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Abstract

An agent makes decisions with multiple sources of information. In isolation, each

source is well understood, but jointly their correlation is unknown. We study the agent’s

robustly optimal strategies—those that give the best possible guaranteed payoff, even

under the worst possible correlation. With two states and two actions, we show that a

robustly optimal strategy uses a single information source, ignoring all others. In general

decision problems, robustly optimal strategies combine multiple sources of information,

but the number of information sources that are needed has a bound that only depends

on the decision problem. These findings provide a new rationale for why information is

ignored.

∗We are grateful to Nageeb Ali, Alex Bloedel, Alex Frankel, Marc Henry, Asen Kochov, Jiangtao Li, Elliot
Lipnowski, Pietro Ortoleva, Collin Raymond, Shamim Sinnar, Rakesh Vohra, and participants at various
conferences and seminars for valuable comments.
†São Paulo School of Economics - FGV. Email: henrique.oliveira@fgv.br
‡Pennsylvania State University. Email: yxi5014@psu.edu
§University of Pennsylvania. Email: xiaolin7@sas.upenn.edu

mailto:henrique.oliveira@fgv.br
mailto:yxi5014@psu.edu
mailto:xiaolin7@sas.upenn.edu


Contents

1 Introduction 1

2 Model 4

3 Binary State Environment 4

3.1 Separable Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 General Decision Problems and Decompositions . . . . . . . . . . . . . . . . . 8

4 Proof of Theorem 1 11

4.1 The Blackwell order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 The Blackwell Supremum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3 Nature’s MinMax Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 General-State Decision Problems 16

A Appendix 21



1 Introduction

From the mundane to the important, most decisions are made with many information sources

available. Treatment decisions can be made by consulting multiple doctors. Retirement

plans can follow the advice of numerous financial experts. Indeed, for nearly any decision

we face, there are news, websites, books, articles and other relevant sources at our disposal.

But collating and analyzing data from different sources can be both practically and mentally

taxing. To save time and effort, we may turn to a select few sources deemed reliable. In this

paper, we show that limiting our sources of information has another, less obvious merit: it

leads to robust decisions when we lack knowledge about their correlations.

Different information sources are usually correlated: doctors may base their recommenda-

tion on the same study; financial analysts can have an incentive to echo each other, as shared

errors are more forgivable. Understanding the correlation between multiple sources is hard. In

a scientific study, for example, determining the correlation between multiple variables requires

an exponentially increasing sample size—the curse of dimensionality. Even when information

about the correlation is readily available, behaviorally biased agents may fail to properly ac-

count for it.1 Thus, agents may look to take decisions that do not leave them vulnerable to a

misspecification in correlation.

Our paper studies optimal decision making under ambiguity of correlations between in-

formation sources. Formally, a decision maker chooses among finitely many actions whose

payoffs depend on a finite set of unknown states. Before deciding on an action, the decision

maker observes the realizations of m signals from m different information sources, modeled as

Blackwell experiments. To focus the analysis on ambiguity about correlations, we assume that

the decision maker knows every information source in isolation, but conceives of any possible

joint information structures whose marginals are consistent with these information sources.

To guard against this lack of knowledge, the decision maker chooses a strategy that performs

well even under the worst possible correlation structure.

A simple strategy that protects against ambiguous correlation is a best-source strategy,

which selects the best single information source and best responds to it, ignoring all other

information sources. Since the resulting payoff from such a strategy is determined solely by

the information source selected, this strategy guarantees a payoff that is independent of the

correlation between information sources. Of course, such a strategy completely forfeits the

potential benefits from observing multiple information sources. Could we do better by using

some more sophisticated strategy that makes use of multiple information sources? Surpris-

ingly, Theorem 1 shows that, in any decision problem with two states and two actions, the

1This phenomenon, known as correlation neglect, is well documented in the behavioral literature (see e.g.
Enke and Zimmermann (2019)).
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answer is no: best-source strategies are always robustly optimal.

With more than two actions or more than two states, best-source strategies are no longer

always optimal, and robustly optimal strategies may combine different sources of information.

Theorem 2 characterizes robustly optimal strategies under two states and multiple actions,

as follows: First, we decompose a decision problem with n actions into n − 1 binary actions

subproblems, in which the actions are ordered and each binary action subproblem constitutes

a “local” comparison of consecutive actions. In line with Theorem 1, a best-source strategy is

used within each binary-action subproblem to select a recommended action. Then the robustly

optimal strategy maps each profile of recommended actions for the subproblems into an action

in the original problem. Theorem 2 shows that the robustly optimal strategy uses signals from

multiple information sources precisely when the best sources across subproblems are not the

same. However, the strategy given by Theorem 2 for an n-action decision problem uses at

most n− 1 information sources. Moreover, the robustly optimal strategy uses an information

source if and only if that information source is a best source in one of the local subproblems.

A full characterization of the robustly optimal strategy in decision problems with more

than three states is more complex and beyond the scope of this paper. Indeed, we show an

example of a binary-action problem with three states in which the robustly optimal strategy

necessarily uses multiple information sources. However, as in Theorem 1 and Theorem 2,

Theorem 3 establishes a bound on the number of necessary information sources. Crucially,

this bound again depends only on the decision problem, and it could be relatively small when

many information sources are available.

Ignorance of readily available information is a well established phenomenon, which can

carry a significant cost. Handel and Schwartzstein (2018) describe the literature and divide

the current explanations into two categories: frictions and mental gaps. Frictions are costs

of acquiring or processing information. Mental gaps describe psychological distortions from

rationality in information gathering or processing. This paper demonstrates robustness to

correlations as an alternative explanation for this phenomenon. This explanation has distinct

counterfactual implications from the other two, so it is important to determine which one is

the most relevant before any intervention. For instance, a decision-maker who finds it costly

to acquire or process information would become more informed as stakes are raised, but one

who is concerned with correlation robustness according to our model would not react to such

an incentive.

Related Literature: Our paper studies robust decision making under uncertain correla-

tions between information sources. The practice of finding robust strategies traces back at

least to Wald (1950) and our modeling of information structures follows that of Blackwell

(1953). The worst-case approach we adopt is in line with the literature on ambiguity aversion
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(Gilboa and Schmeidler, 1989). In particular, a recent experiment by Epstein and Halevy

(2019) documents ambiguity aversion on correlation structures.

Learning from multiple information sources has gained considerable attention in recent

literature. For instance, Börgers, Hernando-Veciana, and Krähmer (2013) study when two

information structures are complements or substitutes and provide an explicit characterization.

Ichihashi (2021) looks at how a firm purchases data from consumers with potentially correlated

information source. Liang and Mu (2020) examine a social learning setting where agents’

information is complementary. Liang, Mu, and Syrgkanis (2022) study an agent’s optimal

dynamic allocation of attention to multiple correlated information sources. In contrast to

these works, our paper assumes the decision maker does not know the correlation structure

and targets for a decision plan robust to all possible correlations.

There is a classic literature on “combining forecasts” going all the way back to the 1960’s

(for an early survey, see Clemen (1989)). Its theoretical portion (e.g. McConway (1981),

Dawid, DeGroot, Mortera, Cooke, French, Genest, Schervish, Lindley, McConway, and Win-

kler (1995), and Levy and Razin (2020b)) assumes that one has access to experts’ beliefs,

but not to the raw information informing those beliefs. One must then try to combine those

beliefs into a single one. In our framework, this amounts to an interim approach, where

the aggregation of beliefs takes place after signals have realized, but before the true state is

revealed.

Using this interim approach, Levy and Razin (2020a) also consider ambiguity about the

correlation structure. They allow for joint experiments that satisfy a bound of correlation,

and look for the worst case that can rationalize the realized prediction. In contrast, our paper

uses an ex-ante approach, by considering the strategy for all signal realizations and its ensuing

expected payoff. This results in a “combined forecast” that depends on the payoff structure

as well.

Perhaps the most closely related paper to ours is Arieli, Babichenko, and Smorodinsky

(2018). They also consider the ex-ante strategy and allow for ambiguity about the information

structure. However, they consider other sets of joint experiments, such as two experiments

where one is Blackwell more informative than the other, but the agent does not know which.

Moreover, they look at a specific decision problem with quadratic loss. Also closely related is

Arieli, Babichenko, Talgam-Cohen, and Zabarnyi (2023) where, similarly to our Theorem 1,

the optimal aggregation rule turns out to pick a single information source. However, their

agent’s objective is to minimize regret, so different techniques are necessary.

Robustness to correlations have also been studied in other contexts, such as mechanism

design. In particular, Carroll (2017) studies a multi-dimensional screening problem, where the

principal knows only the marginals of the agent’s type distribution, and designs a mechanism
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that is robust to all possible correlation structures. With similar robustness concerns regarding

the correlations of values between different bidders, He and Li (2020) study an auctioneer’s

robust design problem when selling a single indivisible good to a group of bidders.

2 Model

An agent faces a decision problem Γ ≡ (Θ, ν, A, ρ) with a finite state space Θ, a prior ν ∈ ∆Θ,

a finite action space A, and a utility function ρ : Θ × A → R. To later simplify notation,

define u(θ, a) = ν(θ)ρ(θ, a), which represents the prior-weighted utility function.

A marginal experiment Pj : Θ → ∆Yj maps each state to a distribution over some finite

signal set Yj. The agent can observe the realizations of multiple marginal experiments {Pj}mj=1,

but does not have detailed knowledge of the joint. To simplify notation, let Y = Y1×· · ·×Ym
denote the set of possible observations the agent can see. Thus, the agent conceives of the

following set of joint experiments:

P(P1, ..., Pm) =

{
P : Θ→ ∆(Y) :

∑
−j

P (y1, . . . , ym|θ) = Pj(yj|θ) for all θ, j, yj

}
.

A strategy for the agent is a mapping σ : Y → ∆(A), and the set of all strategies is

denoted by Σ. The agent’s problem is to maximize her expected utility robustly among the

set of possible joint experiments (i.e. considering the worst possible joint experiment):

V (P1, . . . , Pm) := max
σ∈Σ

min
P∈P(P1,...,Pm)

∑
θ∈Θ

∑
(y1,...,ym)∈Y

P (y1, . . . , ym|θ)u(θ, σ(y1, . . . , ym)).

We call a solution to the problem a robustly optimal strategy.

Clearly if only one experiment P : Θ → ∆(Y ) is considered (m = 1), V (P ) is the same

as the classical value of a Blackwell experiment, and a robustly optimal strategy is just an

optimal strategy for a Bayesian agent.

3 Binary State Environment

For this section, we consider the special case in which |Θ| = 2. We characterize both the

robustly optimal strategies and values in this environment. As a starting point for our analysis,

note that for any decision problem, one simple strategy is to choose exactly one experiment

Q ∈ {P1, . . . , Pm} and play the optimal strategy that uses that information alone, ignoring

the signal realizations of all other experiments. By choosing Q optimally, the agent achieves
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an ex-ante expected payoff of maxj=1,...,n V (Pj), regardless of the actual joint experiment

P ∈ P(P1, . . . , Pm). We call such a strategy a best-source strategy.

In some special cases, it is easy to see that the best-source strategy is robustly optimal. For

example, if the marginal experiments are identical, Nature can perfectly correlate the signals to

make each additional information source completely uninformative beyond the first. Similarly,

if P1 Blackwell dominates P2, . . . , Pm, then nature can correlate the signals according to the

corresponding Blackwell garblings to make the additional informational content of P2, . . . , Pm

zero, and so the agent can never guarantee a robust value more than maxj=1,...,n V (Pj). But in

general, so long as the marginal experiments are not Blackwell ranked, any correlation struc-

ture P ∈ P(P1, ..., Pm) would be strictly more informative than every marginal experiments,

in the Blackwell sense.2

Somewhat surprisingly, we show in Theorem 1 that in simple decision problems—those

with binary states and binary actions — the best-source strategy is the best that the agent

can do even beyond these special cases.

Theorem 1. For all (A, u) with |A| = |Θ| = 2,

V (P1, . . . , Pm; (A, u)) = max
j=1,...,m

V (Pj; (A, u)).

Theorem 1 presents a simple solution to any binary-state, binary-action decision problem:

identify the best marginal information source and best respond to it accordingly. We present

the proof of Theorem 1 in detail in Section 4. Clearly, maxj=1,...,m V (Pi; (A;u)) is a lower

bound on the robustly optimal value. In order to show the reverse inequality, we construct

a joint information structure, P (P1, . . . , Pm), in which an optimal strategy of the agent is to

best respond to the signal of the best marginal information source alone. In the proof, we

show additionally that P (P1, . . . , Pm) can be chosen uniformly across all binary state, binary

action decision problem. This is a feature which plays an important role in the analysis of

general decision problems in the binary state environment.

While only using one information source is sufficient in binary action, binary state decision

problems, the following example demonstrates that an agent may benefit from using multiple

sources of information in more complex decision problems.

Example 1. An investor can invest in two assets whose outputs depend on an unknown binary

state θ ∈ {1, 2}. Outputs from each asset are given by:

2In fact, any correlation structure has to dominates the “Blackwell supremum” of {P1, ..., Pm}, which will
be discussed in more details in Section 4.2.
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Asset 1

Invest Not Invest

θ = 1 2 0

θ = 2 −1 0

Asset 2

Invest Not Invest

θ = 1 −1 0

θ = 2 2 0

The investor’s payoff is the sum of outputs from both assets. This can be written as a decision

problem with A = {I,NI}×{I,NI} and u(θ, a) = u1(θ, a1) +u2(θ, a2) where a1, a2 ∈ {I,NI}
and u1, u2 are the outputs function given in the table above.3

Suppose the investor has access to two experiments P1, P2:

P1

y1 = 1 y1 = 0

θ = 1 0.9 0.1

θ = 2 0.5 0.5

P2

y2 = 1 y2 = 0

θ = 1 0.5 0.5

θ = 2 0.9 0.1

By paying attention to one experiment, for example P1, the optimal strategy is to invest in

both assets if y1 = 1 and only asset 2 if y1 = 0. The expected payoff from this strategy is thus

0.9 · 1 + 0.1 · (−1) + 0.5 · 1 + 0.5 · 2 = 2.3.4

Now suppose the investor makes the investment decision of asset 1 based on experiment

P1, and asset 2 based on experiment P2. Then for asset i = 1, 2, the optimal strategy is to

invest iff yi = 1. “Adding up” these two strategies yield:

y2 = 1 y2 = 0

y1 = 1 Invest in both Invest in asset 1

y1 = 0 Invest in asset 2 No investment

This strategy guarantees an expected output of 0.9 ·2+0.1 ·0+0.5 · (−1)+0.5 ·0 = 1.3 from

each asset regardless of the correlations, which gives a total output of 2.6 > 2.3. So the agent

strictly benefits from utilizing information from both information sources. In fact, as we will

show in the next section, this strategy is a robustly optimal strategy.

It is clear why paying attention to only one experiment is clearly suboptimal in the above

decision problem: the most informative experiment (Pi) for the investment decision pertaining

to asset i ∈ {1, 2} are distinct. Thus, the conclusion from Theorem 1 of using only a single

information source is very specific to binary action-binary state decision problems.

Nevertheless, we do see that Theorem 1 does indeed serve as the foundation for the robustly

optimal strategy: decide whether or not to invest in asset i on the basis of Pi alone. We now

generalize this idea.

3Recall that u(θ, a) = ν(θ)ρ(θ, a), so the payoffs here have been weighted by the prior.
4Symmetrically, by paying attention to only P2, the optimal strategy is to invest in both assets if y2 = 1

and only asset 2 if y2 = 0. The expected payoff is also 2.3.
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3.1 Separable Problems

Motivated by the previous example, we consider a class of decision problems featuring two

special properties: (1) the action space is a product of binary action spaces and (2) the payoff

function can be expressed in an additively separable form of binary-action problems.

Definition 1. A decision problem (A, u) is a separable problem if A can be written as a

product A1 × · · · × Ak where |A`| = 2 for all ` = 1, ..., k, and

u(θ, a) = u1(θ, a1) + · · ·+ uk(θ, ak)

for some {u` : Θ× A` → R}k`=1.

We will use
⊕k

`=1(A`, u`) to refer to a separable problem and we refer to each of the binary

decision problems, (A`, u`), as a subproblem. The next result provides a simple solution

to separable problems: for each binary-action subproblem, by Theorem 1, one can derive

a robustly optimal strategy by paying attention to the best marginal experiment and best

responding to it. Assembling these strategies then yields a robustly optimal strategy for the

original problem.

Proposition 1. For any separable problem
⊕k

`=1(A`, u`),

V

(
P1, . . . , Pm;

k⊕
`=1

(A`, u`)

)
=

k∑
`=1

max
j=1,...,m

V (Pj; (A`, u`)).

Moreover, let σ` : Y → ∆A` be a robustly optimal strategy for subproblem (A`, u`). Then

σ : Y → ∆(A1 × ...× Ak) defined by

σ(y1, ..., ym) =

(
σ`(y1, ..., ym)

)k
`=1

for all y1, ..., ym (1)

is a robustly optimal strategy for decision problem
⊕k

`=1(A`, u`).

Proof. See Section A.1.

Remark. In any separable decision problem, it is immediate that

V

(
P1, . . . , Pm;

k⊕
`=1

(A`, u`)

)
≥

k∑
`=1

max
j=1,...,m

V (Pj; (A`, u`)). (2)

The equality in Proposition 1 follows as a result of the special property highlighted in the dis-

cussion after Theorem 1—that in binary state environments, there exists a single P(P1, . . . , Pm)
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that uniformly minimizes the agent’s value across all binary action problems.5

3.2 General Decision Problems and Decompositions

The special structure of separable problems yields simple robustly optimal strategies. To what

extent can this structure be applied in tackling more general decision problems? We demon-

strate in this section that every binary-state decision problem is equivalent to a separable

problem in a sense to be made precise. The central idea involves decomposing an n-action

decision problem into n − 1 binary-action decision problems, and use these subproblems to

construct the corresponding separable problem that is equivalent to the original problem. We

call the resulting separable problem the binary decomposition.

We first define formally what it means for two decision problems to be equivalent. Given

a decision problem (A, u), let6

H(A, u) = co{u(·, a) : a ∈ A} − R2
+

be the associated polyhedron containing all payoff vectors that are either achievable or weakly

dominated by some mixed action. An example of H(A, u) is depicted in Figure 1.

θ = 2

θ = 1

u(·, a4)

u(·, a3)

u(·, a2)

u(·, a1)

H(A, u)

Figure 1: The shaded area represents H(A, u)

Whenever H(A′, u′) = H(A, u), it is immediate that

V (P1, . . . , Pm; (A′, u′)) = V (P1, . . . , Pm; (A, u))

5In contrast, with at least three states, Nature’s worst case joint experiment typically depends on the
decision problem. Therefore, minP∈P V (P ;

⊕k
`=1(A`, u`)) ≥

∑k
`=1 minP∈P V (P ; (A`, u`)), which in general is

not an equality.
6Here and in what follows, whenever + and − are used in the operations of sets, they denote the Minkowski

sum and difference.
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θ = 2

(0,0) θ = 1

u1(·, 1)

u2(·, 1)

u3(·, 1)

u(·, a4)

u(·, a3)

u(·, a2)

u(·, a1)

H(A, u)

(a) Binary decomposition

θ = 2

(0,0) θ = 1

u1(·, 1)

u3(·, 1)

H(A, u)

(b) A nonconsecutive sum of u`(·, 1) lies in
the interior of H(A, u)

Figure 2

for all Blackwell experiments P1, . . . , Pm, and so we call (A, u) and (A′, u′) equivalent.

Definition 2. Two decision problems (A, u) and (A′, u′) are equivalent if H(A, u) = H(A′, u′).

Next we show by direct construction that, every binary-state decision problem is equivalent

to a separable problem. We start with some normalization to simplify exposition. First we

remove all weakly*-dominated actions,7 so that actions can be ordered such that

u(θ1, a1) < u(θ1, a2) < · · · < u(θ1, an),

u(θ2, a1) > u(θ2, a2) > · · · > u(θ2, an).

Moreover, by adding a constant vector, we can normalize u(·, a1) = (0, 0).

Definition 3. Given a decision problem (A, u), the binary decomposition of (A, u) is a

separable problem
⊕n−1

`=1 (A`, u`) where

A` := {0, 1} , u`(·, 0) = (0, 0), u`(·, 1) = u(·, a`+1)− u(·, a`).

The key idea underlying the binary decomposition is to decompose the original problem

into binary-action decision problems that compare each pair of consecutive actions. This can

be visualized in Figure 2(a) for an example with four actions. The four-action decision problem

is decomposed into three binary-action decision problems, by examining the difference vectors

u(·, a`+1)− u(·, a`). Each decomposed subproblem can be interpreted as choosing whether to

“move forward” to the next action.

7An action a ∈ A is weakly*-dominated if there exists α ∈ ∆A such that u(a) ≤ u(α). If there are
duplicated actions, we remove all but keep one copy.

9



Notice that every action in the original problem can be replicated in the binary decompo-

sition. This is due to the fact that u(·, ai) =
∑i−1

`=1 u`(·, 1) +
∑n−1

`=i u`(·, 0) for all i = 1, ..., n.

So H(A, u) ⊂ H
(⊕n−1

`=1 (A`, u`)
)
. By contrast, the binary decomposition

⊕n−1
`=1 (A`, u`) could

introduce additional payoff vectors. To illustrate, take the example in Figure 2(b). Here, by

taking δ = (1, 0, 1), the separable problem induces an additional payoff vector that does not

belong to the original problem. However, this additional action lies in the interior of H(A, u),

and thus is dominated by one of the original (possibly mixed) actions. This observation is

not a coincidence. As shown in the next lemma, any additional payoff vectors induced in the

binary decomposition will always lie within H(A, u), so H(A, u) = H
(⊕n−1

`=1 (A`, u`)
)
.

Lemma 1. The binary decomposition of (A, u) is equivalent to (A, u).

Proof. See Section A.4.

Lemma 1 and Proposition 1 permit us to derive a robustly optimal strategy for any decision

problem (A, u) through its binary decomposition.

Theorem 2. Let (A1, u1), . . . , (An−1, un−1) be the binary decomposition of (A, u), and σ` be a

robustly optimal strategy for (A`, u`). Then

1. V (P1, . . . , Pm; (A, u)) =
∑n−1

`=1 maxj=1,...,m V (Pj; (A`, u`)).

2. There exists σ∗ : Y → ∆A such that u(·, σ∗(y)) ≥
∑n−1

`=1 u`(·, σ`(y)) for all y. Moreover,

any such σ∗ is a robustly optimal strategy for (A, u).

Proof. See Section A.2.

Theorem 2 allows us to construct a robustly optimal strategy for any decision problem

(A, u) in two steps: 1) For each subproblem, (A`, u`), only one (the best) marginal experiment

needs to be considered, and a robustly optimal strategy σ∗` can be chosen to be measurable

with respect to this experiment alone; 2) For each realization y, pick a (mixed) action σ∗(y) ∈
∆(A) such that u(σ∗(y)) ≥

∑n−1
`=1 u`(σ

∗
` (y)). Notably, the marginal experiments, Y1, . . . , Ym,

influence the robustly optimal strategy only through its effect on the choice of σ∗` (y) in each

of the subproblems.

The theorem delivers two immediate corollaries.

Corollary 1. Suppose
⊕n−1

`=1 (A`, u`) is the binary decomposition of (A, u). For any j,

V (P1, ..., Pm; (A, u)) = V (P−j; (A, u))

if and only if V (Pj; (A`, u`)) ≤ maxj′ 6=j V (Pj′ ; (A`, u`)) for all ` = 1, ..., n− 1.

10



Corollary 1 shows that an additional marginal experiment robustly improves the agent’s

value if and only if it outperforms all other marginal experiments in at least one of the

decomposed problems.

Corollary 2. For any decision problem (A, u) with |A| = n, and any collection of experiments

{Pj}mj=1, there exists a subset of marginal experiments {Pj}j∈S⊂{1,...,m} with |S| ≤ n− 1, such

that

V (P1, · · · , Pm; (A, u)) = V ({Pj}j∈S; (A, u)).

Corollary 2 implies that in an n-action decision problem, an agent needs to use at most

n− 1 sources of information.

4 Proof of Theorem 1

We now return to the proof of Theorem 1. We first begin with some preliminary remarks

regarding the Blackwell order when |Θ| = 2.

4.1 The Blackwell order

It will be useful to rank experiments according to how much information they convey. We will

review the Blackwell order in this subsection for the sake of completeness. Readers familiar

with the Blackwell order may choose to skip this subsection.

Definition 4. P : Θ→ ∆(Y ) is more informative than Q : Θ→ ∆(Z) if, for every decision

problem, we have the inequality V (P ) > V (Q). We also say that P Blackwell dominates Q.

There are two other natural ways of ranking experiments by informativeness. The first

uses the notion of a garbling.

Definition 5. Q : Θ → ∆(Z) is a garbling of P : Θ → ∆(Y ) if there exists a function

g : Y → ∆(Z) (the “garbling”) such that Q(z|θ) =
∑

y g(z|y)P (y|θ).

Thus Q is a garbling of P when one can replicate Q by “adding noise” to the signal

generated from P . The second ranking uses the feasible state-action distributions.

Definition 6. Given a set of actions A and an experiment P : Θ→ ∆(Y ), the feasible set of

P is

ΛP (A) =

{
λ : Θ→ ∆A

∣∣∣ λ(a|θ) =
∑
y

σ(a|y)P (y|θ) for some σ : Y → ∆(A)

}
.
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The feasible set of an experiment specifies what conditional action distributions can be

obtained by some choice of strategy σ. One might then say that more information allows for

a larger set.

Blackwell’s Theorem states that these rankings of informativeness are equivalent (for a

proof, see e.g. Blackwell (1953) or de Oliveira (2018)).

Blackwell’s Theorem. The following statements are equivalent

1. P is more informative than Q;

2. Q is a garbling of P ;

3. For all sets A, ΛQ(A) ⊆ ΛP (A).

In addition, when |Θ| = 2, theorem 10 in Blackwell (1953) shows that the above statements

are also equivalent to

4. For a set A with |A| = 2, ΛQ(A) ⊆ ΛP (A).

This last equivalent condition gives us a simple graphical representation of Blackwell experi-

ments when |Θ| = 2. See Figure 3(a) for an illustration. Since |A| = 2, to characterize ΛP (A),

it suffies to specify the probability of taking one of the two actions. The x-axis denotes the

probability of taking this action in state 1, and y-axis the probability in state 2. Clearly

(0, 0), (1, 1) ∈ ΛP (A) for all P , because these two points represent taking the same actions

regardless of the signal realizations. With the information obtained from the Blackwell ex-

periment, additional points can be obtained. For example, the point (0.1, 0.5) in Figure 3(a)

can be achieved if the decision maker has access to a signal that realizes with probabiliy 0.1

in state 1 and probability 0.5 in state 0, and takes action a = 1 when observing such a signal

realization. Symmetrically, she can also take action a = 0 when observing the same signal

realization, which yields the point (0.5, 0.9). Moreover, randomization convexifies the set and

thus ΛP (A) is a convex and rotational symmetric polytope in [0, 1]2. Conversely, any convex

and rotational symmetric polytope in [0, 1]2 correspond to ΛP (A) for some P .

4.2 The Blackwell Supremum

Our analysis will use some lattice properties of the Blackwell order. In particular, the concept

of a Blackwell supremum will be useful.

Definition 7. Let P1 and P2 be two arbitrary experiments. We say that P is the Blackwell

supremum of P1 and P2 if

1. P is more informative than P1 and P2;

12



λ(·|θ = 2)

(0,0) λ(·|θ = 1)

(1,1)

(0.1, 0.5)
(0.9,0.5)

(a) An example of ΛP (A) with |Θ| = |A| = 2

(0,0)

ΛP1

ΛP2

ΛP

(b) ΛP as the convex hull of ΛP1
∪ ΛP2

Figure 3

2. If Q is more informative than P1 and P2, then Q is also more informative than P .

The definition extends to any number of experiments. By definition, if there are two

Blackwell suprema, they must Blackwell dominate each other. This means that by looking at

the equivalence class of experiments with the same level of information, we can say that the

Blackwell supremum is unique.

Under binary state, the Blackwell supremum always exists and can be characterized using

the feasible set, as illustrated in Figure 3(b). If P is the Blackwell supremum of P1 and P2,

we know from Blackwell’s Theorem that ΛP must contain both ΛP1 and ΛP2 .
8 Moreover, any

P ′ that is more informative than P1 and P2 must be more informative than P as well, so

ΛP ′ must also contain ΛP . Hence the feasible set of the Blackwell supremum should be the

smallest feasible set containing ΛP1 ∪ ΛP2 . The feasible set is always convex, so the P that

corresponds to ΛP = co(ΛP1 ∪ ΛP2) is the Blackwell supremum. This observation yields the

following lemma:9

Lemma 2. When |Θ| = 2, the Blackwell supremum always exists. An experiment P is the

Blackwell supremum of P1 and P2 if and only if ΛP = co(ΛP1 ∪ ΛP2).

When |Θ| ≥ 3, a Blackwell supremum may not exist, as illustrated in example 18 of

Bertschinger and Rauh (2014). The proof of existence fails becasue in a higher dimensional

space, the convex hull of ΛP1 ∪ ΛP2 might not correspond to any Blackwell experiment.

8For ease of notation, we omit the dependence of ΛP (A) on the set A when |A| = 2.
9For a formal proof, see e.g., Kertz and Rösler (1992) or Bertschinger and Rauh (2014).
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4.3 Nature’s MinMax Problem

Most of our focus will be on the robustly optimal strategies for the agent, but it will be helpful

to first understand Nature’s problem, of choosing the worst possible correlation structure.

First note that since the objective function is linear in both σ and P , and the choice sets

of σ and P are both convex and compact, the minimax theorem implies that

V (P1, . . . , Pm) = min
P∈P(P1,...,Pm)

max
σ∈Σ

∑
θ∈Θ

∑
(y1,...,ym)∈Y

P (y1, . . . , ym|θ)u(θ, σ(y1, . . . , ym))

= min
P∈P(P1,...,Pm)

V (P )

That is, the value of the agent’s maxmin problem equals the value of a minmax problem where

Nature chooses an experiment in the set P(P1, . . . , Pm) to minimize a Bayesian agent’s value

in the decision problem.

Observe that every experiment in P(P1, . . . , Pm) must be more informative than every Pj,

since the projection into the jth coordinate defines a garbling. So if we let D(P1, . . . , Pm)

denote the set of Blackwell experiments that dominates P1, ..., Pj, then P(P1, . . . , Pm) ⊆
D(P1, . . . , Pm). The set D(P1, . . . , Pm) is in general a larger set, because not every exper-

iment that dominate P1, ..., Pm can be represented as a joint experiments with marginals

P1, ..., Pm.10 However, the next lemma shows that relaxing the Nature’s problem to choosing

an experiment from the set D(P1, . . . , Pm) does not change the value of the problem.

Lemma 3.

V (P1, . . . , Pm) = min
P∈P(P1,...,Pm)

V (P ) = min
P∈D(P1,...,Pm)

V (P )

The idea underlying Lemma 3 is that in the relaxed problem, Nature would only choose the

experiments that are Blackwell minimal—those that do not dominate any other experiment

in D(P1, . . . , Pm). In additional, any Blackwell minimal element in the set can be represented

as a joint experiment, as shown in Appendix A.3.

Lemma 3 is particularly useful when the state is binary. Under binary states, the Blackwell

supremum P of P1, ..., Pm exists, and it is the minimum element in D(P1, . . . , Pm). Therefore,

P solves Nature’s problem regardless of the decision problem, which yields the following

corollary.

Corollary 3. When |Θ| = 2,

V (P1, ..., Pm) = V (P (P1, ..., Pm))

10For a simple example, consider two experiments P1 and P2 whose signal spaces Y1 and Y2 are both singleton.
Then P(P1, P2) contains only the babbling experiment while D(P1, P2) contains all Blackwell experiments.

14



(0,0)

ΛP1

ΛP2

ΛP

u

Figure 4: The maximum is achieved at an extreme point that belongs to ΛP2

where P (P1, ..., Pm) is a Blackwell supremum of experiments {P1, ..., Pm}.

Thus, in binary-state decision problems, the agent’s value from using a robust strategy

is the same as the value she would obtain if she faced a single experiment—the Blackwell

supremum of all marginal experiments. Moreover, the Blackwell supremum depends only on

the marginal experiments, and not on the particular decision problem.

We can now prove Theorem 1.

Proof of Theorem 1. By Corollary 3, it suffices to show that V (P (P1, ..., Pm)) = maxj=1,...,m V (Pj).

By Lemma 2, an experiment P is the Blackwell supremum of P1, . . . , Pm if and only if

ΛP = co (ΛP1 ∪ · · · ∪ ΛPm) (3)

Now, the maximum utility achievable given Blackwell experiment P (P1, . . . , Pm) is V (P ) =

maxλ∈ΛP

∑
a,θ u(θ, a)λ(a|θ). Since the maximand is linear in λ, the maximum is achieved at

an extreme point of ΛP . By (3), an extreme point of ΛP must belong to some ΛPj . Hence, we

have

V (P ) = max
λ∈ΛPj

∑
a,θ

u(θ, a)λ(a|θ) = V (Pj) ≤ max
j′=1,...,m

V (Pj′).

Since P̄ is more informative than every Pj, we also have V (P̄ ) ≥ maxj′=1,...,m V (Pj′), conclud-

ing the proof.

The idea of Theorem 1 can be visualized in Figure 4 for two marginal experiments. Each

marginal Blackwell experiment P1, P2 can be represented by ΛP1 ,ΛP2 , the set of feasible state-

action distribution generated by the experiment. The corresponding ΛP for Blackwell supre-

mum P is the convex hull of ΛP1 ∪ ΛP2 . Since the utility function is linear with respect to

λ ∈ ΛP , the maximum is achieved at an extreme point, which belongs to either ΛP1 or ΛP2 ,

and thus can be achieved by using a single marginal experiment.
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5 General-State Decision Problems

Our previous analyses focus on binary-state decision problems. The cornerstone of our ap-

proach is the decomposition of a complex decision problem into “elementary” binary-action

problems. By aggregating the simple solution of these binary-action subproblems, we can

derive a solution to the initial, more complex problem.

A natural question is whether this approach can be extended into environments with

more states. Unfortunately, it fails in a few ways. First, with more states, it is unclear how

to decompose a general decision problem into the more “elementary” ones. Second, the non-

existence of the Blackwell supremum implies that in the Nature’s minmax problem, there may

no longer be a single experiment that uniformly minimize the agent’s value across all decision

problems, which significantly exacerbates the complexity of the analysis (see Footnote 5).

Lastly, an agent may want to use multiple information sources even in a binary-action decision

problem, as illustrated in Example 2 below.

Example 2. Suppose that there are three states θ1, θ2, θ3. The marginal experiments are both

binary with respective signals x1, x2, y1, y2, and given by Table 1.

PX
PX(x|θ) x1 x2

θ1 1 0
θ2 1 0
θ3 0 1

PY
PX(y|θ) y1 y2

θ1 1 0
θ2 0 1
θ3 0 1

Table 1

Intuitively, experiment PX tells the agent whether the state is θ3 or not and experiment

PY tells the agent whether the state is θ1 or not. Of course, upon observing both experiments,

the agent obtains perfect information and so in any decision problem, the agent obtains the

perfect information payoff.

Let A = {1, 0} and suppose that the utilities are as follows:

u(θ, a = 1) = 1 (θ ∈ {θ1, θ3})− 1 (θ = θ2) ,

u(θ, a = 0) = 0.

Then the agent’s maxmin value from marginals PX , PY is her perfect information payoff:

0 + 1 + 1 = 2.

By using only one information source (either PX or PY ), a = 0 is always a best response

to any signal realization, so the agent’s expected payoff is 0.
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In this section, we develop a different technique, using the piecewise linearity of the interim

value function to simplify the set of Blackwell experiments Nature would use. This allows us

to provide a general bound on the number of experiments an agent needs to use.

Recall that a decision problem is a tuple Γ ≡ (Θ, ν, A, ρ) with a finite state space Θ, a

prior ν ∈ ∆Θ, a finite action space A, and a utility function ρ : Θ × A → R. For a given

decision problem Γ, the corresponding interim value function, vΓ : ∆(Θ)→ R, is defined as

vΓ(µ) = max
a∈A

∑
θ∈Θ

µ(θ)ρ(θ, a).

Given a value function v : ∆(Θ) → R, its epigraph is defined as epi (v) = {(µ,w) : w ≥
v(µ), µ ∈ ∆(Θ)}. It can be easily seen that the set of extreme points of the epigraph, denoted

by ext(epi (v)), is finite and contains {(δ1, v(δ1)), ..., (δn, v(δn))}, where δi denotes the Dirac

measure on θi. The kinks of v is the set of extreme points of its epigraph, excluding those

point-mass beliefs (δi, v(δi). Thus, the number of kinks of v is |ext(epi (v))|−|Θ|. See Figure 5

for an illustration when |Θ| = 2 and |A| = 3. Each dashed line denotes the agent’s interim

payoff from an action, and their upper envelope (in red) is the interim value function. The

blue dots are its kinks.

v(µ)

0 µ1

Figure 5: Interim value function and kinks

The following theorem provides a bound on the number of experiments that a decision

maker would need, which is precisely the number of kinks of the corresponding interim value

function. The important feature of this upper bound is that it does not depend on the set of

experiments in any way; it only depends on the decision problem.

Theorem 3. Consider any decision problem whose corresponding interim value function has k

kinks. For any collection of experiments {Pj}mj=1, there exists a subset of marginal experiments
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{Pj}j∈J⊂{1,...,m} with |J | ≤ k, such that

V (P1, ..., Pm) = V ({Pj}j∈J).

The full proof of Theorem 3 is deferred to Appendix A.5, but here we will sketch the main

steps. We will prove the theorem by examining Nature’s minmax problem. From Lemma 3,

Nature’s minmax problem can be relaxed into choosing an experiment among the set of all

experiments that Blackwell dominate P1, ..., Pm.

Next, note that the interim value function is convex and piecewise linear. Moreover, the

“kinks” are the extreme points of those linear faces. Any non-extreme point in those linear

faces can be expressed as a convex combination of extreme points. Thus, we can apply a mean-

preserving spread to take any belief into extreme points while leaving the expected payoff

unchanged. This allows us to further simplify the Nature’s minmax value, by restricting

attention to those experiments whose induced posterior distributions are supported on the

extreme points. This set can be characterized by a k-dimensional polytope, where k is the

number of kinks.

Now Nature’s problem can be written as a k-dimensional linear program with k effective

constraints. These k effective constraints must come from at most k number of marginal

experiments. Consequently, the value of the problem is the same as the value of the problem

with k experiments. Hence, the agent need not use more than k experiments.

Theorem 3 suggests one may ignore information sources due to robustness concerns. The

following proposition further tells us which information sources will always be ignored: if an

information source Pm is never the best information source among {Pj}mj=1, then it can always

be ignored in a robustly optimal strategy.

Proposition 2. If for any decision problem (A, u), V (Pm; (A, u)) ≤ maxj=1,...,m−1 V (Pj; (A, u)),

then for any decision problem (A, u),

V (P1, ..., Pm; (A, u)) = V (P1, ..., Pm−1; (A, u)).

Proof. See Appendix A.6.

The condition in Proposition 2 is weaker than Pm being Blackwell dominated by one of

the other experiments P1, ..., Pm−1, because the experiment that outperforms Pm may depend

on the particular decision problem (A, u). As shown in Cheng and Borgers (2023), this

condition is equivalent to Pm being dominated by a convex combination of P1, ..., Pm−1. Such

characterization will be useful in our proof.11

11In the proof, we established a slightly stronger result than Proposition 2: experiment Pm can be ignored
if it is dominated by all correlation structures between P1, ..., Pm−1.
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This proposition highlights a sense in which it is beneficial to gather information from

multiple information sources that are specialized: the agent prefers to pay attention only to

those information sources that perform the best in isolation in some decision problem. In

other words, there may be information sources that perform reasonably well across all decision

problems, but which the agent chooses to ignore because for each decision problem, there is

at least one other experiment that performs better.
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A Appendix

A.1 Proof of Proposition 1

Proof. By definition of σ,

V

(
P1, . . . , Pm;

k⊕
`=1

(A`, u`)

)
≥ min

P∈P(P1,...,Pm)

k∑
`=1

EP [u`(θ, σ`(y))]

≥
k∑
`=1

min
P∈P(P1,...,Pm)

EP [u`(θ, σ`(y))]

=
k∑
`=1

max
j=1,...,m

V (Pj; (A`, u`)).

Moreover, by Theorem 1 and Corollary 3,

k∑
`=1

max
j=1,...,m

V (Pj; (A`, u`)) =
k∑
`=1

V (P (P1, ..., Pm); (A`, u`))

= V

(
P (P1, . . . , Pm);

k⊕
`=1

(A`, u`)

)

≥ V

(
P1, . . . , Pm;

k⊕
`=1

(A`, u`)

)
.

Together, these inequalities prove our claim that

V

(
P1, . . . , Pm;

k⊕
`=1

(A`, u`)

)
=

k∑
`=1

max
j=1,...,m

V (Pj; (A`, u`))

and that σ is a robustly optimal strategy.

A.2 Proof of Theorem 2

Proof. From Lemma 1, (A, u) is equivalent to
⊕n−1

`=1 (A`, u`), so

V (P1, ..., Pm; (A, u)) = V

(
P1, ..., Pm;

n−1⊕
`=1

(A`, u`)

)
=

n−1∑
`=1

max
j=1,...,m

V (Pj; (A`, u`)),

where the second equality follows from Proposition 1. This establishes the first statement of

the theorem.
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For each y,
∑n−1

`=1 u`(·, σ`(y)) ∈ H
(⊕n−1

`=1 (A`, u`)
)

= H(A, u). So there exists σ∗(y) such

that u(·, σ∗(y)) ≥
∑n−1

`=1 u`(·, σ`(y)). Now for any P ∈ P(P1, ..., Pm),

EP [u(θ, σ∗(y))] ≥ EP

[
n−1∑
`=1

u`(θ, σ`(y))

]

= V

(
P1, ..., Pm;

n−1⊕
`=1

(A`, u`)

)
= V (P1, ..., Pm; (A, u))

where the second line follows from Proposition 1 and the third line follows from Lemma 1. So

σ∗ is a robustly optimal strategy.

A.3 Proof of Lemma 3

Proof. The first equality follows from the minmax theorem. To prove the second equality, it

suffices to show that for any Q ∈ D(P1, ..., Pm), there exists Q̃ ∈ P(P1, ..., Pm) such that Q̃ is

Blackwell dominated by Q.

Take any Q ∈ D(P1, ..., Pm) and let X be the signal space of Q. By Blackwell’s Theorem,

there exist γj : X → ∆Yj such that for each j,

Pj(yj|θ) =
∑
x

γj(yj|x)Q(x|θ).

Define the following joint Blackwell experiment Q̃ : Θ→ ∆(Y1 × ...× Ym):

Q̃(y1, ..., ym|θ) =
∑
x

m∏
j=1

γj(yj|x)Q(x|θ). (4)

Clearly, Q̃ ∈ P(P1, ..., Pm) because
∑

y−j
Q̃(y1, ..., ym|θ) =

∑
x γj(yj|x)Q(x|θ) = Pj(yj|θ).

Moreover,
∏m

j=1 γj(yj|x) defines a garbling, so Q̃ is Blackwell Dominated by Q.

A.4 Proof of Lemma 1

Proof. Consider the binary decomposition
⊕n−1

`=1 (A`, u`). We prove that for any δ ∈ {0, 1}n−1,∑n−1
`=1 δ`u`(·, 1) ∈ H(A, u).

Suppose otherwise that there exists δ ∈ {0, 1}n−1 for which u∗ :=
∑n−1

`=1 δ`u`(·, 1) /∈
H(A, u). Since H(A, u) is a convex and closed, by Corollary 11.4.2 of Rockafellar (1970),
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there exists λ ∈ R2 \ {0} such that

λ · u∗ > sup
v∈H(A,u)

λ · v. (5)

Note that λ ≥ 0 since otherwise supv∈H(A,u) λ · v = +∞.

From the ordering of the actions and the binary decomposition, u`(θ2, 1)/u`(θ1, 1) is strictly

decreasing in `. Therefore, for any `′ > `,

λ · u`(·, 1) ≤ 0 =⇒ λ · u`′(·, 1) < 0.

So there exists `∗ such that λ · u`(·, 1) > 0 for ` < `∗ and λ · u`(·, 1) ≤ 0 for ` ≥ `∗.

u(a4)

u(a3)

u(a2)

u(a1)

u∗

λ

H(A, u)

Figure 6

Thus

max
δ′∈{0,1}n−1

n−1∑
`=1

λ · δ′`u`(·, 1)

is solved by choosing δ′` = 1 for ` < `∗ and δ′` = 0 for ` ≥ `∗. Hence

λ · u(·, a`∗) = λ ·
`∗−1∑
`=1

u`(·, 1) ≥ λ ·
n−1∑
`=1

δ`u`(·, 1) = λ · u∗.

But u(·, a`∗) ∈ H(A, u), contradicting (5).

A.5 Proof of Theorem 3

We shall start with some preliminary definitions and lemmas.
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A.5.1 Definitions

Given an interim value function v : ∆(Θ) → R, let E = proj∆(Θ) ext(epi (v)) denote the

projection of ext(epi (v)) on ∆(Θ).

For a Blackwell experiment P : Θ→ ∆Y , the induced posterior distribution τP ∈ ∆(∆(Θ))

is defined as

τP (µ) =
∑
y∈Yµ

∑
θ

µ0(θ)P (y|θ)

where

Yµ =

{
y ∈ Y

∣∣∣ µ0(θ)P (y|θ)∑
θ µ0(θ)P (y|θ)

= µ(θ),∀θ
}
.

Given a finite collection of Blackwell experiments P1, ..., Pm, recall that D(P1, ..., Pm)

denotes the set of Blackwell experiments that dominate P1, ..., Pm. Let D̂(P1, ..., Pm) =

D(P1, ..., Pm) ∩ {P : supp(τP ) ∈ E} denote the subset of D such that the induced poste-

rior distribution is supported in E.

Recall that we assumed every action ai ∈ A is a best response to some belief. Let Ξi =

{µ ∈ ∆(Θ)|
∑

θ µ(θ)ρ(θ, ai) ≥
∑

θ µ(θ)ρ(θ, a′) for all a′ ∈ A} denote the set of beliefs that

action ai is a best response to. It is easy to verify that Ξi is nonempty, compact, and convex.

A.5.2 Lemmas

Lemma 4. For every i, ext(Ξi) ⊂ E.

Proof. Suppose by contradiction that there exists x ∈ ext(Ξi) and x /∈ E.

Since x /∈ E, (x, v(x)) is not an extreme point of epi (v), so there exists (x′, r′), (x′′, r′′) ∈
epi(v) and λ ∈ (0, 1) such that (x′, r′) 6= (x′′, r′′) and

(x, v(x)) = λ(x′, r′) + (1− λ)(x′′, r′′).

Observes that x′ 6= x′′, otherwise either r′ < v(x) or r′′ < v(x), which contradicts to

(x′, r′), (x′′, r′′) ∈ epi(v).

Since (x, v(x)) is a boundary point of epi(v), by the supporting hyperplane theorem, there

exists h ∈ Rn and c ∈ R such that

h · (x, v(x)) = c and h · y ≥ c for all y ∈ epi(v).

Notice that both (x′, r′) and (x′′, r′′) must be on this hyperplane, otherwise

h · (x, v(x)) = λh · (x′, r′) + (1− λ)h · (x′′, r′′) > c
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which leads to a contradiction. Moreover, r′ = v(x′) and r′′ = v(x′′), otherwise

h · (x, v(x)) = λh · (x′, r′) + (1− λ)h · (x′′, r′′)

> λh · (x′, v(x′)) + (1− λ)h · (x′′, v(x′′))

= h · [λ(x′, v(x′)) + (1− λ)(x′′, v(x′′)]

≥ c

where the last inequality follows from λ(x′, v(x′)) + (1− λ)(x′′, v(x′′)) ∈ epi (v).

So
v(x) = λ

∑
θ

v(x′) + (1− λ)v(x′′)

≥ λ
∑
θ

x′(θ)ρ(θ, ai) + (1− λ)
∑
θ

x′′(θ)ρ(θ, ai)

=
∑
θ

x(θ)ρ(θ, ai)

= v(x)

(6)

Moreover, by the definition of the interim value function, we have
∑

θ x
′(θ)ρ(θ, ai) ≤

v(x′) and
∑

θ x
′′(θ)ρ(θ, ai) ≤ v(x′′). Therefore, for equation (6) to hold, we must have∑

θ x
′(θ)ρ(θ, ai) = v(x′) and

∑
θ x
′′(θ)ρ(θ, ai) = v(x′′), which implies x′, x′′ ∈ Ξi. This contra-

dicts to x ∈ ext(Ξi).

Lemma 5. For any P , there exists P̃ ∈ D̂(P ) such that V (P ) = V (P̃ ).

Proof. For any belief µ, there exists i such that µ ∈ Ξi, and we let i(µ) be any such i. Observe

that v is linear on Ξi for each i.

By the definition of ext(Ξi), for each µ, there exists γ(·|µ) ∈ ∆(ext(Ξi(µ))) such that∑
µ′∈ext(Ξi(µ))

γ(µ′|µ)µ′ = µ.

We construct the following posterior distribution:

τ̃(µ′) =
∑
µ

τ(µ)γ(µ′|µ).

From Lemma 4, ext(Ξi) ⊂ E, so τ̃ is supported on E. Moreover, by construction, τ̃ is a mean-

preserving spread of τ . From Blackwell (1953), there exists P̃ inducing τ̃ and P̃ Blackwell

dominates P . Therefore, P̃ ∈ D̂(P ), and we will show that V (P ) = V (P̃ ), and the lemma

follows.
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Now

V (P ) =
∑

µ∈supp(τP )

τ(µ)v(µ)

=
∑

µ∈supp(τP )

τ(µ) v

(∑
µ′∈E

γ(µ′|µ)µ′

)
=

∑
µ∈supp(τP )

τ(µ)
∑
µ′∈E

γ(µ′|µ)v(µ′)

=
∑
µ′∈E

∑
µ∈supp(τP )

τ(µ)γ(µ′|µ)v(µ′)

=
∑
µ′∈E

τ̃(µ′)v(µ′)

= V (P̃ )

where the third equality holds because for each µ, γ(·|µ) is supported on Ξi(µ) and v is linear

on Ξi(µ).

Lemma 6.

V (P1, ..., Pm) = min
P∈∩mj=1D̂(Pj)

V (P )

Proof. First note that

V (P1, ..., Pm) = min
P∈P(P1,...,Pm)

V (P )

= min
P∈D(P1,...,Pm)

V (P )

≤ min
P∈D̂(P1,...,Pm)

V (P )

where the second equality holds from Lemma 3, the inequality holds because D̂(P1, ..., Pm) ⊂
D(P1, ..., Pm).

Now we show that V (P1, ..., Pm) ≥ minP∈D̂(P1,...,Pm) V (P ). Let P ∗ ∈ argminP∈D(P1,...,Pm) V (P ).

From Lemma 5, there exists P̃ ∈ D̂(P ∗) ⊂ D̂(P1, ..., Pm) such that V (P̃ ) = V (P ∗). Therefore,

V (P1, ..., Pm) = V (P ∗) = V (P̃ ) ≥ minP∈D̂(P1,...,Pm) V (P ), where the inequality holds because

P̃ ∈ D̂(P1, ..., Pm). Therefore V (P1, ..., Pm) = minP∈D̂(P1,...,Pm) V (P ).

Finally, let T denote the set of experiments with induced posteriors with support in E.

Then D̂(P1, ..., Pm) = D(P1, ..., Pm) ∩ T = ∩mj=1D(Pj) ∩ T = ∩mj=1 (D(Pj) ∩ T ) = ∩mj=1D̂(Pj),

which concludes the proof.
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The next lemma shows that set D̂(P ) can be characterized by a k-dimensional polytope,

where k is the number of kinks. To simplify the statement of the result, we will need a few

more definitions.

Let T = E\{δ1, ..., δn} denote the set of kinks, and let k
.
= |T |. We can list the elements

in T by {t1, ..., tk}.
For any belief µ ∈ ∆(Θ), define the set X(µ) to be the set of x ∈ ∆(Θ) ⊂ Rk such that

x1t1 + x2t2 + · · ·+ xktk ≤ µ

x1 + ...+ xk ≤ 1

x` ≥ 0 for ` = 1, .., k

which is a k-dimensional polytope.

Lemma 7. An experiment Q ∈ D̂(P ) if and only if
(
τQ(t1), ..., τQ(tk)

)
∈
⊕

µ∈supp(τP ) τ(µ)X(µ).

Proof. “⇒”: Suppose an experiment Q ∈ D̂(P ), then τQ is a mean-preserving spread of

τP . By definition, there exists a stochastic mapping η : supp(τP ) → ∆E, such that for any

µ ∈ supp(τP ) and ν ∈ supp(τQ),

µ =
∑
ν∈E

η(ν|µ)ν

τQ(ν) =
∑
µ

η(ν|µ)τP (µ).

So for each µ ∈ supp(τP ),

µ =
∑
ν∈E

η(ν|µ)ν

=
k∑
`=1

η(t`|µ)t` +
n∑
i=1

η(δi|µ)δi

which implies
∑k

`=1 η(t`|µ)t` ≤ µ, so
(
η(t1|µ), ..., η(tk|µ)

)
∈ X(µ). Since τQ(ν) =

∑
µ η(ν|µ)τP (µ),

for any ` = 1, ..., k,

τQ(t`) =
∑
µ

τP (µ)η(t`|µ)

which implies
(
τQ(t1), ..., τQ(tk)

)
∈
⊕

µ∈supp(τP ) τP (µ)X(µ) ⊆ [0, 1]k.

“⇐”: Suppose an experiment Q generates a posterior distribution τQ ∈ ∆(∆(E)) with(
τQ(t1), ..., τQ(tk)

)
∈
⊕

µ∈supp(τP ) τP (µ)X(µ), we show that τQ is a mean-preserving spread of

τP .
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Since
(
τQ(t1), ..., τQ(tk)

)
∈
⊕

µ∈supp(τP ) τP (µ)X(µ), there exists x(µ) ∈ X(µ) ⊆ [0, 1]k such

that (
τQ(t1), ..., τQ(tk)

)
=

∑
µ∈supp(τP )

τP (µ)x(µ)

Let x`(µ) denote the `-th element of x(µ), then by the definition of X(µ),

x1(µ)t1 + x2(µ)t2 + · · ·+ xk(µ)tk ≤ µ

x1(µ) + ...+ xk(µ) ≤ 1.

Define η : supp(τP )→ ∆(E) as follows:

η(t`|µ) = x`(µ) for ` = 1, ..., k

η(δi|µ) = [µ−
(
x1(µ)t1 + x2(µ)t2 + · · ·+ x(µ)ktk

)
]i

where [µ−
(
x1(µ)t1 + x2(µ)t2 + · · ·+ x(µ)ktk

)
]i denote the i-th element of the vector.

Notice that

n∑
i=1

η(δi|µ) =
∑
θ

[µ(θ)−
(
x1(µ)t1(θ) + x2(µ)t2(θ) + · · ·+ x(µ)ktk(θ)

)
]

= 1−
k∑
`=1

η(t`|µ)

so
∑k

`=1 η(t`|µ) +
∑n

i=1 η(δi|µ) = 1, which shows η is indeed a stochastic mapping. Moreover,

it is easy to verify that η preserves the mean, i.e.,
∑k

`=1 η(t`|µ)t` +
∑n

i=1 η(δi|µ)δi = µ.

The last thing we need to show is that τQ(δi) =
∑

µ η(δi|µ)τP (µ), for all i = 1, ..., n. Notice
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that

τQ(δi) =
[
µ0 −

k∑
`=1

τQ(t`)t`
]
i

=
[
µ0 −

k∑
`=1

∑
µ

τP (µ)x`(µ)t`
]
i

=
[
µ0 −

∑
µ

τP (µ)
k∑
`=1

x`(µ)t`
]
i

=
[
µ0 −

∑
µ

τP (µ)

(
µ−

n∑
i=1

η(δi|µ)δi

)]
i

=
[∑

µ

τP (µ)
n∑
i=1

η(δi|µ)δi
]
i

=
∑
µ

τP (µ)η(δi|µ).

Now we have shown that τQ is a mean-preserving spread of τP with support in E, so Q ∈ D̂(P ).

The following lemma is a standard result in linear programming, stating that a k-dimensional

linear programming problem has at most k effective constraints.

Lemma 8. Consider a feasible and bounded linear programming problem

V = max
x∈Rk

c · x

s.t. Ax ≤ b

where c ∈ Rk and A is a m × k matrix with rank k, and b is a m × 1 vector. There exists a

full-rank k × k submatrix Ã of A with the corresponding k × 1 subvector b̃ such that

V = max
x∈Rk

c · x

s.t. Ãx ≤ b̃

Proof. The dual problem of the linear programming problem is

V = min
y∈Rm

b · y

s.t. yTA = c
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y ≥ 0

From Lemma 4.6 and Theorem 4.7 of Vohra (2004), a solution to this dual problem is a basic

feasible solution, so there eixsts a a full-rank k × k submatrix Ã of A with the corresponding

k × 1 subvector b̃ such that

V = min
y∈Rk

b̃ · y

s.t. yT Ã = c

y ≥ 0

Taking the dual again, we have

V = max
x∈Rk

c · x

s.t. Ãx ≤ b̃.

Proof of Theorem 3. Recall that

V (P1, ..., Pm) = min
P∈∩mj=1D̂(Pj)

V (P )

Given Lemma 7, the problem can be written as

V (P1, ..., Pm) = min
(τQ(t1),...,τQ(tk))∈∩mj=1E(Pj)

k∑
`=1

τQ(t`)v(tl) +
n∑
i=1

τQ(δi)v(δi)

where E(Pj) =
⊕

µ∈supp(τPj ) τPj(µ)X(µ), and τQ(δi) =
[
µ0 −

∑k
`=1 τQ(t`)t`

]
i
.

Since the objective function is affine in (τQ(t1), ..., τQ(tk)), and the constraint set is a

polytople, the problem can be reformulated as a linear programing problem:

V (P1, ..., Pm) + constant = max c · x

s.t. A1x ≤ b1

A2x ≤ b2

· · ·

Amx ≤ bm

for some c ∈ Rk, and Aj, bj are the constraints from E(Pj). Let A = [A1; ...;Am] and b =

[b1; ...; bm], the constraint can be written as Ax ≤ b. We index the raws by i = 1, ..., N .
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The constraint set is non-empty because fully informative information structure is always

in D̂(Pj), so the problem is feasible. Moreover, the constraint set is bounded so the problem

has a solution. Let x∗ be the solution to the problem.

For every index set I ⊆ {1, ..., N}, let A[I] denote the |I| × k submatrix of A with the

rows in I. Similarly let b[I] denote the |I| × 1 subvector of b with the raws in I.

From Lemma 8, the there exists I ⊆ {1, ..., N} such that

V (P1, ..., Pm) + constant = max c · x

s.t. A[I]x ≤ b[I]

Since the k number of constraints (rows) at most come from k different Aj, j = 1, ...m, so

there exists J such that |J | ≤ k and

V (P1, ..., Pm) = V ({Pj}j∈J) = min
(τQ(t1),...,τQ(tk))∈∩j∈JE(Pj)

k∑
`=1

τQ(t`)v(tl) +
n∑
i=1

τQ(δi)v(δi)

which concludes the proof.

A.6 Proof of Proposition 2

To prove the proposition, it is useful to introduce the “dominated by a convex combination”

notion in Cheng and Borgers (2023). Let {P1, ..., Pk} be a collection of Blackwell experiments,

with signal spaces Y1, ..., Yk where Yj ∩ Yj′ = ∅ for all j, j′. A convex combination of these

Blackwell experiments, denoted by
⊕k

j=1 αjPj, is a single Blackwell experiment with a signal

space Y1 ∪ · · · ∪ Yk:
k⊕
j=1

αjPj(z|θ) = αjPj(z|θ)1z∈Yj

where αj ≥ 0 and
∑

j αj = 1.

The following lemma directly follows from the “if” direction of Proposition 1 in Cheng and

Borgers (2023).

Lemma 9. If for any decision problem (A, u), V (Pm; (A, u)) ≤ maxj=1,...,m−1 V (Pj; (A, u)),

then Pm is Blackwell dominated by a convex combination of {P1, ..., Pm−1}; that is,

The next lemma shows that any convex combination of {P1, ..., Pk} is dominated by any

joint experiments with marginals P1, ..., Pk.

Lemma 10. For any P ∈ P(P1, ..., Pk) and any weights {αj}kj=1, P Blackwell dominates⊕k
j=1 αjPj.
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Proof. For any P ∈ P(P1, ..., Pk), we construct the following garbling: γ : Y1 × ... × Yk →
∆(Y1 ∪ · · · ∪ Yk):

γ(y|y1, ..., yk) =

αj if y = yj,

0 otherwise.

Then for any j and y ∈ Yj,∑
y1,...,yk

γ(y|y1, ..., yk)P (y1, ..., yk|θ) =
∑
y−j

αjP (..., yj−1, y, yj+1...|θ)

= αjP (y|θ)

=
k⊕
j=1

αjPj(y|θ),

so P Blackwell dominates
⊕k

j=1 αjPj.

Proof of Proposition 2. For any decision problem (A, u), let P ∗A,u solves

min
P∈P(P1,...,Pm−1)

V (P ; (A, u)).

From Lemma 10 and the transitivity of the Blackwell order, P ∗A,u dominates Pm. So there exists

γ : Y1×...×Ym−1 → ∆Ym such that Pm(ym|θ) =
∑

y1,...,ym−1
γ(ym|y1, ..., ym−1)P̃ (y1, ..., ym−1|θ).

Now we construct the following Q ∈ P(P1, ..., Pm):

Q(y1, ..., ym|θ) = γ(ym|y1, ..., ym−1)P ∗A,u(y1, ..., ym−1|θ)

which by construction is Blackwell equivalent to P ∗A,u. Therefore,

V (P1, ..., Pm; (A, u)) = min
P∈P(P1,...,Pm)

V (P ; (A, u))

≤ V (Q; (A, u))

= V (P ∗A,u; (A, u))

= V (P1, ..., Pm−1; (A, u))

≤ V (P1, ..., Pm; (A, u))

which proves the proposition.
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