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to execute it (production).  The agent is privately informed about the probability that the cost is 

low, with the high-type agent earning rent because he is more optimistic than the low type.  In each 

experiment, the agent privately chooses his effort.  The joint presence of adverse selection and 

moral hazard makes it possible for the low type to “double deviate” by misrepresenting his type 

and shirking during experimentation. This leads to both truth-telling constraints being binding.  

The principal uses the length and outcomes of experimentation as well as the timing of payments 

to screen the agent by rewarding the low type after failure in experimentation.  We provide 

sufficient conditions for both success and failure to be rewarded.  We derive the optimality of over 

experimentation as it makes it less likely that the agent produces without uncovering the true cost 

and reduces the asymmetric information after a series of failed experiments.  We also consider 

whether it may be optimal to separate experimentation and production between two different 

agents.  Having the same agent working on both tasks enables the principal to use the adverse 

selection rent to address moral hazard.  Therefore, integrating experimentation and production is 

optimal when adverse selection is severe. 
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“I haven't failed.  I've just found 10,000 ways that don't work.” 

Thomas Edison 

 

1. Introduction 

Many important tasks involve two stages: a preliminary stage of experimentation or 

learning before a production or implementation stage.  Consider, for instance, a surgeon who is 

contemplating surgery for a patient.  To decide on an appropriate surgical procedure, a surgeon 

relies on their assessment of the prospect for success along with their diagnosis based on medical 

history and a series of diagnostic tests.  While the prospect for success depends largely on a 

surgeon’s prior experience and ability, the diagnosis is a dynamic learning process.  In this paper, 

we study such a two-stage problem with an interaction between the experimentation and 

production stages in a mixed model with both moral hazard and adverse selection. 

We introduce a principal-agent model where a production stage is preceded by a multi-

period learning stage of strategic experimentation.2  Each period of experimentation is subject to 

moral hazard by an agent trying to learn the cost of the project.  Success in experimentation can 

only occur if the agent works and takes the form of uncovering “good news”, i.e., the working 

agent finds out whether production cost is low.  If the agent works, failure to uncover good news 

increases the expected cost of production.  Unobserved shirking makes the principal more 

pessimistic than the agent about the true cost leading to a moral hazard rent during 

experimentation.3  With an added production stage, the possibility of shirking implies a second 

moral hazard rent at the production stage as the principal, unaware of the shirking, overestimates 

the cost of production.  Furthermore, the relationship is subject to adverse selection.  The agent 

has private information about the ex ante probability that the cost is low, which is another source 

of asymmetric beliefs.  The high type is more optimistic than the low type that the cost is low. 

The first contribution of this paper is to show that both success and failure can be 

rewarded in a dynamic experimentation model with production.  We find that moral hazard 

forces the principal to reward success, but the simultaneous presence of adverse selection may 

 
2 The exponential bandit model has been widely used as a canonical model of learning: see Bolton and Harris (1999) 

or Bergemann and Välimäki (2008). 
3 See, e.g., Bergemann and Hege (1998), Bergemann and Välimäki (2008), and Horner and Samuelson (2013). 
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make rewarding failure in the experimentation stage optimal.  This is because failure is not only 

an indicator of shirking but also a more likely event for the low type. We show how the principal 

uses the length and outcomes of experimentation as well as the timing of payments to screen the 

agent.  This is in contrast to recent papers with mixed models, which have emphasized pooling in 

one-shot models without a production stage.4   

When experimentation is accurate (the probability of success is high), failure in 

experimentation is a strong indicator of the agent’s type, while also reducing the cost of inducing 

effort.  Then, we find that rewarding the low type for failure is optimal.  The production stage 

plays a key role since the asymmetry of beliefs between the principal and the agent creates a 

scope for information rent based on expected production cost.  While it is standard that the high 

type benefits from misreporting, we find that the low might have incentives to misreport as well.  

This is because, in a mixed model, the low type can “double deviate” by misrepresenting his type 

and then shirking.  In our model, shirking off the equilibrium path allows the low type to remain 

more optimistic than the principal about the expected cost at the production stage.  When both 

truth-telling constraints are binding, the principal finds it optimal to screen by rewarding the low 

type after failure, as that is a less likely event for the high type.  The high type’s rent is only 

given after success. 

An alternative to rewarding the low type after failure is to shorten the high type's 

experimentation stage significantly.  This reduces the scope for low type to create asymmetric 

beliefs by shirking off the path and, as a result, his incentive to misreport.  Indeed, we find that 

the principal asks the high type to under-experiment. However, if experimentation is very 

accurate, this option is costly.  Then, significantly shortening the high type's experimentation 

stage is suboptimal, and the principal prefers rewarding the low type after failure. 

It may seem surprising that rewarding failure is optimal in the presence of moral hazard.  

The principal pays rent to the low type at the end of the experimentation stage after he fails in 

every prior period.  Then, shirking becomes a profitable option for the agent, and rewards after 

success must be increased in each period of experimentation to deter the agent from delaying 

 
4 See, e.g., Ollier and Thomas (2013), Castro-Pires and Moreira (2021), and Gottlieb and Moreira (2022).   
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success.  The agent is rewarded both after success and failure but gets a higher reward after 

success.   

We also show that the principal asks the low type to over-experiment to mitigate the high 

type's rent.  To understand why, note first that the lying high type does not shirk off the path, 

unlike the low type.  A contract that induces the low type to work also induces the lying high 

type to work: being less pessimistic, he is more likely to collect promised rewards after success.  

Then, the source of the high type's rent is the asymmetry of information about expected costs 

after failure.  By asking the low type to over-experiment, the principal makes it less likely that 

the lying high type produces without success and reduces the asymmetric information after a 

series of failed experiments. 

If experimentation is costly and not so accurate (the probability of success is low), 

payments to induce effort are sufficiently high to address the truth-telling incentives for both 

types.  The optimal contract is then driven by binding moral hazard constraints.  We obtain the 

standard results in a model of experimentation without adverse selection and a production stage, 

where an agent is rewarded only for success and under experimentation is optimal.  

Another contribution of our model is to analyze whether it is optimal to outsource 

experimentation to a second agent (separation) or to retain the same agent for both stages 

(integration).  The standard model of experimentation based only on moral hazard would imply 

outsourcing the experimentation stage, which is typical in the literature.5  We find that the 

presence of adverse selection can make integration optimal.  Thus, our results suggest that 

isolating the experimentation stage is not without loss of generality if adverse selection is severe 

enough.  A key benefit to the principal of having one agent for both stages is being able to use 

the adverse selection rent to address the moral hazard problem.  If adverse selection is severe, 

yielding a large rent, the principal can even satisfy the moral hazard constraints ‘for free’ by 

spreading the adverse selection rent across time.  

There are practical implications of our insight regarding the optimality of outsourcing 

experimentation depending on the relative strength of the two incentive problems.  Consider first 

the case of drug approval trials, where a pharmaceutical company (principal) typically 

 
5 More precisely, by separating experimentation, the principal saves the additional moral hazard rent at the 

production stage mentioned above.   
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outsources to a clinical research organization (a separate agent) the clinical trials to demonstrate 

the effectiveness of a new drug.  Moral hazard is the more serious issue. 6  Adverse selection is 

less relevant as much information about the prospective efficacy of the drug is in the public 

domain.  Separation is optimal.  In contrast, for the case of a surgeon described earlier, 

integrating the two stages (a series of diagnostic tests and surgery) would be optimal as seems to 

be the observed practice.  Adverse selection is likely to be a major issue depending on each 

surgeon’s expertise and experience.  Moral hazard is less of a concern given protocols and 

regulations for healthcare activities required by the health insurance company or HMO.7  As a 

result, integration is optimal. 

Our analysis suggests that, when the tasks are separated, incentive schemes are simple, 

and the agent is paid after success.  When the tasks are integrated, incentives schemes are more 

complex, and the agent can be paid after failure.  Therefore, our model provides support for why 

CEOs are sometimes paid hefty compensations despite failure to perform.  Under pure moral 

hazard, CEOs should be given the lowest possible wage (typically zero) upon failure.  However, 

some recent papers surveyed by Edmans et al. (2017) rationalize payment after failure, for 

example, to induce CEOs to reveal negative information or to explore risky new technologies.  

Our model explains that payment after failure can serve as a screening instrument. 

Related Literature. Our paper is related to the literature on contracting for 

experimentation following Bergemann and Hege (1998).  Most of that literature considers either 

moral hazard or adverse selection models in isolation.8 Among the few exceptions that introduce 

both moral hazard and adverse selection are Gerardi and Maestri (2012), Guo (2016), and Halac 

et al. (2016).  Unlike all those papers, we also consider a production stage and show how the rent 

in one stage echoes into the other stage.9  The presence of the production stage leads to the 

possibility of both types benefiting from private information.  While the standard result in the 

 
6 There are multiple examples of clinical research organizations shirking, for example, by creating fake patient 

profiles (see Lindblad et al. (2014), Anand et al. (2012), Pogue et al. (2013) and references therein).   
7 In addition, healthcare practitioners are required by law to record patient medical histories and retain detailed case 

histories.  There is also little room for skipping tests or altering results since this behavior might be simply illegal 

and a surgeon might be subject to prosecution.  Surgeons are of course also bound by the Hippocratic Oath. 
8 See, e.g., Horner and Samuelson (2013), Sadler (2021), Escobar and Zhang (2021), Rodivilov (2022), and Moroni 

(2022) for models of pure moral hazard, and Gomes et al. (2016) and Khalil et al. (2020) for models of adverse 

selection only. Bhaskar and Mailath (2019) study a dynamic moral hazard with discrete actions model where the 

principal can use only short-term contracts, and Bhaskar and Roketskiy (2023) allow for continuous effort choice. 
9 Except for Khalil et al. (2020) who introduce a production stage but with adverse selection only. 
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literature is to reward success in the experimentation stage to address moral hazard, we find that 

the presence of adverse selection may make rewarding failure in the experimentation stage 

optimal.   

Gerardi and Maestri (2012) also have a result akin to rewarding failure in a model with a 

fixed length of experimentation.  The agent is rewarded if he fails to obtain a signal that the state 

is good, but only if his report matches the true state observed ex-post.  The reason is that 

information is "soft" in Gerardi and Maestri (2012) (the agent’s report is not verifiable), whereas 

information is "hard" in our model.  Manso (2011) introduces a two-period model where failure 

is rewarded to incentivize the agent to explore riskier projects.  In our model, there is only one 

available project, and rewarding failure is used to screen the low type.  

More broadly, the literature on mixed models has pointed out that the optimal contract 

can be pooling.10  In our model, the principal uses the timing of payments along with the length 

of experimentation and outcomes to induce effort and screen the agent.  With multiple screening 

instruments, mixed models do not necessarily imply pooling.  See Foarta and Sugaya (2021) for 

an example.11  Martimort et al. (2023) study a mixed model with limited liability in a static 

setting and find that separation can be optimal.  They use a dichotomous setup where the effort 

only determines a separate additive stochastic benefit but does not affect the cost of production 

or the output.  They find pooling may occur but only for inefficient agents.  We consider a 

dynamic model that is not dichotomous since the agent’s effort impacts the expected cost of 

production through learning. 

This paper is also related to the literature on endogenous information gathering before 

production.  The standard model is static, based on early papers by Crémer and Khalil (1992), 

Lewis and Sappington (1997), and Crémer, Khalil, and Rochet (1998), where an agent exerts 

effort that increases the precision of the signal of the state (relevant for a production decision).12  

By modeling effort as experimentation, we contribute to this literature by introducing the 

 
10 See, e.g., Gottlieb and Moreira (2022). 
11 Castro-Pires et al. (2024) study a mixed model when the agent is risk averse and provide sufficient conditions 

under which the moral hazard problem can be decoupled from the adverse selection problem. Our setting does not 

satisfy those sufficient conditions since our problem is multi-dimensional as the optimal contract sets the wage, the 

length of experimentation and the output. 
12 For recent papers, see citations in Krähmer and Strausz (2011), Rodivilov (2021), Downs (2021), and Häfner and 

Taylor (2022). 
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dynamics of learning, and especially the possibility of learning with asymmetric speeds.  In our 

model, the principal endogenously determines the degree of asymmetric information in the 

production stage by choosing the length of experimentation.  Unlike the rest of the literature, we 

show that the principal may find it optimal to reward failure and to over-experiment to screen the 

types. 

We also contribute to the literature on the power of incentives for innovation.  Manso 

(2011) shows that an optimal incentive scheme may exhibit a reward for early failure for a risk 

averse agent.  Benabou and Tirole (2003) show that using high-powered incentives may be 

detrimental to intrinsic motivation.  In a laboratory experiment, Ederer and Manso (2013) find 

that a combination of rewards for both failure and success can be effective in incentivizing 

innovation.  Sadler (2021) illustrates that high-powered incentives may discourage creativity.  

We contribute to this literature by showing theoretically that the coexistence of low- and high-

powered incentive schemes can be optimal to mitigate the effect of adverse selection when 

failures to innovate are informative for the subsequent production decision. 

Finally, our paper is also related to the extensive literature on integration and separation 

of tasks between agents.  See, for instance, Schmitz (2005), Khalil et al. (2006), Iossa and 

Martimort (2012), Hoppe and Schmitz (2013 and 2021), and Li et al. (2015).  Our dynamic 

model of learning allows us to pinpoint the relative importance of moral hazard and adverse 

selection in determining the optimal organization structure. 

2. The Model and the First Best 

A principal hires an agent to implement a project.  The (marginal) cost of the project, 𝑐, is 

initially unknown to both the principal and the agent, but it is common knowledge that the cost 

can be low, 𝑐 = 𝑐 > 0, with probability 𝛽0 ∈ (0,1), or high, 𝑐 = 𝑐, with probability 1 − 𝛽0, 

where 𝑐 − 𝑐 = Δ𝑐 > 0.  Both the principal and the agent are risk neutral, and, for simplicity, we 

assume that their discount factor is one.  Before the actual production occurs, the agent gathers 

information regarding the production cost, which we model as a standard experimentation 

stage.13  In the production stage, the agent produces based on what is learned about cost during 

the experimentation stage.  

 
13 See, e.g., Halac et al. (2016). 
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2.1. The Experimentation Stage 

The length of the experimentation 𝑇 ∈ 𝛮 is chosen by the principal.  In each period 𝑡 ∈

{1, 2, … , 𝑇}, the principal must address a moral hazard problem.  At each period 𝑡, the agent 

privately chooses whether to perform an experiment, i.e., “work,” 𝑒𝑡 = 1, or not to experiment, 

i.e., “shirk,” 𝑒𝑡 = 0.  Experimentation at 𝑡 costs 𝛾𝑒𝑡 to the agent, where 𝛾 > 0.  

The principal must also address an adverse selection problem.  The agent is privately 

informed about the probability that the cost is low,  

𝛽0
𝜃 = 𝑃𝑟(𝑐 = 𝑐|𝜃), 

where, the agent’s type is denoted by the superscript 𝜃 ∈ {𝐻, 𝐿}, with 0 < 𝛽0
𝐿 < 𝛽0

𝐻 < 1.  In 

other words, a high type is more optimistic that the cost is low before experimentation starts, i.e., 

the high type has a lower expected cost than the low type.  The principal believes the agent is a 

high type (𝜃 = 𝐻) with probability 𝜈 ∈ (0,1) and a low type (𝜃 = 𝐿) with probability (1 − 𝜈).   

We assume that information gathering takes the form of looking for good news.  We say 

that the experimentation was successful if it reveals that the cost is low (good news).  If the cost 

is actually low and the agent works at period 𝑡, success occurs with probability 0 < 𝜆 < 1.  

Success is publicly observable.  Once success occurs in a period 𝑡, the experimentation stage 

stops, and production takes place based on 𝑐 = 𝑐.  Success cannot occur in a period 𝑡 if the cost 

is high, or if the agent shirks.  Thus, it is optimal for the principal to induce 𝑒𝑡 = 1 in every 

period of the experimentation stage. 

If the agent fails to learn that the cost is low in a period 𝑡, we say that experimentation 

failed in that period.  Then, experimentation resumes if 𝑡 < 𝑇, but both the agent and the 

principal become more pessimistic about the likelihood of the cost being low.  Production takes 

place after the experimentation stage ends, either if the agent succeeds or if he fails all 𝑇 times.   

2.2. Updating Beliefs 

Given that 𝑒𝑡 = 1 for all 𝑡, and that experimentation has failed in previous periods, we 

denote by 𝛽𝑡
𝜃 the updated belief of a type 𝜃 agent that the cost is low at the beginning of period 𝑡 

(after 𝑡 − 1 failures).  We have 𝛽𝑡
𝜃 =

𝛽𝑡−1
𝜃 (1−𝜆)

𝛽𝑡−1
𝜃 (1−𝜆)+(1−𝛽𝑡−1

𝜃 ) 
, which can be re-written in terms of 𝛽0

𝜃 

as follows: 
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𝛽𝑡
𝜃 =

𝛽0
𝜃(1−𝜆)𝑡−1

𝛽0
𝜃(1−𝜆)𝑡−1+1−𝛽0

𝜃. 

The expected cost for a type 𝜃 agent at the beginning of period 𝑡 is then 

𝑐𝑡
𝜃 = 𝛽𝑡

𝜃𝑐  + (1 − 𝛽𝑡
𝜃) 𝑐. 

After each failure, the agent becomes more pessimistic about the true cost being low (𝛽𝑡
𝜃 

falls), and the expected cost rises.  For the same number of failures during the experimentation 

stage, a low type always remains more pessimistic than a high type and has a higher expected 

cost (𝑐𝑡
𝐿 > 𝑐𝑡

𝐻).  However, both 𝑐𝑡
𝐻 and 𝑐𝑡

𝐿 approach 𝑐 in the limit.   

For future use, we note that the difference in the expected cost,  

∆𝑐𝑡 ≡ 𝑐𝑡
𝐿 − 𝑐𝑡

𝐻 = (𝛽𝑡
𝐻 − 𝛽𝑡

𝐿)(𝑐 − 𝑐) = (𝛽𝑡
𝐻 − 𝛽𝑡

𝐿)𝛥𝑐 > 0, 

is either decreasing in time (if 𝛽0
𝐻 ≤ 1 − 𝛽0

𝐿) or is non-monotonic with one peak (if 𝛽0
𝐻 > 1 −

𝛽0
𝐿).14  Two examples of ∆𝑐𝑡 are presented in Figure 1.   

 

Figure 1. Expected cost with 𝛽0
𝐻 = 0.9, 𝜆 = 0.2, 𝑐 = 0.5, 𝑐 = 5, 𝛽0

𝐿 = 0.1 (left) and 𝛽0
𝐿 = 0.75 (right). 

2.3. The Production Stage 

Production takes place if experimentation succeeds in some 𝑡, or if it fails all 𝑇 times.  

Since success publicly reveals low cost, the output after success is chosen under complete 

 
14 See Claim B in Appendix B for a formal proof. 
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information.  The interesting case occurs when the agent has failed to learn during the entire 

experimentation stage since production then occurs under asymmetric information.15   

Our assumption of a productive decision after failure is a significant departure from the 

standard literature on strategic experimentation.  In the literature, the quantity after failure is 

implicitly assumed to be zero.  Then, asymmetric beliefs after failure between the principal and 

agent do not matter for the incentives.  As we will illustrate, the difference in beliefs matters 

whenever there is a decision at the end of the experimentation stage, and we capture it by 

assuming an explicit production stage even after failure.  Thus, asymmetric information 

generated during the experimentation stage echoes into the production stage.  Moreover, the 

anticipation of asymmetric information during production impacts the experimentation stage. 

A simple way to capture the impact of asymmetric beliefs in production after failure is to 

assume that the output after failure is fixed at 𝑞𝐹 > 0.  We relax this assumption in an 

extension.16  To be consistent with the extension section, we assume that the principal’s value of 

the project is given by 𝑉(𝑞), which is strictly increasing and strictly concave.  The output after 

success, 𝑞𝑆, is determined by 𝑉′(𝑞𝑆) = 𝑐.  We assume 𝑉(𝑞𝑆) > 𝑉(𝑞𝐹) > 0.  The cost of 

production after success is therefore 𝑐𝑞𝑆 and the expected cost after failure is 𝑐𝑡
𝜃𝑞𝐹, where 𝑐𝑡

𝜃 =

𝛽𝑡
𝜃𝑐  + (1 − 𝛽𝑡

𝜃) 𝑐. 

2.4. The First Best Length of Experimentation 

Suppose the agent’s type 𝜃 is common knowledge and the agent’s effort choice is 

publicly observable.  The first-best length of experimentation 𝑇𝜃 for a type-𝜃 agent determines 

the maximum expected surplus net of costs denoted by: 

                Ω𝜃 = 𝛽0
𝜃 ∑ (1 − 𝜆)𝑡−1𝜆[𝑉(𝑞𝑆) − 𝑐𝑞𝑆 − ∑ 𝛾𝑡

𝑠=1 ]𝑇𝜃

𝑡=1   

+(1 − 𝛽0
𝜃 + 𝛽0

𝜃(1 − 𝜆)𝑇𝜃
) [𝑉(𝑞𝐹) − 𝑐

𝑇𝜃+1
𝜃 𝑞𝐹 − ∑ 𝛾𝑇𝜃

𝑠=1 ].  

Since the expected cost is rising until success is obtained, the first-best solution is characterized 

by a termination date 𝑇𝐹𝐵
𝜃 , the maximum number of periods an agent of type 𝜃 is allowed to 

experiment: 

 
15 We assume that the agent will learn the exact cost later, but it is not contractible. 
16 In the extension, the output is determined such that the marginal benefit of output equals its (expected) marginal 

cost.  The key results are unaffected, except that variation in output after failure is an additional screening device. 
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𝑇𝐹𝐵
𝜃 ∈ 𝑎𝑟𝑔 max

𝑇𝜃
Ω𝜃. 

Note that 𝑇𝐹𝐵
𝜃  is bounded and it is the highest 𝑡𝜃 such that 

𝛽
𝑡𝜃
𝜃 𝜆[𝑉(𝑞𝑆) − 𝑐𝑞𝑠] + (1 − 𝛽

𝑡𝜃
𝜃 𝜆)[𝑉(𝑞𝐹) − 𝑐

𝑡𝜃+1
𝜃 𝑞𝐹] ≥ 𝛾 + [𝑉(𝑞𝐹) − 𝑐

𝑡𝜃
𝜃 𝑞𝐹]. 

The intuition is that, by extending the experimentation stage by one additional period, the type 𝜃 

agent learns that 𝑐 = 𝑐 with probability 𝛽
𝑡𝜃
𝜃 .  If the experimentation stage is not extended, 𝑞𝐹 is 

produced at the expected cost 𝑐
𝑡𝜃
𝜃 , given in the 𝑅𝐻𝑆.  The 𝐿𝐻𝑆 describes the net benefit of 

extending by one period to 𝑡𝜃.  There is a chance to produce 𝑞𝑠 at cost 𝑐 if there is success, or to 

produce 𝑞𝐹 at the updated expected cost at period 𝑡𝜃 + 1, denoted by 𝑐
𝑡𝜃+1
𝜃  if the agent fails.   

The first-best length of experimentation 𝑇𝐹𝐵
𝜃  is a monotonic function of the agent’s type.17  

The reason is that the high type is more likely to learn 𝑐 = 𝑐 (conditional on the actual cost being 

low) since 𝛽𝑡
𝐻𝜆 > 𝛽𝑡

𝐿𝜆 for any 𝑡.  This implies that the principal should allow the high type to 

experiment longer.  As is standard, we assume that it is always optimal to experiment at least 

once in the first-best case, where the principal observes effort and knows 𝛽0
𝜃.18  This restriction 

does not apply in the optimal contract under asymmetric information, where the principal is free 

to choose not to experiment. 

We now consider the general model with both moral hazard and adverse selection. 

2.5. The Principal’s Problem: contract and payoffs 

Before experimentation takes place, the principal offers the agent a menu of dynamic 

contracts. We restrict attention to deterministic contracts.  A contract specifies, for each type of 

agent, the length of the experimentation stage and the transfer and output as a function of 

whether experimentation is successful in any period.   

Without loss of generality, we use a direct truthful mechanism, where the agent is asked 

to announce his type, denoted by 𝜃.  A contract is defined formally by 

 
17 This is different from Halac et al. (2016) and Khalil et al. (2020), where the first-best termination date is non-

monotonic in type and plays a key role.  The reason for the non-monotonicity in those papers is that agent’s type is 

given by 𝜆, and the conditional probability of success is higher for the high type early but becomes lower as the 

length of experimentation increases. 
18 In particular, we assume that the principal would not choose 𝑞𝑆 without experimenting. 
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𝜛�̂� = (𝑇�̂�, {𝑤𝑡
�̂�(𝑐), 𝑤𝑡

�̂�(𝑐𝑡+1
�̂� )}

𝑡=1

𝑇�̂�

), 

where 𝑇�̂� is the (maximum) duration of the experimentation stage for the announced type 𝜃, 

𝑤𝑡
�̂�(𝑐) is the agent’s wage if he observed 𝑐 = 𝑐 in period 𝑡 ≤ 𝑇�̂�, and 𝑤𝑡

�̂�(𝑐𝑡+1
�̂� ) is the agent’s 

wage if he fails 𝑡 ≤ 𝑇�̂� times. 

An agent of type 𝜃, announcing his type as 𝜃, chooses the periods in which he works or 

shirks, where the number of periods the agent works is written as ∑ 𝑒𝑠
𝜃𝑇�̂�

𝑠=1 .  Denoting the effort 

profile by 𝑒𝜃 = {𝑒𝑡
𝜃}

𝑡=1

𝑡=𝑇�̂�

 , the agent receives expected utility 𝑈𝜃(𝜛�̂�) at time zero from a 

contract 𝜛�̂�: 

𝑈𝜃(𝜛�̂�, 𝑒𝜃) = (1 − 𝛽0
𝜃) [∑ [𝑤𝑡

�̂�(𝑐𝑡+1
�̂� ) − 𝛾𝑒𝑡

𝜃] − 𝑐
∑ 𝑒𝑠

𝜃𝑇�̂�
𝑠=1 +1

𝜃 𝑞𝐹 𝑇�̂�

𝑡=1 ]  

+𝛽0
𝜃 ∑ (∏ (1 − 𝜆𝑒𝑠

𝜃)𝑡−1
𝑠=1 ) [𝑒𝑡

𝜃𝜆(𝑤𝑡
�̂�(𝑐) − 𝑐𝑞𝑆) + (1 − 𝜆𝑒𝑡

𝜃)𝑤𝑡
�̂�(𝑐𝑡+1

�̂� ) − 𝛾𝑒𝑡
𝜃 +𝑇�̂�

𝑡=1

(1 − 𝜆𝑒𝑡
𝜃)1

{𝑡=𝑇�̂�}
𝑐
∑ 𝑒𝑠

𝜃𝑇�̂�
𝑠=1 +1

𝜃 𝑞𝐹]. 

where the indicator function 1
{𝑡=𝑇�̂�}

 is used to denote the last period of experimentation.19  

Conditional on the actual cost being low, which happens with probability 𝛽0
𝜃, the 

probability of succeeding for the first time in period 𝑡 ≤ 𝑇�̂� is given by (∏ (1 − 𝜆𝑒𝑠
𝜃)𝑡−1

𝑠=1 )𝑒𝑡
𝜃𝜆.  If 

the agent succeeds in period 𝑡, he will produce 𝑞𝑆 and is paid 𝑤𝑡
�̂�(𝑐).  If he fails in period 𝑡 <

𝑇�̂�, experimentation continues but we allow for the agent to be paid 𝑤𝑡
�̂�(𝑐𝑡+1

�̂� ).  We will show 

that the agent never receives a positive payment after failure except in the final period.  The 

agent fails in a period 𝑡 either if the cost is high, which happens with probability 1 − 𝛽0
𝜃, or, if he 

fails despite the cost being low, which happens with probability 𝛽0
𝜃(1 − 𝜆𝑒𝑠

𝜃).  If the agent fails 

𝑇�̂� times despite the cost being low, which happens with probability 𝛽0
𝜃 ∏ (1 − 𝜆𝑒𝑠

𝜃)𝑇�̂�

𝑠=1 , the 

agent produces 𝑞𝐹 based on the expected cost at period 𝑇 + 1.  

 
19 The updating occurs in the following period, thus the “+1” in ∑ 𝑒𝑠

𝜃𝑇�̂�

𝑠=1 + 1. 
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We denote by �⃗�𝜃(𝜛�̂�) ≡ 𝑎𝑟𝑔𝑚𝑎𝑥𝑒𝜃𝑈𝜃(𝜛�̂�, 𝑒𝜃) the optimal action profile for type 𝜃 in 

all periods 𝑡 ≤ 𝑇𝜃 facing a contract 𝜛�̂�.  Denoting the equilibrium effort profile by 𝑒𝜃 = 1⃗⃗ (with 

𝑒𝑡
𝜃 = 1 for all 𝑡 ≤ 𝑇𝜃), the optimal contract must satisfy the following (global) moral hazard 

constraint: 

(𝑴𝑯𝜽)     1⃗⃗ ∈ �⃗�𝜃(𝜛𝜃).  

The optimal contract will have to satisfy the following incentive compatibility constraint 

for all 𝜃 and 𝜃: 

(𝑰𝑪𝜽)    𝑈𝜃(𝜛𝜃, 1⃗⃗) ≥ 𝑈𝜃 (𝜛�̂�, �⃗�𝜃(𝜛�̂�)). 

We refer to reward after success and failure by the agent’s payment in each event net of 

production cost.  Thus, we denote by 𝑦𝑡
𝜃 the reward after success in period 𝑡, and by 𝑥𝑡

𝜃 the 

reward after failure until period 𝑡: 

𝑦𝑡
𝜃 ≡ 𝑤𝑡

𝜃(𝑐) − 𝑐𝑞𝑆, 

𝑥𝑡
𝜃 ≡ 𝑤𝑡

𝜃(𝑐𝑡+1
𝜃 ) − 1{𝑡=𝑇𝜃}𝑐𝑇𝜃+1

𝜃 𝑞𝐹. 

We denote the probability that an agent of type 𝜃 does not succeed in any of the first 𝑡 periods of 

the experimentation stage given 𝑒𝑗
𝜃 = 1 for all 𝑗 ≤ 𝑡 by: 

𝑃𝑡
𝜃 ≡ 1 − 𝛽0

𝜃 + 𝛽0
𝜃(1 − 𝜆)𝑡. 

Finally, we assume the agent’s reward net of expected production cost must be non-

negative.20  To account for this, we impose the following limited liability (𝑳𝑳) constraints 

whether experimentation succeeds or fails: 

(𝑳𝑳𝑺𝒕
𝜽)    𝑦𝑡

𝜃 ≥ 0 for 𝑡 ≤ 𝑇𝜃, 

(𝑳𝑳𝑭𝒕
𝜽)     𝑥𝑡

𝜃 ≥ 0 for 𝑡 ≤ 𝑇𝜃. 

 
20 Bankruptcy laws and minimum wage laws are well-known examples of legal restrictions on transfers that 

exemplify limited liability in contracts. See, e.g., Krähmer and Strausz (2015) for more examples.  Note that the 

agent is not protected off the equilibrium path.  Thus, this is not a constraint representing the agent’s wealth.   

Without limited liability, the principal can receive first best profit since success during experimentation is a random 

event correlated with the agent’s type (Crémer-McLean, 1985). To streamline the presentation, we assume the 

transfers must cover expected cost. This is reminiscent of the well-known cost-plus contracts in the procurement 

literature.  
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The principal’s expected payoff from a contract 𝜛𝜃 offered to an agent of type 𝜃, that 

satisfies the above constraints, is given by 

𝜋𝜃(𝜛𝜃, 1⃗⃗) = 𝛽0
𝜃 ∑ (1 − 𝜆)𝑡−1 [𝜆 (𝑉(𝑞𝑆) − 𝑤𝑡

𝜃(𝑐)) − (1 − 𝜆)𝑤𝑡
𝜃(𝑐𝑡+1

𝜃 )]𝑇𝜃

𝑡=1   

+(1 − 𝛽0
𝜃 + 𝛽0

𝜃(1 − 𝜆)𝑇𝜃
)𝑉(𝑞𝐹) − (1 − 𝛽0

𝜃)∑ 𝑤𝑡
𝜃(𝑐𝑡+1

𝜃 )𝑇𝜃

𝑡=1 . 

 

Principal’s Problem: The principal maximizes the objective function: 

𝛦𝜃[𝜋𝜃(𝜛𝜃, 1⃗⃗)] = 𝜈𝜋𝐻(𝜛𝐻 , 1⃗⃗) + (1 − 𝜈)𝜋𝐿(𝜛𝐿 , 1⃗⃗). 

s.t.   (𝑀𝐻𝜃), (𝐼𝐶𝜃), (𝐿𝐿𝑆𝑡
𝜃) and (𝐿𝐿𝐹𝑡

𝜃) for 𝜃 ∈ {𝐻, 𝐿}. 

The timing is as follows: 

1. The agent learns his type 𝜃. 

2. The principal offers a contract to the agent.  If the agent rejects the contract, the game is 

over and both parties get payoffs normalized to zero; if the agent accepts the contract, the 

game proceeds to the experimentation stage with maximum duration as specified in the 

contract. 

3. The experimentation stage begins. 

4. If the agent learns that 𝑐 = 𝑐, the experimentation stage stops, and the production stage 

occurs with output and transfers as specified in the contract.  In case no success is 

observed during the entire experimentation stage, the production stage occurs with output 

and transfers as specified in the contract. 

Besides the fact that the degree of asymmetric information is endogenous depending on 

the termination date 𝑇𝜃, the presence of a production stage adds novel aspects to the mixed 

model.  First, there is a second moral hazard rent, which is consequential to the integration-

separation decision and may justify the focus on pure moral hazard models in the literature on 

strategic experimentation.  Second, both the (𝐼𝐶) constraints can be binding leaving the principal 

no option but to reward failure in order to screen.  One reason why both the (𝐼𝐶) constraints can 

be binding is standard in a mixed model: a low type may have an incentive to misreport and 
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shirk.  Another reason is that experimentation leads to a common value problem because the 

agent’s type 𝛽0
𝜃 directly enters the principal’s objective function.21   

3. Solution 

3.1. Simplifying the (𝑀𝐻𝜃) and (𝐼𝐶𝜃) constraints 

Consider the (𝑀𝐻𝜃) constraints. We first follow the standard step of replacing without 

loss of generality the global moral hazard constraint (𝑀𝐻𝜃) by a sequence of local one-period 

moral hazard constraints (𝑀𝐻𝑡
𝜃).22  The one-period moral hazard constraints (𝑀𝐻𝑡

𝜃) ensure that 

the agent will not engage in a one-shot deviation and shirk at period 𝑡 ≤ 𝑇𝜃 (given that the agent 

has worked in all prior periods 𝑗 < 𝑡 without success and will work in all subsequent periods 𝑠 >

𝑡).   

(𝑀𝐻𝑡
𝜃) 𝑦𝑡

𝜃 − 𝑥𝑡
𝜃 ≥

𝛾

𝜆𝛽𝑡
𝜃 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝜃 + (1 − 𝜆)𝑥𝑠
𝜃 − 𝛾)𝑇𝜃

𝑠=𝑡+1 +
(1−𝛽0

𝜃)

𝑃
𝑇𝜃
𝜃 Δ𝑐𝑞𝐹 .  

The principal can motivate the agent to work by paying a higher reward for success (𝑦𝑡
𝜃) 

than the reward after failure (𝑥𝑡
𝜃).  The first two terms on the RHS of (𝑀𝐻𝑡

𝜃) capture a standard 

rent in a dynamic model of experimentation without production (see, e.g., Bergemann and Hege 

(1998)).23  A new feature relative to a standard dynamic moral hazard problem of 

experimentation is due to the presence of a production stage in our model.  Consequently, in 

addition to the standard moral hazard rent during experimentation, the agent receives a second 

moral hazard rent at the production stage 
(1−𝛽0

𝜃)

𝑃
𝑇𝜃
𝜃 Δ𝑐𝑞𝐹 because a shirking agent will have a lower 

expected cost compared to what the principal believes.24   

 
21 See, e.g., Laffont and Martimort (2002), page 53.  In a common value setting under pure adverse selection, that 

we also solve in Appendix D, both upward and downward incentive compatibility constraints can be binding 

because of a conflict between the principal’s preference for the high type to experiment longer for pure efficiency 

reasons and the monotonicity condition imposed by asymmetric information.   
22 The formal proof is in Appendix C. 
23 On top of the static moral hazard rent due to limited liability, which is the first term on the 𝑅𝐻𝑆 of (𝑀𝐻𝑡

𝜃), there 

is an additional rent in the standard dynamic moral hazard problem, reflected in the second term: (i) if the agent 

secretly shirks at period 𝑡, he is more likely to get to any future period 𝑠 > 𝑡 than what the principal anticipates, 

reflected in the different probabilities, (1 − 𝜆)𝑠−𝑡−1, as opposed to (1 − 𝜆)𝑠−𝑡 that the principal would anticipate.   
24 The principal’s belief is based on one more period of working compared to that of a shirking agent.  Thus, the 

shirking agent has a lower expected cost: 𝑐𝑇
𝜃 = 𝑐𝑇+1

𝜃 − (𝛽𝑇
𝜃 − 𝛽𝑇+1

𝜃 )Δ𝑐 < 𝑐𝑇+1
𝜃 , and he will receive an additional 

production stage rent as a result. 
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Before we present the (𝐼𝐶𝜃) constraints, we discuss off-equilibrium effort on the 𝑅𝐻𝑆 of 

these constraints since the moral hazard problem is also implicitly reflected in the (𝐼𝐶𝜃) 

constraints.25  In Lemma 1 in Appendix A, we show that the misreporting high type will work in 

all periods if he claims to be a low type as is true in a standard mixed model.26  A payment 

scheme under which a low type works will be enough to induce a misreporting high type to work 

since he is less pessimistic and more likely to collect promised rewards after success.   

(𝑰𝑪𝑯)  𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐻𝑇𝐻

𝑡=1 + ∑ 𝑃𝑡
𝐻𝑥𝑡

𝐻𝑇𝐻

𝑡=1 − ∑ 𝑃𝑡−1
𝐻 𝛾𝑇𝐻

𝑡=1 ≥  

(1 − 𝛽0
𝐻)∑ [𝑥𝑡

𝐿 − 𝛾]𝑇𝐿

𝑡=1 + 𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1[𝜆𝑦𝑡

𝐿 + (1 − 𝜆)𝑥𝑡
𝐿 − 𝛾]𝑇𝐿

𝑡=1 + 𝑃
𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1𝑞𝐹.  

The expression 𝑃
𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1𝑞𝐹 represents a familiar adverse selection rent at the production stage: 

since a low type must be paid at least his expected cost 𝑐
𝑇𝐿+1
𝐿  following 𝑇𝐿 failures, a high type 

will have lower expected costs if he lies and experimentation fails in all periods, which is 

captured by ∆𝑐𝑇𝐿+1 = 𝑐
𝑇𝐿+1
𝐿 − 𝑐

𝑇𝐿+1
𝐻 > 0 in the expression.   

Unlike the mis-reporting high type, the low type may not work in every period when he 

lies.  Again, this is a common feature in many mixed models.  We denote by 𝑡𝐿,𝐻 the number of 

periods a low type works when he misreports.  The 𝑅𝐻𝑆 of the (𝐼𝐶𝐿) simplifies since the low 

type’s probability of success in any period and the expected cost after failure depend on the total 

number of periods worked (and failed) up to that period (not on when those failures occurred).  

Furthermore, for expositional convenience and without loss of generality, we write his off-the-

equilibrium path effort as a stopping rule: the low type works up to period 𝑡𝐿,𝐻 ≤ 𝑇𝐻 and shirks 

thereafter.27   

 
25 A similar characterization is not easily available in Halac et al. (2016) as the agent’s private information is about 𝜆 

the efficiency of learning parameter.  In that case, the relative probability of success across the two types changes 

over time.  As a result, the authors provide examples that it is possible to have multiple off-equilibrium paths for 

effort in the optimal contract. 
26 See, e.g., Laffont and Martimort (2002), or Chakraborty et al. (2021). 
27 The proofs in the Appendices do not rely on off the path effort of the low type being a stopping rule.  But a 

stopping rule is without loss of generality in our model because the high type’s rewards for success can be front 

loaded given that the relative likelihood of success 
𝛽0

𝐿(1−𝜆)𝑡−1𝜆

𝛽0
𝐻(1−𝜆)𝑡−1𝜆

=
𝛽0

𝐿

𝛽0
𝐻 is independent of 𝑡.  Without the stopping rule, 

the second expression on the 𝑅𝐻𝑆 of (𝐼𝐶𝐿) is replaced in the Appendix A with the expression 𝛽0
𝐿 ∑ (∏ (1 −𝑡−1

𝑠=1
𝑇𝐻

𝑡=1

𝜆𝑒𝑠
𝐿,𝐻))[𝑒𝑡

𝐿,𝐻𝜆𝑦𝑡
𝐻 + (1 − 𝜆𝑒𝑡

𝐿,𝐻)𝑥𝑡
𝐻 − 𝑒𝑡

𝐿,𝐻𝛾], where 𝑒𝑡
𝐿,𝐻

 is the effort chosen by the mis-reporting low type in period 

𝑡.   
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(𝑰𝑪𝑳)     𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆 𝑦𝑡

𝐿𝑇𝐿

𝑡=1 + ∑ 𝑃𝑡
𝐿𝑥𝑡

𝐿𝑇𝐿

𝑡=1 − ∑ 𝑃𝑡−1
𝐿 𝛾𝑇𝐿

𝑡=1 ≥ 

(1 − 𝛽0
𝐿)(∑ 𝑥𝑡

𝐻𝑇𝐻

𝑡=1 − 𝛾𝑡𝐿,𝐻) + 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1 (𝜆𝑦𝑡

𝐻 + (1 − 𝜆)𝑥𝑡
𝐻 − 𝛾)𝑡𝐿,𝐻

𝑡=1   

𝛽0
𝐿(𝑇𝐻 − 𝑡𝐿,𝐻)𝑥𝑡

𝐻 − 𝑃
𝑡𝐿,𝐻
𝐿 (𝑐

𝑡𝐿,𝐻+1
𝐿 − 𝑐

𝑇𝐻+1
𝐻 )𝑞𝐹. 

The first three expressions on the 𝑅𝐻𝑆 describe the payoffs after success and failure in 

each period, while the fourth term captures the impact of asymmetric beliefs if production occurs 

after failure.  As in the case of (𝐼𝐶𝐻), the difference in expected costs is due to what the 

principal must pay a truthful high type 𝑐
𝑇𝐻+1
𝐻 , versus the expected cost for a misreporting low 

type who only works for 𝑡𝐿,𝐻 periods, and thus has an expected cost 𝑐
𝑡𝐿,𝐻+1
𝐿 .  If 𝑡𝐿,𝐻 is much 

smaller than 𝑇𝐻, i.e., the misreporting low type shirks often, he could be more optimistic than a 

high type who has worked for 𝑇𝐻 periods, resulting in 𝑐
𝑇𝐻+1
𝐻 − 𝑐

𝑡𝐿,𝐻+1
𝐿 > 0.  Thus, the low type 

planning to shirk after misreporting can lead to (𝐼𝐶𝐿) being binding since he may command a 

rent at the production stage if he is more optimistic after shirking.   

However, if 𝑡𝐿,𝐻 is close to 𝑇𝐻, i.e., the misreporting low type works often, he could be 

less optimistic than a high type who has worked for 𝑇𝐻 periods, resulting in 𝑐
𝑇𝐻+1
𝐻 − 𝑐

𝑡𝐿,𝐻+1
𝐿 <

0.  Then, misreporting is a gamble for the low type with his payoff depending on the outcome of 

experimentation: the positive part comes from obtaining the high-type’s rent if he succeeds, and 

the negative part comes from an expected loss in the production stage if he fails in 

experimentation.  The (𝐼𝐶𝐿) could still be binding since the low-type’s gamble can be positive 

due to a common value problem (see footnote 21). 

3.2. Optimal contract – relative impact of moral hazard and adverse selection 

The solution to the principal’s problem depends on the relative importance of moral 

hazard and adverse selection.   

We will begin discussing the optimal solution with a familiar case in the strategic 

experimentation literature, where experimentation is modeled primarily as a moral hazard 

problem – how to motivate the experimenter to work.  In our setting, this will happen when 𝜆 is 

small and 𝛾 is large.  Then, the moral hazard rents are high enough to induce truth-telling, which 

implies that the (𝐼𝐶) constraints are slack.  The optimal contract is characterized by the binding 

moral hazard constraints, and we present this case in Section 3.2.1 below.   
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In contrast, if 𝜆 is large and 𝛾 is small, moral hazard rents are low and (𝐼𝐶) constraints 

are binding.  Then, adverse selection rent may come into conflict with moral hazard incentives, 

which we analyze in detail.  The most interesting case is when the adverse selection constraints 

induce the principal to reward failure to screen the two types.  We present this case in Section 

3.2.2.   

The results for the remaining two intermediate cases when only one (𝐼𝐶) constraint is 

binding follow from the analysis of the two main cases, and we discuss these cases in Section 

3.2.3.  

3.2.1. Case 1. Strong moral hazard: Both IC constraints are slack 

First, we consider a case where experimentation accuracy 𝜆 is low such that moral hazard 

is very strong relative to adverse selection, and none of the (𝐼𝐶) constraints binds.  In other 

words, neither type has incentive to misreport because of the high moral hazard rent they receive 

from their own contracts.  We present the main findings in this case along with sufficient 

conditions for this case to occur in Claim 1 below.  They require 𝜆 to be small, 𝛾 sufficiently 

higher than Δ𝑐, and 𝛽0
𝐿 to be small. 

Claim 1. For any 𝛽0
𝐻 there exist 𝜆(𝛽0

𝐻) > 0, 𝐴(𝛽0
𝐻) > 0, and 𝛽

0

𝐿
(𝛽0

𝐻) > 0 such that all the moral 

hazard constraints are binding for each type, but neither (𝐼𝐶) constraint is binding if 

𝜆 < 𝜆, 𝛾 > 𝐴Δ𝑐𝑞𝐹, and 𝛽0
𝐿 < 𝛽

0

𝐿
: 

(i) Both types of agents receive two moral hazard rents: a standard rent in the 

experimentation stage and a second rent in the production stage.   

(ii) Both types of agents are rewarded only after success, and the optimal reward 𝑦𝑡
𝜃 is 

constant, given by 𝑦𝑡
𝜃 =

𝛾

𝜆𝛽
𝑇𝜃
𝜃 +

(1−𝛽0
𝜃)

𝑃
𝑇𝜃
𝜃  

Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝜃 and 𝜃 ∈ {𝐻, 𝐿}.  

(iii) Both types of agents under-experiment relative to the first best with 𝑇𝑆𝐵
𝐿 < 𝑇𝑆𝐵

𝐻 . 

Proof: See Appendix A. 

Each type of agent is rewarded only after success, and the optimal reward 𝑦𝑡
𝜃 is constant 

for 𝑡 ≤ 𝑇𝜃.28  There is no reward after failure, i.e., 𝑥𝑡
𝜃 = 0 for all 𝑡.  As explained above when 

 
28 The reward deters a one-step-deviation by the agent, and the agent’s incentive to deviate does not depend on 𝑡 

when there is no discounting (Rodivilov, 2022).  Then, the optimal contract is unique up to payoff-irrelevant 
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describing the one-period moral hazard (𝑀𝐻𝑡
𝜃) constraints, the term 

(1−𝛽0
𝜃)

𝑃
𝑇𝜃
𝜃  

Δ𝑐𝑞𝐹 is what we 

called the second moral hazard rent.  It stems from the shirking agent having a lower expected 

cost of production after failure than the principal.  The term 
𝛾

𝜆𝛽
𝑇𝜃
𝜃  represents the standard moral 

hazard rent in a dynamic model of experimentation without production.29   

While under experimentation is optimal for both types: 𝑇𝑆𝐵
𝐿 < 𝑇𝐹𝐵

𝐿   and 𝑇𝑆𝐵
𝐻 < 𝑇𝐹𝐵

𝐻 , the 

second moral hazard rent leads to a greater degree of under-experimentation than in moral hazard 

models of experimentation without a production stage.  Each moral hazard rent increases with 

the length of experimentation because the divergent beliefs due to shirking increases with 𝑇𝜃.  

Furthermore, we also show that the high type experiments longer 𝑇𝑆𝐵
𝐿 < 𝑇𝑆𝐵

𝐻  as is true under the 

first best.   

We now discuss the intuition behind the sufficient conditions for neither (𝐼𝐶) to be 

binding.  From the binding (𝑀𝐻𝑡
𝜃), we can see that the moral hazard rents get larger if 𝜆 is 

smaller and 𝛾 is larger, which are the first two sufficient conditions for this case.  If 𝜆 is small, 

the outcome of an experiment is not informative about the effort making it costlier to incentivize 

the agent to work.  We also need the cost of experimentation 𝛾 to be sufficiently higher than Δ𝑐, 

which again makes moral hazard more important than adverse selection.  Truth telling is 

obtained “for free” in this case as neither type wants to misrepresent his private information 

about 𝛽0
𝜃.30  The third sufficient condition that 𝛽0

𝐿 is small ensures that high moral hazard 

payment to the low type deters him from the high type’s contract.  

Next, we consider the other polar case where moral hazard is less strong and 

experimentation is very effective such that both (𝐼𝐶) constraints are binding.  The sufficient 

conditions on 𝜆 and 𝛾 are a mirror image of the ones above, and inducing effort on the 

equilibrium path is not too costly.  The agent’s incentives are largely driven by the impact of 

asymmetric beliefs at the production stage due to adverse selection concerns, while the impact of 

 
alteration.  A similar reward structure holds in Halac et al. (2016) who argue that in the case of no discounting, the 

principal can be restricted to using constant bonus contracts. 

29 The standard rent has two parts, where 
𝛾

𝜆𝛽𝑡
𝜃 addresses the static gain, and 𝛾 ∑

(1−𝛽0
𝜃)

𝛽0
𝜃(1−𝜆)𝑡+𝑠−1

𝑇𝜃−𝑡
𝑠=1  is the rent coming 

from a higher probability of collecting future moral hazard rents (than the principal expects in equilibrium).  
30 The high type is not attracted by the low type’s contract as the high type experiments longer and receives a moral 

hazard rent over more periods (𝑇𝑆𝐵
𝐿 < 𝑇𝑆𝐵

𝐻 ) when he tells the truth. 
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shirking becomes important mainly off the equilibrium path as noted above when discussing the 

(𝐼𝐶) constraints.   

3.2.2. Case 2. Strong adverse selection: Both (𝐼𝐶𝐻) and (𝐼𝐶𝐿) are binding 

When 𝜆 is high, experimentation is very effective, moral hazard payments are small, and 

both (𝐼𝐶) constraints are binding.  Surprisingly, we find that the optimal contract requires 

rewarding the low type for failure, which conflicts with moral hazard constraints.  While this 

forces the principal to increase rewards after success in each period to induce effort, a high 𝜆 

makes it optimal to do so.  In Claim 2 we present the main results for this case along with 

sufficient conditions.  They require 𝜆 high, 𝛾 sufficiently smaller than Δ𝑐, and 𝛽0
𝐿 small. 

Claim 2. For any 𝛽0
𝐻 there exist 𝜆(𝛽0

𝐻) < 1, 𝐴(𝛽0
𝐻) > 0 and 𝛾2,𝑀𝐻 > 0 such that both 𝐼𝐶 bind if 

𝜆 > 𝜆, 𝛾 < min{𝐴Δ𝑐𝑞𝐹 , 𝛾2,𝑀𝐻}, and 𝛽0
𝐿 <

1

2
: 

(i) To address moral hazard, the principal must reward each type after success in every 

period (𝑦𝑡
𝜃 > 0 for 𝑡 ≤ 𝑇𝜃). 

(ii) The high type is not rewarded after failure (𝑥𝑡
𝐻 = 0 for 𝑡 ≤ 𝑇𝐻), while the low type 

is, but only in the last period (𝒙
𝑻𝑳
𝑳 > 𝟎 = 𝑥𝑡

𝐿 for 𝑡 < 𝑇𝐿).   

(iii) Relative to the first best, the low type over-experiments (𝑇𝑆𝐵
𝐿 > 𝑇𝐹𝐵

𝐿 ), while the high 

type under-experiments (𝑇𝑆𝐵
𝐻 < 𝑇𝐹𝐵

𝐻 ). 

Proof: See Appendix A. 

If 𝜆 is high, the impact of experimentation on the endogenous asymmetry of information 

is significant.  Recall that the incentive to misreport depends on 𝑇𝜃 through the difference in 

expected cost Δ𝑐𝑇𝜃.  To understand the distortion in 𝑇𝐿, we need to examine the key positive 

element in the high-type’s rent, 𝑃
𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1𝑞𝐹, which is decreasing in 𝑇𝐿.  This leads to over-

experimentation for the low type to reduce asymmetric information regarding the agent’s type, 

which would not occur under pure moral hazard.  To understand the distortion in 𝑇𝐻, recall that 

the low type’s incentive to misreport is determined by the expected cost the principal must pay a 

truthful high type 𝑐
𝑇𝐻+1
𝐻  after failure, which is increasing in 𝑇𝐻.  This leads to under-

experimentation for the high type, reinforcing the impact of moral hazard.  This also reduces the 

scope for low type to create asymmetric beliefs by shirking off the path and, as a result, his 
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incentive to misreport. However, if experimentation is very accurate, this option is costly. The 

principal cannot distort 𝑇𝐻 too much and (𝐼𝐶𝐿) is binding.31 

One important result of our model is the optimality of rewarding failure if both (𝐼𝐶) are 

binding.  Each type is rewarded for an event that is more likely to occur given the type, which is 

success for the high-type and failure for the low-type, respectively.  Because the relative 

probability of failure 
𝑃𝑡

𝐿

𝑃𝑡
𝐻 is increasing in 𝑡, it is optimal to postpone the low-type’s reward to the 

very last period of the relationship, 𝑥
𝑇𝐿
𝐿 > 0, making it less likely for a (misreporting) high type 

to obtain it.  In our mixed model, failure is not only an indicator of shirking but also a more 

likely event for the low type. If only one (𝐼𝐶) is binding, the principal does not reward failure as 

we will see in the two intermediate cases below. 

A high 𝜆 also limits the moral hazard payments after success.  Paying an additional 

screening rent after failure in the last period requires the principal to raise the reward after 

success (by the same amount) in each period.  That is, the low-type agent must be given extra 

incentive to work in each period since he is now paid extra rent after failure in the last period.  

Ultimately, the low type is still paid more after success than failure, but he gets rent even if he 

fails, which is not the case for the high type. 

Technically, to satisfy the (𝑀𝐻𝑡
𝐿) constraints, the reward after success must increase not 

only in that last period, 𝑦
𝑇𝐿
𝐿 = 𝒙

𝑻𝑳
𝑳 +

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹 , but also in the all the previous periods 

𝑡 < 𝑇𝐿: 

𝑦𝑡
𝐿 =

𝛾

𝜆𝛽𝑡
𝐿 +

(1 − 𝛽0
𝐿)

𝑃𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠
𝐿 − 𝛾)

𝑇𝐿

𝑠=𝑡+1

+ (1 − 𝜆)𝑇𝐿−𝑡𝒙
𝑻𝑳
𝑳 , 

which increases the payments 𝑦𝑡
𝐿 strictly above the optimal levels described in Claim 1.   

Paying the high type a rent after a failure 𝑥𝑡
𝐻 makes it costlier to satisfy the binding 

(𝐼𝐶𝐻) since the high type is less likely to fail. Therefore, it is optimal to choose 

𝑥𝑡
𝐻 = 0 for 𝑡 ≤ 𝑇𝐻. 

 
31 For instance, if the high type is asked to produce without experimentation, the low type reports his type honestly. 
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The timing of payments after success 𝑦𝑡
𝐻 is ineffective as a screening instrument as the 

relative probability of success between the types (
𝛽0

𝐿(1−𝜆)𝑡−1𝜆

𝛽0
𝐻(1−𝜆)𝑡−1𝜆

=
𝛽0

𝐿

𝛽0
𝐻 < 1) is constant across 

periods of experimentation.  Consequently, there is no restriction on when to pay the screening 

rent to the high type via a combination of 𝑦𝑡
𝐻. 32   

𝑦𝑡
𝐻 ≥

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻 𝛥𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐻 (strict inequality for some 𝑡). 

The principal can use the screening rent to induce effort in each period and satisfy the high 

type’s 𝑀𝐻 constraints with no additional cost.   

We can summarize the results of our two claims in the following proposition: 

Proposition 1: If moral hazard is important because 𝛾 is large and 𝜆 is small, then both types of 

agents are paid only after success and each type under experiments (Claim 1).  If adverse 

selection plays a central role, with 𝛾 small and 𝜆 large, then the low-type agent over-experiments 

and is paid a rent after both success and failure, while the high-type under-experiments and is 

paid after success only (Claim 2). 

Next, we consider intermediate cases when only one (𝐼𝐶) constraint is binding.  

3.2.3.  Intermediate Cases 3 and 4: only one (𝐼𝐶) is binding 

We outline how the analysis of the two main cases above provide the intuition for the key 

results and sufficient conditions, while the precise details are presented along with proofs in 

Appendix A as Claims 3 and 4. 

In the two intermediate cases, either (𝐼𝐶𝐻) or (𝐼𝐶𝐿) is binding, but not both.  There are 

common elements in the two cases.  Both types are only paid rent after success and there is no 

rent after failure.  If only one (𝐼𝐶) is binding, each type is paid their screening rent only after 

success without having to worry about increasing the cost of satisfying the other (𝐼𝐶).33  For the 

type earning a screening rent, his moral hazard constraints are slack.  Conversely, if a type does 

not earn a screening rent, all his moral hazard constraints are binding.  Thus, if (𝐼𝐶𝐻) is binding, 

 
32 For example, it is without loss of generality to pay the extra rent to the high type after the very first success, i.e., 

front load the extra rent. 
33 Again, there is no restriction on when this rent is paid since the relative probability of success is independent of 

type. 
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the distortion in the low type’s contract is only in the termination date 𝑇𝐿, while 𝑇𝐻 is first best.  

Similarly, the distortion is in 𝑇𝐻 when (𝐼𝐶𝐿) is binding while 𝑇𝐿 is first best.   

Again, moral hazard considerations tend to favor under-experimentation, while adverse 

selection has opposite implications on 𝑇𝐿 and 𝑇𝐻.  Increasing 𝑇𝐿 reduces asymmetry of 

information rent by the high type, while reducing 𝑇𝐻 decreases the payoff of a misreporting low 

type.  The optimal distortion depends on the strength of the moral hazard versus adverse 

selection concerns.  For example, when 𝛾 is very high, which would be one of the sufficient 

conditions for these intermediate cases, there is no over-experimentation.  Thus, over-

experimentation is largely driven by effective experimentation having the potential to reduce the 

impact of asymmetric information as may be intuitive but not readily found in the literature.  

For only one (𝐼𝐶) to be binding, it is important to have 𝛾 high enough compared to Δ𝑐 so 

that moral hazard payments are high to deter misreporting by the type whose 𝐼𝐶 is not binding.  

In addition, for only (𝐼𝐶𝐻) to be binding, it is sufficient to have 𝛽0
𝐻 high and 𝛽0

𝐿 small, while it is 

sufficient to have 𝛽0
𝐻 close to 𝛽0

𝐿 and a not too high 𝜆 for the case when only (𝐼𝐶𝐿) is binding.   

4. Is integrating experimentation and production optimal? 

In our model with experimentation and production, the interaction of adverse selection 

and moral hazard creates interdependent rents.  In a pure moral hazard model, the principal 

would prefer to employ two different agents, one for experimenting and one for producing.  This 

justifies the standard approach in the strategic experimentation literature, which studies a pure 

moral hazard experimentation stage model in isolation without a production stage.  By separating 

the two stages, the principal saves what we have called the second moral hazard rent at the 

production stage.  This begs the question of whether integrating the two tasks, as in our main 

model, can be optimal due to the presence of adverse selection.   

A key benefit of integrating the two tasks is to use the adverse selection rent to induce 

effort, i.e., pay for the moral hazard rent.  The rent needed to satisfy the (𝐼𝐶) constraints can be 

spread across time to satisfy the dynamic moral hazard constraints.  Since the relative probability 

of success across types is time-invariant, the exact distribution of this rent does not impact the 

incentive to misreport.  This benefit must be balanced against the cost of the second moral 

hazard rent when integrating.  We find that integration is optimal if the adverse selection 
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problem is severe enough relative to the moral hazard problem in experimentation (𝛽0
𝐻 far apart 

from 𝛽0
𝐿).  We present below sufficient conditions for separation/integration to be optimal.  

Proposition 2: Separation vs. integration: 

(i) Separation is optimal if the adverse selection problem is small enough: for any 𝛽0
𝐿 there 

exists a value of 𝛽0
𝐻, called 𝛽

0

𝐻
(𝛽0

𝐿), such that separation is optimal if 𝛽0
𝐻 < 𝛽

0

𝐻
(𝛽0

𝐿). 

(ii) Integration is optimal if the adverse selection problem is severe enough (𝛽0
𝐻 is close to 

one and 𝛽0
𝐿 sufficiently close to zero) and 𝜈 is high enough. 

Proof: See Appendix F. 

To establish the above result, we can use a very simple extension of our model, where the 

principal outsources the experimentation task to a second agent (experimenter).  The first agent, 

the ‘in-house’ agent, produces output based on what is learned publicly in the experimentation 

stage, and on his private information about the likelihood of low cost, 𝛽0
𝜃.  We discuss alternative 

models of separation at the end of this section.  Before experimentation starts, the in-house 

producer is asked to publicly announce his type, based on which experimentation occurs.  The 

principal pays an adverse selection rent to the producer to induce truthful reporting.  The 

experimentation stage is a pure moral hazard problem, yielding only a standard moral hazard rent 

to the experimenter (based on a commonly known 𝛽0
𝜃).  

When she separates the two tasks, the principal saves the moral hazard rent at the 

production stage but pays an adverse selection rent to the in-house producer and a moral hazard 

rent to the experimenter. When this moral hazard rent is small relatively to the adverse selection 

rent, the principal’s ability to use the adverse selection rent to satisfy moral hazard constraints 

dominates, and integration is optimal: for example, when the difference in cost Δ𝑐 is small 

relative to the difference between 𝛽0
𝐻 and 𝛽0

𝐿.34 

A possible issue regarding the model of separation above is that we assume an in-house 

producer publicly pre-announces the type 𝛽0
𝜃.  We chose this benchmark for ease of comparison 

with the main model of integration.  Instead, we could assume that the production agent is 

brought in after experimentation ends and therefore cannot announce his type before 

experimentation starts.  Our key arguments regarding the optimality of integration would only 

 
34 As we show in our proofs, this basic intuition holds regardless of which (𝐼𝐶) is binding.   
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get stronger.  This would also be the case if the in-house producer privately announced his type 

𝛽0
𝜃 to the principal.  We briefly discuss these two sub-extensions next. 

Consider first that, under separation, experimentation occurs under a common prior, 

between the principal and the experimenter, that the cost of production is low with probability 

𝛽0.  There is now an additional cost of separation as the length of experimentation can no longer 

be based on the private information about 𝛽0
𝜃 of the (integrated) agent.  Next consider the case 

where the in-house producer privately announces its type to the principal, who contracts with an 

outside experimenter.  In the interim, a principal’s incentive constraint would also have to be 

satisfied, which will again reduce the benefit of separation. 

5. Endogenous Output 

In this section, we allow the principal to choose output optimally after success and after 

failure, and she can now use output as another screening variable.  While our main findings 

continue to hold, output after failure can now be used as a screening device.  Thus, the key new 

results occur if the experimentation stage fails: the low type is asked to under-produce relative to 

the first best, while the high type might over-produce.  Just like over-experimentation, over-

production can be used to increase the cost of lying. 

When output is optimally chosen by the principal in the contract, the main change from 

the base model is that output after failure, which is denoted by 𝑞𝐹
𝜃, can vary depending on the 

expected cost.  We can replace 𝑞𝐹 by 𝑞𝐹
𝜃 in the principal’s problem. 

We derive the formal output scheme in Appendix E but present the intuition here.  When 

experimentation is successful, there is no asymmetric information and no reason to distort the 

output.  Both types produce the first best output.  When experimentation fails to reveal the cost, 

asymmetric information will induce the principal to distort the output to limit the rent.   

When both (𝐼𝐶𝐿) and (𝐼𝐶𝐻) are slack, each type under-produces after failure to reduce 

the moral hazard rent.  When the (𝐼𝐶𝐻) constraint is slack, but (𝐼𝐶𝐿) binding, the output for the 

low type, 𝑞𝐹
𝜃, does not affect information rents and, as a result, is not distorted.  The high type, 

however, might be asked to over-produce whenever the misreporting low type is more 
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pessimistic than the principal after failing in experimentation.  Over-production is, therefore, 

used to increase the cost of the lying low type.35 

When the (𝐼𝐶𝐻) binds and (𝐼𝐶𝐿) is slack, the low type is asked to under-produce in order 

to limit the rent of the high type. The output for the high type, 𝑞𝐹
𝜃, does not affect information 

rents and, as a result, is not distorted.  When both (𝐼𝐶) constraints are binding, the low type 

under produces to limit the rent of the high type.  Like the case when only (𝐼𝐶𝐻) binds, the high 

type might be asked to over produce to increase the cost of the lying low type. 

6. Conclusions 

We presented a dynamic model of strategic experimentation with both moral hazard and 

adverse selection.  Technically, such a mixed model of experimentation can become quickly 

intractable with off the equilibrium path effort hard to characterize.36  We offer a tractable model 

to provide an explanation for the co-existence of both high and low-powered incentive schemes, 

which is used in practice to spur innovative activity.  We find that, while moral hazard always 

leads the principal to reward success in experimentation, the simultaneous presence of adverse 

selection may induce the principal to reward failure.  The reason is that rewarding failure allows 

the principal to dynamically screen the agents, and it remains optimal even in the presence of 

moral hazard.  We also characterize how the principal can use over and under-experimentation to 

provide incentives. 

We also find that the principal may prefer to integrate experimentation and production by 

employing one agent for both.  We show that the standard model of experimentation, where 

experimentation is studied in isolation without a production stage, is valid as long as adverse 

selection during experimentation is not a significant concern. Integration of experimentation and 

production allows the principal to use the adverse selection rent to incentivize the agent to work.  

By distributing the adverse selection rent optimally, the principal can alleviate the moral hazard 

 
35 Since the misreporting low type may shirk off the equilibrium path, his expected cost at the production stage does 

not necessarily have to be greater than the expected cost for a high type on the equilibrium path.  Thus 

overproduction is optimal when off the equilibrium path effort of the misreporting low type involves very little 

shirking. 
36 If the adverse selection lies in the probability of success, as in Halac et al. (2016), the relative probability of 

success between the two types changes in ranking over time. 
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constraints.  This is the case if the adverse selection problem is severe enough relative to moral 

hazard or, equivalently, if the adverse selection rent is high. 
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Appendix A 
Outline: Proof of Claims 1 and 2: Parts (i), (ii), and (iii) of each claim are proved in Sections I 

and II. The sufficient conditions for each case are derived in Section III. 

In Section I, we characterize the optimal payment structure for each of the 4 cases. In Section II, 

we characterize the optimal length of experimentation for each of the 4 cases. In Section III, we 

provide sufficient conditions for each of the 4 cases to occur in equilibrium.  

Section I. The optimal payment structure 
 

The principal’s optimization problem is to choose contracts 𝜛𝜃for 𝜃 ∈ {𝐻, 𝐿} to maximize 

𝐸𝜃 {Ω𝜃 − 𝛽0
𝜃 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝜃𝑇𝜃

𝑡=1 − ∑ 𝑃𝑡
𝜃𝑥𝑡

𝜃𝑇𝜃

𝑡=1 } s.t. 

(𝐼𝐶𝜃)    𝑈𝜃(𝜛𝜃, 1⃗⃗) ≥ 𝑈𝜃 (𝜛�̂�, �⃗�𝜃(𝜛�̂�)), 

(𝑀𝐻𝑡
𝜃) 𝑦𝑡

𝜃 − 𝑥𝑡
𝜃 ≥

𝛾

𝜆𝛽𝑡
𝜃 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝜃 + (1 − 𝜆)𝑥𝑠
𝜃 − 𝛾)𝑇𝜃

𝑠=𝑡+1 +
(1−𝛽0

𝜃)

𝑃
𝑇𝜃
𝜃 Δ𝑐𝑞𝐹  for 𝑡 ≤

𝑇𝜃, 

(𝐿𝐿𝑆𝑡
𝜃)    𝑦𝑡

𝜃 ≥ 0 for 𝑡 ≤ 𝑇𝜃, 

(𝐿𝐿𝐹𝑡
𝜃)    𝑥𝑡

𝜃 ≥ 0 for 𝑡 ≤ 𝑇𝜃. 

First, recall that we have replaced the global moral hazard constraint by a sequence of 

local (𝑀𝐻𝑡
𝜃) without loss of generality (see Appendix C for formal proof).  The (𝑀𝐻𝑡

𝜃) 

constraints imply that all the (𝐿𝐿𝑆𝑡
𝐻) and (𝐿𝐿𝑆𝑡

𝐿) constraints are automatically satisfied and, 

therefore, can be ignored.  When 𝑒𝜃 = 1⃗⃗, the notation for the expected costs in the (𝐼𝐶𝜃) 

constraint is 𝑐
𝑇𝜃+1
𝜃 .  When the agent lies about his type and possibly shirks, we need to introduce 

new notation.  On the RHS of (𝐼𝐶𝐻) we label the effort chosen by the agent in each period 𝑠 as 

𝑒𝑠
𝐻,𝐿 ∈ {0,1}, and the expected cost is 𝑐

∑ 𝑒𝑠
𝐻,𝐿+1𝑇𝐿

𝑠=1

𝐻 .  Similarly, on the RHS of (𝐼𝐶𝐿,𝐻) we label the 

effort chosen by the agent in each period 𝑠 as 𝑒𝑠
𝐿,𝐻 ∈ {0,1}, and the expected cost is 𝑐

∑ 𝑒𝑠
𝐿,𝐻+1𝑇𝐻

𝑠=1

𝐿 .   

Labeling 𝜉𝐻, 𝜉𝐿, {𝜇𝑡
𝐻}𝑡=1

𝑇𝐻
, {𝜇𝑡

𝐿}𝑡=1
𝑇𝐿

, {𝜂𝑡
𝐻}𝑡=1

𝑇𝐻
, {𝜂𝑡

𝐿}𝑡=1
𝑇𝐿

 as the Lagrange multipliers of the 

constraints associated with (𝐼𝐶𝐻), (𝐼𝐶𝐿), (𝑀𝐻𝑡
𝐻), (𝑀𝐻𝑡

𝐿), (𝐿𝐿𝐹𝑡
𝐻) and (𝐿𝐿𝐹𝑡

𝐿) respectively, the 

optimization problem has the following Lagrangian: 

ℒ = 𝜈[Ω𝐻 − 𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐻𝑇𝐻

𝑡=1 − ∑ 𝑃𝑡
𝐻𝑥𝑡

𝐻𝑇𝐻

𝑡=1 ]  

+(1 − 𝜈)[Ω𝐿 − 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐿𝑇𝐿

𝑡=1 − ∑ 𝑃𝑡
𝐻𝑥𝑡

𝐿𝑇𝐻

𝑡=1 ]  

+𝜉𝐻

[
 
 
 
 𝛽0

𝐻 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡
𝐻𝑇𝐻

𝑡=1 + ∑ 𝑃𝑡
𝐻𝑥𝑡

𝐻𝑇𝐻

𝑡=1 − ∑ 𝑃𝑡−1
𝐻 𝛾𝑇𝐻

𝑡=1

−(1 − 𝛽0
𝐻) ∑ [𝑥𝑡

𝐿 − 𝛾𝑒𝑡
𝐻,𝐿]𝑇𝐿

𝑡=1 − 𝛽0
𝐻 ∑ (∏ (1 − 𝜆𝑒𝑠

𝐻,𝐿)𝑡−1
𝑠=1 )[𝑒𝑡

𝐻,𝐿𝜆𝑦𝑡
𝐿 + (1 − 𝜆𝑒𝑡

𝐻,𝐿)𝑥𝑡
𝐿 − 𝑒𝑡

𝐻,𝐿𝛾]𝑇𝐿

𝑡=1

−(1 − 𝛽0
𝐻 + 𝛽0

𝐻(∏ (1 − 𝜆𝑒𝑠
𝐻,𝐿)𝑇𝐿

𝑠=1 )) (𝑐
𝑇𝐿+1
𝐿 − 𝑐

∑ 𝑒𝑠
𝐻,𝐿+1𝑇𝐿

𝑠=1

𝐻 ) 𝑞𝐹 ]
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+𝜉𝐿

[
 
 
 
 𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1𝑦𝑡
𝐿𝑇𝐿

𝑡=1 + ∑ 𝑃𝑡
𝐿𝑥𝑡

𝐿𝑇𝐿

𝑡=1 − ∑ 𝑃𝑡−1
𝐿 𝛾𝑇𝐿

𝑡=1

−(1 − 𝛽0
𝐿)∑ [𝑥𝑡

𝐻 − 𝛾𝑒𝑡
𝐿,𝐻]𝑇𝐻

𝑡=1 − 𝛽0
𝐿 ∑ (∏ (1 − 𝜆𝑒𝑠

𝐿,𝐻)𝑡−1
𝑠=1 )[𝑒𝑡

𝐿,𝐻𝜆𝑦𝑡
𝐻 + (1 − 𝜆𝑒𝑡

𝐿,𝐻)𝑥𝑡
𝐻 − 𝑒𝑡

𝐿,𝐻𝛾]𝑇𝐻

𝑡=1

−(1 − 𝛽0
𝐿 + 𝛽0

𝐿(∏ (1 − 𝜆𝑒𝑠
𝐿,𝐻)𝑇𝐻

𝑠=1 )) (𝑐
𝑇𝐻+1
𝐻 − 𝑐

∑ 𝑒𝑠
𝐿,𝐻+1𝑇𝐻

𝑠=1

𝐿 ) 𝑞𝐹 ]
 
 
 
 

  

+∑ 𝜇𝑡
𝐻 [𝑦𝑡

𝐻 − 𝑥𝑡
𝐻 −

𝛾

𝜆𝛽𝑡
𝐻 − ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐻 + (1 − 𝜆)𝑥𝑠
𝐻 − 𝛾)𝑇𝐻

𝑠=𝑡+1 −
(1−𝛽0

𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹]𝑇𝐻

𝑡=1   

+∑ 𝜇𝑡
𝐿 [𝑦𝑡

𝐿 − 𝑥𝑡
𝐿 −

𝛾

𝜆𝛽𝑡
𝐿 − ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐿 + (1 − 𝜆)𝑥𝑠
𝐿 − 𝛾)𝑇𝐿

𝑠=𝑡+1 −
(1−𝛽0

𝐿)

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹]𝑇𝐿

𝑡=1   

+∑ 𝜂𝑡
𝐻𝑇𝐻

𝑡=1 𝑥𝑡
𝐻 + ∑ 𝜂𝑡

𝐿𝑇𝐿

𝑡=1 𝑥𝑡
𝐿. 

The relevant Kuhn-Tucker conditions for the optimization problem are: 

(A1)   
𝜕ℒ

𝜕𝑦𝑡
𝐻 = −𝜈𝛽0

𝐻(1 − 𝜆)𝑡−1𝜆 + 𝜉𝐻𝛽0
𝐻(1 − 𝜆)𝑡−1𝜆 − 𝜉𝐿𝛽0

𝐿(∏ (1 − 𝜆𝑒𝑠
𝐿,𝐻)𝑡−1

𝑠=1 )𝜆𝑒𝑡
𝐿,𝐻

 

+𝜇𝑡
𝐻 − ∑ 𝜇𝑗

𝐻(1 − 𝜆)𝑡−𝑗−1𝑡−1
𝑗=1 𝜆 = 0; 

(A2)   
𝜕ℒ

𝜕𝑦𝑡
𝐿 = −(1 − 𝜈)𝛽0

𝐿(1 − 𝜆)𝑡−1𝜆 − 𝜉𝐻𝛽0
𝐻(∏ (1 − 𝜆𝑒𝑠

𝐻,𝐿)𝑡−1
𝑠=1 )𝜆𝑒𝑡

𝐻,𝐿
 

+𝜉𝐿𝛽0
𝐿(1 − 𝜆)𝑡−1𝜆 + 𝜇𝑡

𝐿 − ∑ 𝜇𝑗
𝐿(1 − 𝜆)𝑡−𝑗−1𝑡−1

𝑗=1 𝜆 = 0; 

(A3)   
𝜕ℒ

𝜕𝑥𝑡
𝐻 = −𝜈𝑃𝑡

𝐻 + 𝜉𝐻𝑃𝑡
𝐻 − 𝜉𝐿(1 − 𝛽0

𝐿 + 𝛽0
𝐿 ∏ (1 − 𝜆𝑒𝑠

𝐿,𝐻)𝑡
𝑠=1 ) 

−𝜇𝑡
𝐻 − ∑ 𝜇𝑗

𝐻(1 − 𝜆)𝑡−𝑗𝑡−1
𝑗=1 + 𝜂𝑡

𝐻 = 0; 

(A4)   
𝜕ℒ

𝜕𝑥𝑡
𝐿 = −(1 − 𝜈)𝑃𝑡

𝐿 − 𝜉𝐻(1 − 𝛽0
𝐻 + 𝛽0

𝐻 ∏ (1 − 𝜆𝑒𝑠
𝐻,𝐿)𝑡

𝑠=1 ) + 𝜉𝐿𝑃𝑡
𝐿 

−𝜇𝑡
𝐿 − ∑ 𝜇𝑗

𝐿(1 − 𝜆)𝑡−𝑗𝑡−1
𝑗=1 + 𝜂𝑡

𝐿 = 0. 

 

 

We now characterize the optimal payment structure for each of the 4 cases.  As noted above, the 

optimal length 𝑇𝜃 is derived in Part II below and the sufficient conditions for each of these cases 

in Part III. 

Case 1: Strong moral hazard: Both IC constraints are slack. 

If both the (𝐼𝐶) constraints are slack, we find that the moral hazard constraints for both types are 

binding in every period, and each type is rewarded with a constant payment after success.  

Neither type is rewarded after failure.  This is Case 1 and the results are given in Claim A1. 

Claim A1. 𝜉𝐻 = 𝜉𝐿 = 0 ⇒ 𝜂𝑡
𝐻, 𝜂𝑡

𝐿, 𝜇𝑡
𝐻, 𝜇𝑡

𝐿 > 0, and it is optimal to set 𝑥𝑡
𝜃 = 0 and 𝑦𝑡

𝜃 =
𝛾

𝜆𝛽
𝑇𝜃
𝜃 +

(1−𝛽0
𝜃)

𝑃
𝑇𝜃
𝜃  

Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝜃 and 𝜃 ∈ {𝐻, 𝐿}. 

Proof:  

𝝁𝒕
𝜽 > 𝟎. We first prove that if the two (𝐼𝐶) constraints are slack, then all the (𝑀𝐻𝑡

𝜃) constraints 

for 𝑡 ≤ 𝑇𝜃 and 𝜃 ∈ {𝐻, 𝐿} must be binding.  

𝝁𝒕
𝑯 > 𝟎. Given that 𝜉𝐻 = 𝜉𝐿 = 0, (𝐴1) at each period 𝑡 ≤ 𝑇𝐻 can be rewritten as 

𝑡 = 1: −𝜈𝛽0
𝐻𝜆 + 𝜇1

𝐻 = 0 ⟹ 𝜇1
𝐻 = 𝜈𝛽0

𝐻𝜆 > 0; 
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𝑡 = 2: −𝜈𝛽0
𝐻(1 − 𝜆)𝜆 + 𝜇2

𝐻 − 𝜆𝜇1
𝐻 = 0 ⟹ 𝜇2

𝐻 = 𝜈𝛽0
𝐻𝜆 > 0;  

Solving recursively for 𝑡 = 3,… , 𝑇𝐻 we have 𝜇𝑡
𝐻 = 𝜈𝛽0

𝐻𝜆 > 0 for 𝑡 ≤ 𝑇𝐻. 

Thus, all the (𝑀𝐻𝑡
𝐻) constraints are binding.  

𝝁𝒕
𝑳 > 𝟎. Given that 𝜉𝐻 = 𝜉𝐿 = 0, (𝐴2) at each period 𝑡 ≤ 𝑇𝐿 can be rewritten as 

𝑡 = 1: −(1 − 𝜈)𝛽0
𝐿𝜆 + 𝜇1

𝐿 = 0 ⟹ 𝜇1
𝐿 = (1 − 𝜈)𝛽0

𝐿𝜆 > 0; 

𝑡 = 2: −(1 − 𝜈)𝛽0
𝐿(1 − 𝜆)𝜆 + 𝜇2

𝐿 − 𝜆𝜇1
𝐿 = 0 ⟹ 𝜇2

𝐿 = (1 − 𝜈)𝛽0
𝐿𝜆 > 0;  

Solving recursively for 𝑡 = 3,… , 𝑇𝐿 we have 𝜇𝑡
𝐿 = (1 − 𝜈)𝛽0

𝐿𝜆 > 0 for 𝑡 ≤ 𝑇𝐿. 

Thus, all the (𝑀𝐻𝑡
𝐿) constraints are binding. 

𝒙𝒕
𝜽 = 𝟎.  No rent after failure follows immediately from (𝐴3) and (𝐴4) as  𝜉𝐻 = 𝜉𝐿 = 0 implies 

𝜂𝑡
𝜃 > 0 for all 𝑡 ≤ 𝑇𝜃.  Furthermore, given that 𝜇𝑡

𝐻 = 𝜈𝛽0
𝐻𝜆, and 𝜇𝑡

𝐿 = (1 − 𝜈)𝛽0
𝐿𝜆, we can also 

show that 𝜂𝑡
𝐻 = 𝜈(𝑃𝑡

𝐻 + 𝛽0
𝐻𝜆) + 𝜈𝛽0

𝐻𝜆 ∑ (1 − 𝜆)𝑡−𝑗𝑡−1
𝑗=1 > 0 for 𝑡 ≤ 𝑇𝐻, and that 𝜂𝑡

𝐿 =

(1 − 𝜈)(𝑃𝑡
𝐿 + 𝛽0

𝐿𝜆) + (1 − 𝜈)𝛽0
𝐿𝜆 ∑ (1 − 𝜆)𝑡−𝑗𝑡−1

𝑗=1 > 0 for 𝑡 ≤ 𝑇𝐿. 

Thus, if the (𝐼𝐶) constraints are slack, both types are rewarded only for success and all the 

(𝑀𝐻𝑡
𝜃) constraints for 𝑡 ≤ 𝑇𝜃 and 𝜃 ∈ {𝐻, 𝐿} are binding: 

𝑦𝑡
𝜃 =

𝛾

𝜆𝛽𝑡
𝜃 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝜃 − 𝛾)𝑇𝜃

𝑠=𝑡+1 +
(1−𝛽0

𝜃)

𝑃𝑇
𝜃 Δ𝑐𝑞𝐹,  

𝑥𝑡
𝜃 = 0 for 𝑡 ≤ 𝑇𝜃 and 𝜃 ∈ {𝐻, 𝐿}. 

Finally, we prove that the unique sequence of 𝑦𝑡
𝜃 that solves the system of binding 

(𝑀𝐻𝑡
𝜃) constraints is 𝑦𝑡

𝜃 =
𝛾

𝜆𝛽𝑇
𝜃 +

(1−𝛽0
𝜃)

𝑃𝑇
𝜃 Δ𝑐𝑞𝐹. Solving recursively binding (𝑀𝐻𝑡

𝜃) constraints 

for 𝑦𝑡
𝜃 we obtain: 

𝑦𝑡
𝜃 =

𝛾

𝜆𝛽𝑡
𝜃 + 𝛾 ∑

(1−𝛽0
𝜃)

𝛽0
𝜃(1−𝜆)𝑡+𝑠−1

𝑇−𝑡
𝑠=1 +

(1−𝛽0
𝜃)

𝑃𝑇
𝜃 Δ𝑐𝑞𝐹. 

We next prove that 𝑦𝑡
𝜃 is constant: 

𝑦𝑡
𝜃 − 𝑦𝑡+1

𝜃 = 

[
𝛾

𝜆𝛽𝑡
𝜃 + 𝛾 ∑

(1−𝛽0
𝜃)

𝛽0
𝜃(1−𝜆)𝑡+𝑠−1

𝑇−𝑡
𝑠=1 +

(1−𝛽0
𝜃)

𝑃𝑇
𝜃 Δ𝑐𝑞𝐹] − [

𝛾

𝜆𝛽𝑡+1
𝜃 + 𝛾 ∑

(1−𝛽0
𝜃)

𝛽0
𝜃(1−𝜆)𝑡+𝑠

𝑇−𝑡−1
𝑠=1 +

(1−𝛽0
𝜃)

𝑃𝑇
𝜃 Δ𝑐𝑞𝐹]  

=
𝛾

𝜆𝛽𝑡
𝜃 −

𝛾

𝜆𝛽𝑡+1
𝜃 + 𝛾

(1−𝛽0
𝜃)

𝛽0
𝜃(1−𝜆)𝑡−1

∑
1

(1−𝜆)𝑠
𝑇−𝑡
𝑠=1 − 𝛾

(1−𝛽0
𝜃)

𝛽0
𝜃(1−𝜆)𝑡

∑
1

(1−𝜆)𝑠
𝑇−𝑡−1
𝑠=1 . 

Using the formula for geometric series, we can rewrite ∑
1

(1−𝜆)𝑠
𝑇−𝑡
𝑠=1  and ∑

1

(1−𝜆)𝑠
𝑇−𝑡−1
𝑠=1  as: 

∑
1

(1−𝜆)𝑠
𝑇−𝑡
𝑠=1 =

1

(1−𝜆)
(

1−
1

(1−𝜆)𝑇−𝑡

1− 
1

(1−𝜆)

) =
(

1

(1−𝜆)𝑇−𝑡−1)

𝜆
=

1−(1−𝜆)𝑇−𝑡

𝜆(1−𝜆)𝑇−𝑡
  

and ∑
1

(1−𝜆)𝑠
𝑇−𝑡−1
𝑠=1 =

(
1

(1−𝜆)𝑇−𝑡−1−1)

𝜆
=

1−(1−𝜆)𝑇−𝑡−1

𝜆(1−𝜆)𝑇−𝑡−1
. 

Thus, 𝑦𝑡
𝜃 − 𝑦𝑡+1

𝜃 = 
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=
𝛾

𝜆𝛽𝑡
𝜃 −

𝛾

𝜆𝛽𝑡+1
𝜃 + 𝛾

(1−𝛽0
𝜃)

𝛽0
𝜃(1−𝜆)𝑡−1

(
1−(1−𝜆)𝑇−𝑡

𝜆(1−𝜆)𝑇−𝑡
) − 𝛾

(1−𝛽0
𝜃)

𝛽0
𝜃(1−𝜆)𝑡

(
1−(1−𝜆)𝑇−𝑡−1

𝜆(1−𝜆)𝑇−𝑡−1
)  

=
𝛾

𝜆𝛽𝑡
𝜃 −

𝛾(1−𝜆𝛽𝑡
𝜃)

𝜆𝛽𝑡
𝜃(1−𝜆)

+ 𝛾
(1−𝛽0

𝜃)

𝛽0
𝜃𝜆(1−𝜆)𝑇−1

(1 − (1 − 𝜆)𝑇−𝑡 − 1 + (1 − 𝜆)𝑇−𝑡−1)  

=
𝛾

𝜆𝛽𝑡
𝜃 −

𝛾(1−𝜆𝛽𝑡
𝜃)

𝜆𝛽𝑡
𝜃(1−𝜆)

+ 𝛾
(1−𝛽0

𝜃)(1−𝜆)𝑇−𝑡−1

𝛽0
𝜃𝜆(1−𝜆)𝑇−1 𝜆 = 𝛾

(1−𝜆)−(1−𝜆𝛽𝑡
𝜃)

𝜆𝛽𝑡
𝜃(1−𝜆)

+ 𝛾
(1−𝛽0

𝜃)

𝛽0
𝜃(1−𝜆)𝑡

  

= −𝛾
𝜆(1−𝛽0

𝜃)

𝜆𝛽0
𝜃(1−𝜆)

+ 𝛾
(1−𝛽0

𝜃)

𝛽0
𝜃(1−𝜆)𝑡

= −𝛾
𝜆(

1−𝛽0
𝜃

𝛽0
𝜃(1−𝜆)𝑡−1+1−𝛽0

𝜃)

𝜆(
𝛽0

𝜃(1−𝜆)𝑡−1

𝛽0
𝜃(1−𝜆)𝑡−1+1−𝛽0

𝜃
)(1−𝜆)

+ 𝛾
(1−𝛽0

𝜃)

𝛽0
𝜃(1−𝜆)𝑡

  

= −𝛾
(1−𝛽0

𝜃)

𝛽0
𝜃(1−𝜆)𝑡

+ 𝛾
(1−𝛽0

𝜃)

𝛽0
𝜃(1−𝜆)𝑡

= 0. 

Given that that 𝑦𝑡
𝜃 is constant, we can rewrite 𝑦𝑡

𝜃 by evaluating it at 𝑡 = 𝑇: 

𝑦𝑡
𝜃 =

𝛾

𝜆𝛽𝑇
𝜃 +

(1−𝛽0
𝜃)

𝑃𝑇
𝜃 Δ𝑐𝑞𝐹. 

This concludes the proof of Claim A1.      Q.E.D. 

 

We now prove a lemma characterizing off the path effort for the high type before solving Case 2.   

 

Lemma 1.  A lying high type works off the equilibrium path: 𝑒𝑡
𝐻,𝐿 = 1 for 𝑡 ≤ 𝑇𝐿 . 

Proof: Consider the high type’s incentives to engage in a one-shot deviation and shirk at period 

𝑡 ≤ 𝑇𝐿 after accepting a contract designed for the low type.  Upon deviating only at some period 

𝑡 ≤ 𝑇𝐿, his continuation value from the relationship is 

𝑥𝑡
𝐿 + 𝛽𝑡

𝐻 ∑ (1 − 𝜆)𝑠−𝑡−1[𝜆𝑦𝑠
𝐿 + (1 − 𝜆)𝑥𝑠

𝐿 − 𝛾]𝑇𝐿

𝑠=𝑡+1 + (1 − 𝛽𝑡
𝐻)∑ (𝑥𝑠

𝐿 − 𝛾)𝑇𝐿

𝑠=𝑡+1   

+(1 − 𝛽𝑡
𝐻 + 𝛽𝑡

𝐻(1 − 𝜆)𝑇𝐿−𝑡)(𝑐
𝑇𝐿+1
𝐿 − 𝑐

𝑇𝐿
𝐻 )𝑞𝐹.  

In contrast, if the lying high type decides to work at period 𝑡, his continuation value from the 

relationship becomes 

−𝛾 + 𝜆𝛽𝑡
𝐻𝑦𝑡

𝐿 + (1 − 𝜆𝛽𝑡
𝐻)𝑥𝑡

𝐿 + 𝛽𝑡
𝐻 ∑ (1 − 𝜆)𝑠−𝑡[𝜆𝑦𝑠

𝐿 + (1 − 𝜆)𝑥𝑠
𝐿 − 𝛾]𝑇𝐿

𝑠=𝑡+1 +

(1 − 𝛽𝑡
𝐻)∑ (𝑥𝑠

𝐿 − 𝛾)𝑇𝐿

𝑠=𝑡+1 + (1 − 𝛽𝑡
𝐻 + 𝛽𝑡

𝐻(1 − 𝜆)𝑇𝐿−𝑡+1)(𝑐
𝑇𝐿+1
𝐿 − 𝑐

𝑇𝐿+1
𝐻 )𝑞𝐹.  

  

By combining the two continuation values presented above, we can write a one-period moral 

hazard constraint at period 𝑡 below for the lying high type, which we denote by (𝑀𝐻𝑡
𝐻,𝐿):  

(𝑀𝐻𝑡
𝐻,𝐿)  𝑦𝑡

𝐿 − 𝑥𝑡
𝐿 ≥

𝛾

𝜆𝛽𝑡
𝐻 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐿 + (1 − 𝜆)𝑥𝑠
𝐿 − 𝛾)𝑇𝐿

𝑠=𝑡+1   

+
(1−𝛽0

𝐿)(1−𝜆)𝑇
𝐿−𝑡

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹. 

 

The low type’s contract has to satisfy the sequence of local (𝑀𝐻𝑡
𝐿) constraints: 

(𝑀𝐻𝑡
𝐿)  𝑦𝑡

𝐿 − 𝑥𝑡
𝐿 ≥

𝛾

𝜆𝛽𝑡
𝐿 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐿 + (1 − 𝜆)𝑥𝑠
𝐿 − 𝛾)𝑇𝐿

𝑠=𝑡+1   
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+
(1−𝜆)𝑇

𝐿−𝑡(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹. 

  

Since 𝛽𝑡
𝐿 < 𝛽𝑡

𝐻 for any 𝑡, we have  
𝛾

𝜆𝛽𝑡
𝐻 <

𝛾

𝜆𝛽𝑡
𝐿, and the 𝑅𝐻𝑆 of (𝑀𝐻𝑡

𝐻,𝐿) is smaller than the 𝑅𝐻𝑆 

of (𝑀𝐻𝑡
𝐿). Thus, (𝑀𝐻𝑡

𝐻,𝐿) is implied by (𝑀𝐻𝑡
𝐿) for 𝑡 ≤ 𝑇𝐿. 

This concludes the proof of Lemma 1.      Q.E.D. 

 

Case 2: Strong adverse selection: Both (𝐼𝐶𝐻) and (𝐼𝐶𝐿) are binding 

We now characterize the payment structure for Case 2.  If (𝐼𝐶𝐿) is binding, all the (𝑀𝐻𝑡
𝐿) 

constraints are binding as well.37  

Claim A2. 𝜉𝐻 > 0, 𝜉𝐿 > 0 ⇒ 𝜂𝑡
𝐻 > 0 = 𝜇𝑡

𝐻 for 𝑡 ≤ 𝑇𝐻, 𝜇𝑡
𝐿 > 0 for 𝑡 ≤ 𝑇𝐿, 𝜂𝑡

𝐿 > 0 = 𝜂
𝑇𝐿
𝐿  for 

𝑡 < 𝑇𝐿. It is optimal to set  

𝑈𝐻(𝜛𝐿 , 1⃗⃗) = 𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1(𝜆𝑦𝑡

𝐻 − 𝛾)𝑇𝐻

𝑡=1 − 𝛾 ∑ 𝑃𝑡
𝐻𝑇𝐻

𝑡=1 , 

𝑦
𝑇𝐿
𝐿 = 𝑥

𝑇𝐿
𝐿 +

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹, 

𝑦𝑡
𝐿 =

𝛾

𝜆𝛽𝑡
𝐿 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐿 − 𝛾)𝑇𝐿

𝑠=𝑡+1 + (1 − 𝜆)𝑇𝐿−𝑡𝑥
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹 for 𝑡 < 𝑇𝐿,  

and 

𝑈𝐿(𝜛𝐻, �⃗�𝐿(𝜛𝐻)) = 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1(𝜆𝑦𝑡

𝐿 − 𝛾)𝑇𝐿

𝑡=1 − 𝛾 ∑ 𝑃𝑡
𝐿𝑇𝐿−1

𝑡=1 + 𝑃
𝑇𝐿
𝐿 (𝑥

𝑇𝐿
𝐿 − 𝛾). 

Proof:  

H-type. We first prove that the high type’s rewards after success can be distributed such that all 

the (𝑀𝐻𝑡
𝐻) constraints are satisfied at no additional cost, i.e., 𝜇𝑡

𝐻 = 0 for 𝑡 ≤ 𝑇𝐻. 

 

𝝁𝒕
𝑯 = 𝟎.  There exists a solution to (𝐴1) and (𝐴3) for 𝑡 ≤ 𝑇𝐻 such that for all 𝑡 ≤ 𝑇𝐻: 

𝜇𝑡
𝐻 = 0; 

𝜉𝐿 = 𝜂𝑡
𝐻 𝛽0

𝐻(1−𝜆)𝑡−1𝜆

((1−𝛽0
𝐿+𝛽0

𝐿 ∏ (1−𝜆𝑒𝑠
𝐿,𝐻)𝑡

𝑠=1 )𝛽0
𝐻(1−𝜆)𝑡−1𝜆−𝛽0

𝐿(∏ (1−𝜆𝑒𝑠
𝐿,𝐻)𝑡−1

𝑠=1 )𝜆𝑒𝑡
𝐿,𝐻𝑃𝑡

𝐻)
> 0; 

𝜉𝐻𝛽0
𝐻(1 − 𝜆)𝑡−1𝜆𝑃𝑡

𝐻 = 𝜈𝛽0
𝐻(1 − 𝜆)𝑡−1𝜆𝑃𝑡

𝐻 + 𝜉𝐿𝛽0
𝐿(∏ (1 − 𝜆𝑒𝑠

𝐿,𝐻)𝑡−1
𝑠=1 )𝜆𝑒𝑡

𝐿,𝐻𝑃𝑡
𝐻 > 0. 

Therefore, the principal sets 𝑥𝑡
𝐻 = 0 and uses any combination of 𝑦𝑡

𝐻 such that 

𝑦𝑡
𝐻 ≥

𝛾

𝜆𝛽𝑡
𝐻 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐻 − 𝛾)𝑇𝐻

𝑠=𝑡+1 +
(1−𝛽0

𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐻, and 

𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1(𝜆𝑦𝑡

𝐻 − 𝛾)𝑇𝐻

𝑡=1 − 𝛾 ∑ 𝑃𝑡
𝐻𝑇𝐻

𝑡=1 = 𝑈𝐻(𝜛𝐿 , 1⃗⃗). 

 

L-type. We now describe the optimal contract for the low type.  

𝝁𝒕
𝑳 > 𝟎 for 𝒕 ≤ 𝑻𝑳. Combining (𝐴2) and (𝐴4) we have:38 

 

 
37 We ignore the knife-edge case where both the (𝐼𝐶) constraints and all the (𝑀𝐻𝑡

𝐻) are binding simultaneously. In 

that case, the adverse selection rent is exactly equal to the moral hazard rent and there is no extra rent to be paid. 
38 We multiply (A4) by 𝛽0

𝐿(1 − 𝜆)𝑡−1𝜆 and subtract it from (A2) multiplied by 𝑃𝑡
𝐿 . 
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           𝜉𝐻𝜆 [
𝛽0

𝐿(1 − 𝛽0
𝐻)(1 − 𝜆)𝑡−1 − 𝛽0

𝐻(1 − 𝛽0
𝐿)𝑒𝑡

𝐻,𝐿 ∏ (1 − 𝜆𝑒𝑠
𝐻,𝐿)𝑡−1

𝑠=1

+𝛽0
𝐿𝛽0

𝐻(1 − 𝜆)𝑡−1(1 − 𝑒𝑡
𝐻,𝐿)∏ (1 − 𝜆𝑒𝑠

𝐻,𝐿)𝑡−1
𝑠=1

] + 𝜇𝑡
𝐿𝑃𝑡−1

𝐿  

= 𝛽0
𝐿(1 − 𝜆)𝑡−1𝜆𝜂𝑡

𝐿 + (1 − 𝛽0
𝐿)∑ 𝜇𝑗

𝐿(1 − 𝜆)𝑡−𝑗−1𝑡−1
𝑗=1 𝜆 for 𝑡 ≤ 𝑇𝐿. 

 

Since that 𝑒𝑡
𝐻,𝐿 = 1 for 𝑡 ≤ 𝑇𝐿 by Lemma 1, the condition above simplifies to 

(𝑨𝟓)              −𝜉𝐻𝜆(1 − 𝜆)𝑡−1(𝛽0
𝐻 − 𝛽0

𝐿) + 𝜇𝑡
𝐿𝑃𝑡−1

𝐿  

= 𝛽0
𝐿(1 − 𝜆)𝑡−1𝜆𝜂𝑡

𝐿 + (1 − 𝛽0
𝐿)∑ 𝜇𝑗

𝐿(1 − 𝜆)𝑡−𝑗−1𝑡−1
𝑗=1 𝜆 for 𝑡 ≤ 𝑇𝐿. 

Given that the RHS of (𝐴5) is non-negative, we have, 𝜇𝑡
𝐿 > 0 for every 𝑡 ≤ 𝑇𝐿 and, as a result, 

the (𝑀𝐻𝑡
𝐿) constraints must be binding: 

𝑦𝑡
𝐿 − 𝑥𝑡

𝐿 =
𝛾

𝜆𝛽𝑡
𝐿 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐿 + (1 − 𝜆)𝑥𝑠
𝐿 − 𝛾)𝑇𝐿

𝑠=𝑡+1 +
(1−𝛽0

𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐿. 

𝒙
𝑻𝑳
𝑳 > 𝒙𝒕

𝑳 = 𝟎 for 𝒕 < 𝑻𝑳. First, we prove by contradiction that the low type is rewarded for 

failure in only one period 𝑠 ≤ 𝑇𝐿. Second, we prove that it is optimal to reward the low type for 

the very last failure, i.e., 𝑠 = 𝑇𝐿. 

Step1: Suppose that the low type is rewarded for failures in two distinct periods 𝑧 ≤ 𝑇𝐿 and 𝑘 ≤

𝑇𝐿, such that 𝑧 < 𝑘. Therefore, 𝑥𝑧
𝐿 , 𝑥𝑘

𝐿 > 0 (𝜂𝑧
𝐿 = 0 = 𝜂𝑘

𝐿). Evaluating (A4) at 𝑡 = 𝑧 and 𝑡 = 𝑘, 

and using 𝑒𝑡
𝐻,𝐿 = 1 for all 𝑡, we derive 

−(1 − 𝜈)𝑃𝑧
𝐿 − 𝜉𝐻𝑃𝑧

𝐻 + 𝜉𝐿𝑃𝑧
𝐿  

−𝜇𝑧
𝐿 − ∑ 𝜇𝑗

𝐿(1 − 𝜆)𝑧−𝑗𝑧−1
𝑗=1 = 0 = −𝜇𝑘

𝐿 − ∑ 𝜇𝑗
𝐿(1 − 𝜆)𝑘−𝑗𝑘−1

𝑗=1   

−(1 − 𝜈)𝑃𝑘
𝐿 − 𝜉𝐻𝑃𝑘

𝐻 + 𝜉𝐿𝑃𝑘
𝐿,  

 

𝑃𝑧
𝐿[𝜉𝐿−(1−𝜈)]−∑ 𝜇𝑗

𝐿(1−𝜆)𝑧−𝑗𝑧
𝑗=1

𝑃𝑧
𝐻 = 𝜉𝐻 =

𝑃𝑘
𝐿[𝜉𝐿−(1−𝜈)]−∑ 𝜇𝑗

𝐿(1−𝜆)𝑘−𝑗𝑘
𝑗=1

𝑃𝑘
𝐻 , 

 

𝑃𝑘
𝐻𝑃𝑧

𝐿[𝜉𝐿 − (1 − 𝜈)] − 𝑃𝑘
𝐻 ∑ 𝜇𝑗

𝐿(1 − 𝜆)𝑧−𝑗𝑧
𝑗=1 = 𝑃𝑧

𝐻𝑃𝑘
𝐿[𝜉𝐿 − (1 − 𝜈)] − 𝑃𝑧

𝐻 ∑ 𝜇𝑗
𝐿(1 − 𝜆)𝑘−𝑗𝑘

𝑗=1 , 

 

𝑃𝑘
𝐻 ∑ 𝜇𝑗

𝐿(1 − 𝜆)𝑧−𝑗𝑧
𝑗=1 = 𝑃𝑧

𝐻 ∑ 𝜇𝑗
𝐿(1 − 𝜆)𝑘−𝑗𝑘

𝑗=1 , 

which leads to a contradiction since,  𝑃𝑘
𝐻 < 𝑃𝑧

𝐻 and ∑ 𝜇𝑗
𝐿(1 − 𝜆)𝑧−𝑗𝑧

𝑗=1 < ∑ 𝜇𝑗
𝐿(1 − 𝜆)𝑘−𝑗𝑘

𝑗=1  if 

𝑘 > 𝑧.39 That is, the left-hand side of the inequality above is less than the right-hand side. 

Step2: We now prove that the low type is rewarded for failure in the last period only. 

Expressing ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡
𝐻𝑇𝐻

𝑡=1  from the (𝐼𝐶𝐻): 

∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡
𝐻𝑇𝐻

𝑡=1 =
𝑃𝑠

𝐻𝑥𝑠
𝐿+𝑃

𝑇𝐿
𝐻 ∆𝑐

𝑇𝐿+1
𝑞𝐹

𝛽0
𝐻 +

𝛾 ∑ 𝑃𝑡−1
𝐻𝑇𝐻

𝑡=1 −𝛾 ∑ 𝑃𝑡−1
𝐻𝑇𝐿

𝑡=1

𝛽0
𝐻 + ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐿𝑇𝐿

𝑡=1 , 

it is immediate that the high type’s rent is decreasing in 𝑠 through 𝑃𝑠
𝐻𝑥𝑠

𝐿 and, therefore, 

rewarding the last type’s failure mitigates the high type’s rent, 𝑠 = 𝑇𝐿. 

Similarly, from the (𝐼𝐶𝐿): 

𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝑦𝑡

𝐿𝑇𝐿

𝑡=1 + 𝑃𝑠
𝐿𝑥𝑠

𝐿 = 𝛽0
𝐿 ∑ (∏ (1 − 𝜆𝑒𝑠

𝐿,𝐻)𝑡−1
𝑠=1 )[𝑒𝑡

𝐿,𝐻𝜆𝑦𝑡
𝐻 − 𝑒𝑡

𝐿,𝐻𝛾]𝑇𝐻

𝑡=1 + ∑ 𝑃𝑡−1
𝐿 𝛾𝑇𝐿

𝑡=1   

−𝛾(1 − 𝛽0
𝐿)∑ 𝑒𝑡

𝐿,𝐻𝑇𝐻

𝑡=1 + (1 − 𝛽0
𝐿 + 𝛽0

𝐿(∏ (1 − 𝜆𝑒𝑠
𝐿,𝐻)𝑇𝐻

𝑠=1 )) (𝑐
𝑇𝐻+1
𝐻 − 𝑐

∑ 𝑒𝑠
𝐿,𝐻+1𝑇𝐻

𝑠=1

𝐿 ) 𝑞𝐹,  

 
39 A similar contradiction would emerge if we assumed 𝑘 < 𝑧. 
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the low type’s rent is decreasing in 𝑠 through 𝛽0
𝐿 ∑ (∏ (1 − 𝜆𝑒𝑠

𝐿,𝐻)𝑡−1
𝑠=1 )[𝑒𝑡

𝐿,𝐻𝜆𝑦𝑡
𝐻 − 𝑒𝑡

𝐿,𝐻𝛾]𝑇𝐻

𝑡=1   

and, therefore, rewarding the last type’s failure mitigates the low type’s rent as well, 𝑠 = 𝑇𝐿. 

 

Therefore, the low type’s payments are determined by 

𝑦
𝑇𝐿
𝐿 = 𝑥

𝑇𝐿
𝐿 +

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹, 

𝑦𝑡
𝐿 =

𝛾

𝜆𝛽𝑡
𝐿 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐿 − 𝛾)𝑇𝐿

𝑠=𝑡+1 + (1 − 𝜆)𝑇𝐿−𝑡𝑥
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹 for 𝑡 < 𝑇𝐿, and 

𝑈𝐿(𝜛𝐻, �⃗�𝐿(𝜛𝐻)) = 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1(𝜆𝑦𝑡

𝐿 − 𝛾)𝑇𝐿

𝑡=1 − 𝛾 ∑ 𝑃𝑡
𝐿𝑇𝐿−1

𝑡=1 + 𝑃
𝑇𝐿
𝐿 (𝑥

𝑇𝐿
𝐿 − 𝛾). 

 

�⃗⃗⃗�𝑳(𝝕𝑯).  It is without loss of generality to characterize off-the-equilibrium path effort as a 

stopping rule �⃗�𝐿(𝜛𝐻): the low type works up to period 𝑡𝐿,𝐻 ≤ 𝑇𝐻 and shirks after.40 

The reason is two-fold. First, it is without loss of generality to front load the high type’s rewards 

for success because the relative likelihood of success 
𝛽0

𝐿(1−𝜆)𝑡−1𝜆

𝛽0
𝐻(1−𝜆)𝑡−1𝜆

=
𝛽0

𝐿

𝛽0
𝐻 is independent of 𝑡. Then, 

the principal can use any combination of 𝑦𝑡
𝐻 to pay rent to the high type without affecting the 

low type’s incentives to work off-the-equilibrium path. Second, the low type’s probability of 

success in any period and the expected cost after failure depends on the total number of failures 

up to that period (not on when those failures occurred).  

Therefore, the low type’s expected payoff when he pretends being high can be written as: 

𝑈𝐿(𝜛𝐻, �⃗�𝐿(𝜛𝐻)) = −𝛾(1 − 𝛽0
𝐿)𝑡𝐿,𝐻 + 𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1 (𝜆𝑦𝑡
𝐻 − 𝛾)𝑡𝐿,𝐻

𝑡=1 +  

𝑃
𝑡𝐿,𝐻
𝐿 (𝑐

𝑇𝐻+1
𝐻 − 𝑐

𝑡𝐿,𝐻+1
𝐿 )𝑞𝐹,  

where 𝑡𝐿,𝐻 is the number of time periods that maximizes 𝑈𝐿(𝜛𝐻, �⃗�𝐿(𝜛𝐻)), for the optimal 

contract 𝜛𝐻 in Case 2: 

𝑡𝐿,𝐻 ≔ arg max
0≤𝑡𝐿,𝐻≤𝑇𝐻

𝑈𝐿(𝜛𝐻, �⃗�𝐿(𝜛𝐻)). 

This concludes the proof of Claim A2.      Q.E.D. 

 

Intermediate case 3: only (𝐼𝐶𝐻) constraint binds 

If (𝐼𝐶𝐻) binds and (𝐼𝐶𝐿) is slack, the (𝑀𝐻𝑡
𝐿) are binding in each period but (𝑀𝐻𝑡

𝐻) are all slack.   

Claim A3. 𝜉𝐻 > 0, 𝜉𝐿 = 0 ⇒ 𝜂𝑡
𝐿, 𝜇𝑡

𝐿 > 0 and 𝜂𝑡
𝐻 = 𝜇𝑡

𝐻 = 0.  It is optimal to set 𝑥𝑡
𝐿 = 0 and 

𝑦𝑡
𝐿 =

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐿 and any combination of 𝑥𝑡

𝐻 and 𝑦𝑡
𝐻 such that 𝑦𝑡

𝐻 − 𝑥𝑡
𝐻 ≥

𝛾

𝜆𝛽𝑡
𝐻 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐻 + (1 − 𝜆)𝑥𝑠
𝐻 − 𝛾)𝑇𝐻

𝑠=𝑡+1 +
(1−𝛽0

𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐻 and 

𝑈𝐻(𝜛𝐿 , 1⃗⃗) = (1 − 𝛽0
𝐻)∑ [𝑥𝑡

𝐻 − 𝛾]𝑇𝐻

𝑡=1 + 𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1[(𝜆𝑦𝑡

𝐻 − 𝛾) + (1 − 𝜆)𝑥𝑡
𝐻]𝑇𝐻

𝑡=1  is given 

by the binding (𝐼𝐶𝐻) constraint. 

Proof:  

 
40 Alternatively, we could write that the agent worked for 𝑡𝐿,𝐻/𝑇𝐻 periods, but the notation would be cumbersome 

as we would need to indicate the periods he works in. 
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L-type. We first prove that the low type is rewarded only for success and all the (𝑀𝐻𝑡
𝐿) 

constraints are binding for 𝑡 ≤ 𝑇𝐿. 

𝝁𝒕
𝑳 > 𝟎. Given that 𝜉𝐿 = 0 and 𝜉𝐻 > 0, condition (𝐴2) at each period 𝑡 ≤ 𝑇𝐿 can be rewritten as 

𝜇𝑡
𝐿 = (1 − 𝜈)𝛽0

𝐿(1 − 𝜆)𝑡−1𝜆 + 𝜉𝐻𝛽0
𝐻(∏ (1 − 𝜆𝑒𝑠

𝐻,𝐿)𝑡−1
𝑠=1 )𝜆𝑒𝑡

𝐻,𝐿
  

+∑ 𝜇𝑗
𝐿(1 − 𝜆)𝑡−𝑗−1𝑡−1

𝑗=1 𝜆 > 0 for 𝑡 ≤ 𝑇𝐿. 

Thus, all the (𝑀𝐻𝑡
𝐿) constraints are binding. 

We next prove that the low type is rewarded only for success, i.e., 𝑥𝑡
𝐿 = 0 for 𝑡 ≤ 𝑇𝐿. 

𝒙𝒕
𝑳 = 𝟎.  Given that 𝜉𝐿 = 0 and 𝜉𝐻 > 0 condition (𝐴4) at each period 𝑡 ≤ 𝑇𝐿 can be rewritten as 

𝜂𝑡
𝐿 = (1 − 𝜈)𝑃𝑡

𝐿 + 𝜉𝐻(1 − 𝛽0
𝐻 + 𝛽0

𝐻 ∏ (1 − 𝜆𝑒𝑠
𝐻,𝐿)𝑡

𝑠=1 )  

+𝜇𝑡
𝐿 + ∑ 𝜇𝑗

𝐿(1 − 𝜆)𝑡−𝑗𝑡−1
𝑗=1 > 0 for 𝑡 ≤ 𝑇𝐿.  

Therefore, 𝜂𝑡
𝐿 > 0 for every 𝑡 ≤ 𝑇𝐿 and, as a result, the low type is not rewarded for failures: 

𝑥𝑡
𝐿 = 0 for 𝑡 ≤ 𝑇𝐿. 

Thus, the low type is rewarded only for success with the rewards given by: 

𝑦𝑡
𝐿 =

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐿. 

H-type. We next characterize the optimal contract for the high type. 

�⃗⃗⃗�𝑯(𝝕𝑳) = �⃗⃗⃗�. In Lemma 1, we proved that the high type never shirks off-the-equilibrium path. 

We next prove that the principal can use any combination of 𝑥𝑡
𝐻 and 𝑦𝑡

𝐻 such that all (𝑀𝐻𝑡
𝐻) 

constraints are satisfied and the high type’ expected rent is 𝑈𝐻(𝜛𝐿 , 1⃗⃗). 

𝝁𝒕
𝑯 = 𝜼𝒕

𝑯 = 𝟎. Given that 𝜉𝐿 = 0, conditions (𝐴1) and (𝐴3) can be rewritten as 

 

(𝐴1′)      
𝜕ℒ

𝜕𝑦𝑡
𝐻 = −𝜈𝛽0

𝐻(1 − 𝜆)𝑡−1𝜆 + 𝜉𝐻𝛽0
𝐻(1 − 𝜆)𝑡−1𝜆 + 𝜇𝑡

𝐻 − ∑ 𝜇𝑗
𝐻(1 − 𝜆)𝑡−𝑗−1𝑡−1

𝑗=1 𝜆 = 0; 

(𝐴3′)      
𝜕ℒ

𝜕𝑥𝑡
𝐻 = −𝜈𝑃𝑡

𝐻 + 𝜉𝐻𝑃𝑡
𝐻 − 𝜇𝑡

𝐻 − ∑ 𝜇𝑗
𝐻(1 − 𝜆)𝑡−𝑗𝑡−1

𝑗=1 + 𝜂𝑡
𝐻 = 0. 

 There exists a solution to (𝐴1′) and (𝐴3′) for 𝑡 ≤ 𝑇𝐻 such that 

𝜇𝑡
𝐻 = 𝜂𝑡

𝐻 = 0 and 𝜉𝐻 = 𝜈 for 𝑡 ≤ 𝑇𝐻. 

Therefore, the principal can use any combination of 𝑥𝑡
𝐻 and 𝑦𝑡

𝐻 such that 

𝑦𝑡
𝐻 − 𝑥𝑡

𝐻 ≥
𝛾

𝜆𝛽𝑡
𝐻 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐻 + (1 − 𝜆)𝑥𝑠
𝐻 − 𝛾)𝑇𝐻

𝑠=𝑡+1 +
(1−𝛽0

𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐻, and 

(1 − 𝛽0
𝐻)∑ [𝑥𝑡

𝐻 − 𝛾]𝑇𝐻

𝑡=1 + 𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1[(𝜆𝑦𝑡

𝐻 − 𝛾) + (1 − 𝜆)𝑥𝑡
𝐻]𝑇𝐻

𝑡=1 = 𝑈𝐻(𝜛𝐿 , 1⃗⃗). 

This concludes the proof of Claim A3.       Q.E.D. 

 

Intermediate case 4: only (𝐼𝐶𝐿) constraint binds  

If (𝐼𝐶𝐿) binding and (𝐼𝐶𝐻) is slack, the (𝑀𝐻𝑡
𝐻) are all binding but the (𝑀𝐻𝑡

𝐿) are all slack.   

 

Claim A4. 𝜉𝐻 = 0, 𝜉𝐿 > 0 ⇒ 𝜂𝑡
𝐻, 𝜇𝑡

𝐻 > 0 and 𝜇𝑡
𝐿 = 0, 𝜂𝑡

𝐿 = 0.  It is optimal to set 𝑥𝑡
𝐻 = 0 and 

𝑦𝑡
𝐻 =

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻  

Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐻 and any combination of 𝑥𝑡
𝐿 and 𝑦𝑡

𝐿 such that 𝑦𝑡
𝐿 − 𝑥𝑡

𝐿 ≥

𝛾

𝜆𝛽𝑡
𝐿 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐿 + (1 − 𝜆)𝑥𝑠
𝐿 − 𝛾)𝑇𝐿

𝑠=𝑡+1 +
(1−𝛽0

𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐿 and 
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𝑈𝐿(𝜛𝐻, �⃗�𝐿(𝜛𝐻)) = (1 − 𝛽0
𝐿)∑ [𝑥𝑡

𝐿 − 𝛾]𝑇𝐿

𝑡=1 + 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1[(𝜆𝑦𝑡

𝐿 − 𝛾) + (1 − 𝜆)𝑥𝑡
𝐿]𝑇𝐿

𝑡=1  is 

given by the binding (𝐼𝐶𝐿) constraint. 

Proof:  

H-type. We first prove that the high type is rewarded only for success and all the (𝑀𝐻𝑡
𝐻) 

constraints are binding for 𝑡 ≤ 𝑇𝐻. 

 

𝝁𝒕
𝑯 > 𝟎. Given that 𝜉𝐻 = 0 and 𝜉𝐿 > 0, condition (𝐴1) at each period 𝑡 ≤ 𝑇𝐻 can be rewritten 

as 

𝜇𝑡
𝐻 = 𝜈𝛽0

𝐻(1 − 𝜆)𝑡−1𝜆 + 𝜉𝐿𝛽0
𝐿(∏ (1 − 𝜆𝑒𝑠

𝐿,𝐻)𝑡−1
𝑠=1 )𝜆𝑒𝑡

𝐿,𝐻
  

+∑ 𝜇𝑗
𝐻(1 − 𝜆)𝑡−𝑗−1𝑡−1

𝑗=1 𝜆 > 0 for 𝑡 ≤ 𝑇𝐻. 

Thus, all the (𝑀𝐻𝑡
𝐻) constraints are binding. 

We next prove that the high type is rewarded only for success, i.e., 𝑥𝑡
𝐻 = 0 for 𝑡 ≤ 𝑇𝐻. 

𝒙𝒕
𝑯 = 𝟎.  Given that 𝜉𝐻 = 0 and 𝜉𝐿 > 0 condition (𝐴3) at each period 𝑡 ≤ 𝑇𝐻 can be rewritten 

as 

𝜂𝑡
𝐻 = 𝜈𝑃𝑡

𝐻 + 𝜉𝐿(1 − 𝛽0
𝐿 + 𝛽0

𝐿 ∏ (1 − 𝜆𝑒𝑠
𝐿,𝐻)𝑡

𝑠=1 )  

+𝜇𝑡
𝐻 + ∑ 𝜇𝑗

𝐻(1 − 𝜆)𝑡−𝑗𝑡−1
𝑗=1 > 0 for 𝑡 ≤ 𝑇𝐻.  

Therefore, 𝜂𝑡
𝐻 > 0 for every 𝑡 ≤ 𝑇𝐻 and, as a result, the high type is not rewarded for failures: 

𝑥𝑡
𝐻 = 0 for 𝑡 ≤ 𝑇𝐻. 

Thus, the high type is rewarded only for success with the rewards given by: 

𝑦𝑡
𝐻 =

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻  

Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐻. 

L-type. We next characterize the optimal contract for the low type. 

�⃗⃗⃗�𝑳(𝝕𝑯).  As in Case 2, it is again without loss of generality to characterize off-the-equilibrium 

path effort as a stopping rule �⃗�𝐿(𝜛𝐻): the low type works up to period 𝑡𝐿,𝐻 ≤ 𝑇𝐻 and shirks 

after.  Note that 𝑡𝐿,𝐻 is now given by the optimal contract 𝜛𝐻 in intermediate case 4: 

𝑡𝐿,𝐻 ≔ arg max
0≤𝑡𝐿,𝐻≤𝑇𝐻

𝑈𝐿(𝜛𝐻, �⃗�𝐿(𝜛𝐻)). 

Then, the binding (𝐼𝐶𝐿) is given by, 

𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝑦𝑡

𝐿𝑇𝐿

𝑡=1 + ∑ 𝑃𝑡
𝐿𝑥𝑡

𝐿𝑇𝐿

𝑡=1 − ∑ 𝑃𝑡−1
𝐿 𝛾𝑇𝐿

𝑡=1 =  

𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1 𝜆𝑦𝑡

𝐻𝑡𝐿,𝐻

𝑡=1 − ∑ 𝑃𝑡−1
𝐿𝑡𝐿,𝐻

𝑡=1 𝛾 + 𝑃
𝑡𝐿,𝐻
𝐿 (𝑐

𝑇𝐻+1
𝐻 − 𝑐

𝑡𝐿,𝐻+1
𝐿 )𝑞𝐹. 

Next, we prove that the principal can use any combination of 𝑥𝑡
𝐿 and 𝑦𝑡

𝐿 such that  

𝑦𝑡
𝐿 − 𝑥𝑡

𝐿 ≥
𝛾

𝜆𝛽𝑡
𝐿 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐿 + (1 − 𝜆)𝑥𝑠
𝐿 − 𝛾)𝑇𝐿

𝑠=𝑡+1 +
(1−𝛽0

𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐿, and 

(1 − 𝛽0
𝐿)∑ [𝑥𝑡

𝐿 − 𝛾]𝑇𝐿

𝑡=1 + 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1[(𝜆𝑦𝑡

𝐿 − 𝛾) + (1 − 𝜆)𝑥𝑡
𝐿]𝑇𝐿

𝑡=1 = 𝑈𝐿(𝜛𝐻, �⃗�𝐿(𝜛𝐻)). 

 

𝝁𝒕
𝑳 = 𝜼𝒕

𝑳 = 𝟎. Given that 𝜉𝐻 = 0, conditions (𝐴2) and (𝐴4) can be rewritten as 

(A2) 
𝜕ℒ

𝜕𝑦𝑡
𝐿 = −(1 − 𝜈)𝛽0

𝐿(1 − 𝜆)𝑡−1𝜆 + 𝜉𝐿𝛽0
𝐿(1 − 𝜆)𝑡−1𝜆 + 𝜇𝑡

𝐿 − ∑ 𝜇𝑗
𝐿(1 − 𝜆)𝑡−𝑗−1𝑡−1

𝑗=1 𝜆 = 0; 

(A4) 
𝜕ℒ

𝜕𝑥𝑡
𝐿 = −(1 − 𝜈)𝑃𝑡

𝐿 + 𝜉𝐿𝑃𝑡
𝐿 − 𝜇𝑡

𝐿 − ∑ 𝜇𝑗
𝐿(1 − 𝜆)𝑡−𝑗𝑡−1

𝑗=1 + 𝜂𝑡
𝐿 = 0. 

 There exists a solution to (𝐴2) and (𝐴4) for 𝑡 ≤ 𝑇𝐿 such that 

𝜇𝑡
𝐿 = 𝜂𝑡

𝐿 = 0 and 𝜉𝐿 = (1 − 𝜈) for 𝑡 ≤ 𝑇𝐿. 
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Therefore, the principal can use any combination of 𝑥𝑡
𝐿 and 𝑦𝑡

𝐿 such that 

𝑦𝑡
𝐿 − 𝑥𝑡

𝐿 ≥
𝛾

𝜆𝛽𝑡
𝐿 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐿 + (1 − 𝜆)𝑥𝑠
𝐿 − 𝛾)𝑇𝐿

𝑠=𝑡+1 +
(1−𝛽0

𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐿, and 

(1 − 𝛽0
𝐿)∑ [𝑥𝑡

𝐿 − 𝛾]𝑇𝐿

𝑡=1 + 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1[(𝜆𝑦𝑡

𝐿 − 𝛾) + (1 − 𝜆)𝑥𝑡
𝐿]𝑇𝐿

𝑡=1 = 𝑈𝐿(𝜛𝐻, �⃗�𝐿(𝜛𝐻)). 

 

 

This concludes the proof of Claim A4.       Q.E.D. 

 

For later use, we collect results we already derived in Case 2 and Intermediate case 3 for off the 

path effort �⃗⃗⃗�𝑳(𝝕𝑯). 

 

Section II Optimal length of experimentation   

Case 1: Both the (𝐼𝐶𝐻) and (𝐼𝐶𝐿) constraints are slack (under experimentation for both 

types). 
Information rents for both types are given by 

𝑈𝜃 = 𝛽0
𝜃 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝜃𝑇𝜃

𝑡=1 , where 𝑦𝑡
𝜃 =

𝛾

𝜆𝛽
𝑇𝜃
𝜃 +

(1−𝛽0
𝜃)

𝑃
𝑇𝜃
𝜃  

Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝜃 and 𝜃 ∈ {𝐻, 𝐿}. 

Since the agent’s information rent is increasing in 𝑇𝜃, there will be under experimentation for 

both types, that is, 𝑇𝑆𝐵
𝜃 < 𝑇𝐹𝐵

𝜃  for 𝜃 ∈ {𝐻, 𝐿}. 
 

Case 2: Both (𝐼𝐶𝐻) and (𝐼𝐶𝐿) bind (𝑇𝑆𝐵
𝐻 < 𝑇𝐹𝐵

𝐻 ; if 𝛾 is low enough, over-experimentation 

in 𝑇𝐿, 𝑇𝑆𝐵
𝐿 > 𝑇𝐹𝐵

𝐿 ). 

Information rents for both types are given by 

𝑈𝐻(𝜛𝐿 , 1⃗⃗) = (1 − 𝛽0
𝐻)∑ [𝑥𝑡

𝐿 − 𝛾]𝑇𝐿

𝑡=1 + 𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1[(𝜆𝑦𝑡

𝐿 − 𝛾) + (1 − 𝜆)𝑥𝑡
𝐿]𝑇𝐿

𝑡=1   

+𝑃
𝑇𝐿
𝐻 Δ𝑐𝑇𝐿+1𝑞𝐹; 

𝑈𝐿(𝜛𝐻, �⃗�𝐿(𝜛𝐻)) = −𝛾(1 − 𝛽0
𝐿)𝑡𝐿,𝐻 + 𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1[𝜆𝑦𝑡
𝐻 − 𝛾]𝑡=𝑡𝐿,𝐻

𝑡=1   

−𝑃
𝑡𝐿,𝐻
𝐻 (𝑐

𝑡𝐿,𝐻+1
𝐿 − 𝑐

𝑇𝐻+1
𝐻 )𝑞𝐹. 

We next prove that, if 𝛾 is low enough, we have over-experimentation in 𝑇𝐿 (𝑇𝑆𝐵
𝐿 > 𝑇𝐹𝐵

𝐿 ).  

Consider the term 𝑃
𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1𝑞𝐹 which, as we prove next, is monotonically decreasing in 

𝑇𝐿.  Noting that ∆𝑐𝑡 = 𝑐𝑡
𝐿 − 𝑐𝑡

𝐻 = (𝛽𝑡
𝐻 − 𝛽𝑡

𝐿)(𝑐 − 𝑐), and that 𝛽𝑡
𝐻 − 𝛽𝑡

𝐿 =
𝛽0

𝐻(1−𝜆)𝑡−1

𝛽0
𝐻(1−𝜆)𝑡−1+1−𝛽0

𝐻 −

𝛽0
𝐿(1−𝜆)𝑡−1

𝛽0
𝐿(1−𝜆)𝑡−1+1−𝛽0

𝐿 =
(1−𝜆)𝑡−1(𝛽0

𝐻−𝛽0
𝐿)

𝑃𝑡−1
𝐻 𝑃𝑡−1

𝐿 , the difference in the expected cost can be rewritten as 

∆𝑐𝑇𝐿+1 =
(1−𝜆)𝑇

𝐿
(𝛽0

𝐻−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐻 𝑃

𝑇𝐿
𝐿 (𝑐 − 𝑐). 

Thus, 𝑃
𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1 =

(1−𝜆)𝑇
𝐿
(𝛽0

𝐻−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿 (𝑐 − 𝑐) =

(1−𝜆)𝑇
𝐿
(𝛽0

𝐻−𝛽0
𝐿)

𝛽0
𝐿(1−𝜆)𝑇𝐿

+1−𝛽0
𝐿
(𝑐 − 𝑐) =

(𝛽0
𝐻−𝛽0

𝐿)

𝛽0
𝐿+

1−𝛽0
𝐿

(1−𝜆)𝑇
𝐿

(𝑐 − 𝑐), 

which is decreasing in 𝑇𝐿.  
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The first two terms of 𝑈𝐻(𝜛𝐿 , 1⃗⃗), the ‘moral hazard component’ on the right-hand side of (𝐼𝐶𝐻) 

are increasing in 𝑇𝐿 and is negatively proportional to 𝛾. Therefore, the high-type’s rent is 

lowered by increasing 𝑇𝐿 if the effect of 𝑃
𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1 dominates, which is the case if 𝛾 is low. We 

define a low enough value of 𝛾, called 𝛾2,𝑀𝐻, such that the high-type’s rent is decreasing in 𝑇𝐿 if 

𝛾 < 𝛾2,𝑀𝐻. 

 

 The term 𝑃
𝑡𝐿,𝐻
𝐻 (𝑐

𝑡𝐿,𝐻+1
𝐿 − 𝑐

𝑇𝐻+1
𝐻 )𝑞𝐹 is monotonically decreasing in 𝑇𝐻. Since it appears in 

the low-type’s rent with minus, the high-type’s rent is lowered by decreasing 𝑇𝐻. Similarly, the 

moral hazard component on the right-hand side of (𝐼𝐶𝐿) is increasing in 𝑇𝐻. Thus, it is optimal 

to have under-experimentation in 𝑇𝐻 (𝑇𝑆𝐵
𝐻 < 𝑇𝐹𝐵

𝐻 ). 

Intermediate case 3: only (𝐼𝐶𝐻) constraint binds (𝑇𝑆𝐵
𝐻 = 𝑇𝐹𝐵

𝐻 ; if 𝛾 is high enough, over 

experimentation in 𝑇𝐿, 𝑇𝑆𝐵
𝐿 > 𝑇𝐹𝐵

𝐿 ). 
Information rents for both types are given by  

 

𝜆𝑦𝑡
𝜃 − 𝛾 =

𝛾

𝛽
𝑇𝜃
𝜃

+
𝜆(1 − 𝛽0

𝜃)

𝑃
𝑇𝜃
𝜃  

Δ𝑐𝑞𝐹 − 𝛾 =
𝜆(1 − 𝛽0

𝜃)

𝑃
𝑇𝜃
𝜃  

Δ𝑐𝑞𝐹 + 𝛾 (
1 − 𝛽0

𝜃

𝛽0
𝜃(1 − 𝜆)𝑇𝜃−1

) 

 

𝑈𝐿 = 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐿𝑇𝐿

𝑡=1 , and 

𝑈𝐻(𝜛𝐿 , 1⃗⃗) = 𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1 (𝜆𝑦𝑡

𝐿 − 𝛾)𝑇𝐿

𝑡=1 − 𝛾(1 − 𝛽0
𝐻)𝑇𝐿 +𝑃

𝑇𝐿
𝐻 Δ𝑐𝑇𝐿+1𝑞𝐹, 

where 𝑦𝑡
𝐿 =

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐿. 

The stopping time for the high type, 𝑇𝐻, does not affect information rents and, as a result, 

is not distorted: 𝑇𝑆𝐵
𝐻 = 𝑇𝐹𝐵

𝐻 . 

We next prove that, if 𝛾 is high enough, we have over experimentation in 𝑇𝐿, 𝑇𝑆𝐵
𝐿 > 𝑇𝐹𝐵

𝐿 . 

Consider the RHS of (𝐼𝐶𝐻): 

−𝛾(1 − 𝛽0
𝐻)𝑇𝐿 + 𝛽0

𝐻 ∑ (1 − 𝜆)𝑡−1 [𝜆𝑦𝑡
𝐿 − 𝛾]𝑇𝐿

𝑡=1 + 𝑃
𝑇𝐿
𝐻 𝛥𝑐𝑇𝐿+1𝑞𝐹  

= −𝛾(1 − 𝛽0
𝐻)𝑇𝐿 + 𝛽0

𝐻 ∑ (1 − 𝜆)𝑡−1  [𝜆 [
𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿 𝛥𝑐𝑞𝐹] − 𝛾]𝑇𝐿

𝑡=1 + 𝑃
𝑇𝐿
𝐻 𝛥𝑐𝑇𝐿+1𝑞𝐹  

= −𝛾(1 − 𝛽0
𝐻)𝑇𝐿 + 𝛽0

𝐻 ∑ (1 − 𝜆)𝑡−1  [[
𝛾

𝛽
𝑇𝐿
𝐿 +

𝜆(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿 𝛥𝑐𝑞𝐹] − 𝛾]𝑇𝐿

𝑡=1 + 𝑃
𝑇𝐿
𝐻 𝛥𝑐𝑇𝐿+1𝑞𝐹.  

Given that, 
𝛾

𝛽
𝑇𝐿
𝐿 − 𝛾 = 𝛾 [

1−𝛽0
𝐿

𝛽0
𝐿(1−𝜆)𝑇𝐿−1

] and ∑ (1 − 𝜆)𝑡−1𝑇𝐻

𝑡=1 =
1−(1−𝜆)𝑇

𝐻

𝜆
, we rewrite the RHS of 

(𝐼𝐶𝐻) as follows: 

−𝛾(1 − 𝛽0
𝐻)𝑇𝐿 + 𝛽0

𝐻 ∑(1 − 𝜆)𝑡−1  [[
𝛾

𝛽𝑇𝐿
𝐿 +

𝜆(1 − 𝛽0
𝐿)

𝑃𝑇𝐿
𝐿 Δ𝑐𝑞𝐹] − 𝛾]

𝑇𝐿

𝑡=1

+ 𝑃
𝑇𝐿
𝐻 Δ𝑐𝑇𝐿+1𝑞𝐹 

= −𝛾(1 − 𝛽0
𝐻)𝑇𝐿 + 𝛽0

𝐻 ∑ (1 − 𝜆)𝑡−1  [𝛾 [
1−𝛽0

𝐿

𝛽0
𝐿(1−𝜆)𝑇𝐿−1

] +
𝜆(1−𝛽0

𝐿)

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹]𝑇𝐿

𝑡=1 + 𝑃
𝑇𝐿
𝐻 Δ𝑐𝑇𝐿+1𝑞𝐹  

−𝛾(1 − 𝛽0
𝐻)𝑇𝐿 + 𝛾 [

(1−𝛽0
𝐿)𝛽0

𝐻

𝛽0
𝐿𝜆(1−𝜆)𝑇𝐿−1

] − 𝛾 [
(1−𝛽0

𝐿)𝛽0
𝐻

𝛽0
𝐿𝜆

] − [
𝛽0

𝐿(1−𝜆)𝑇
𝐿
(1−𝛽0

𝐻)

𝑃
𝑇𝐿
𝐿 ] Δ𝑐𝑞𝐹. 
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Since the second term 𝛾 [
(1−𝛽0

𝐿)𝛽0
𝐻

𝛽0
𝐿𝜆(1−𝜆)𝑇𝐿−1

] is increasing in 𝑇𝐿 and the last term is decreasing 

in 𝑇𝐿, there exist a high enough value of 𝛾, such that the first effect dominates. Then, it is 

optimal to have over experimentation in 𝑇𝐿, 𝑇𝑆𝐵
𝐿 > 𝑇𝐹𝐵

𝐿 , to mitigate the high type’s rent. 

 

Intermediate case 4: only (𝐼𝐶𝐿) constraint binds (𝑇𝑆𝐵
𝐿 = 𝑇𝐹𝐵

𝐿 , under experimentation for 

the high type, 𝑇𝑆𝐵
𝐻 < 𝑇𝐹𝐵

𝐻 ). 
Information rents for both types are given by 

𝑈𝐻 = 𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐻𝑇𝐻

𝑡=1 , and 

𝑈𝐿(𝜛𝐻, �⃗�𝐿(𝜛𝐻)) = −𝛾(1 − 𝛽0
𝐿)𝑡𝐿,𝐻 + 𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1 (𝜆𝑦𝑡
𝐻 − 𝛾)𝑡𝐿,𝐻

𝑡=1   

−𝑃
𝑡𝐿,𝐻
𝐻 (𝑐

𝑡𝐿,𝐻+1
𝐿 − 𝑐

𝑇𝐻+1
𝐻 )𝑞𝐹, 

where 𝑦𝑡
𝐻 =

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻  

Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐻. 

 

The stopping time for the low type, 𝑇𝐿, does not affect information rents and, as a result, 

is not distorted: 𝑇𝑆𝐵
𝐿 = 𝑇𝐹𝐵

𝐿 . 

The term 𝑃
𝑡𝐿,𝐻
𝐻 (𝑐

𝑡𝐿,𝐻+1
𝐿 − 𝑐

𝑇𝐻+1
𝐻 )𝑞𝐹 is monotonically decreasing in 𝑇𝐻. Thus, under 

experimentation in 𝑇𝐻 lowers the rent of the low type. Similarly, the moral hazard component on 

the right-hand side of (𝐼𝐶𝐿) is increasing in 𝑇𝐻. Thus, it is optimal to have under-

experimentation in 𝑇𝐻 (𝑇𝑆𝐵
𝐻 < 𝑇𝐹𝐵

𝐻 ). 

 

 

Section III. Sufficient conditions for IC constraints to be binding/slack. 

Case 1: For any 𝛽0
𝐻 there exist 𝜆(𝛽0

𝐻) > 0, 𝐴(𝛽0
𝐻) > 0, and 𝛽

0

𝐿
(𝛽0

𝐻) > 0 such that all the 

(𝑀𝐻𝑡
𝜃) are binding for each type, but neither 𝐼𝐶 is binding if 𝜆 < 𝜆, 𝛾 > 𝐴Δ𝑐𝑞𝐹, and 𝛽0

𝐿 < 𝛽
0

𝐿
. 

Case 2: For any 𝛽0
𝐻 there exist 𝜆(𝛽0

𝐻) < 1 and 𝐴(𝛽0
𝐻) > 0 such that both IC bind if 𝜆 > 𝜆, 𝛾 <

𝐴Δ𝑐𝑞𝐹, and 𝛽0
𝐿 <

1

2
. 

Intermediate case 3: For any 𝜆 there exist 𝛽0
𝐻(𝜆) < 1, 𝛽

0

𝐿
(𝜆) > 0, and 𝐴(𝜆) > 0 such that 

(𝐼𝐶𝐻) and all the (𝑀𝐻𝑡
𝐿) bind if 𝛽0

𝐻 > 𝛽0
𝐻, 𝛽0

𝐿 < 𝛽
0

𝐿
 and 𝛾 > 𝐴Δ𝑐𝑞𝐹. 

Intermediate case 4: For any 𝛽0
𝐿 there exist 𝛽0

𝐿 < 𝛽0
𝐻(𝛽0

𝐿), �̃�(𝛽0
𝐿) > 0, and 𝜆(𝛽0

𝐿) > 0 such that 

𝐼𝐶𝐿 is binding and 𝐼𝐶𝐻 is not binding if 𝛽0
𝐿 < 𝛽0

𝐻 < 𝛽0
𝐻, 𝛾 > �̃�Δ𝑐𝑞𝐹, and 𝜆 < 𝜆. 

Proof: We prove the sufficient conditions in two steps. In Step 1, we prove that (i) (𝐼𝐶𝐻) is not 

binding if 𝜆 is small and 𝛾 is sufficiently higher than Δ𝑐 and (ii) (𝐼𝐶𝐻) is binding: if either 𝛽0
𝐻 is 
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high enough or 𝜆 is high enough. In Step 2, we prove that (i) (𝐼𝐶𝐿) is slack if 𝛽0
𝐿 is small and 𝛾 is 

high and (ii) (𝐼𝐶𝐿) is binding if either 𝛽0
𝐻 close to 𝛽0

𝐿 or 𝜆 is high, 𝛽0
𝐿 not too high, and 𝛾 is 

small. Then, combining the corresponding sufficient conditions, we establish 4 cases. 

Step 1, (𝑰𝑪𝑯).  

Step 1a.  (𝑰𝑪𝑯) is binding. We now prove that (𝐼𝐶𝐻) is binding if either 𝛽0
𝐻 is high enough or 𝜆 

is high enough. To characterize sufficient conditions for the (𝐼𝐶𝐻) to be binding, we establish 

the parameters under which the highest possible value of the LHS of the (𝐼𝐶𝐻) evaluated at 

𝑥𝑡
𝐻 = 0 and 𝑦𝑡

𝐻 =
𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐻 is less than the lowest possible value of the 

RHS (what he can claim by misrepresenting his type) evaluated at 𝑥𝑡
𝐿 = 0 and 𝑦𝑡

𝐿 =
𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐿. 

Therefore, recalling that we proved in Lemma 1 that the high type works in every period 

off-the-equilibrium, i.e., 𝑒𝑡
𝐻,𝐿 = 1 for 𝑡 ≤ 𝑇𝐿, the (𝐼𝐶𝐻) is satisfied if and only if: 

−𝛾(1 − 𝛽0
𝐻)𝑇𝐻 + 𝛽0

𝐻 ∑(1 − 𝜆)𝑡−1(𝜆𝑦𝑡
𝐻 − 𝛾)

𝑇𝐻

𝑡=1

 

≥ −𝛾(1 − 𝛽0
𝐻)𝑇𝐿 + 𝛽0

𝐻 ∑ (1 − 𝜆)𝑡−1(𝜆𝑦𝑡
𝐿 − 𝛾)𝑇𝐿

𝑡=1 + 𝑃
𝑇𝐿
𝐻 Δ𝑐𝑇𝐿+1𝑞𝐹.  

We next simplify (𝐼𝐶𝐻) using 𝑃
𝑇𝐿
𝐻 Δ𝑐𝑇𝐿+1𝑞𝐹 = (1 − 𝜆)𝑇𝐿

(
𝛽0

𝐻−𝛽0
𝐿

𝑃
𝑇𝐿
𝐿 ) Δ𝑐𝑞𝐹, ∑ (1 − 𝜆)𝑡−1𝑇𝜃

𝑡=1 =

1−(1−𝜆)𝑇
𝜃

𝜆
, and 𝜆𝑦𝑡

𝜃 − 𝛾 =
𝛾

𝛽
𝑇𝜃
𝜃 +

𝜆(1−𝛽0
𝜃)

𝑃
𝑇𝜃
𝜃  

Δ𝑐𝑞𝐹 − 𝛾 =
𝜆(1−𝛽0

𝜃)

𝑃
𝑇𝜃
𝜃  

Δ𝑐𝑞𝐹 + 𝛾 (
1−𝛽0

𝜃

𝛽0
𝜃(1−𝜆)𝑇𝜃−1

) to obtain:  

(𝐼𝐶𝐻)  
𝛽0

𝐻𝛾

𝜆
(

(1−𝛽0
𝐻)(1−(1−𝜆)𝑇

𝐻
)

𝛽0
𝐻(1−𝜆)𝑇𝐻−1

−
(1−𝛽0

𝐿)(1−(1−𝜆)𝑇
𝐿
)

𝛽0
𝐿(1−𝜆)𝑇𝐿−1

) − 𝛾(1 − 𝛽0
𝐻)(𝑇𝐻 − 𝑇𝐿)  

≥ (
𝛽0

𝐻(1−𝛽0
𝐿)+(1−𝜆)𝑇

𝐿
𝛽0

𝐿(1−𝛽0
𝐻)

𝑃
𝑇𝐿
𝐿  

−
𝛽0

𝐻(1−𝛽0
𝐻)(1−(1−𝜆)𝑇

𝐻
)

𝑃
𝑇𝐻
𝐻  

)Δ𝑐𝑞𝐹. 

Finally, given that  

(1−𝛽0
𝐻)(1−(1−𝜆)𝑇

𝐻
)

𝛽0
𝐻(1−𝜆)𝑇𝐻−1

−
(1−𝛽0

𝐿)(1−(1−𝜆)𝑇
𝐿
)

𝛽0
𝐿(1−𝜆)𝑇𝐿−1

 =
(1−𝛽0

𝐻)𝛽0
𝐿(1−𝜆)𝑇

𝐿
−(1−𝛽0

𝐿)𝛽0
𝐻(1−𝜆)𝑇

𝐻
+(𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐿+𝑇𝐻

𝛽0
𝐻𝛽0

𝐿(1−𝜆)𝑇𝐻+𝑇𝐿−1
, 

and 
𝛽0

𝐻(1−𝛽0
𝐿)+(1−𝜆)𝑇

𝐿
𝛽0

𝐿(1−𝛽0
𝐻)

𝑃
𝑇𝐿
𝐿  

−
𝛽0

𝐻(1−𝛽0
𝐻)(1−(1−𝜆)𝑇

𝐻
)

𝑃
𝑇𝐻
𝐻  

  =

𝛽0
𝐻(1−𝛽0

𝐿)(1−𝜆)𝑇
𝐻

+𝛽0
𝐿(1−𝛽0

𝐻)(1−2𝛽0
𝐻)(1−𝜆)𝑇

𝐿
+2𝛽0

𝐿𝛽0
𝐻(1−𝛽0

𝐻)(1−𝜆)𝑇
𝐻+𝑇𝐿

𝑃
𝑇𝐿
𝐿 𝑃

𝑇𝐻
𝐻 ,  
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(𝐼𝐶𝐻)   above simplifies to 

(𝐼𝐶𝐻)    (
(1−𝛽0

𝐻)𝛽0
𝐿(1−𝜆)𝑇

𝐿
−(1−𝛽0

𝐿)𝛽0
𝐻(1−𝜆)𝑇

𝐻
+(𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐿+𝑇𝐻

𝛽0
𝐿𝜆(1−𝜆)𝑇𝐻+𝑇𝐿−1

− (1 − 𝛽0
𝐻)(𝑇𝐻 − 𝑇𝐿))𝛾 

≥ (
𝛽0

𝐻(1−𝛽0
𝐿)(1−𝜆)𝑇

𝐻
+𝛽0

𝐿(1−𝛽0
𝐻)(1−2𝛽0

𝐻)(1−𝜆)𝑇
𝐿
+2𝛽0

𝐿𝛽0
𝐻(1−𝛽0

𝐻)(1−𝜆)𝑇
𝐻+𝑇𝐿

𝑃
𝑇𝐿
𝐿 𝑃

𝑇𝐻
𝐻 ) Δ𝑐𝑞𝐹. 

 

𝛽0
𝐻 is high enough. First, consider the LHS of (𝐼𝐶𝐻) if 𝛽0

𝐻 → 1. The coefficient in front 𝛾 is:   

(1−𝛽0
𝐻)𝛽0

𝐿(1−𝜆)𝑇
𝐿
−(1−𝛽0

𝐿)𝛽0
𝐻(1−𝜆)𝑇

𝐻
+(𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐿+𝑇𝐻

𝛽0
𝐿𝜆(1−𝜆)𝑇𝐻+𝑇𝐿−1

− (1 − 𝛽0
𝐻)(𝑇𝐻 − 𝑇𝐿) =  

(1−𝛽0
𝐻)𝛽0

𝐿(1−𝜆)𝑇
𝐿

𝛽0
𝐿𝜆(1−𝜆)𝑇𝐻+𝑇𝐿−1

−
(1−𝛽0

𝐿)𝛽0
𝐻(1−𝜆)𝑇

𝐻

𝛽0
𝐿𝜆(1−𝜆)𝑇𝐻+𝑇𝐿−1

+
(𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐿+𝑇𝐻

𝛽0
𝐿𝜆(1−𝜆)𝑇𝐻+𝑇𝐿−1

− (1 − 𝛽0
𝐻)(𝑇𝐻 − 𝑇𝐿). 

Replacing 𝛽0
𝐻 with the limit value of one in the expression above we obtain: 

(1−𝛽0
𝐿)[(1−𝜆)𝑇

𝐿+𝑇𝐻
−(1−𝜆)𝑇

𝐻
]

𝛽0
𝐿𝜆(1−𝜆)𝑇𝐻+𝑇𝐿−1

 . 

Consider expression 
(1−𝛽0

𝐿)[(1−𝜆)𝑇
𝐿+𝑇𝐻

−(1−𝜆)𝑇
𝐻

]

𝛽0
𝐿𝜆(1−𝜆)𝑇𝐻+𝑇𝐿−1

 for any 𝛽0
𝐿 > 0. If 𝑇𝐿 ≥ 1, then (1 − 𝜆)𝑇𝐿+𝑇𝐻

<

(1 − 𝜆)𝑇𝐻
 and, as a result, 

(1−𝛽0
𝐿)[(1−𝜆)𝑇

𝐿+𝑇𝐻
−(1−𝜆)𝑇

𝐻
]

𝛽0
𝐿𝜆(1−𝜆)𝑇𝐻+𝑇𝐿−1

< 0 for any 𝛽0
𝐿 > 0. If 𝑇𝐿 becomes zero 

for small values of 𝛽0
𝐿 > 0, then the numerator becomes zero while the denominator remains 

strictly positive. Therefore, for any 𝛽0
𝐿 > 0, 

(1−𝛽0
𝐿)[(1−𝜆)𝑇

𝐿+𝑇𝐻
−(1−𝜆)𝑇

𝐻
]

𝛽0
𝐿𝜆(1−𝜆)𝑇𝐻+𝑇𝐿−1

 is either negative or zero. 

Thus, the LHS of (𝐼𝐶𝐻) if 𝛽0
𝐻 → 1 is either negative or zero for any 𝛽0

𝐿 > 0. 

Second, note that the RHS of (𝐼𝐶𝐻) is strictly positive if 𝛽0
𝐻 → 1. 

As a result, (𝐼𝐶𝐻) is binding for high enough 𝛽0
𝐻. We define a high enough value of 𝛽0

𝐻, called 

𝛽0
𝐻, as:  

𝛽0
𝐻 :   

(1−𝛽0
𝐻)𝛽0

𝐻(1−𝜆)𝑇
𝐿
−(1−𝛽0

𝐻)𝛽0
𝐻(1−𝜆)𝑇

𝐻
+(𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐿+𝑇𝐻

𝛽0
𝐻𝜆(1−𝜆)𝑇𝐻+𝑇𝐿−1

  

= (1 − 𝛽0,𝐻𝐿𝑎
𝐻 )(𝑇𝐻 − 𝑇𝐿). 

Thus, (𝐼𝐶𝐻) is binding if 𝛽0
𝐻 > 𝛽0

𝐻. 
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𝜆 is high enough. We prove that (𝐼𝐶𝐻) is binding if 𝜆 is sufficiently high. First, the coefficient in 

front of 𝛾 on the LHS in (𝐼𝐶𝐻) becomes negative if 𝜆 → 1. Since 𝑇𝐻 → 1 and 𝑇𝐿 → 1:41  

lim
𝜆→1

[
(1−𝛽0

𝐻)𝛽0
𝐿(1−𝜆)−(1−𝛽0

𝐿)𝛽0
𝐻(1−𝜆)+(𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)2

𝛽0
𝐿𝜆(1−𝜆)

]  

= lim
𝜆→1

[
(1−𝛽0

𝐻)𝛽0
𝐿−(1−𝛽0

𝐿)𝛽0
𝐻+(𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)

𝛽0
𝐿𝜆

] =
(1−𝛽0

𝐻)𝛽0
𝐿−(1−𝛽0

𝐿)𝛽0
𝐻

𝛽0
𝐿   

=
𝛽0

𝐿−𝛽0
𝐻𝛽0

𝐿−(𝛽0
𝐻−𝛽0

𝐿𝛽0
𝐻)

𝛽0
𝐿 =

𝛽0
𝐿−𝛽0

𝐻

𝛽0
𝐿 < 0.    

We define a high enough value of 𝜆, called 𝜆1,  as: 

𝜆1:   
(1−𝛽0

𝐻)𝛽0
𝐿(1−𝜆1)𝑇

𝐿
−(1−𝛽0

𝐿)𝛽0
𝐻(1−𝜆1)𝑇

𝐻
+(𝛽0

𝐻−𝛽0
𝐿)(1−𝜆1)𝑇

𝐿+𝑇𝐻

𝛽0
𝐿𝜆1(1−𝜆1)𝑇𝐻+𝑇𝐿−1

= (1 − 𝛽0
𝐻)(𝑇𝐻 − 𝑇𝐿). 

Second, the coefficient in front of Δ𝑐𝑞𝐹  on the RHS goes to zero if 𝜆 → 1: 

lim
𝜆→1

𝛽0
𝐻(1−𝛽0

𝐿)(1−𝜆)𝑇
𝐻

+𝛽0
𝐿(1−𝛽0

𝐻)(1−2𝛽0
𝐻)(1−𝜆)𝑇

𝐿
+2𝛽0

𝐿𝛽0
𝐻(1−𝛽0

𝐻)(1−𝜆)𝑇
𝐻+𝑇𝐿

𝑃
𝑇𝐿
𝐿 𝑃

𝑇𝐻
𝐻   

=
𝛽0

𝐻(1−𝛽0
𝐿)(1−1)1+𝛽0

𝐿(1−𝛽0
𝐻)(1−2𝛽0

𝐻)(1−1)1+2𝛽0
𝐿𝛽0

𝐻(1−𝛽0
𝐻)(1−1)1+1

𝑃1
𝐿𝑃1

𝐻 = 0. 

Thus, the coefficient in front of Δ𝑐𝑞𝐹 is positive if 𝜆 > 𝜆2. 

Therefore, (𝐼𝐶𝐻) is binding if 𝜆 > 𝜆3 = max{𝜆1, 𝜆2}. 

 

Step 1b.  (𝑰𝑪𝑯) is not binding. We now prove that (𝐼𝐶𝐻) is not binding if 𝜆 is low enough and 𝛾 

is high enough. To characterize sufficient conditions for the (𝐼𝐶𝐻) not to be binding, we 

establish the parameters under which the lowest value of the LHS of (𝐼𝐶𝐻) evaluated at 𝑥𝑡
𝐻 = 0 

and 𝑦𝑡
𝐻 =

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐻 is greater than the highest value of the RHS . 

 The (𝐼𝐶𝐻) can be rewritten as:  

−𝛾(1 − 𝛽0
𝐻)𝑇𝐻 + 𝛽0

𝐻 ∑(1 − 𝜆)𝑡−1 (𝜆 [
𝛾

𝜆𝛽𝑇𝐻
𝐻 +

(1 − 𝛽0
𝐻)

𝑃𝑇𝐻
𝐻 Δ𝑐𝑞𝐹] − 𝛾)

𝑇𝐻

𝑡=1

 

≥ −𝛾(1 − 𝛽0
𝐻)𝑇𝐿 + 𝛽0

𝐻 ∑ (1 − 𝜆)𝑡−1(𝜆𝑦𝑡
𝐿 − 𝛾)𝑇𝐿

𝑡=1 + 𝑃
𝑇𝐿
𝐻 Δ𝑐𝑇𝐿+1𝑞𝐹 + 𝑃

𝑇𝐿
𝐻 𝑥

𝑇𝐿
𝐿 .  

Consider small values of 𝜆 and let us take a limit 𝜆 → 0. As 𝜆 → 0, there will be small enough 

values for which 𝑇𝐿 = 𝑡𝐿,𝐻 = 0. We define a small enough value of 𝜆, called 𝜆, suh that 𝑇𝐿 =

𝑡𝐿,𝐻 = 0 if 𝜆 < 𝜆. As a result, for those small values of 𝜆 < 𝜆, −𝛾(1 − 𝛽0
𝐻)𝑇𝐿 +

𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1(𝜆𝑦𝑡

𝐿 − 𝛾)𝑇𝐿

𝑡=1 = 0 and  𝑥
𝑇𝐿
𝐿 = (𝑐

𝑇𝐻
𝐻 − 𝑐1

𝐿)𝑞𝐹 > 0 if 𝑐
𝑇𝐻
𝐻 > 𝑐1

𝐿 and  𝑥
𝑇𝐿
𝐿 ≤ 0 if 

 
41 Because 𝑇𝐻 and 𝑇𝐿 are discrete, they converge to 1 faster than 𝜆. 
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𝑐
𝑇𝐻
𝐻 ≤ 𝑐1

𝐿.42  And Δ𝑐1=𝑐1
𝐿 − 𝑐1

𝐻.  Since off-the-equilibrium rent of the high type is smaller in the 

latter case (𝑐
𝑇𝐻
𝐻 ≤ 𝑐1

𝐿), it is sufficient to characterize sufficient conditions for (𝐼𝐶𝐻) to be 

satisfied in the former (𝑐
𝑇𝐻
𝐻 > 𝑐1

𝐿) case only. Consider the former case (𝑐
𝑇𝐻
𝐻 > 𝑐1

𝐿). Given that 

𝑃
𝑇𝐿
𝐻 = 1, the (𝐼𝐶𝐻) constraint simplifies to: 

−𝛾(1 − 𝛽0
𝐻)𝑇𝐻 + 𝛽0

𝐻 ∑ (1 − 𝜆)𝑡−1 (𝜆 [
𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹] − 𝛾)𝑇𝐻

𝑡=1  ≥ (𝑐
𝑇𝐻
𝐻 − 𝑐1

𝐻)𝑞𝐹, 

𝛾 (𝛽0
𝐻 (

1

𝛽
𝑇𝐻
𝐻 − 1) (

1−(1−𝜆)𝑇
𝐻

𝜆
) − (1 − 𝛽0

𝐻)𝑇𝐻) + 𝛽0
𝐻 (1−𝛽0

𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹 (

1−(1−𝜆)𝑇
𝐻

𝜆
) ≥ (𝑐

𝑇𝐻
𝐻 − 𝑐1

𝐻)𝑞𝐹.  

Since Δ𝑐 > 𝑐
𝑇𝐻
𝐻 − 𝑐1

𝐻, it is sufficient to prove the following condition (we replace 𝑐
𝑇𝐻
𝐻 − 𝑐1

𝐻 with 

Δ𝑐 on the RHS of the (𝐼𝐶𝐻) above): 

𝛾 (𝛽0
𝐻 (

1

𝛽
𝑇𝐻
𝐻 − 1) (

1−(1−𝜆)𝑇
𝐻

𝜆
) − (1 − 𝛽0

𝐻)𝑇𝐻) + 𝛽0
𝐻 (1−𝛽0

𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹 (

1−(1−𝜆)𝑇
𝐻

𝜆
) ≥ Δ𝑐𝑞𝐹, 

𝛾 (𝛽0
𝐻 (

1

𝛽
𝑇𝐻
𝐻 − 1) (

1−(1−𝜆)𝑇
𝐻

𝜆
) − (1 − 𝛽0

𝐻)𝑇𝐻) ≥ (1 − 𝛽0
𝐻 (1−𝛽0

𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹 (

1−(1−𝜆)𝑇
𝐻

𝜆
))Δ𝑐𝑞𝐹, 

Since the coefficient in front of 𝛾 is positive (the moral hazard rent in a model of 

experimentation without production is positive), the (𝐼𝐶𝐻) is satisfied if  

𝛾 ≥

(1−𝛽0
𝐻

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹(

1−(1−𝜆)𝑇
𝐻

𝜆
))

(𝛽0
𝐻(

1

𝛽
𝑇𝐻
𝐻 −1)(

1−(1−𝜆)𝑇
𝐻

𝜆
)−(1−𝛽0

𝐻)𝑇𝐻) 

 Δ𝑐𝑞𝐹, 

Therefore, (𝐼𝐶𝐻) is not binding if 𝜆 < 𝜆 and 𝛾 > �̃�Δ𝑐𝑞𝐹 , where 

�̃� ≡ max
𝑇𝐻,𝑇𝐿

(1−𝛽0
𝐻

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹(

1−(1−𝜆)𝑇
𝐻

𝜆
))

(𝛽0
𝐻(

1

𝛽
𝑇𝐻
𝐻 −1)(

1−(1−𝜆)𝑇
𝐻

𝜆
)−(1−𝛽0

𝐻)𝑇𝐻)

. 

 

Step 2, (𝑰𝑪𝑳).  

Step 2a.  (𝑰𝑪𝑳) is binding. We now prove that (𝐼𝐶𝐿) is binding if either 𝜆 is high, 𝛽0
𝐿 not too 

high, and 𝛾 is small or 𝛽0
𝐻 close to 𝛽0

𝐿. To characterize sufficient conditions for the (𝐼𝐶𝐿) to be 

binding, we establish the parameters under which the highest possible value of the LHS of (𝐼𝐶𝐿) 

 
42 The term 𝑐𝑡

𝐿 is the expected cost for the 𝐿 type after 𝑡 − 1 failure (so 𝑐1
𝐿 is the expected cost after no 

experimentation). 
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evaluated at 𝑥𝑡
𝐿 = 0 and 𝑦𝑡

𝐿 =
𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐿 is less than the lowest possible 

value of the RHS evaluated at 𝑥𝑡
𝐻 = 0 and 𝑦𝑡

𝐻 =
𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐻. 

The (𝐼𝐶𝐿) can be rewritten: 

−𝛾(1 − 𝛽0
𝐿)𝑇𝐿 + 𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1(𝜆𝑦𝑡
𝐿 − 𝛾)𝑇𝐿

𝑡=1   

≥ −𝛾(1 − 𝛽0
𝐿)𝑡𝐿,𝐻 + 𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1 (𝜆𝑦𝑡
𝐻 − 𝛾)𝑡𝐿,𝐻

𝑡=1  +𝑃
𝑡𝐿,𝐻
𝐿 (𝑐

𝑇𝐻+1
𝐻 − 𝑐

𝑡𝐿,𝐻+1
𝐿 )𝑞𝐹,  

which can be simplified to: 

(𝐼𝐶𝐿)  (
(1−𝛽0

𝐿)(1−(1−𝜆)𝑇
𝐿
)

𝜆(1−𝜆)𝑇𝐿−1
−

(1−𝛽0
𝐻)𝛽0

𝐿(1−(1−𝜆)𝑡
𝐿,𝐻

)

𝛽0
𝐻𝜆(1−𝜆)𝑇𝐻−1

− (1 − 𝛽0
𝐿)(𝑇𝐿 − 𝑡𝐿,𝐻)) 𝛾   

≥ (
𝛽0

𝐿(1−𝛽0
𝐻)(1−𝜆)𝑇

𝐿
+𝛽0

𝐻(1−𝛽0
𝐿)(1−2𝛽0

𝐿)(1−𝜆)𝑇
𝐻

+2𝛽0
𝐿𝛽0

𝐻(1−𝛽0
𝐿)(1−𝜆)𝑇

𝐻+𝑇𝐿

𝑃
𝑇𝐿
𝐿 𝑃

𝑇𝐻
𝐻 ) Δ𝑐𝑞𝐹. 

𝜆 is high, 𝛽0
𝐿 not too high, and 𝛾 is small. First, if 𝜆 is high enough, then the coefficient in front 

of 𝛾 is positive as well. First, note that  𝑇𝐻 → 1, 𝑇𝐿 → 1, and 𝑡𝐿,𝐻 → 1.43 As a result, this 

coefficient becomes: 

lim
𝜆→1

[
(1−𝛽0

𝐿)

(1−𝜆)0
−

(1−𝛽0
𝐻)𝛽0

𝐿

𝛽0
𝐻(1−𝜆)0

] = (
𝛽0

𝐻(1−𝛽0
𝐿)−(1−𝛽0

𝐻)𝛽0
𝐿

𝛽0
𝐻 )

1

(1−𝜆)0
 = (

𝛽0
𝐻−𝛽0

𝐿

𝛽0
𝐻 ) lim

𝜆→1
[

1

(1−𝜆)0
] > 0. 

Therefore, there exists a high enough value of 𝜆 called 𝜆4 such that 𝜆4 < 1: 

𝜆4:   
(1−𝛽0

𝐿)(1−(1−𝜆4)𝑇
𝐿
)

𝜆4(1−𝜆4)𝑇𝐿−1
−

(1−𝛽0
𝐻)𝛽0

𝐿(1−(1−𝜆4)𝑡
𝐿,𝐻

)

𝛽0
𝐻𝜆4(1−𝜆4)𝑇𝐻−1

− (1 − 𝛽0
𝐿)(𝑇𝐿 − 𝑡𝐿,𝐻) = 0. 

Second, if 𝛽0
𝐿 is not too high (sufficient 𝛽0

𝐿 <
1

2
), then the coefficient in front of Δ𝑐 is positive. 

Thus, (𝐼𝐶𝐿) is binding if 1 > 𝜆 > 𝜆4, 𝛽0
𝐿 <

1

2
, and 𝛾 < 𝐴Δ𝑐𝑞𝐹 , where 

𝐴 ≡ min
𝑇𝐻,𝑇𝐿

(
𝛽0

𝐿(1−𝛽0
𝐻)(1−𝜆)𝑇

𝐿
+𝛽0

𝐻(1−𝛽0
𝐿)(1−2𝛽0

𝐿)(1−𝜆)𝑇
𝐻

+2𝛽0
𝐿𝛽0

𝐻(1−𝛽0
𝐿)(1−𝜆)𝑇

𝐻+𝑇𝐿

𝑃
𝑇𝐿
𝐿 𝑃

𝑇𝐻
𝐻 )

(
(1−𝛽0

𝐿)(1−(1−𝜆)𝑇
𝐿
)

𝜆(1−𝜆)𝑇
𝐿−1

−
(1−𝛽0

𝐻)𝛽0
𝐿(1−(1−𝜆)𝑡

𝐿,𝐻
)

𝛽0
𝐻𝜆(1−𝜆)𝑇

𝐻−1
−(1−𝛽0

𝐿)(𝑇𝐿−𝑡𝐿,𝐻))

. 

𝛽0
𝐻 close to 𝛽0

𝐿. If the coefficients in front of 𝛾 in (𝐼𝐶𝐿) is zero, the (𝐼𝐶𝐿) constraint is binding. 

We next prove that this is the case if 𝛽0
𝐻 is not too high as the coefficient in front of 𝛾 in (𝐼𝐶𝐿) is 

going to zero. In particular, note that if 𝛽0
𝐿 → 𝛽0

𝐻, then 𝑇𝐿 → 𝑡𝐿,𝐻 → 𝑇𝐻 → 𝑇, and, as a result, 

 
43 Because 𝑇𝐻 and 𝑇𝐿 are discrete, they converge to 1 faster than 𝜆. 
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lim
𝛽0

𝐿→𝛽0
𝐻
[
(1 − 𝛽0

𝐿)(1 − (1 − 𝜆)𝑇𝐿
)

𝜆(1 − 𝜆)𝑇𝐿−1
−

(1 − 𝛽0
𝐻)𝛽0

𝐿(1 − (1 − 𝜆)𝑡𝐿,𝐻
)

𝛽0
𝐻𝜆(1 − 𝜆)𝑇𝐻−1

− (1 − 𝛽0
𝐿)(𝑇𝐿 − 𝑡𝐿,𝐻)] 

= lim
𝛽0

𝐿→𝛽0
𝐻
[(

(1−(1−𝜆)𝑇)

𝜆(1−𝜆)𝑇−1 ) (
𝛽0

𝐻(1−𝛽0
𝐻)−(1−𝛽0

𝐻)𝛽0
𝐻

𝛽0
𝐻 ) ] = 0. 

Therefore, there exists a small enough value of 𝛽0
𝐻, called 𝛽0

𝐻, such that 𝛽0
𝐻 > 𝛽0

𝐿: 

𝛽0
𝐻:   

(1−𝛽0
𝐿)(1−(1−𝜆)𝑇

𝐿
)

𝜆(1−𝜆)𝑇𝐿−1
−

(1−𝛽0
𝐻)𝛽0

𝐿(1−(1−𝜆)𝑡
𝐿,𝐻

)

𝛽0
𝐻𝜆(1−𝜆)𝑇𝐻−1

= (1 − 𝛽0
𝐿)(𝑇𝐿 − 𝑡𝐿,𝐻). 

Thus, (𝐼𝐶𝐿) is binding if 𝛽0
𝐿 < 𝛽0

𝐻 < 𝛽0
𝐻. 

Step 2b. (𝑰𝑪𝑳) is not binding. We now prove that (𝐼𝐶𝐿) is not binding if 𝛽0
𝐿 is small and 𝛾 is 

high. To characterize sufficient conditions for the (𝐼𝐶𝐿) not to be binding, we establish the 

parameters under which the lowest value of the LHS of (𝐼𝐶𝐿)  evaluated at 𝑥𝑡
𝐿 = 0 and 𝑦𝑡

𝐿 =

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐿 is greater than the highest value of the RHS. To characterize this 

highest value, consider small values of 𝛽0
𝐿 and take the limit 𝛽0

𝐿 → 0. As 𝛽0
𝐿 → 0, there will be 

small enough values for which 𝑇𝐿 = 𝑡𝐿,𝐻 = 0. We define a small enough value of 𝛽0
𝐿, called 𝛽

0

𝐿
, 

such that 𝑇𝐿 = 𝑡𝐿,𝐻 = 0 if 𝛽0
𝐿 < 𝛽

0

𝐿
. As a result, for those small values of 𝛽0

𝐿 < 𝛽
0

𝐿
, off-the-

equilibrium RHS for the low type is 𝑈𝐿(𝜛𝐻, �⃗�𝐿(𝜛𝐻)) = (𝑐
𝑇𝐻
𝐻 − 𝑐1

𝐿)𝑞𝐹. it is sufficient to 

consider the case (𝑐
𝑇𝐻
𝐻 > 𝑐1

𝐿).  Using similar steps as in step 1b, the (𝐼𝐶𝐿) constraint is satisfied if 

the following  condition holds: 

−𝛾(1 − 𝛽0
𝐿)𝑇𝐿 + 𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1 (𝜆 [
𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹] − 𝛾)𝑇𝐿

𝑡=1 ≥ (𝑐
𝑇𝐻
𝐻 − 𝑐1

𝐿)𝑞𝐹.  

𝛾 (𝛽0
𝐿 (

1

𝛽
𝑇𝐿
𝐿 − 1) (

1−(1−𝜆)𝑇
𝐿

𝜆
) − (1 − 𝛽0

𝐿)𝑇𝐿) + 𝛽0
𝐿 (1−𝛽0

𝐿)

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹 (

1−(1−𝜆)𝑇
𝐿

𝜆
) ≥ (𝑐

𝑇𝐻
𝐻 − 𝑐1

𝐻)𝑞𝐹.  

Since Δ𝑐 > 𝑐
𝑇𝐻
𝐻 − 𝑐1

𝐻, it is sufficient to prove the following condition (we replace 𝑐
𝑇𝐻
𝐻 − 𝑐1

𝐻 with 

Δ𝑐 on the RHS of the constraint above): 

𝛾 (𝛽0
𝐿 (

1

𝛽
𝑇𝐿
𝐿 − 1) (

1−(1−𝜆)𝑇
𝐿

𝜆
) − (1 − 𝛽0

𝐿)𝑇𝐿) + 𝛽0
𝐿 (1−𝛽0

𝐿)

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹 (

1−(1−𝜆)𝑇
𝐿

𝜆
) ≥ Δ𝑐𝑞𝐹, 

𝛾 (𝛽0
𝐿 (

1

𝛽
𝑇𝐿
𝐿 − 1) (

1−(1−𝜆)𝑇
𝐿

𝜆
) − (1 − 𝛽0

𝐿)𝑇𝐿) ≥ (1 − 𝛽0
𝐿 (1−𝛽0

𝐿)

𝑃
𝑇𝐿
𝐿 (

1−(1−𝜆)𝑇
𝐿

𝜆
))Δ𝑐𝑞𝐹, 

Since the coefficient in front of 𝛾 is positive (the moral hazard rent in a model of 

experimentation without production is positive), the (𝐼𝐶𝐿) is satisfied if  
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𝛾 ≥

(1−𝛽0
𝐿
(1−𝛽0

𝐿)

𝑃
𝑇𝐿
𝐿 (

1−(1−𝜆)𝑇
𝐿

𝜆
))

(𝛽0
𝐿(

1

𝛽
𝑇𝐿
𝐿 −1)(

1−(1−𝜆)𝑇
𝐿

𝜆
)−(1−𝛽0

𝐿)𝑇𝐿) 

 Δ𝑐𝑞𝐹, 

Therefore, (𝐼𝐶𝐿) is not binding if 𝛽0
𝐿 < 𝛽

0

𝐿
 and 𝛾 > 𝐴Δ𝑐𝑞𝐹, where 

𝐴 ≡ max
𝑇𝐿

(1−𝛽0
𝐿
(1−𝛽0

𝐿)

𝑃
𝑇𝐿
𝐿 (

1−(1−𝜆)𝑇
𝐿

𝜆
))

(𝛽0
𝐿(

1

𝛽
𝑇𝐿
𝐿 −1)(

1−(1−𝜆)𝑇
𝐿

𝜆
)−(1−𝛽0

𝐿)𝑇𝐿) 

. 

 

We now state the sufficient conditions for each of the 4 cases formally. 

Case 1: We established that there exist 𝜆 and �̃� such that (𝐼𝐶𝐻) is automatically satisfied if 𝜆 <

𝜆 and 𝛾 > �̃�Δ𝑐𝑞𝐹. In addition, we established that there exist 𝛽
0

𝐿
 and 𝐴 such that (𝐼𝐶𝐿) is 

automatically satisfied if 𝛽0
𝐿 < 𝛽

0

𝐿
 and 𝛾 > 𝐴Δ𝑐𝑞𝐹. Combining the two results, we obtain: 

 Both (𝐼𝐶𝐻) and (𝐼𝐶𝐿) are not binding if 𝜆 < 𝜆, 𝛽0
𝐿 < 𝛽

0

𝐿
, and 𝛾 > 𝐴Δ𝑐𝑞𝐹,  

where 𝐴 = max{�̃�, 𝐴}. 

Case 2: We established that there exist 𝜆3 such that (𝐼𝐶𝐻) is binding if 𝜆 > 𝜆3. In addition, we 

established that there exist 𝜆4 and 𝐴3 such that (𝐼𝐶𝐿) is binding if 1 > 𝜆 > 𝜆4, 𝛽0
𝐿 <

1

2
, and 𝛾 <

𝐴Δ𝑐𝑞𝐹.  Combining the two results, we obtain: 

 Both 𝐼𝐶 constraints are binding if 𝜆 > 𝜆, 𝛾 < 𝐴Δ𝑐𝑞𝐹, and 𝛽0
𝐿 <

1

2
, 

where 𝜆 = max{𝜆3, 𝜆4}. 

Intermediate Case 3: We established that there exist 𝛽0
𝐻 such that (𝐼𝐶𝐻) is binding if 𝛽0

𝐻 > 𝛽0
𝐻. 

In addition, we established that there exist 𝛽
0

𝐿
 and 𝐴4 such that (𝐼𝐶𝐿) is automatically satisfied if 

𝛽0
𝐿 < 𝛽

0

𝐿
 and 𝛾 > 𝐴Δ𝑐𝑞𝐹 .  Combining the two results, we obtain: 

 (𝐼𝐶𝐻) is binding and (𝐼𝐶𝐿) is not binding if 𝛽0
𝐻 > 𝛽0

𝐻, 𝛽0
𝐿 < 𝛽

0

𝐿
, and 𝛾 > 𝐴Δ𝑐𝑞𝐹 .  
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Intermediate Case 4: We established that there exist 𝜆 and �̃� such that (𝐼𝐶𝐻) is not binding if 

𝜆 < 𝜆 and 𝛾 > �̃�Δ𝑐𝑞𝐹. In addition, we established that there exist 𝛽
0

𝐿
 such that (𝐼𝐶𝐿) is binding 

if 𝛽0
𝐿 < 𝛽0

𝐻 < 𝛽0
𝐻. Combining the two results, we obtain: 

 (𝐼𝐶𝐻) is not binding and (𝐼𝐶𝐿) is binding if 𝛽0
𝐿 < 𝛽0

𝐻 < 𝛽0
𝐻, 𝛾 > �̃�Δ𝑐𝑞𝐹, and 𝜆 < 𝜆. 

Q.E.D. 
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