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Abstract
In this paper we consider inference with paired or dyadic data, such as cross-section

and panel data on trade between pairs of countries. Regression models with such data
can have a complicated pattern of error correlation. For example, errors for US-UK
trade may be correlated with those for any other country pair that includes either
the US or UK. The standard cluster-robust variance estimator or sandwich estimator
based on one-way clustering on dyads is inadequate. The two-way cluster-robust esti-
mator with clustering on each pair in the dyad is a substantial improvement, but still
understates standard errors. Instead one should use dyadic-robust standard errors.
Qualitatively similar issues arise in social network data analysis, but the consequences
are especially severe in international trade studies since trade networks are typically
very dense. Applications with the gravity model of trade rarely use dyadic-robust stan-
dard errors, though panel data applications do include rich sets of �xed e¤ects that
could potentially control for dyadic correlation. Using several leading applications we
�nd that even when country-pair and country-time �xed e¤ects are included the failure
to additionally use dyadic-robust standard errors can lead to reported standard errors
that are several times too small.
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1. Introduction

A key component of empirical research is conducting accurate statistical inference. One

challenge to this is the possibility of errors being correlated across observations. In this

paper we consider extension of cluster-robust methods for one-way and two-way clustering

to regressions with paired or dyadic data, such as country-pair data analyzed frequently in

international trade applications.

In the simplest case of one-way clustering, observations are grouped so that model errors

are independent across groups but are potentially correlated within groups. In that case

Moulton (1986, 1990) and Bertrand, Du�o and Mullainathan (2004) demonstrated that the

need to control for such one-way clustering arose in a much wider range of settings than

had been appreciated by microeconometricians. Most notably, even modest within-group

error correlation can greatly in�ate default standard errors for a grouped regressor (one

observed at a more highly aggregated level than the dependent variable). The standard way

to control for one-way clustering is to use �cluster-robust� standard errors that generalize

those of White (1980) for independent heteroskedastic errors. Key references include Shah

et al. (1977) for clustered sampling, Liang and Zeger (1986) for estimation in a generalized

estimating equations setting, and Arellano (1987) and Hansen (2007) for linear panel models.

Cluster-robust inference for the one-way case has been generalized to two-way and multi-

way clustering in independent papers by Miglioretti and Heagerty (2006), Cameron, Gelbach

and Miller (2011) and Thompson (2011). Davezies, D�Haultfoueille and Guyonvarch (2021),

MacKinnon, Nielsen and Webb (2021) and Menzel (2021) provide relevant theory. An ex-

ample is cross-section data of individual wages on two grouped regressors with di¤erent

types of groupings, such as occupation-level job injury risk and industry-level job injury

risk. Cameron and Miller (2015) and MacKinnon, Nielsen and Webb (2023) provide surveys.

In this paper we consider a di¤erent extension of one-way clustering, that due to paired or

dyadic data, such as that for trade �ows between countries. Then the observational unit is a

country pair (g; h) if data are cross-sectional, or country pair by time period (g; h; t) if panel

data are available. Model errors are likely to be correlated between country-pair observations

that have a country in common. For example, errors for the US-UK pair may be correlated

with those for any other country pair that includes either the US or UK. Such correlation is

the consequence of, for example, a random e¤ects model ygh = x0gh� + �g + �h + ugh where

�g and �h are random e¤ects for country g and country h.
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An obvious approach is to use two-way clustering where the �rst grouping is de�ned by

the �rst country in the pair and the second grouping is de�ned by the second country in the

country pair. This picks up correlation of the US-UK pair with any country pair ordered

with US as the �rst country and/or UK as the second country. But two-way clustering fails

to pick up correlation with any country pair ordered with UK as the �rst country or with

US as the second country.

Dyadic-robust inference controls for this additional source of correlation. The dyadic-

robust variance estimator was proposed in an applied paper by Fafchamps and Gubert (2007),

its consistency was proven in a limited setting by Aronow, Samii and Assenova (2015), and

the asymptotic normality of the resultant Wald t-statistic was proven for OLS by Tabord-

Meehan (2019) under more general conditions. Davezies, D�Haultfoueille and Guyonvarch

(2021), MacKinnon, Nielsen and Webb (2021), Menzel (2021), Graham (2020a) and Graham

(2020b) provide theory.1

The di¤usion of cluster-robust inference theory to practice has been slow. Almost all eco-

nomics studies that should control for one-way clustering now do so. Many practitioners with

two-way clustering still erroneously one-way cluster on the pair (such as employer-employee)

leading to considerably under-estimated standard errors. For dyadic data exceptionally few

papers currently control for dyadic correlation. Carlson, Incerti and Aronow (2021) reanalyze

22 papers published in International Organization. Most studies used heteroskedastic-robust

or some sort of cluster-robust standard errors, but none of these papers used dyadic-robust

standard errors. Dyadic-robust standard errors for key regressors were on average twice as

large.

In this paper we consider application of dyadic-robust inference to estimation of the

gravity model of international trade. Following the seminal paper by Baier and Bergstrand

(2007) it is common to include a rich set of �xed e¤ects, to enable causal interpretation of

key regression coe¢ cients. In particular, for panel data it is standard to include country-pair

�xed e¤ects and time dummies. Additionally time dummies may be interacted with the �rst

country in the pair and with the second country in the pair.

Subsequent inference implicitly presumes that inclusion of a rich set of �xed e¤ects is

su¢ cient to control for any correlation of errors across country pairs, so that valid inference

could be based on one-way clustering on country pairs. We �nd in empirical applications

1Leung (2023) instead considers the case where the network can be partitioned into clusters, in which
case one-way cluster-robust methods can be used.
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that this is not the case �one-way clustering on country pairs leads to underestimation of

standard errors and Wald t tests that over-reject. This is consistent with experience with

standard panel data analysis where the inclusion of individual-speci�c �xed e¤ects does not

eliminate within-individual error correlation so that it is still necessary to obtain standard

errors that cluster on the panel unit. For short panel data Arellano (1987) explicitly covered

the case of �xed e¤ects, and MacKinnon et al. (2023, p.276) present a standard one-way

factor model as an example where cluster-robust standard errors need to be used.

Furthermore, in international trade applications the appropriate dyadic-robust standard

errors and test p-values can be much larger than those obtained by one-way clustering on

country pairs. This is a consequence of the dyads forming a dense network, since on average

a given country trades with many other countries. For example, with bidirectional trade data

on a cross-section of 100 countries that all trade with each other there are 100�99=2 = 4950
unique country-pair observations, but the information content can be much less than that

of 4950 independent observations.

Cluster-robust inference does not require modelling the within-cluster correlation, but

does rely on the assumption that the number of clusters, rather than the number of obser-

vations, goes to in�nity. It is well-known that standard Wald tests based on one-way and

two-way cluster-robust standard errors can over-reject when there are few clusters. We �nd

that a similar problem arises for dyadic-robust standard errors when the dyads are based on

few underlying units (countries in the gravity model application) where �few�can be quite

large.

The methods are presented in Section 2. In Section 3 we present Monte Carlo exper-

iments. Section 4 presents several international trade applications that demonstrate the

importance of controlling for clustering with dyadic data, even with panel data and a rich

set of �xed e¤ects. Section 5 concludes.

2. Robust Inference

This section reviews one-way and two-way cluster robust methods for OLS before moving to

the dyadic case.
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2.1. Cluster-robust standard errors and inference

Consider the linear regression model

yi = x
0
i� + ui; i = 1; :::; N;

where i denotes the ith of N individuals in the sample, xi is K � 1 and E[uijxi] = 0.
The OLS estimator is

b� = �XN

i=1
xix

0
i

��1XN

i=1
xiyi = (X

0X)
�1
X0y:

The OLS estimator has variance conditional on X

V(b�) = (X0X)
�1Var

hXN

i=1
xiui

i
(X0X)

�1

= (X0X)
�1XN

i=1

XN

j=1
E[xix0juiuj] (X

0X)
�1 ,

using E[uijxi] = 0:
Various cluster-robust estimates of the variance take the form

bV(b�) = (X0X)
�1
�
cN
XN

i=1

XN

j=1
1ijxix

0
jbuibuj� (X0X)

�1 , (2.1)

where 1ij is an indicator function that selects only terms with E[xix0juiuj] 6= 0, and cN ! 1 is

a degrees-of-freedom correction. The indicator function 1ij varies with the type of clustering.

For one-way clustering the errors are potentially correlated within clusters g = 1; :::; G

but are assumed to be independent across clusters. Then in (2.1) we set 1ij = 1[(i; j) both

in cluster g], and most often cN = G=(G�1) or cN = [G=(G�1)]� [(N �1)=(N �K)]. This
estimator proposed by Liang and Zeger (1986) and Arellano (1987) is a natural generalization

of White (1980) who considered models with independent heteroskedastic standard errors;

then in (2.1) 1ij = 1[i = j] and cN = N=(N �K).
The one-way case has been generalized to two-way andmulti-way clustering; see Miglioretti

and Heagerty (2006), Cameron, Gelbach and Miller (2011) and Thompson (2011). For

two-way clustering with errors correlated within clusters g = 1; :::; G and within clusters

h = 1; :::; H, we let 1ij = 1[(i; j) both in cluster g and/or cluster h] in (2.1). Then the

variance can be computed as

bV(b�) = bVG + bVH � bVG\H (2.2)
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where bVG, bVH and bVG\H are one-way cluster-robust variance estimates with clustering on,
respectively, G, H and G \H.
For test of H0 : �k = �k0 the Wald t-statistic is

Wk0 =
b�k � �k0
se(b�k) ;

where se(b�k) is the square root of the kth diagonal entry in bV(b�) de�ned in (2.1). Under
appropriate assumptions

Wk0
d! N(0; 1) under H0 : �k = �k0:

The asymptotic theory for the Wald statistic is complicated as rates of convergence

of Var
hPN

i=1 xiui

i
vary with the nature of the within-cluster correlation. If within-cluster

correlation declines with some measure of distance between observations, then the rate of

convergence is in the sample size N . More often in microeconometrics applications there

is no such decline in the within-cluster correlation; a leading example is a random e¤ects

model that implies equicorrelated errors within cluster. Then the rate of convergence is

in the number of clusters. With few clusters there can be considerable downwards bias in

standard error estimates and hypothesis test over-rejection, even if coe¢ cient estimates are

reasonably precise due to many observations per cluster.

2.2. Dyadic model and correlation

A dyad based on G units such as G countries is a pair indexed by (g; h), where g and h may

each take integer values between 1 and G. In practice not all possible dyads may arise. We

de�ne D to be the set of dyads with M elements and (g; h) 2 D.
Given a single observation per dyad we consider estimation of � in the linear model

ygh = x
0
gh� + ugh: (2.3)

For notational simplicity this section presents results for this cross-section case. Results

generalize immediately to multiple observations per dyad with arbitrary correlation allowed

across errors for observations in the same dyad. This covers panel data in which case

yght = x
0
ght� + ught:
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For international trade data on G countries, ygh is a measure of trade between country g

and country h and the dyad is the country pair (g; h). If the trade measure is bidirectional,

such as imports plus exports, then there are at most G(G�1)=2 unique dyads, since ygh = yhg
and countries do not trade with themselves. If the trade measure is unidirectional, such as

imports only (or exports only), then there are at most G(G� 1) unique dyads.
We assume that the only potential error correlation is that between dyads (g; h) with at

least one of g and h in common. Thus we assume that

E[ughug0h0jxgh;xg0h0 ] = 0, unless g = g0 or h = h0 or g = h0 or h = g0: (2.4)

For example, the (US,UK) error is assumed to be independent of errors for any country pair

not involving the US or UK, but may be correlated with the error for any country pair that

involves either the US or the UK. The random e¤ects model ygh = x0gh� + �g + �h + ugh

where �g and �h are independent random e¤ects has the property (2.4).

To make ideas concrete, consider the case of cross-section data on bidirectional trade

between four countries, numbered 1; 2; 3; and 4. Then there are six unique country-pair

observations, namely (1; 2), (1; 3), (1; 4), (2; 3), (2; 4) and (3; 4), and there are 62 = 36 error

correlations. Table 2.1 illustrates the potential error correlations.

Table 2.1: Dyadic correlation with four countries and bidirectional trade.

(g,h)n(g0,h0) (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)
(1,2) cp 2way 2way dyad dyad 0
(1,3) 2way cp 2way 2way 0 dyad
(1,4) 2way 2way cp 0 2way 2way
(2,3) dyad 2way 0 cp 2way dyad
(2,4) dyad 0 2way 2way cp 2way
(3,4) 0 dyad 2way dyad 2way cp

Note: One-way clustering on country-pair picks up terms labelled cp; two-way cluster robust additionally

picks up terms labelled 2way; dyad-robust additionally picks up terms labelled dyad.

Clustering on country-pair controls for correlation when (g; h) = (g0; h0). Then only the

diagonal entries in Table 2.1 are nonzero; these are denoted cp. Clustering on country-pair

coincides in the cross-section case with using heteroskedastic-robust standard errors.

Two-way cluster-robust standard errors, with clustering on g and on h, additionally

control for possible correlation when g = g0 and/or h = h0. These additional correlations are

denoted by 2way in the table.
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Dyadic clustering additionally picks up cases where g = h0 or h = g0. These additional

cases are denoted dyad in the table.

2.3. Default standard errors under dyadic correlation

Under one-way clustering with all regressors perfectly correlated within cluster, balanced

clusters and Cor(ui; uj) = � for i and j in the same cluster, the default OLS variance matrix

�2u(X
0X)�1 should be in�ated by 1+ �(NG� 1) where NG is the number of observations per

cluster.

For dyadic data we obtain a similar result using the results of Cameron and Golotvina

(2005) who considered OLS and feasible GLS estimation for the following dyadic variant of

a two-way random e¤ects model for unidirectional dyadic data. For the (g; h)th country-pair

the regression model is

ygh = x
0
gh� + �g + �h + "gh; h = 1; :::; g � 1; g = 1; :::; G; (2.5)

where "gh is an idiosyncratic error and �g and �h are country-speci�c error components with

symmetry of �g and �h is imposed, so there are just G draws of �. The variance components

are assumed to be i.i.d. with "gh � (0; �2") and �g � (0; �2�). Then the error vgh = �g+�h+"gh
has variance (2�2� + �

2
"), covariance �

2
� across dyads with g = g

0; h 6= h0; g 6= g0 or h = h0,
and zero covariance otherwise. The implied dyadic error correlation for dyads with a unit in

common is then � = �2�=(2�
2
� + �

2
").

Cameron and Golotvina (2005) show that for the intercept-only model with x0gh� = � in

(2.5), i.i.d. errors �g and "gh, and data available for all possible dyads, the default variance

estimate obtained by assuming independence (�2� = 0) should be in�ated by the multiple
1+�(G�1)

1+�
= 1 + �

1+�
(G � 2) where � = 2�2�

�2"
= 2�

1�2� . For example, if the dyadic correlation is

� = 0:1 then � = 0:25 and the default variance estimate should be in�ated by f1+0:8(G�2)g.
It follows that with � = 0:1 and G = 12 the default standard errors should be in�ated by

the multiple
p
9 = 3.

So even very mild within-dyad error correlation can lead to dyadic-corrected standard

errors being much larger than default standard errors that assume independence across dyads.

The intercept-only model is an extreme case as the regressor is a constant that is neces-

sarily common to dyads that share a unit in common. The variance in�ation factor will be

less for regressors that are not so highly correlated across dyads that share a unit in common.
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2.4. Dyadic-robust standard errors and inference

Dyadic-robust inference does not require speci�cation of a model for the dyadic correlation.

In the case of one observation per dyad the dyadic-robust estimate of the variance matrix

takes the form

bVdyad(b�) = (X0X)
�1
�
cN
X

g;h

X
g0;h0

1ghg0h0xghx
0
g0h0bughbug0h0� (X0X)

�1 , (2.6)

where

1ghg0h0 = 1[g = g
0 or h = h0 or g = h0 or h = g0]; (2.7)

and cN ! 1 is a �nite-sample adjustment.

We use cN = [(G� 1)=(G� 2)]� [(N � 1)=(N �K)] where G is the number of countries
and N is the number of observations. This is similar to the correction used in the one-way

cluster case, except we (G � 1)=(G � 2) rather than G=(G � 1) as countries do not trade
with themselves. We additionally propose an adjustment when G is small.

This method was proposed by Fafchamps and Gubert (2007), who motivate it as an

extension of the method of Conley (1999) for spatial correlation. Fafchamps and Gubert

(2007, p.330) state that �Monte Carlo simulations indicate that standard errors corrected

for dyadic correlation can be much larger than uncorrected ones. The bias is particularly

large when the average degree is high. Correcting standard errors is thus essential when

estimating any dyadic regression. In our case, the magnitude of the correction is relatively

small because the average degree is low.�Here degree is the number of links and in their

study each individual had relatively few links.

The consistency of bVdyad(b�) was proven in a limited setting by Aronow, Samii and As-
senova (2015). The asymptotic normality of the resultant Wald t-statistic was proven by

Tabord-Meehan (2019) under quite general conditions that permit a wide range of dyadic

correlation and network density; see also Graham (2020). A key result is that in the case

of a dense network and dyadic correlation that is not declining in any distance measure the

rate of convergence is in G, the number of units (here countries), rather than in the much

larger number of dyads.

Computation of one-way and two-way cluster-robust standard errors is straightforward;

in the latter case one use three easily computed separate one-way cluster-robust variance

estimates. For the dyadic-robust case Aronow et al. (2015) provide a qualitatively similar

decomposition though forming the separate clusters is more complicated. For OLS regression
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Bisbee (2019) and Carlson (2021a) provide R packages and Balcazar (2020) and Carlson

(2021b) provide Stata commands. The dyadic-robust variance estimate, like the two-way

cluster robust estimate, is not guaranteed to be positive semi-de�nite and we propose a

correction in such cases.

It is important to note that dyadic-robust inference is di¤erent from two-way-robust, as

should be clear from Section 2.2. Several studies confuse the two.2

2.5. Dyadic-robust Inference with Few Dyadic Units

As one moves progressively through variance estimates that are in turn heteroskedastic ro-

bust, one-way cluster robust, two-way cluster robust and dyadic robust, increasing numbers

of terms in the double sum
P

i

P
jE[xix

0
juiuj] or

P
g;h

P
g0;h0E[xghxg0h0ughug0h0 ] are estimated

rather than set to zero. This adds noise to the variance estimate that disappears asymp-

totically, but that increasingly leads to poor �nite sample performance when there are few

cluster units or dyadic units.

Return to Table 2.1 for bidirectional data with only G = 4 countries. In this example,

extreme as G is so small, 30 out of 36 terms in the dyadic error variance matrix are nonzero,

so almost all model errors are potentially correlated with each other. These additional terms

likely lead to underestimation of
P

g;h

P
g0;h0E[xghxg0h0ughug0h0 ] since we know that if all 36

terms are nonzero then
P

g;h

P
g0;h0 xghx

0
g0h0bughbug0h0 = 0 since Pg;h xghbugh = 0.

Even when there are a relatively large number of countries, a substantial fraction of the

error correlations may be nonzero. When data are available for all country pairs there are

[G(G� 1)=2]2 error correlations and some algebra reveals that given (2.4) there are [G(G�
1)=2] � (2G � 3) potential nonzero correlations. It follows that the fraction of the matrix
of correlations that are potentially nonzero is (2G� 3)=[G(G� 1)=2] = (4� 6=G)=(G� 1).
With G = 10, for example, there are 45 country pairs and 38% of the entries in the 45� 45
correlation matrix are potentially nonzero. Similar �gures for G = 30 and G = 100 are,

respectively, 13% and 4%.

In the limit for large G and either unidirectional or bidirectional models where all coun-

tries trade with all countries there are 4=(G�1) potential nonzero error correlations compared
2Cameron, Gelbach and Miller (2011, page 239) stated that �Fafchamps and Gubert (2006) analyze

networks among individuals, where a person-pair is the unit of observation. In this context they describe the
two-way robust estimator in the setting of dyadic models.�And section 4.2 gave a bilateral trade example.
Post-publication we understood the di¤erence between two-way and dyadic correlation, leading to Cameron
and Miller (2014).
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to 2=(G� 1) with two-way clustering and only 2=[G(G� 1)] if errors are uncorrelated.
Simulations reveal that for �nite G one should at a minimum use a �nite-cluster degrees-

of-freedom adjustment to the variance matrix and for Wald tests of a single restriction

additionally use p-values and critical values based on a t distribution rather than the the

standard normal.

For one-way clustering with G clusters it is standard to use the correction factor cN =

G=(G � 1) or cN = [G=(G � 1)] � [(N � 1)=(N � K)] in (2.1), and to use the t(G � 1)
distribution rather than the standard normal distribution for tests. With few clusters these

adjustments still lead to over-rejection and a popular alternative method is the Wild cluster

bootstrap which provides an asymptotic re�nement to the Wald test; see Cameron, Gelbach

and Miller (2008), MacKinnon and Webb (2018), and Djogbenou, MacKinnon, and Nielsen

(2019).

For two-way cluster-robust inference, Cameron, Gelbach and Miller (2011, Table 1) found

even larger over-rejection rates than in the one-way case when there are few clusters. At a

minimum one should use a variance matrix estimate with �nite-cluster correction and use

the Students t-distribution withmin(G;H)�1 degrees of freedom. The analog for the dyadic
case is G� 1. And MacKinnon, Nielsen, and Webb (2021) propose a bootstrap for two-way
clustering.

Menzel (2021) proposes a bootstrap with asymptotic re�nement for dyadic data.

Like many dyadic-theory papers, Menzel (2021) makes the assumption of exchangeable

arrays for model errors. In that case, Marrs, Fosdick and McCormick (2023) show that the

error variance-covariance matrix has at most six distinct terms in the dyadic cross-section

case and at most twelve terms in the dyadic panel case, and provide R software to obtain

dyadic-standard errors, under the restrictive assumption of exchangeable arrays that, for

example, rules out heteroskedasticity.

2.6. Degrees-of-freedom adjusted dyadic standard errors

We propose adjusting the dyad-robust standard errors by a multiple that is obtained by a

parametric simulation. This multiple varies with each regressor.

Speci�cally consider estimation of the coe¢ cient of the kth regressor and let bvk denote the
dyad-robust estimate of the variance of b�k. Generate S samples and for each sample obtain
parameter estimates b�(s)k , k = 1; :::; K, and corresponding dyad-robust variance estimatesbv(s)k of b�(s)k . A variance estimate in�ation factor is obtained as the ratio of the variance of
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b�(s)k across the S simulations to the average across the S simulations of the (�nite-sample

biased) dyad-robust variance estimates bv(s)k . Then
bvk;corrected = ck � bvk

ck =
1

S�1
PS

s=1(
b�(s)k � b�k)2

1
S

PS
s=1 bv(s)k ;

where b�k = 1
S

PS
s=1
b�(s)k .

The S generated samples use the original regressor values xgh, while the dependent

variable is generated from the model

y
(s)
gh = x

0
gh
b� + u(s)gh (2.8)

where b� is the original OLS estimate and u(s)gh are i.i.d. normal with mean 0 and standard
deviation equal to the standard error from the original OLS regression. This method provides

a correct adjustment factor cj if model errors are indeed i.i.d.

2.7. Degrees-of-freedom adjusted t tests

We propose computing Wald test p-values and critical values from a t distribution with an

adjusted degrees of freedom where the adjustment varies with each regressor.

Again obtain S samples by simulation from (2.8). Since each sample is generated with

� = b�, we perform a two-sided Wald test of the hypothesis that �k = b�k using
W

(s)
k =

b�(s)k � b�kqbv(s)k :

The S values of W (s)
k provide an empirical estimate of the distribution of the Wald test

statistic.

We are interested in the tail behavior of the distribution and propose basing inference on

the t(d) distribution where d is chosen to matching tail probabilities of the t(d) distribution

to tail probabilities of the empirical distribution of W (s)
k , s = 1; :::; S. Evaluation in Monte

Carlos is currently not complete.
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2.8. Node-Jackknife Variance Estimator

The delete-one-node estimate b�(�g) is obtained by dropping country g and any pair with
that country (i.e. for given g all pairs (g; h) and (h; g) for h = 1; :::; G are dropped).

Then the node-jackknife estimate of the variance matrix of b� is
bV[b�] = G� 2

2G

GX
g=1

(b�(�g) � b�)(b�(�g) � b�)0; (2.9)

where b� = 1
G

PG
g=1

b�(�g). This is proposed in the non-regression case by Frank and Snijders
(1994) and Snijders and Borgatti (1999). The multiplier of the sum is a dyadic data variant

of the multiplier N�1
N
for independent data. (This weight in turn di¤ers from 1

N�1 because

each data set is similar to the other since only one observation is changed).

Frank and Snijders (1994) propose this multiplier under a particular sampling scheme

that is not appropriate in this setting. Graham (2020b, section 4.4) provides an adjustment

that is asymptotically equivalent to the dyadic-robust variance estimate.

2.9. Dyadic Clustering for m-estimators and GMM Estimators

The preceding analysis considered the OLS estimator. More generally we can consider dyadic

clustering for other regression estimators commonly used in econometrics. The results for

the dyadic-robust variance estimator are qualitatively the same as for OLS.

We begin with an m-estimator that solves
P

g;hmgh(b�) = 0. Examples include nonlinear
least squares estimation, maximum likelihood estimation, and instrumental variables esti-

mation in the just-identi�ed case. For the logit MLE mgh(�) = (ygh � �(x0gh�))xgh, where
�(�) is the logistic c.d.f.
Under standard assumptions, b� is asymptotically normal with estimated variance matrix

bV[b�] = bA�1bBbA0�1; (2.10)

where bA =
P

gh
@mgh

@�0

���b� , and bB is an estimate of V[
P

ghmgh]. A robust estimator is bB =

cN
PN

i=1

PN
j=1 1ijxixjbuibuj where 1ij is an indicator function that selects only terms with

E[xixjuiuj] 6= 0, and cN ! 1 is a degrees-of-freedom correction.

For dyadic clustering the analysis of the preceding sections carries through. Then an m-

estimator solves
PN

i=1mgh(b�) = 0 and we use (2.6)-(2.7) with X0X replaced by
P

g;h
@mgh

@�0

���b�
and xghxg0h0bughbug0h0 (2.6) replaced by bmgh bmg0h0.
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For GMM estimation for over-identi�ed models, such as over-identi�ed linear two stage

least squares. b� minimizes Q(�) = �Pg;hmgh(�)
�0
W
�P

g;hmgh(�)
�
, where W is a sym-

metric positive de�nite weighting matrix. Under standard regularity conditions b� is asymp-
totically normal with estimated variance matrix given dyadic clustering

bV[b�] = �bA0WbA��1 bA0WeBWbA�bA0WbA��1 ; (2.11)

where bA =
P

i
@hi
@�0

��b� , and eB is an estimate of V[
P

i hi] that can be computed as in (2.6)

with buighxigh replaced by bhigh.
The leading nonlinear model example for international trade applications, due to Santos

Silva and Tenreyro (2006), �ts a gravity model with dependent variable in levels (rather than

logs) using an exponential mean model with multiplicative �xed e¤ects. Estimation uses the

Poisson quasi-MLE. Graham (2020) provides a dyadic empirical application.

2.10. Many Fixed E¤ects

There are several ways to implement �xed e¤ects regression. These can lead to the same

coe¢ cient estimates but di¤erent standard error estimates due to di¤erent �nite sample

degrees of freedom adjustments. The Frisch-Waugh method partials out the �xed e¤ects

and performs OLS regression on the residuals.

In the case of country 1 �xed e¤ects and country 2 �xed e¤ects, OLS regress ygh on a

full set of country 1 and country 2 dummy variables (in Stata reg y i.cty1 i.cty2) and

save the residuals as r_ygh. Similarly OLS regress each component of xgh on a full set of

country 1 and country 2 dummy variables, leading to residual vector r_xgh. Then OLS

regress r_ygh on r_xgh and compute the various standard errors as before. Let kx denote

the number of regression parameters other than the �xed e¤ects (here kx = 2). Then �nite-

sample adjustment factors that include N�k will use N�kx, whereas direct OLS estimation
of (2.3) with the 2(G� � 1) country dummies uses N � (kx + 2(G� 1)). The latter method
will lead to a larger adjustment factor and hence larger standard errors.

In the example of Rose (2004) studied below there are potentially as many as 178 �
177=2 = 15; 753 country-pair �xed e¤ects as well as time �xed e¤ects. Then we Frisch-Waugh

out both the country-pair �xed e¤ects and the time dummies, and perform OLS regression

on the residuals. Thus perform �xed e¤ects estimation of yght on the time dummy variables

(in Stata xtreg y d*, fe (i.ctypair) where d* denotes the time dummies). Similarly
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perform �xed e¤ects estimation of each component of xght (other than the time dummies)

on the time dummy variables, leading to residual vector r_x�ght. Then OLS regress r_ygh
on r_x�ght. As in the preceding paragraph this will lead to smaller �nite-sample adjustment

factor N � k than if (2.3) is directly estimated by OLS.
An alternative method when there are many �xed e¤ects is to use the reghdfe Stata

command due to Correia (2022). We use this when simulations are computationally intensive.

Inclusion of �xed e¤ects can be more problematic in nonlinear models, due to the inci-

dental parameters problem if a �xed e¤ect estimate is based on few observations. For an

exponential mean model with multiplicative �xed e¤ects Jochmans (2017) proposes an alter-

native di¤erencing estimator that does not have this problem, though his inference method

ignores correlations in scores across observations (Jochmans (2017, footnote 7).

3. Monte Carlo Exercises

We consider two Monte-Carlo exercises for OLS regression with cross-section dyadic data

with a bidirectional relationship and no relationship with oneself. An example is bidirectional

trade �ow data in a single year, and we use that terminology with a dyad being a country-pair

and the two components of the dyad being country 1 and country 2.

The dyadic-robust standard errors are asymptotically valid for both unidirectional and

bidirectional data. For bidirectional data, the dataset is much more unbalanced by country.

For example, in Table 1 there are three observations for country 1, two observations for

country 2 and 3 observations for country 3. Recent research for one-way clustering �nds

that the �few clusters�problem of asymptotic theory not fully kicking in is greater when

cluster sizes are unequal; see, for example, Carter, Schnepel and Steigerwald (2017) and

MacKinnon and Webb (2017). So we expect worse �nite sample performance in simulations

with bidirectional trade �ows (the case here) than with unidirectional trade �ows.

3.1. Monte Carlo Setup

In both cases the data generating process is of the form

ygh = �1 + �2xgh + ugh; h = g + 1; :::; G; g = 1; :::; G� 1: (3.1)

There are N = G(G�1)=2 observations and k = 2 regression parameters. In the �rst Monte
Carlo the error ugh is i.i.d. and in the second Monte Carlo there is dyadic correlation due to

country-speci�c random e¤ects.
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The regressor xgh is constructed to be similar to a log-distance measure in a gravity model

of trade. Speci�cally, let (z1g; z2g) denote the coordinates of country g, where z1g and z2g are

i.i.d. draws from the uniform distribution. Then xgh = ln(
p
(z1g � z1h)2 + (z2g � z2h)2).

The parameters are estimated by OLS regression of ygh on an intercept and xgh.

Standard errors for the OLS coe¢ cients are computed in the following ways

1. IID: OLS default assuming i.i.d. errors

2. HETROB: heteroskedastic-robust (same as PAIRS: one-way cluster-robust clustering

on country-pair (g; h))

3. CTRY1: one-way cluster-robust with clustering on country 1 (g)

4. TWOWAY: two-way cluster-robust clustering on countries 1 and 2 (g; h)

5. DYADS: dyadic-robust

6. NJACK: leave-one-node-out jackknife.

The �rst three methods use Stata command regress to compute standard errors. So

methods 1-2 use the usual �nite sample adjustment factor of N=(N � k).
For this d.g.p. with bidirectional data there are only G � 1 country 1 clusters as from

Table 2.1 there are no (G; h) pairs (and similarly there are only G � 1 country 2 clusters
as there are no (g; 1) pairs). As a result, the �nite sample adjustments given after (2.7)

need to be modi�ed. De�ne G� = G � 1. Then method 3 uses �nite-sample adjustment
factor c = G�=(G� � 1)� [N=(N � k)]. Method 4 in�ates the three components in (2.2) by,
respectively, c1 = G�=(G�� 1)� [N=(N � k)], c2 = c1, and c3 = N=(N � k). Method 5 again
in�ates by G�=(G� � 1)� [N=(N � k)]. Method 6 is computed as in (2.9).
Additionally a two-sided �ve percent signi�cance test for �2 is performed. The critical

values used are from the t(N � k) distribution for methods 1-2 and from the t(G� � 1)
distribution for methods 3-6, with G� = G� 1 for the d.g.p.�s used here.
We report results for G = 100, 30, and 10. This corresponds to sample sizes of, respec-

tively, 4950, 435 and 45 dyads.

There were 4,000 simulations, so the 95% simulation interval for a test with true size 0:05

is (0:043; 0:057).
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3.2. Independent and Identically Distributed Errors

Here in model (3.1) the error ugh is i.i.d. N [0; 1], and �1 = �2 = 0. In this case as G!1
all six standard error estimates should be correct and tests of �2 = 0 at 5% should have

actual rejection rates of 5%. Results are reported in Table A.

For G = 100, the various standard error estimates are all close to the standard deviation

of b�2 across simulations of 0:0226. The cost of using more robust methods, unnecessary for
this d.g.p., is increased variability in the standard error estimate. For example the standard

deviations of standard errors computed assuming one-way clustering and dyadic clustering

equal, respectively, 0:0020 and 0:0033, compared to 0:0005 for the default. At the same time

even 0:0033 is small relative to the true standard deviation of b�2 of 0:0226.
Turning to test size, with G = 100, the dyadic-robust standard errors do lead to mild

over-rejection with a rejection rate of 0:064. The other methods all lead to rejection rates

within the 95% simulation interval of (0:043; 0:057).

For G = 30, the various robust standard errors all under-estimate the standard deviation

of b�2 across simulations of 0:0773. The under-estimation increases the more �robust� the
method used. In particular, the dyadic-robust standard error has a standard deviation of

0:0697, a substantial under-estimation of 10%.

This under-estimation of the standard error leads to test over-rejection. For G = 30

the dyadic-robust method has rejection rate of 0:117, while the two-way robust method, for

example, has rejection rate of 0:078.

ForG = 10, the results are qualitatively similar to those withG = 30, though with greater

under-estimation of standard errors and greater test size distortion. This poor performance

is not surprising. There are only 45 observations. The dyadic-robust method then permits

38% of the terms in the 45�45 error covariance matrix to be nonzero, and even the one-way
cluster robust method allows 14% of the terms to be nonzero. The dyadic-robust method

in some cases leads to a non-positive de�nite estimated variance matrix of b�, necessitating
the eigendecomposition adjustment presented in section 2.4, and in several other cases the

estimated standard error of b�2 was essentially equal to zero.
Finally, note that the node jackknife works very well for G = 10, G = 30 and G = 100,

with average standard error very close to the simulation standard deviation of b�2 and test
size very close to 0:05.

In summary, the dyadic-robust variance matrix estimate works well when G = 100, but

works poorly when G = 30 or G = 10.
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3.3. Random E¤ects Model Errors

Now let the error in model (3.1) be generated by a random e¤ects model, with

ugh = �g + �h + 0:25� "gh

where �g and �g are i.i.d. uniform and "gh is i.i.d. N [0; 1]. The coe¢ cients �1 = 8 and

�2 = �1. For this dyadic correlated error d.g.p., introduced in section 2.3.3, the error
correlation for dyads that have a country in common is 0:447, since then Cor2[ugh; ug0h0 ] =

�2"=(2�
2
� + �

2
") = (1=12)=[(2=12) + 0:25] = 0:2.

In this case as G!1 the dyadic-robust standard error estimates should be correct and

the test of �2 = �1 at 5% should have actual rejection rates of 5%. The remaining methods,
with the exception of the node jackknife, are expected to under-estimate standard errors and

lead to tests that over-reject. Results are reported in Table B.

For G = 100, the dyadic-robust standard errors are closest on average to the standard

deviation of b�2 across simulations of 0:0248, and the rejection rate of 0:057 is close to 0:05. By
comparison the other methods greatly under-estimate the standard errors and lead to large

test over-rejection. As expected, the performance of the other methods improves the greater

the �robustness�of the variance estimation method, with dyadic best, followed in order by

two-way cluster, one-way cluster and non-clustered methods. Furthermore the di¤erences

across the methods are substantial.

For G = 30 there is a similar ordering of the performance of the methods. Now, however,

even the dyadic-robust method su¤ers from considerable under-estimation of the standard

deviation of b�2 (0:0458 compared to 0:0525) and test rejection rate of 0:095.
For G = 10 all methods under-estimate standard errors and lead to test over-rejection.

Surprisingly the various cluster-robust methods perform even worse than methods assum-

ing i.i.d. errors or independent heteroskedastic errors. Clearly G = 10 is too low for the

asymptotic theory to kick in.

Finally, note that the node jackknife works very well for G = 10, and reasonably well for

G = 30. For G = 100 it is still a substantial improvement on using one-way cluster-robust

standard errors, but does not perform as well as either two-way or dyad-robust methods.

In summary, the dyadic-robust variance matrix estimate works well when G = 100, works

better than the other methods when G = 30, but works poorly when G = 10.
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4. Empirical Examples

We consider one cross-section data and four panel data examples. We commend the papers�

authors for making their data and programs available to other researchers. It should be clear

that the methods used in these papers are the standard methods used in the international

trade literature at the time the papers were published. For example, in the panel paper we

study, Rose (2004, p.98) states that �To make my argument as persuasive as possible I use

widely accepted techniques, a conventional empirical methodology, and standard data sets.�

All papers predate Cameron and Miller (2014) and Aronow et al. (2015) that drew attention

to the need for dyadic-robust inference.

The papers have data on a large number of countries (respectively, 127, 187, 96, 122 and

190 countries). The �rst two studies use bidirectional trade �ows while the last three use

unidirectional trade �ows. The �few-cluster�problem is unlikely to arise.

The gravity model of trade with panel data is

ln yght = x
0
ght� + �xed e¤ects+ ught (4.1)

where yght is the value of trade between countries g and h at time t. The regressors include log

of distance between countries g and h (hence the term �gravity�), output measures such as

log GDP in country g and in country h, and indicator variables for shared border or common

language. Many studies focus on the e¤ect of shared membership in organizations fostering

free-trade, notably WTO (World Trade Organization) and GATT (General Agreement on

Tari¤ and Trade).

The �xed e¤ects can be some combination of none, time, country 1, country 2, country

pairs, country1 by time, country 2 by time. Depending on the �xed e¤ects included as

regressors, control variables such as log distance, log GDP and shared border may no longer

be identi�ed.

4.1. Cross-section Example - RE: Rose and Engel (2002)

Rose and Engel (2002) estimate a gravity model using bidirectional trade for 127 countries

in a single year. Data are available for 4,618 of the potential 8,001 country pairs (equals

127� 126=2). The key regressor is an indicator variable for joint membership in a currency
union, a binary regressor is non-zero for only 24 of the 4,618 observations. Inference is based

on heteroskedastic-robust standard errors, which are identical to those from one-way cluster

on country pair since in this cross-section case there is only one observation per country pair.
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Table 1 re-estimates RE Table 3 column 1 which includes no �xed e¤ects. Dyad-robust

standard errors are 1.53 times heteroskedastic-robust standard errors for currency union, and

more than three times heteroskedastic-robust standard errors for the other three regressors.3

Table 2 re-estimates RE Table 3 column 1 with country 1 �xed e¤ects and country 2 �xed

e¤ects added as regressors. (With a single cross-section there is no role for time �xed e¤ects.

Country-pair �xed e¤ects cannot be included as there are as many of these as observations.)

Then currency union has coe¢ cient that is halved and smaller dyad-robust standard error

that is 1.31 times the heteroskedastic-robust standard error. The log product regressors are

not identi�ed as ln(xg � xh) = lnxg + lnxh and country g and country h �xed e¤ects are

included.

Clearly the inclusion of country-speci�c e¤ects does not account for all the error correla-

tion. It is still necessary to control for dyadic error correlation. The two-way cluster-robust

method goes a long way towards doing so, but the dyad-robust standard errors are still on

average about 10-15% larger than two-way cluster-robust.

4.2. Panel Example 1 - R: Rose (2004)

Rose (2004) estimates a gravity model using bidirectional trade �ows for 187 countries over

52 years (1948-1999). Data are available for 234,597 of the potential 819,156 observations

(equals 52�178�177=2). The key regressors are indicator variables for one or both countries
in GATT/WTO. Inference is based on standard errors that one-way cluster on country-pair.

Table 3 re-estimates R Table 1 column 1 which includes time �xed e¤ects. Dyad-robust

standard errors are 3.10 times one-way cluster on country pairs standard errors for one

country in GATT/WTO, and 2.86 times for two countries in GATT/WTO.

The GATT/WTO indicator variables have a surprising negative sign. Rose (2004) found

that when country-pair �xed e¤ects are added the coe¢ cients have the expected positive

sign (R Table 1 column 4).

Table 4 re-estimates R Table 4, with country-pair �xed e¤ects rather than country

�xed e¤ects.4 Dyad-robust standard errors are 3.14 times one-way cluster on country

3We use exactly the same data as used by Rose and Engel (2002). In fact for the OLS regression reported
here, and in Table 3 of Rose and Engel (2002), three country pairs appear twice in the dataset, and all these
duplicates were in a currency union. If these duplicates are dropped then the currency union coe¢ cient falls
to 0.9769, still very large, and remains statistically signi�cant at the 5% level.

4Our �xed e¤ects estimates di¤er from those given in column 4 of Table 1 of Rose (2004). The key �rst
two regressors have coe¢ cients of 0.15 and 0.05, compared to our 0.13 and 0.06. Other coe¤cients di¤er

20



pairs standard errors for one country in GATT/WTO, and 2.57 times for two countries

in GATT/WTO.

Again the inclusion of country-speci�c e¤ects does not account for all the error correlation.

It is still necessary to control for dyadic error correlation. The two-way cluster-robust method

goes a long way towards doing so, but the dyad-robust standard errors are still on average

about 20% larger than two-way cluster-robust.

4.3. Panel Example 2 - BB: Baier and Bergstrand (2007)

Baier and Bergstrand (2007) propose �xed e¤ects estimation with panel data to control for

the endogeneity of free trade agreements. The data are unidirectional trade for 96 countries

over 9 years (1960, 1965, 1970, ...., 2000). The key regressor is NOFTA, a binary variable

equal to one if there is no free-trade agreement between countries g and h. Baier and

Bergstrand used default (i.i.d.) standard errors. The key result of the paper is that inclusion

of rich sets of �xed e¤ects leads to a three-fold to �ve-fold increase in the coe¢ cient of

NOFTA.

Table 5 re-estimates BB Table 4 column 4 which includes country-pair (dyad) �xed e¤ects

and time �xed e¤ects, leading to dropping time-invariant binary regressors for common

language, common land border and distance.

Tables 6 and 7 re-estimate BB Table 5 columns 1 and 5 which include dyad �xed e¤ects

and two sets of country-time �xed e¤ects, leading to additionally dropping log GDP for the

two countries.

4.4. Panel Example 3 - DT: Dutt and Traca (2010)

Dutt and Traca (2010) use unidirectional trade for 122 countries over 13 years (1989 to

2001) or over 25 years (1980 to 2004) for manufacturing industry. Standard errors are one-

way cluster on country 1 (footnote 18 of the article notes that this is better than one-way

clustering son country pairs). Interest lies in the coe¢ cients of the �rst three regressors.

We consider models with country-pair (dyad) �xed e¤ects and time �xed e¤ects included

as regressors. Table 8 re-estimates DT Table 2 Panel A Column 4 using sectoral value added

data for sector value added and sector consumption. Table 9 re-estimates DT Table 2 Panel

B Column 4 using GDP of the exporter and importer countries.

more substantially and, surprisingly, Rose(2004) reports nonzero coe¢ cients for the regressors that are not
identi�ed even though he states that his �xed e¤ects estimates use country-pair �xed e¤ects.
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4.5. Panel Example 4 - DMV: Dutt, Mihov and Van Zandt (2013)

Dutt, Mihov and Van Zandt (2013) use unidirectional trade for 190 countries over 19 years

(1988 to 2006). Standard errors are one-way cluster on country-pair (dyad). DMV decompose

value of exports (yght) into number of products (Nght) times the average value of exports per

product (�yght). Then ln yght = lnNght + ln �yght. Gravity model regressions at the extensive

major use lnNght as the dependent variable and those at the intensive major use ln �yght as

the dependent variable. The authors use robust standard errors that one-way cluster on

country pair (dyad).

The �rst two models we consider have country-year �xed e¤ects. Table 10 re-estimates

DMV Table 1 Column 1 for the extensive margin. Table 11 re-estimates DMV Table 1

Column 2 for the intensive margin.

The remaining two models we consider have country-pair (dyad) �xed e¤ects in addition

to country-year �xed e¤ects. Table 12 re-estimates DMV Table 1 Column 3 for the extensive

margin. Table 13 re-estimates DMV Table 1 Column 4 for the intensive margin. For these

two models we obtain di¤erent, though qualitatively similar, estimates from those given by

DMV (we are currently checking for error at our end).

4.6. Summary of Empirical Examples

Figures 5.1 and 5.2 provide graphical summaries that present standard error ratios for all 93

regressor coe¢ cients estimated across 13 models in �ve papers.

From Figure 5.1, dyadic-robust standard errors are on average 5.70 times i.i.d. (default)

standard errors, 4.01 times heteroskedastic-robust standard errors and 2.56 times one-way

cluster on country-pair (dyad) standard errors.

So while one-way clustering on country-pair is an improvement on using default or

heteroskedastic-robust standard errors, the standard errors are still inadequate. The av-

erage ratio of one-way cluster standard errors to dyad-robust standard errors by study is

2.75 for Rose and Engel, 2.86 for Rose, 2.43 for Baier and Bergstrand, 3.10 for Dutt and

Traca, and 1.89 for Dutt, Mihov and Van Zandt.

From Figure 5.2, dyadic-robust standard errors are on average 1.35 times one-way cluster

on country 1, 1.50 times one-way cluster on country 2, 1.05 times two-way cluster on country

1 and country 2, and 1.10 times �corrected�dyadic standard errors.

So one-way clustering on country 1 (or on country 2) is a great improvement on one-way

22



cluster on country pair. Better still is two-way cluster robust, though these are still less

than the preferred dyad-robust. The average ratio of two-way cluster (on country 1 and

on country 2) standard errors to dyad-robust standard errors by study is 1.09 for Rose and

Engel, 1.14 for Rose, 1.13 for Baier and Bergstrand, 0.98 for Dutt and Traca, and 0.98 for

Mihov and Van Zandt.

5. Conclusion

Failure to control properly for error correlation in models with country-pair data can lead

to greatly under-estimated standard errors and over-stated t-statistics. In the two empir-

ical examples dyadic-robust standard errors were often several times larger than country-

pair cluster-robust standard errors, even after inclusion of rich sets of �xed e¤ects such as

country-pair and country-time �xed e¤ects. More generally such a large di¤erence in re-

ported standard errors may arise with dyadic data when each individual is paired with many

other individuals, so that the network is a dense network.

It is well-known that one-way and two-way cluster-robust standard errors lead to standard

Wald tests that over-reject when there are few clusters. Similar problems exist for dyadic-

robust standard errors when there are few underlying individuals forming the dyads (in our

notation when the number of countries G is small even though the number of observed dyads

N may be large). Our Monte Carlos suggest that with G = 100 there is no problem, but

with fewer countries there can be considerable over-rejection.
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Vertical lines separate the studies:

(1) Rose & Engel; (2) Rose; (3) Bergstrand & Baier; (3) Dutt & Traca; (5) DMV

Lower horizontal line is 1.0

Upper horizontal line is average of ratio of dyadic-robust to alternative standard errors

Dyadic standard errors are on average 5.70 times i.i.d. (default) standard errors

Dyadic standard errors are on average 4.01 times heteroskedastic-robust standard errors

Dyadic standard errors are on average 2.56 times one-way cluster on dyad-pair.
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Figure 5.1: Ratio of dyadic-robust to alternative standard errors
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Vertical lines separate the studies:

(1) Rose & Engel; (2) Rose; (3) Bergstrand & Baier; (3) Dutt & Traca; (5) DMV

Lower horizontal line is 1.0

Upper horizontal line is average of ratio of dyadic-robust to alternative standard errors

Dyadic standard errors are on average 1.35 times one-way cluster on country 1

Dyadic standard errors are on average 1.50 times one-way cluster on country 2

Dyadic standard errors are on average 1.05 times two-way cluster on country 1 and country
2

Dyadic standard errors are on average 1.10 times �corrected�dyadic standard errors
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Figure 5.2: Ratio of dyadic-robust to alternative standard errors
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