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1 Introduction

The formal analogies between the theories of zero-sum two-person games, statistical decision

functions, and resource allocation are valuable since a result obtained in any one of them can

have an interesting counterpart in the two others; the difference between their philosophies

should, however, by no means be overlooked in the resource allocation problem.

The central agency determining [the prices] is not inert and its behavior can be chosen precisely

to conflict fully with the behavior of the various economic units.1 Gerard Debreu (1951)2

Barring the paper of McKenzie (1954) and the book of Arrow and Hahn (1971), there are

two main approaches to prove the existence of a competitive equilibrium in a private-ownership

economy: the excess demand approach and the simultaneous optimization approach; see Debreu

(1982) for details.3 The substance and historical antecedents of this distinction have not been

fully appreciated or articulated. The second was chronologically prior to the first, and it relied on

Debreu’s generalization of Nash’s theorem for normal form games; see the comprehensive sketch of

1This central agency was to become in Arrow and Debreu (1954) a “fictitious participant who chooses and who
may be termed the market participant.” Independently, (Nikaido, 1956, p. 138) sets up a “fictitious negotiating
procedure by letting a referee or a refereeing mechanism intervene into the negotiation, who may correspond to an
auctioneer or price-manipulating authority.” (Authors’ italics, both here and elsewhere in the sequel.) Debreu (1956)
limits himself to one simple sentence: “Given z in Z, let π(z) be the set of maximizers of p.z in P.” This sentence was
to be elaborated in a passive voice as a paragraph in (Debreu, 1959, p. 83) as the “central idea of the proof hinting
at a tendency.” We go into this issue in somewhat more detail in the third paragraph of the introduction to follow.

2See Debreu (1951, pp. 47 and 48) for this quotation; and Sections 11 and 12 for a detailed elaboration.
3For an explication and a comprehensive exegesis of McKenzie’s contribution, see Khan (1993). For further

elaboration of the approach of Arrow-Hahn, see Moore (1975, 2007) in addition to Arrow-Hahn themselves. In
his report on their result with externalities, Sonnenschein (1975) also includes Starrett’s name along with theirs.
Florenzano (2009) singles out three main approaches, her third being the “so-called Negishi approach based ... on a
fixed-point theorem applied in the utility space that is in the vector space whose dimension is equal to the finite number
of consumers. This approach requires the preferences of each consumer to be represented by a utility function.” What
bears emphasis is that Negishi (1960) is forced by his method to assume concave rather than quasi-concave utility
functions.
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the proof in (Arrow and Debreu, 1954, Sections 2.3 and 2.4).4 The main tool in the excess demand

approach is the GNKD lemma, as provided by Gale (1955), Nikaido (1956), Kuhn (1956) and Debreu

(1956),5 and the classic treatment is available in the textbook explication of Debreu (1959) laying

out a comprehensive proof of the existence of an equilibrium for an economy in which the individual

production sets are neither convex nor closed as per Uzawa’s seminal suggestion.6

The first proofs of the GKND lemma are based either on a fixed point theorem or the Knaster-

Kuratowski-Mazurovich (KKM) lemma7 but what needs emphasis is that the underlying problem in

Debreu (1952) is not a game in the sense of Nash since the market player’s actions affect the action

sets of all the other players. It is this that leads Arrow-Debreu to formalize the distinctive notion of

an abstract economy, and in its context, to call attention to two components, one of which concerns

the payoff of the market participant.

Suppose the market participant does not maximize instantaneously but, taking other partic-

ipants’ choices as given, adjusts his choice of prices so has to increase his payoff...; it can be

increased by increasing ph for those commodities for which zh > 0, decreasing ph if zh < 0 (pro-

vided ph is not already 0). But this is precisely the classical “law of supply and demand,” and

so the motivation of the market participant corresponds to one of the elements of a competitive

equilibrium. This intuitive comment is not, however, the justification for this particular choice

of a market pay-off, that justification will be found in [the sequel].

This intuition underlying the Debreu-Nikaido mapping is off the mark in that it totally ignores all

but the market (or markets) where the excess demand is the largest: this bluff works.8 In any case,

the Arrow-Debreu passage has not been given as much of an emphasis as it ought. What is involved

is a fixed point of a mapping and not an adjustment process: the equilibrium of the abstract economy

is in the set-up of a one-shot simulatneous play. It needed (Hildenbrand and Kirman, 1976, p. 156)

to re-emphasize to the profession that

... even though an adjustment process may not converge, nevertheless a fixed point of it exists.

This would give us an equilibrium, since for such a fixed point p∗ we clearly have to make no

further adjustment. If we confine ourselves to a fixed point of the adjustment process, then

4It is not fully appreciated that the Arrow-Debreu paper did not rely on a fixed-point theorem, either Kakutani’s
or Eilenberg-Montgomery’s, but instead stated a result, their Lemma 2.5, which the authors saw as a generalization
of the theorem of Nash, but a special case of the principal result reported in Debreu (1952). The latter of course
did rely on the Eilenberg-Montgomery fixed point theorem. Khan (2020) addresses this confusion; also see Maskin
(2019) and Velupillai (2019). As we shall see below, this Lemma 2.5 in Arrow and Debreu (1954) is then taken up by
Sonnenschein (1975); see Footnote 13 below.

5For the order of priority of the names in the lemma, see Debreu (1959, Note 2, p. 88) and Florenzano (2009).
6For Uzawa’a suggestion, see Note 1 on page 88 in Debreu (1959); also see Khan (2020) and Debreu (1962) for the

emphasis on the need for the relaxation of the “free-disposal” assumption.
7Gale (1955) uses the KKM lemma, Kuhn (1956) uses the Eilenberg-Montgomery fixed point theorem, and Nikaido

(1956) and Debreu (1956) use the Kakutani fixed point theorem.
8Khan (2020) misses Nikaido’s name in his reference to what is being termed here as the Debreu-Nikaido mapping;

see the discussion on page 615 of his article.

2



this process as such has no real intrinsic economic content. We may thus arbitrarily choose a

process to suit our purpose. The only criterion now is its mathematical convenience.9

This is in response to earlier hopes that the adjustment process suggested by the Nikaido-Debreu

map, and as intuited by Arrow-Debreu, may be useful in understanding the price adjustment pro-

cess towards equilibrium and using it to compute an equilibrium. This optimism regarding the

Walrasian tâtonnement was punctured by the Gale-Scarf counterexample and finally put to rest by

the Sonnenschein-Mantel-Debreu theorem.10

The contribution of this paper is four-fold: (i) to provide two alternative proofs for the classical

GNKD lemma by using a formulation of a two-person qualitative game and also of a one-person

generalized game, (ii) to provide a generalization of the GNKD lemma by weakening the convexity

assumption on the excess demand correspondence, (iii) to provide a further generalization of the

GNKD lemma by weakening the continuity assumption on the excess demand correspondence in

a way that combines the majorization and inclusion assumptions that are used in the literature,

and finally (iv) to provide a further generalization by taking argumentation to infinite-dimensional

spaces.

Our first contribution can be viewed as a synthesis of the two approaches to existence theory

in the sense that the GNKD lemma can itself be interpreted from the viewpoint of the simultaneous

optimization approach as follows: there are two agents, one auxiliary market player (auctioneer)

choosing the price to maximize the value of the excess demand and the other is a kind of “represen-

tative” consumer who chooses an excess demand vector at a given price profile. The consumer can be

thought of as already best responding, and the equilibrium of this resulting game yields the conclu-

sion of the lemma; see Reny (2016) for a detailed consideration.11 In an alternative formulation one

can interpret the lemma as a one-player generalized game, as for example, in Borglin and Keiding

(1976, Corollary 2) which explicitly presents a result for a single agent generalized game. The agent’s

preference correspondence corresponds to the market player’s preferences and the constrained cor-

respondence corresponds to the excess demand correspondence. As above, the equilibrium of this

9The authors continue, “[t]he equilibrium concepts discussed in this book are essentially static in character. Once
the economy is in equilibrium, then we gave good reasons as to why it should remain there. We have never said how
an economy might get there.” For an especially egregious example of the confusion between existence and stability
of equilibrium, see Benetti, Nadal, and Salas (2004). At best, these authors can be seen as subscribing to a higher
standard whereby a proof of a claim is to be informed by the substance of the claim. In the opinion of the authors,
this represents a confusion of categories. It is to ask, for example, that any proof of Pythagoras’ theorem exhibit some
sort of right-angledness or perpendicularity in the execution of its proof, and little is accomplished by tying oneself
and one’s proofs with this siren-song.

10For the Gale-Scarf counterexamples, see Gale (1963) and Scarf (1960). For the Sonnenschein-Mantel-Debreu
theorems, see Debreu (1974) and his references. For Arrow’s later views on this work on adjustment processes
stemming from Walrasian tâttonnement, see Dubra (2005).

11It should perhaps be noted here that Florenzano (2009) looks on the proof of the GNKD lemma presented in
Debreu (1959) as already an “interesting mixture of both excess demand and simultaneous optimization approaches;”
also see Florenzano (1987, 1991) and Florenzano and Moreno (2001).
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game yields the conclusion of the lemma. It should be borne in mind that the construction of the

qualitative game we mention above is different from the one that transforms a generalized game into

a qualitative game.12

Our second contribution concerns the weakening of the convexity assumption in the classical

setting of the lemma. The basic issue is ably laid out in Sonnenschein (1975): after dispelling

potential and possible surprise at a paper on Walrasian general equilibrium theory “in a session

devoted to “new developments”, a subject that has has been well worked during the past twenty-

five years,” he takes Mas-Colell’s breakthrough of 1974 as his point of departure, and introduces a

diagram (reproduced as Figure 1 below) that tells all that needs to be told.13 Non-ordered preferences

yield non-convex-valued excess demand even when the preferences are strictly convex.

Figure 1: Figure 1 from Sonnenschein (1975)

12The subtext of this entire paragraph is the underpinning of the GKND lemma by non-cooperative game-theoretic
arguments. As such, we ignore a large literature (pioneered by Hurwicz-Schmeidler on the one hand, and Shapley-
Shubik on the other) that investigates Cournot-Bertrand game-theoretic underpinnings of Walrasian theory itself,
and that goes much beyond the 1952-1954 remarks of Arrow-Debreu; see Hervés-Beloso and Moreno (2009b,a) for
references both to the pioneering papers and to subsequent work. Also, the 2-person viewpoint on Walrasian theory
articulated in Hervés-Beloso-Moreno concerns a “society game” in which one player pursues Paretian efficiency, and
the other a version of “impartial and fair behavior” in the sense of Aubin.

13Sonnenschein (1975) was presented at the Third World Congress of the Econometric Society in August and
published as Sonnenschein (1977) with a professionally-drawn figure, but with minimal changes. We reproduce the
original figure in his own handwriting. Sonnenschein (1977) reports three results: two theorems, the first of which he
attributes to Mas-Colell (1974), and the second to Arrow-Hahn-Starett; and a lemma which he attributes to “Debreu
(1952) modified by Shafer and Sonnenschein (1975a).” It is the lemma that dovetails into the narrative laid out above;
see Footnote 4 above. The paper presents a construction whereby an equilibrium of an economy without externalities
but with non-ordered convex preferences is deduced from a corresponding result for an economy with externalities
but with standard utility-representable preferences. The historians of the profession have surely registered the fact
that we sight this paper twenty five years after it itself was written, as a neglected contribution of Sonnenschein’s,
perhaps as a result of several papers on the subject that he was involved in at the time [see Shafer and Sonnenschein
(1975a,b, 1976)].
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Leave alone convexity, Sonnenschein’s Figure 1 shows that the excess demand correspondence may

not even have connected values. He writes:

As a result the aggregate excess demand function may have values which are not connected

sets (and in fact it may not admit a selection which is both upper hemicontinuous and convex

valued). Thus proofs of the existence of equilibrium which apply the Kakutani fixed point

theorem to a modification of the aggregate excess demand function are likely to fail.

In hindsight, one can see these sentences as generating the distinction emphasized in Debreu (1982)

as to the “simultaneous optimization” and “excess demand” approaches. But the point is that the

latter does not fail, and the contribution of the work reported here brings out the sense in which it

does not do so. To be sure there have been attempts already in Shafer and Sonnenschein (1975a) and

Scapparone (2015) to relax the convexity assumption of preferences, but no one to our knowledge

has considered the non-convexity of the excess demand correspondence.14 The reason for our success

relative to previous attempts is two-fold: (i) first, our reliance on what we have termed in ongoing

work as a majorization inclusion property (MIP), and making it a lynchpin for the existence theory,

and (ii) secondly, on a reliance of a reductio rather than a direct argument.15 Given the identification

of the MIP as a fundamental property, .16 We leave this as an open question. In this connection, see

an example of an economy portrayed in Figure 2 below that this fully amenable to an application

of our results.

Our third contribution concerns the weakening of the continuity assumption.17 The technical

aspects of our contribution can be highlighted through a further consideration of a hybrid continuity

assumption that we term the majorization-inclusion property for an excess demand correspondence.

This property allows a correspondence to be locally majorized by a “nice” correspondence at a

point, or to have a local “nice” selection at some other point.18 Hence, our continuity assumption

weakens the majorization and inclusion-type continuity assumptions in that we allow for either local

majorization or local continuous inclusion. Although continuous inclusion assumptions have been

employed in the proof of the GNKD lemma, the majorization approach has to the best of our

14In the context of Scapparone (2015), it is worth pointing out in his interesting paper he keeps repeating that
convex-valuedness and upper hemicontinuity of excess demands are indispensable, but as we show, they are not; also
see Footnote 17 below.

15We elaborate on the MIP in the paragraphs belows. A first draft of ongoing work is circulated as
Khan, McLean, and Uyanik (2023).

16See the paragraph below for a further discussion of the MIP.
17Scapparone (2015) writes: “A natural extension of [his] previous result would be the specification of properties

of the preference relation which imply the existence of an upper hemi-continuous and convex-valued demand sub-
correspondence.” By a sub-correspondence, he means a selection, and as such makes contact with the sentence of
Sonnenschein cited above.

18This type of continuity assumption is introduced in the context of generalized quasi-variational relation problems
and constrained generalized games in ongoing work of the authors.
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knowledge, not been used to generalize the GNKD lemma.19

Our fourth and final contribution can be simply put. It is that the generalizations of the

antecedent literature that do not require a limitation to finite-dimensional commodity spaces. In

this connection, we note that there is an alternative proof approach of the GNKD in the literature

that uses both fixed point and separating hyperplane theorems. We also illustrate that this approach

can be routinely used to provide a different proof of our generalizations.20

We now conclude this introduction by a cursory look at the antecedent literature in economics

as well as in applied mathematics. The initial, now classical, papers of GNKD listed in the first

paragraph of this introduction limited themselves to a finite-dimensional Euclidean space. There has

been substantial work on generalizations to an infinite-dimensional space, a line of work that in the

judgement of the authors has not yet found its final expression.21 Beyond infinite-dimensionality,

we note that the very formulation of the inward-pointing (Walras law) assumption, as well as the

assumption of “free disposal” implicit in the use of the negative orthant in the conclusion of the

lemma have been weakened.22 Cornet and Florenzano work with larger price simplices, but we work

with the unit simplex for expositional clarity. Finally, the GNKD Lemma has been used beyond the

existence of equilibrium as a tool to prove results in other areas.23 However, the thrust of our work

is on weakening the continuity hypotheses of the GNKD, and it is important to note the McCabe-

Yannelis mapping which necessitates the use of the separating hyperplane theorem in addition to a

fixed point theorem.

2 Preliminaries

Assume X, Y are two topological spaces and Q : X ↠ Y is a correspondence. Let domQ denote the

set {x ∈ X|Q(x) ̸= ∅}, clQ denote the correspondence with values cl(Q(x)) where cl(Q(x)) denotes

the closure of Q(x), intQ denote the correspondence with values int(Q(x)) where int(Q(x)) denotes

the interior of Q(x). If Y is a vector space, let coQ denote the correspondence with values co(Q(x))

where co(Q(x)) denotes the convex hull of Q(x). Throughout the paper, we will use the abbreviation

TVS for a topological vector space and use LCTVS for a TVS that is locally convex. Furthermore,

we assume that every TVS is Hausdorff.

19See, for example, He and Yannelis (2017), Cornet (2020) and Khan and Uyanik (2021).
20See McCabe (1981), Geistdoerfer-Florenzano (1982), Florenzano (1983), Yannelis (1985), Mehta and Tarafdar

(1987) and He and Yannelis (2017) for this alternative approach in finite and infinite dimensional settings.
21See for example, Florenzano (1983), Yannelis (1985), Mehta and Tarafdar (1987), Tan and Yu (1994), Kubota

(2007), Park (2010), He and Yannelis (2017), Khan and Uyanik (2021).
22See, for example, Debreu (1956), Cornet (1975), Neuefeind (1980), Grandmont (1977), McCabe (1981),

Geistdoerfer-Florenzano (1982), Florenzano and Le Van (1986), Florenzano (2009, 2013), Maskin and Roberts (2008)
Musatov, Savvateev, and Weber (2016).

23See for example, Le, Le Van, Pham, and Saglam (2022), Gourdel, Le Van, Pham, and Viet (2023),
Nikaidô and Uzawa (1960); Debreu (1962); Nishimura (1978); Bidard and Hosoda (1987).
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Next, we define topological properties of a correspondence.

Definition 1. Let X, Y be two topological spaces and Q : X → Y be a correspondence.

(a) Q is upper hemi-continuous (UHC) at x ∈ X if for all open set V ⊆ Y with Q(x) ⊆ V,

there exists an open set U ⊆ X with x ∈ U such that Q(x′) ⊆ V for all x′ ∈ U. Q is upper

hemi-continuous if Q is upper hemi-continuous at each x ∈ X.

(b) If Y is a topological vector space, then Q is co-closed if coQ has a closed graph.

(c) If Y is a topological vector space, then Q is KF -majorized (L-majorized) (U-majorized)

at x ∈ X if there exists an open neighborhood Ux of x and a correspondence F x : Ux ↠ Y

with open graph (open fibers) (closed graph) and convex values such that for all x′ ∈ Ux,

P (x′) ⊆ F x(x′) and x′ /∈ F x(x′). We say that Q is KF -majorized (L-majorized) (U-
majorized) if Q is KF -majorized (L-majorized) (U -majorized) at every x ∈ domQ.

(d) If Y is a topological vector space, then Q has the continuous inclusion property (CIP)

at x ∈ X if there exists an open set U(x) containing x and a non-empty valued co-closed

correspondence F : U(x) → X such that F (z) ⊆ Q(x′) for every z ∈ U(x). We say that Q has

the CIP if Q has the continuous inclusion property at every x ∈ domQ.

By Aliprantis and Border (2006, Theorem 2.16), in a topological space, a point is a limit point

of a net if and only if it is the limit of some subnet.

3 The Classical GNKD Lemma: Alternative Proofs

In this section, we present two new proofs of the classical GNKD lemma by representing the problem

as a generalized game or a qualitative game whose equilibrium yields the conclusion of the GNKD

lemma.

Let ∆ = {p ∈ Rℓ|pi ≥ 0,
∑ℓ

i=1 pi = 1} and ψ : ∆ ↠ Rℓ be a correspondence and −Ω =

{x ∈ Rℓ|xi ≤ 0 for all i = 1, . . . , ℓ}. Define Eψ = {p ∈ ∆|ψ(p) ∩ −Ω ̸= ∅}, hence Ec
ψ = {p ∈

∆|ψ(p) ∩ −Ω = ∅}. Let G : ∆ ↠ Rℓ and Z : ∆ ↠ Rℓ be defined as G(p) = {z ∈ Rℓ|p · z ≤ 0} and

Z(p) = ψ(p) ∩G(p).

Theorem 1. Suppose ψ is UHC and has non-empty, convex and compact values such that for all

p ∈ ∆, there exists z ∈ ψ(p) such that p · z ≤ 0. Then, there exists p̄ ∈ ∆ such that ψ(p̄)∩−Ω ̸= ∅.

Next, we show that the GNKD Lemma can be proved by using a two-person qualitative game.

Proof of Theorem 1 by using Qualitive Games. Step 1. Since ψ is UHC and has compact values,

there exists a compact set D ⊆ Rℓ such that ψ(q) ⊆ D for all q ∈ ∆ (Aliprantis and Border, 2006,

Lemma 17.8). WLOG we can assume D is convex. Since D is compact and Hausdorff, and ψ is UHC
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and has closed values, therefore ψ has a closed graph. Note that G has a closed graph. Therefore,

by Aliprantis and Border (2006, Theorem 17.25), the correspondence Z = G∩ψ has a closed graph.

For all p ∈ ∆, there exists z ∈ ψ(p) such that p · z ≤ 0, hence Z(p) = G(p) ∩ ψ(p) ̸= ∅. For all

p ∈ ∆, since ψ(p) ⊆ D, Z(p) ⊆ D. Note that ψ and G have convex values. Therefore, Z has a

closed graph and non-empty, convex values.

Step 2. Define a two-person qualitative game Γ = (Xi, Qi)
2
i=1 as follows:

(a) X1 = ∆ and X2 = D,

(b) Q1 : ∆×D ↠ ∆ is defined as Q1(p, z) = {q ∈ ∆|q · z > p · z},

(c) Q2 : ∆×D ↠ D is defined as Q2(p, z) = ∅ if z ∈ Z(p) and Q2(p, z) = Z(p) if z /∈ Z(p).

By construction, Q1 and Q2 have convex values, and for all (p, z) ∈ ∆ × D, p /∈ Q1(p, z) and

z /∈ Q2(p, z).

Pick (p, z) ∈ ∆ × D such that Qi(p, z) ̸= ∅ for some i = 1, 2. If Q1(p, z) ̸= ∅, then since

Q1 has an open graph, there exists an open neighborhood U1(p, z) of (p, z) and q ∈ ∆ such that

q ∈ Q1(p
′, z′) for all (p′, z′) ∈ U1(p, z).

If Q2(p, z) ̸= ∅, then z /∈ Z(p). Since Z has a closed graph, there exists an open neighborhood

U2(p, z) of (p, z) such that x′ /∈ Z(p′) for all (p′, z′) ∈ U2(p, z). Therefore, Z(p′) ⊆ Q2(p
′, z′) for all

(p′, z′) ∈ U2(p, z). Since any singleton set is closed in a Hausdorff space and Z has a closed graph

and convex values, Γ satisfies the assumptions of Theorem 1 in Khan, McLean, and Uyanik (2024b),

hence it has an equilibrium.

Step 3. Let (p̄, z̄) ∈ ∆ × D be an equilibrium of Γ. Then Qi(p̄, z̄) = ∅ for all i = 1, 2. Since,

Q2(p̄, z̄) = ∅, z̄ ∈ Z(p̄). Then Z(p̄) ⊆ G(p̄) implies that p̄ · z̄ ≤ 0. It follows from Q1(p̄, z̄) = ∅ that

q · z̄ ≤ p̄ · z̄ for all q ∈ ∆. Combining these two inequalities, for all q ∈ ∆, q · z̄ ≤ 0. This implies

that z̄ ≤ 0. (Otherwise, if z̄i > 0 for some i, then for q ∈ ∆ with qi = 1, q · z̄ > 0.)

Remark 1. Our construction of the qualitative game is motivated by but different from other

constructions in the literature. The construction has the following interpretation: player 2 is best

responding (excess demand is the best response correspondence) and player 1 has a nice preference

relation, possibly discontinuous. This type of games is studied in Reny (2016).

Next, we provide an alternative proof of Theorem 1 that uses a formulation in terms of single

player generalized game.

An Alternative Proof of Theorem 1. Step 1. Using exactly the same argument as that of the previous

proof, we conclude that there exists a compact, convex nonempty set D ⊆ Rℓ such that ψ(q) ⊆ D

for all q ∈ ∆. Defining Z(p) = G(p) ∩ ψ(p), it follows that Z : ∆ ↠ D has a closed graph and

non-empty, convex values.
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Step 2. Define a correspondence Q : ∆ × D ↠ ∆ as Q(p, z) = {q ∈ ∆|q · z > p · z}. Next, define
correspondences Q̂ : ∆ × D ↠ ∆ × D and A : ∆ × D ↠ ∆ × D where P (p, z) = Q(p, z) × D

and A : ∆ × D ↠ ∆ × D is defined as A(p, z) = ∆ × Z(p). We must show that the single player

generalized game Γ = (X,P,A) where X = ∆×D,A is the player’s preference correspondence, and

A is the player’s action correspondence has an equilibrium. That that, we must show that there

exists (p̄, z̄) ∈ ∆×D such that (p̄, z̄) ∈ A(p̄, z̄) and P (p̄, z̄) = ∅.
Note that P (p, z) ∩ A(p, z) = Q(p, z) × Z(p) for each (p, z) ∈ ∆ × D. Since Z is a co-closed

correspondence, it satisfies CIP. Since Q has an open graph and convex values, and D is Hausdorff,

Q satisfies LIP and hence CIP. Therefore, by He and Yannelis (2017, Proposition 1(4)), Q× Z has

the CIP. By Theorem 2 in Khan, McLean, and Uyanik (2024b), Γ has an equilibrium.

Step 3. Let (p̄, z̄) ∈ ∆ × D be an equilibrium of Γ. Therefore (p̄, z̄) ∈ A(p̄, z̄) and P (p̄, z̄) = ∅.

Hence, z̄ ∈ Z(p̄) and Q(p̄, z̄) = ∅ since P (p̄, z̄) = Q(p̄, z̄) ×D and D is non-empty. It follows from

z̄ ∈ Z(p̄) ⊆ G(p̄) that p̄ · z̄ ≤ 0, and from Q(p̄, z̄) = ∅ that q · z̄ ≤ p̄ · z̄ for all q ∈ ∆. Combining

these two inequalities, for all q ∈ ∆, q · z̄ ≤ 0. This implies that z̄ ≤ 0.

Remark 2. The proofs we presented above derive the result of the GNKD lemma by transforming

the problem into a qualitative game or a generalized game. An equilibrium of the derived qualita-

tive/generalized game yields the result of the GNKD lemma directly. Therefore, we provide two new

proofs of the GNKD lemma by using qualitative/generalized games.

Note that there are two main approaches in Walrasian equilibrium theory, one uses the GNKD

lemma as the main technical tool (excess demand approach) and the other uses generalized games as

the main technical tool (simultaneous optimization approach). Our new proofs provide a different

connection between these two approaches.

4 The GNKD Lemma: Nonconvex-valued and Discontinuous Demand

Discontinuity in the preferences of the agents yields discontinuity in excess demand correspondence.

Even if preferences are convex and continuous but non-transitive, the excess demand correspondence

need not have convex values; see for example Sonnenschein (1977) for a discussion.24

In this section, we provide a generalization of the GNKD lemma by weakening the convexity

and continuity assumptions on the excess demand correspondence. Our weakening of continuity

is based on the majorization and inclusion concepts. To the best of our knowledge, majorization

approach has not been used in the context of the GNKD lemma.25

24On this, see also Shafer (1974). Bergstrom, Parks, and Rader (1976) and Ghosh, Khan, and Uyanik (2023).
25Versions of the inclusion approach is used in He and Yannelis (2017) and Cornet (2020) to generalize the GNKD

lemma.
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We begin by introducing versions of majorization concepts for abstract correspondences in the

context of an excess demand correspondence. The definitions below are related to GNKD lemma,

the original versions are related to maximal elements (irreflexivity was assumed).

Definition 2. Let ψ,Z : ∆ ↠ Rℓ be correspondences defined as above. Then ψ is

(a) U-majorized at p ∈ ∆ if there exist an open set U(p) containing p and a correspondence

F p : U(p) → Rℓ with convex values such that F p is UHC with compact values and for all

q ∈ U(p) ∩ Ec
ψ, Z(q) ⊆ F p(q) and F p(q) ∩ −Ω = ∅.

(b) KF -majorized at p ∈ ∆ if there exist an open set U(p) containing p and a correspondence

F p : U(p) → Rℓ with convex values such that F p has open sections and for all q ∈ U(p) ∩ Ec
ψ,

Z(q) ⊆ F p(q) and F p(q) ∩ −Ω = ∅.

Moreover, ψ is U-majorized if it is U -majorized at all p ∈ Ec
ψ, and it is KF -majorized if it is

KF -majorized at all p ∈ Ec
ψ.

In this definition, the assumption ψ(q) ⊆ F p(q) implies Z(q) ⊆ F p(q). Hence, imposing majorization

on the excess demand correspondence is stronger than the assumption above.26 Moreover, in the

literature there is another common majorization concept, L-majorization, that replaces open sections

with open fibers in the definiton of KF -majorization. See the discussion section for versions of the

results in this section by using this majorization concept.

Proposition 1. Let ψ : ∆ ↠ Rℓ be a correspondence with compact values as defined above. Then ψ

is UHC at p implies it is U-majorized at p, which implies it is KF -majorized at p.

By definition, an UHC correspondence with compact values U -majorizes itself, hence U -majorization

is weaker than UHC. The proof that ψ is U -majorized at p implies it isKF -majorized at p is provided

in Appendix.

Next, we define an inclusion property for excess demand correspondence following

He and Yannelis (2017) and Cornet (2020).

Definition 3. Let ψ,Z : ∆ ↠ Rℓ be correspondences defined as above. Then ψ has theContinuous

Inclusion Property (CIP) at p ∈ ∆ if there exist an open set U(p) containing p and an UHC

correspondence F p : U(p) → Rℓ with compact values, and for all q ∈ U(p) ∩ Ec
ψ, F

p(q) ⊆ Z(q),

F p(q) ̸= ∅, and coZ(q) ∩ −Ω = ∅. Moreover, ψ has the CIP if it has the CIP at all p ∈ Ec
ψ.

Next, we provide a weakening of the continuity assumption on the excess demand correspon-

dence that combines the majorization and inclusion concepts defined above.

26This is not true for CIP. Moreover, whether CIP is imposed on ψ and Z requires weak and strong versions of
Walras’ law, respectively; see Remark 6 for details.
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Definition 4. Let ψ,Z : ∆ ↠ Rℓ be correspondences defined as above. Then ψ satisfies the

Majorization-Inclusion Property (MIP) at p ∈ ∆ if there exist an open set U(p) containing p

and a correspondence F p : U(p) → Rℓ such that at least one of the following holds:

(a) F p has open values and open lower sections, and for all q ∈ U(p) ∩ Ec
ψ, Z(q) ⊆ coF p(q) and

coF p(q) ∩ −Ω = ∅.

(b) F p is UHC with compact values and for all q ∈ U(p) ∩ Ec
ψ, F

p(q) ̸= ∅, F p(q) ⊆ Z(q), and

coZ(q) ∩ −Ω = ∅.

Moreover, ψ satisfies the MIP if it has the MIP at each p ∈ Ec
ψ.

Part (a) imposes a majorization property on the excess demand correspondence. Part (b) is a version

of CIP. It is usually stated by using co-closed local selections; see for example He and Yannelis (2017);

Khan, McLean, and Uyanik (2024b). The version with UHC (with compact values of the selection,

or the original correspondence) is used in Cornet (2020) and Podczeck and Yannelis (2022). Note

that when the range is compact, the two definitions overlap. It is clear that each of part (a) and

part (b) is weaker than the continuity assumption used in Theorem 1.

We need the following lemma in the proofs Theorems 2 and 4. We provide its proof in the

Appendix. It assumes that the local majorizing correspondences have open fibers and the local

inclusion correspondences are UHC, and derives a well-behaved global UHC correspondence.

Lemma 1. Consider two correspondences Q, T : X → Y where X is a non-empty and compact

subset of a topological space and Y is a non-empty and convex subset of a LCTVS. Suppose Q has

non-empty values and T has open sections with convex values such that Q(x) ⊆ clT (x) for all x ∈ X.

Suppose also that for all x ∈ X, there exists an open set U(x) containing x and a correspondence

F x : U(x) → Y with non-empty values such that at least one of the following holds:

(a) F x has open sections and for each z ∈ U(x), Q(z) ⊆ coF x(z),

(b) coF x is UHC and has non-empty, compact values, and for each z ∈ U(x), F x(z) ⊆ Q(z).

Then there exist finitely many points x1, . . . , xm in X, and an UHC correspondence F : X → Y with

non-empty, convex, compact values such that for all x ∈ X, F (x) ⊆ coQ(x) or co(F (x)∪ coQ(x)) ⊆
coF xk(x) ∩ clT (x) for some xk with x ∈ U(xk).

The following theorem generalizes Theorem 1 by weakening the continuity assumption.

Theorem 2. Suppose ψ has the MIP and non-empty values such that for all p ∈ ∆, there exists

z ∈ ψ(p) such that p · z ≤ 0. Then, there exists p̄ ∈ ∆ such that ψ(p̄) ∩ −Ω ̸= ∅.

Proof of Theorem 2. Step 1. Assume towards a contradiction that ψ(p) ∩ −Ω = ∅ for all p ∈ ∆.

Hence, Ec
ψ = ∆. It follows from the definition of G and the assumption that ψ has non-empty values

that Z has non-empty values.
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Step 2. We show that there exists an UHC correspondence F : ∆ ↠ Rℓ with non-empty, convex,

compact values such that for all p ∈ ∆, F (p) ∩ −Ω = ∅ and F (p) ∩G(p) ̸= ∅. Since Ec
ψ = ∆, and

ψ satisfies MIP, there exists for each p ∈ ∆ an open set U(p) containing p and a correspondence

F p : U(p) → Rℓ such that at least one of the following holds:

(a) F p has open values and open lower sections, and for each q ∈ U(p), Z(q) ⊆ coF p(q) and

coF p(q) ∩ −Ω = ∅.

(b) F p is UHC with compact values and for each q ∈ U(p), F p(q) ̸= ∅, F p(q) ⊆ Z(q), and

coZ(q) ∩ −Ω = ∅.

Note that for part (b), since F p is UHC with compact values, range of F p is finite dimensional,

by Aliprantis and Border (2006, Corollary 5.33 and Theorem 17.35(2)), coF p is UHC with compact

values.

Applying Lemma 1 implies that there exist finitely many points q1, . . . , qm in ∆ and an UHC

correspondence F : ∆ ↠ Rℓ with non-empty, convex, compact values such that for all p ∈ ∆,

F (p) ⊆ coZ(p) or co(F (p) ∪ Z(p)) ⊆ coF qk(p) ∩G(p) for some qk with p ∈ U(qk). Pick p ∈ ∆.

If F (p) ⊆ coZ(p), then F (p) ⊆ coZ(p) ⊆ G(p). Therefore, F (p) ∩ G(p) = F (p) ̸= ∅. By (a)

and (b) above, coZ(p) ∩ −Ω = ∅, hence F (p) ∩ −Ω = ∅.

If co(F (p) ∪ Z(p)) ⊆ coF qk(p) ∩ G(p) for some qk with p ∈ U(qk), then by part (a) above

F qk(p) ∩ −Ω = ∅, hence F (p) ∩ −Ω = ∅. Moreover, F (p) ⊆ coF qk(p) ∩ G(p) implies F (p) ⊆ G(p)

so F (p) ∩G(p) ̸= ∅.

Step 3. By step 2, there exists an UHC correspondence F : ∆ ↠ Rℓ with non-empty, convex,

compact values such that for all p ∈ ∆, F (p)∩−Ω = ∅. Note that −Ω is non-empty, closed, and for

all p ∈ ∆, F (p) ∩ −Ω = ∅ and F (p) is non-empty, compact and convex. By Aliprantis and Border

(2006, Theorem 5.79), for all p ∈ ∆, there exists q ∈ ∆ such that q · F (p) > 0.

Step 4. It follows from step 2 that F is UHC and has non-empty, convex and compact values and

for all p ∈ ∆, F (p)∩G(p) ̸= ∅, hence there exists z ∈ F (p) such that p · z ≤ 0. Therefore, Theorem

1 implies that there there exists p̄ ∈ ∆ and z̄ ∈ F (p̄) such that z̄ ≤ 0. Therefore, q · z̄ ≤ 0 for all

q ∈ ∆. By step 3, there exists q∗ ∈ ∆ such that q∗ · z > 0 for all z ∈ F (p̄). In particular, q∗ · z̄ > 0

and we obtain the desired contradiction.

The following example illustrates how non-convexity is allowed by MIP in Theorem 2.

Example 1. Consider the following two-consumer exchange economy with a bounded (truncated)

consumption set and non-convex preferences as illustrated in Figure 2. Consumer A receives utility

only form commodity 2 for low level of commodity 2, and for sufficiently high level of commodity

2, commodities 1 and 2 are perfect complements. For consumer B, commodities 1 and 2 are per-
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fect complements when amounts of these commodities are sufficiently close, and they are perfect

substitutes when the amounts are distinct.
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Figure 2: An Economy with Non-convex-valued Demand

This economy has a unique equilibrium: (x∗, p∗). It is clear that the excess demand corre-

spondence does not have convex values at p∗ and at p1, though it is UHC. Moreover, the excess

demand correspondence does not satisfy CIP at p1. It satisfy KF -majorization (at all p ̸= p∗, where

p∗ is equilibrium). To see this, for all p ∈ ∆ such that p ̸= p∗, let U(p) = {q ∈ ∆|q ̸= p∗} and

F p(q) = {z ∈ R2|p∗ · z > 0}. Therefore, ψ satisfies KF -majorization, and hence the MIP.

Remark 3. By using the arguments analogous to those in the proof of Theorem 2, part (a) of

Definition 4 can be replaced with a version that imposes an open fibers assumption. Hence, we can

obtain a generalization of the classical GNKD lemma by using a version of the hybrid continuity

concept MIP that is based on CIP and L-majorization.

Remark 4. The proof we presented above uses the classical result directly in step 4. As we show

below, we can alternatively derive the result of the GNKD lemma by transforming the auxiliary

problem into a generalized game in step 4. (Similarly, we can use the qualitative game transformation

as above instead of a generalized game.) Note that, unlike the alternative proofs of the classical

results, this is a proof by contradiction.
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Alternative step 4 in the proof above by using a generalized game. Since F is UHC and has compact

values, there exists a compact set D ⊆ Rℓ such that F (q) ⊆ D for all q ∈ ∆ (Aliprantis and Border,

2006, Lemma 17.8). WLOG, we can assume D is convex. Since D is compact and Hausdorff, and

F is UHC and has closed values, therefore F has a closed graph.

Define a correspondence Q : ∆×D ↠ ∆ as Q(p, z) = {q ∈ ∆|q · z > p · z}. Let Γ = (X, Q̂, F̂ )

be a one-person generalized game where X = ∆ ×D is the action set, Q̂ : ∆ ×D ↠ ∆ ×D is the

preference correspondence defined as Q̂(p, z) = Q(p, z) ×D and F̂ : ∆ ×D ↠ ∆ ×D is defined as

F̂ (p, z) = ∆× F (p).

Note that Q̂ ∩ F̂ = Q× F . By step 2, F is a co-closed correspondence, hence it satisfies CIP.

Since Q has an open graph and convex values, and D is Hausdorff, it satisfies LIP and hence CIP.

Therefore, by He and Yannelis (2017, Proposition 1(4)), Q× F has the CIP. Then by Theorem 2 in

Khan, McLean, and Uyanik (2024b), Γ has an equilibrium (p̄, z̄) ∈ ∆×D, hence (p̄, z̄) ∈ F̂ (p̄, z̄) and

Q̂(p̄, z̄) = ∅. Therefore z̄ ∈ F (p̄) and Q(p̄, z̄) = ∅ since Q̂(p̄, z̄) = Q(p̄, z̄)×D and D is non-empty.

It follows from z̄ ∈ F (p̄) ⊆ G(p̄) that p̄ · z̄ ≤ 0, and from Q(p̄, z̄) = ∅ that q · z̄ ≤ p̄ · z̄ for all

q ∈ ∆. Combining these two inequalities, for all q ∈ ∆, q · z̄ ≤ 0. By step 3, there exists q ∈ ∆ such

that for all z ∈ F (p̄), q · z > 0, hence q · z̄ > 0. This yields a contradiction.

Remark 5. It is possible to use the proof-construction in (Debreu, 1959, pp. 82 and 83) in step 4

above. In this construction, instead of deriving a generalized game, we use the following mapping.

Let µ : D ↠ ∆ be a correspondence defined as µ(z) = argmaxp∈∆p · z, and H : ∆ × D ↠ ∆ be

a correspondence defined as H(p, z) = µ(z) × F (p). It is not difficult to show that H is an UHC

correspondence with non-empty and convex values and hence by applying Kakutani’s fixed point

theorem, it has a fixed point. Analogous to the arguments in step 4 above, the fixed points of H

yield a contradiction with the properties of F provided in step 3. A version of this method is used

in the proof of He and Yannelis (2017, Theorem 4), instead of using the selection F , they use the

correspondence itself in the construction.

Remark 6. The classical version of the GNKD lemma assumes a strong version of the Walras’ law:

for all p ∈ ∆, p · ψ(p) ≤ 0. The antecedent literature weakens this assumption by the weak Walras’

law: for all p ∈ ∆, there exists z ∈ ψ(p) such that p · z ≤ 0. Following this literature, Theorem 2

uses the weak Walras’ law. Note that if the excess demand correspondence is UHC or it satisfies the

majorization part of the MIP (part a) at all points, then weak Walras’ law is enough. The method

of proof does not work when inclusion property holds at some point. As in He and Yannelis (2017),

we impose the inclusion property on Z = ψ ∩ G where G(p) = {z ∈ Rℓ : p · z ≤ 0} for all p ∈ ∆.

Note that this assumption is weaker than ψ satisfying CIP and the strong version of Walras’ law

as the latter implies ψ(p) ⊆ G(p), hence Z(p) = ψ(p) for all p ∈ ∆. Finally, there is also another

method to use the weak version of Walras’ law in a finite-dimensional commodity space: first, prove
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the GNKD lemma by using the strong version of the Walras’ law, and second, use an approximation

technique to weaken Walras’ law; see Cornet (2020) for details of this method.27

Next, in addition to the proofs given above and mentioned in Remark 4, we provide an alterna-

tive proof of Theorem 2 that uses a construction introduced by McCabe (1981) that has been widely

used.28 It requires a modification only in Step 4 as the other proofs we mention in the remarks

above.

An Alternative Proof of Theorem 2. Repeating steps 1, 2, and 3 of the proof above implies that

there exists a correspondence F : ∆ ↠ Rℓ satisfying the following assumptions: F is UHC, has

non-empty and convex values, and for all p ∈ ∆, there exists q ∈ ∆ such that q · F (p) > 0 and

F (p) ∩G(p) ̸= ∅.
Next, define a correspondence Ψ : ∆ ↠ ∆ as Ψ(p) = {q ∈ ∆ : q · F (p) > 0}. By construction

of F , Ψ has nonempty values. It follows from McCabe (1981, Lemma) that Ψ has a continuous

selection, hence there exists a continuous function f : ∆ → ∆ such that f(q) ∈ Ψ(q) for all q ∈ ∆.

Since ∆ is non-empty, compact and convex, Brouwer’s theorem implies that there exists p̄ ∈ ∆

such that p̄ = f(p̄) ∈ Ψ(p̄). Therefore, p̄ · F (p̄) > 0, that is, for all z ∈ F (p̄), p̄ · z > 0. Since

F (p̄) ∩G(p̄) ̸= ∅, there exists z ∈ F (p̄) such that p̄ · z ≤ 0. This yields a contradiction.

Remark 7. Instead of the MIP above, we can use a weakening of it that uses the domain of the

correspondence. These will allow us to cover the continuity concepts provided in Prokopovych (2013,

2016).

5 The GNKD Lemma: Infinite Dimension

Let X be a LCTVS with topological dual X∗, C a closed convex cone in X having an interior point e,

C∗ = {p ∈ X∗| p(x) ≤ 0 for all x ∈ C} ≠ {a} be the dual cone of C, and ∆ = {p ∈ C∗| p(e) = −1}.
Let ψ : ∆ ↠ X be a correspondence. Define Eψ = {p ∈ ∆| ψ(p) ∩ C ̸= ∅}, hence Ec

ψ = {p ∈
∆| ψ(p) ∩ C = ∅}. Let G : ∆ ↠ X and Z : ∆ ↠ X be defined as G(p) = {z ∈ X| p(z) ≤ 0} and

Z(p) = ψ(p) ∩G(p).

First, we provide an alternative proof of the infinite-dimensional version of the GNKD lemma

by using qualitative games.

Theorem 3. Suppose ψ is UHC, and has non-empty, convex and compact values such that for all

p ∈ ∆, there exists z ∈ ψ(p) such that p(z) ≤ 0. Then, there exists p̄ ∈ ∆ such that ψ(p̄) ∩ C ̸= ∅.
27See Cornet (2020) and Podczeck (1997, Footnote 5) for a discussion and the use of the weak version of Walras’

law, especially in infinite dimensional spaces.
28See for example Geistdoerfer-Florenzano (1982), Yannelis (1985), Mehta and Tarafdar (1987) and He and Yannelis

(2017). The traces of this proof method can be found in Browder (1968) in the context of variational inequalities.
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We provide a proof of this theorem that uses a formulation in terms of a two player qualitative

game.

Proof of Theorem 3. Step 1. Since ∆ is compact in (w∗-topology), and ψ is UHC and has compact

values, there exists a compact set D ⊆ X such that ψ(q) ⊆ D for all q ∈ ∆ (Aliprantis and Border,

2006, Lemma 17.8). Since D is compact and Hausdorff, and ψ is UHC with closed values, it follows

that ψ has a closed graph. Note that G has a closed graph. Therefore, by Aliprantis and Border

(2006, Theorem 17.25), the correspondence Z = G ∩ ψ has a closed graph. For all p ∈ ∆, there

exists z ∈ ψ(p) such that p(z) ≤ 0, hence Z(p) = G(p) ∩ ψ(p) ̸= ∅. For all p ∈ ∆, since ψ(p) ⊆ D,

Z(p) ⊆ D. Note that ψ and G have convex values. Therefore, Z has a closed graph and non-empty,

convex values.

Step 2. Define a two-person qualitative game Γ = (Ai, Qi)
2
i=1 as follows:

(a) A1 = ∆ and A2 = X,

(b) Q1 : ∆×X ↠ ∆ is defined as Q1(p, z) = {q ∈ ∆|q(z) > p(z)},

(c) Q2 : ∆×X ↠ D is defined as Q2(p, z) = ∅ if z ∈ Z(p) and Q2(p, z) = Z(p) if z /∈ Z(p).

By construction, Q1 and Q2 have convex values, and for all (p, z) ∈ ∆ × X, p /∈ Q1(p, z) and

z /∈ Q2(p, z).

Pick (p, z) ∈ ∆×X such that Qi(p, z) ̸= ∅ for some i = 1, 2. If Q1(p, z) ̸= ∅, then Q1 has an

open graph implies that there exists an open neighborhood U1(p, z) of (p, z) and q ∈ ∆ such that

q ∈ Q1(p
′, z′) for all (p′, z′) ∈ U1(p, z).

If Q2(p, z) ̸= ∅, then z /∈ Z(p). Since Z has a closed graph, there exists an open neighborhood

U2(p, z) of (p, z) such that x′ /∈ Z(p′) for all (p′, z′) ∈ U2(p, z). Therefore, Z(p′) ⊆ Q2(p
′, z′) for all

(p′, z′) ∈ U2(p, z). Since any singleton set is closed in a Hausdorff space and Z has a closed graph

and convex values, Γ satisfies the assumptions of Theorem 5 in Khan, McLean, and Uyanik (2024b),

hence it has an equilibrium.

Step 3. Let (p̄, z̄) ∈ ∆ × X be an equilibrium of Γ. Then Qi(p̄, z̄) = ∅ for all i = 1, 2. Since,

Q2(p̄, z̄) = ∅, z̄ ∈ Z(p̄). Then Z(p̄) ⊆ G(p̄) implies that p̄(z̄) ≤ 0. It follows from Q1(p̄, z̄) = ∅ that

q(z̄) ≤ p̄(z̄) for all q ∈ ∆. Combining these two inequalities, for all q ∈ ∆, q(z̄) ≤ 0.

It remains to show that z̄ ∈ C. Assume towards a contradiction that z̄ /∈ C. Note that

C is non-empty, closed, by Aliprantis and Border (2006, Corollary 5.80), there exists a nonzero

continuous linear functional strongly separating C and z̄. That is, there exist q̂ ∈ X∗, q̂ ̸= 0, and

b ∈ R such that sup
z∈C

q̂(z) < b < q̂(z̄). Since 0 ∈ C, b > 0. Since C is a cone, q̂ ∈ C∗. Without loss of

generality, we can assume q̂ ∈ ∆. (To see this, since e ∈ intC and q̂ ∈ C∗ we have q̂(e) < 0 and may

define q̃ = −q̂/q̂(e) ∈ ∆ with the same separation property above.) Since q(z̄) ≤ 0 for all q ∈ ∆,

therefore q̂(z̄) > 0 yields a contradiction. Hence, z̄ ∈ C.
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Remark 8. Alternative proofs based on a generalized game, or a mapping used by McCabe (1981),

Geistdoerfer-Florenzano (1982), Yannelis (1985), and Mehta and Tarafdar (1987) can be provided

analogous to the finite-dimensional version of the GNKD lemma.

Next, we introduced the MIP for infinite dimensional spaces that allows a weakening of the

continuity and convexity assumptions in the GNKD lemma.

Definition 5. Let ∆, X, C be sets and ψ,Z : ∆ ↠ X be correspondences defined as above. ψ

satisfies the Majorization-Inclusion Property (MIP) if for all p ∈ Ec
ψ there exist an open set

U(p) containing p and a correspondence F p : U(p) → X such that at least one of the following holds:

(a) F p has open values and open lower sections, and for all q ∈ U(p)∩Ec
ψ, Z(q) ⊆ coF p(q) ⊆ G(q)

and coF p(q) ∩ C = ∅,

(b) coF p is UHC with compact values and for all q ∈ U(p) ∩ Ec
ψ, F

p(q) ̸= ∅, F p(q) ⊆ Z(q), and

coZ(q) ∩ C = ∅

Theorem 4. Suppose ψ has the MIP and non-empty values such that for all p ∈ ∆, there exists

z ∈ ψ(p) such that p(z) ≤ 0. Then, there exists p̄ ∈ ∆ such that ψ(p̄) ∩ C ̸= ∅.

Proof of Theorem 4. Step 1. Assume towards a contradiction that ψ(p) ∩ C = ∅ for all p ∈ ∆.

Hence, Ec
ψ = ∆. It follows from Walras’ law and ψ has non-empty values that Z has non-empty

values. Since Ec
ψ = ∆, for all p ∈ ∆, Z(p) ⊆ ψ(p) implies that Z(p) ∩ C = ∅.

Step 2. We show that there exists an UHC correspondence F : ∆ ↠ X with non-empty, convex,

compact values such that for all p ∈ ∆, F (p) ∩ C = ∅ and F (p) ∩ G(p) ̸= ∅. Setting ∆ = X,

X = Y , Z = Q and intG = T in Lemma 1 implies that there exist finitely many points q1, . . . , qm in

∆ and an UHC correspondence F : ∆ ↠ X with non-empty, convex, compact values such that for all

p ∈ ∆, F (p) ⊆ coZ(p) or co(F (p)∪Z(p)) ⊆ coF qk(p)∩G(p) for some qk with p ∈ U(qk). Pick p ∈ ∆.

If F (p) ⊆ coZ(p), then F (p) ⊆ coZ(p) ⊆ G(p). Therefore, F (p) ∩ G(p) = F (p) ̸= ∅. By parts (a)

and (b) of Definition 5, coZ(p)∩C = ∅, hence F (p)∩C = ∅. If co(F (p)∪Z(p)) ⊆ coF qk(p)∩G(p)
for some qk with p ∈ U(qk), then by part (a) of Definition 5, F qk(p) ∩ C = ∅, hence F (p) ∩ C = ∅.

Moreover, F (p) ⊆ coF qk(p) ∩G(p) implies F (p) ⊆ G(p).

Step 3. By step 2, there exists an UHC correspondence F : ∆ ↠ X with non-empty, convex,

compact values such that for all p ∈ ∆, F (p) ∩ C = ∅. Note that C is non-empty, closed, and for

all p ∈ ∆, F (p) ∩ C = ∅ and F (p) is non-empty, compact and convex. Therefore, for all p ∈ ∆,

by Aliprantis and Border (2006, Theorem 5.79), there exists a nonzero continuous linear functional

strongly separating C and F (p). That is, for all p ∈ ∆, there exist q ∈ X∗, q ̸= 0, and b ∈ R such

that

sup
z∈C

q(z) < b < inf
x∈F (p)

q(x).
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Since 0 ∈ C, b > 0. Since C is a cone, q ∈ C∗. Without loss of generality, we can assume q ∈ ∆.

(To see this, since e ∈ intC and q ∈ C∗ we have q(e) < 0 and may define q̂ = −q/q(e) ∈ ∆ with the

same separation property above.)

Therefore, for all p ∈ ∆, there exists q ∈ ∆ such that q(x) > 0 for all x ∈ F (p).

Step 4. It follows from step 2 that F is UHC and has non-empty, convex and compact values and

for all p ∈ ∆, F (p) ∩ G(p) ̸= ∅, hence there exists z ∈ F (p) such that p(z) ≤ 0. Therefore,

Theorem 3 implies that there exists p̄ ∈ ∆ and z̄ ∈ X such that z̄ ∈ F (p̄) ∩ C. Since for all q ∈ ∆,

q(x) ≤ 0 for all x ∈ C. Therefore, z̄ ∈ C implies that for all q ∈ ∆, q(z̄) ≤ 0. By step 3, there exists

q ∈ ∆ such that for all z ∈ F (p̄), q(z) > 0, hence q(z̄) > 0. This yields a contradiction.

6 Remarks on Some Further Directions

In the introduction, we already raised the question of easily-verifiable conditions on the preferences

of the agents that yield excess demand correspondences with theMIP property identified and relied

on in this work.

In this connection, it is important to understand that the argumentation, the specific method-

of-proof, above does not work when the open sections assumption is replaced with assumption of

open fibers in the definition of MIP. In fact, we do not know if a generalization of the Theorem 2

is true under this weaker assumption. This is the reason why we introduce various L-majorization

concepts for an excess demand correspondence that give rise to different MIP definitions.

We start with the standard version:

Definition 6. Let ψ,Z : ∆ ↠ Rℓ be correspondences defined as above. Then ψ is L-majorized

if for all p ∈ Ec
ψ, there exists an open set U(p) containing p and a correspondence F p : U(p) → Rℓ

with convex values such that F p has open fibers, and for all q ∈ U(p) ∩ Ec
ψ, Z(q) ⊆ F p(q) and

F p(q) ∩ −Ω = ∅.

Definition 6′. Let ψ,Z : ∆ ↠ Rℓ be correspondences defined as above. Then ψ is L0-majorized

if there exists a function g : ∆ → Rℓ, and for all p ∈ Ec
ψ, an open set U(p) containing p and a

correspondence F p : U(p) → Rℓ with convex values such that g(p) ∈ intG(p) and F p has open

fibers, and for all q ∈ U(p) ∩ Ec
ψ, g(q) ⊆ F p(q) and F p(q) ∩ −Ω = ∅.

Definition 6′′. Let ψ,Z : ∆ ↠ Rℓ be correspondences defined as above. Then ψ is L1-majorized

if for all p ∈ Ec
ψ, there exists an open set U(p) containing p and a correspondence F p : U(p) → Rℓ

with convex values such that F p ∩ G has open fibers, and for all q ∈ U(p) ∩ Ec
ψ, Z(q) ⊆ F p(q) and

F p(q) ∩ −Ω = ∅.

Definition 6 is a natural weakening of KF -majorization as it replaces the open graph assump-

tion with the open fibers property. However, as mentioned above, the proof above does not work
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for this case as we cannot obtain a “nice” selection H from the global correspondence F in Step 3

that satisfies H(q)∩G(q) ̸= ∅ for all q ∈ ∆ by using the step in the proof above. Definitions 6′ and

6′′ provide two alternative versions that allow using L-majorization. However, these definitions are

not weaker than Definition 6 (we know the latter is not weaker and we do not have a proof that the

former is weaker). Definition 6′ allows us to use a proof that is almost identical to the one above.

Definition 6′′ is the assumption we used previously and it is sufficient.

[We know that KF-maj does not imply CIP (see the example above), but we do not know if

CIP is stronger than KF-maj. Moreover, we know that KF-maj implies L-maj, but in this context,

the converse relation may also hold (hence they may be equivalent), but we do not know.]

[We have an example that satisfies L-majorization and all the assumptions in Theorem 2 above,

but the majorizing correspondence does not have an open graph. The conclusion of the GNKD lemma

is true. In this example, the majorizing correspondence has a nice local open covering. This may

be true in general. My conjecture is the following: a correspondence ψ as defined above (in the

setting of excess demand correspondence) is L-majorized if and only if it is KF -majorized. One

direction is obvious, but I do not know whether the other direction is true or false.]

These are open questions. In addition, it is an open question to provide assumptions on pref-

erence relations that are sufficient for MIP. One reference dealing with non-convexity is Scapparone

(2015).

Appendix A Omitted Proofs

We first provide the proof of Proposition 1 showing that U -majorizaiton is stronger than KF -

majorization.29

Proof of Proposition 1. Suppose that ψ : ∆ → Rℓ is U -majorized at p ∈ ∆. Then, there exist an

open set V (p) containing p and a correspondence Hp : V (p) → Rℓ with convex values such that Hp

is UHC with compact values and for all q ∈ V (p) ∩ Ec
ψ, Z(q) ⊆ Hp(q) and Hp(q) ∩ −Ω = ∅.

Pick p ∈ Ec
ψ. Next, we construct an open set U(p) containing p and a correspondence F p :

U(p) ↠ Rℓ with convex values such that F p has open sections and for all q ∈ U(p)∩Ec
ψ, Z(q) ⊆ F p(q)

and F p(q) ∩ −Ω = ∅.

Note that Hp(p) is convex and compact, and −Ω is convex and closed. Using the proof of

Theorem 9.2 of Schaefer (1971, p.65), we can find an open set V ′ containing ∆ and a convex open

set W containing Hp(p) such that V ′ ∩W = ∅. Since Hp : V (p) → X is UHC, there exists an open

set V ′′(p) ⊆ V (p) containing p such that Hp(q) ⊆ W for each q ∈ V ′′(p). Moreover, for all q ∈ V ′′(p),

V ′ ∩Hp(q) ⊆ V ′ ∩W = ∅.

29The argument in the proof is motivated by those in Chang (2006, Lemma 2). Note that, as illustrated in this
paper, the same argument applies also to infinite dimensional spaces.
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Define U(p) = V ′′(p) and F p(q) = W for each q ∈ U(p).We claim that F p : U(p) → X satisfies

the conditions above.

Suppose that q ∈ U(p) ∩ Ec
ψ. Then q ∈ V (p) ∩ Ec

ψ. Next, Z(q) ⊆ Hp(q) ⊆ W implies

Z(q) ⊆ W = F p(q). Next, note that V ′ ∩W = ∅ so F p(q) ∩ −Ω = ∅.

It is clear that F p has open values. It remains to show that it has open lower sections. Note

that F p(q) = W for every q ∈ U(p). If z /∈ W , then (F p)−1(z) = ∅, hence open. If z ∈ W , then

(F p)−1(z) = U(p), which is open in the subspace U(p). Therefore, F p has open lower sections.

Lemma 1 provide a result that yield an UHC correspondence that satisfies a majorization or

an inclusion property. We provide the proof of the lemma in this Appendix.

Proof of Lemma 1. For all x ∈ X, there exists an open set U(x) containing x and a correspondence

F x : U(x) → Y with non-empty values such that at least one of the following holds:

- F x has open sections and for each z ∈ U(x), Q(x) ⊆ coF x(z),

- coF x is UHC and has non-empty, compact values, and for each z ∈ U(x), F x(z) ⊆ Q(z).

Step 1. Since every TVS is regular, we can apply Willard (1970, Theorem 14.3, p.92) and conclude

that, for each x ∈ X, there exists an open set A(x) and a closed set V (x) such that x ∈ A(x) ⊆
V (x) ⊆ U(x). Since X is compact, there exist points x1, .., xm ∈ X, collections of sets A1, .., Am,

V 1, .., V m, and U1, .., Um with xk ∈ Ak ⊆ V k ⊆ Uk, Ak and Uk are open and V k for each k ∈ M =

{1, ..,m}, and X = ∪mk=1A
k, and for each k ∈ M there exists a correspondence F k : Uk → Y with

non-empty values such that at least one of the following holds:

(a) F k has open sections and for each x ∈ Uk, Q(x) ⊆ coF k(x),

(b) coF k is UHC and has non-empty, compact values, and for each x ∈ Uk, F k(x) ⊆ Q(x).

LetMa denote those k for which (a) above holds and letM b = {1, ..,m}\Ma. Define Ua =
⋃
k∈Ma Uk,

V a =
⋃
k∈Ma V k, Aa =

⋃
k∈Ma Ak, Ab =

⋃
k∈Mb Ak.

Step 2. If Ma ̸= ∅, then Ua ̸= ∅ and for each k ∈Ma, define a correspondence F̃ k : V a ↠ Y as

F̃ k(z) =

{
coF k(z) if z ∈ V k

Y otherwise.

It is clear that F̃ k has convex values. Since F k has non-empty values and Y is non-empty, F̃ k has

non-empty values. Next, we show that F̃ k has open sections. Since the convex hull of an open set

is open and F k has open upper sections, F̃ k has open upper sections. It remains to show that F̃ k

has open fibers. Towards this end, pick y ∈ Y .
(
F̃ k
)−1

(y) =
((
coF k

)−1
(y) ∪

(
V k
)c) ∩ V a. By

Yannelis and Prabhakar (1983, Lemma 5.1), F k has open fibers implies that coF k has open fibers.
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Hence,
(
coF k

)−1
(y) is open (in X). Since V k is closed, its complement is open (in X). Therefore,(

F̃ k
)−1

(y) is open in V a, hence F̃ k has open fibers.

Define a correspondence F̃ a : V a → Y as

F̃ a(z) =
⋂
k∈Ma

F̃ k(z).

It is clear that F̃ a has convex values, and by Yannelis and Prabhakar (1983, Fact 6.1), it has open

fibers. Since the intersection of a finite number of open sets is open, F̃ a has open upper sections.

Next, we show that F̃ a has non-empty values. To see this, pick z ∈ V a ⊆ Ua. Then, z ∈ V k for

some k ∈Ma. Since Q(z) ̸= ∅, and Q(z) ⊆ coF k(z) ⊆ F̃ k(z), therefore,

Q(z) ⊆
⋂
k∈Ma

F̃ k(z) = F̃ a(z),

and we conclude that F̃ a(z) ̸= ∅.
Define a correspondence Ha : V a → Y as

Ha(z) = F̃ a(z) ∩ T (z).

Next, we show that Ha has open fibers and non-empty and convex values. As the intersection

of convex sets is convex, Ha has convex values. By Yannelis and Prabhakar (1983, Fact 6.1), Ha

has open fibers. Pick z ∈ V a. Since Q(z) ⊆ clT (z) and Q(z) ⊆ F̃ a(z), Q(z) ⊆ F̃ a(z) ∩ clT (z).

Pick y ∈ Q(z). It follows from F̃ a has open upper sections that there exists an open set U(y)

containing y such that U(y) ⊆ F̃ a(z). Since y ∈ clT (z), there exists y′ ∈ U(y) such that y′ ∈ T (z) =

intT (z), where the equality follows from the assumption that T has open upper sections. Hence,

y′ ∈ F̃ a(z) ∩ T (z) = H(z).

Since V a is a closed subset of a compact set X, it is compact, and hence it is paracompact.

By Yannelis and Prabhakar (1983, Theorem 3.1), there exists a continuous function ha : V a ↠ Y

such that ha(z) ∈ Ha(z) for all z ∈ V a. Since V a is compact, the set Y a = ha(V a) ⊆ Y is compact.

Therefore, by Aliprantis and Border (2006, Lemma 17.6 and Theorem 17.11), the singleton-valued

correspondence F a : V a ↠ Y defined as F a(z) = {ha(z)} is UHC, has a closed graph, and non-empty,

convex, and compact values.

Step 3. We define a correspondence F : X → Y that is UHC and has nonempty, convex and compact

values. Recall that V a = ∪k∈MaV k. Note that X = ∪k∈{a}∪MbV k and define a correspondence
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F : X → Y as

F (x) = co

 ⋃
k∈{{a}∪Mb

:x∈V k}

coF k(x)

 . (1)

Step 3.1. F : X → Y is convex valued and nonempty valued. To see the latter, suppose that x ∈ V a.

Then V a ⊆ Ua and Step 2 establishes that F a(x) ̸= ∅. If x ∈ V k for some k ∈ M b, then V k ⊆ Uk

implies that coF k(x) ̸= ∅.

Step 3.2. F : X → Y is UHC and compact valued. First, for all k ∈ {a} ∪M b, define F̂ k : X ↠ Y

as follows:

F̂ k(x) =

{
coF k(x) if x ∈ V k

∅ if x /∈ V k
, and therefore, F (x) = co

 ⋃
k∈{{a}∪Mb:

x∈V k}

F̂ k(x)

 .
Since coF k : Uk → Y is UHC and has compact values, and V k ⊆ Uk, coF k : V k → Y is also

UHC and has compact values. Next, we show that for all k ∈ {a}∪M b, F̂ k is UHC and has compact

values. If x /∈ V k, then the UHC at x follows from V k is closed. Pick x ∈ V k. Since coF k is UHC

at x, for all open neighborhood U of F̂ k(x) = coF k(x), there exists an open neighborhood V of x

such that for all x′ ∈ V , coF k(x′) ⊆ U . Note that F̂ k(x′) ⊆ coF k(x′) for all x′ ∈ X. Therefore, for

all x′ ∈ V , F̂ k(x′) ⊆ U . Hence, F̂ k is UHC at x. Moreover, for all x′ ∈ X, either F̂ k(x′) = coF k(x′)

or F̂ k(x′) = ∅. Hence, F̂ k has compact values.

Define a correspondence H : X ↠ Y as

H(x) =
⋃

k∈{a}∪Mb

:x∈V k

F̂ k(x).

Since for all x ∈ X, F̂ k is UHC and the union of a finite family of UHC correspondences is UHC

(Aliprantis and Border, 2006, Theorem 17.27(2)), H is UHC. Since a finite union of compact sets

is compact, H has compact values (Aliprantis and Border, 2006, p. 40). Since H(x) is the union

of finitely many compact, convex sets in a TVS, it follows that F (x) = coH(x) is compact for each

x ∈ X (Aliprantis and Border (2006, Lemma 5.29)). Since Y is locally convex, H is UHC, coH has

closed and compact values, F = coH is also UHC (Aliprantis and Border (2006, Theorem 17.35)).

Step 4. The correspondence F : X ↠ Y defined in (1) of step 3 is nonempty valued, convex valued,

compact valued and UHC. To complete the proof of the theorem, we will show that for each x ∈ X,

F (x) ⊆ coQ(x) or co(F (x) ∪ coQ(x)) ⊆ coF k(x) for some k ∈ {1, ..,m} with x ∈ Uk.

22



Pick x ∈ X. It follows form X =
⋃m
k=1A

k = Aa ∪ Ab that x ∈ Aa ∪ Ab.

Step 4.1: Suppose that x ∈ Ab, hence x /∈ Aa (otherwise, x ∈ V k ⊆ Uk for some k ∈ Ma). Then

x ∈ Ak̂ ⊆ V k̂ for some k̂ ∈ M b. Applying condition (b) above, it follows that for all j ∈ M b and all

z ∈ V j ⊆ U j, F j(z) ⊆ Q(z) implying that coF j(z) ⊆ coQ(z). In particular, coF k(x) ⊆ coQ(x) for

each j ∈M b. Therefore,

F (x) = co

 ⋃
j∈{a}∪Mb

:x∈V j

coF j(x)

 = co

 ⋃
j∈Mb

:x∈V j

coF j(x)

 ⊆ coQ(x). (2)

Step 3.2: Suppose that x ∈ Aa. Then there exists k̂ ∈ Ma such that x ∈ Ak̂ ⊆ V k̂ ⊆ U k̂. Applying

condition (a) above, the following holds: if j ∈ Ma and x ∈ V j, then x ∈ U j and Q(x) ⊆ coF j(x).

In particular, coQ(x) ⊆ coF j(x) if j ∈ Ma and x ∈ U j. Therefore, x ∈ Ak̂ ⊆ V k̂ ⊆ U k̂ and k̂ ∈ Ma

imply that implying that

F a(x) ⊆ F̂ a(x) ∩ T (x) =

( ⋂
k∈Ma

F̂ k(x)

)
∩ T (x) ⊆ F̂ k̂(x) ∩ T (x) = coF k̂(x) ∩ T (x). (3)

By assumptionQ(x) ⊆ clT (x), where clT (x) is convex. Recall that for all k ∈Ma, Q(x) ⊆ coF k(x) =

F̂ k(x). Therefore, coQ(x) ⊆ coF k(x) ∩ clT (x) = F̂ k(x) ∩ clT (x). Therefore, by Equation (3),

coQ(x) ⊆ co(F a(x) ∪ coQ(x)) ⊆ F̂ a(x) ∩ clT (x) ⊆ coF k̂(x) ∩ clT (x).

Since ⋃
k∈Mb

:x∈Bk

coF k(x) ⊆ coQ(x),

F (x) = co

coF a(x) ∪
⋃
k∈Mb

:x∈Bk

(
coF k(x)

) ⊆ co(F (x)∪ coQ(x)) ⊆ F̂ a(x)∩ clT (x) ⊆ coF k̂(x)∩ clT (x).
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