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Abstract

Many structural econometric models include latent variables on whose prob-

ability distributions one may wish to place minimal restrictions. Leading exam-

ples in panel data models are individual-specific variables sometimes treated as

“fixed effects” and, in dynamic models, initial conditions. This paper presents a

generally applicable method for characterizing sharp identified sets when mod-

els place no restrictions on the probability distribution of certain latent variables

and no restrictions on their covariation with other variables. In our analysis

latent variables on which restrictions are undesirable are removed, leading to

econometric analysis robust to misspecification of restrictions on their distribu-

tions which are commonplace in the applied panel data literature. Endogenous

explanatory variables are easily accommodated. Examples of application to

some static and dynamic binary, ordered and multiple discrete choice and cen-

sored panel data models are presented.
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1 Introduction

This paper deals with models of processes delivering values of outcomes, Y , given

values of exogenous variables, Z, and latent, that is unobserved, variables U and V .

The models that are the focus of this paper all leave the distribution of V on its

known support and its covariation with all other variables completely unrestricted.

By contrast, latent variable U may be required to be, to some degree, independent of

Z.

Leading examples of latent variables in structural econometric models employed

in practice on whose distribution one may not want to impose restrictions are the

individual-specific unobserved variables included in many panel data models, some-

times called “fixed effects” and the historic values of outcomes dynamically deter-

mined by a process, commonly called “initial conditions”.

The following example has both elements, a “fixed effect”, C, and an initial con-

dition, Y10.

Example 1 A dynamic binary response model specifies that for all t ∈ [T ] ≡ {1, ..., T},

Y1t =

󰀫
1 , αY2t + Ztβ + γY1t−1 + C + Ut ≥ 0,

0 , αY2t + Ztβ + γY1t−1 + C + Ut ≤ 0,
(1)

with Y1t = 0 or Y1t = 1 permitted when both inequalities hold,1 and U 󰀂 Z where

U ≡ (U1, . . . , UT ), Z ≡ (Z1, . . . , ZT ).

Realizations of (Y, Z) are observed where

Y = (Y11, . . . , Y1T , Y21, . . . , Y2T ),

and Zt and Y2t may be vectors. If the value of Y10 is observed then unrestricted V = C,

otherwise V = (C, Y10). If α is not restricted equal to zero there are endogenous

explanatory variables.

In many cases found in practice in which T is large, the value V takes for each

observational unit is identified. In this case econometric analysis can proceed placing

no restrictions at all on the distribution of V and treating it as a parameter to be

1This is equivalent to the representation Y1t = 1[αY2t + Ztβ + γY1t−1 + C + Ut > 0] when the
indicator function 1 [a > b] takes the value 1 if a > b, 0 if a < b, and either value if a = b.
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estimated. When T is not large this is unattractive because there may be intolerable

inaccuracy in the estimation of V which may contaminate estimates of other parame-

ters. Additionally there is the incidental parameters problem set out in Neyman and

Scott (1948) and reviewed in Lancaster (2000).

Faced with this problem, for small T , most papers proceed to obtain information

on structural features by placing distributional restrictions on V . Section 2 lists many

examples. It is good to know what knowledge of structural features can be obtained

absent such restrictions. That allows the force of distributional restrictions on V to be

assessed and offers the possibility of detecting misspecification. This paper shows how

that knowledge can be obtained. The results given here open the way to a relatively

robust analysis of models like panel models with fixed effects in which there are latent

variables on which one desires to place no distributional restrictions.

This paper presents characterizations of identified sets of structures and structural

features in models admitting unobserved variables such as V whose distribution is

unrestricted. There can be endogenous explanatory variables as in Example 1 when

α ∕= 0. A model may be incomplete in the sense that, given values of all observed

and all unobserved variables and a specification of parameter values and functional

forms, the model can deliver a nonsingleton set of values of outcomes. Identified sets

are characterized by systems of moment inequalities. Estimation and inference can

proceed using established econometric methods.

The strategy employed here removes unrestricted latent variables, V , by pro-

jection.2 We derive, for each value of the observed variables, the set of values of

unobserved U compatible with that value. Values of U in such a set are associated

with alternative values of V . Typically a value of U in such a set can deliver more

than one value of Y . So, on removing latent variables V , there remains an incomplete

model.3

Identification analysis is conducted in the context of the Generalized Instrumental

Variable (GIV) framework introduced in Chesher and Rosen (2017) in which proba-

bility distributions of such sets of values of U induced by the observed distributions

of outcomes are essential elements.

Section 2 considers the relationship of this work to some other results in the lit-

erature. Section 3 presents characterizations of identified sets of structures. Sections

4 to 9 set out applications to linear panel models and to models of binary response

2Our eschewal of restrictions on the distribution of V accords with the approach in Neyman and
Scott (1948) in which the elements of V are treated as parameters, subject to no restrictions.

3If the model is incomplete before projection then different values of V can deliver different sets
of values of Y .
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panels, ordered choice panels, multiple discrete choice panels, simultaneous binary

outcome panels, and models of panels with censored continuous outcomes.

2 Related literature

Rasch (1960), Rasch (1961), Andersen (1970), and Chamberlain (2010) study point

identifying static panel models (i.e. γ = 0 in (1)) with restrictions requiring U1, ..., UT

to be independent over time and distributed independently of Z and independently

of the fixed effect and each with logistic marginal distributions. Like all the papers

referred to in this section, except one paper which is noted, these models do not admit

endogenous explanatory variables.

In the linear panel data model with fixed effects, differencing across time peri-

ods removes the fixed effect, delivering events whose probability of occurrence can

be known and is invariant with respect to changes in the value of the fixed effect.

Under suitable support restrictions this leads to point identification. In nonlinear

panel data models with fixed effects, this simple differencing strategy does not apply.

Nonetheless, in the Rasch-Andersen-Chamberlain set up, events whose probabilities

of occurrence are invariant to changes in the value of the fixed effect are found. Under

particular distributional restrictions point identification results. More recent papers

on nonlinear panel data models have taken a similar approach.

Honoré and Kyriazidou (2000) study a dynamic model as in (1) but with no en-

dogenous explanatory variable (α = 0) with the Ut’s independent of the fixed effect,

independent over time, distributed independently of Z and with logistic distribu-

tions. That paper also studies a case in which the logistic distribution restriction

is dropped and a case with multinomial logit panels with latent variables U inde-

pendent of the fixed effects and independent of Z. Honoré and Kyriazidou (2019)

extends this work, studying multivariate dynamic panel data logit models with fixed

effects. Many papers, like these, invoke restrictions requiring independence between

Ut’s and the fixed effect conditional on some of the other observable variables in-

cluding Honoré and Tamer (2006), Honoré and De Paula (2021),4 Dobronyi, Gu,

and Kim (2021), Honoré and Weidner (2022), Davezies, D’Haultfœuille, and Laage

(2022), Kitazawa (2022), Bonhomme, Dano, and Graham (2023), Dano (2023), Dav-

ezies, D’Haultfœuille, and Mugnier (2023), and Honoré, Muris, and Weidner (2023).

4This paper considers models in which there are simultaneous equations in binary outcomes and
so, endogenous explanatory variables.
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Such independence restrictions are not imposed here.5 This permits for example the

Ut’s to exhibit heteroskedastic variation with observational-unit-specific fixed effects.

There are many papers studying panel models of binary outcomes and multiple

discrete choice under conditional stationarity restrictions on the distribution of the

time varying latent variables introduced in Manski (1987). These papers include

Chernozhukov, Fernandez-Val, Hahn, and Newey (2013), Shi, Shum, and Song (2018),

Gao and Li (2020), Khan, Ouyang, and Tamer (2021), Pakes, Porter, Shepard, and

Calder-Wang (2021), Pakes and Porter (2022), Dobronyi, Ouyang, and Yang (2023),

Khan, Ponomareva, and Tamer (2023), and Mbakop (2023).

In all of these cases the stationarity restriction placed on time-varying unobserv-

able heterogeneity is required to hold conditional on the value of the fixed effect and

the observable exogenous variables, which restricts the covariation of the fixed effect

and U .6 In contrast, the models considered in this paper impose no restrictions on

the covariation of the fixed effect with any variable.

The only previous paper of which we are aware that provides partial identification

analysis for discrete outcome panel data models absent restrictions on the covaria-

tion of the fixed effect with any other variables is Aristodemou (2021). That paper

provides set-identifying moment inequalities in panel data models of binary response

and ordered choice when the covariation of the fixed effects with other variables is

unrestricted. The results developed in this paper provide a rule-directed procedure

for enumerating all events whose probability is invariant with respect to the value of

unrestricted latent variables thereby delivering sharp set identification for these and

other nonlinear panel data models.

Application of sharp set identification analysis to panel data models with censored

outcomes is demonstrated in Section 9. Observable implications in the form of mo-

ment equalities are derived for such models with Tobit-type censoring at zero in both

static and dynamic contexts in Honoré (1992, 1993), Honoré and Hu (2002), and Hu

(2002), all in models in which the Ut’s satisfy the conditional stationarity assumption

that has also been used in discrete outcome panel models. The only previous paper of

5One approach in such settings, demonstrated by e.g. Honoré and Weidner (2022) and Honoré,
Muris, and Weidner (2023), is the functional differencing approach developed in Bonhomme (2012).
This however requires knowledge of the distribution of FY |Z,C , which one does not have in models
such as that of Example 1 without knowledge of the joint distribution of U and C.

6In the binary response specification (1) conditional stationarity implies that for all z,
FU1|Z=z,C=c = FU2|Z=z,C=c and FU1|Z=z,C=c′ = FU2|Z=z,C=c′ for any c, c′, which restricts how the
conditional distribution of U can change with values of the fixed effect C. As pointed out by Cher-

nozhukov, Fernandez-Val, Hahn, and Newey (2013) the stationarity restriction Ut|C,Z
d
= U1|C,Z

for all t is equivalent to (Ut, C)|Z d
= (U1, C)|Z for all t.
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which we are aware that provides identification analysis for censored outcome panel

models without restricting the covariation of the fixed effect with other variables is

Khan, Ponomareva, and Tamer (2016) (KPT), which provides the sharp identified

set for slope coefficient β in a static two-period model in which U2 − U1 and Z are

independent. Extensions are provided to some specialized dynamic models with two

periods of observations with an observed initial condition and inequality restrictions

on parameters. The analysis here additionally accommodates more periods, unob-

served initial conditions, and endogenous explanatory variables. Like KPT we allow

the censoring value to vary and to be endogenous, nesting the classical case of fixed

censoring found in Tobit models.

This paper presents a generally applicable approach to identification analysis in

a wide class of nonlinear panel data models in which there are distributionally un-

restricted latent variables and gives examples of the results it produces. Most of

our examples feature discrete outcomes, but the application to the censored outcome

model in Section 9 demonstrates that the analysis applies more broadly.

3 Identified sets

First the notation employed in this paper is introduced.

Notation. Generically RA denotes the support of random variable A and LA|Z=z

denotes a conditional probability distribution of random variable A given Z = z.

LA|Z=z(S) is the conditional probability A takes a value in set S given Z = z.

LA|Z ≡ {LA|A=z; z ∈ RZ} is the collection of conditional distributions delivered by

a joint distribution LAZ when the support of Z is RZ. A 󰀂 B denotes A and B are

independently distributed. Sets and set-valued random variables are expressed using

calligraphic font. Collections of sets are expressed using sans serif font. R denotes

the real line. The empty set is denoted ∅. For T > 1, notation [T ] denotes {1, ...T}.
For any random vectors X1, ..., XT notation ∆tsX ≡ Xt −Xs is used throughout.

Variables Y are endogenous outcomes, variables Z are exogenous7 and variables U

and V are latent variables. Random vectors (Y, Z, U, V ) are defined on a probability

space (Ω, L,P) endowed with the Borel sets on Ω. The support of (Y, Z, U, V ) is a

subset of a finite dimensional Euclidean space. The sampling process identifies FY Z ,

equivalently the collection of conditional distributions FY |Z and FZ , as occurs for

example under random sampling of observational units. It is assumed throughout for

7In the sense that their values are not affected by the evolution of the process.
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ease of exposition that each observational unit delivers the same number of observa-

tions, but unbalanced panels are easily accommodated with some added notation.

Models place restrictions on a structural function h : RY ZUV → R which specifies

the combinations of these variables that can occur via the following restriction.8

P[h(Y, Z, U, V ) = 0] = 1

Models place restrictions on the conditional probability distributions of U given Z

which are elements of a collection GU |Z . Coupled pairs (h,GU |Z) are called structures.

A model M is a collection of structures that obey the restrictions imposed a priori

on the data generation process. This paper provides sharp identification analysis of

structures (h,GU |Z) ∈ M and functionals thereof given knowledge of FY |Z .

The essential element of the models considered here is that they place no restric-

tions on the marginal distribution of V and no restrictions on the covariation of V

with (Z,U).

This paper shows how the framework set out in Chesher and Rosen (2017) (CR)

can be used to study cases with unobserved variables whose distribution and covari-

ation with other variables is not subject to restrictions. The support of any initial

condition components of V is assumed known and the support of all “fixed effect”

components of V is assumed to be the entirety of the Euclidean space in which it

resides. It is straightforward to generalize the analysis to cases in which the support

of the fixed effect is restricted.

For all characterizations of identified sets of values of the pair (h,GU |Z) ∈ M it is

assumed that a priori restrictions on GU |Z are such that U |Z is restricted absolutely

continuous with respect to Lebesgue measure almost surely. This renders the bound-

ary of sets U∗(y, z;h) to be measure zero with respect to any distribution GU |Z=z. It

is convenient to define the structural function h such that sets U∗(Y, Z;h) are closed

almost surely in the usual Euclidean topology, and we do so here, but this is of no

substantive consequence and can be relaxed.9

8In the case of (1) a suitable h function would be

h(Y, Z, U, V ) =

T󰁛

t=1

max{0, (1− 2Y1t) · (αY2t + Ztβ + γY1t−1 + C + Ut)}.

with V = (C, Y0).
9With some care equivalent results could be obtained allowing for random open sets and random

closed sets, or by working with an alternative topology in which the sets under consideration are
closed, such as the discrete topology when RY is discrete. One could also allow sets of values of
unobservables that deliver “ties” in the optimal choice of discrete outcome with positive probability,
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Taken together the restrictions set out above ensure that Restrictions A1 - A6 of

CR hold in the models considered, suitably modified to accommodate unobservable

variables (U, V ) with the distribution of V unrestricted.10

Theorem 1 provides a characterization of the identified set of structures, denoted

I(M,FY |Z), delivered by a model M and a collection of distributions, FY |Z . This

is the collection of distributions marginal with respect to V obtained from some

collection FY V |Z .

Theorem 1 Let RV denote the support of V . Define U∗(y, z;h) as follows.

U∗(y, z;h) ≡ {u : ∃v ∈ RV such that h(y, z, u, v) = 0} (2)

Let FY |Z be a collection of distributions whose members are marginal distributions of

the members of some collection of distributions FY V |Z. The set of structures (h,GU |Z)

identified by model M and the collection of distributions FY |Z comprises all struc-

tures admitted by the model M such that for all z ∈ RZ, the probability distribution

GU |Z=z ∈ GU |Z is selectionable with respect to the conditional distribution of the ran-

dom set U∗(Y, Z;h) delivered by the probability distribution FY |Z=z ∈ FY |Z.

Formally the Theorem defines the identified set of structures (h,GU |Z) as

I(M,FY |Z) ≡
󰀋
(h,GU |Z) ∈ M : GU |Z=z ≼ U∗(Y, Z;h)

conditional on Z = z a.e. z ∈ RZ} , (3)

where, as in Chesher and Rosen (2020), for any random variable A with distribution

FA and random set A, FA ≼ A denotes that FA is selectionable with respect to the

distribution of A.11

The proof relies on the following Lemma.

Lemma 1 Define

Y∗(z, u;h) ≡ {y : ∃v ∈ RV such that h(y, z, u, v) = 0}. (4)

and apply results of CR, with suitable care.
10The latent variables U in restrictions A1-A6 of CR should be taken to include both the variables

U and V of this paper. For completeness, these restrictions, adapted to the present context, are
collected in Appendix A.

11The probability distribution of random variable A is selectionable with respect to the probabilty
distribution of random set A when there exists (i) Ã having the same distribution as A, and (ii)
󰁨A having the same distribution as A, both defined on the same probability space such that P[Ã ∈
󰁨A] = 1. See Definition 2 of Chesher and Rosen (2020).
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The sets Y∗(z.u;h) and U∗(y, z;h) possess the duality property

∀z, y+, u+ y+ ∈ Y∗(z, u+;h) ⇐⇒ u+ ∈ U∗(y+, z;h).

Proof. The result follows because

y+ ∈ Y∗(z, u+;h) ⇐⇒ ∃v ∈ RV such that h(y+, z, u+, v) = 0

u+ ∈ U∗(y+, z;h) ⇐⇒ ∃v ∈ RV such that h(y+, z, u+, v) = 0.

The proof of Theorem 1 above proceeds as the proof of Theorem 2 in CR, replacing

U sets with U∗ sets.

The identified set of structures can be characterized as shown in Corollary 1 using

the characterization of selectionability given in Artstein (1983), as in Corollary 2 of

CR.

Corollary 1 Let F(RU) denote the collection of closed sets on the support of U . The

set of structures identified by model M and the collection of distributions FY |Z is as

follows.

I(M,FY |Z) ≡
󰀋
(h,GU |Z) ∈ M : ∀S ∈ F(RU)

FY |Z=z({y : U∗(y, z;h) ⊆ S}) ≤ GU |Z=z(S) a.e. z ∈ RZ

󰀌
. (5)

Remarks

1. The probability FY |Z=z({y : U∗(y, z;h) ⊆ S}) is the probability conditional on

Z = z of the occurrence of a value of Y that can only occur when U ∈ S.
We will refer to such a probability as a containment probability and employ the

notation A(S, z;h) ≡ {y : U∗(y, z;h) ⊆ S}.

2. Because the inequalities defining I(M,FY |Z) only involve probabilities of events

under which U∗ sets are subsets of test sets, S, the collection of test sets F(RU)

in the definition of I(M,FY |Z) can, for each z ∈ RZ , be replaced by the

collection of all unions of U∗ sets,

U∗(z;h) ≡
󰀫
󰁞

y∈Y

U∗(y, z;h) : Y ⊆ RY

󰀬
. (6)
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3. Let Q(z;h) be a core determining collection (CDC) of sets such that if the

inequality

FY |Z=z({y : U∗(y, z;h) ⊆ S}) ≤ GU |Z=z(S)

holds for all S ∈ Q(z;h) then it holds for all S ∈ F(RU). The collection U∗(z;h)

defined in (6) is such a CDC for the specified value of z.

(a) If disjoint S1 and S2 are members of a CDC and A(S1, z;h)∩A(S2, z;h) =

∅, which occurs for example when all U∗ sets are connected sets, then

S = S1∪S2 can be excluded from the CDC. Theorem 3 of CR applies and

gives further refinements.

(b) If S1 and S2 are members of a CDC with S ≡ S1 ∩ S2 and S1 ∪ S2 = RU ,

and

A(S1, z;h) ∪A(S2, z;h) = RY

A(S1, z;h) ∩A(S2, z;h) = A(S, z;h)

then S can be excluded from the CDC by results in Luo and Wang (2018)

and Ponomarev (2022).

(c) In particular applications some members of a CDC need not be considered

because they deliver inequalities that are dominated by others.

4. If there is additionally the restriction U 󰀂 Z then GU |Z = {GU} and there is the

following simplification.

I(M,FY |Z) ≡
󰀫

(h,GU) ∈ M : ∀S ∈ F(RU)

sup
z∈RZ

FY |Z=z({y : U∗(y, z;h) ⊆ S}) ≤ GU(S)
󰀬
. (7)

Quantile and mean independence restrictions can be accommodated.

5. Sets U∗(y, z;h) compatible with realizations (y, z) of observable variables can

be obtained in a variety of ways. In many models h(y, z, u, v) = 0 if and

only if there exist functions dt(·;h) : RY ZUV → R such that for all t ∈ [T ],

dt(y, z, u, v) = 0. The generalized inverse of this mapping with respect to v is

Dt(y, z, u;h) ≡ {v : dt(y, z, u, v) = 0},

10



point-valued when dt(y, z, u, v) is strictly monotone in scalar v and more gen-

erally set-valued.

The U∗ sets can then be written as

U∗(y, z;h) =

󰀻
󰀿

󰀽u :
󰁟

t∈[T ]

Dt(y, z, u;h) ∕= ∅

󰀼
󰁀

󰀾 .

In models in which outcomes Y1t are determined by a weakly monotone trans-

formation of an index function that is linear in v, sets Dt(y, z, u) are character-

ized by linear equalities and inequalities. Variables v can then be analytically

removed from these linear systems, for example by way of Fourier-Motzkin elim-

ination, to obtain linear inequalities characterizing U∗(y, z;h).

This can be used both in the examples studied in this paper, in which scalar

fixed effects enter additively in an index function, as well as in more general

models that allow individual-specific coefficients in such index functions.

6. Many of our illustrative examples will employ the restriction that U and Z

are fully independent, but the characterizations afforded by Theorem 1 and

Corollary 1 allow for a much wider variety of restrictions on the collection

of conditional distributions GU |Z . For example, restrictions could require that

Ut
󰀂 (Z1, ..., Zt) for all t, while permitting dependence between Ut and Zs for

s > t, hence allowing models that impose only weak exogeneity.

7. Identified sets of values of a structural feature, defined as a functional, θ
󰀃
(h,GU |Z)

󰀄
,

are obtained by projection.

Iθ(M,FY |Z) = {θ(
󰀃
h,GU |Z

󰀄
) :

󰀃
h,GU |Z

󰀄
∈ I(M,FY |Z)}.

An example of such a structural feature is a vector of coefficients multiplying

included exogenous variables in models in which h is parametrically specified

with a linear index restriction.

8. Outer sets for the projection of the identified set of structures onto the space

of structural functions can be obtained. Impose the restriction U 󰀂 Z and let

there be no further restrictions on GU . All structures in I(M,FY |Z) satisfy the

inequality

sup
z∈RZ

FY |Z=z({y : U∗(y, z;h) ⊆ S}) ≤ GU(S)

11



and applying this with S replaced by its complement delivers

GU(S) ≤ inf
z∈RZ

FY |Z=z({y : U∗(y, z;h) ∩ S ∕= ∅}).

Let H(M) denote the set of structural functions admitted by model M. There

is the following outer identified set on the space of structural functions.

Ih(M,FY |Z) ≡
󰀫

h ∈ H(M) : ∀S ∈ F(RU)

sup
z∈RZ

FY |Z=z({y : U∗(y, z;h) ⊆ S}) ≤

inf
z∈RZ

FY |Z=z({y : U∗(y, z;h) ∩ S ∕= ∅})
󰀞

(8)

9. There is an alternative characterization of the identified set of structures

I(M,FY |Z) ≡
󰀋
(h,GU |Z) ∈ M : FY |Z=z ≼ Y∗(z, U ;h)

conditional on Z = z a.e. z ∈ RZ , } (9)

where the set Y∗(·, ·; ·) is defined in (4).12 Using the Artstein characterization

of selectionability this leads to the following representation

I(M,FY |Z) ≡
󰀋
(h,GU |Z) ∈ M : ∀K ∈ K(RY )

GU |Z=z({u : Y∗(z, u;h) ⊆ K}) ≤ FY |Z=z(K) a.e. z ∈ RZ

󰀌
(10)

where K(RY ) is the collection of closed sets on the support of Y . In many

cases arising in econometrics in which distributional restrictions are put on U

this is less convenient to work with than the characterization (5). Y ∗ sets for a

dynamic binary response two period panel model are shown in Table 1 for the

case in which the initial value Y0 is observed and for the case in which it is not.

Some examples of the application of these results are now presented.13

12See for example Beresteanu, Molchanov, and Molinari (2011) and Molinari (2020) and further
references therein for such characterizations. Theorem 1 of CR implies equivalence of characteriza-
tions of the form (3) and (9).

13The development of some of these results was done by exploiting the symbolic computational
power of Mathematica, Wolfram Research, Inc. (2023).
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4 Linear panel data model

The approach set out in this paper delivers classical results when taken to the simple

linear panel data model. Consider the simplest case with two periods of observation

and the following model incorporating a conditional mean independence restriction

Yt = β0 + β1Zt + V + Ut, E[Ut|Z] = 0, t ∈ {1, 2},

where Z1 and Z2 are scalar, Z ≡ (Z1, Z2), and z ≡ (z1, z2).
14

The Y ∗ and U∗ sets are as follows.

Y∗(u, z; β) = {(y1, y2) : y2 − y1 = β1 (z2 − z1) + u2 − u1}

U∗(y, z; β) = {(u1, u2) : u2 − u1 = y2 − y1 − β1 (z2 − z1)}

Theorem 5 of CR delivers the result that the values of β1, say β+
1 in the identified

set are all values such that zero is an element of the Aumann expectation of the set

U∗(Y, Z; β+
1 ) conditional on Z = z for all z ∈ RZ . The set U∗(Y, Z; β1) is singleton

in this example, so the Aumann expectation is simply the classical expectation of

point-valued random variables and there is

E[U∗(Y, Z; β1)|Z = z] = E[Y2 − Y1|Z = z]− β1 (z2 − z1)

which, set equal to zero, delivers the correspondence

β1 =
E[Y2 − Y1|Z = z]

(z2 − z1)

which is point identifying as long as z2 ∕= z1.

Extension to T > 2 and dynamic models is straightforward and need not be

rehearsed here. The point is that the general approach proposed here delivers classical

results.

However the approach will not deliver the well-known point identification result

in binary response panel data models with logistic independently distributed time-

varying latent variables because those models further impose U 󰀂 V .15 In this paper

14The function
T󰁛

t=1

(Yt − (β0 + Ztβ1 + V + Ut))
2

can serve as the function h(Y, Z, U, V ).
15See Chamberlain (2010).
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the covariation of V with all other variables is unrestricted.

5 Binary response panel models

This section studies the dynamic binary response model of Example 1 under a va-

riety of restrictions. Only in the final Section 5.3 are models admitting endogenous

explanatory variables considered. Section 2 lists many papers that study binary re-

sponse panel models with fixed effects. In all but one previous paper known to us

there is a restriction on the joint distribution of the fixed effect and other variables

such that the conditional distribution of other variables given the fixed effect is sub-

ject to restrictions. No such restrictions are imposed here. The one exception of

which we are aware is Aristodemou (2021), in which bounds are provided for binary

response panel data models with an observed initial condition.

Section 5.1 gives results for the two period dynamic binary response model when

the initial condition (Y0) is observed. This model is studied in Aristodemou (2021).

Three period dynamic models with unobserved initial condition are studied in Section

5.2. Section 5.3 gives results for a general case in which there may be endogenous

explanatory variables. Extension to models with multiple lagged dependent variables

is straightforward.

Define Y = (Y1, . . . , YT ) and Z and U similarly.

5.1 Two period dynamic binary response model, initial con-

dition observed

In the case considered in this section, T = 2 and Y0 is observed. Define ∆u ≡ u2−u1,

∆z ≡ z2 − z1, and θ = (β′, γ)′.

The U∗ sets are as follows.

U∗(y, z, y0; θ) =

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

RU , y = (0, 0)

{u : ∆u ≥ −∆zβ + y0γ} , y = (0, 1)

{u : ∆u ≤ −∆zβ + (y0 − 1)γ} , y = (1, 0)

RU , y = (1, 1)

Unions of these U∗ sets do not deliver additional informative inequalities.16

Under the independence restriction U 󰀂Z|Y0 the identified set of values of (θ, GU |Y0)

comprises those values such that the following inequalities hold for y0 ∈ {0, 1} and

16Unions are either disjoint or equal to the support of U depending on the sign of γ.
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Table 1: Y ∗ sets in the binary response two period panel.

Y0 Y {u : Y∗(z, u; θ) = Y}
{(0, 0), (1, 1)} {u : −∆zβ + (y0 − 1)γ < ∆u < −∆zβ + y0γ}

observed {(0, 0), (0, 1), (1, 1)} {u : ∆u ≥ −∆zβ + y0γ ∧∆u > −∆zβ + (y0 − 1) γ}
{(0, 0), (1, 0), (1, 1)} {u : ∆u ≤ −∆zβ + (y0 − 1) γ ∧∆u < −∆zβ + y0γ}

RY {−∆zβ + y0γ ≤ ∆u ≤ −∆zβ + (y0 − 1)γ}
not {(0, 0), (0, 1), (1, 1)} {u : ∆u > max (−∆zβ − γ,−∆zβ)}

observed {(0, 0), (1, 0) , (1, 1)} {u : ∆u < min (−∆zβ + γ,−∆zβ)}
RY {u : min (−∆zβ + γ,−∆zβ) ≤ ∆u ≤ max (−∆zβ − γ,−∆zβ)}

a.e. z ∈ RZ .

P[Y = (0, 1)|Z = z, Y0 = y0] ≤ GU |Y0=y0 ({u : ∆u ≥ −∆zβ + y0γ})

P[Y = (1, 0)|Z = z, Y0 = y0] ≤ GU |Y0=y0 ({u : ∆u ≤ −∆zβ + (y0 − 1)γ})

These are the inequalities of Theorem 1 of Aristodemou (2021). Setting γ = 0 with

U 󰀂 Z, dropping conditioning on Y0, delivers the inequalities defining the identified

set in the two period static binary response panel model.

Table 1 shows the Y ∗ sets for the two period dynamic binary response panel model.

The top half of the table shows the sets for the case in which Y0 is observed. The

bottom part shows the sets obtained when Y0 is not observed.

Appendix C derives sharp bounds on θ absent any specification of the distribution

of U using the method set out in Remark 8 of Section 3.

5.2 A three period dynamic binary response model with the

initial condition not observed

For any s, t ∈ [T ] define ∆stu ≡ us−ut, and ∆stz ≡ zs−zt. With T = 3, and treating

both V and Y0 as unobserved latent variables with unrestricted distributions the U∗

sets are as shown in Table 2.

For sets of values of Y , T ⊂ RY , define functions

S(T , z; θ) ≡
󰁞

y∈T

U∗(y, z; θ) (11)
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Table 2: U∗ sets in the dynamic binary response panel data model with 3 periods
and Y0 not observed.

y U∗(y, z; θ)

1 (0, 0, 0) RU

2 (0, 0, 1) {u : (∆31u ≥ −∆31zβ +min (γ, 0)) ∧ (∆32u ≥ −∆32zβ)}
3 (0, 1, 0) {u : (∆21u ≥ −∆21zβ +min (γ, 0)) ∧ (∆32u ≤ −∆32zβ − γ)}
4 (0, 1, 1) {u : (∆21u ≥ −∆21zβ +min (γ, 0)) ∧ (∆31u ≥ −∆31zβ −max (γ, 0))}
5 (1, 0, 0) {u : (∆21u ≤ −∆21zβ −min (γ, 0)) ∧ (∆31u ≤ −∆31zβ +max (γ, 0))}
6 (1, 0, 1) {u : (∆21u ≤ −∆21zβ −min (γ, 0)) ∧ (∆32u ≥ −∆32zβ + γ)}
7 (1, 1, 0) {u : (∆31u ≤ −∆31zβ −min (γ, 0)) ∧ (∆32u ≤ −∆32zβ)}
8 (1, 1, 1) RU

and17

Y(T , z; θ) ≡ {y : U∗(y, z; θ) ⊆ S(T , z; θ)}. (12)

The identified set of values of
󰀃
β, γ,GU |Z=z

󰀄
comprises the values satisfying inequalities

of the form

P[Y ∈ Y(T , z; θ)|Z = z] ≤ GU |Z=z(S(T , z; θ)), a.e. z ∈ RZ ,

where the sets Y(T , z; θ) and T are shown in the first and second columns of Tables

7, 8, and 9, covering the cases in which γ = 0, γ > 0, and γ < 0, respectively.

5.3 General dynamic binary response panel models

Consider now the general specification of a dynamic panel data model from Example

1, allowing for endogeneity admitting α ∕= 0. This section illustrates application of

our identification analysis to such cases, also allowing for arbitrary finite T .18

Define

T0 ≡ {t ∈ [T ] : Y1t = 0} , T1 ≡ {t ∈ [T ] : Y1t = 1} , (13)

denoting the sets of periods in which Y1t = 0 and Y1t = 1, respectively. Let Y0 denote

the set of values in which the initial condition Y10 is known to lie, with Y0 = {Y10} if

the initial condition is observed and Y0 = {0, 1} if the initial condition is not observed.

17The set T can be a strict subset of Y(T , z; θ). For example, this is the case when T contains
two values of Y and there is a third value of Y such that its U∗ set is a subset of S(T , z; θ) as in
row 7 of Table 7.

18Here we impose RC = R, as typically done in the literature. Extension to cases in which RC is
a subset of R is straightforward.
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The set U∗(Y, Z;h) defined in (2) in this model can be written

U∗(Y, Z;h) =
󰁱
u ∈ RU : ∃Y10 ∈ Y0 such that

max
t∈T0

{Y2tα + Ztβ + Y1t−1γ + ut} ≤ min
t∈T1

{Y2tα + Ztβ + Y1t−1γ + ut}
󰁲
. (14)

This is so because the constituent inequalities may be equivalently expressed as

C ≤ C

where

C ≡ max
t∈T1

󰀋
− (Y2tα + Ztβ + Y1t−1γ + ut)

󰀌
,

C ≡ min
t∈T0

󰀋
− (Y2tα + Ztβ + Y1t−1γ + ut)

󰀌
.

That C ≤ C for some Y10 ∈ Y0 guarantees there exist values C ∈
󰀅
C,C

󰀆
and Y10 ∈ Y0

such that (1) holds.19

Define θ = (α′, β′, γ)′. For any panel data model for a binary outcome as in (1)

with U ∼ GU independent of Z, the identified set of values of (θ, GU) are those pairs

satisfying, for an appropriately chosen collection20 of sets T , the inequalities

P[Y ∈ Y(T , z; θ)|Z = z] ≤ GU(S(T , z; θ)), a.e. z ∈ RZ ,

where the sets S(T , z; θ) and Y(T , z; θ) are as defined in (11) and (12).

This characterization applies for dynamic models and static models (for which

γ = 0 is imposed), models allowing endogenous explanatory variables (for which

α ∕= 0 is permitted), and for arbitrary T .

6 Static multiple discrete choice panel models

In this section multiple discrete choice panel models are considered. The presence

of the fixed effect renders the model incomplete as in the multiple discrete choice

analysis of Chesher, Rosen, and Smolinski (2013). In that analysis incompleteness

arose due to the inclusion of potentially endogenous explanatory variables. Analysis

19The max and min operators applied to the empty set are defined to be −∞ and ∞, respectively.
20The collection of all unions of U∗ sets, U∗(z;h), defined in (6), will suffice. In practice there may

be unions in this collection which need not be considered because they deliver redundant inequalities.
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Table 3: U∗ sets in the multiple discrete three choice two period panel model.

y U∗(y, z; θ)

1 (1, 1) RU

2 (1, 2) {u : ∆u2 −∆u1 ≥ ∆zβ1 −∆zβ2}
3 (1, 3) {u : ∆u1 −∆u3 ≤ −∆zβ1}
4 (2, 1) {u : ∆u2 −∆u1 ≤ ∆zβ1 −∆zβ2}
5 (2, 2) RU

6 (2, 3) {u : ∆u2 −∆u3 ≤ −∆zβ2}
7 (3, 1) {u : ∆u1 −∆u3 ≥ −∆zβ1}
8 (3, 2) {u : ∆u2 −∆u3 ≥ −∆zβ2}
9 (3, 3) RU

of a static panel model with T = 2 periods is considered.

In a three-choice model with two periods there is

Yt = argmax
d

{Jdt : d ∈ {1, 2, 3}}, t ∈ {1, 2}

where the Jdt terms are random utilities with parameters θ ≡ (β′
1, β

′
2)

′ as follows.

J1t ≡ Ztβ1 + V1 + U1t, t ∈ {1, 2},

J2t ≡ Ztβ2 + V2 + U2t, t ∈ {1, 2},

J3t ≡ U3t, t ∈ {1, 2}.

The terms V1 and V2 are “fixed effects” whose distribution and covariation with other

variables is unrestricted.

Section 2 lists many papers that study multiple discrete panel models with fixed

effects. In all studies of multiple discrete choice panel data models known to us there

are conditions imposed on the joint distribution of fixed effects and other variables

such that the conditional distribution of other variables given the fixed effect is subject

to restriction. No such restrictions are imposed here.

The U∗ sets are shown in Table 3 using notation ∆Ud ≡ Ud2 − Ud1.

The identified set of values of (θ, GU) are those pairs satisfying, for all z ∈ RZ the

inequalities

P[Y ∈ Y(T , z; θ)|Z = z] ≤ GU |Z=z(S(T , z; θ)), a.e. z ∈ RZ ,

where the sets S(T , z; θ) and Y(T , z; θ) are as defined in (11) and (12) and the
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sets T and Y(T , z; θ) are shown in Table 10. As we show for ordered choice panels

in the following section, this characterization can be generalized to allow arbitrary

periods T and alternatives {1, ..., K}, and can allow for dependence on lagged choices.

Endogenous covariates can be permitted as is done for cross sectional multiple discrete

choice in Chesher, Rosen, and Smolinski (2013).

7 Ordered response panel models

This section generalizes the binary response models of Section 5 to models in which

the outcome is an ordered response variable. Section 7.1 gives results for a static two

period model with three ordered outcomes. Section 7.2 then gives results for a general

ordered outcome model allowing an arbitrary finite number of ordered outcomes,

arbitrary periods, and dynamics.

7.1 Two period ordered response panel models with three

categories

There are structural equations as follows.

Yt =

󰀻
󰁁󰀿

󰁁󰀽

0 , Ztβ + V + Ut ≤ c1

1 , c1 ≤ Ztβ + V + Ut ≤ c2

2 , c2 ≤ Ztβ + V + Ut

, t ∈ {1, 2}

Let Y = (Y1, Y2), Z = (Z1, Z2), U = (U1, U2). Let θ = (β′, c1, c2)
′.21 There is the

restriction U 󰀂 Z. This model is studied in Aristodemou (2021) where, as here,

no restrictions are placed on the distribution of V or on its covariation with other

variables.

Define ∆u ≡ u2 − u1 and ∆z ≡ z2 − z1. The U∗ sets are shown in Table 4.

The identified set of values of (θ, GU) comprises the values satisfying, for z ∈ RZ , 7

inequalities of the form

P[Y ∈ Y|Z = z] ≤ GU(S)

where Y and S are given in Table 5.

Theorem 5 of Aristodemou (2021) delivers an outer set using the inequalities 1, 2

21In some applications c1 and c2 can have known values.
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Table 4: U∗ sets in the ordered response three category two period panel model.

y U∗(y, z; θ)

1 (0, 0) RU

2 (0, 1) {u : ∆u ≥ −∆zβ}
3 (0, 2) {u : ∆u ≥ c2 − c1 −∆zβ}
4 (1, 0) {u : ∆u ≤ −∆zβ}
5 (1, 1) {u : (∆u ≤ c2 − c1 −∆zβ) ∧ (∆u ≥ c1 − c2 −∆zβ)}
6 (1, 2) {u : ∆u ≥ −∆zβ}
7 (2, 0) {u : ∆u ≤ c1 − c2 −∆zβ}
8 (2, 1) {u : ∆u ≤ −∆zβ}
9 (2, 2) RU

Table 5: Sets Y and S in the inequalities defining the identified set of values of β and
GU in the two period ordered response panel model with three categories.

Y S
1 {(0, 2)} {u : ∆u ≥ c2 − c1 −∆zβ}
2 {(1, 1)} {u : (∆u ≤ c2 − c1 −∆zβ) ∧ (∆u ≥ c1 − c2 −∆zβ)}
3 {(2, 0)} {u : ∆u ≤ c1 − c2 −∆zβ}
4 {(0, 1), (0, 2), (1, 2)} {u : ∆u ≥ −∆zβ}
5 {(1, 0), (2, 0), (2, 1)} {u : ∆u ≤ −∆zβ}
6 {(0, 1), (0, 2), (1, 1), (1, 2)} {u : ∆u ≥ c1 − c2 −∆zβ}
7 {(1, 0), (1, 1), (2, 0), (2, 1)} {u : ∆u ≤ c2 − c1 −∆zβ}
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and 3 in Table 5 and the inequalities:

P(Y = (0, 1)|Z = z] ≤ GU({u : ∆u > −∆zβ})

and

P(Y = (1, 2)|Z = z] ≤ GU({u : ∆u > −∆zβ})

which are implied by inequality 4, and

P(Y = (1, 0)|Z = z] ≤ GU({u : ∆u < −∆zβ})

and

P(Y = (2, 1)|Z = z] ≤ GU({u : ∆u < −∆zβ})

which are implied by inequality 5.

7.2 General ordered response panel models

Consider now a general specification of an ordered response panel data model with

RY = {0, ..., J} and allowing for dynamics as in e.g. Honoré, Muris, and Weidner

(2023) in which for all j ∈ RY :

Yt = j =⇒ cj ≤ Ztβ + ıtγ + V + Ut ≤ cj+1, (15)

where c0 ≡ −∞, cJ+1 ≡ ∞, and ıt ≡ (1 [Yt−1 = 0] , . . . , 1 [Yt−1 = J ]) with each com-

ponent of γ encoding the impact of lagged Y on Yt.
22 Let Z̃t ≡ (Zt, ıt), β̃ ≡ (β′, γ′)′,

Y ≡ (Y1, ..., YT ), Z ≡ (Z1, ..., ZT ), U ≡ (U1, ..., UT ). Let θ ≡ (β′, γ′, c1, ..., cJ)
′ denote

parameters of the structural function, restricted such that c1 < · · · < cJ . The ini-

tial condition Y0 is assumed observed, but it is straightforward to accommodate an

unobserved initial condition as for the binary panel studied in Section 5.2.

Sets U∗ (Y, Z;h) are given by

U∗(Y, Z;h) = {u ∈ RU : ∀s, t ∈ [T ],

ut − us ≤ cYt+1 − cYs − (Z̃t − Z̃s)β̃},

This is verified by noting that for all u ∈ U∗(Y, Z;h) we have that

∀s, t ∈ [T ], cYs − Z̃sβ̃ − us ≤ cYt+1 − Z̃tβ̃ − ut,

22It is straightforward to accommodate multiple lags.
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in turn implying the existence of v such that

∀s, t ∈ [T ], cYs − Z̃sβ̃ − us ≤ v ≤ cYt+1 − Z̃tβ̃ − ut.

For all such u, v it follows that (15) holds for all t with U = u and V = v.

When the independence restriction U 󰀂 Z is imposed, the identified set for (θ, GU)

are those pairs satisfying

P[Y ∈ Y(T , z; θ)|Z = z] ≤ GU(S(T , z; θ)), a.e. z ∈ RZ

for an appropriately chosen collection of sets T where the sets S(T , z; θ) and Y(T , z; θ)

are as defined in (11) and (12).23 This characterization can be generalized to allow for

endogenous variables on the right hand side of (15) as done for cross section analysis

of ordered choice models in Chesher and Smolinski (2012) and Chesher, Rosen, and

Siddique (2023). It is straightforward to allow GU |Z=z to vary with z by replacing GU

with GU |Z=z in the inequality above, which then delivers an identified set for pairs
󰀃
θ,GU |Z

󰀄
.

8 Simultaneous binary response panel models

There is the model

Y1t = 1[α1Y2t + Ztβ1 + V1 + U1t ≥ 0]

Y2t = 1[α2Y1t + Ztβ2 + V2 + U2t ≥ 0]

with t ∈ [T ] and the independence restriction (U1, U2) 󰀂 Z ≡ (Z1, . . . , ZT ) where for

each j ∈ {1, 2}, Uj ≡ (Uj1, . . . , UjT ).
24

This is a simultaneous equations model with binary outcomes such as is found in

simultaneous firm entry applications25 and models of social interactions, put into a

panel context with “fixed effects”, constant through time, one for each outcome.

Honoré and De Paula (2021) study a restricted version of this model with β1 = β2,

α1 = α2 and U and V restricted to be independently distributed. No such restrictions

are imposed here.

23Once again the collection of all unions of U∗ sets, U∗(z;h), defined in (6), will suffice, but in
practice some of these unions may not be necessary.

24This strong exogeneity restriction can be relaxed.
25See for example Tamer (2003).
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Table 6: U∗ sets in the simultaneous binary response two period panel.

y U∗(y, z; θ)

1 (0, 0, 0, 0) RU

2 (0, 0, 0, 1) {u : ∆u2 ≥ −∆zβ2}
3 (0, 0, 1, 0) {u : ∆u2 ≤ −∆zβ2}
4 (0, 0, 1, 1) RU

5 (0, 1, 0, 0) {u : ∆u1 ≥ −∆zβ1}
6 (0, 1, 0, 1) {u : (∆u1 ≥ −∆zβ1 − α1) ∧ (∆u2 ≥ −∆zβ2 − α2)}
7 (0, 1, 1, 0) {u : (∆u1 ≥ −∆zβ1 + α1) ∧ (∆u2 ≤ −∆zβ2 − α2)}
8 (0, 1, 1, 1) {u : ∆u1 ≥ −∆zβ1}
9 (1, 0, 0, 0) {u : ∆u1 ≤ −∆zβ1}
10 (1, 0, 0, 1) {u : (∆u1 ≤ −∆zβ1 − α1) ∧ (∆u2 ≥ −∆zβ2 + α2)}
11 (1, 0, 1, 0) {u : (∆u1 ≤ −∆zβ1 + α1) ∧ (∆u2 ≤ −∆zβ2 + α2)}
12 (1, 0, 1, 1) {u : ∆u1 ≤ −∆zβ1}
13 (1, 1, 0, 0) RU

14 (1, 1, 0, 1) {u : ∆u2 ≥ −∆zβ2}
15 (1, 1, 1, 0) {u : ∆u2 ≤ −∆zβ2}
16 (1, 1, 1, 1) RU

Define θ ≡ (α1,α2, β
′
1, β

′
2)

′. The distribution of V ≡ (V1, V2) and the covariation

of V with other variables is unrestricted.

Consider the case with T = 2 when Y = (Y11, Y12, Y21, Y22). Extension to more

time periods and outcomes is straightforward.

Define ∆u1 ≡ u12 − u11, ∆u2 ≡ u22 − u21, ∆z ≡ z2 − z1. The U∗ sets, U∗(y, z; θ),

are as shown in Table 6.

There are 12 U∗ sets that are not equal to RU and 4 pairs of these U∗ sets are

identical - for example U∗(0, 0, 0, 1), z; θ) = U∗(1, 1, 0, 1), z; θ), so there are unions of

8 U∗ sets to be considered when calculating the identified set, that is 254 unions

in total. Only 24 of these deliver inequalities that characterize the identified set of

parameter values, the remaining unions delivering redundant inequalities.

The configuration of the unions of these U∗ sets depends on the signs of α1 and

α2 and in practice there are likely to be restrictions on these. For example in a

simultaneous firm entry application α1 ≤ 0 and α2 ≤ 0 would likely be imposed and

in a model of couple’s choices of activity (e.g. cinema attendance) α1 ≥ 0 and α2 ≥ 0.

Only the case with α1 ≥ 0 and α2 ≥ 0 is presented here. In this case, among

the U∗ sets only the sets U∗((0, 1, 0, 1), z; θ) and U∗((1, 0, 1, 0), z; θ) have a non-empty

intersection.

The identified set of values of (θ, GU) are those pairs satisfying, for all z ∈ RZ the
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inequalities

P[Y ∈ Y(T , z; θ)|Z = z] ≤ GU(S(T , z; θ))

where the sets S(T , z; θ) and Y(T , z; θ) are as defined in (11) and (12) and the sets

T and Y(T , z; θ) are shown in Table 11.

9 Censored outcome panels

In a panel model with a censored outcome there is the following.

Y1t = max(αY2t + Ztβ + γY1t−1 + C + Ut, Y3t), t ∈ [T ], C ∈ R, Y10 ∈ Y10,

with V ≡ (C, Y10) and Y3t denoting a censoring threshold, such that the outcome

variable Y1t takes the value of the index αY2t+Ztβ+γY1t−1+C+Ut when it exceeds

the censoring threshold, and otherwise takes the value Y3t. The censoring indicator

Wt ≡ 1 [Y1t = Y3t] is observed.

As in the models studied in KPT, the censoring threshold Y3t can be endogenous,

and it may be correlated with elements of U and V .26 As before, endogenous Y2t

is permitted in models with α ∕= 0, as in cross-sectional Tobit models studied in

Chesher, Kim, and Rosen (2023). The set Y10 denotes the feasible set of values for

the initial condition Y10 given the observed variables.27

Define

T0 ≡ {t ∈ [T ] : Wt = 0}, T1 ≡ {t ∈ [T ] : Wt = 1}.

Adopting the strategy for obtaining U∗ sets described in remark 5 of Section 3 we

can define

Dt(y, z, u;h) =

󰀫
{(c, y10) ∈ R× Y10 : c = y1t − αy2t − ztβ − γy1t−1 − ut} , t ∈ T0

{(c, y10) ∈ R× Y10 : αy2t + ztβ + γy1t−1 + c+ ut ≤ y1t} , t ∈ T1

The U∗ sets are then as follows.

U∗(Y, Z;h) = {u : ∃Y10 ∈ Y10 s.t. ∀s, t ∈ T0, ∆tsu = ∆tsY1 − α∆tsY2 −∆tsZβ − γ∆t−1,s−1Y1

∧ ∀(s, t) ∈ T1 × T0, ∆tsu ≥ ∆tsY1 − α∆tsY2 −∆tsZβ − γ∆t−1,s−1Y1} ,

where ∆tsU ≡ Ut − Us, ∆tsZ ≡ Zt − Zs, ∆tsY1 ≡ Y1t − Y1s and ∆tsY2 ≡ Y2t − Y2s.

26It is not necessary for Y3t to be observed in periods without censoring.
27So Y10 is the singleton {Y10} if the initial condition is observed, and would typically be its entire

support if it is not observed. In a static model the analysis applies with γ = 0 and Y10 absent.

24



Following the approach set out in Theorem 1, the identified set of values of
󰀃
θ,GU |Z

󰀄
, where θ ≡ (α, β, γ) are those satisfying the inequalities

P[Y ∈ Y(T , z; θ)|Z = z] ≤ GU |Z=z(S(T , z; θ)) a.e. z ∈ RZ ,

for an appropriate selection of sets T , where the sets S(T , z; θ) and Y(T , z; θ) are

defined in (11) and (12). The required selection can be characterized following the

same steps taken in the models studied in prior sections.

10 Concluding remarks

This paper delivers methods for producing identified sets when models admit unob-

served, latent, variables on which no distributional restrictions are placed, opening

the way to robust analysis of short panels. Examples found in econometric practice in-

clude models incorporating so-called fixed effects and initial conditions. Endogenous

explanatory variables are easily accommodated.

The identified sets delivered by the models in this paper that place no restriction

on the distribution of latent V will contain the structures identified by more restrictive

models if the restrictions of those models are satisfied by the process under study.

The analysis set out here will show how sensitive the findings obtained using that

more restrictive model are to those additional restrictions. In some cases it may

be found that estimation employing a point-identifying model delivers a structure

outside an estimator of the identified set obtained using a less restrictive model of the

type studied in this paper. Such a finding would suggest the more restrictive model

is misspecified. Formal development of such specification tests may be of interest for

future research.
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Honoré, B. (1993): “Orthogonality Conditions for Tobit Models with Fixed Effects

and Lagged Dependent Variables,” Journal of Econometrics, 59(1–2), 35–61.
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Appendix A CR Restrictions A1-A6

This section collects restrictions from Chesher and Rosen (2017) adapted to the

present setting with unobservable variables (U, V ), which are imposed throughout

the paper.

Restriction A1: (Y, Z, U, V ) are random vectors defined on a probability space

(Ω, L,P), endowed with the Borel sets on Ω. The support of (Y, Z, U, V ) is a subset

of Euclidean space. □
Restriction A2: A collection of conditional distributions

FY |Z ≡
󰀋
FY |Z (·|z) : z ∈ RZ

󰀌
,

is identified by the sampling process, where for all T ⊆ RY |z, FY |Z (T |z) ≡ P [Y ∈ T |z].
□
Restriction A3: There is an L-measurable function h (·, ·, ·, ·) : RY ZUV → R such

that

P [h (Y, Z, U) = 0] = 1,

and there is a collection of conditional distributions

GU |Z ≡
󰀋
GU |Z (·|z) : z ∈ RZ

󰀌
,

where for all S ⊆ RU |z, GU |Z (S|z) ≡ P [U ∈ S|z]. □
Restriction A4: The pair

󰀃
h,GU |Z

󰀄
belongs to a known set of admissible structures

M. □
Restriction A5: U∗ (Y, Z;h) is closed almost surely P [·|z], each z ∈ RZ . □
Restriction A6: Y∗ (Z,U ;h) is closed almost surely P [·|z], each z ∈ RZ . □
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Appendix B Sets T for sharp identified sets

This section collects tables of T and Y(T , z; θ) defined in (12) as

Y(T , z; θ) ≡ {y : U∗(y, z; θ) ⊆ S(T , z; θ)},

such that inequalities of the form

P[Y ∈ Y(T , z; θ)|Z = z] ≤ GU |Z=z(S(T , z; θ))

for all T listed characterize the identified set for
󰀃
θ,GU |Z

󰀄
in all examples covered in

Sections 5–8. Recall from (11) the definition of S(T , z; θ):

S(T , z; θ) ≡
󰁞

y∈T

U∗(y, z; θ).
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Table 7: Sets Y(T , z; θ) and T in the inequalities defining the identified set of struc-
tures in the static binary response 3 period panel data model (γ = 0).

Y(T , z; θ) T
1 {(0, 0, 1)} {(0, 0, 1)}
2 {(0, 1, 0)} {(0, 1, 0)}
3 {(0, 1, 1)} {(0, 1, 1)}
4 {(1, 0, 0)} {(1, 0, 0)}
5 {(1, 0, 1)} {(1, 0, 1)}
6 {(1, 1, 0)} {(1, 1, 0)}
7 {(0, 0, 1), (0, 1, 0), (0, 1, 1)} {(0, 0, 1), (0, 1, 0)}
8 {(0, 0, 1), (0, 1, 1)} {(0, 0, 1), (0, 1, 1)}
9 {(0, 0, 1), (1, 0, 0), (1, 0, 1)} {(0, 0, 1), (1, 0, 0)}
10 {(0, 0, 1), (1, 0, 1)} {(0, 0, 1), (1, 0, 1)}
11 {(0, 1, 0), (0, 1, 1)} {(0, 1, 0), (0, 1, 1)}
12 {(0, 1, 0), (1, 0, 0), (1, 1, 0)} {(0, 1, 0), (1, 0, 0)}
13 {(0, 1, 0), (1, 1, 0)} {(0, 1, 0), (1, 1, 0)}
14 {(0, 0, 1), (0, 1, 1), (1, 0, 1)} {(0, 1, 1), (1, 0, 1)}
15 {(0, 1, 0), (0, 1, 1), (1, 1, 0)} {(0, 1, 1), (1, 1, 0)}
16 {(1, 0, 0), (1, 0, 1)} {(1, 0, 0), (1, 0, 1)}
17 {(1, 0, 0), (1, 1, 0)} {(1, 0, 0), (1, 1, 0)}
18 {(1, 0, 0), (1, 0, 1), (1, 1, 0)} {(1, 0, 1), (1, 1, 0)}
19 {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 1)} {(0, 0, 1), (0, 1, 0), (1, 0, 1)}
20 {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 1, 0)} {(0, 0, 1), (0, 1, 0), (1, 1, 0)}
21 {(0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 0, 1)} {(0, 0, 1), (0, 1, 1), (1, 0, 0)}
22 {(0, 0, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)} {(0, 0, 1), (1, 0, 0), (1, 1, 0)}
23 {(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 1, 0)} {(0, 1, 0), (0, 1, 1), (1, 0, 0)}
24 {(0, 1, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0)} {(0, 1, 0), (1, 0, 0), (1, 0, 1)}
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Table 8: Sets Y(T , z; θ) and T in the core determining inequalities defining the
identified set of structures in the dynamic binary response 3 period panel with Y0 not
observed and γ > 0.

Y(T , z; θ) T
1 {(0, 0, 1)} {(0, 0, 1)}
2 {(0, 1, 0)} {(0, 1, 0)}
3 {(0, 1, 1)} {(0, 1, 1)}
4 {(1, 0, 0)} {(1, 0, 0)}
5 {(1, 0, 1)} {(1, 0, 1)}
6 {(1, 1, 0)} {(1, 1, 0)}
7 {(0, 0, 1), (0, 1, 1)} {(0, 0, 1), (0, 1, 1)}
8 {(0, 0, 1), (1, 0, 0), (1, 0, 1)} {(0, 0, 1), (1, 0, 0)}
9 {(0, 0, 1), (1, 0, 1)} {(0, 0, 1), (1, 0, 1)}
10 {(0, 1, 0), (0, 1, 1)} {(0, 1, 0), (0, 1, 1)}
11 {(0, 1, 0), (1, 1, 0)} {(0, 1, 0), (1, 1, 0)}
12 {(0, 1, 0), (0, 1, 1), (1, 1, 0)} {(0, 1, 1), (1, 1, 0)}
13 {(1, 0, 0), (1, 0, 1)} {(1, 0, 0), (1, 0, 1)}
14 {(1, 0, 0), (1, 1, 0)} {(1, 0, 0), (1, 1, 0)}
15 {(0, 0, 1), (0, 1, 0), (0, 1, 1)} {(0, 0, 1), (0, 1, 0), (0, 1, 1)}
16 {(0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 0, 1)} {(0, 0, 1), (0, 1, 1), (1, 0, 0)}
17 {(0, 0, 1), (0, 1, 1), (1, 0, 1)} {(0, 0, 1), (0, 1, 1), (1, 0, 1)}
18 {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 1, 0)} {(0, 0, 1), (0, 1, 1), (1, 1, 0)}
19 {(0, 0, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)} {(0, 0, 1), (1, 0, 0), (1, 1, 0)}
20 {(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 1, 0)} {(0, 1, 0), (0, 1, 1), (1, 0, 0)}
21 {(0, 1, 0), (1, 0, 0), (1, 1, 0)} {(0, 1, 0), (1, 0, 0), (1, 1, 0)}
22 {(1, 0, 0), (1, 0, 1), (1, 1, 0)} {(1, 0, 0), (1, 0, 1), (1, 1, 0)}
23 {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 1)} {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 1)}
24 {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 0, 1)(1, 1, 0)} {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0)}
25 {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)} {(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0)}
26 {(0, 1, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0)} {(0, 1, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0)}
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Table 9: Sets Y(T , z; θ) and T in the inequalities defining the identified set of struc-
tures in the dynamic binary response 3 period panel with Y0 not observed and γ < 0.

Y(T , z; θ) T
1 {(0, 0, 1)} {(0, 0, 1)}
2 {(0, 1, 0)} {(0, 1, 0)}
3 {(0, 1, 1)} {(0, 1, 1)}
4 {(1, 0, 0)} {(1, 0, 0)}
5 {(1, 0, 1)} {(1, 0, 1)}
6 {(1, 1, 0)} {(1, 1, 0)}
7 {(0, 0, 1), (0, 1, 0), (0, 1, 1} {(0, 0, 1), (0, 1, 0)}
8 {(0, 0, 1), (0, 1, 1)} {(0, 0, 1), (0, 1, 1)}
9 {(0, 0, 1), (1, 0, 0)} {(0, 0, 1), (1, 0, 0)}
10 {(0, 0, 1), (1, 0, 1)} {(0, 0, 1), (1, 0, 1)}
11 {(0, 1, 0), (0, 1, 1)} {(0, 1, 0), (0, 1, 1)}
12 {(0, 1, 0), (1, 0, 0), (1, 1, 0)} {(0, 1, 0), (1, 0, 0)}
13 {(0, 1, 0), (1, 0, 1)} {(0, 1, 0), (1, 0, 1)}
14 {(0, 1, 0), (1, 1, 0)} {(0, 1, 0), (1, 1, 0)}
15 {(0, 0, 1), (0, 1, 1), (1, 0, 1)} {(0, 1, 1), (1, 0, 1)}
16 {(0, 1, 1), (1, 1, 0)} {(0, 1, 1), (1, 1, 0)}
17 {(1, 0, 0), (1, 0, 1)} {(1, 0, 0), (1, 0, 1)}
18 {(1, 0, 0), (1, 1, 0)} {(1, 0, 0), (1, 1, 0)}
19 {(1, 0, 0), (1, 0, 1), (1, 1, 0)} {(1, 0, 1), (1, 1, 0)}
20 {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 1)} {(0, 0, 1), (0, 1, 0), (1, 0, 1)}
21 {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 1, 0)} {(0, 0, 1), (0, 1, 0), (1, 1, 0)}
22 {(0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 0, 1)} {(0, 0, 1), (0, 1, 1), (1, 0, 0)}
23 {(0, 0, 1), (1, 0, 0), (1, 0, 1)} {(0, 0, 1), (1, 0, 0), (1, 0, 1)}
24 {(0, 0, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0) {(0, 0, 1), (1, 0, 0), (1, 1, 0)}
25 {(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 1, 0)} {(0, 1, 0), (0, 1, 1), (1, 0, 0)}
26 {(0, 1, 0), (0, 1, 1), (1, 1, 0)} {(0, 1, 0), (0, 1, 1), (1, 1, 0)}
27 {(0, 1, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0)} {(0, 1, 0), (1, 0, 0), (1, 0, 1)}
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Table 10: Sets Y(T , z; θ) and T in the inequalities defining the identified set of
structures in the 3 choice multiple discrete choice 2 period panel data model.

Y(T , z; θ) T
1 {(1, 2)} {(1, 2)}
2 {(1, 3)} {(1, 3)}
3 {(2, 1)} {(2, 1)}
4 {(2, 3)} {(2, 3)}
5 {(3, 1)} {(3, 1)}
6 {(3, 2)} {(3, 2)}
7 {(1, 2), (1, 3)} {(1, 2), (1, 3)}
8 {(1, 2), (3, 2)} {(1, 2), (3, 2)}
9 {(1, 3), (2, 3)} {(1, 3), (2, 3)}
10 {(2, 1), (2, 3)} {(2, 1), (2, 3)}
11 {(2, 1), (3, 1)} {(2, 1), (3, 1)}
12 {(3, 1), (3, 2)} {(3, 1), (3, 2)}
13 {(1, 2), (1, 3), (2, 3)} {(1, 2), (2, 3)}
14 {(1, 2), (1, 3), (3, 2)} {(1, 3), (3, 2)}
15 {(1, 2), (3, 1), (3, 2)} {(1, 2), (3, 1)}
16 {(1, 3), (2, 1), (2, 3)} {(1, 3), (2, 1)}
17 {(2, 1), (2, 3), (3, 1)} {(2, 3), (3, 1)}
18 {(2, 1), (3, 1), (3, 2)} {(2, 1), (3, 2)}
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Table 11: Sets Y(T , z; θ) and T in the inequalities defining the identified set of values
of θ in the simultaneous binary response 2 period panel.

Y(T , z; θ) T
1 {(0, 0, 0, 1), (1, 0, 0, 1), (1, 1, 0, 1)} {(0, 0, 0, 1)}
2 {(0, 0, 1, 0), (0, 1, 1, 0), (1, 1, 1, 0)} {(0, 0, 1, 0)}
3 {(0, 1, 0, 0), (0, 1, 1, 0), (0, 1, 1, 1)} {(0, 1, 0, 0)}
4 {(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 1)} {(1, 0, 0, 0)}
5 {(0, 1, 0, 1)} {(0, 1, 0, 1)}
6 {(0, 1, 1, 0)} {(0, 1, 1, 0)}
7 {(1, 0, 0, 1)} {(1, 0, 0, 1)}
8 {(1, 0, 1, 0)} {(1, 0, 1, 0)}

9

󰀝
(0, 0, 0, 1), (0, 1, 0, 0), (0, 1, 1, 0),
(0, 1, 1, 1), (1, 0, 0, 1), (1, 1, 0, 1)

󰀞
{(0, 0, 0, 1), (0, 1, 0, 0)}

10

󰀝
(0, 0, 0, 1), (1, 0, 0, 0), (1, 0, 0, 1),

(1, 0, 1, 1), (1, 1, 0, 1)

󰀞
{(0, 0, 0, 1), (1, 0, 0, 0)}

11 {(0, 0, 0, 1), (0, 1, 0, 1), (1, 0, 0, 1), (1, 1, 0, 1)} {(0, 0, 0, 1), (0, 1, 0, 1)}

12

󰀝
(0, 0, 0, 1), (1, 0, 0, 0), (1, 0, 0, 1),
(1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 1)

󰀞
{(0, 0, 0, 1), (1, 0, 1, 0)}

13

󰀝
(0, 0, 1, 0), (0, 1, 0, 0), (0, 1, 1, 0),

(0, 1, 1, 1), (1, 1, 1, 0)

󰀞
{(0, 0, 1, 0), (0, 1, 0, 0)}

14

󰀝
(0, 0, 1, 0), (0, 1, 1, 0), (1, 0, 0, 0),
(1, 0, 0, 1), (1, 0, 1, 1), (1, 1, 1, 0)

󰀞
{(0, 0, 1, 0), (1, 0, 0, 0)}

15

󰀝
(0, 0, 1, 0), (0, 1, 0, 0), (0, 1, 0, 1),
(0, 1, 1, 0), (0, 1, 1, 1), (1, 1, 1, 0)

󰀞
{(0, 0, 1, 0), (0, 1, 0, 1)}

16 {(0, 0, 1, 0), (0, 1, 1, 0), (1, 0, 1, 0), (1, 1, 1, 0)} {(0, 0, 1, 0), (1, 0, 1, 0)}
17 {(0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1)} {(0, 1, 0, 0), (0, 1, 0, 1)}

18

󰀝
(0, 0, 1, 0), (0, 1, 0, 0), (0, 1, 1, 0),
(0, 1, 1, 1), (1, 0, 1, 0), (1, 1, 1, 0)

󰀞
{(0, 1, 0, 0), (1, 0, 1, 0)}

19

󰀝
(0, 0, 0, 1), (0, 1, 0, 1), (1, 0, 0, 0),
(1, 0, 0, 1), (1, 0, 1, 1), (1, 1, 0, 1)

󰀞
{(1, 0, 0, 0), (0, 1, 0, 1)}

20 {(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1)} {(1, 0, 0, 0), (1, 0, 1, 0)}
21 {(0, 1, 0, 1), (1, 0, 1, 0)} {(0, 1, 0, 1), (1, 0, 1, 0)}

22

󰀝
(0, 0, 0, 1), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0),

(0, 1, 1, 1), (1, 0, 0, 1), (1, 1, 0, 1)

󰀞
{(0, 0, 0, 1), (0, 1, 0, 0), (0, 1, 0, 1)}

23

󰀝
(0, 0, 0, 1), (0, 1, 0, 1), (1, 0, 0, 0), (1, 0, 0, 1),

(1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 1)

󰀞
{(0, 0, 0, 1), (0, 1, 0, 1), (1, 0, 1, 0)}

24

󰀝
(0, 0, 1, 0), (0, 1, 1, 0), (1, 0, 0, 0), (1, 0, 0, 1),

(1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 1, 0)

󰀞
{(0, 0, 1, 0), (1, 0, 0, 0), (1, 0, 1, 0)}

25

󰀝
(0, 0, 1, 0), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0),

(0, 1, 1, 1), (1, 0, 1, 0), (1, 1, 1, 0)

󰀞
{(0, 0, 1, 0), (0, 1, 0, 1), (1, 0, 1, 0)}
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Appendix C Bounds on structural parameters θ

Here calculation of the projection of the identified set of values of (θ, GU |Y0) onto the

space of θ as set out in Remark 8 of section 3 is demonstrated for the two-period

dynamic binary reponse model studied in Section 5.1.

Define

pjk (z, y0) ≡ P [Y = (j, k)|Z = z, Y0 = y0] .

Consider sets {u : ∆u ∈ (−∞, w]} and {u : ∆u ∈ (w,∞)} for w ∈ R. There is

P[U∗(Y, Z; θ) ⊆ {u : ∆u ∈ (−∞, w]} |Z = z, Y0 = y0] =

p10 (z, y0)× 1[−∆zβ + (y0 − 1)γ ≤ w],

and

P[U∗(Y, Z; θ) ⊆ {u : ∆u ∈ (w,∞)} |Z = z, Y0 = y0] =

p01 (z, y0)× 1[−∆zβ + y0γ > w].

Thus, using U∗(Y, Z; θ) ⊆ S =⇒ U ∈ S we have the inequalities

p10 (z, y0)× 1[−∆zβ + (y0 − 1)γ ≤ w] ≤ GU |Y0=y0 ({u : ∆u ≤ w})

and

p01 (z, y0)× 1[−∆zβ + y0γ > w] ≤ GU |Y0=y0 ({u : ∆u > w}) .

Let G̃∆U(w; y0) ≡ GU |Y0=y0 ({u : ∆u ≤ w}). Since GU |Y0=y0 ({u : ∆u > w}) = 1 −
GU |Y0=y0 ({u : ∆u ≤ w}) it follows that

p10 (z, y0)×1[−∆zβ+(y0−1)γ ≤ w] ≤ G̃∆U(w; y0) ≤ 1−p01 (z, y0)×1[−∆zβ+y0γ > w].

(16)

Bounds on θ are obtained as those values for which the above lower and upper in-

equalities never cross, as follows:

Θ∗ ≡
󰁱
θ ∈ Θ : ∀(y0, w) ∈ {0, 1}× R G̃L

∆U(w; y0) ≤ G̃U
∆U(w; y0)

󰁲
, (17)

where G̃L
∆U(w; y0) and G̃U

∆U(w; y0) correspond to the lower and upper envelopes for
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G̃∆U(w; y0) obtained from (16) upon taking intersections across z:

G̃L
∆U(w; y0) ≡

󰀻
󰀿

󰀽
sup

z∈ZL(w,y0)

p10 (z, y0) if ZL(w, y0) ∕= ∅,

0 otherwise.

G̃U
∆U(w; y0) ≡

󰀻
󰀿

󰀽
inf

z∈ZU (w,y0)
1− p01 (z, y0) if ZU(w, y0) ∕= ∅,

1 otherwise.

where

ZL(w, y0) ≡ {z ∈ RZ : −∆zβ + (y0 − 1)γ ≤ w} ,

ZU(w, y0) ≡ {z ∈ RZ : −∆zβ + y0γ > w} .

The bounds Θ∗ correspond to those of Theorem 2 of Aristodemou (2021), up to minor

notational differences.

In a model in which U and Z are independent conditional on Y0 with no restrictions

placed on GU |Y0=y0 , the set Θ∗ thus obtained is in fact the sharp identified set for θ

because for every value of θ̃ ∈ Θ∗ there is for each y0 ∈ {0, 1} a distribution of ∆U

conditional on Y0 = y0, say G̃∆U |Y0=y0 , such that (θ̃, G̃∆U |Y0=0, G̃∆U |Y0=1) is contained

in the identified set of structures.

This is so because G̃L
∆U(w; y0) and G̃U

∆U(w; y0) are nondecreasing functions of w

taking values on the unit interval. Accordingly, for each θ̃ ∈ Θ∗ there exists for each

value of y0 a proper distribution G̃∆U |Y0=y0(·, θ̃) such that for all w ∈ R,

G̃L
∆U(w; y0) ≤ G̃∆U |Y0=y0((−∞, w], θ̃) ≤ G̃U

∆U(w; y0),

for example

G̃∆U |Y0=y0((−∞, w], θ) = λG̃L
∆U(w; y0) + (1− λ)G̃U

∆U(w; y0)

for any λ ∈ (0, 1).28 Thus any distributions G̃U |Y0=y0(·) for U with corresponding

distributions G̃∆U |Y0=y0(·, θ̃) for each y0 paired with θ̃ can produce the observed dis-

tributions of Y given (Y0, Z).

28This sharpness result relies on the identified set of structures being determined by the distribu-
tion of a scalar function of the unobserved variables, in this case ∆U . When T > 2 this will not be
the case in this example but it is the case in the model of section 5.2.
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