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Abstract

We study market segmentation as the outcome of a cooperative game between

consumers who interact with a monopolistic seller in groups. We introduce two

new solution concepts, the weakened core and stability, that coincide with the

core whenever it is nonempty. We show that these concepts are equivalent and

characterized by efficiency and saturation. A segmentation is saturated if shifting

consumers from a segment with a higher price to a segment with a lower price

leads the seller to optimally increase the lower price. We show that stable seg-

mentations that maximizes average consumer surplus (across all segmentations)

always exist.
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1 Introduction

Consumers often interact with sellers as a group. Workers’ unions, employers represent-

ing their employees, homeowner associations, and student groups are some examples of

consumer groups. Recent technological advances greatly facilitate and expand the abil-

ity of consumers to form groups. Social media and other platforms make coordination

among consumers easier. Novel enterprises such as data cooperatives and mediators

of individual data make it possible for consumers to coordinate the information that

sellers can access, thus controlling the degree to which sellers can distinguish between

consumers and effectively interacting with the seller in groups.1

This raises the question of which consumer groups will form and what will be the

resulting welfare consequences. We investigate this question in a market setting with

a monopolistic seller of a single product, assuming that all partitions of the consumers

into groups are possible. Each partition of the consumers induces a segmentation of the

market into consumer groups, and we assume that the seller sets a profit-maximizing

price for each group, that is, for each market segment.2 In other words, consumers

control how they are segmented into groups, and the seller controls the prices consumers

face given the segmentation.3

The fundamental tension between consumers is that different consumers may prefer

different segmentations. For example, suppose that a measure 0.45 of consumers have

value 1 for the product, a measure 0.35 have value 2, and the remaining measure 0.2

have value 3. One possible segmentation of the market is into a group that consists

of the consumers with values 1 and 2 and a group that consists of the consumers with

value 3. Given this segmentation, the seller optimally sets a price of 1 for the first

group and a price of 3 for the second group. Another segmentation of the market

groups the consumers with values 1 and 3 together and the consumers with value 2

together, which leads to a price of 1 for the first group and price of 2 for the second

group. Consumers with value 2 prefer the first segmentation to the second one, whereas

1For example, MiData and Salus Coop enable their members to pool and share health data. Swash
pools web surfing data from its members. Mediators of individual data were recently introduced by
Lanier and Weyl (2018).

2Group formation based on consumer unions, home owner associations, etc. can be thought of as
leading to an “access-based” market segmentation, whereas control of the consumer data the seller
can access leads to a “data-based” market segmentation.

3In practice, some groups may also increase consumers’ bargaining power. We abstract from this
effect in our investigation of market segmentation by consumers and maintain the seller’s ability to
unilaterally set prices for each consumer group.
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consumers with value 3 have the opposite preference. Of course, even in this example

many other segmentations are possible that do not group all the consumers with the

same value in the same group. And, in general, even consumers with the same value

may rank segmentations differently.4

To study this tension we model the interaction between consumers as a cooperative

game with non-transferable utility. Given a segmentation and a seller-optimal price for

each segment, each consumer decides whether to purchase the product at the price she

faces in her segment. This determines every consumer’s utility given the segmentation.

A segmentation is in the the core of the game if no new group of consumers can form

that objects to the segmentation, that is, every consumer in the new group weakly

prefers the price set by the seller for the new group to the price she faces in the

segmentation, with a strict preference for some members of the group.

A key determinant of the core is whether the market is efficient, that is, whether

in the unsegmented market the seller optimally sets the lowest possible price, which

is equal to the lowest consumer value in the market. We observe that all consumers

agree on the best segmentations if and only if the market is efficient, and in this

case the core consists of the market segmentations in which every consumer faces the

lowest possible price. This makes intuitive sense: if all consumers agree on the best

segmentations, then such a segmentation would be a reasonable prediction. However,

whenever the market is inefficient, that is, whenever consumers do not all agree on the

best segmentations, so there is some conflict of interest among consumers, the core is

empty. The reason is that if there is any conflict of interest, then starting from any

segmentation, some consumers who are not facing the lowest possible price can form

a new group together with the lowest-value consumers and obtain the lowest possible

price. This disrupts the existing segmentation.

To study what happens in the economically interesting case in which not all con-

sumers agree on the best segmentations, we develop two alternative solution concepts.

The first is the weakened core, which is similar to the core but rules out certain de-

viations. One motivation for the weakened core is that “breaking apart” an existing

segment involves a small cost (perhaps an administrative fee), which must be paid by

4For example, suppose that a measure 0.6 of consumers have value 1 and the remaining consumers
have value 2. One segmentation groups the consumers with value 1 and half of the consumers with
value 2 together, with the remaining value 2 consumers forming a second group. The other segmen-
tation groups the consumers with value 1 and the other half of the consumers with value 2 together,
with the remaining value 2 consumers forming a second group. Half of the value 2 consumers prefer
the first segmentation to the second one, and the other half have the opposite preference.
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some of the deviating consumers from every segment that is broken apart in order to

form the deviation. The second solution concept is stability, which in a sense is the “op-

posite” of the core: a stable segmentation is one that for any alternative, non-equivalent

segmentation contains a segment that objects to the alternative segmentation.5 This

notion of stability captures a kind of “coalitional individual rationality (IR):” once a

segment forms, its members cannot be regrouped into a different segment or segments

if they all oppose this change (at least some strictly). Thus, whereas the core can be

thought of as prioritizing deviations, stability prioritizes the prevailing segmentation by

allowing it to prevent deviations to other segmentations. We show that both solution

concepts coincide with the core whenever it is not empty, that is, whenever the market

is efficient.6

Our main result shows that both solution concepts always coincide and characterizes

them. Because a segmentation is in the weakened core if and only if it is stable, we

refer to such segmentations as stable segmentations. Our characterization shows that

a segmentation is stable if and only if it is efficient and saturated. Efficiency means

that every consumer buys the product, and saturation means that consumers in each

segment are not willing to accept additional consumers from segments with higher

prices because doing so increases the price in their own segment. We also show that

stable segmentations are Pareto undominated, that is, there is no other segmentation

that makes all consumers better off.

Our characterization helps address the following question. Suppose that consumers

can choose a segmentation before they learn their value for the product but cannot

commit to the segmentation, so that some consumers may want to deviate by forming

a new group after they learn their value. Which segmentation would arise? We for-

malize this as asking which stable segmentations maximize expected consumer surplus

among all stable segmentations. We answer this question by constructively showing

that a stable segmentation exists that maximizes average consumer surplus among all

segmentations (stable or not). This stable segmentation is the maximal equal-revenue

segmentation, identified by Bergemann, Brooks, and Morris (2015).7 Our result that

the maximal equal-revenue segmentation is stable shows that stability does not reduce

5Two segmentations are equivalent if each consumer faces the same price in both.
6Section 6 and Appendix C discuss the relationship between our solution concepts and existing

cooperative solution concepts other than the core.
7Bergemann, Brooks, and Morris (2015) characterized the set of average consumer-producer surplus

pairs achievable across all segmentations, and did not consider stability or the question of which
segmentations will arise.
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the surplus consumers can achieve even in the absence of commitment or a central

planner that enforces the segmentation. The result also implies that stable segmen-

tations always exist. We then show that multiple stable segmentations may exist and

that maximizing average consumer surplus neither implies nor is implied by stability.

Our analysis of stable segmentations may be relevant to policy discussions regarding

monopolies, price discrimination, data sharing, and data intermediaries. Monopolies

lead to inefficiencies, and these inefficiencies may be reduced with regulation or in-

creased competition. Market segmentation arising from the monopolist’s access to

consumer data can also reduce inefficiency, but may harm consumers, as first-degree

price discrimination demonstrates. Our results show that as long as consumers can

form groups, market segmentation leads to efficiency and Pareto undominated out-

comes for consumers. If consumers can choose a segmentation before they know their

value, they can achieve the highest possible expected surplus without the help of a

social planner even if they cannot commit to maintaining the segmentation after they

learn their value. This indicates that policies or information intermediaries, such as

data cooperatives, that facilitate consumer group formation while allowing the seller

to price discriminate across groups may offer an alternative or complimentary tool to

addressing the inefficiencies associated with monopolistic markets.

The rest of the paper is organized as follows. Section 1.1 describes the relationship of

our work to the existing literature. Section 2 describes the model. Section 3 introduces

the core and our solution concepts. Section 4 shows the equivalence of our solution

concepts and characterizes them. Section 5 shows that segmentations that satisfy these

solution concepts exist and relates them to consumer-optimal segmentations. Section 6

concludes.

1.1 Related literature

Peivandi and Vohra (2021) consider stability of centralized markets against deviations

by coalitions of agents. They show that fragmentation of such markets is unavoidable,

despite its efficiency costs, except in special circumstances. They study a bilateral trade

setting, whereas we study a setting with a population of consumers and a seller. When

centralized markets are fragmented, Peivandi and Vohra (2021) do not predict what the

resulting segmentation looks like, whereas characterizing stable segmentations is a main

focus of our paper. Another important difference is that in their setting a coalition

chooses the trading mechanism, whereas in our setting each coalition of consumers
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faces a profit-maximizing price set by the seller.

A recent literature on third-degree price discrimination studies consumer and pro-

ducer surplus across all possible segmentations of a given market. Bergemann, Brooks,

and Morris (2015) identify the set of average producer and consumer surplus pairs that

result from all segmentations of a given market. Their results also identify segmen-

tations that maximize average consumer surplus. Cummings et al. (2020) study an

extension in which only certain segmentations may be chosen. Glode, Opp, and Zhang

(2018) study optimal disclosure by an informed agent in a bilateral trade setting, and

show that the optimal disclosure policy leads to socially efficient trade, even though in-

formation is revealed only partially. Haghpanah and Siegel (2023) study when a market

served by a multi-product seller can be segmented in a way that is Pareto improving.

Yang (2022) studies how a profit-maximizing data broker sells market segmentations

to a monopolist. Ichihashi (2020), Hidir and Vellodi (2021), Braghieri (2017), and

Haghpanah and Siegel (2022) consider maximum average consumer surplus when a

multi-product seller offers different products in each market segment. These papers

can be seen as identifying segmentations that are chosen ex ante by a consumer who

does not know her type, because such a consumer chooses the segmentation that max-

imizes her expected payoff. In contrast, in this paper we study market segmentation

when consumers know their type.

The related papers that study disclosure decisions by consumers who know their

type model these interactions as non-cooperative games. Ali, Lewis, and Vasserman

(2023) consider voluntary disclosure of data by a single consumer, and analyze the wel-

fare implications of various disclosure policies in both a monopolistic and a competitive

environment. Sher and Vohra (2015) study a disclosure setting in which the seller can

commit to the mechanism that he will use after receiving information. In our set-

ting, the seller cannot commit and chooses a profit-maximizing price for each segment.

Acemoglu et al. (2019), Bergemann, Bonatti, and Gan (2022), Baumann and Dutta

(2022), and Galperti and Perego (2023) also study the consequences of consumers’

disclosure decisions on prices and other market outcomes. Kuang et al. (2022) study

the formation of market segmentations as the equilibrium of a non-cooperative game

in which each consumer chooses which segment to join. In their setting consumers can

unilaterally move between segments, whereas in our setting, once a segmentation arises

consumers cannot join an existing segment if all consumers in that segment oppose this

change. These differences lead to different results: in the setting of Kuang et al. (2022),
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the seller’s surplus in any equilibrium segmentation is equal to the seller’s surplus in

the unsegmented market and consumers are better off, but the outcome need not be

efficient. In contrast, our stable segmentations are Pareto undominated, efficient, and

increase the seller’s surplus.

2 Model

A monopolistic seller faces a unit mass of consumers uniformly distributed on the unit

interval [0, 1]. Consumers have unit demand for the monopolist’s product. The value

of the product for consumer c ∈ [0, 1] is v(c) ∈ V = {v1, . . . , vn} ⊆ R>0, where v is

a measurable function and vi increases in i.8 Let µ be the Borel measure on the unit

interval. The measure of consumers with value vi is f(vi) = µ({c : c ∈ [0, 1], v(c) = vi}).
We assume without loss of generality that f(vi) > 0 for every vi ∈ V , and normalize

the seller’s production cost to zero.

A coalition is a measurable subset C ⊆ [0, 1] of consumers. Let fC(vi) = µ({c : c ∈
C, v(c) = vi}) denote the measure of consumers with value vi in coalition C. We say

that consumers with value vi are in C (or that C contains consumers with value vi) if

fC(vi) > 0. A price p ∈ V is optimal for coalition C if it maximizes the revenue from

selling the product to consumers in C, that is, for any other price p′ ∈ V ,

p
∑
i:vi≥p

fC(vi) ≥ p′
∑

i:vi≥p′
fC(vi).

We restrict attention to prices in V because for any other price there exists a price in

V with a weakly higher revenue.

A segment is a pair (C, p), where C is a coalition and p is an optimal price for

that coalition.9 A segmentation S is a finite set of segments {(Cj, pj)}j=1,...,k such that

C1, . . . , Ck partitions the set of consumers [0, 1]. That is, a segmentation partitions the

set of consumers into coalitions and assigns an optimal price for each coalition.

Denote by CS(c, p) = max{v(c) − p, 0} the surplus of consumer c who is offered

the product at price p. If consumer c belongs to segment (C, p), then her surplus is

CS(c, p). Given a segmentation S, denote by pS(c) the price in the unique segment

that includes consumer c. Let CS(c, S) = CS(c, pS(c)) denote the surplus of consumer

8Appendix D discusses variants of our model with a continuum of possible values.
9That is, the seller cannot price discriminate between the different consumers in C, and sets a price

for these consumers that maximizes his revenue.
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c in segmentation S.

Consumers’ preferences over segmentations may differ because the prices different

consumers face vary within and across segmentations. We investigate how consumers

reconcile these differences by modeling the interaction between consumers as a coop-

erative game with non-transferable utility (NTU) that determines the market segmen-

tation.10 That is, the consumers cooperatively determine how they are partitioned

into coalitions, and the seller sets an optimal price for each coalition. As described

in the introduction, we have in mind both access-driven settings, in which groups of

consumers such as home-owner associations and employees of a university interact with

the seller as a bloc, and data-driven settings, in which data cooperatives, mediators of

individual data, and other online platforms facilitate coordination among consumers

regarding the consumer data the seller can access.

3 Solution Concepts

3.1 The Core and Why it is Unsatisfactory

We start by studying the core of the cooperative game. We show that the core is unsat-

isfactory because it is empty if and only if consumers disagree about which segmenta-

tions are most preferred. Because our main goal is to understand which segmentations

arise when consumers disagree, we develop two other solution concepts, which are less

demanding than the core but coincide with it whenever consumers agree on the best

segmentations, that is, whenever the core is not empty.

To define the core, we first formalize what it means for a segment to object to a

segmentation.

Definition 1 (Objection) A segment (C, p) objects to a segmentation S if CS(c, p) ≥
CS(c, S) for all consumers c in C, with a strict inequality for a positive measure of

consumers c in C.

A segment (C, p) objects to a segmentation S if all the consumers in C are weakly

better off and some consumers in C are strictly better off in the segment compared to

the segmentation. In particular, an objection (C, p) is not a segment in S (otherwise

10Formally, for each coalition C of consumers, the set of utility vectors feasible for C comprises the
payoff profiles of the consumers in C across all segmentations of C (when C, instead of [0, 1], is taken
to be the set of consumers).
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all consumers in C would be indifferent between the segment and the segmentation).

Notice that the definition would be vacuous if we required the preference to be strict

for all (or almost all) consumers in C, because the optimality of p for C requires that

the surplus of the consumers with the lowest value in C is zero.

We define the core to be the set of segmentations to which there is no objection.11

Definition 2 (Core) The core is the set of segmentations S to which no segment

objects.

According to the core, a possible objection can be any segment and is not con-

strained by the existing coalitions in the prevailing segmentation. An objecting coali-

tion is unconcerned with what happens to the rest of the players, and only considers

their own payoffs.

The core is not a useful solution concept in our setting. This is because, as the

proposition below shows, the core is empty if and only if the market is inefficient, that

is, price v1 is not optimal for the set [0, 1] of all consumers. If price v1 is optimal

for the set of all consumers, then the segmentations in which every consumer faces

price v1 (including the “trivial” segmentation {([0, 1], v1)}) are most preferred by every

consumer because v1 is the lowest price the seller would ever offer. In this case, as

expected, the core consists of the segmentations in which every consumer faces price

v1. On the other hand, if price v1 is not optimal for the set of all consumers, then

there is no segmentation in which every consumer faces price v1. Any consumer who

faces a price higher than v1 ranks segmentations in which she faces price v1 higher (the

proof shows that such segmentations exist). Thus, the core is empty precisely when

consumers disagree on their top-ranked segmentations.

Proposition 1 If the market is inefficient, then the core is empty. Otherwise, the

core consists of the segmentation {([0, 1], v1)} and all the other segmentations in which

every consumer faces price v1.

Proof. For the first claim, suppose that the market is inefficient, so v1 is not optimal for

the set [0, 1] of all consumers. Then any segmentation includes a segment with a price

strictly higher than v1. Otherwise, the price in every segment is equal to v1 (because

11For our purposes it is more convenient to refer to a set of segmentations instead of the payoff
vectors they induce.
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it cannot be less than v1), so price v1 remains optimal for the single coalition [0, 1],

which contradicts the assumption that v1 is not optimal for the set of all consumers.12

Now, take a segmentation S and a segment (C, p) in it with p > v1. Because p is

optimal for C, C contains a positive measure of consumers with value p. Consider a

coalition C ′ that consists of a positive measure of consumers from C with value p and

a positive measure of consumers with value v1 (from any segment). If fC′
(p) is small

enough relative to fC′
(v1), then price v1 is optimal for C ′, so (C ′, v1) is a segment. The

surplus of value p consumers in C ′ is p−v1 > 0, whereas their surplus in S is zero. The

surplus of consumers with value v1 in any segment is zero. Therefore, segment (C ′, v1)

objects to S, so S is not in the core. Since S was a arbitrary segmentation, the core is

empty.

For the second claim, suppose that the market is efficient. Then ([0, 1], v1) is a

segment and there is no objection to the segmentation {([0, 1], v1)} because in any

segment the price is at least v1. For the same reason, any segmentation in which

every consumer faces price v1 is also in the core. Now consider a segmentation S in

which the price p in some segment exceeds v1. Because p is optimal for the coalition

in the segment, the coalition contains a positive measure of consumers with value p,

who strictly prefer price v1. And because the price in any segment is at least v1, the

segment ([0, 1], v1) objects to S, so S is not in the core.

The following example illustrates how disagreement between consumers about which

segmentations are the best leads to an empty core.

Example 1 (The core might be empty) There are two values, 1, 2. Consumers

from 0 to 0.4 have value 1, and consumers from 0.4 to 1 have value 2, as shown in

Figure 1.

Consider segmentation S = {(C1, 1), (C2, 2)}, where C1 = [0, 0.6) and C2 = [0.6, 1].

This segmentation is not in the core. One segment that objects to S is (C ′1, 1), where

C ′1 = [0, 0.8). This objection is obtained by adding some consumers from the higher

priced segment in S to the lower priced segment in S in a way that leaves the low price

1 optimal for the seller. By doing so, the surplus of consumers in C1 does not change,

and the surplus of the added consumers strictly increases.

12Suppose that price p is optimal for disjoint coalitions C1, . . . , Ck, that is, p
∑

i:vi≥p f
Cj

(vi) ≥
p′
∑

i:vi≥p′ fC
j

(vi) for all Cj and p′. Summing over all j, and letting C =
⋃

j C
j , we have

p
∑

i:vi≥p f
C(vi) ≥ p′

∑
i:vi≥p′ fC(vi) for all p′, so price p is optimal for coalition C.
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Consumers
0 1

Values

0.4

1 2

C1

0 0.6

C2

10.6

C ′1
0 0.8

C ′2
10.8

C ′′1
10.80 0.4

Figure 1: Example 1.

Now consider segmentation S ′ = {(C ′1, 1), (C ′2, 2)}, where C ′1 is as defined above

and C ′2 = [0.8, 1]. Adding any positive measure of consumers from C ′2 to C ′1 necessarily

increases the optimal price in the first segment, so such a coalition would not be an

objection because the value 2 consumers in C ′1 would be strictly harmed. However,

segmentation S ′ is still not in the core because segment (C ′′1 , 1), where C ′′1 = [0, 0.4] ∪
[0.8, 1], objects to it: value 1 consumers in C ′1 are indifferent, and value 2 consumers

in C ′′1 strictly prefer (C ′′1 , 1) to S ′, where they face price 2.

This example clarifies why the core is empty. Because there is only a measure 0.4

of value 1 consumers, in any segmentation at most a measure 0.4 of value 2 consumers

may be offered price 1. So in any segmentation, at least a measure 0.2 of value 2

consumers are offered price 2. By combining these value 2 consumers with all the

value 1 consumers, we obtain a coalition to which the seller optimally offers price 1,

which results in an objection.

Our main goal in studying the cooperative game is to understand how the conflict

of interest between consumers is resolved when they do not all agree on a top-ranked

segmentation. If the market is efficient, there is no conflict of interest, and core gives us

the “correct” prediction. But in this case we do not really need to write down a game.

And whenever there is a conflict of interest, that is, when the market is inefficient, the
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core does not help.

To obtain useful predictions, in the next two subsections we introduce two solution

concepts. The first one is a slight relaxation of the core; the second, stability, is based

on a different motivation and is in some sense the “opposite” of the core.13

3.2 The Weakened Core

Our first solution concept is a less demanding version of the core. The idea is that

the core allows for “too many” objections, especially if forming an objection involves

some friction. Our solution concept, which we call the weakened core, rules out certain

objections by slightly strengthening the requirements from an objection. Even though

the strengthening is slight, we later show that this change guarantees non-emptiness.

After defining the weakened core below, we provide a cost-based motivation for the

definition.

To introduce the weakened core, consider Example 1 and the segmentation S ′ =

{(C ′1, 1), (C ′2, 2)}, where C ′1 = [0, 0.8) and C ′2 = [0.8, 1]. As discussed earlier, segment

(C ′′1 , 1), where C ′′1 = [0, 0.4] ∪ [0.8, 1], objects to S ′. But notice that this objection

requires “breaking apart” the existing segment C ′1, taking consumers with value 1

from C ′1 and adding them to the objection, even though none of these consumers

strictly benefits from joining the objection. The weakened core excludes these kind of

objections by requiring that if a deviating coalition breaks apart an existing coalition,

then at least some members of the existing coalition who form part of the deviation

strictly benefit.

To formalize this, we first define strict objections. A strict objection is an objection

with the additional requirement that if the objecting coalition breaks apart an existing

coalition, then at least some members of the existing coalition who are in the objecting

coalition strictly benefit from this rearrangement. Formally, for the definition we say

that C ′ breaks apart C if coalition C ′ contains some but not all of the consumers in

coalition C (so C ∩ C ′ and C\C ′ both have positive measures).

Definition 3 A segment (C ′, p′) strictly objects to a segmentation S if

1. (C ′, p′) objects to S, and

13Appendix C compares our solution concepts to existing solution concepts for cooperative games
other than the core, and shows that our solution concepts refine them.
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2. for any segment (C, p) in S, if C ′ breaks apart C, then CS(c, p′) > CS(c, S) for

a positive measure of consumers c in C ∩ C ′.

Definition 4 The weakened core is the set of segmentations S to which no segment

strictly objects.

Because strict objections are objections, the weakened core is a superset of the

core.14

One cost-based justification for the weakened core is as follows. Once a segmenta-

tion forms, a small fee must be paid to break apart any of its existing coalitions. This

fee must be paid by some members of the coalition who want to leave the coalition

and join a deviation. More precisely, suppose that the prevailing segmentation is S

and a new segment (C ′, p′) objects to S. If C ′ breaks apart an existing segment (C, p)

in S, then some of the consumers in C ∩ C ′ must cover the small breakup fee in order

dissolve C, which allows the consumers in C ∩ C ′ to leave and form C ′. Consumers

in C ∩ C ′ who strictly benefit from the deviation are willing to pay this fee. So if for

any existing coalition that is broken apart by C ′, some consumers in the intersection

of the two coalitions strictly benefit from the deviation, all the breakup fees are paid

and the objection forms. But if for some existing coalition C that is broken apart by

C ′ all consumers in C ∩ C ′ are indifferent between S and (C ′, p′), then none of these

consumers is willing to pay the fee and the objection fails.

3.3 Stability

Our second solution concept is stability. Stability is conceptually different from the core

and the weakened core. The core (and the weakened core) give priority to deviations,

in that an objection (or a strict objection) to a segmentation prevents that segmenta-

tion from being realized. Stability, on the other hand, gives priority to the candidate

segmentation by requiring it to prevent deviations to any other segmentation: for any

other segmentation, a stable segmentation contains a segment that objects to the other

segmentation. This motivation is closely related to various existing stable set notions

in cooperative game theory, which we discuss in Appendix C.

To motivate stability, consider again Example 1 and the segmentation S ′ = {(C ′1, 1), (C ′2, 2)},
where C ′1 = [0, 0.8) and C ′2 = [0.8, 1]. As discussed earlier, segment (C ′′1 , 1) objects to

14However, not every objection is a strict objection. Going back to Example 1, (C ′′1 , 1) is not a
strict objection because it breaks apart the coalition C ′1 in S′ but none of the consumers in C ′1 ∩ C ′′1
strictly prefer the segment to the segmentation.

12



this segmentation, where C ′′1 = [0, 0.4] ∪ [0.8, 1], so S ′ is not in the core (and the core

is in fact empty). But notice that segment (C ′1, 1) in S ′ objects to any segmentation

S ′′ that contains (C ′′1 , 1) (in any such segmentation, any consumer not in C ′′1 has value

2 and faces price 2). The formation of (C ′′1 , 1) requires rearranging the consumers in

coalition C ′1 even though all the consumers in C ′1 oppose this rearrangement (some

weakly and some strictly). Stability says that rearrangements that are unanimously

opposed by an existing segment do not occur.15

To define stability, we introduce the notion of a blocking segmentation. For the

definition, it is helpful to think of segmentation S as the prevailing segmentation and

segmentation S ′ as a proposed deviation.

Definition 5 (Blocking) A segmentation S blocks a segmentation S ′ if there exists

a segment (C, p) in S that objects to S ′.

For the definition of stability, we say that segmentations S and S ′ are equivalent if

almost all consumers face the same price in the two segmentations, that is, for almost

all consumers c in [0, 1], c is in a segment with price p in segmentation S if and only if

c is in a segment with price p in segmentation S ′.16

Definition 6 (Stability) A segmentation is stable if it blocks any non-equivalent seg-

mentation.

One way to think of stability is as follows. Suppose that S is the prevailing segmen-

tation and a deviation is proposed (say by some consumer who prefers the deviation

to S). This deviation requires rearranging the consumers of some segments in S but

may leave other segments unaffected. For every affected segment, the proposal must

specify how the consumers in the affected segment are rearranged. Once this proposal

is made, every affected segment in S is asked if it is willing to participate in this rear-

rangement. If an affected segment objects to this rearrangement (in the sense that all

its consumers prefer S to the rearrangement, some weakly and some strictly), then the

proposal fails. In a sense, if a deviation requires rearranging consumers in an existing

15If a rearrangement can occur without modifying an existing segment, then this segment does not
oppose the rearrangement.

16Notice that two equivalent segmentations need not be identical when viewed as two sets of seg-
ments. For example, given a segmentation, if we replace a segment (C, p) with two segments (C\C ′, p)
and (C ′, p) for some subset C ′ of C (so that price p is optimal for both coalitions C ′ and C\C ′), then
we obtain a new segmentation that is not identical to the original segmentation but is equivalent to
it.
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segment, these consumers as a group “have the right” to prevent being rearranged.

Notice that preventing the rearrangement requires unanimous agreement by the mem-

bers of an existing segment. If some consumers in an existing segment strictly prefer

the rearrangement, then this segment does not object - these consumers cannot be

prevented from leaving (and dissolving the segment) by the other consumers in the

segment.

Thus, stability captures a kind of “coalitional individual rationality (IR),” in that no

segment can be forced to regroup into one or more different segments if all its members

oppose this change. A segmentation is stable if moving to any other non-equivalent

segmentation violates coalitional IR.

Stability may appear to demand more than just coalitional IR because it requires

that a segmentation block every non-equivalent segmentation, even those that are not

attractive alternatives (because they do not block the original segmentation), and even

those that may be “difficult to reach” from the original segmentation. We later use our

characterization of stable segmentations from the next section to address these issues

and show that stability is in fact the right notion for capturing coalitional IR.

4 Main Result: Equivalence and Characterization

Before characterizing our two solution concepts, we relate them to the core. We show

that even though the weakened core is a superset of the core, and the idea underly-

ing stability is the “opposite” of that underlying the core, all three solution concepts

coincide whenever the core is not empty, that is, when the market is efficient.

Proposition 2 If the core is not empty, then it is equal to the weakened core and the

set of stable segmentations.

Proof. Suppose that the core is not empty. By Proposition 1, the core consists of the

segmentation {([0, 1], v1)} and all its equivalent segmentations. These segmentations

are clearly stable because any such segmentation S only contains segments of the form

(C, v1), so in any non-equivalent segmentation a positive measure of consumers are

offered a price higher than v1, and then there is a segment in S that objects to the non-

equivalent segmentation. Any segmentation that is not equivalent to the segmentation

{([0, 1], v1)} is not stable because it does not block {([0, 1], v1)} (since v1 is the lowest

price that any consumer faces in any segmentation).
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The weakened core is a superset of the core, so any segmentation that is equivalent

to {([0, 1], v1)} is in the weakened core. For the other direction, any segmentation that

is not equivalent to {([0, 1], v1)} is not in the weakened core because segment ([0, 1], v1)

strictly objects to it (([0, 1], v1) is an objection that does not break apart any segment,

so it is a strict objection).

We now show that stability and the weakened core are in fact equivalent, and we

characterize them with two properties. These properties are easy to check and only

refer to the segmentation under consideration, without involving objections or blocking,

which relate to other segments or segmentation. While it is fairly straightforward to

show that these properties are necessary and that any stable segmentation is in the

weakened core (so stability is more demanding than the weakened core), sufficiency of

the properties and the reverse inclusion are less obvious.

We start by introducing the notion of a canonical segmentation. A segmentation

is canonical if no two segments in it have the same price.17 Each segmentation S is

equivalent to a unique canonical segmentation, which we call the induced canonical seg-

mentation of S. The induced canonical segmentation is obtained by merging segments

that have the same price into a single segment with that price (see footnote 12).

Our characterization says that our two solution concepts are equivalent, and a

segmentation satisfies the concepts if and only if its induced canonical segmentation

satisfies two properties: efficiency and saturation. A segmentation is efficient if all

consumers buy the product, that is, for any segment (C, p) in the segmentation, the

price p is equal to the lowest value v(C) := min{v : fC(v) > 0} of consumers in C. A

segmentation is saturated if for any segment (C, p) in the segmentation, whenever we

add consumers to coalition C from a segment with a price strictly higher than p, price

p is sub-optimally low for this larger coalition. That is, for any two segments (C, p)

and (C ′, p′) in the segmentation with p < p′, and any positive-measure set C ′′ ⊆ C ′ of

consumers, any optimal price for coalition C ∪ C ′′ is strictly higher than p.

The following lemma shows that saturation can be expressed more succinctly by

looking at the set of prices that are optimal for different segments.

Lemma 1 A segmentation is saturated if and only if for any two segments (C, p) and

(C ′, p′) in the segmentation with p < p′, there exists a price p̂ that is optimal for C

such that p < p̂ ≤ v(C ′).

17Bergemann, Brooks, and Morris (2015) refer to these as direct segmentations.
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Proof. If such a p̂ exists, then by adding consumers from C ′ to C, all of whose values

are at least v(C ′), and therefore at least p̂, the revenue from price p̂ increases more

than the revenue from price p. And because both p and p̂ are optimal for C, p (and

any price lower than p) is not optimal when we add these consumers. Conversely, if no

such p̂ exists, then p is the highest optimal price for C that does not exceed v(C ′), so

if we add a small measure of consumers with value v(C ′) from C ′ to C, price p remains

optimal for C.

We now state and prove our main result. In addition to showing that our two

solution concepts are equivalent and characterizing them, the result also shows that

the weakened core and stability are equivalent to a third, intermediate solution concept.

This intermediate solution concept only requires a segmentation to block “potentially

attractive segmentations,” that is, segmentations that blocks it, instead of blocking

all non-equivalent segmentations, which is required by stability. We will motivate and

discuss this intermediate solution concept after establishing the equivalence.

Theorem 1 For any segmentation S, the following statements are equivalent

1. S is in the weakened core.

2. S blocks any segmentation that blocks S.

3. S is stable.

4. The canonical segmentation of S is efficient and saturated.

Proof. The three solution concepts can be ranked: statement (3) in the theorem im-

plies statement (2) and statement (2) implies statement (1). Indeed, if a segmentation

S is stable and S ′ blocks S, then S and S ′ are not equivalent, so S blocks S ′ because

S is stable. If a segmentation S blocks any segmentation that blocks it, then it is in

the weakened core. To see this, suppose that S is not in the weakened core, so there is

a strict objection (C ′, p′) to S. We can then construct a segmentation S ′ that blocks

S but is not blocked by S as follows. Start with S ′ being the empty set. Add (C ′, p′)

to S ′. For any segment (C, p) in S such that C ∩ C ′ is empty (has zero measure),

add (C, p) to S ′. For any segment (C, p) that is broken apart by (C ′, p′), add segment

(C\C ′, p′′) to S ′, where p′′ is any optimal price for C\C ′. Segmentation S ′ blocks S

because it contains segment (C ′, p′), which objects to S. To see that no segment (C, p)

in S objects to S ′, consider three cases. If C ⊆ C ′, then because (C ′, p′) objects to S,
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the consumers in C weakly prefer S ′ to S so (C, p) does not object to S ′. If C ∩ C ′ is

empty, then (C, p) is a segment in S ′ so the consumers in C are indifferent between S

and S ′ and (C, p) does not object to S ′. If (C, p) is broken apart by C ′, then because

(C ′, p′) is a strict objection to S, some consumers in C ∩ C ′ strictly prefer S ′ to S so

(C, p) does not object to S ′ regardless of how the consumers in C\C ′ are rearranged.

We have shown that statement (3) in the theorem implies statement (2), and state-

ment (2) implies statement (1). We will show that statement (1) implies statement (4),

and statement (4) implies statement (3). This last implication is the least straightfor-

ward part of the proof.

We first show that statement (1) implies statement (4). To see that any segmenta-

tion in the weakened core has an efficient canonical segmentation, consider a segmen-

tation S ′ with an induced canonical segmentation S. Suppose that S is inefficient. We

will construct a strict objection to S ′. Because S is inefficient, so is S ′, so there is a

segment (C ′, p′) in S ′ with p′ > v(C ′). Consider a coalition C̄ ⊆ C ′ that consists of all

the consumers in C ′ with values strictly lower than p′, in addition to a positive measure

of the highest value consumers in C ′ that is small enough that any optimal price for C̄

is strictly lower than p′. Denote by p < p′ an optimal price for C̄, so (C̄, p) is a segment.

Observe that p′ remains optimal for C ′\C̄. Indeed, removing from C ′ consumers with

values strictly lower than p′, who do not purchase the product, does not change the

revenue from p′; and removing from C ′ some consumers with the highest value in C ′

can only lower the optimal price, but p′ is already the lowest value of consumers in

C after removing the consumers with values lower than p′, so p′ remains optimal. We

argue that (C̄, p) is a strict objection to S ′. To see this, first notice that (C̄, p) is an

objection to S ′: because p < p′, the consumers in C̄ weakly prefer segment (C̄, p) to

S ′, and the preference is strict for the consumers with the highest value in C ′ that are

in C̄. Further, notice that (C ′, p′) is the only segment in S ′ that is broken apart by

(C̄, p), and the consumers in C̄ ∩ C ′ who have the highest value in C ′ strictly prefer

(C̄, p) to S ′, so (C̄, p) is a strict objection to S ′.

To see that any segmentation in the weakened core has a saturated canonical seg-

mentation, consider a segmentation S ′ with an induced canonical segmentation S.

Suppose that S is not saturated. If S is inefficient, then the argument above im-

plies that S ′ is not in the weakened core. Suppose that S is efficient, which together

with non-saturation implies (by Lemma 1) that there are two segments (C, v(C)) and

(C ′, v(C ′)) in S with v(C) < v(C ′) such that no p̂ with v(C) < p̂ ≤ v(C ′) is optimal
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for C. In particular, if we add a positive-measure set C ′′ ⊂ C ′ of consumers with value

v(C ′) to C, price v(C) remains optimal provided that the measure of C ′′ is sufficiently

small. Let C ′′ be such a set that contains a positive measure of consumers with value

v(C ′) from every segment in S ′ in which the price is v(C ′) (recall that S ′ need not be

canonical). Let C̄ = C ∪ C ′′ and consider the segment (C̄, v(C)).

We argue that (C̄, v(C)) is a strict objection to S ′. Segment (C̄, v(C)) objects to S ′

because the consumers in C ′′ strictly prefer it to the segmentation, and the consumers

in C = C̄\C ′′ are indifferent between (C̄, v(C)) and S ′. Now consider which coalitions

in S ′ are broken apart by C̄. Coalitions in segments with a price different from v(C)

or v(C ′) do not intersect with C̄. The coalition of a segment with price v(C) in S ′

is completely contained in C̄, so these coalitions are not broken apart by C̄. The

only coalitions that are broken apart by C̄ are those in which the price is v(C ′). By

construction, from any such coalition there are some consumers in C ′′ ⊆ C̄, who strictly

prefer (C̄, v(C)) to S ′. So (C̄, v(C)) is a strict objection to S ′.

We now show that statement (4) implies statement (3). Consider a segmentation

S ′ with an induced canonical segmentation S that is efficient and saturated. Let S̄

be a segmentation that is not blocked by S ′. We will show that S̄ is equivalent to S ′.

Since the canonical representation of S̄ is also not blocked by S ′ and is equivalent to

S ′ if and only if S̄ is equivalent to S ′, we suppose without loss of generality that S̄ is

canonical. Write the two canonical segmentations as S = {(C1, v1), . . . , (Cn, vn)} and

S̄ = {(C̄1, v1), . . . , (C̄n, vn}, where for each i either Ci is empty or v(Ci) = vi (because

S is efficient), and each C̄i may be empty. We will show by induction that Ci = C̄i for

all i, which will prove that S̄ is equivalent to S ′. (For the rest of this proof, Ci = C̄i is

in the “almost all” sense, that is, the measure of consumers in Ci but not in C̄i is zero,

and the measure of consumers in C̄i but not in Ci is zero).

Suppose that Cj = C̄j for all j < i (the basis of the induction is i = 1). We show

that Ci = C̄i. If i = n, then we are done because S and S̄ partition the same set [0, 1]

of consumers. Suppose that i < n. Since Cj = C̄j for all j < i, a consumer faces a

price p ≥ vi in S if and only if she faces a price p′ ≥ vi in S̄ (up to a measure zero of

consumers). In particular, consumers in Ci face a price of at least vi in S̄. Consumers

in Ci with values higher than vi must be in C̄i, otherwise these consumers face a price

strictly higher than vi in S̄, so any segment in S ′ that contains some of these consumers

objects to S̄ (and thus S ′ blocks S̄): the consumers in this segment are in Ci so face

price vi in S ′ (because S is the canonical representation of S ′), and in S̄ the consumers
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in this segment face prices no lower than vi (by the claim earlier in the paragraph). So

Ci and C̄i are identical (up to a measure zero of consumers), except that C̄i possibly

does not contain some consumers of value vi from Ci and may contain some consumers

from coalitions Ci+1, . . . , Cn, all of whom have values strictly higher than vi (because S

is efficient). But, as we now argue, if Ci and C̄i are not identical, then the fact that S

is saturated contradicts the fact that vi is optimal for C̄i (so (C̄i, vi) is not a segment).

To see this, suppose first that C̄i does not contain some consumers of value vi from

Ci. Since S is saturated and i < n, by Lemma 1 some price p > vi is optimal for Ci

and p is lower than the value of all consumers in coalitions Ci+1, . . . , Cn. Removing

from Ci some consumers with value vi reduces the revenue from price vi but not the

revenue from price p, which makes price vi sub-optimal. Then, if needed, adding to

Ci consumers from coalitions Ci+1, . . . , Cn, all of whose values are at least p, to obtain

C̄i makes price vi even worse (weakly) relative to price p, so vi is not optimal for C̄i.

Now suppose that C̄i differs from Ci only because C̄i contains some consumers from

coalitions Ci+1, . . . , Cn, all of whom have value strictly higher than vi. Adding these

consumers to Ci makes price vi sub-optimal because S is saturated, so vi is not optimal

for C̄i.

The proof of Theorem 1 in fact shows that if a segmentation is stable, then it is

efficient and saturated, regardless of whether it is canonical. But the other direction

of the proof, that efficiency and saturation imply stability, relies on the segmentation

being canonical. Example 5 in Appendix A describes a non-canonical segmentation

that is efficient and saturated but not stable (and therefore, by Theorem 1, is also not

in the weakened core and does not satisfy the intermediate notion of stability).

4.1 Interpretation and Implications of the Main Result

Let us examine Theorem 1 through the lens of “coalitional IR,” which states that a

segment cannot be rearranged if all its coalition members are weakly harmed by the

rearrangement, and some are strictly harmed. Formally, given a prevailing segmenta-

tion S, we say that segmentation S ′ respects coalitional IR if no segment in S objects

to S ′, that is, if S does not block S ′.18

If a segment (C ′, p′) strictly objects to the prevailing segmentation S, then regard-

less of how we rearrange the remaining consumers from the coalitions in S that are

18If S blocks S′, the interpretation is that this prevents a deviation (rearrangement) to S′.
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broken apart by C ′, coalitional IR will be respected.19 A weaker way to demand that

coalitional IR be respected would be to say that, given a prevailing segmentation S and

an objection to it, there is some way to complete the objection into a segmentation S ′

so that S ′ respects coalitional IR. If we refer to objections that satisfy this as “interme-

diate objections,” then it is immediate that a segmentation S blocks any segmentation

that blocks S (which is what the intermediate solution concept in statement (2) of

Theorem 1 says) if and only if it has no intermediate objections.20 Clearly, any strict

objection is an intermediate objection but the reverse does not hold.21 Theorem 1

shows that a segmentation has an intermediate objection if and only if it has a strict

objection.

The equivalence between stability and the weakened core implies that if a segmenta-

tion is not stable, then it has a strict objection. This supports the idea that stability is

not an unreasonably strong demand.22 Moreover, if a segmentation is not stable, there

is a finite sequence of strict objections that takes us from the original segmentation to

one that is stable.23

19Each coalition that is broken apart includes some consumers who strictly benefit from leaving their
segment in S to form (C ′, p′), so their segment in S does not object to the resulting segmentation.
Segments whose coalitions do not intersect with C ′ are not rearranged.

20Appendix B interprets and formalizes intermediate objections as driving a contagion process
among consumers.

21Consider a setting with two values, 1 and 2, with measure 1/2 each. Consider a segmentation in
which all value 1 consumers are in one segment with price 1 and all value 2 consumers are in another
segment with price 2. Consider an objection that consists of measure 1/3 of value 1 consumers and
measure 1/4 of value 2 consumers with price 1. This is not a strict objection, because it breaks
apart the segment of type 1 consumers, who are all indifferent. But if we add two segments to this
objection, each containing the remaining consumers with a single value, then we obtain a segmentation
that respects coalitional IR, that is, a segmentation to which S does not object.

22A prevailing segmentation S may fail to be stable because another non-equivalent segmentation
S′ respects coalitional IR, so S does not block S′, even if no segment in S′ objects to S. Theorem 1
clarifies that this cannot be the only reason S is not stable: in this case there is another segment that
strictly objects to S.

23This process follows the construction in the proof of Theorem 1 and consists of two phases. In
the first phase, we convert the segmentation to an efficient one, and in the second phase, to one
whose canonical representation is also saturated. In the first phase, for each segment (C, p) such that
p > v(C), we proceed exactly as in the proof of Theorem 1 and construct a strict objection that
contains consumers in C with value lower than p and a small measure of consumers with the highest
value in C. Because we do this once for each inefficient segment, the first phase ends after a finite
number of steps. In the second phase, as long as there is a segment in the canonical representation
of the segmentation that can accommodate some consumers form a segment with a higher price, take
such a segment (C, p) with the lowest price, and let (C ′, p′) be the segment with the next lowest price.
Merge all the segments with price p in the segmentation (recall that the segmentation might not be
canonical). Starting with ε = 0, add a subset C ′′ of C ′ with proportional measures, fC

′′
(v) = εfC

′
(v)

for all v, to C and increase ε continuously until either increasing ε increases the optimal price for
C ∪ C ′′ or C ′ becomes empty (in which case we keep adding consumers from the segment with the
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Before turning to the issue of existence, we comment on the role that weak and

strict improvements in the definition of an objecting segment play in the definition of

the core. Weak improvements lead to many objecting segments, which excludes many

segmentations from being in the core. But, unlike for stability, where it is natural for

consumers to stay in their current segment if they do not strictly benefit from deviating,

for the core it may be natural to require strict improvements for all consumers in an

objecting segment, since forming this segment requires these consumers to actively

deviate from their current segment. In our setting with a finite number of values, it

is never optimal for the seller to set a price that gives all consumers in a segment

positive surplus, so no objections with strict improvements for all its members exist.

As we discuss in Appendix D, modifying the model to accommodate a continuum of

values and requiring strict improvements does not solve the issue of the core being

uninteresting; rather, it makes the core “too large” instead of “too small” (and often

empty) as in our baseline model.

5 Existence and Consumer-optimal Stable Segmen-

tations

Given Theorem 1, throughout the rest of the paper we refer to a segmentation that

satisfies any of the four equivalent conditions in Theorem 1 as a stable segmentation.

We show that stable segmentations always exist by using the characterization from

Theorem 1 to construct a stable segmentation. We start with an example that demon-

strates the construction.

Example 2 (Maximal equal-revenue segmentation) There are three values, 1, 2, 3.

Consumers from 0 to 1
3

have value 1, those from 1
3

to 1
2

have value 2, and those from
1
2

to 1 have value 3, with measures 1
3
, 1
6
, 1
2
, respectively, as shown in Figure 1.

Consider the segmentation S = {(C1, 1), (C2, 2), (C3, 3)}, where C1 = [0, 4
9
) ∪ [7

9
, 1],

C2 = [4
9
, 11
18

), and C3 = [11
18
, 7
9
), shown in Figure 2. Coalition C1 is the largest “equal-

revenue” coalition that includes all values. That is, the measures 1
3
, 1
9
, 2
9

of the three

values in coalition C1 are such that prices 1, 2, and 3 are all optimal, and C1 is the

next lowest price). Because we are adding consumers proportionally, the optimal price for C ′\C ′′ does
not change and efficiency is preserved. The second phase also ends in a finite number of steps because
there are at most as many steps as there are values.
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Consumers
0 1

Values

1
3

1
2

1 2 3

C1

0 4
9

7
9

1

C2
11
18

4
9

C3

11
18

7
9

Figure 2: Example 2.

largest such coalition because it contains all the consumers with value 1.24 Segment

(C1, 1) is efficient. Consumers not in C1 have value either 2 or 3, so adding them to C1

makes price 1 no longer optimal.

Having put all the consumers with value 1 in segment C1, we define the rest of

the segmentation recursively to guarantee efficiency and saturation. The values of the

remaining consumers are 2 and 3, and the measures of these consumers are 1
18

and
5
18

, respectively. Coalition C2, in which values 2 and 3 have measures 1
18

and 2
18

, is

the largest coalition for which prices 2 and 3 are both optimal. The segment (C2, 2)

is efficient, and adding any of the remaining consumers, all of whom have value 3,

increases the optimal price. The last segment is (C3, 3), which is efficient. Thus,

segmentation S is efficient and saturated. Because it is also canonical, it is stable by

Theorem 1.

We now formally define the maximal equal-revenue segmentation (MERS). Let

F̄C(vi) be the cumulative measure of consumers with values vi or higher in coalition C.

If viF̄
C(vi) = vjF̄

C(vj), then prices vi and vj generate the same revenue for coalition

C. Coalition C is an equal-revenue coalition if all consumer values in the coalition

generate the same revenue, that is, viF̄
C(vi) is the same for all vi with fC(vi) > 0.

The MERS is defined recursively. The first coalition, C1, is the largest equal-revenue

coalition that includes all the values. To construct C1, let λ1 be the eventual revenue

in coalition C1 from each of the values, that is, λ1 = viF̄
C1(vi) for all vi in V . Recalling

24Any two coalitions C and C ′ for which all three prices are optimal are proportional, that is,
fC(v) = αfC

′
(v) for some α > 0 and every value v, so the largest such coalition is well-defined.
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that fC(vi) is the measure of consumers with value vi in coalition C, and f(vi) is the

overall measure of consumers with value vi, we have that f(vi) ≥ fC1(vi) = F̄C1(vi)−
F̄C1(vi+1) = λ1(

1
vi
− 1

vi+1
) for all vi, where 1

vn+1
≡ 0. Therefore, the highest value that

λ1 can take is such that fC1(vi) = f(vi) for some i. That is, λ1 is the smallest value

such that λ1(
1
vi
− 1

vi+1
) = f(vi) for some i. Denote the index of this value by i1, so

λ1(
1
vi1
− 1

vi1+1
) = f(vi1). Then, more succinctly, we define C1 by letting

λ1 = min
vi∈V

f(vi)
1
vi
− 1

vi+1

=
f(vi1)

1
vi1
− 1

vi1+1

, (1)

and letting F̄C1(vi) = λ1/vi for all vi.

Coalition C1 contains all the consumers with value vi1 , and adding a positive mea-

sure of consumers with other values to C1 makes price vi1 sub-optimal. Therefore

coalition C1 cannot be any larger and still be an equal-revenue coalition. The first

segment in the MERS is (C1, v1), and the rest of the segmentation is defined recur-

sively, where coalition Cj in the j’th segment is the largest equal-revenue coalition that

includes all the values that remain after removing the consumers in C1, . . . , Cj−1, that

is, {vi : fCj(vi) > 0} = {vi : f [0,1]\∪j′<jCj′ (vi) > 0}, and the price in the j’th segment is

min{vi : fCj(vi) > 0}. This process ends because in each step the number of remaining

values decreases by at least 1.

The MERS is not necessarily canonical. For example, if the first equal-revenue

coalition C1 exhausts some value other than v1, then the second coalition, C2, will also

include consumers with value v1, so the MERS will contain two segments, (C1, v1) and

(C2, v1), that have the same price. By Theorem 1, to establish that the MERS is stable,

we need show that its induced canonical segmentation is efficient and saturated.

Proposition 3 The maximal equal-revenue segmentation (MERS) is stable.

Proof. The price in each segment of the MERS is equal to the lowest consumer value

in the segment, so the segmentation is efficient and the same is true for its induced

canonical segmentation. It remains to show that the induced canonical segmentation

is saturated.

By construction of the MERS, for any two segments (Ci, vi) and (Cj, vj) with i < j,

the set of consumer values in Cj is a subset of that in Ci. Since coalition Cj contains

consumers with value vj (fCj(vj) > 0), so does coalition Ci. Because Ci is an equal-

revenue segmentation, price vj is optimal for coalition Ci. Consider the segment with
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price vi in the induced canonical segmentation. By definition of the induced canonical

segmentation, the coalition in this segment is the union of all the coalitions with price

vi in the MERS. Price vj is optimal for each of these coalitions, as argued above, and is

therefore optimal for the union of these coalitions (see footnote 12). Thus, the induced

canonical segmentation is saturated by Lemma 1.

The MERS is not the unique stable segmentation. Here is an informal description

of another construction of a stable segmentation. Put all consumers with value v1

in the first coalition, and continually add consumers with the lowest remaining value

to the first coalition until some price vi other than v1 also becomes optimal. This

forms the first coalition, C1. The first segment is (C, v1). Repeat this process with the

remaining consumers (the last segment may have only one optimal price). The resulting

segmentation is canonical, efficient, and saturated. Saturation follows because given a

segment (C, vj) so constructed, a value vk > vj becomes optimal for coalition C only

when we have already added all the available consumers with values lower than vk to

C, so the value of any consumer in a segment with a higher price is at least vk, and

adding such consumers to C makes price vj sub-optimal. This segmentation is also

typically different from the MERS because the first segment does not generally include

all values.25

5.1 Consumer-Optimal Stable Segmentation

Proposition 3 helps address the following question. Suppose that consumers choose a

segmentation before they learn their value for the product (by, for example, coordinat-

ing their data disclosure decisions or interacting with the seller through a third party)

but can deviate from the segmentation by forming new groups after they learn their

value if the segmentation is not stable. Which segmentation will they choose?

Before they learn their value, all consumers rank segmentations by the average con-

sumer surplus they generate. Thus, a segmentation that maximizes average consumer

25This alternative stable segmentation is related to the greedy algorithm of Ali, Lewis, and Vasser-
man (2023), adapted to the case of a finite number of values. However, whereas our construction
starts from the lowest type, theirs starts from the highest type. As a result, their segmentation may
not be stable. For example, suppose that there are three possible values, 1, 2, 4, each with measure 1

3 .
The greedy algorithm from Ali, Lewis, and Vasserman (2023) puts consumers with values 2 and 4 in
one segment with price 2, and those with value 1 in another segment with price 1. This segmentation
is not saturated because we can add consumers from the segment with price 2 to the one with price
1 without increasing the price in the latter segment. Our construction puts consumers with values
1 and 2 in one segment with price 1, and those with value 4 in another segment with price 4. This
segmentation is stable.
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surplus across all segmentations (stable or not) is preferred by all consumers. And if

such a segmentation is stable, then consumers will not deviate from it after they learn

their value. Bergemann, Brooks, and Morris (2015), who first introduced the MERS,

showed that the MERS maximizes average consumer surplus across all segmentations.

Proposition 3 shows that the MERS is stable, so consumers can achieve the maximal

average surplus by choosing the MERS (or another equivalent stable segmentation)

before they learn their value, even in the absence of commitment or a central planner

that enforces the segmentation.

As an illustrative example, consider a genetically determined disease whose prob-

ability of impacting a given individual varies across individuals. Suppose that this

probability can be verifiably determined by genetic testing, and suppose for simplicity

that such testing is costless. Also for simplicity, suppose that the disutility in monetary

terms of having the disease is the same across individuals. A monopolistic drug maker

produces a drug at zero marginal cost that has no side effects and is guaranteed to

prevent the disease if taken. Before learning their individual probability of having the

disease, all individuals agree that grouping individuals by their probability in a way

that implements the MERS achieves the highest ex-ante utility for them. Thus, they

will agree to form ”risk pools” that will be populated by the individuals based on their

test results.26 After the individuals learn their test result, any group of individuals

is free to deviate and form its own risk pool. But since the MERS is stable, no such

deviations will succeed, so the individuals can implement the MERS and achieve the

maximal expected surplus across all segmentations.

Bergemann, Brooks, and Morris (2015) also showed that segmentations other than

the MERS maximize average consumer surplus. This raises the question of the rela-

tionship between stability and maximizing average consumer surplus. The following

two examples show that stability is neither necessary nor sufficient for maximizing

average consumer surplus.

Example 3 (A segmentation that maximizes average consumer surplus and

is not stable) Consider again the setting from Example 2, with three values, 1, 2, 3,

where consumers from 0 to 1
3

have value 1, those from 1
3

to 1
2

have value 2, and those

from 1
2

to 1 have value 3, with measures 1
3
, 1
6
, 1
2
, respectively. Consider segmentation

S = {(C1, 1), (C2, 2)} with coalitions C1 = [0, 1
3
] ∪ [5

6
, 1] and C2 = (1

3
, 5
6
).

26A lottery, perhaps in the form of a priority list, can be used if several pools include individuals
with the same test results.
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Figure 3: Example 4.

Coalition C1 contains all the value 1 consumers and some value 3 consumers in a

proportion that makes prices 1 and 3 optimal. Coalition C2 contains the remaining

consumers, whose proportions are such that prices 2 and 3 are optimal. Segmentation

S maximizes average consumer surplus across all segmentations.27

But the segmentation is not stable. Since it is canonical and efficient, to show that

it is not stable, we show that it is not saturated. Indeed, adding a small measure ε > 0

of value 2 consumers to C1 does not make price 1 sub-optimal: price 2 is not optimal

for C1, so if ε is small enough, price 2 remains sub-optimal, and the addition increases

the revenue from price 1 but does not change the revenue from price 3.

Example 4 (A stable segmentation that does not maximize average con-

sumer surplus) There are three values, 1, 2, 3. Consumers from 0 to 1
3

have value

1, those from 1
3

to 2
3

have value 2, and those from 2
3

to 1 have value 3, with measures
1
3
, 1
3
, 1
3
, respectively, as shown in Figure 3.

Consider the segmentation S = {(C1, 1), (C2, 3)} where C1 = [0, 2
3
) and C2 = [2

3
, 1]

shown in Figure 3. Coalition C1 consists of the consumers with values 1 and 2. Coalition

C3 consists of the consumers with value 3. This segmentation is canonical, efficient,

and saturated. It is therefore stable.

The average consumer surplus of this segmentation is 1
3
, whereas the maximum

average consumer surplus is 2
3
.28 For some intuition, it is illuminating to study the

marginal improvement in the average consumer surplus of S obtained by swapping the

27The segmentation is efficient so it maximizes total surplus. It also minimizes the seller’s revenue
across all segmentations. This is because price 3, which is optimal for the set of all consumers, is also
optimal for each coalition.

28To find maximum average consumer surplus, we can consider the MERS. The MERS is

26



same measure of value 2 and 3 consumers. For this, consider a coalition C ′1 obtained

from C1 by removing measure ε of value 2 consumers and adding a measure ε of value 3

consumers, and a coalition C ′2 that contains the remaining consumers. If ε > 0 is small

enough, price 1 is optimal for C ′1 and price 3 is optimal for C ′3, so S ′ = {(C ′1, 1), (C ′3, 3)}
is a segmentation. To compare the average consumer surplus of S and S ′, it suffices to

consider the swapped consumers. Each value 2 consumer loses 1 unit of surplus: their

surplus is 1 in S and 0 in S ′. Each value 3 consumer gains 2 units of surplus: their

surplus is 0 in S and 2 in S ′.29

Even though stable segmentations might not maximize average consumer surplus,

they satisfy another desirable welfare property. We say that segmentation S ′ Pareto

dominates segmentation S if CS(c, S ′) ≥ CS(c, S) for all consumers c in [0, 1], with

a strict inequality for a positive measure of consumers. A segmentation S is Pareto

undominated if no segmentation Pareto dominates S.

Lemma 2 Stable segmentations are Pareto undominated. Pareto undominated seg-

mentations are efficient.

Proof. If S ′ Pareto dominates S, then no segment in S objects to S ′, and S ′ is not

equivalent to S. Therefore, S is not stable.

For the second statement, suppose that S is inefficient, so there is a segment (C, p)

in S with p > v(C). Consider a coalition C̄ ⊆ C that consists of the consumers in C

with values strictly lower than p and a positive measure of the highest value consumers

in C that is small enough that any optimal price for C̄ is strictly lower than p. Denote

by p′ < p an optimal price for C̄, so (C̄, p′) is a segment. Observe that p remains

optimal for C\C̄. Indeed, removing from C consumers with values strictly lower than

p, who do not purchase the product, does not change the revenue from p; and removing

from C some consumers with the highest value in C can only lower the optimal price,

but p is already the lowest value of consumers in C after removing the consumers with

values lower than p, so p remains optimal. Now consider segmentation S̄ obtained

{(C ′′1 , 1), (C ′′2 , 2)}, where (fC
′′
1 (1), fC

′′
1 (2), fC

′′
1 (3)) = ( 1

3 ,
1
9 ,

2
9 ) and (fC

′′
2 (1), fC

′′
2 (2), fC

′′
2 (3)) =

(0, 29 ,
1
9 ). The surplus of value 2 and 3 consumers is 1 and 2 in the first segment, and the sur-

plus of value 3 consumers is 1 in the second segment. The average consumer surplus is therefore
1
9 · 1 + 2

9 · 2 + 1
9 · 1 = 2

3 .
29Notice that the change in the offered price is 2 for the value 2 consumers (from 1 to 3) and −2

for the value 3 consumers (from 3 to 1). But even though this change has the same absolute value,
the surplus change for the value 3 consumers is higher than for the value 2 consumers because value
2 consumers do not buy the product at a price higher than 2 (so increasing the price they face from
2 to 3 does not change their surplus.)
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from segmentation S by replacing segment (C, p) with the two segments (C\C̄, p) and

(C̄, p′). The consumers in C̄ with the highest value in C have a strictly higher surplus

in S̄ than in S, and all the other consumers in C have a weakly higher surplus in S̄

than in S. Thus, S̄ Pareto dominates S.

Any segmentation that maximizes average consumer surplus must be Pareto un-

dominated. And because we have already seen examples of segmentations that maxi-

mize average consumer surplus but are not stable, such as Example 3, there are Pareto

undominated segmentations that are not stable.

6 Conclusions

We study settings in which consumers form groups in their interaction with a mo-

nopolistic seller. These groups correspond to market segments, which together form a

segmentation of the market. Because the seller offers an optimal price in each market

segment, different consumers may rank the possible segmentations differently, so it is

not clear which market segmentation would arise. We model the interaction between

consumers that determines the segmentation as a cooperative game. If the market is

efficient, then all consumers agree on the best segmentations and the core of the game

consists of these segmentations. But whenever the market is inefficient, consumers dis-

agree and the core is empty. To investigate how consumers resolve their differences, we

introduce two new solution concepts, the weakened core and stability. The weakened

core is a slight relaxation of the core, which rules out certain objections and can be

motivated by a small cost of breaking up existing segments. A stable segmentation is

one that, for each segmentation considered as a possible deviation, contains a segment

of consumers that object to the deviation. This captures a kind of “coalitional individ-

uals rationality (IR).” The weakened core and the set of stable segmentations coincide

with the core whenever the core is not empty.

Our main result shows that a segmentation is in the weakened core if and only if it is

stable, and characterizes these segmentations as those that are efficient and saturated,

in that enlarging any segment by adding consumers who face higher prices necessarily

increases the profit-maximizing price for the segment. We use this characterization to

show that stable segmentations always exist by showing that a particular segmenta-

tion that maximizes average consumer surplus (the MERS), identified by Bergemann,

Brooks, and Morris (2015), is stable. We also show that efficiency and maximizing
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Figure 4: Summary of the relation between different notions.

consumer surplus are neither necessary nor sufficient for a segmentation to be stable.

We show that stable segmentations are Pareto undominated, which are in turn efficient.

The relationship between the various concepts is illustrated in Figure 4.

The main result also implies that stability and the weakened core are not overly

demanding. If a segmentation is not stable, then the characterization implies that

the segmentation is either not efficient or not saturated. In both cases it is easy to

construct an alternative segmentation that is a relatively minor modification of the

original one, is intuitively easy to obtain from the original segmentation, that contains

a segment that objects to the original segmentation, and such that no segment in the

original segmentation objects to the alternative segmentation.

Our notion of stability refines several solution concepts for NTU games (other than

the core) applied to our setting. In Appendix C, we show that a stable segmentation

together with its equivalent segmentations form a Morgenstern and Von Neumann

(1953) stable set, a Harsanyi (1974) farsighted stable set, a Ray and Vohra (2015)

farsighted stable set, and a Ray and Vohra (2019) maximal farsighted stable set.30

30Our notion of “coalitional IR” is closely related to the notion of “coalitional sovereignty” in Ray
and Vohra (2015) applied to our setting.
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We point out that stable sets and farsighted stable sets do not always exist in NTU

games. And when they do exist they may necessarily include multiple, non-equivalent

utility vectors or coalitions of players. Our results show that in our market game,

“singleton” (up to equivalent segmentations) stable and farsighted stable sets always

exist. In particular, for any deviation from a stable segmentation S to a non-equivalent

segmentation S ′, there exists a path of “credible” and “maximal” (in the sense of Ray

and Vohra, 2019) segmentations that leads back from S ′ to S. This provides another

justification for our notion of stability.

Appendix D discusses a variant of our model with a continuum of values, and

shows that our results extend to this setting. We also discuss the effect of requiring

strict improvements for all members of an objecting coalition, and show that it does

not make the core a more interesting solution concept because the core becomes too

large and includes all efficient segmentations; strict improvements also make stability

too demanding and less interesting by not allowing objections that include indifferent

consumers who “go along” with members of their existing segment who strictly prefer

the existing segment.

Our results indicate that when consumers interact with the seller in groups, the

loss of efficiency associated with monopoly pricing may be overcome. While efficiency

is also achieved with first-degree price discrimination, we show that when consumers

can form groups, the resulting efficient segmentation is Pareto undominated and may

increase consumer surplus up to the highest amount possible in the “surplus triangle” of

Bergemann, Brooks, and Morris (2015). If consumers can choose a segmentation before

they learn their value, then even if they can deviate by forming new groups after they

learn their value, they can obtain the highest consumer surplus in the surplus triangle

by choosing the MERS (or another suitable stable segmentation). Thus, monopolistic

price discrimination when consumers can form groups can be viewed as a possible

alternative or addition to standard anti-trust regulation. Consumer blocs, employee

unions, online platforms, and data cooperatives, which serve as intermediaries that

collect data from consumers and negotiate with companies on consumers’ behalf, may

be ways to achieve this.
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Figure 5: Example 5.

Appendix

A An Example from Section 4

The following example describes a non-canonical segmentation that is efficient and

saturated but not stable. Thus, to verify the stability of a segmentation, efficiency and

saturation must be checked for its induced canonical segmentation.

Example 5 There are three values, 1, 2, 3, with measures 0.5, 0.25, 0.25, respectively,

as shown in Figure 5.

Consider the segmentation S = {(C1, 1), (C2, 1), (C3, 3)} with coalitions C1, C2, C3,

shown in Figure 5.

For coalition C1, prices 1 and 2 are optimal. For coalition C2, prices 1 and 3 are

optimal. Adding consumers from segment (C3, 3) to either segment (C1, 1) or (C2, 1)

necessarily increases the optimal price in the latter segments. Thus, the segmentation

is saturated. The segmentation is also clearly efficient.

For coalition C1 ∪ C2 = [0, 7
8
), however, price 1 is the unique optimal price, so the

segmentation {(C1 ∪ C2, 1), (C3, 3)} is efficient but not saturated: we can add some

consumers from C3, all of whom have value 3, to C1∪C2 without changing the optimal

price. To see that S is not stable, note that segmentation S ′ = {([0, 7
8

+ ε), 1), ([7
8

+

ε, 1], 3)} for some small ε > 0 Pareto dominates S, so S is not stable by Lemma 2.
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B A Procedural Way to Describe Stability

The intermediate solution concept in statement (2) of Theorem 1 can be thought of in

a procedural way that links the different segments of a blocking segmentation. To see

this, consider a prevailing segmentation S and a proposed objecting segment (C ′, p′).

Each consumer in C ′ weakly prefers (C ′, p′) to S, and for some consumers the preference

is strict. Consumers in C ′ for whom the preference is not strict can be thought of as

consulting their coalition partners in S, saying “I was asked to join a deviating segment

(C ′, p′); if I leave our current segment in S to do so, would you be able to form new

segments, perhaps with consumers from other segments in S, so that not all of you are

hurt (some weakly and some strictly)? I will only join the deviating segment if your

answer is affirmative.” If these coalition partners can form new segments so that not all

of the coalition partners are hurt, the process continues; if these new segments include

consumers from additional segments in S, then some consumers in those segments may

consult their coalition partners in S, and so on. In this way, the formation of a blocking

segmentation can be thought of as a “contagion” process that starts from the initial

objecting segment (C ′, p′). If all consumers are able to successfully rearrange into new

segments, then a blocking segmentation forms and S is not stable. But if S is stable,

then for any initial objecting segment, this process will get “stuck:” at some point in

the process, some indifferent consumers who are considering deviating from S belong

to a segment that objects to any rearrangement of the remaining consumers.

We now formalize the procedural description of stability. Given a prevailing segmen-

tation S and an objecting segment (C ′, p′), the following iterative procedure attempts

to construct a segmentation that includes (C ′, p′) and which S does not block.

Let C0
d = C ′ (consumers already assigned to a deviating segment) and set k = 0.

(*) Let Ck
l = [0, 1]\Ck

d (consumers not yet assigned to a deviating segment), Sk
d =

{(C, p) ∈ S : C ∩ Ck
d 6= ∅} (original segments that include consumers already assigned

to a deviating segment), F k = ∪(C,p)∈Sk
d
C (the consumers in those original segments),

and Dk = F k\Ck
d (the consumers in those original segments not yet assigned to a

deviating segment).

If Dk = ∅, then stop and output the segmentation that consists of the deviating

segments so far constructed, whose coalitions contain precisely the consumers in Ck
d =

F k, and the segments in S\Sk
d .

If Dk 6= ∅, continue the construction by, for some set of consumers Ek ⊂ Ck
l ,

assigning all the consumers in Dk ∪ Ek to new deviating segments, in a way that no
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segment in Sk
d objects to the deviating segments.31 If there is no way to do this for any

Ek ⊂ Ck
l , then stop and output ‘stuck.’ Otherwise, set Ck+1

d = Ck
d ∪Dk ∪Ek, increase

k by 1, and repeat from (*).

This procedure ends after finite number of iterations because for any k, if Dk+1 6= ∅
then Sk+1

d \Sk
d contains at least one segment from S, and S consists of a finite number

of segments.

Claim 1 A segmentation S is stable if and only if for any segment (C ′, p′) that objects

to S the procedure always outputs ‘stuck.’

Proof. Suppose that for some segment (C ′, p′) that objects to S the procedure does

not output ‘stuck,’ that is, it outputs a segmentation S ′. By construction, S ′ contains

(C ′, p′), so S ′ is not equivalent to S, and no segment in S objects to S ′. Thus, S is not

stable.

For the other direction, suppose that for any segment (C ′, p′) that objects to S the

procedure outputs ‘stuck.’ By Theorem 1, it is enough to show that S blocks every

segmentation S ′ that blocks S. Suppose that this is not the case, that is, there exists

a segmentation S ′ that blocks S but S does not block S ′. Consider a segment (C ′, p′)

in S ′ that objects to S and run the procedure. We will show that for appropriate

sets E0, E1, . . ., the procedure will output a segmentation and not get stuck. Let

Ek = ∪{(C′′,p′′)∈S′:C′′∩Fk}C
′′, where F k = ∪(C,p)∈Sk

d
C as defined in the procedure. By

running the procedure with E0, E1, . . . and, if the procedure has not stopped by step

k, constructing in step k the set of deviating segments {(C ′′, p′′) ∈ S ′ : C ′′ ∩ F k}, we

see that at each step the procedure adds at least one more segment from S ′ (starting

with the objecting segment (C ′, p′)). Since S does not object to S ′, the procedure will

not get stuck. Indeed, when it stops, the procedure outputs a segmentation S ′′ that

includes (C ′, p′), possibly additional segments from S ′, and possibly segments from S

(if the procedure stops at step k with Dk = ∅ and Ck
d 6= [0, 1]). This completes the

proof.

C Relation to Existing Cooperative Concepts

We here relate stability to several existing solution concepts for NTU games, including

various stable set notions and the bargaining set. The cooperative solution concepts

31This assignment implies in particular that all the consumers in F k have been assigned to deviating
segments, so we can determine whether any segment in Sk

d objects to the deviating segments.
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we discuss, which are typically defined for games with a finite number of players,

require minor adjustments because we have a continuum of consumers. With these

adjustments, we show that stability is a strict refinement of all these concepts. Stability

therefore inherits the justifications for these concepts that often rely on farsighted

behavior of agents, but has the additional (myopic) justification based on coalitional

IR.

C.1 Stable Set

Our notion of stability is related to the notion of a stable set from Morgenstern and

Von Neumann (1953). The stable set is defined for any cooperative game; we present

its application to our game. Notice that whereas the stability notion of Morgenstern

and Von Neumann (1953), stated below, is a property of a set of segmentations, our

notion of stability is a property of a single segmentation.

Definition 7 (Stable set, Morgenstern and Von Neumann, 1953) A set of seg-

mentations S is a stable set if it satisfies the following two properties:

1. Internal Stability: For any S ∈ S, no S ′ ∈ S blocks S.

2. External Stability: For any S /∈ S, some S ′ ∈ S blocks S.

If a segmentation S is stable, then the set of all segmentations that are equivalent

to S is a stable set. This is easy to see: internal stability is trivially satisfied because

a segmentation does not block an equivalent segmentation, and external stability is

satisfied by definition of stability. Because stable segmentations always exist, stable

sets exist in our setting. This is noteworthy because stable sets do not exist for some

cooperative games. Moreover, even when stable sets exist, they may necessarily con-

tain multiple elements. In contrast, our characterization of stable sets in the Online

Appendix (Section E.1) shows that any stable set in our setting contains an essentially

unique element in the sense that it consists of all the segmentations that are equivalent

to some segmentation S.

Perhaps surprisingly, our characterization of stable sets shows that the set of seg-

mentations that are equivalent to a segmentation S may be a stable set even if S is

not stable. This is because stability requires that a single segmentation block any

other non-equivalent segmentation; for the set of segmentations that are equivalent to

S to be a stable set, on the other hand, requires that any segmentation that is not
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equivalent to S be blocked by some segmentation that is equivalent to S. It may be

that S does not block S ′ but a segmentation that is equivalent to S does. To see this,

suppose that S is canonical but not stable, and consider another segmentation S ′ that

is not blocked by S. Take a segment (C, p) in S. Since (C, p) does not object to S ′,

C may contain some consumers who prefer S to S ′ and some consumers who prefer

S ′ to S. If coalition C ′ ⊆ C is such that (C ′, p) and (C\C ′, p) are segments and we

replace (C, p) with (C ′, p) and (C\C ′, p), it could be that (C ′, p) objects to S ′, yielding

a segmentation that is equivalent to S and blocks S ′. We provide an example of this

in the Online Appendix (Section E.1).

C.2 Farsighted Stable Set

Our stability notion is also related to two other notions motivated by farsighted stabil-

ity: the Harsanyi stable set and the Ray and Vohra farsighted stable set (henceforth

RV stable set).

Both notions define a stable set as one that satisfies internal and external stability,

just like the stable set of Morgenstern and Von Neumann (1953). But the notion of

blocking used to define internal and external stability is “farsighted.” A segmenta-

tion blocks another segmentation if there is a sequence of segmentations that begins

with the segmentation to be blocked and ends with the blocking segmentation such

that each intermediate segmentation contains a coalition that prefers the blocking seg-

mentation to the one that preceded the intermediate segmentation. These objecting

coalitions allow the blocking segmentation to be “reached” starting from the original

segmentation. The two notions differ in what is assumed about the segments along the

sequence other than the objecting segments, with the RV stable set assuming a kind

of “coalitional autonomy” similar to the “coalitional IR” that motivates our definition

of stability.

Our notion of stability satisfies these two notions which, although differing in gen-

eral, coincide in our setting. Moreover, although these are set notions, in our setting

they are satisfied only by singleton sets. Importantly, however, these notions are not

particularly useful in our setting because they are too permissive. More precisely, for

each notion we have a weak and a strong version; any segmentation that does not

eliminate all consumer surplus satisfies the weak versions, and any Pareto undomi-

nated segmentation satisfied the strong versions. We provide the details in the Online

Appendix (Section E.2).
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C.3 Bargaining Set

Our notion of stability is closely related to the bargaining set. Roughly speaking, a

segmentation S is in a bargaining set if for any objection to S, there is another objection

to S that would in a sense “cancel” the original objection. In contrast, stability requires

that S contain an objection to any other non-equivalent segmentation. Section C.3

contains an example with two values in which all segmentations are in the bargaining

set.

There are many ways to define a bargaining set depending on whether or not we

require strict or weak preferences. We only state one possibility here.

Definition 8 The bargaining set is a set of segmentations S with the property that for

any objection (C, p) to S, there exist a segment (C ′, p′) such that, C 6⊆ C ′, C ′ 6⊆ C,

CS(c, p′) ≥ CS(c, p) for almost all c ∈ C ∩C ′, and CS(c, p′) ≥ CS(c, S) for almost all

c ∈ C ′\C.

For simplicity, suppose that there are only two values, v1 and v2. Suppose that v1

is not optimal for the set of all consumers [0, 1], that is, v1 < v2f(v2). We show that

all segmentations are in the bargaining set.

Consider any segmentation S and an objection (C, p) to S. We must have p = v1

because otherwise the surplus of all consumers in (C, p) is zero. The coalition C

contains a positive measure, but not all, of value v2 consumers. Construct a coalition

C ′ by removing an ε measure of value v2 consumers from C and replace them with

the same measure of value v2 consumers that are not in C. Notice that (C ′, v1) is a

segment. The consumers in C ∩ C ′ have the same surplus in (C, v1) and in (C ′, v1).

Consumers in C ′\C have a weakly higher surplus in (C ′, v1) than in S. Therefore, S

is in the bargaining set.

D Continuum of Values

One modeling assumption we make is that the number of possible consumer values is

finite. We consider a variant of our setting with a continuum of values and show that

our main results extend: the core is empty unless the unsegmented market is efficient,

and stability is characterized by efficiency and saturation.

In this setting with a continuum of values, we also study what happens if we

strengthen the definition of an objection to require that almost all consumers in a
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segment strictly benefit from deviating to the segment. This reduces the number of

deviations relative to the setting that allows for objections with indifferences, which

makes the core a less demanding solution concept. With this stronger form of objec-

tions, the core becomes too permissive in the sense that it contains all finite efficient

segmentations. We also study what stability looks like with this stronger form of ob-

jections. Because we require a given segmentation to veto any deviation in a stronger

sense, we should expect stability to become more demanding. In fact, stability be-

comes too demanding in the sense that no stable segmentations exist. Our view is that

indifferences are consistent with an intuitive notion of coalitional IR and stability: a

consumer who is indifferent could reasonably agree to passively go along with the ob-

jecting votes of her current coalition members who are strictly harmed by a proposed

deviation. In contrast, when defining the core, it may be reasonable to require strict

improvements: to be willing to actively deviate from a segmentation, consumers in the

coalition should strictly benefit.

In the variant of our setting we consider there is a unit mass of consumers whose

values are distributed on an interval [v, v̄], 0 < v < v̄ <∞ according to a distribution

F with a derivative that is bounded from above and away from 0. Each consumer

c ∈ [v, v̄] is identified by her unique value for the product. A coalition C consists of a

finite union of sub-intervals of [v, v̄]. A segment (C, p) consists of a coalition C and a

price p that is optimal (revenue-maximizing) when the values are drawn according to

F conditional on being in C. The assumption that the derivative of F is bounded from

above and away from 0 means that there exists some δ > 0 such that for any consumer

c, price p = c is uniquely optimal for the set of consumers [c, c+ ε] for any ε ≤ δ.

We focus on finite segmentations. A (finite) segmentation is a finite set of segments

{(Cj, pj)}j=1,...,k such that C1, . . . , Ck partition the set of all consumers [v, v̄].32 Let

CS(c, p) denote the surplus of consumer c from being offered price p, and CS(c, S) the

surplus of this consumer in segmentation S.

We first study the core and stability according to the notion of objection used

32In this formulation each consumer has a unique value. An alternative formulation, inspired by
the information design literature, would be as follows. An unsegmented market is a distribution F
over values [v, v̄]. A segment is a pair (G, p), where p is an optimal price when values are distributed
according to G. A segmentation is a finite set of segments {(Gj , pj)}j=1,...,k and a distribution over
the segments given by probabilities α1, . . . , αk satisfying Bayes-plausibility, F =

∑
j αjGj . In this

formulation, it is possible for multiple segments to contain consumers of some value. The issue now
is that it is ambiguous to talk about a segment (G, p) objecting to a segmentation S, because there
is no way to keep track of which segments in the original segmentation the consumers in the segment
are coming from. We leave an appropriate formalization of such a model for future work.
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throughout the paper, requiring that all consumers in the segment weakly, and some of

them strictly, prefer the segment to the segmentation. Recall that stability is defined

using a notion of equivalence. Here we say that two segmentations are equivalent

if, for any segment (C, p) in one segmentation, there exists a segment (C ′, p) in the

other segmentations such that C and C ′ are almost identical, that is, both C\C ′ and

C ′\C have zero measure. Our characterization is unchanged: the core is empty unless

the unsegmented market is efficient, and stability is characterized by efficiency and

saturation.33

Proposition 4 If the unsegmented market is efficient, that is, price v is optimal for

the set [v, v̄] of all consumers, then the core consists of the segmentation {([v, v̄], v)}.
Otherwise, the core is empty. A segmentation is stable if and only if it is efficient and

saturated.

Proof. If the unsegmented market is efficient, then in the segmentation {([v, v̄], v)}
all consumers are offered the lowest price v and so there is no objection to the seg-

mentation. Further, in any segmentation in the core, all consumers must be offered

price v, otherwise the segment that contains all consumers together with price v is an

objection, so the segmentation {([v, v̄], v)} is the unique segmentation in the core.

Suppose the unsegmented market is inefficient. Then, in any segmentation, there

must exist a segment with price p strictly higher than v. Take a small measure δ of

consumers with value at least p from that segment, and add them to coalition [v, v+ ε)

to form a new coalition C. For small enough ε, price v is uniquely optimal for [v, v+ε),

so if δ is small enough, price v is also optimal for coalition C so (C, v) is an objection.

We now turn to stability. If a segmentation S is inefficient, then it contains some

segment (C, p) in which the price p is higher than the lowest value. Replace (C, p)

with two segments: a new segment (C ′, p′) with consumers whose values are lower

than p, and another segment containing the remaining consumers (C\C ′, p). We must

have p′ < p because all consumers in C ′ have value at most p. Also C ′ must contain a

positive measure of consumers with value strictly higher than p′ (otherwise the revenue

is zero). Call the resulting segmentation S ′. Notice that (C, p) does not object to S ′

because some of the consumers, those in (C ′, p′) with values above p′, strictly prefer S ′

to S. So S is not stable.

33In this setting with a continuum of values, any segmentation is canonical because any two segments
in any segmentation have different prices. As a result, any two segmentations are non-equivalent.
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Suppose a segmentation S is efficient but not saturated. Saturation means there

are two segments (C, v(C)) and (C ′, v(C ′)) with prices v(C) < v(C ′) in S such that

we can add some consumers from C ′ to C without increasing the price in the first

segment. Call the resulting segmentation S ′. The segment (C, v(C)) does not object

to S ′ because the consumers in it are indifferent. The segment (C ′, v(C ′)) does not

object to S ′ because some of its consumers, those added to the segment with the lower

price, strictly prefer S ′ to S. So S is not stable.

Suppose that a segmentation S = {(C1, p1), . . . , (Ck, pk)}, p1 < . . . < pk is efficient

and saturated. Suppose there is some segmentation S ′ that is not blocked by S. Let

C ′1, . . . , C
′
k be the coalitions in S ′ belonging to segments with prices p1, . . . , pk, respec-

tively (these coalitions might be empty). Because S is efficient, p1 is equal to the lowest

possible value v. Therefore, if C1 contains a positive measure of consumers that are

not in C ′1, then (C1, p1) objects to S ′. By saturation, C ′1 cannot be a superset of C1,

therefore we must have C ′1 = C1 (in the almost all sense). Now again because S is

efficient, p2 is equal to the lowest value among consumers that are not in C1. A similar

argument implies that we must therefore have C ′2 = C2. A recursive argument implies

that S and S ′ must be equivalent.

We now consider a stronger notion of an objection in which almost all consumers

are required to strictly prefer the segment.

Definition 9 (Strong objection) A segment (C, p) strongly objects to a segmenta-

tion S if CS(c, p) > CS(c, S) for almost all consumers in C.

Definition 10 (Strong core) The strong core is the set of segmentations S to which

no segment strongly objects.34

Definition 11 (Strong stability) A segmentation is strongly stable if it contains a

strong objection to any non-equivalent segmentation.

We first demonstrate the main ideas with an example. Suppose values are uniformly

distributed on [1, 3]. For any δ ≤ 1, price v is optimal for a coalition [v, v + δ).35 So

S = {([1, 1 + δ), 1), ([1 + δ, 1 + 2δ), 1 + δ), . . . , ([1 + kδ, 3], 1 + kδ)} is a segmentation

and is efficient.

34This notion is in fact weaker than the corresponding notion with weak objections. We call it
“strong” to clarify that it is defined based on strong objections.

35The revenue from price p is proportional to p(v + δ − p), and its derivative is v + δ − 2p ≤ δ − v
because p ≤ v, and δ − v ≤ 0 because δ ≤ 1 ≤ v.
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We argue that S is in the core for any δ ≤ 1. So suppose δ ≤ 1 and there exists some

strong objection (C, p) to S. Because consumers in segment ([1, 1 + δ), 1) are offered

the lowest possible price, they cannot be a part of any strong objection, so [1, 1+δ)∩C
has measure zero. This in turn implies that p ≥ 1 + δ. But then consumers in segment

([1 + δ, 1 + 2δ), 1 + δ) cannot be a part of a strong objection either. An inductive

argument shows that a strong objection does not exist.

We show below that the strong core is the set of all efficient segmentations. Our

interpretation is that the strong core is a weak solution concept because there are many

efficient segmentations. Recall that because the derivative of F is bounded above and

away from 0, there exists δ > 0 such that for any consumer c, price c is revenue-

maximizing for the set of consumers [c, c+ ε] for any ε ≤ δ. Now we construct a class

of efficient segmentations. Starting from c = v, choose an arbitrary ε ≤ c + δ and let

C = [c, c+ ε] and add segment (C, c) to the segmentation. Repeat until all consumers

are in the segmentation.

Proposition 5 A segmentation is in the strong core if and only if it is efficient.

Proof. Suppose first that a segmentation S is inefficient. Therefore, there exists a

segment (C, p) in S such that p is strictly higher than v(C) = inf{v(c)|c ∈ C}. Let p′

be the optimal price for the set C ∩{v|v ≤ p} (which is a positive-measure set because

p > v(C)). Notice that p′ is also optimal for the set C ′ := C ∩ {v|p′ ≤ v ≤ p}. The

segment (C ′, p′) is a strong objection to S because all these consumers get zero surplus

in S but almost all of them get a positive surplus in (C ′, p′).

Now suppose that a segmentation S is not in the core, so it has an objection (C, p).

Because S is finite and the coalition in each segment in S consists of a finite union

of intervals, there is an ε > 0 such that all consumers in (p, p + ε) belong to a single

segment in S, say (C ′, p′). Because price p is optimal for C, a positive measure of

consumers in (p, p + ε) must be in C (otherwise we can increase the price without

decreasing revenue). So because (C, p) is a strong objection to S, the consumers in

(p, p+ε)∩C must strictly prefer (C, p) to the segmentation, and it must be that p < p′.

But this implies that p′ is less than the value of a positive measure of consumers in C ′,

so (C ′, p′) is inefficient and therefore S is also inefficient.36

With strong objections, stable segmentations do not exist.

36Notice that this argument does not require the objecting coalition C to consist of a finite union
of intervals.
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Proposition 6 There exists no strongly stable segmentation.

Proof. Consider any segment (C, p) in any segmentation S. Let C ′ be a subset of C

consisting of consumers with value at least c′ > p (with c′ chosen so that C ′ has positive

measure). Any optimal price p′ for C ′ is strictly higher than p. Because we removed

consumers with the highest values from C, any optimal price p′′ for C\C ′ is at most p.

Now replace (C, p) with (C ′, p′) and (C\C ′, p′′), and call the resulting segmentation S ′.

The two segmentations are not equivalent because p′ 6= p. But (C, p) is not a strong

objection to S ′ because the consumers in C\C ′ weakly prefer S ′ to S.
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Online Appendix

E Additional details for Appendix C

E.1 Proofs for Section C.1

We first provide an example where a segmentation S does not block S ′ but a segmen-

tation that is equivalent to S does.

Example 6 There are three values, 1, 2, 3, with measures 6
21
, 4
21
, 11
21

, respectively, as

shown in Figure 6, and a segmentation S = {(C1, 1), (C2, 2)} with C1 = [0, 6
21

)∪ [18
21
, 1]

and C2 = [ 6
21
, 18
21

).

Segmentation S is not stable because it is not saturated. This is because we can add

some consumers with value 2 from C2 to C1 without increasing the optimal price p = 1

in the first segment. It is also easy to see directly that S is not stable. For example,

segmentation S ′ = {(C ′1, 1), (C ′2, 3)} with coalitions C ′1 = [0, 7
21

) ∪ [18
21
, 1] and C ′2 =

[ 7
21
, 18
21

) shown in Figure 6 is not blocked by S. Segment (C1, 1) in S does not object to

S ′ because all consumers in C1 are indifferent between the two segmentations. Segment

(C2, 2) does not object to S ′ because the value 2 consumers who join the first segment

in S ′ strictly prefer S ′ to S. However, segmentation S ′ is blocked by segmentation S ′′ =

{(C ′′1 , 1), (C ′′2 , 2), (C ′′′2 , 2)} with coalitions C ′′1 = [0, 6
21

) ∪ [18
21
, 1], C ′′2 = [ 6

21
, 7
21

) ∪ [16
21
, 18
21

),

and C ′′′2 = [ 7
21
, 16
21

), which is equivalent to S. In particular, segment (C ′′′2 , 2) objects to

S ′ because the consumers in C ′′′ face price 2 in S ′′ and price 3 in S ′.

The proposition below characterizes stable sets and shows that in this example the

set of all segmentations that are equivalent to S is in fact a stable set. To state the

proposition, we first define two weak notions of objection and blocking.

Definition 12 (Weak Objections) A segment (C, p) weakly objects to a segmenta-

tion S if CS(c, p) > CS(c, S) for a positive measure of consumers c in C, and, for

every price p′ that is optimal for C, CS(c, p) ≥ CS(c, S) for a positive measure of

consumers c in C whose value is p′.

Any objection is also a weak objection. To see this, observe that both objections

and weak objections require that some consumers strictly prefer the segment to the

segmentation. But objections also require that all consumers in the segment weakly
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Figure 6: Example 6

prefer the segment. Weak objections do not require this for consumers whose value is

not an optimal price for the segment. And for values that are optimal prices for the

segment, only some consumers with such values are required to prefer the segment. We

now define the corresponding notion of weak blocking.

Definition 13 (Weak Blocking) A segmentation S weakly blocks a segmentation S ′

if there exists a segment (C, p) in S that weakly objects to S ′.

Segmentation S in Example 6 weakly blocks (but does not block) segmentation S ′

because segment (C2, 2) weakly objects to S ′: consumers with value 3 in C2 strictly

prefer the segment to S ′, consumers with value 2 in C2 ∩C ′2 weakly prefer the segment

to S ′, and 2 is an optimal price for C2.
37

The following proposition characterizes the stable sets.

Proposition 7 A set of segmentations S is a stable set if and only if it comprises all

the segmentations that are equivalent to some canonical segmentation S that weakly

blocks any segmentation S ′ that is not equivalent to S.

37(C2, 2) does not object to S′ because consumers in C2\C ′2 face a price of 2 in (C2, 2) and a price
of 1 in S′.
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Proof. To see the necessity of these conditions, consider a stable set S of segmenta-

tions. We first show that any segmentation in S is Pareto undominated. Suppose for

contradiction that a segmentation S in S is Pareto dominated by another segmentation

S ′. If S ′ is in S, then internal stability is violated because S ′ blocks S. If S ′ is not

in S, then, by external stability, there is a segmentation S ′′ in S that blocks S ′. But

then S ′′ also blocks S, which violates internal stability. Pareto undominance implies

that any segmentation in S is efficient.

We now show that any two segmentations in S are equivalent. Suppose for contra-

diction that segmentations S1 and S2 in S are not equivalent. Their induced canonical

segmentations S ′1 and S ′2 are also not equivalent, so there is a price p and segments

(C1, p) in S ′1 and (C2, p) in S ′2 with C1 6= C2 (in the “almost all” sense), where C1 or

C2 may be empty. Suppose without loss of generality that p is the lowest such price,

so any consumer in C1 is either in C2 or in a segment of S ′2 with a higher price, and

similarly any consumer in C2 is either in C1 or in a segment of S ′1 with a higher price

(up to a set of consumers of measure 0). Because C1 6= C2, either C1\C2 or C2\C1 has

positive measure. Suppose without loss of generality that C1\C2 has positive measure.

First observe that C1\C2 cannot contain a positive measure of consumers with value

p. Indeed, such consumers would be in segments of S ′2 with prices strictly higher than

p, so S ′2 would not be efficient, contradicting the efficiency of S2. Therefore, C1\C2

contains a positive measure of consumers with values higher than p.

Consider any segment (C ′′, p) in S1 that contains some such consumers, that is,

C ′′ ∩ (C1\C2) has positive measure. Because C ′′ ⊆ C1, the consumers in C ′′ face prices

no lower than p in S2, and the consumers in C ′′ ∩ (C1\C2) face prices strictly higher

than p in S2. So S1 blocks S2, which contradicts internal stability.

We have established that S may only contain segmentations that are equivalent to

a Pareto undominated segmentation S. If some S ′ that is equivalent to S is not in

S, then no segmentation in S blocks S ′ so external stability is violated. So S must

contain all segmentations that are equivalent to a Pareto undominated segmentation

S, which we can assume to be canonical without loss of generality. To complete the

necessity direction, it remains to show that the canonical segmentation S weakly blocks

any non-equivalent segmentation.

Suppose for contradiction that S does not weakly block some non-equivalent seg-

mentation S ′. Because S is a stable set and contains all segmentations that are equiv-

alent to S, there is a segmentation S ′′ that blocks S ′ and is equivalent to S. Consider a
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segment (C ′′, p) in S ′′ that objects to S ′, and the unique segment (C, p) in S in which

the price is p. Because (C ′′, p) objects to S ′ and C ′′ ⊆ C, there is a positive measure

of consumers in (C, p) that strictly prefer S to S ′. Because S does not weakly block

S ′, there exists some optimal price v for C such that all consumers with value v in C

strictly prefer S ′ to (C, p). We claim that v is also optimal for any segment in S ′′ with

price p, and therefore for C ′′. To see this, consider all the segments (C ′′1 , p), . . . , (C
′′
k , p)

in S ′′ with price is p, so C is the union of all these coalitions, one of which is C ′′. Be-

cause p is optimal for C ′′j , j = 1, . . . , k, we have vFC′′
j (v) ≤ pFC′′

j (p). If price v is not

optimal for some C ′′j , then vFC′′
j (v) < pFC′′

j (p). In this case, summing up over all j,

we have vFC(v) < pFC(p), which contradicts the optimality of price p for coalition C.

So v must be optimal for C ′′. Therefore, v is optimal for C ′′, which means C ′′ contains

a positive measure of consumers with value v. And because all consumers with value

v in C strictly prefer S ′ to S, and S ′′ is equivalent to S ′, all these consumers strictly

prefer S ′ to (C ′′, p) so (C ′′, p) cannot object to S ′, a contradiction.

To establish sufficiency, consider any canonical segmentation S = {(C1, v1), . . . , (Cn, vn)}
that weakly blocks any non-equivalent segmentation. The set of segmentations that are

equivalent to S satisfies internal stability because no segmentation blocks an equivalent

segmentation. For external stability, we show that for any segmentation S ′ that is not

equivalent to S, there is a segmentation S ′′ that is equivalent to S and blocks S ′.

Consider the segment (C, p) in S that weakly objects to S ′. We will construct a

coalition C ′′ ⊆ C and show that the segmentation S ′′ that is the same as S except that

(C, p) is replaced with (C\C ′′, p) and (C ′′, p), and is therefore equivalent to S, objects

to S ′. The construction of C ′′ has two steps. First, let C ′′1 be a small coalition that

comprises consumers with all the values that are optimal prices for C in proportions

that make these values optimal prices for C ′′1 . That is, ε = vFC′′
1 (v) for some small

ε and all v that are optimal prices for C. For the second step, let v′ be such that a

positive measure of consumers in C with value v′ strictly prefer (C, p) to S ′. For some

δ > 0, add to C ′′1 a measure δ of consumers in C with value v′ that strictly prefer (C, p)

to S ′, and remove from C ′′1 the same measure δ of consumers with the highest value

in C ′′1 that is at most v′ (a positive measure of these consumers exists because some

consumers in C ′′1 have value p and p < v′, otherwise consumers with value v′ have zero

surplus in S so do not strictly prefer (C, p) to S ′). The resulting coalition is C ′′, which,

if δ is small relative to ε, satisfies that ε = vFC′′
(v) for all prices v that are optimal for

C. So if δ is small relative to ε, then C ′′ has the same set of optimal prices as C ′′1 , and
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(C ′′, p) is a segment. Similarly, if ε and δ are small enough, then C\C ′′ has the same

set of optimal prices as C, so (C\C ′′, p) is a segment. By construction, (C ′′, p) objects

to S ′, so S ′′, which is equivalent to S, blocks S ′.

The canonical segmentation S in Example 6 weakly blocks any non-equivalent seg-

mentation, so the set of segmentations that are equivalent to S is a stable set. To see

that S weakly blocks any non-equivalent segmentation, consider some segmentation S ′

that is not weakly blocked by S. Suppose without loss of generality that S ′ is canon-

ical, so S ′ = {(C ′1, 1), (C ′2, 2), (C ′3, 3)}. Because all consumers with value 1 have zero

surplus, if some consumers with value 3 in C1 strictly preferred S to S ′, then (C1, 1)

would weakly object to S ′. Thus, the consumers with value 3 in C1 are in C ′1. It is

impossible for all value 2 consumers in C2 to be in C ′1, because then the revenue from

price 2, 2 · ( 4
21

+ 11
21

), would be strictly higher than the revenue from price 1, which is

at most 6
21

+ 4
21

+ 11
21

. Thus, some consumers with value 2 in C2 weakly prefer S to

S ′. This implies that the consumers with value 3 in C2 must be in C ′1 ∪ C ′2, otherwise

some such consumers, those in C ′3, would strictly prefer S to S ′ and then (C2, 2) would

weakly object to S ′. Therefore C ′3 is empty (C ′3 cannot only contain consumers with

value other than 3 because then price 3 cannot be optimal). Let δ1 ≥ 0 be the measure

of value 1 consumers in C ′2, and let δ2, δ3 ≥ 0 be the measures of value 2 and value

3 consumers from C2 that are in C ′1. For price 1 to be optimal for C ′1, the revenue

from this price, 6
21
− δ1 + δ2 + 3

21
+ δ3, must be no lower than the revenue from price

3, 3 · ( 3
21

+ δ3), which means that −δ1 + δ2 + δ3 ≥ 3δ3. Similarly, for price 2 to be

optimal for C ′2 we must have 2 · ( 4
21
− δ2 + 8

21
− δ3) ≥ 3 · ( 8

21
− δ3), which means that

3δ3 ≥ 2(δ2 + δ3). These two inequalities hold if and only if δ1 = δ2 = δ3 = 0. We

therefore have that C1 = C ′1 and C2 = C ′2, so S ′ is equivalent to S.

E.2 Proofs for Section C.2

To apply the Harsanyi and RV stable sets to our setting, we need to address two

technical issues. First, these notions are defined for a finite number of players. Second,

they involve a definition of objection that requires a strict improvement for all members

of the objecting coalition. In our setting, consumers with the lowest value in a coalition

have zero surplus, so these notions become trivial (every segmentation satisfies them)

if we require a strict improvement for every consumer. We define modified versions

of these notions below, allowing for a continuum of players and weak improvements.

Because farsighted stability considers sequences of deviations, there are two ways to
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allow for weak improvements. We therefore define two versions of each solution concept.

Definition 14 A segmentation S Harsanyi blocks a segmentation S ′ if there is a se-

quence S0 = S ′, S1, . . . , Sn = S of segmentations and a sequence (C1, p1), . . . , (Cn, pn)

of segments such that for i = 1 . . . n, (Ci, pi) ∈ Si and CS(c, Si−1) ≤ CS(c, S) for all

consumers c ∈ Ci, with a strict inequality for a positive measure of consumers c ∈ Ci

for some i. If, in addition, CS(c, Si−1) < CS(c, S) for a positive measure of consumers

c ∈ Ci for all i = 1 . . . n, we say that S strongly Harsanyi blocks S ′.

Definition 15 A set of segmentations S is a (strong) Harsanyi stable set if it satisfies

the following two properties:

1. Internal Stability: For all S ∈ S, there exists no S ′ ∈ S that (strong) Harsanyi

blocks S.

2. External Stability: For all S /∈ S, there exists S ′ ∈ S that (strong) Harsanyi

blocks S.

Definition 16 A segmentation S RV blocks a segmentation S ′ if there is a sequence

S0 = S ′, S1, . . . , Sn = S of segmentations and a sequence (C1, p1), . . . , (Cn, pn) of

segments such that for i = 1 . . . n, (Ci, pi) ∈ Si and (C, p) ∈ Si whenever (C, p) ∈ Si−1

and C ∩ Ci = ∅, and CS(c, Si−1) ≤ CS(c, S) for all consumers c ∈ Ci, with a strict

inequality for a positive measure of consumers c ∈ Ci for some i. If, in addition,

CS(c, Si−1) < CS(c, S) for a positive measure of consumers c ∈ Ci for all i = 1 . . . n,

we say that S strongly RV blocks S ′.

Definition 17 A set of segmentations S is a (strong) RV stable set if it satisfies the

following two properties:

1. Internal Stability: For all S ∈ S, there exists no S ′ ∈ S that (strong) RV blocks

S.

2. External Stability: For all S /∈ S, there exists S ′ ∈ S that (strong) RV blocks S.

For the following characterization of Harsanyi and RV stable sets we denote by

ACS(S) the average consumer surplus in segmentation S.

Proposition 8 The following are equivalent for any set of segmentations S:
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• S is a Harsanyi stable set

• S is a RV stable set

• S = {S} for some S with ACS(S) > 0.

The proof of Proposition 8 uses the following lemma.

Lemma 3 For any two segmentations S and S ′, the following are equivalent:

• S Harsanyi blocks S ′.

• S RV blocks S ′.

• ACS(S) > 0.

Proof. If ACS(S) = 0, then CS(c, S) = 0 for all consumers. Therefore, S cannot

Harsanyi block or RV block any segmentation.

Suppose that ACS(S) > 0. We show that S RV blocks any segmentation S ′, which

also implies that S Harsanyi blocks S ′. We do so by constructing a sequence of seg-

mentations in several steps that gradually transform S ′ to an elementary segmentation

in which each segment includes consumers with a single value. We then proceed from

the elementary segmentation to S.

In step 0 we set S0 = S ′. In each following step i > 0, we take the segmentation

Si−1 and a segment (C, p) in Si−1 that contains consumers of at least two types. For

each value vj, we let Ci
vj

be the set of all consumers with value vj in C. Si is constructed

from Si−1 by replacing (C, p) with the segments (Ci
vj
, vj) for all j such that fC(vj) > 0.

Let Ci = Ci
p. The first phase ends with a segmentation in which every segment contains

consumers of only a single type, so the surplus of all consumers is zero. The second

phase has one step per segment in S. In particular, for each (C, p) in S, given Si−1, we

remove the consumers in C from the segments in Si−1 with single values and the new

segment (C, p) to construct Si with Ci = C. The second phase ends with Sn = S.

To see that S RV blocks S ′, notice that in each step i = 1, . . . , n, consumers in

Ci have zero surplus in Si−1. Therefore, they weakly prefer S to Si−1. Additionally,

because ACS(S) > 0, there is a segment (C, p) in S in which a positive measure of

consumers obtain positive surplus. As a result, a positive measure of consumers strictly

prefer S = Sn to Sn−1.
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Proof of Proposition 8. Suppose that S = {S} for some S with ACS(S) > 0.

Then, by Lemma 3, S RV blocks and Harsanyi blocks any S ′ 6= S, so S is a RV stable

set and a Harsanyi stable set.

Consider any Harsanyi (respectively RV) stable set S. The set S must contain at

least one segmentation S with ACS(S) > 0, otherwise a segmentation S ′ /∈ S is not

Harsanyi (RV) blocked by any segmentation in S by Lemma 3. If the set contains

more than one segmentation, then, by Lemma 3, the segmentation S that satisfies

ACS(S) > 0 Harsanyi (RV) blocks the other segmentations in the set. Therefore, S
contains a single segmentation S, and ACS(S) > 0.

Proposition 9 The following are equivalent for any set of segmentations S:

• S is a strong Harsanyi stable set

• S is a strong RV stable set

• S is the set of all segmentations that are equivalent to some segmentation S that

is Pareto undominated.

The proof uses the following lemma. The lemma uses a weak notion of equivalence of

segmentations. Namely, we say that two segmentations S and S ′ are surplus-equivalent

if almost all consumers have the same surplus in the two segmentations, that is, for

almost all c ∈ [0, 1], CS(c, S) = CS(c, S ′). Any two equivalent segmentations are

surplus-equivalent.

Lemma 4 For any two segmentations S and S ′, the following are equivalent:

• Some surplus-equivalent segmentation to S strong Harsanyi blocks S ′.

• Some surplus-equivalent segmentation to S strong RV blocks S ′.

• There exist a positive measure of consumers c such that CS(c, S) > CS(c, S ′).

Proof. If some segmentation S ′′ that is surplus-equivalent to S strong Harsanyi (RV)

blocks S ′, then, by definition, a positive measure of consumers strictly prefer S ′′, and

therefore S, to S ′.

Suppose that a positive measure of consumers strictly prefer S to S ′. We show that

some segmentation S ′′ that is surplus-equivalent to S strong RV blocks segmentation

S ′, which also implies that S ′′ strong Harsanyi blocks S ′.
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We do so by constructing a sequence of segmentations in two phases. The first

phase consists of two steps. In the first step, consider some segment (C, p) in S that

contains a positive measure of consumers that strictly prefer S to S ′. Let coalition C1

contain a positive measure of consumers with value p from C, a positive measure of

(but not all the) consumers from C that strictly prefer S to S ′, and, for every segment

in S ′, a positive measure of consumers with the lowest value in that segment, where

the proportions of consumers in C1 are such that (C1, p) is a segment. Consider a

segmentation S1 that consists of (C1, p) and, for each consumer value, a segment that

contains only the consumers in [0, 1]\C1 with that value, so their surplus is zero. In

the second step, replace (C1, p) with (C, p) and, for each consumer value, put the

consumers in C1\C with that value in a separate segment (all other segments remain

intact). Denote the resulting segmentation by S0.

The second phase consists of (potentially) several steps. In each step i > 0, take

segmentation Si−1 and, for some segment (C ′, p′) in S that is not already in Si−1 and

contains a positive measure of consumers with positive surplus, let Ci = C ′. Si is

constructed from Si−1 by taking all segments (C ′′, p′′) that contain a positive measure

of consumers from C ′ (so C ′′ contains only consumers with value p′′) and replacing

them with (C ′′\C ′, p′′), and finally adding segment (C ′, p′) to Si. This process ends

with a final segmentation Sn that may differ from S but is surplus-equivalent to it

because for any segment in S that is not in Sn, all consumers in that segment obtain

zero surplus in both segmentations. So, for the remainder of the proof, suppose without

loss of generality that S = Sn.

To see that S RV blocks S ′, notice that in the first step of the first phase, coalition

C1 contains some consumers that strictly prefer S to S ′, and all other consumers in

C1 weakly prefer S to S ′ because they have surplus zero in S ′. In the second step of

the first phase, by definition, some consumers in C strictly prefer S to S1 and all the

consumers in C\C1 because they have zero surplus in S1. Similarly, in each step i of

the second phase, consumers in Ci have surplus zero in Si−1, and some consumers in

Ci strictly prefer S to Si−1 because they have a positive surplus in S.

Proof of Proposition 9. We first show for any Pareto undominated S, the set of

segmentations that are equivalent to S is the same as the set of segmentations that

are surplus-equivalent to S. For this, we show that a segmentation S ′ is equivalent to

Pareto undominated S if and only if it is surplus-equivalent to S. If S ′ is equivalent

to it, then almost all consumers have the same surplus in the two segmentations,
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and therefore they are surplus-equivalent. Suppose S and S ′ are surplus equivalent.

Because S is Pareto undominated, so is S ′. By Lemma 2, both segmentations must

be efficient. Let {(C1, v1), . . . , (Cn, vn)} and {(C ′1, v1), . . . , (C ′n, vn)} be the canonical

representations of S and S ′, respectively. Because the two segmentations are efficient,

all consumers in value v1 are in both C1 and C ′1. If some consumer with value higher

than v1 is in C1 but not C ′1, the the consumer’s surplus is different across the two

segmentations, violating surplus-equivalence. A similar argument apples to consumers

in C ′1 but not C1. So we must have C1 = C ′1. An inductive argument implies that the

two segmentations are equivalent.

Suppose that S is the set of all segmentations that are equivalent, and hence surplus-

equivalent, to some Pareto undominated segmentation S. Because S is Pareto undom-

inated, for any segmentation that is not in S, and hence is not surplus-equivalent to

S, there are some consumers that strictly prefer S to S ′. By Lemma 4, S strong

RV blocks and strong Harsanyi blocks any such S ′, so external stability is satisfied.

Any two segmentations in S are surplus-equivalent and therefore by Lemma 4, neither

strong RV blocks nor strong Harsanyi blocks the other, and therefore internal stability

is satisfied. So S is a strong RV stable set and a strong Harsanyi stable set.

Consider a strong Harsanyi (RV) stable set S. If the set contains two segmentations

S and S ′ in S that are not surplus-equivalent, then there is a positive measure of

consumers that either prefer S to S ′ or S ′ to S. Then, by Lemma 4, one of the two

segmentations strong Harsanyi (RV) blocks the other one, violating internal stability.

Therefore, S contains only surplus-equivalent segmentations. Further, if S and S ′ are

surplus-equivalent and one of them is in S, then other other one must be too, because

otherwise again by Lemma 4 the segmentation that is not in S is not Harsanyi (RV)

blocked by any segmentation in S, violating external stability. A segmentation S in

S cannot be Pareto dominated by any segmentation S ′ not in S because otherwise,

by Lemma 4, S would not strong Harsanyi (RV) block S ′, violating external stability.

So S must be the set of all surplus-equivalent segmentations, and therefore equivalent

segmentations, to the Pareto undominated segmentation S.

The stable set notions we study in this section allow for weak inequalities along

a sequence of segmentations. If we require strict improvement in every step, then

no segmentation can block any other segmentation because in any segmentation some

consumers get zero surplus. So in that case, the unique RV stable set (and also Harsanyi

and also maximal RV stable set) is the set of all segmentations.
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Ray and Vohra (2019) define a notion of maximality of a stable set and show that

any single-payoff RV stable set is also a maximal RV stable set. Because both Propo-

sition 8 and Proposition 9 characterize stable sets as ones that contain a single seg-

mentation (or surplus-equivalent ones), those stable sets are also maximal.38 Roughly

speaking, maximality requires that in a chain of segmentations defined in Definition 16

that ends in S, at each step the move specified by the chain is “optimal” in the sense

that no coalition C has another move that would lead to another segmentation in the

stable set that the coalition C prefers to S. If the stable set is a singleton, then all

chains necessarily end in the same segmentation, and therefore maximality is trivially

satisfied.

38Theorem 1 together with Remark 1 in Ray and Vohra (2019) show that in their setting with a
finite number of players and objections that are defined to require strict improvements, any singleton
RV stable set is also a maximal RV stable set. A similar argument shows that this is also the case in
our setting.
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