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Abstract

Using tools from decision theory, I study the identification and comparative-static

properties of Bayesian Persuasion in terms of the receiver’s choices, preferences and

welfare. First, I show how all model parameters can be identified using different types of

receiver choice data: the ex-ante ranking of action sets, ex-post choice distributions, or

simply the supports of ex-post distributions. I then fully characterize key comparative

static properties of the model in terms of those primitives. In particular, I show how

the degree of conflict between the agents varies with the receiver’s value of flexibility

and of public information—the latter being achieved via a new menu operator that

simulates public signals. Finally, utilizing comparisons between ex-ante preferences

and ex-post choices, I develop comparative notions of optimism and pessimism for

potentially-misspecified receivers.

1 Introduction

The Bayesian Persuasion model (Kamenica and Gentzkow, 2011) has received considerable

attention and become a central framework in the economics of information design and disclo-

sure. In the standard setup, one agent (Sender) selects an information structure and commits

to revealing its signal realization to another (Receiver). The ensuing literature has examined

numerous extensions and variations of the baseline model, with results typically focusing on

Sender’s choice of information and whether he benefits from this opportunity in different

environments. This paper examines the interaction from Receiver’s perspective. Using tools

from decision theory, I show how basic questions regarding identification and comparative
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statics can be addressed using only Receiver’s preferences or choices—direct observation of

Sender’s behavior is not required. Thus, Receiver’s side of the interaction generates a rich

theory of behavior that, despite the complexity of Sender’s information design problem, fully

encapsulates Bayesian Persuasion.

The framework developed here is a decision-theoretic analogue of the standard model,

yet sufficiently flexible to analyze general questions about Receiver’s value of information

and commitment. Does Receiver benefit from hard commitment when choosing actions, or

from additional public information? How might the answers depend on the degree of conflict

between the agents or on Receiver’s potentially-misspecified beliefs about Sender? Analysis

of Bayesian Persuasion tends to be challenging without simplifying assumptions, especially

when moving beyond the two-state case. Nonetheless, these (and other) questions resolve

quite naturally in my setting. In fact, a key finding of the paper is that comparative statics

are fully characterized by simple patterns in Receiver’s choice behavior, and that this holds

for several different types of choice data.

To state results more precisely and build intuition for why they hold, some additional

detail regarding the decision-theoretic primitives is required. Given finite sets Ω and X of

states and outcomes, respectively, actions taken by Receiver are state-contingent lotteries

over outcomes, or acts (Anscombe and Aumann, 1963). This means an action, f , is repre-

sented by a profile (fω)ω∈Ω of lotteries over outcomes. By choosing f , Receiver ensures an

outcome—common to both agents—is generated by fω in state ω. Receiver does not know

the state but holds a full-support prior µ over Ω and a utility index u over outcomes, allowing

actions to be compared via expected utility. Sender shares the prior µ but holds a (typically

different) utility function v, thus associating his own value to actions f taken by Receiver.

In a persuasion game, Receiver chooses from a finite set (or menu) A of actions. Antic-

ipating this, Sender chooses a Blackwell (1951,1953) experiment: a matrix σ with finitely

many rows (one for each state) and finitely many columns such that the entries in each

row constitute a probability distribution. Columns of σ represent signals that may be gen-

erated and rows state-contingent probability distributions over signals. After observing a

signal, Receiver updates µ via Bayes’ rule, then selects an action from A that maximizes

his expected utility given his posterior beliefs. Thus, behavior at A is governed by three

parameters, (µ, u, v), as optimal choices by both agents can be derived from them. Different

menus typically involve different degrees of conflict between the agents, allowing information

about the parameters to be gleaned from Receiver’s choice behavior across menus.

The first set of results formalize Persuasion Representations for different choice primitives

and establish identification results for each. There are four sets of primitives:

1. Menu preferences ≿ indicating Receiver’s ex-ante ranking of action sets; A ≿ B if and
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only if Receiver prefers to play the game with action set A over action set B.

2. Random choices ρ indicating Receiver’s unconditional choice distributions from menus;

ρA(f) is the frequency with which Receiver chooses f from A.

3. State-contingent random choices λω indicating Receiver’s choice distributions in dif-

ferent states; λA
ω (f) is the frequency with which Receiver chooses f from A when the

true state is ω.

4. Choice correspondence data c indicating which actions are chosen with positive prob-

ability; c(A) is the support of ρA, or the union over all ω of the support of λA
ω .

In Persuasion Representations, choice data are consistent with choices arising from persua-

sion interactions for some set of parameters (µ, u, v). If parameters (µ, u, v) represent menu

preferences ≿, then A ≿ B if and only if Receiver expects a higher ex-ante payoff from

playing the game with action set A than with action set B; these expected values must be

consistent with those generated by the parameters. Similarly, Persuasion Representations of

ρ, λ or c must coincide with those generated by the parameters.

Theorem 2 establishes that if two potentially different sets of parameters, (µ, u, v) and

(µ′, u′, v′), represent a given menu preference ≿, then in fact they are the same: µ = µ′,

u ≈ u′, and v ≈ v′, where≈ indicates positive affine transformation. Thus, model parameters

are revealed up to standard uniqueness notions by≿. Similarly, Theorem 3 establishes unique

identification from ρ. Theorem 4 states that u and v can be identified from λ or c while µ

is identified by either of these primitives only if u ̸≈ v. Thus, outside of this particular case,

each type of primitive provides sufficient information to uniquely identify all parameters.

Section 4 develops comparative statics in terms of these primitives. Sections 4.1 and

4.2 revolve around two questions: (i) when does Receiver benefit from hard commitment,

and (ii) when does Receiver benefit from additional public information? The strongest such

notions, characterized in section 4.1, yield surprising connections to standard rationality

postulates for ≿ and c. Proposition 1 establishes that ≿ exhibits preference for flexibility

(Kreps, 1979)—Receiver prefers larger action sets—if and only if u ≈ v or u ≈ −v; that

is, if there is either no conflict or total conflict between the agents. Outside of these ex-

treme cases, Receiver benefits from commitment (shrinking the action set) in some menus.

Propositions 2 and 3 characterize the u ≈ v and u ≈ −v cases, respectively; u ≈ v is charac-

terized by preference for statewise flexibility—≿ favors menus with more possible outcomes

in each state—while u ≈ −v is characterized by a standard independence of irrelevant alter-

natives (IIA) condition. Propositions 1–3 also provide analogous conditions for the choice

correspondence c. IIA translates to the standard weak axiom of revealed preference for the
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u ≈ −v case; for u ≈ v, preference for statewise flexibility becomes monotonicity in statewise

flexibility : more acts are chosen from menus offering more possible outcomes in each state.

Finally, for u ≈ v or u ≈ −v, preference for flexibility becomes Sen’s condition α (Sen, 1971):

any act chosen from a menu must also be chosen from any subset containing that act.

To study Receiver’s value of public information, I introduce a new operator on menus that

simulates public signals. For any A and σ, the menu σA mixes actions in A in such a way

that it is as if Receiver (i) chooses from the original set A, and (ii) before doing so, observes

a signal from σ in addition to, and independently of, the signal generated by Sender. Sender,

of course, chooses information conditional on the menu σA, thereby anticipating Receiver’s

additional signal and adjusting his own choice of experiment in response. Depending on A

and σ, Sender’s choice of information may be drastically different at σA.

Proposition 1 establishes that Receiver values information—σA ≿ A for all A and σ—if

and only if u ≈ v or u ≈ −v. Thus, in persuasion models, Receiver values information if

and only if he values flexibility. Note that, by construction, σA ⊇ A; thus, a preference for

information is a particular type of preference for flexibility. Nonetheless, the two conditions

are equivalent in the model. For c, the analogous condition is informational Sen’s α: any act

in A that is chosen from σA must be chosen from A. Propositions 2 and 3 also characterize

the u ≈ v and u ≈ −v cases, respectively, in terms of preferences and choices under public

information. Receiver is indifferent to information—σA ∼ A for all A and σ—if and only if

u ≈ v; for c this translates to invariance to imperfect information: c(σA) = c(A) for all A

and (almost) all σ. Finally, Receiver values information non-trivially—σA ≿ A with strict

preference for some A and σ—if and only if u ≈ −v; for c, this means informational Sen’s α

is satisfied and that c(σA) ̸= c(A) for some A and interior σ.

Section 4.2 develops comparative measures of conflict both parametrically and in terms

of Receiver’s value of flexibility or public information. Following Ahn et al. (2019), a utility

index
•

v to be more u-aligned than v if either v ≈ −u or
•

v ≈ αu + (1 − α)v for some

α ∈ [0, 1]. Propositions 5 and 6 establish how more-aligned preferences relate to natural

notions of increased value of flexibility or information. In Proposition 5, Receiver’s value

of information increases if there are more instances where σA ≻ A; when this is the case,

Sender’s utility function becomes less u-aligned. Similarly, Receiver’s value of flexibility

increases if there are more menus A ⊇ B where A ≻ B; this makes Sender’s utility function

more u-aligned. The generality of these notions, however, implies that increased value of

flexibility forces increased value of information; thus, combining results, increased value

of flexibility forces u ≈ v. Proposition 6, therefore, considers less demanding notions of

preference for flexibility or information. In particular, Sender’s utility function is less u-

aligned if and only if there are fewer instances where Receiver benefits from committing
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to a single act, or more instances where he benefits from public information but not the

additional information chosen by Sender. For c, the analogous condition is for there to be

more menus where only a single act is chosen.

Section 4.3 considers the possibility of misspecified beliefs—in particular, the possibility

that Receiver holds incorrect beliefs about Sender’s utility function v. As in Ahn et al.

(2019), the key is to compare Receiver’s ex-ante preferences ≿ to his actual ex-post choices.

State-contingent random choice data λ is most suitable for this analysis: computing the

average outcome in state ω using λA
ω gives an act, fA

λ , representing the true state-contingent

distribution of outcomes generated by the game at A. If the ex-ante Receiver is sophisticated

(holds correct beliefs about Sender), then A ∼ fA
λ ; otherwise, he is naive (Proposition 8).

Proposition 9 characterizes two natural forms of naivete: if Receiver believes v is more u-

aligned than it actually is, he is optimistic and A ≿ fA
λ for all A; if he believes v is less

u-aligned than it actually is, he is pessimistic and fA
λ ≿ A for all A. Finally, Proposition

10 establishes that an agent is more optimistic (he believes the alignment between u and v

has increased) if and only if there are more menus A such that A ≻ fA
λ ; a symmetric result

holds for increased pessimism.

Throughout the paper, results assume that the choice primitives have Persuasion Rep-

resentations but that the analyst does not necessarily know the values of the parameters

(µ, u, v); these must be inferred from choice data. It is natural to wonder what conditions

(axioms) on choice data ensure existence of Persuasion Representations. Though not a focus

of the paper, section 5 briefly discusses an approach to axiomatizing the model from menu

preferences ≿; this approach can be adapted to state-contingent choice data λ. The axioms

and representation theorems can be found in Appendix D.

1.1 Related Literature

The framework developed in this paper is a decision-theoretic analogue of the Bayesian

Persuasion model of Kamenica and Gentzkow (2011); Kamenica (2019) surveys much of the

ensuing literature. Most studies in the persuasion literature specify prior beliefs and utility

functions for each agent, then analyze the resulting game. My approach differs in two ways.

First, I examine the inverse problem: rather than taking model parameters (utility functions

and prior beliefs) as given, my focus is on how the parameters might be identified and

compared given choice data generated by the interaction. Accordingly, results in this paper

are about how patterns in preference and choice data vary with the parameters. Second,

while most results in the literature are about Sender’s potential to benefit from “persuasion”

(commitment to an information structure), my analysis centers on Receiver’s choices and
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welfare: Sender’s behavior is not directly observed, but inferred from Receiver’s preferences

and choices. This leads to new, general results characterizing, for example, how Receiver

might benefit from commitment power of his own or from additional public information.

Two recent studies are closely related to this paper. First, Jakobsen (2021) develops a

decision-theoretic model of persuasion where Sender’s preferences for information are directly

observed; the focus is on how model parameters might be identified and compared from

Sender’s ranking of information structures, or value of information. Here the focus is on

Receiver’s choices and welfare, allowing a different set of basic questions about Bayesian

Persuasion to be resolved. Combined, the two papers provide comprehensive analysis of the

decision-theoretic approach to persuasion.

Second, Curello and Sinander (2022) establish rich and general results on the compar-

ative statics of Bayesian Persuasion—in particular, they characterize conditions on model

parameters under which Sender chooses a more informative (in the sense of Blackwell, 1951)

structure. This paper also studies comparative statics, but the questions considered are

different, as is the methodology.

An interesting feature of Persuasion Representations is that they involve a new mecha-

nism for generating random choice. Random utility models (Falmagne, 1978; Gul and Pe-

sendorfer, 2006) cannot rationalize behavior generated by Persuasion Representations since

the information structure chosen by Sender (hence, the distribution of expected utility func-

tions governing Receiver’s choices) varies with the menu of alternatives. For the same reason,

random choices generated by private information as in Lu (2016) cannot rationalize choices

generated by Persuasion Representations, nor can the random-Strotz framework of Dekel

and Lipman (2012). Models of costly contemplation (Ergin and Sarver, 2010) or rational

inattention (Ellis, 2018; Caplin and Dean, 2015) can rationalize Persuasion Representations

only if one allows the cost of information to vary freely with the menu under considera-

tion; if the cost of information is menu-independent, increasing in the Blackwell order, and

non-constant, the resulting model cannot rationalize Persuasion Representations.1

2 Persuasion Representations

2.1 Framework

In the Bayesian Persuasion framework, one agent (Receiver) selects an action after observing

a signal generated by another agent (Sender). This section outlines the basic ingredients

1Informally, one can construct menus where (i) perfect information is chosen by Sender in a persuasion
representation, but (ii) the stakes are so low that the utility difference between perfect information and
no-information does not outweigh the (menu-independent) cost of acquiring perfect information.
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needed to analyze the interaction using tools from decision theory.

States, Outcomes, Acts

In a persuasion game, the outcome generated by Receiver’s action depends on the state. To

capture this, I model actions as Anscombe-Aumann acts f : Ω → ∆X where:

� Ω is a finite set of states (with generic members ω),

� X is a finite set of outcomes (generic members x, y), and

� ∆X is the set of lotteries over X (generic members p, q); lottery p delivers outcome x

with probability p(x).

An act f may be written as a profile f = (fω)ω∈Ω where fω := f(ω). In state ω, act f

returns lottery fω which in turn generates outcome x with probability fω(x). Constant acts

(p, . . . , p) are typically denoted p. Let F denote the set of all acts and A the set of all finite,

nonempty subsets of F . A set A ∈ A serves as an action set, or menu, of acts available for

Receiver to choose from. Singleton menus {f} are typically denoted f .

Lotteries and acts are equipped with standard mixing operations. In particular, αp +

(1−α)q, where α ∈ [0, 1], denotes a lottery r such that r(x) = αp(x) + (1−α)q(x) for all x.

This operation extends to acts by defining αf+(1−α)g as the act h such that, for all ω ∈ Ω,

hω = αfω + (1 − α)gω. These operations generalize to finite mixtures α1p
1 + . . . + αnp

n or

α1f
1 + . . .+ αnf

n, where αi ≥ 0 and α1 + . . .+ αn = 1, in the natural way.

Experiments and Signals

Given a menu of acts available to Receiver, Sender chooses an information structure and

commits to revealing the signal it generates. Formally, a Blackwell experiment is a matrix

with |Ω| = N rows, finitely many columns, and entries in [0, 1] such that each row constitutes

a probability distribution and no column consists entirely of zeros. Let E denote the set of all

experiments, with generic members σ. Each column of an experiment represents a message

that may be generated and each row a state-contingent distribution over messages. For

example, the N ×N identity matrix, denoted σ∗, associates a distinct message to each state

and therefore represents perfect information.

Any experiment can be expressed in terms of its columns. To do so, let S denote the

set of all profiles s = (sω)ω∈Ω of numbers sω ∈ [0, 1] such that sω ̸= 0 for at least one

ω ∈ Ω. Elements of S, signals, represent columns that may be present in an experiment.

Abusing notation slightly, ‘s ∈ σ’ indicates that s is a column of σ. As is easily verified, a
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matrix [s1, . . . , sn] of signals qualifies as an experiment if and only if s1+ . . .+ sn = e, where

e = (1, . . . , 1) ∈ S denotes an uninformative signal (or uninformative experiment

since e itself qualifies as an experiment).

Signals and experiments yield additional mixture operations on acts. If s ∈ S, let sf +

(1− s)g denote the act h such that hω = sωfω + (1− sω)gω; this operation is similar to the

α-mixture of f and g defined above but allows potentially different weights sω to be applied

in different states ω. More generally, if σ = [s1, . . . , sn] is an experiment, s1f 1 + . . . + snfn

denotes the act h such that hω = s1ωf
1
ω + . . .+ snωf

n
ω .

Priors and Utilities

Let ∆Ω denote the set of probability distributions over Ω. Behavior in a persuasion game is

governed by three parameters, (µ, u, v), where:

� µ ∈ ∆Ω is a common prior, and

� u, v : X → R are utility indices for Receiver and Sender, respectively.

For any distribution µ̂ ∈ ∆Ω and state ω, let µ̂ω denote the probability of state ω. Through-

out the paper, prior beliefs µ have full support and the utility indices u, v are non-constant.

The indices u, v are applied to lotteries as follows: if p ∈ ∆X, then u(p) :=
∑

x∈X u(x)p(x)

is Receiver’s expected utility of p. Similarly, v(p) denotes Sender’s expected utility of p.

For arbitrary utility indices u, u′ : X → R, the notation u ≈ u′ indicates that u and u′ are

positive affine transformations of one another: there exist A,B ∈ R with A > 0 such that,

for all x ∈ X, u(x) = Au(x) +B.

For acts, Receiver’s expected utility is given by U : F → R where U(f) :=
∑

ω∈Ω u(fω)µω.

More generally, for any signal s ∈ S, let U s(f) :=
∑

ω∈Ω u(fω)sωµω; this represents Receiver’s

expected utility conditional on s.2 Note that U e = U . Replacing u with v leads to functions

V, V s : F → R representing Sender’s expected utility conditional on signal realizations.

2.2 Choice Primitives

Different types of choice or preference data may be generated by Bayesian Persuasion inter-

actions and made available to an outside observer. This paper considers the following types

of Receiver data:

2This holds because the Bayesian posterior of µ at s assigns probability sωµω

s·µ to state ω, where s · µ =∑
ω′∈Ω sω′µω′ . Thus, expected utility conditional on s is

∑
ω∈Ω

u(fω)sωµω

s·µ . The function Us multiplies this
value by the constant s · µ and therefore provides the same ordinal ranking of acts.
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1. Menu preferences ≿ over A where A ≿ B indicates Receiver prefers to play the

game with action set A over the game with action set B.

2. Random choice data ρ = (ρA)A∈A where ρA is a probability distribution over A and

ρA(f) ∈ [0, 1] is the probability f is chosen from A.

3. State-contingent random choice data λ = (λA
ω )ω∈Ω,A∈A where λA

ω is a probability

distribution over A and λA
ω (f) ∈ [0, 1] is the probability f is chosen from A in state ω.

4. Choice correspondence data c : A → A where c(A) ⊆ A is the set of acts chosen

from A with positive probability.

Note that these primitives do not reference any of the parameters (µ, u, v). Instead, param-

eter values are revealed and compared by examination of the choice data.

2.3 Persuasion Representations

This section defines Persuasion Representations for each of the four types of primitives de-

scribed above. The representations involve three parameters, (µ, u, v), where µ is a common

prior and u, v are utility indices for Receiver and Sender, respectively; these give rise to func-

tions U,U s, V, V s : F → R, defined above, that are needed to formalize the representations.

To begin, it is useful to express the range of state-contingent outcomes that can be

achieved by varying the information available to Receiver. Given a menu A, an experiment

σ transforms into an act as follows. Fix a state ω. In this state, σ generates a distribution

over signals (s ∈ σ is generated with probability sω), and at every s ∈ σ Receiver chooses a

U s-optimal act f s ∈ A. In state ω, this act delivers a lottery f s
ω. Thus, the state-contingent

distribution over signals becomes a distribution over lotteries, which reduces to a single

lottery in the natural way. Repeating this procedure for each state yields an induced act:

a state-contingent lottery over outcomes generated by Receiver’s choices under information

σ at menu A.

The above procedure associates a unique induced act to an experiment σ if, given A,

there is a unique U s-optimal act f s ∈ A for each s ∈ σ. If there are multiple U s-optimal

acts for some s, different tie-breaking selections generate different induced acts. To capture

the full range of possibilities, the set of induced acts at a menu A is defined as

F (A) :=

{∑
s∈σ

sf s : σ ∈ E , f s ∈ co(A), U s(f s) ≥ U s(g) ∀g ∈ A

}
, (1)
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where co(A) is the convex hull of A. This set contains all induced acts generated by varying

both σ and Receiver’s tie-breaking behavior: if Receiver finds two or more acts optimal at s,

then f s is permitted to be any convex combination of those acts. Note that only parameters

(µ, u) are needed to construct F (A).

Sender’s payoff, as well as Receiver’s, is determined by the distribution of outcomes in

each state. Thus, at A, Sender’s choice of information σ is effectively a choice from F (A).

This leads to the following definition of Persuasion Representations for menu preferences:

Definition 1. Parameters (µ, u, v) constitute a Persuasion Representation for ≿ if u, v

are non-constant, µ has full support, and the function U : A → R given by

U(A) := maxU(f) subject to f ∈ argmax
g∈F (A)

V (g) (2)

represents ≿, where U(f) =
∑

ω u(fω)µω and V (f) =
∑

ω v(fω)µω.

In a Persuasion Representation for ≿, Sender correctly forecasts Receiver’s signal-contingent

choices from A and selects an information structure, hence an induced act f ∈ F (A), that

maximizes his own expected utility. Receiver correctly forecasts Sender’s choice and assigns

the value U(f) to A, where f is the induced act associated with the chosen information

structure. So, U(A) is Receiver’s ex ante expected utility from the persuasion game when

the action set is A. This is well-defined by the following lemma3:

Lemma 1. For all menus A and parameters (µ, u), the set F (A) is compact and convex.

Implicitly, formula (2) makes two assumptions about tie-breaking behavior. First, the

requirement that f ∈ argmaxg∈F (A) V (g) means that if multiple acts maximize U s at some

s, Sender expects Receiver to select a V s-maximal act among the U s-maximizers. This is

the standard “Sender-preferred” tie breaking rule in the Bayesian Persuasion literature and

it ensures existence of a Sender-optimal information structure at every A. On a technical

level, it emerges from the definition of F (A) because that set includes all possible induced

acts that come about by varying both information and Receiver’s tie-breaking selections.

Second, the “max” in (2) means that if Sender finds multiple information structures

optimal at A, he selects from such structures a Receiver-optimal one. Formally, let

V σ(A) := max
∑
s∈σ

V s(f s) subject to f s ∈ argmax
f∈A

U s(f)

3More precisely, Lemma 1 implies argmaxg∈F (A) V (g) is nonempty; it is also compact because it consists
of the maximizers of the continuous function V over the compact set F (A). Thus, there exists a U -maximal
act in argmaxg∈F (A) V (g).
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and

Uσ(A) :=
∑
s∈σ

U s(f s) where f s ∈ argmax
f∈A

U s(f).

These functions capture Sender’s and Receiver’s value, respectively, of information σ at

menu A. That is, if Sender chooses σ at A, he expects payoff V σ(A) and Receiver expects

Uσ(A). Clearly, V σ(A) incorporates the Sender-preferred tie-breaking rule described above.

The “Receiver-preferred” rule implied by (2) means that if multiple structures σ maximize

V σ(A), Sender breaks the tie by maximizing Uσ(A). The following theorem makes this

explicit by re-expressing Persuasion Representations for ≿ in a more familiar form; I omit

the straightforward proof.

Theorem 1. Parameters (µ, u, v), where u, v are non-constant and µ has full support, con-

stitute a Persuasion Representation for ≿ if and only if, for all A ∈ A,

U(A) = max
σ

Uσ(A) subject to σ ∈ argmax
σ′∈E

V σ′
(A). (3)

By Theorem 1, formulas (2) and (3) coincide; (3) more directly expresses Receiver’s payoff

as the result of Sender’s information design problem but, as we shall see, (2) facilitates

comparisons to related models and is useful for deriving various results.

Persuasion Representations for ρ, λ, and c do not involve Receiver’s ex ante value U(A)

but rather the actual choices from A stemming from Sender’s information structure. Let

E∗(A) ⊆ E denote the set of solutions to the maximization problem (3). An experiment

σ ∈ E∗(A) is A-minimal if there is no σ′ ∈ E∗(A) such that σ′ is a garbling of σ and σ′ ̸= σ.

Finally, given A, a behavioral strategy is a profile βA = (βA,s)s∈S such that βA,s ∈ ∆A

for all s ∈ S; that is, βA,s is a distribution of choices from A at signal s.

Definition 2. Parameters (µ, u, v), where u, v are non-constant and µ has full support,

constitute a Persuasian Representation for ρ if for every A there is a behavioral strategy

βA and A-minimal experiment σ ∈ E∗(A) such that

(i) for all s ∈ S,

supp(βA,s) = argmax
f

V s(f) subject to f ∈ argmax
g∈A

U s(g), and

(ii) for all f ∈ A, ρA(f) =
∑

s∈σ(s · µ)βA,s(f).

Informally, parameters (µ, u, v) constitute a Persuasion Representation for ρ if, for every
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A, choices frequencies ρA coincide with those generated by Sender’s chosen experiment and

Receiver’s signal-contingent choices for that experiment; these choices must be optimal given

parameters (µ, u, v). Part (i) of Definition 2 requires that, for every s ∈ σ, Receiver chooses

the act(s) that are consistent with his own optimization and the Sender-preferred tie-breaking

criterion. Part (ii) requires that the observed probability of choosing f from A, ρA(f),

coincides with the total probability of choosing f given σ and βA; in particular, s · µ (the

dot product) is the total probability of generating signal s ∈ σ under prior µ, and βA,s(f) is

the probability of choosing f conditional on signal s.

Since the chosen experiment σ is a member of E∗(A), it satisfies the Receiver-preferred

tie-breaking criterion described above. It is also required to be A-minimal. While neither

agent’s incentives or payoffs are affected by this additional requirement, it implies that if e

(no information) is both Sender- and Receiver-optimal, then e is chosen by Sender. This

simplifies the statements and proofs of several results.

Definition 3. Parameters (µ, u, v), where u, v are non-constant and µ has full support,

constitute a Persuasian Representation for λ if for every A there is a behavioral strategy

βA and A-minimal experiment σ ∈ E∗(A) such that

(i) for all s ∈ S,

supp(βA,s) = argmax
f

V s(f) subject to f ∈ argmax
g∈A

U s(g), and

(ii) for all f ∈ A and ω ∈ Ω, λA
ω (f) =

∑
s∈σ sωβ

A,s(f).

The definition of a Persuasion Representation for λ is nearly identical to that of ρ. The only

difference is that state-contingent, as opposed to total, choice frequencies must agree with

those generated by the persuasion game with parameters (µ, u, v); condition (ii) reflects this.

Definition 4. Parameters (µ, u, v) constitute a Persuasian Representation for c if there

exists a random choice rule ρ = (ρA)A∈A such that (µ, u, v) constitute a Persuasion Repre-

sentation for ρ and, for all A ∈ A, c(A) = supp(ρA).

Intuitively, parameters (µ, u, v) constitute a Persuasion Representation for c if, for every

A, c(A) coincides with the support of ρA where ρ has a Persuasion Representation with

parameters (µ, u, v). Alternatively, one could modify Definition 2 by replacing ρ with c

and condition (ii) with c(A) =
⋃

s∈σ supp(β
A,s). Similarly, one could modify Definition 3

by replacing λ with c and condition (ii) with c(A) =
⋃

s∈σ,ω∈Ω supp(λA
ω ). Either way, c(A)
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contains all acts in A that are chosen with positive probability in at least one state; any

additional frequency information is discarded.

Before concluding this section with some general remarks on Persuasion Representations,

a brief discussion of the role of condition (i) in Definitions 2–4 is in order. Condition (i)

requires that, at each signal realization, every act in A that survives the Sender-preferred

tie-breaking criterion is chosen with positive probability. There are other ways of refining

choices, but the advantage of (i), together with the A-minimality condition, is that special

cases of the model reduce to familiar representations in decision theory. For example, if

u ≈ −v, then Sender chooses e (no information) and Receiver simply chooses based on his

prior. By (i), then, c(A) consists of all prior-optimal acts in A, as in standard choice models,

rather than some arbitrary subset of optimal acts. For the results developed in this paper,

such well-behaved special cases are not strictly necessary but allow a cleaner exposition and

simpler proofs; this is the main reason for imposing tie-breaking conventions beyond the

standard Sender-preferred criterion.

Persuasion Representations: Comments

1. Strotz vs Persuasion. The representation of Definition 1 is similar to a Strotzian

representation (Strotz, 1955). In the notation of this paper, such representations take

the form

W (A) := maxU(f) subject to f ∈ argmax
g∈A

V (g). (4)

A standard interpretation is that one self, with utility U , anticipates his future-self

choosing from A via maximization of V ; consequently, the initial self may wish to

commit to a smaller menu. The Persuasion Representation of Definition 1 has a similar

structure, with one key difference: the other self chooses an act not from A, but from

F (A). Thus, the other self does not exert full control over future choice; instead,

he influences choice through Bayesian belief distortion. A Persuasion Representation,

therefore, may be interpreted as a dual-self model where one self (Receiver) chooses

both a menu and an option from the menu while the other self (Sender) manipulates

beliefs at the time of consumption. As we shall see, this has rather different implications

for the value of commitment (and information) relative to the Strotzian approach.

2. Priors and Public Information. Persuasion Representations involve a prior µ and allow

Sender to choose any information structure. However, simple operations on menus

capture behavior under alternative prior beliefs and/or restrictions on Sender’s choice

of information. For example, the menu sA + (1 − s)h := {sf + (1 − s)h : f ∈ A}
induces behavior equivalent to that of a persuasion game at A with prior beliefs µs
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(the Bayesian posterior of µ at s). Since µ has full support, this means one can

simulate, for any alternative prior µ̂, a persuasion game at A with prior µ̂ by mixing

with an appropriate signal s. Section 4 introduces a different menu operator that

simulates public information or, equivalently, restricts Sender’s choice of experiment

by imposing a lower bound on informativeness. Thus, the framework encompasses a

variety of extensions or variations of the Bayesian Persuasion model as special cases.

3 Identification

This section establishes basic identification results for each of the four types of choice prim-

itives; the proof sketch outlined in section 3.1 also illustrates methods to elicit parameter

values from the primitives.

Theorem 2. If (µ, u, v) and (µ′, u′, v′) are Persuasion Representations of a preference ≿ on

A, then u ≈ u′, v ≈ v′, and µ = µ′.

Theorem 2 states that Persuasion Representations of menu preferences are unique: if ≿ has

a Persuasion Representation, there is a unique prior µ and unique (up to positive affine

transformation) utility indices u, v for which (µ, u, v) constitute a Persuasion Representation

of≿. Thus, menu preferences≿, alone, are sufficient to identify all parameters. An analogous

result holds for representations of random choice rules:

Theorem 3. If (µ, u, v) and (µ′, u′, v′) are Persuasion Representations of a random choice

rule ρ, then u ≈ u′, v ≈ v′, and µ = µ′.

Like Theorem 2, Theorem 3 establishes uniqueness of the parameters up to standard notions:

all parameters can be identified using ρ. A slightly weaker result holds for λ and c:

Theorem 4. If (µ, u, v) and (µ′, u′, v′) are Persuasion Representations of either a state-

contingent random choice rule λ or a choice correspondence c, then:

(i) u ≈ u′ and v ≈ v′.

(ii) If u ̸≈ v, then µ = µ′.

Theorem 4 states that u and v can be identified from λ or c, but that prior beliefs are

uniquely identified by either primitive only if u ̸≈ v; that is, if there is some conflict between

Sender and Receiver. Since c is nested by ρ and λ, this means that outside the hairline case
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Figure 1: Identifying u and v.

u ≈ v, both ρ and λ contain more information than is actually required to uniquely identify

all three parameters. For this reason, most subsequent results in the paper are established

only for ≿ and c.

To see what goes wrong when u ≈ v, observe that such preferences make Sender choose

perfect information at every menu A.4 Consequently, in state ω, Receiver chooses precisely

those acts f ∈ A for which u(fω) ≥ u(gω) for all g ∈ A. These choices depend on ω but

not the probability µω with which ω realizes. Thus, c(A) does not vary with µ. Similarly,

when u ≈ v, state-contingent choices λω do not reveal anything about µ unless one makes

arbitrary assumptions about how tie-breaking varies with µ.5

3.1 Sketch of the Proof

Menu Preferences

Receiver’s parameters (µ, u) are easily identified by considering the restriction of ≿ to single-

ton menus. In particular, {f} ≿ {g} if and only if U(f) ≥ U(g), so the Anscombe-Aumann

theorem applies and µ and u are identified.

To elicit v, the key is to determine which pairs (p, q) of lotteries are ranked the same way

by u and v. Figure 1b illustrates the idea: for any p, the index u gives a linear indifference

curve through p. To pin down v, it is enough to determine the slope of v’s indifference

curve through p and the direction of increasing utility. Observe that if Apq = {pEq, qEp}
is a pq-bet where u(p) > u(q), Sender either agrees with the ranking in that v(p) ≥ v(q)

or disagrees in that v(p) < v(q). If Sender agrees, he chooses perfect information and so

Apq ∼ p; otherwise, Sender disagrees and p ≻ Apq since Sender chooses e (no information).

4More precisely, perfect information is Sender-optimal at every A; Sender may choose coarser information
in some menus due to the A-minimality requirement, but this does not affect any of the analysis.

5For example, one could specify a menu A where, in state ω1, there is a tie between two acts and Receiver
chooses one of them with probability µω1

. If Receiver employs such a tie-breaking criterion and the analyst
knows which particular act is chosen with probability µω1 , then λA

ω1
coincides with µω1 . However, there is no

reason to suspect that Receiver would correlate tie-breaking selections with µ or, if he did, that the analyst
would know the correlation structure.
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Figure 2: Identifying µ from c.

Thus, fixing p and eliciting all q such that Apq ∼ p reveals both the indifference curve for v

through p and the direction of increasing utility.

Choice Distributions & Correspondences

For ρ, λ and c, elicitation is slightly more involved. The first step is to identify u by

analyzing choices from menus {p, q} of constant acts. Fixing p, it is clear that c({p, q}) = p

if u(p) > u(q). If u(p) ≥ u(q), the representation breaks the tie in favor of v. Thus,

p ∈ c({p, q}) if and only if u(p) > u(q) or u(p) = u(q) and v(p) ≥ v(q). As illustrated in

Figure 1a, fixing p and eliciting all q such that p ∈ c({p, q}) reveals the lower contour set of p
for u; in particular, the closure of the set of all such q is the weak lower contour of u through

p. Given u, one can identify v using similar techniques developed for the menu-preferences

elicitation.6

To see how µ may be identified from c, consider the two-state case and suppose u ̸≈ v and

u ̸≈ −v (the proof provided in the appendix is different and only requires u ̸≈ v). With such

preferences, there are lotteries p, q, r such that the menu A = {(p, q), (r, r)} gives rise to the

value functions depicted by Figure 2; the horizontal axis’ contain all possible posterior beliefs

(ordered by the weight assigned to state 1) and the values are those induced by Receiver’s

choices from A at those beliefs.7 At µ∗, Receiver is indifferent between the two acts, creating

a discontinuity in Sender’s value function. If prior beliefs satisfy µ1 ≤ µ∗
1, Sender chooses

no-information; consequently, c(A) = {(r, r)}. If instead µ1 > µ∗
1, Sender maximizes his

6To circumvent tie-breaking issues for the case of two states and a uniform prior, the proof uses the more
general class of pq-menus rather than pq-bets; see the appendix for details.

7Intuitively, the desired lotteries exist because when u ̸≈ v and u ̸≈ −v, one may fix indifference curves
(utility levels) for one agent and move freely along them to set utility levels for the other agent; see Lemma
4 in the appendix.
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payoff by choosing an experiment yielding two posteriors: one at µ∗, the other at µ̂1 = 1.

Consequently, c(A) = A since Receiver chooses (r, r) at µ∗ and (p, q) at µ̂1 = 1. Thus, c(A)

indicates whether µ1 ≤ µ∗
1 or µ1 > µ∗

1, providing objective information about µ since µ∗ is

pinned down by u. It follows that µ can be identified by examining c(A) for all binary menus

A—for example, by moving r along its v-indifference curve and thereby perturbing only u(r)

and, thus, µ∗
1.

4 Comparative Statics from Receiver’s Perspective

This section develops basic comparative static results regarding the degree of conflict between

Sender and Receiver. In contrast to most of the persuasion literature, the focus here is

on how the interaction affects Receiver’s (not Sender’s) choices and welfare. Section 4.1

begins by characterizing two extreme cases, namely u ≈ v (no conflict) and u ≈ −v (total

conflict), in terms of ≿ and c. Section 4.2 examines finer comparisons and shows how natural

notions of “more-aligned” preferences from the decision theory literature manifest as simple

patterns in ≿ and c. Finally, section 4.3 considers a Receiver who may hold incorrect beliefs

about the degree of conflict; in particular, comparisons between ex ante preferences ≿ and

actual choices λ indicate whether Receiver holds misspecified beliefs about u and, if so, how

misaligned they are with the truth.

The characterizations take two forms: (i) how Receiver’s ex ante value and subsequent

choices vary with increased flexibility, and (ii) how such values and choices vary with addi-

tional public information. The results thereby establish tight links between Receiver’s value

of flexibility and of information in persuasion models. While analysis of (i) involves standard

comparisons between ⊆-comparable menus, analysis of (ii) involves a new operator on menus

that simulates public information. For any A and σ, let

σA :=

{∑
s∈σ

sf s : f s ∈ A

}
.

The menu σA simulates an environment where Receiver chooses from A but is able to con-

dition this choice on the realization from σ in addition to the signal generated by Sender.

Sender recognizes this (the menu σA is known to both agents) but cannot correlate realiza-

tions from his chosen experiment with those of σ. Put differently, it is as if σ serves as a lower

bound on Sender’s choice of information; thus, the interaction at σA may be interpreted as a

constrained version of Bayesian Persuasion. To clarify how this operator works, the example

below provides concrete illustrations.
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Example 1. Suppose there are two states and let A = {f, g}. If σ = σ∗ (the identity

matrix), then σ perfectly reveals the state and σA = {(f1, f2), (g1, f2), (f1, g2), (g1, g2)}.
Suppose u(f1) > u(g1) and u(g2) > u(f2); this means neither act dominates the other and,

in particular, that f is preferred in state 1 and g is preferred in state 2. At σA, then, Receiver

chooses (f1, g2) regardless of the information Sender provides.

If instead σ is a noisy structure σ = [s, t], we have σA = {sf+tf, sf+tg, sg+tf, sg+tg} =

{f, sf + tg, sg + tf, g}. If Receiver prefers f at s and g at t, his prior-optimal act in σA is

sf+tg; this represents the average state-contingent lottery for Receiver if Sender provides no

additional information, thereby forming a lower bound on Receiver’s welfare in the persuasion

game with public information σ. ♦

4.1 The Value of Flexibility and Information

To begin, this section characterizes special cases of the model involving standard rationality

postulates. Under what circumstances does Receiver benefit from increased flexibility or

from public information, and how is this reflected in choice data c?

Proposition 1. Suppose (µ, u, v) represents ≿ and c. Then u ≈ v or u ≈ −v if and only if

any of the following conditions hold:

(i) ≿ satisfies Preference for Flexibility:

A ⊇ B implies A ≿ B.

(ii) c satisfies Sen’s condition α: A ⊆
B implies c(B) ∩ A ⊆ c(A).

(iii) ≿ satisfies Preference for Informa-

tion: for all σ and A, σA ≿ A.

(iv) c satisfies Informational Sen’s α:

c(σA) ∩ A ⊆ c(A).

Proposition 1 states that in Persuasion Representations, Receiver’s preferences and choices

satisfy standard rationality postulates if and only if one of two extreme cases holds: the

conflict between Sender and Receiver is either non-existent (u ≈ v) or total (u ≈ −v).

If u ≈ v, Sender chooses perfect information at all menus, reducing the representation of

≿ to U(A) :=
∑

ω∈Ωmaxf∈A u(fω)µω and that of c to c(A) =
⋃

ω∈Ω argmaxf∈A u(fω). If

u ≈ −v, Sender chooses e (no information) at all menus, reducing the representations to

U(A) := maxf∈A U(f) and c(A) = argmaxf∈A U(f).

Preference for Flexibility is the key axiom of Kreps (1979). In dual-self models such as

Gul and Pesendorfer (2001) or Strotz (1955), this axiom typically characterizes the case of no

conflict (the two selves have the same utility index). Here, Preference for Flexibility permits

the opposite case of total conflict. Intuitively, this is so because the “other self” (Sender)

18



µ
µ̂1

U

µ̂′ µ̂′′ 1

(a) Receiver’s value

µ
µ̂1

V

µ̂′ µ̂′′ 1

(b) Sender’s value

Figure 3: Illustration of Proposition 1(iii) when u ̸≈ v and u ̸≈ −v. When no public
information is provided, Sender chooses information yielding posteriors at µ̂′ and µ̂1 = 1;
for Receiver, the corresponding value is given by the upper red dot. If public information
generating posteriors at µ̂′ and µ̂′′ is provided, Sender chooses not to provide any additional
information: doing so can only decrease payoffs (strictly so at posterior µ̂′). Consequently,
Receiver’s payoff decreases.

influences choice only via belief distortion. When u ≈ −v, Sender chooses no-information at

all menus, reducing Receiver’s behavior to that of standard expected utility maximization,

which satisfies Preference for Flexibility.

Preference for Information requires that public information never harms Receiver. Note

that since A ⊆ σA, this condition is implied by Preference for Flexibility; Proposition

1 establishes that for Persuasion Representations, it is in fact equivalent to Preference for

Flexibility. The condition is satisfied by the u ≈ −v case since this reduces the representation

to U (standard expected utility maximization) and, by Blackwell (1951,1953), the value of

every decision problem increases with the availability of information. The u ≈ v case also

satisfies Preference for Information since the representation reduces to U (Receiver’s value

under perfect information) making σA ∼ A for all A. It is less obvious that menus A and

experiments σ satisfying A ≻ σA exist when u ̸≈ v and u ̸≈ −v. As illustrated in Figure 3,

the idea is that Sender may choose to provide nontrivial information σ̂ at A but—for some

public σ less valuable to Receiver than σ̂—be unwilling to provide additional information.

Conditions (ii) and (iv) provide choice-correspondence analogues of Preference for Flexi-

bility and Preference for Information, respectively. Condition (ii), Sen’s α, is a basic property

of rational choice; since the menus referenced by the axiom are ⊆-comparable, the axiom

constrains choice patterns that can arise under increased flexibility. Condition (iv) weakens

Sen’s α by requiring the original axiom to hold only when the increased flexibility is induced

by the availability of public information; nonetheless, the Proposition establishes that it is
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equivalent to Sen’s α in Persuasion Representations.

For any menu A and state ω, let Aω := {fω : f ∈ A}. An experiment σ is interior if

0 < sω < 1 for all s ∈ σ and ω ∈ Ω.

Proposition 2. Suppose (µ, u, v) represents ≿ and c. Then u ≈ v if and only if any of the

following conditions hold:

(i) ≿ satisfies Preference for Statewise

Flexibility: Aω ⊇ Bω for all ω implies

A ≿ B.

(ii) c is monotone in statewise flexibil-

ity: Aω ⊇ Bω for all ω implies

c(A) ⊆ c(A ∪B).

(iii) ≿ is indifferent to information: for

all A and σ, A ∼ σA.

(iv) c is invariant to imperfect infor-

mation: for all A and interior σ,

c(σA) = c(A).

Proposition 2 characterizes the u ≈ v case in terms Receiver’s preferences for, and choices

under, increased flexibility or information. Condition (i) requires Receiver to prefer menus

that offer more flexibility (more potential lotteries) in each state of the world; this condition

is implied by, but not equivalent to, Preference for Flexibility. The analogous requirement

for c, condition (ii), is that any act chosen at A is also chosen after expanding A in a way

that does not expand the set of possible lotteries in any state. Conditions (iii) and (iv)

capture the idea that Receiver’s welfare and choices are not impacted by public information

if u ≈ v; intuitively, these properties are consistent with u ≈ v because Sender chooses

perfect information when there is no conflict with Receiver.

Proposition 3. Suppose (µ, u, v) represents ≿ and c. Then u ≈ −v if and only if any of

the following conditions hold:

(i) ≿ is Independent of Irrelevant Alter-

natives: A ≿ B implies A ∼ A ∪B.

(ii) c satisfies WARP: c(A)∩B ̸= ∅ im-

plies c(B) ∩ A ⊆ c(A).

(iii) ≿ satisfies Preference for Information

and σA ≻ A for some A and σ.

(iv) c satisfies Informational Sen’s α

and c(σA) ̸= c(A) for some A and

interior σ.

Parts (i) and (ii) of Proposition 3 establish that familiar axioms—IIA for ≿, WARP for c—

characterize the u ≈ −v case. Traditionally, these axioms ensure ≿ and c can be represented
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by maximization of a utility function. In Persuasion Representations, this is consistent with

u ≈ −v because Sender’s resulting choice of no-information at all menus reduces Receiver’s

behavior to standard expected utility maximization. Parts (iii) and (iv) characterize u ≈
−v in terms of behavior under public information. In particular, satisfying Preference for

Information or Informational Sen’s α non-trivially is necessary and sufficient for u ≈ −v in

Persuasion Representations.

For condition (iv) in each of Propositions 1–3, some care is needed in the interpretation

of c(σA). Recall that σA merely simulates an environment where the choice set is A and

Receiver observes a signal generated by σ in addition to that generated by Sender. To un-

derstand the difference, consider Example 1 above with public information σ = σ∗ (perfect

information). In that example, Receiver only chooses the act (f1, g2) from σA. The interpre-

tation is that perfect information would lead Receiver to choose f in state 1 and g in state

2. Thus, both f and g would be chosen from A with perfect public information, but only

(f1, g2) is chosen from the menu σA.

To translate c(σA) into a statement about choices from A under public information σ,

two additional definitions are needed. For any A and σ, let cA(σA) := {f ∈ A : ∃
∑

s∈σ sf
s ∈

c(σA) and s ∈ σ such that f s = f} denote the projection of c(σA) to A. For an experiment

σ, let supp(σ) := { s
∥s∥ : s ∈ σ} denote its support. With this notation in place, the above

characterizations involving choice correspondence data under public information can be re-

formulated as follows:

Proposition 4. Suppose (µ, u, v) represents c. Then:

(i) u ≈ v or u ≈ −v if and only if c is expansive in signals: supp(σ) ⊆ supp(σ′) implies

cA(σA) ⊆ cA(σ
′A) for all A.

(ii) u ≈ v if and only if, for all A and σ, c(A) = cA(σA).

(iii) u ≈ −v if and only if c is expansive in signals and c(A) ̸= cA(σA) for some A and σ.

Proposition 4 characterizes the extreme cases of Sender-Receiver conflict in terms of choices

from A (not σA) under public information σ. Part (i) states that there is either no conflict

or total conflict if and only if expanding the set of posteriors induced by the public structure

results in a larger set of acts being chosen from A. Parts (ii) and (iii) differ in whether

this expansiveness property holds trivially or non-trivially: there is no conflict if and only

if choices are unresponsive to public information, and there is total conflict if choice data is

non-trivially expansive in public information.
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4.2 Measures of Conflict

The characterizations in the previous section establish key relationships between Receiver’s

ex-ante value of (and ex-post choice under) flexibility and public information but are limited

to extreme cases (u ≈ v or u ≈ −v) regarding the conflict between the agents. This section

develops finer comparisons between Sender and Receiver.

Definition 5. Let u, v,
•

v be utility indices. Then
•

v is more u-aligned than v (and v is

less u-aligned than
•

v) if either u ≈ −v or
•

v ≈ αu+ (1− α)v for some α ∈ [0, 1].

Definition 5 is the key definition of Ahn et al. (2019). The idea is that if, starting from

v, one forms a mixture
•

v ≈ αu + (1 − α)v, then
•

v more closely resembles u than v does.

Consequently, holding u fixed, a Sender with index
•

v “disagrees less” with Receiver than a

Sender with index v, softening the conflict between the agents.

The aim of this section is to characterize more- or less-aligned utilities in terms of Re-

ceiver’s value of, and choice under, increased flexibility or public information. To begin,

consider the following comparative notions for menu preferences:

Definition 6. Let ≿ and
•

≿ denote preferences on A.

(i)
•

≿ values flexibility more than ≿ if, for all A ⊇ B, A ≻ B implies A
•

≻ B.

(ii)
•

≿ values information more than ≿ if, for all A and σ, σA ≻ A implies σA
•

≻ A.

The idea of Definition 6 is that one agent (represented by
•

≿) values flexibility more than

another (represented by ≿) if there are more instances where he strictly prefers an expanded

option set. Similarly, he values information more than the other agent if there are more

instances where he strictly benefits from public information. Since σA ⊇ A, an agent who

values flexibility more than another necessarily values information more than the other.

Proposition 5. Let (µ, u, v) and (µ, u,
•

v) represent ≿ and
•

≿, respectively.

(i) If
•

≿ values information more than ≿, then
•

v is less u-aligned than v is. However, the

converse does not hold.

(ii) If
•

≿ values flexibility more than ≿, then
•

v is more u-aligned than v is and
•

≿ values

information more than ≿ does; consequently,
•

v ≈ v.

Part (i) of Proposition 5 states that if Receiver’s value of public information increases,

then there is greater conflict between the agents. Intuitively, the change in value reflects
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Figure 4: Illustration of Proposition 5(i). When no public information is provided, both
Sender preferences (green and blue curves) result in no additional information provision;
consequently, Receiver’s payoff is the lower of the two red dots. Consider a public structure
generating posteriors at µ̂′ and µ̂1 = 1. The more-aligned Sender utility (green curve)
compels Sender to provide additional information, yielding posteriors at µ̂1 = 0, µ̂′′, and µ̂1 =
1, increasing Receiver’s payoff to the higher red dot. However, the less-aligned Sender utility
(blue curve) results in no additional information provision. Thus, less-aligned preferences do
not increase Receiver’s value of public information.

Receiver’s expectation that Sender provides less information when there is greater conflict.

However, the converse does not hold: less-aligned preferences do not guarantee that Receiver

values information more in the sense of Definition 6. Figure 4 provides an example where

v = 1
2
u+ 1

2

•

v, and Proposition 6 below a finer condition that fully characterizes the degree of

preference alignment in terms of Receiver’s value of public information.

Part (ii) of Proposition 5 establishes that if Receiver’s value of flexibility increases, then

utilities become more aligned. However, as noted above, increased value of flexibility implies

increased value of information; by part (i), then, utilities also become less aligned. Since
•

v is

both more and less u-aligned than v, it follows that
•

v ≈ v. Thus, Definition 6(i) is too strong

to characterize finer changes to the degree of conflict. The next result provides a remedy.

Proposition 6. Let (µ, u, v) represent ≿ and (µ, u,
•

v) represent
•

≿. Then
•

v is less u-aligned

than v is if and only if any of the following conditions hold:

(i) If f ≿ A, then f
•

≿ A.

(ii) If f ∼ σA ≻ A and f ∈ σA, then σA
•

≻ A.

Proposition 6 modifies Definition 6 to provide full characterizations of utility alignment in

Persuasion Representations. In particular, part (i) establishes that utilities are less aligned
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if there are more instances where full commitment (to a specific act) is preferred to a given

menu A.8 This captures the intuition that increased conflict lowers Receiver’s expected

payoff at A, enlarging the set of commitment options f that are preferred to playing the

game with the full set A. Put differently, the result states that the concept of more-aligned

utility fully characterizes the comparative statics of Receiver’s welfare in persuasion games:

his expected payoff increases at all menus if and only if utilities become more-aligned.

Part (ii) refines Definition 6(ii) to require that σA
•

≻ A if σA ≻ A and f ∼ σA for some

f ∈ σA. In a Persuasion Representation, the latter requirement means f is prior-optimal at

σA, indicating Sender does not provide additional information beyond the public structure

σ. In this sense, the public structure is “binding” and it follows that f
•∼ σA if σA

•

≻ A.

Thus, part (ii) states there is greater conflict if and only if, for any A, there is a larger set

of binding information structures that Receiver strictly benefits from.

To conclude this section, the next result characterizes the comparative statics in terms

of choice data c.

Proposition 7. Let (µ, u, v) represent c and (µ, u,
•

v) represent
•

c. The following are equiva-

lent:

(i)
•

v is less u-aligned than v is.

(ii) If c(A) = f , then
•

c(A) = f .

To understand Proposition 7, observe that c(A) = f implies f is prior-optimal for Receiver

at A. This implies Sender does not disclose any information at A, indicating substantial

disagreement regarding the value of outcomes generated by acts in A. In line with this

intuition, the proposition states there is greater conflict between the agents if there are more

menus where Receiver chooses only the prior-optimal act.

4.3 Naivete and Sophistication

So far, Persuasion Representations of menu preferences have been interpreted as capturing ex-

ante values for a Receiver who correctly forecasts Sender’s choice of information: if A ≿ B,

Receiver expects a higher average payoff from playing the game with action set A than

action set B, given Sender’s choice of information at each menu. The index v inferred from

such rankings thus reveals Receiver’s belief about Sender’s utility function, which in turn

affects Receiver’s forecast of Sender’s choice of information. In contrast, ex-post choice data

8Although f is not required to be an element of A, the characterization holds even if one imposes this
restriction.
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such as ρ or λ is independent of Receiver’s beliefs about v, and instead depends only on

µ, u, and the true information structure chosen by Sender. This section examines how

comparisons between ex-ante preferences and ex-post choices reveal whether Receiver has

correctly-specified beliefs about v and, if not, whether beliefs indicate optimism or pessimism.

State-dependent random choice data λ is particularly useful for such comparisons. Given

λ and A, let fA
λ := (

∑
g∈A λA

ω (g)gω)ω∈Ω; this is the induced act generated by the true infor-

mation structure and Receiver’s signal-contingent choices at A.

Definition 7. Given λ, preferences ≿ are sophisticated if A ∼ fA
λ for all A.

The idea of Definition 7 is that λ, and therefore fA
λ , reflects what actually happens at A

while ≿ captures Receiver’s ex-ante expectations about behavior at A. If A ∼ fA
λ , there is

no disconnect between expectations and reality: Receiver’s ex-ante value of A coincides with

the value of the induced act generated by subsequent behavior at A. Thus, sophistication

(or lack thereof) is a property of ≿ given some λ.9

Proposition 8. Let (µ, u, v′) represent ≿ and (µ, u, v) represent λ. Then ≿ is sophisticated

if and only if v′ ≈ v.

Proposition 8 verifies the intuition that a sophisticated Receiver holds correct beliefs about

Sender’s utility function: when ≿ and λ have Persuasion Representations with common

Receiver parameters (µ, u) but potentially different Sender utility functions v′ and v, re-

spectively, Receiver is sophisticated in the sense of Definition 7 if and only if v′ ≈ v. The

remainder of this section studies the following two natural departures from sophistication.

Definition 8. Given λ, preferences ≿ are optimistic if A ≿ fA
λ for all A. If instead A ≿ fA

λ

for all A, preferences ≿ are pessimistic.

Optimistic Receivers err only in an optimistic direction: if their ex-ante belief regarding

the value of A differs from that of fA
λ , it is because they expect a better outcome than fA

λ .

Similarly, pessimistic Receivers err only in the opposite direction. The next result provides

a simple parametric representation of optimism and pessimism in persuasion models.

Proposition 9. Let (µ, u, v) and (µ, u, v′) represent λ and ≿, respectively. Then:

9This definition is in the spirit of Ahn et al. (2019), who define sophistication as A ∼ c(A); in Persuasion
Representations, this property turns out to be too weak, and the notion of Definition 7 involving state-
contingent random choices is needed to derive meaningful results.
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(i) ≿ is optimistic if and only if v′ is more u-aligned than v is.

(ii) ≿ is pessimistic if and only if v′ is less u-aligned than v is.

Proposition 9 formalizes the intuition that optimism and pessimism correspond to Receiver’s

beliefs v′ about Sender’s utility being more or less u-aligned, respectively, than the true

utility v. Thus, the requirements of Definition 8 characterize tight conditions on parameters

in Persuasion Representations.

Proposition 10. Let (µ, u, v) represent λ while (µ, u, v′) and (µ, u,
•

v) represent ≿′ and
•

≿,

respectively. Suppose ≿′ and
•

≿ are optimistic. Then
•

v is more u-aligned than v is (that is,
•

≿ is more optimistic than ≿′) if and only if A ≻′ fA
λ implies A

•

≻ fA
λ .

Proposition 10 states that, conditional on being optimistic, the degree of optimism (overes-

timation of preference alignment) manifests as more instances of A being strictly preferred

to fA
λ . A symmetric result holds for pessimistic agents. This can be combined with the

results of section 4.2 to establish, for example, that increased pessimism means greater value

of public information (more instances where σA is preferred to A) and greater value of full

commitment.

5 Discussion & Axiomatic Foundations

This paper has developed a decision-theoretic analogue of the Bayesian Persuasion model

in terms of Receiver’s choices, preferences and welfare. The results establish that persua-

sion interactions can be understood entirely from Receiver’s perspective: his preferences

and choices reveal all parameter values and, thereby, Sender’s (unobserved) choice of infor-

mation. While Sender has commitment power in choosing information, the framework is

sufficiently rich to compare and contrast two ways of leveling the playing field for Receiver:

hard commitment and public information provision. This leads to comparative static char-

acterizations that, alongside the identification results, resolve new and basic questions about

the Bayesian Persuasion framework.

Throughout, results assume the choice primitives—≿, ρ, λ, or c—are consistent with

some Persuasion Representation and analyze how the parameters of the representation vary

with, or may be identified from, the choice primitives. For example, the comparative statics

fully characterize the patterns that must be present in choice data for there to be a greater

conflict between Sender and Receiver. One might wonder what kind of patterns must be

present for choice data to be consistent with the desired representation in the first place.
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What axioms must ≿, ρ, λ, or c satisfy to ensure existence of a Persuasion Representation?

For the most part, I leave this as an open problem. As described below, Theorem 5 in

Appendix D provides an axiomatic characterization of Persuasion Representations for menu

preferences ≿; this, in turn, can be adapted to a characterization for state-contingent choice

data λ (Theorem 6). However, I do not axiomatically characterize the model in terms of ρ

or c, and the characterizations for ≿ and λ take the prior µ as given.

In general, Bayesian Persuasion seems more amenable to axiomatic characterization when

choice data for both agents—Sender and Receiver—are available. For example, Jakobsen

(2021) provides a characterization employing both Sender’s preferences for information and

Receiver’s signal-contingent choices. Notably, all parameters can be identified and compared

using only Sender’s preferences for information—Receiver choice data is useful for axiomati-

cally characterizing the representation but not strictly necessary for any subsequent analysis.

In principle, then, one could characterize the model using only Sender’s informational pref-

erences; the trade off is that the axioms are more complex. A similar trade off appears when

characterizing the model using only Receiver choice data.

For menu preferences ≿, the key to characterizing the model is to determine the set of

induced acts. Let

F≿(A) :=

{∑
s∈σ

sf s : σ ∈ E , f s ∈ ∆A, f s ≿s g ∀g ∈ A

}

where f ≿s g ⇔ sf + (1− s)h ≿ sg + (1− s)h for all h. The set F≿(A) is constructed using

the restriction of ≿ to singleton menus. On such menus, standard expected utility axioms

apply, yielding parameters (µ, u) that induce functions U s representing ≿s. Then, the set

F (A) defined using U s (see section 2) coincides with F≿(A). It is then a matter of ensuring

that ≿ has a “Strotzian” representation over F≿(A), as in Definition 1. Since Sender and

Receiver have a common prior µ, a simple way to achieve this is to reduce acts to lotteries

and impose choice consistency requirements corresponding to whether Sender and Receiver

agree or disagree on the rankings of lotteries. For full detail, see Appendix D.

A Proofs for Sections 2 and 3

A.1 Proof of Lemma 1

Throughout this section, fix parameters (µ, u) and a menu A.

To establish convexity of F (A), let f, g ∈ F (A). This means there are experiments σf , σg

and selections f s, gt ∈ co(A) such that f =
∑

s∈σf sf s, g =
∑

t∈σg tgt and, for all s ∈ σf and
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t ∈ σg, U s(f s) ≥ U s(f ′) and U t(gt) ≥ U t(g′) for all f ′, g′ ∈ A. Let α ∈ (0, 1). Consider the

experiment σ̂ = ασf+(1−α)σg defined to be the concatenation of matrices ασf and (1−α)σg.

To columns αs (s ∈ σf ) and (1−α)t (t ∈ σg), associate selections fαs = f s and g(1−α)t = f t

from the original induced acts (these selections remain valid because scalar multiplication

of signals generate the same Bayesian posteriors). Thus, the associated induced act for σ̂ is∑
s∈σf αsf s +

∑
t∈σg(1− α)tf t = αf + (1− α)g, so that F (A) is convex.

The remainder of this section establishes compactness of F (A). For every B ⊆ A, let

CB =

{
µ̂ ∈ ∆Ω : argmax

f∈A

∑
ω∈Ω

u(fω)µ̂ω = B

}
.

That is, CB consists of all beliefs µ̂ such that the set of optimal acts in A (given utility

index u) is precisely B. Observe that CB is convex but potentially empty. Let C denote the

collection of nonempty sets CB; clearly, C is a partition of ∆Ω.

Since A is finite, the closure of each CB ∈ C has finitely many extreme points; let ext(CB)

denote the set of extreme points of the closure of CB. Taking the union of sets ext(CB) over

all CB ∈ C yields a finite set of points, which we enumerate as (µ̂1, . . . , µ̂K). For every

k = 1, . . . , K, let BK := argmaxf∈A
∑

ω∈Ω u(fω)µ̂
k denote the acts in A that are optimal at

beliefs µ̂k.

Given full-support prior beliefs µ, each point µ̂k is associated with a signal sk ∈ S such

that µ̂k is the Bayesian posterior of µ at sk. Scalar multiples of sk result in the same Bayesian

posterior, so without loss we assume sk ∈ S but λsk /∈ S for all λ > 1 (this means skω = 1

for at least one ω). Consequently, λsk ∈ S for all 0 < λ < 1.

Lemma 2. For every f ∈ F (A), there is a vector λ = (λ1, . . . , λK) ∈ [0, 1]K and a profile

(f 1, . . . , fK) of tie-breaking selections (fk ∈ co(Bk) for all k) such that f =
∑K

k=1(λks
k)fk

and
∑K

k=1 λks
k = e.

Proof. Let f ∈ F (A). This means there is an experiment σ = [t1, . . . , tn] and selections

f i ∈ co(argmaxg∈A U ti(g)), i = 1, . . . , n, such that f =
∑n

i=1 t
if i. Observe that if ti and

tj are scalar multiples of each other (that is, they induce the same Bayesian posterior),

replacing them with a single signal ti + tj and a selection f ti+tj ∈ co(argmaxg∈A U ti+tj(g))

given by f ti+tj

ω = tiωf
ti
ω +tjωf

tj
ω

tiω+tjω
yields the same induced act f . Thus, we assume without loss

that distinct signals in σ are not scalar multiples of each other; this means µ · ti is the total

probability of generating posterior µti .

If every ti is of the form λks
k for some k, there is nothing to prove. So, suppose there

exists ti ∈ σ such that no signal sk is a scalar multiple of ti. This implies the Bayesian

posterior µti does not coincide with any of the points µ̂k. Let CB denote the cell of C
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containing µti ; this implies f ti ∈ co(B). By definition, µti can be expressed as a weighted

sum of the points ext(CB); without loss of generality, let µ
ti = α1µ̂

1+ . . .+αLµ̂
L denote such

a sum (there may be multiple such mixtures; the argument does not require uniqueness).

Without loss of generality, each αℓ > 0, which means supp(µ̂ℓ) ⊆ supp(µti). We modify σ

by replacing ti with a matrix [r1, . . . , rL] and f ti with a profile (f r1 , . . . , f rL) of selections

f rℓ ∈ co(argmaxg∈A U rℓ(g)) as follows. First, let σ̂ = [r̂1, . . . , r̂L] be an experiment such that,

for prior µti , posterior µ̂ℓ is generated with probability αℓ; as is easily verified, this means

r̂ℓω = αℓµ̂
ℓ
ω

µti
ω

if ω ∈ supp(µti); for ω /∈ supp(µti), let r̂ℓω = 1/L. Now let rℓ := (tiωr̂
ℓ
ω)ω∈Ω; then

the Bayesian posterior of µ at rℓ is µ̂ℓ, so rℓ = λℓs
ℓ for some λℓ > 0. Since σ̂ ∈ E , we have∑L

ℓ=1 r
ℓ
ω = tiω

∑L
ℓ=1 r̂

ℓ
ω = tiω for all ω. Next, observe that since the selection f ti is in co(B), it is

a valid selection at each µ̂ℓ (an element of ext(CB)) because each g ∈ B is utility maximizing

at beliefs µ̂ℓ and utility index u. Thus, we may set f rℓ = f ti for every ℓ. Replacing ti ∈ σ with

the matrix [r1, . . . , rL] yields the same induced act because the component of the induced

act affected by this substitution coincides with the tif ti component of the original induced

act: r1f r1 + . . .+ rLf rL = r1f ti + . . .+ rLf ti = tif ti .

Lemma 2 implies that for every induced act f ∈ F (A), there is an experiment consisting

only of (scalar multiples of) signals from (s1, . . . , sK) that, with appropriate tie-breaking

selections, yields the induced act f . Thus, F (A) is a subset of the set of acts that can

be induced using scaled signals from (s1, . . . , sK); obviously, the converse implication holds.

Consequently, F (A) is the image of the correspondence φ : D ⇒ F defined by

φ(λ1, . . . , λK) :=

{
K∑
k=1

(λks
k)fk : fk ∈ co(Bk)

}
,

where D := {(λ1, . . . , λK) ∈ [0, 1]K :
∑K

k=1 λks
k = e}; that is, the domain D consists of

all vectors (λ1, . . . , λK) such that the collection [λks
k : λk ̸= 0] qualifies as an experiment.

Observe that D is compact: it is clearly bounded, and the set of vectors satisfying the

constraint
∑K

k=1 λks
k = e is closed.

Lemma 3. The correspondence φ is upper hemicontinuous.

Proof. Observe that, for every λ = (λ1, . . . , λK) ∈ D,

φ(λ) =
K∑
k=1

φk(λ) :=

{
K∑
k=1

gk : gk ∈ φk(λ)

}
, (5)

where φk(λ) :=
{
(λks

k)fk = λk(s
k
ωf

k
ω)ω∈Ω : fk ∈ co(Bk)

}
. Clearly, φk is compact-valued

since co(BK) is compact and sk is fixed. Moreoever, lettingXk := {(skωfk
ω)ω∈Ω : fk ∈ co(Bk)},
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we have φk(λ) = λkXk = {λkx
k : xk ∈ Xk}; thus, φk simply scales a fixed compact set by

the factor λk and therefore is an upper hemicontinuous correspondence. By equation (5),

then, φ is a sum of compact-valued, upper hemicontinuous correspondences and therefore is

itself upper hemicontinuous (see Aliprantis and Border, 2006, Lem 17.8).

We have shown that F (A) is the image of a compact-valued, upper hemicontinuous corre-

spondence defined on a compact set; thus, F (A) is compact (Aliprantis and Border, 2006,

Thm 17.32).

A.2 Proof of Theorem 2

Suppose ≿ has a Persuasion Representation. It follows that the restriction of ≿ to singleton

menus is represented by subjective expected utility for some parameters (µ, u). By standard

uniqueness arguments for the Anscombe-Aumann expected utility model, µ is unique and u

is unique up to positive affine transformation.

To establish uniqueness of v, consider pq-bets Apq = {pEq, qEp} where p is interior and

u(p) > u(q). If v(p) ≥ v(q), Sender chooses perfect information and therefore p ∼ Apq. If

v(p) ≤ v(q), Sender chooses e (no information) and p ≻ Apq. Since p is interior, the set

{q : p ∼ Apq} coincides with {q : u(p) > u(q) and v(p) ≥ v(q)}. This set is a region in ∆X

bounded by two planes: the indifference planes through p for u and v. Since u has been

identified in the first step above, this reveals the indifference plane for v through p. The

direction of increasing utility for v is also revealed by definition of the latter set. Thus, v is

identified up to positive affine transformation.

A.3 Proof of Theorems 3 & 4

First, suppose a correspondence c has a Persuasion Representation. To identify u, consider

menus A = {p, q} of constant acts; for such menus, we have p ∈ c({p, q}) ⇔ u(p) >

u(q) or [u(p) = u(q) and v(p) ≥ v(q)]. Consequently, u(p) > u(q) if and only if there is a

neighborhood around q such that p ∈ c({p, q′}) for all q′ in the neighborhood. Given p, then,

the set of such q reveals the strict lower contour set of u through p, thereby revealing u up

to positive affine transformation.

To identify v, consider pq-menus A where u(p) > u(q); this means that for every f ∈
A, there is a signal sf such that fω = sfωp + (1 − sfω)q. Observe that if v(p) ≥ v(q),

Sender chooses perfect information at A and so c(A) = c(A) :=
⋃

ω∈Ω argmaxf∈A u(fω). If

v(p) < v(q), Sender chooses e (no information) and so c(A) = c(A) := argmaxf∈A U(f).

Given u(p) > u(q), it is straightforward to construct pq-menus A where c(A) ̸= c(A) and
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c(A) = c(A) ⇔ v(p) ≥ v(q); for example, there is a pq-menu A where there is a unique

prior-optimal act f e (that is, U(f e) ≥ U(g) for all g ∈ A) and, for each state ω, a unique

act fω ∈ A such that fω
ω = p, making this act the unique optimal choice in state ω. Thus,

c(A) = {fω : ω ∈ Ω} ≠ {f e} = c(A). Having identified u, then, such menus reveal the set

{q : u(p) > u(q) and v(p) ≥ v(q)}; by the argument in the proof of Theorem 2 above, this

reveals v up to positive affine transformation.

To identify µ, consider once again pq-menus A where u(p) > u(q). Suppose u ̸≈ v.

Then there exists q such that v(q) > v(p); consequently, there exist pq-menus A such that

c(A) = c(A). Normalize u(p) = 1, u(q) = 0 and consider a pair of states E = {ω, ω′}
where ω ̸= ω′. To pin down the ratio µω

µω′
, consider a pq-menu A where all f, f ′ ∈ A satisfy

fω̂ = f ′
ω̂ for all ω̂ /∈ E (that is, there exists an act h = shp+(1−sh)q such that, for all f ∈ A,

f = fEh). Since c(A) = c(A), it follows that f ∈ c(A) ⇔ f ∈ argmaxg∈A sgωµω+(1−sgω′)µω′ .

Thus, f, g ∈ c(A) ⇔ (sfω − sgω)µω = (sgω′ − sfω′)µω′ . Appropriate choices of A thereby

pin down µω

µω′
. For example, letting g = h = 1

2
p + 1

2
q, one can elicit sfω, s

f
ω′ such that

c({f, g}) = c({f, g}) = {f, g}, revealing (sfω− 1
2
)µω = (1

2
− sfω′)µω′ . Repeating this procedure

for all pairs of states pins down all likelihood ratios and, therefore, pins down µ. This

completes the proof of Theorem 4.

For Theorem 3, suppose ρ has a Persuasion Representation. Uniqueness of u and v follows

from the argument for c, as does identification of µ if u ̸≈ v. So, suppose u ≈ v and let

u(p) > u(q). Then v(p) > v(q) and Sender chooses perfect information at all pq-menus A.

In particular, for each state ω, consider a pq-bet A = {pEq, qEp} where E = {ω}. Since

Sender chooses perfect information, it follows that ρA(pEq) = µω, pinning down µ.

B Proofs for Section 4.1

Lemma 4. Let u, v be non-constant utility indices such that u ̸≈ v and u ̸≈ −v. For any pair

of vectors (u1, . . . , uK), (v1, . . . , vK) ∈ RK, there is a set {p1, . . . , pK} ⊆ ∆X and constants

A > 0, B,C ∈ R such that, for all k = 1, . . . , K, u(pk) = Auk +B and v(pk) = Avk + C.

Proof. Observe that ∆X can be identified with a subset of RN−1 (namely, the unit simplex

in RN). Since u, v are non-constant linear functions on ∆X ⊆ RN−1, their domains can

be extended to all of RN−1 via linearity. For every k, the values uk and vk correspond to

unique level sets (planes) of u and v in RN−1, respectively; since u ̸≈ v and u ̸≈ −v the

normal vectors of these planes are linearly independent. Thus, for every k, there is a point

zk ∈ RN−1 such that u(zk) = uk and v(zk) = vk. Pick a lottery p in the interior of ∆X.

There is a scalar α ∈ (0, 1) sufficiently close to 1 such that, for all k, αp+ (1− α)zk ∈ ∆X;
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letting pk := αp + (1 − α)zk, A := (1 − α), B := αu(p) and C := αv(p) completes the

proof.

The significance of Lemma 4 is that it allows acts and menus to be constructed by selecting

utility values for Receiver independently of the values for Sender when u ̸≈ v and u ̸≈ −v. In

particular, acts can be defined by specifying arbitrary profiles of utilities (uω)ω∈Ω and (vω)ω∈Ω

(not necessarily in the range of u or v) and applying the lemma to obtain f = (fω)ω∈Ω such

that, for all ω, u(fω) = Auω +B and v(fω) = Avω +C. More generally, menus are obtained

by first specifying (for each act in the menu) utility profiles for Sender and Receiver and

then applying the lemma to the full set of profiles—each act requires |Ω| = W lotteries, so a

menu of M acts requires K = MW lotteries. This way, the same constants A > 0, B, C ∈ R
apply to every act, so in the resulting menu it is as if agents compare acts with the desired

utility profiles. This simplifies the construction of many examples since value-function (or

concavification) arguments only depend on the utility profiles, not the underlying lotteries.

B.1 Proof of Proposition 1

Proof of u ≈ v or u ≈ −v ⇔ (i). If u ≈ v, then at every B Sender chooses perfect informa-

tion; consequently, in every ω, both agents receive their most-preferred lottery in Bω. If

B ⊆ A, then the best outcome in each state can only improve under menu A. Thus, A ≿ B.

If instead u ≈ −v, then e (no information) is Sender-optimal at every menu A; consequently,

Receiver chooses their prior-optimal act(s) from A. Thus, ≿ reduces to a standard expected

utility preference and therefore satisfies Preference for Flexibility.

For the converse, suppose u ̸≈ v and u ̸≈ −v. Then, as is easily verified, there exist

lotteries p, q, r such that u(p) > u(r) > u(q) and v(r) > v(p) > v(q). Let E ̸= Ω be a

nonempty subset of Ω and B = {pEq, qEp}. Since Sender and Receiver agree on the ranking

of p and q, it follows that Sender chooses perfect information at menu B, yielding lottery p

in every state. Thus, U(B) = u(p).

Now let A = {pEq, qEp, r}. Clearly, A ⊇ B. We may choose r so that r is prior-optimal

for Receiver in menu A; in particular, U e(pEq) and U e(qEp) belong to the open interval

(u(q), u(p)) because µ(E) ∈ (0, 1). Thus, we may choose r near p (without reversing any

inequalities above) so that U e(r) > max{U e(pEq), U e(qEp)}, making r prior-optimal for

Receiver in menu A. Since v(r) > v(p) > v(q), it follows that e (no information) is Sender-

optimal at A (more generally, any Sender-optimal σ must yield Bayesian posteriors making

r Receiver-optimal). Thus, outcome r is realized with probability 1, so that U(A) = u(r) <

u(p) = U(B), violating Preference for Flexibility.

Proof of u ≈ v or u ≈ −v ⇔ (ii). First, suppose u ≈ v or u ≈ −v. If u ≈ −v, then (by
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the argument in part (i) above) c is rationalized by expected utility maximization with

parameters (µ, u) and therefore satisfies Sen’s α. If instead u ≈ v, then (also by part (i)

above) for all Â, we have c(Â) = {f ∈ Â : ∃ω such that u(fω) ≥ u(gω) ∀g ∈ Â}. Let

f ∈ c(B) ∩ A where B ⊇ A. Since f ∈ c(B), there exists a state, say ω∗, such that

u(fω∗) ≥ u(gω∗) for all g ∈ B ⊇ A. Thus, u(fω∗) ≥ u(gω∗) for all g ∈ A. Since f ∈ A, this

implies f ∈ c(A).

The converse is established by way of contradiction. So, suppose u ̸≈ v and u ̸≈ −v.

Choose an event E such that 0 < µ(E) < 1 and lotteries r, p, q, p′, q′ such that u(p′) >

u(p′) > u(r) > u(q′) > u(q), v(p) = v(q) > v(r) > v(p′) = v(q′), and U e(pEq) > u(r). Let

A = {pEq, r}. Then e (no information) is Sender-optimal at A because pEq is prior-optimal

for Receiver and v(p) = v(q) > v(r); thus, c(A) = {pEq}. Now let B = {pEq, p′Eq′, r}.
Observe that, for Receiver, p′Eq′ dominates pEq. Thus, p′Eq′ is prior-optimal for Receiver;

pEq is not chosen by Receiver at any signal; and r is chosen by Receiver at some signals

because 0 < µ(E) < 1 and u(p′) > u(r) > u(q′). Since v(r) > v(p′) = v(q′), Sender selects

an information structure where both p′Eq′ and r are chosen with positive probability; hence,

c(B) = {p′Eq′, r}. Thus, r ∈ c(B) ∩ A but r /∈ c(A), violating Sen’s α.

Proof of u ≈ v or u ≈ −v ⇔ (iii). First, suppose u ≈ v or u ≈ −v. By part (i), ≿ satisfies

Preference for Flexibility. Since σA ⊇ A, it follows that σA ≿ A.

For the converse, suppose u ̸≈ v and u ̸≈ −v. Consider first the case |Ω| = 2. Since µ

has full support, we may construct (by Lemma 4) a menu A = {f, g, h} such that the value

functions are of the form depicted by Figure 3 in the main text. In particular, Receiver

finds f optimal on [0, µ̂′], g optimal on [µ̂′, µ̂′′], and h optimal on [µ̂′′, 1], where the prior µ

satisfies µ̂′ < µ < µ̂′′. Sender is indifferent between g and h at all beliefs, prefers g (and h)

to f on [0, µ̂′], and f to g and h on [µ̂′′, 1], with indifference between all three acts at µ̂′.

Let σ̂ be an experiment such that, given µ, either posterior µ̂′ or µ̂ = 1 is generated (such

an experiment exists because µ̂′ < µ < 1). Observe that, at menu A, Sender finds both e

and σ̂ optimal because the concavification at µ̂′, µ, and µ̂ = 1 coincides with Sender’s value

function. By Receiver-preferred tie breaking, Sender chooses σ̂ as this yields the highest

Receiver payoff among all Sender-optimal structures at A. Now consider a public structure

σ that generates posteriors at µ̂′ and µ̂′′. Again, Sender’s values at these posteriors coincide

with the concavification. However, Sender now prefers e because any non-trivial information

structure creates a mean-preserving spread around both µ̂′ and µ̂′′; in particular, any such

spread around µ̂′ strictly lowers Sender’s payoff. Thus, Sender chooses e and Receiver’s value

at σA is the prior-value of g and, thus, lower than the value at A.

For the general case |Ω| ≥ 3, let p be an arbitrary lottery, E = {ω1, ω2} and consider

the menu A′ := {f̂Ep : f̂ ∈ A}, where A is a menu of the form constructed above for
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Figure 5: Illustration of Proposition 1(iv).

the case |Ω| = 2; this can be done because µ has full support. It is easy to see that

F (A′) = {f̂Ep : f̂ ∈ F (A)}. Thus, at A, Sender selects an induced act f ∗Ep, where

f ∗ ∈ F (A) is the induced act selected at A. Let σ′ be an information structure generating

posteriors corresponding to µ̂′ and µ̂′′ in the 2-state construction above (conditional on E,

the posteriors coincide with µ̂′ and µ̂′′) and that leaves µ̂′
ω = µ̂′′

ω = µω for all ω /∈ E.

Then F (σ′A′) = {f̂Ep : f̂ ∈ σA}, so Sender selects an induced act g∗Ep ∈ F (σ′A′) where

g∗ ∈ F (σA) is the induced act selected at σA. Thus, A′ ≻ σ′A′.

Proof of u ≈ v or u ≈ −v ⇔ (iv). First, suppose u ≈ v or u ≈ −v. By part (ii), c satisfies

Sen’s α. Since σA ⊇ A, it follows that c(σA) ∩ A ⊆ c(A), as desired.

For the converse, suppose u ̸≈ v and u ̸≈ −v. Consider first the case |Ω| = 2. Let

A = {f, g, h} be a menu such that Sender’s value function is of the form depicted in Figure

4 (this is possible via Lemma 4 and the fact that µ has full support). Clearly, e is Sender-

optimal at A and so c(A) = {h}. Consider the public structure σ generating posteriors at

µ̂′ and µ̂ = 1. Any additional information chosen by Sender generates a mean-preserving

spread around µ̂′ but does not affect the point µ̂ = 1. Thus, Sender chooses information

σ̂ to achieve the value of the concavification at µ̂′; this requires σ̂ to generate posteriors at

µ̂′′ and at µ̂ = 0. The latter posterior results in f being chosen. Thus, f ∈ c(σA) ∩ A but

f /∈ c(A). For the general case |Ω| ≥ 3, apply the same technique as the proof of part (ii)

above to construct A′ and σ′A′ such that F (A′) and F (σ′A′) are isomorphic to the sets F (A)

and F (σA) from the case |Ω| = 2.

B.2 Proof of Proposition 2

Proof of u ≈ v ⇔ (i). Suppose u ≈ v. Then, for every menu B, perfect information is

Sender-optimal because it yields u-maximal (hence v-maximal) lotteries from Bω in every ω.
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If Bω ⊆ Aω for all ω, then a maximal lottery in Aω is maximal in Aω∪Bω. Thus, A ∼ A∪B.

Conversely, suppose u ̸≈ v. Then there are lotteries p, q such that u(p) > u(q) and

v(q) > v(p). Let µ(E) ∈ (0, 1) and A = {pEq, qEp}. Sender and Receiver strictly disagree

on the ranking of p and q, so Sender chooses e (no information) at A. Consequently, U(A) ∈
(u(q), u(p)) and V (A) ∈ (v(p), v(q)). Let B = {p}, so that A ∪ B = {pEq, qEp, p}. Then

p is a Receiver-optimal act in A ∪ B regardless of Sender’s choice of information, implying

U(A ∪ B) = u(p) > U(A); thus, A ̸∼ A ∪ B. Since Bω = {p} ⊆ {p, q} = Aω for all ω, this

contradicts Preference for Statewise Flexibility.

Proof of u ≈ v ⇔ (iii). Suppose u ≈ v. Then, for every A, perfect information is Sender-

optimal and Receiver achieves a u-maximal lottery in Aω for all ω. Let uω denote Receiver’s

utility of any u-maximal lottery in Aω. Observe that, for every σ and ω, Receiver again

obtains utility uω in state ω at menu σA (perfect information remains Sender-optimal and

A ⊆ σA). Thus, A ∼ σA.

Conversely, suppose u ̸≈ v. Then there are lotteries p, q such that u(p) > u(q) and

v(q) > v(p). Let µ(E) ∈ (0, 1) and A = {pEq, qEp}. As in the proof of u ≈ v ⇔ (i)

above, this yields U(A) ∈ (u(q), u(p)). Consider σ∗A. Since (p, . . . , p) ∈ σ∗A, we obtain

U(σ∗A) = u(p) > U(A), so that A ̸∼ σ∗A.

Proof of u ≈ v ⇔ (ii). Suppose u ≈ v. Then perfect information is Sender-optimal; conse-

quently, for all Â, we have

c(Â) = {f ∈ Â : ∃ω such that u(fω) ≥ u(gω) ∀g ∈ Â}.

Suppose Bω ⊆ Aω for all ω and let f ∈ c(A). Then there is a state ω∗ such that u(fω∗) ≥
u(gω∗) for all g ∈ A; thus, u(fω∗) ≥ u(p) for all p ∈ Aω∗ . Since Bω∗ ⊆ Aω∗ , it follows that

u(fω∗) ≥ u(q) for all q ∈ Bω∗ . Then u(fω∗) ≥ u(gω∗) for all g ∈ A∪B, so that f ∈ c(A∪B).

For the converse, suppose u ̸≈ v. As in the proof of u ≈ v ⇔ (i) above, the menus

A = {pEq, qEp} and B = {p} satisfy Bω ⊆ Aω for all ω but lead to c(A∪B) = {p}, so that

c(A) ̸⊆ c(A ∪B).

Proof of u ≈ v ⇔ (iv). Suppose u ≈ v. As in the proof of u ≈ v ⇔ (ii) above, we have

c(A) = {f ∈ A : ∃ω such that u(fω) ≥ u(gω) ∀g ∈ A}

for all A. Let σ denote an interior experiment. To see that c(A) ⊆ c(σA), first let f ∈ c(A).

Then f ∈ σA and u(fω) ≥ u(p) for all p ∈ Aω. Thus, for every ω and h ∈ σA, we have

u(fω) ≥ u(hω) because hω is a mixture of lotteries in Aω. Hence, f ∈ c(σA). To establish
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c(σA) ⊆ c(A), let f ∈ c(σA). This means there is a state ω∗ such that u(fω∗) ≥ u(hω∗) for

all h ∈ σA ⊇ A; thus, u(fω∗) ≥ u(gω∗) for all g ∈ A. So, it will suffice to show that f ∈ A.

Let ω ∈ Ω. A given lottery in (σA)ω ⊇ Aω is a mixture of lotteries in Aω. If f ∈ σA\A
and the mixture fω assigns positive weight only to u-maximizers in Aω, then σ cannot be

interior: it must perfectly reveal state ω. Thus, f ∈ A.

For the converse, suppose u ̸≈ v. Then there are lotteries p, q such that u(p) > u(q) and

v(q) > v(p). Let µ(E) ∈ (0, 1) and A = {pEq, qEp}. Let σε = [sε, e− sε] where sεω = 1− ε

for ω ∈ E and sεω = ε for ω ∈ Ω\E. Then

σεA = {pEq, qEp, sεpEq + (e− sε)qEp, sεqEp+ (e− sε)pEq}

= {pEq, qEp, (1− ε)p+ εq, εp+ (1− ε)q}.

Observe that e (no information) is Sender-optimal at σεA. Thus, for ε > 0 sufficiently small,

Receiver chooses (1− ε)p+ εq. Thus, c(σεA) ̸= c(A).

B.3 Proof of Proposition 3

Proof of u ≈ −v ⇔ (i). First, suppose u ≈ −v. Then e (no information) is Sender-optimal

at every menu A, so that Receiver chooses the prior-optimal act (according to u) from A.

Thus, ≿ reduces to a standard expected utility preference and, consequently, satisfies IIA.

Conversely, suppose u ̸≈ −v. Then there are lotteries p, q such that u(p) > u(q) and

v(p) > v(q). Let A = {pEq} and B = {qEp} where 1 > µ(E) ≥ 1
2
. It follows that U(A) =

U e(pEq) ≥ U e(qEp) = U(B), so that A ≿ B. However, at menu A∪B, perfect information

is Sender-optimal because it yields lottery p in every state. Thus, U(A∪B) = u(p) > U(A),

so that A ∪B ≻ A, contradicting IIA.

Proof of u ≈ −v ⇔ (iii). First, suppose u ≈ −v. By Proposition 1, ≿ values information:

σA ≿ A for all σ and A. Moreover, e (no information) is Sender-optimal at all menus

A, so Receiver is indifferent between A and any U e-optimal act f ∈ A. Consider a menu

A = {pEq, qEp} where 0 < µ(E) < 1 and u(p) > u(q). Then σ∗A ∼ p ≻ A, where σ∗

denotes perfect information.

For the converse, suppose σA ≿ A for all σ,A and that there exist σ,A such that σA ≻ A.

By Proposition 1, either u ≈ v or u ≈ −v. By Proposition 2, u ̸≈ v because ≿ is not

indifferent to information. Thus, u ≈ −v.

Proof of u ≈ −v ⇔ (ii). If u ≈ −v, then Sender chooses e at every menu. Consequently,

Receiver’s choices are characterized by standard expected utility maximization and therefore

satisfy WARP.
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For the converse, suppose toward a contradiction that c satisfies WARP but u ̸≈ −v.

By WARP, there is a complete and transitive relation ≿ such that, for all Â, c(Â) = {f ∈
Â : f ≿ g ∀g ∈ Â}. Since u ̸≈ −v, there are lotteries p, q, r such that u(p) > u(q) > u(r)

and v(p) > v(q) > v(r). Let E be a nonempty subset of Ω and let f = rEp, g = r, and

h = pEq. In menu A = {f, g}, we have c(A) = {f, g} because Sender’s optimal information

structure reveals whether the true state belongs to E or Ω\E and both acts are chosen at

states ω ∈ E. Thus, the rationalizing preference satisfies f ∼ g. In menu B = {g, h}, we
have c(B) = {h} because u(p) > u(q) > u(r) implies act g is never chosen by Receiver.

Thus, h ≻ g. Finally, in menu C = {f, h}, we have c(C) = {f, h} because Sender’s optimal

information structure reveals whether the true state belongs to E or Ω\E and h is chosen

for ω ∈ E while f is chosen for ω /∈ E. Thus, f ∼ h. Combining these facts, we have

g ∼ f ≻ h ≻ g, a contradiction.

Proof of u ≈ −v ⇔ (iv). First, suppose u ≈ −v. By Proposition 1, c satisfies Informational

Sen’s α. Moreover, c(A) consists of all U e-optimal acts in A because e (no information) is

Sender optimal in all menus. As in the proof of part (iv) of Proposition 2, let 0 < µ(E) < 1

and σε = [sε, e − sε] where sεω = 1 − ε for ω ∈ E and sεω = ε for ω ∈ Ω\E; note that σε

is interior provided 0 < ε < 1. Then, for any A = {pEq, qEp} where u(p) > u(q), we have

σεA = {pEq, qEp, (1− ε)p+ εq, εp+ (1− ε)q}. Observe that if ε > 0 is sufficiently close to

0, then (1− ε)p+ εq is U e-optimal in σεA. Thus, c(σεA) = (1− ε)p+ εq /∈ c(A).

C Proofs for Sections 4.2 and 4.3

Given utility indices u and v, a pair {p, q} of lotteries is a (u, v)-agreement pair if either

[u(p) ≥ u(q) and v(p) ≥ v(q)] or [u(q) ≥ u(p) and v(q) ≥ v(p)].

Lemma 5. Let u, v, v′ : X → R be non-constant utility indices such that u ̸≈ −v and

u ̸≈ −v′. Then every (u, v)-agreement pair is a (u, v′)-agreement pair if and only if v′ is

more u-aligned than v.

Proof. It is straightforward to show that if v′ is more u-aligned than v, then every (u, v)-

agreement pair is a (u, v′)-agreement pair.

For the converse, let u, v, v′ be non-constant utility indices such that u ̸≈ −v and u ̸≈ −v′;

interpret them as vectors u = (u1, . . . , uN), v = (v1, . . . , xN), and v′ = (v′1, . . . , v
′
N) in RN

where X = {x1, . . . , xN}.
Let Z := {û ∈ RN :

∑N
n=1 ûn = 0}; this is a hyperplane in RN with normal vector

(1, . . . , 1). Observe that for every utility index u′, there exists û ∈ Z representing the

same expected utility preferences; in particular, letting B =
∑N

n=1 u
′
n, the index û where
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ûn = u′
n − B/N is a member of Z and a positive affine transformation of u′. Thus, every

expected utility preference over ∆X is represented by an index in Z. Since scaling an index

by a positive number does not affect expected utility preferences, we normalize the non-zero

vectors in Z to length 1 by letting C := { û
∥û∥ : 0 ̸= û ∈ Z}. Thus, every non-constant

expected utility preference over ∆X is represented by a unique vector in C.10

Observe that if u, v, v′ ∈ C, then v′ ≈ αu + (1 − α)v for some α ∈ [0, 1] if and only if

the vector v′ belongs to the conic hull Cu,v := {βu + γv : β ≥ 0, γ ≥ 0} ⊆ Z of u and v.

Suppose v′ ̸≈ αu+ (1− α)v for all α. Since Cu,v ⊆ Z and Z is isomorphic to RN−1, Farkas’

lemma implies there is a vector y ∈ Z such that v′ · y < 0 and û · y ≥ 0 for all û ∈ Cu,v; in

particular, u · y ≥ 0 and v · y ≥ 0.

Let q = ( 1
N
, . . . , 1

N
) ∈ ∆X (that is, q(x) = 1

N
for all x ∈ X). Letting p = q + y,

we have
∑N

n=1 pn =
∑N

n=1 qn + yn = 1 since q ∈ ∆X and y ∈ Z; if necessary, replace y

with δy for sufficiently small δ > 0 (this does not affect any inequalities above) to ensure

pn = qn + yn ∈ [0, 1] for all n. Thus, p ∈ ∆X as well. It follows that 0 ≤ u · y = u · (p− q),

so that u · p ≥ u · q. Similarly, v · p ≥ v · q, so {p, q} is a (u, v)-agreement pair. However,

0 > v′ · y = v′ · (p− q), so that v′ · p < v′ · q. Since u, v and v′ are linear functions and p, q

satisfy u · p ≥ u · q and v · p ≥ v · q, we may perturb p and q to ensure u · p > u · q (and

v · p ≥ v · q) without violating v′ · p < v′ · q. Thus, {p, q} is not a (u, v′)-agreement pair.

Lemma 6. Suppose (µ, u, v) and (µ, u, v′) represent ≿ and ≿′, respectively. Let U,U ′ : A →
R denote the corresponding functions of the form (2) induced by these parameters. Suppose v′

is more u-aligned than v. Then U ′(A) ≥ U(A) for all A and U ′(B) = U(B) for all singleton

menus B.

Proof. We have v′ ≈ αu+ (1− α)v for some α ∈ [0, 1]. Since parameters (µ, u) are common

to the representations of ≿ and ≿′, both involve the same set F (A) of induced acts; that is,

for all A,

U(A) = maxU e(f) subject to f ∈ argmax
f ′∈F (A)

V (f ′)

and

U ′(A) = maxU e(g) subject to g ∈ argmax
g′∈F (A)

V ′(g′),

where V, V ′ : F → R are expected utility with prior µ and indices v and v′, respectively, and

U e : F → R is expected utility with prior µ and index u. Clearly, then, U ′(B) = U(B) for

all singleton menus B.

Let A be an arbitrary menu. The claim is trivial if α = 0, so suppose α > 0. Suppose

f ∈ argmaxf ′∈F (A) V (f ′) and g ∈ argmaxg′∈F (A) αU
e(g′) + (1 − α)V (g′); thus, g′ maximizes

10This method of normalizing the set of utility indices is due to Dekel and Lipman (2012).
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Figure 6: Illustration of Proposition 4(i).

V ′ ≈ αU e + (1− α)V on F (A). Then

αU e(g) + (1− α)V (g) ≥ αU e(f) + (1− α)V (f) since g maximizes V ′ on F (A)

≥ αU e(f) + (1− α)V (g) since f maximizes V on F (A),

which implies αU e(g) ≥ αU e(f) and thus U e(g) ≥ U e(f) since α > 0. Since f and g are

arbitrary maximizers of V and V ′, respectively, this implies U ′(A) ≥ U(A).

C.1 Proof of Proposition 4

(i) First, suppose u ≈ v. Then perfect information is Sender-optimal at all menus B,

yielding c(B) = {f ∈ B : ∃ω u(fω) ≥ u(gω) ∀g ∈ B}. For B = σA, acts f ∈ σA are

of the form f =
∑

s∈σ sf
s (f s ∈ A); consequently, u(fω) ≥ u(gω) for all g ∈ σA if and

only if u(
∑

s∈σ sωf
s
ω) ≥ u(

∑
s∈σ sωg

s
ω) ∀gs ∈ A (s ∈ σ). Thus, f =

∑
s∈σ sf

s ∈ c(σA)

if and only if there is a state ω such that u(f s
ω) ≥ u(gω) for all s ∈ σ and g ∈ A. This

implies cA(σA) = c(A).

If u ≈ −v, then e (no information) is Sender-optimal, yielding c(B) = {f ∈ B :

U(f) ≥ U(g) ∀g ∈ B}. For B = σA, this implies c(σA) = {f =
∑

s∈σ sf
s ∈ σA :

∀s ∈ σ, U s(f s) ≥ U s(g) ∀g ∈ A}; thus, f̂ ∈ cA(σA) if and only if there exists

s ∈ σ such that U s(f̂) ≥ U s(g) for all g ∈ A. Suppose supp(σ) ⊆ supp(σ′) and let

f̂ ∈ cA(σA). Then there exists s ∈ σ such that U s(f̂) ≥ U s(g) for all g ∈ A. Since

supp(σ) ⊆ supp(σ′), there exists s′ ∈ σ′ such that s and s′ yield the same Bayesian

posterior. Thus, U s′(f̂) ≥ U s′(g) for all g ∈ A as well, so that f̂ ∈ cA(σ
′A).

For the converse, suppose c is expansive in signals. Suppose toward a contradiction

that u ̸≈ v and u ̸≈ −v. Consider the case |Ω| = 2 (this case extends to the general case
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via the arguments used in the proof of Proposition 1). Consider a menu A = {f, g, h}
with value function depicted in Figure 6; such a menu exists by Lemma 4. Sender

is indifferent between g and h at all beliefs, strictly prefers f on µ̂′
1 < µ̂1 < 1, and

strictly prefers g (and h) on 0 < µ̂1 < µ̂′, with indifference between all three acts

at µ̂′. Let σ = e (so the only posterior it generates is the prior µ) and σ′ be an

information structure generating posteriors at µ, µ̂′, and µ̂′′. At σ, Sender chooses (due

to Receiver-preferred tie breaking) additional information so as to induce posteriors at

µ̂′ and µ̂ = 1. Consequently, cA(σA) = {f, g, h} because h is chosen at µ̂ = 1 while

f and g are chosen at µ̂′. At σ′A, Sender chooses no additional information (each

posterior yields a point on the concavification, and creating spread around µ̂′ strictly

decreases Sender’s payoff); consequently, h /∈ cA(σ
′A) because no posterior induced by

σ′ makes Receiver choose h. Thus, supp(σ) ⊆ supp(σ′) but cA(σA) ̸⊆ cA(σ
′A).

(ii) First, suppose u ≈ v. As demonstrated in the proof of (i), this implies c(A) = cA(σA)

for all A and σ. Conversely, suppose u ̸≈ v. This implies there are lotteries p, q such

that u(p) > u(q) and v(q) > v(p). Let A = {sp+ (1− s)q, tp+ (1− t)q} be a pq-menu

where Receiver has a unique prior-optimal act, say sp+ (1− s)q. Let σ = σ∗ (perfect

information). Then c(A) = sp+ (1− s)q but cA(σA) = A.

(iii) Suppose u ≈ −v. By (i), c is expansive in signals and by (ii), c(A) ̸= cA(σA) for

some A and σ (in particular, u and v are non-constant, so u ≈ −v implies u ̸≈ v).

Conversely, (i) and (ii) imply u ≈ −v if c is expansive in signals and c(A) ̸= cA(σA)

for some A and σ.

C.2 Proof of Proposition 5

(i) Let A be a pq-menu where u(p) > u(q) and v(p) < v(q). Then Sender chooses no

information at A, so σ∗A ≻ A. Since
•

≿ values information more than ≿, this im-

plies σ∗A
•

≻ A, so
•

v(p) <
•

v(q) as well. Thus, every disagreement pair for u, v is a

disagreement pair for u,
•

v. By Lemma 5, this implies
•

v is less u-aligned than v is.

To see that the converse does not hold, consider Figure 4. There, a menu A = {f, g, h}
is constructed so that Receiver chooses f on 0 ≤ µ̂ < µ̂′, g on µ̂′ < µ̂ < µ̂′′, and h

on µ̂′′ < µ̂ ≤ 1, making Sender’s value function concave under
•

v (by Lemma 4, such

a menu exists). Consequently, Sender (under
•

v) chooses no information at A, so that

Receiver’s ex-ante value of A is given by the lower of the two red dots. Let σ be an

experiment generating posteriors at µ̂′ and µ̂ = 1. Again, concavity of Sender’s value

function under
•

v implies no additional information is chosen; thus, σA
•∼ A. Now
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consider Sender utility v ≈ αu + (1− α)
•

v. For appropriate values of α (in the figure,

α = 1
2
), no-information remains Sender optimal at A while non-trivial information is

optimal at σA. In particular, Sender’s value function under v is convex around µ̂′,

so Sender selects information σ̂ generating a mean-preserving spread of the point µ̂′

to µ̂ = 0 and µ̂′′, as indicated by the arrows in the figure (additional information

has no impact on the other posterior, µ̂ = 1, generated by σ since it is a degenerate

distribution). This structure is Sender-optimal at A because it raises Sender’s payoff at

µ̂′ to the point on the concavification at µ̂′. This information structure raises Receiver’s

payoff conditional at µ̂′ as well which, in turn, raises his overall payoff at σA to the

higher of the two red dots. Thus,
•

v is less u-aligned than v is but
•

≿ does not value

information more than ≿ because σA ≻ A while σA
•∼ A.

(ii) Suppose
•

≿ values flexibility more than ≿. Let p, q be an agreement pair for u, v. If

A = {pEq, qEp} is a pq-bet, it follows that A ≻ {pEq} (where pEq is Receiver’s prior-

optimal act in A), and thus A
•

≻ {pEq} as well. This implies the
•

≻-Sender chooses

perfect information at A, and so p, q is an agreement pair for u,
•

v. Thus, every u, v

agreement pair is a u,
•

v agreement pair, making
•

v more u-aligned than v (Lemma 5).

However,
•

≿ also values information more than ≿ because σA ⊇ A for all A and σ.

Thus, by (i),
•

v is also less u-aligned than v. Consequently,
•

v ≈ v.

C.3 Proof of Proposition 6

(i) Suppose
•

v is less u-aligned than v is. Since the set of induced acts only depends on

µ and u, it follows from Lemma 6 that Receiver’s value of A under (µ, u, v) weakly

exceeds that under (µ, u,
•

v). Thus, f ≿ A implies f
•

≿ A.

Conversely, suppose statement (i) holds and consider a pq-bet A where u(p) > u(q). Let

f ∈ A denote
•

≿-Receiver’s prior-optimal act. Then A
•

≻ f if and only if
•

v(p) ≥ •

v(q).

A similar result holds with v in place of
•

v and ≻ in place of
•

≻. Therefore, statement

(i) (in contrapositive form) implies every agreement pair for u,
•

v is an agreement pair

for u, v. Lemma 5, then, implies v is more u-aligned than
•

v is.

(ii) Suppose
•

v is less u-aligned than v is and that f ∼ σA ≻ A for some f ∈ σA. This

implies f is prior-optimal for Receiver in σA and, thus, U -minimal in F (σA). Since

F (σA) only depends on µ and u, Lemma 6 implies
•

≿-Sender selects a U -minimal act

from F (σA) as well. Thus, f
•∼ σA

•

≻ A.

Conversely, suppose statement (ii) holds and consider a pq-bet A where u(p) ̸= u(q). If

f ∼ σ∗A ≻ A, then u, v disagree on the ranking of p, q. Condition (ii) implies σ∗A
•

≻ A,
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which means u,
•

v disagree on the ranking as well. Thus, every disagreement pair for

u, v is a disagreement pair for u,
•

v; by Lemma 5, then,
•

v is less u-aligned than v is.

C.4 Proof of Proposition 7

First, suppose
•

v is less u-aligned than v is. If c(A) = f , then f is prior-optimal for Receiver,

so c-Sender must be choosing e (no information) at A. Since
•

v is less u-aligned than v is, it

follows from Lemma 6 that
•

c-Sender chooses e as well. Thus,
•

c(A) = f .

Conversely, consider a pq-menu A. If c(A) = f , the c-agents disagree on the ranking of

p, q; by (ii), we have
•

c(A) = f and so the
•

c-agents disagree as well. Thus, every disagreement

pair for u, v is a disagreement pair for u,
•

v. By Lemma 5, then,
•

v is less u-aligned than v.

C.5 Proof of Proposition 8

Clearly, ≿ is sophisticated if v′ ≈ v. Conversely, suppose ≿ is sophisticated. There are three

cases:

1. u ≈ v. If v′ ̸≈ v, there exist p, q such that u(p) > u(q) and v′(p) < v′(q); a correspond-

ing pq-bet A yields p ≻ A since a Sender with preferences v′ chooses no information in

this case. But sophistication together with u ≈ v implies A ∼ fA
λ = p for all pq-bets A

where u(p) ≥ u(q), a contradiction.

2. u ≈ −v. If v′ ̸≈ v, there exist p, q such that u(p) > u(q) and v′(p) > v′(q); a

corresponding pq-bet satisfies p ∼ A since a Sender with preferences v′ chooses perfect

information in this case. But sophistication together with u ≈ −v implies p ≻ fA
λ ∼ A

for all pq-bets A where u(p) > u(q), a contradiction.

3. u ̸≈ v and u ̸≈ −v. Suppose v′ ̸≈ v. If v′ ≈ u or v′ ≈ −u, the argument from case 1

or 2 applies. If v′ ̸≈ u and v′ ̸≈ −u, there exist p, q such that u(p) > u(q), v(p) > v(q),

and v′(p) < v′(q); now the argument from case 1 applies.

C.6 Proof of Proposition 9

We prove statement (i) (the proof for (ii) is similar). First, suppose v′ is more u-aligned

than v is. Let U ′ : A → R denote Receiver’s value (Persuasion Representation) of ≿ with

parameters (µ, u, v′), and U : A → R Receiver’s value in a Persuasion Representation with

parameters (µ, u, v). Then U ′(f) = U(f) for all f and, by Lemma 6, U ′(A) ≥ U(A) for all A.

Suppose A ̸∼ fA
λ . Then U ′(A) ̸= U ′(fA

λ ) = U(fA
λ ) = U(A); thus, U ′(A) > U(A) = U ′(fA

λ )

and so A ≻ fA
λ .
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For the converse, suppose ≿ is optimistic. We show that every (u, v)-agreement pair is

a (u, v′)-agreement pair; the desired result then follows from Lemma 5. Suppose toward a

contradiction that there exists a (u, v)-agreement pair {p, q} that is a (u, v′)-disagreement

pair. Without loss of generality, suppose u(p) > u(q); then v(p) ≥ v(q) and v′(p) < v′(q).

Let A be a pq-bet. Then λ-Sender chooses perfect information but ≿-Receiver expects ≿-

Sender to choose no information; consequently, A ̸∼ fA
λ = p. Since ≿ is optimistic, we

have A ≻ fA
λ = p; but p ≿ A because A is a pq-bet and u(p) > u(q). Thus, {p, q} is a

(u, v′)-agreement pair.

C.7 Proof of Proposition 10

Suppose
•

v is more u-aligned than v′. Let U,U ′,
•

U denote Receiver’s values (utility represen-

tations of menu preferences) under parameters (µ, u, v), (µ, u, v′), and (µ, u,
•

v), respectively.

By Lemma 6, we have
•

U(A) ≥ U ′(A) ≥ U(A) for all A and
•

U(f) = U ′(f) = U(f) for all

f . Suppose A ≻′ fA
λ . Then U ′(A) > U ′(fA

λ ) = U(fA
λ ) = U(A), so

•

U(A) ≥ U ′(A) > U(A) =

U(fA
λ ) =

•

U(fA
λ ). Thus, A

•

≻ fA
λ .

For the converse, suppose A ≻′ fA
λ implies A

•

≻ fA
λ . We show that every (u, v′)-agreement

pair is a (u,
•

v)-agreement pair. So, let {p, q} be a (u, v′)-agreement pair; without loss of

generality, assume u(p) > u(q) and v′(p) ≥ v′(q). Let A be a pq-bet. There are two cases.

First, suppose {p, q} is a (u, v)-agreement pair. Since
•

≿ is optimistic, {p, q} is also a (u,
•

v)-

agreement pair (see the proof of Proposition 9). Second, suppose instead that {p, q} is a

(u, v)-disagreement pair. Then A ≻′ fA
λ because λ-Sender chooses no information but ≿′-

Receiver believes ≿′-Sender chooses perfect information since v′(p) ≥ v′(q). By hypothesis,

it follows that A
•

≻ fA
λ . Since A is a pq-bet and {p, q} is a (u, v)-disagreement pair, this

implies λ-Sender chooses no information but
•

≿-Receiver believes
•

≿-Sender chooses perfect

information; thus,
•

v(p) ≥ •

v(q), so that {p, q} is a (u,
•

v)-agreement pair.

D Axiomatic Foundations

This appendix develops axiomatic foundations for Persuasion Representations. In particular,

section D.1 provides axioms for menu preferences, and section D.2 adapts the approach of

section D.1 to state-contingent random choice data.

D.1 Menu Preferences

Let ≿ denote a preference on A.
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Axiom 1.

(i) ≿ is complete and transitive.

(ii) For all A,B ∈ A, α ∈ (0, 1) and p ∈ ∆X, A ≻ B ⇔ αA+ (1− α)p ≻ αB + (1− α)p.

(iii) For all A ∈ A, the sets {p ∈ ∆X | p ≻ A} and {p ∈ ∆X | A ≻ p} are open in ∆X.

Axiom 1 consists of standard expected utility axioms, slightly modified to ensure comparisons

between menus and lotteries (hence, comparisons of lotteries) are consistent with expected

utility. It does not ensure comparisons between individual acts are consistent with subjective

expected utility. One could easily add such axioms, but it will simplify matters to assume µ

is known to the analyst. Comparisons between acts are then reduced to comparisons between

lotteries as follows. First, given µ and f ∈ F , let pf :=
∑

ω∈Ω µωfω ∈ ∆X; pf is the lottery

equivalent of f given µ. With this construction, the following axiom ensures comparisons

between acts are consistent with expected utility under prior beliefs µ.

Axiom 2. For all f ∈ F , f ∼ pf .

Next, let A = {f ∈ σ∗A | ∀ω ∀p ∈ Aω, fω ≿ p}. Intuitively, A consists of acts that can be

induced by perfect information σ∗, given that the agent chooses optimally in each state.

Axiom 3. A ∼ σ∗A ≿ A ≿ f for all A and f ∈ A.

Axiom 3 is a “boundedness” condition; it states that the ranking of A sits between that of A

and the ≿-maximal act in A. Intuitively, these bounds coincide with perfect information and

no-information, respectively, for an agent who chooses optimally given available information.

The next axiom governs how the agent ranks pq-bets, henceforth denoted Apq.

Axiom 4.

(i) If Apq and Bpq are pq-bets, then p ≻ Apq implies p ≻ Bpq.

(ii) If q ≻ Apq and r ≻ Aqr, then r ≻ Apr.

(iii) If Apq ≻ f for all f ∈ Apq, then Apq ∼ σ∗Apq.

Intuitively, Axiom 4 captures the fact that at pq-bets, Sender either chooses no-information

or perfect information; these cases coincide with whether Sender and Receiver rank p and

q the same way. The statement p ≻ Apq reveals that Receiver strictly prefers p to q while
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Sender strictly prefers q to p; this is so because such disagreement leads Sender to choose

no-information, leading Receiver to choose his prior-optimal act in Apq and end up with a

payoff strictly worse than p. Thus, in the representation, p ≻ Apq means u(p) > u(q) and

v(q) > v(p). To aid the analysis, define ≻∗ on ∆X by: p ≻∗ q if and only if q ≻ Apq. Part

(i) of Axiom 4 ensures this relation is well-defined; part (ii) ensures it is transitive; and part

(iii) states the only way Apq is ranked preferred to its prior-optimal act is if it is equivalent

to Apq together with perfect public information.

Axiom 5. For all p, the sets {q ≻ p | q ≻ Apq} and {q ≻ p | Apq ≿ q} are convex.

In terms of the relation ≻∗ defined above, Axiom 5 implies the sets {q ≻ p | p ≻∗ q} and

{q ≻ p | p ̸≻∗ q} are convex. This is needed to ensure ≻∗ is generated by the intersection of

at most two expected-utility preferences.

Finally, let L≿(A) := {pf : f ∈ F≿(A)}.

Axiom 6.

(i) If p ∈ L≿(A) and p ≻ A, then p ≻ Apq for some q ∈ L≿(A).

(ii) If p ∈ L≿(A) and A ≻ p, then there exists q ∈ L≿(A) such that σ∗Apq ∼ Apq ≻ p.

Axiom 6 makes behavior at arbitrary menus A consistent with Bayesian Persuasion. Part (i)

states that if Receiver’s ranking of A is lower than some induced act at A, then Sender must

strictly prefer some other induced act. Intuitively, this captures the property that Sender’s

preferences over induced acts take priority over Receiver’s. Part (ii) states that if Receiver’s

ranking of A is higher than some induced act, then Sender and Receiver agree that a better

induced act is feasible; this captures the property that, when indifferent, Sender breaks ties

in favor of Receiver’s preferences.

Theorem 5. ≿ satisfies Axioms 1–6 if and only if it has a Persuasion Representation.

D.2 State-Contingent Random Choices

Once again, suppose the prior µ is known to the analyst. Given state-contingent random

choice data λ, consider a ranking ≻λ on ∆X defined as follows:

p ≻λ q ⇔ ∃ε-neighborhood N ε of q such that c({p, q′}) = p ∀q′ ∈ N ε,
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where c(A) :=
⋃

ω∈Ω supp(λA
ω ). We extend ≻λ to a complete relation ≿λ by setting p ∼λ q ⇔

q ̸≻λ p. Once again, for any act f ∈ F let pf :=
∑

ω∈Ω µωfω denote its lottery equivalent.

We extend ≿λ to a ranking over A as follows:

A ≿λ B ⇔ pfA
λ
≿λ pfB

λ
,

where fA
λ is the induced act defined in section 4.3.

Definition 9. A Generalized Persuasion Representation of λ consists of parameters

(µ, u, v) and a behavioral strategy β such that, for every A, there exists σ ∈ E∗(A) such that

(i) for all s ∈ S,

supp(βA,s) ⊆ argmax
f

V s(f) subject to f ∈ argmax
g∈A

U s(g), and

(ii) for all f ∈ A and ω ∈ Ω, λA
ω (f) =

∑
s∈σ sωβ

A,s(f).

Theorem 6. λ has a Generalized Persuasion Representation if and only if ≿λ satisfies

Axioms 1–6.

Proof of Theorem 5

It is straightforward to verify that the axioms are satisfied by a preference ≿ that ad-

mits a Persuasion Representation. So, this section only establishes the converse statement.

Throughout, suppose ≿ satisfies Axioms 1–6 and that a full-support µ ∈ ∆Ω is given.

Lemma 7. If Apq is a pq-bet, then:

(i) σ∗Apq ≿ p and σ∗Apq ≿ q.

(ii) If p ≿ q, then σ∗Apq ∼ p; if q ≿ p, then σ∗Apq ∼ q.

(iii) If p ∼ q, then σ∗Apq ∼ p ∼ Apq.

Proof. Let Apq be a pq-bet. Since p, q ∈ σ∗Apq and σ∗Apq ≿ f for all f ∈ σ∗Apq (Axiom 3),

this establishes (i). Next, observe that either p ∈ σ∗Apq or q ∈ σ∗Apq; therefore, Axiom 3

and (i) imply σ∗Apq ∼ p if p ≿ q, and σ∗Apq ∼ q if q ≿ p, establishing (ii). Finally, by Axiom

2, f ∈ Apq implies f ∼ pf ∼ αp+ (1−α)q for some α ∈ (0, 1). Therefore, by (ii) and Axiom

3, p ∼ q implies p ∼ σ∗Apq ≿ Apq ≿ αp+ (1− α)q ∼ q, establishing (iii).
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Lemma 8. Let Apq be a pq-bet such that σ∗Apq ≻ Apq (by Axioms 1, 3 and 4, this is

equivalent to Apq ∼ f for some f ∈ Apq). Then p ̸∼ q; in particular, either p ≻ Apq ≻ q or

q ≻ Apq ≻ p.

Proof. Suppose σ∗Apq ≻ Apq; as noted above, this means Apq ∼ f for some f ∈ Apq.

Thus, as in the proof of Lemma 7, we have Apq ∼ αp + (1 − α)q for some α ∈ (0, 1).

By Lemma 7(ii), we either have p ∼ σ∗Apq or q ∼ σ∗Apq. Thus, by Axiom 3, either

p ∼ σ∗Apq ≻ Apq ∼ αp+(1−α)q or q ∼ σ∗Apq ≻ Apq ∼ αp+(1−α)q. The first case implies

p ≻ Apq ≻ q and the second q ≻ Apq ≻ p.

Lemma 9. Suppose p ≻∗ q (that is, q ≻ Apq). Then:

(i) σ∗Apq ≻ Apq and q ≻ p; in particular, q ∼ σ∗Apq ≻ Apq ≻ p.

(ii) For all α ∈ (0, 1) and r ∈ ∆X, αp+ (1− α)r ≻∗ αq + (1− α)r.

Proof. Suppose q ≻ Apq. Since q ∈ σ∗Apq, Axiom 3 implies σ∗Apq ≿ q, and so σ∗Apq ≻ Apq.

By Lemma 8 (and q ≻ Apq), this forces q ≻ Apq ≻ p. By Lemma 7(ii) and q ≻ p, we have

q ∼ σ∗Apq, proving (i). For (ii), observe that since q ≻ p and q ≻ Apr, Axiom 1 implies both

αq + (1− α)r ≻ αp+ (1− α)r and αq + (1− α)r ≻ αApq + (1− α)r. It is easy to see that

Ap′q′ := αApq +(1−α)r is a p′q′-bet where p′ = αp+(1−α)r and q′ = αq+(1−α)r. Thus,

we have q′ ≻ Ap′q′ , which means αp+ (1− α)r ≻∗ αp+ (1− α)r, as desired.

Lemma 10. Suppose q ≻ p. Then:

(i) p ≻∗ q if and only if σ∗Apq ≻ Apq.

(ii) p ̸≻∗ q if and only if σ∗Apq ∼ Apq.

Proof. Let q ≻ p; by Lemma 7(ii), this implies q ∼ σ∗Apq. If σ
∗Apq ≻ Apq, then q ∼ σ∗Apq ≻

Apq and so q ≻ Apq; that is, p ≻∗ q. Conversely, suppose p ≻∗ q. Then σ∗Apq ∼ q ≻ Apq,

so σ∗Apq ≻ Apr; this establishes (i). For (ii), observe that if p ̸≻∗ q, then Apq ≿ q and so

Apq ≿ q ∼ σ∗Apq. Since σ∗Apq ≿ Apq (Axiom 3), this implies σ∗Apq ∼ Apq. Conversely,

suppose σ∗Apq ∼ Apq. Then q ∼ σ∗Apq ∼ Apq, so Apq ≿ q; that is, p ̸≻∗ q.

Lemma 11. If p ̸≻∗ q, then αp+ (1− α)r ̸≻∗ αq + (1− α)r for all α ∈ (0, 1) and r ∈ ∆X.

Proof. First, observe that by Axiom 1, A ≿ B implies αA + (1 − α)r ≿ αB + (1 − α)r for

all α ∈ (0, 1) and r ∈ ∆X (the axiom implies that if αA + (1 − α)r ≻ αB + (1 − α)r for

some α ∈ (0, 1) and r ∈ ∆X, then A ≻ B). Therefore, if p ̸≻∗ q, then Apq ≿ q and so

αApq + (1− α)r ≿ αq + (1− α)r for all α ∈ (0, 1) and r ∈ ∆X. Clearly, αApq + (1− α)r is

a p′q′-bet where p′ = αp+ (1− α)r and q′ = αq + (1− α)r. Thus, we have Ap′q′ ≿ q′, which

means αp+ (1− α)r ̸≻∗ αq + (1− α)r, as desired.
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For every lottery p, let Cp := {q ∈ ∆X | q ≻ p}, C+
p := {q ∈ Cp | p ≻∗ q}, and C−

p := {q ∈
Cp | p ̸≻∗ q}.

Lemma 12.

(i) C+
p = Cp for all p if and only if C+

p = Cp for all interior p.

(ii) C−
p = Cp for all p if and only if C−

p = Cp for all interior p.

(iii) If C+
p ̸= ∅ and C−

p ̸= ∅, then p is a boundary point of C+
p and of C−

p .

Proof. For (i), suppose C+
p = Cp for all interior p. Let p′ ∈ ∆X. If C+

p′ ̸= Cp′ , there exists

q′ ∈ Cp′ such that p′ ̸≻∗ q′. Let r be an interior lottery and α ∈ (0, 1). By Lemma 11,

p∗ = αp′ + (1 − α)r ̸≻∗ αq′ + (1 − α)r. But p∗ is interior, so this contradicts C+
p∗ = Cp∗ .

For (ii), the argument is similar but uses Lemma 9(ii) in place of Lemma 11. For (iii), let

q ∈ C+
p . Then p ≻∗ q, so p = αp + (1 − α)p ≻∗ αq + (1 − α)p for all α ∈ (0, 1) by Lemma

9(ii). Taking a sequence αn → 0 yields a sequence qn := αnq + (1− αn)p such that qn ∈ C+
p

and qn → p, establishing p as a boundary point of C+
p . A similar argument using existence

of some q′ ∈ C−
p and Lemma 11 in place of Lemma 9(ii) establishes p as a boundary point

of C−
p .

Lemma 13. If C+
p = Cp for all interior p, there are non-constant indices u ≈ −v such that

(µ, u, v) constitute a Persuasion Representation for the restriction of ≿ to the domain of bets

and singleton menus. If instead C−
p = Cp for all interior p, the parameters satisfy u ≈ v.

Proof. If C+
p = Cp for all interior p, it follows from Lemma 12(i) that C+

p = Cp for all p.

Let Apq be a pq-bet. If p ∼ q, then σ∗Apq ∼ p ∼ Apq by Lemma 7(iii); thus, Apq ∼ p

which is consistent with the desired Persuasion Representation since u(p) = u(q) implies

U(Apq) = u(p). If p ̸∼ q, suppose without loss of generality that q ≻ p. Since C+
p = Cp,

we have p ≻∗ q, hence σ∗Apq ≻ Apq, for all q ∈ Cp; moreover, Apq ∼ f where f ≿ g for

all g ∈ Apq. This is consistent with the desired representation because if u ≈ −v, Sender

chooses no information and so U(Apq) = U(f) where U(f) ≥ U(g) for all g ∈ Apq. Thus,

(µ, u, v = −u) constitute a Persuasion Representation for the restriction of ≿ to bets and

singleton menus.

If instead C−
p = Cp for all interior p, we have C−

p = Cp for all p by Lemma 12(ii). Let

Apq be a pq-bet. The case p ∼ q is as above. If p ̸∼ q, assume without loss that q ≻ p. Then

q ∼ σ∗Apq by Lemma 7(ii) and σ∗Apq ∼ Apq by Lemma 10 and the fact that C−
p = Cp implies

p ̸≻∗ q for all q ∈ Cp. Thus, q ∼ Apq, which is consistent with the desired representation

because u ≈ v and u(q) > u(p) induce Sender to choose perfect information at Apq, yielding

U(Apq) = u(q).
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Lemma 14. There are non-constant indices (u, v) such that (µ, u, v) constitute a Persuasion

Representation for the restriction of ≿ to the domain of bets and singleton menus.

Proof. Lemma 13 establishes the desired result for the case where either (i) C+
p = Cp for all

interior p, or (ii) C−
p = Cp for all interior p. So, we assume there is an interior lottery p such

that both C+
p ̸= ∅ and C−

p ̸= ∅. By Axiom 5, C+
p and C−

p are convex and by Axiom 1(iii),

C+
p = Cp ∩ {q ∈ ∆X | q ≻ Apq} is the intersection of two open sets and therefore open.

Thus, C−
p is closed in the relative topology on Cp. By the Separating Hyperplane Theorem,

there exists v ∈ RX and c ∈ R such that v · q < c for q ∈ C+
p and v · q ≥ c for q ∈ C−

p . Since

probabilities sum to 1, we may replace v with v − (c, . . . , c) to obtain v · q < 0 for q ∈ C+
p

and v · q ≥ 0 for q ∈ C−
p ; thus, for all q ∈ Cp, v · q < 0 if and only if q ∈ C+

p . By Lemma

12(iii), p is a boundary point of C+
p and C−

p ; consequently, v · p = 0 and we have q ∈ C+
p if

and only if v · p > v · q.
Next, let p′ ∈ ∆X be an arbitrary lottery and q′ ∈ Cp′ . Since p is interior, there exists

p∗ ∈ ∆X and α ∈ (0, 1) such that p = αp′ + (1 − α)p∗. Suppose first that p′ ≻∗ q′. Then

p = αp′+(1−α)p∗ ≻∗ αq′+(1−α)p∗ := q by Lemma 9(ii). Thus, q ∈ C+
p and so v ·p > v ·q;

that is, v · (αp′ + (1 − α)p∗) > v · (αq′ + (1 − α)p∗), which implies v · p′ > v · q′. If instead

p′ ̸≻∗ q′, Lemma 11 implies p = αp′ + (1 − α)p∗ ̸≻∗ αq′ + (1 − α)p∗ = q, so q ∈ C−
p . This

means p ̸≻∗ q, so v · p ≤ v · q and so v · p′ ≤ v · q′. Thus, for all p′ ∈ ∆X and q′ ∈ Cp′ , p
′ ≻∗ q′

if and only if v · p′ > v · q′.
Finally, we verify that (µ, u, v) constitute a Persuasion Representation for the restriction

of ≿ to bets. Let Apq be a pq-bet. If p ∼ q (that is, u(p) = u(q)), then σ∗Apq ∼ p ∼ Apq

by Lemma 7(iii); thus, Apq ∼ p, as desired (since u(p) = u(q), a Persuasion Representation

induces U(Apq) = u(p)). If instead p ̸∼ q (without loss of generality, suppose q ≻ p), then

either p ≻∗ q or p ̸≻∗ q. If p ≻∗ q, then v(p) > v(q), u(p) < u(q) and σ∗Apq ≻ Apq by Lemma

10(i) and Apq ∼ f (where f ≿ g for all g ∈ Apq) by Axioms 3 and 4(iv). This is the desired

result because any pq-bet involving v(p) > v(q), u(p) < u(q) results in U(Apq) = U(f).

Finally, if p ̸≻∗ q, we have u(q) > u(p), v(q) ≥ v(p), and q ∼ σ∗Apq ∼ Apq be Lemma 10(ii);

again, this is the desired result because such u, v values yield U(Apq) = u(q) in a Persuasion

Representation.

To complete the proof of Theorem 5, let A be an arbitrary menu and p a solution to

max
q∈L≿(A)

u(q) subject to v(q) ≥ v(q′) ∀q′ ∈ L(A).

A solution exists because F≿(A) = F (A) is compact (Lemma 1). Clearly, a solution p satisfies

p ∈ argmaxq∈L(A) v(q) and u(p) ≥ u(q) for all q ∈ argmaxq′∈L(A) v(q
′). We establish A ∼ p
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by way of contradiction.

First, suppose p ≻ A. By Axiom 6(i), there exists q ∈ L(A) such that v(q) > v(p). This

contradicts the fact that p maximizes v on L(A). Thus, A ≿ p.

Next, suppose A ≻ p. By Axiom 6(ii), there exists q ∈ L(A) such that σ∗Apq ∼ Apq ≻ p.

Then σ∗Apq ≻ p, so σ∗Apq ∼ q by Lemma 7(ii). Consequently, q ≻ p so that, by Lemma

10(ii), p ̸≻∗ q. Since v represents ≻∗, this means v(q) ≥ v(p) and u(q) > u(p). Thus, both

p and q maximize v on L(A) but u(q) > u(p), contradicting the fact that p maximizes u on

the set argmaxq′∈L(A) v(q
′). Thus, A ∼ p.
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