argument as for Case 1, it follows that w1 can manipulate the MPDA algorithm at

(Pw1 , Pw2 , . . . , Pwk , P−{w1,...,wk}) via P̃w1 , a contradiction to the fact that the MPDA algorithm is

strategy-proof on PA.

(ii) Suppose m̃ ∈ {m1, . . . ,mk}.

Since m̃ ∈ {m1, . . . ,mk}, the fact m1 P̃w1 m̃ P̃w1 mk implies m̃ ∈ {m2, . . . ,mk−1}. Let m̃ = mk∗ for

some k∗ ∈ {2, . . . , k−1}. Since PA satisfies unrestricted top pairs for men, we can construct a collection

of preferences P−{w1,...,wk} of all agents except for women w1, . . . , wk such that

Pmi : wi+1wi . . . for all i = 1, . . . , k∗ − 1,

Pmk∗ : w1wk∗ . . . ,

Pmk : w1∅ . . . , and

τ(Pm) = ∅ for all m /∈ {m1, . . . ,mk∗ ,mk}.

It is straightforward to verify the following facts.

DM (P̃w1 , Pw2 , . . . , Pwk , P−{w1,...,wk}) =

(mk∗ , w1), (mi, wi+1) ∀ i = 1, . . . , k∗ − 1,

(a, ∅) ∀ a /∈ {m1, . . . ,mk∗ , w1, . . . , wk∗}

 and

DM (Pw1 , Pw2 , . . . , Pwk , P−{w1,...,wk}) =

(mi, wi) ∀ i = 1, . . . , k∗,

(a, ∅) ∀ a /∈ {m1, . . . ,mk∗ , w1, . . . , wk∗}

 .

(A.14)
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However, (A.14) implies that w1 can manipulate the MPDA algorithm at (P̃w1 , Pw2 , . . . , Pwk , P−{w1,...,wk})

via Pw1 , a contradiction to the fact that the MPDA algorithm is strategy-proof on PA. This completes

the proof for Case 2.

Since Cases 1 and 2 are exhaustive, this completes the proof of Lemma A.2. ■

A.5.2 Completion of the proof of Theorem 2

The “if” part of the theorem follows from the respective definitions. We proceed to prove the “only-if” part.

Without loss of generality, assume that PA satisfies unrestricted top pairs for men. By definition, PA also

satisfies unrestricted tops with unique acceptability for men. Suppose there exists a stable and strategy-proof

matching rule on PA. By Theorem 3, it must be the MPDA algorithm. Assume for contradiction that the

MPDA algorithm DM is not group strategy-proof on PA. Then, there exist PA ∈ PA, a set of agents A′ ⊆ A,

and a preference profile P̃A′ of the agents in A′ such that

DM
a (P̃A′ , P−A′) Pa DM

a (PA) for all a ∈ A′. (A.15)

For ease of presentation, we denote the matching DM (PA) by µ and the matching DM (P̃A′ , P−A′) by µ̃ in this

proof. Furthermore, let µ̃s denote the (tentative) matching at the end of some step s of the MPDA algorithm

at (P̃A′ , P−A′).

Note that by Proposition 1 and Proposition 2.(a), men do not change their preferences from PA to

(P̃A′ , P−A′) and each man weakly prefers µ to µ̃ where µ ̸= µ̃. Let s∗ be first step (of the MPDA algo-

rithm) at (P̃A′ , P−A′) when some man, say m, gets rejected by µ(m). Consider the woman w1 such that

µ(m) = w1. Clearly, µ̃(w1) ̸= m. Construct an alternating sequence m1, w1,m2, w2, . . . ,mk, wk of distinct

men and women with mk ≡ m such that

(i) µ̃(wi) = mi for all i = 1, . . . , k, and

(ii) µ(mi) = wi+1 for all i = 1, . . . , k − 1.

Since both the number of men and the number of women are finite, by Proposition 3, it follows that the

constructed sequence is well-defined.

Since µ is stable at PA (see Remark 1), it follows from the construction of the sequence and Proposition

2.(b) that

m1 Pw1 mk Pw1 ∅, and (A.16a)

mi Pwi mi−1 Pwi ∅ for all i = 2, . . . , k. (A.16b)

We distinguish the following two cases.
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Case 1: Suppose µ̃s∗(w1) = ∅.

Since mk gets rejected by w1 in Step s∗ (of the MPDA algorithm) at (P̃A′ , P−A′), the fact µ̃s∗(w1) = ∅,

together with (A.16a), implies w1 ∈ A′ and

∅ P̃w1 mk. (A.17)

Moreover, since µ̃ is stable at (P̃A′ , P−A′) (see Remark 1), µ̃(w1) = m1 implies m1 P̃w1 ∅, which, along with

(A.17), yields

m1 P̃w1 ∅ P̃w1 mk. (A.18)

However, since PA satisfies unrestricted top pairs for men, by Lemma A.2, (A.16) and (A.18) together

contradict the fact that the MPDA algorithm is both stable and strategy-proof on PA. This completes the

proof for Case 1.

Case 2: Suppose µ̃s∗(w1) ∈ M .

Consider the man m̃ such that µ̃s∗(w1) = m̃. Since mk gets rejected by w1 in Step s∗ (of the MPDA

algorithm) at (P̃A′ , P−A′), the fact µ̃s∗(w1) = m̃ implies m̃ ̸= mk. Moreover, since man m̃ does not change

his preference from PA to (P̃A′ , P−A′), by the assumption of Step s∗ being the first step at (P̃A′ , P−A′) where

some man gets rejected by his match under µ, µ̃s∗(w1) = m̃ implies w1 Rm̃ µ(m̃). This, along with the facts

µ(mk) = w1 and m̃ ̸= mk, yields w1 Pm̃ µ(m̃). Because of this, and since µ is stable at PA with µ(mk) = w1,

we have

mk Pw1 m̃. (A.19)

Furthermore, since mk gets rejected by w1 in Step s∗ at (P̃A′ , P−A′), the fact µ̃s∗(w1) = m̃, together with

(A.19) implies w1 ∈ A′ and

m̃ P̃w1 ∅, and (A.20a)

m̃ P̃w1 mk. (A.20b)

Note that (A.16a) and (A.19) together imply m̃ ̸= m1.

By the definition of the MPDA algorithm, we have µ̃(w1) R̃w1 µ̃s∗(w1). Because of this, and since µ̃(w1) =

m1, µ̃s∗(w1) = m̃, and m̃ ̸= m1, we have m1 P̃w1 m̃, which, along with (A.20b), yields

m1 P̃w1 m̃ P̃w1 mk. (A.21)

However, since PA satisfies unrestricted top pairs for men, by Lemma A.2, (A.16), (A.19), (A.20a), and

(A.21) together contradict the fact that the MPDA algorithm is both stable and strategy-proof on PA. This

completes the proof for Case 2.
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Since Cases 1 and 2 are exhaustive, this completes the proof of Theorem 2. ■

Appendix B Proof of Proposition 4

Construct a domain of preference profiles P̃A such that P̃m = L(W ∪{∅}) for all m ∈ M and P̃w = Pw for all

w ∈ W . Clearly, P̃A satisfies unrestricted top pairs for men and top dominance for women.

Since P̃A satisfies top dominance for women, by the corollary in Alcalde and Barberà (1994), the MPDA

algorithm is stable and strategy-proof on P̃A. Because of this, and since P̃A satisfies unrestricted top pairs

for men, by Theorem 2, it follows that the MPDA algorithm is also group strategy-proof on P̃A.

However, since the MPDA algorithm is stable and group strategy-proof on P̃A, it also satisfies stability

and group strategy-proofness on the smaller domain PA. This completes the proof of Proposition 4. ■
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