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1 Introduction

A consensus has emerged that there has been a declining trend in the interest rate since

the early 1990s in the U.S. as well as several major industrialized economies (Laubach and

Williams (2003), Summers (2016), Hamilton et al. (2016), Holston et al. (2017), etc.) While

the advanced economies had operated under the regime of extremely low interest rates for

over a decade in the wake of the 2008-2009 financial crisis, which appeared to be reinforced

only by the COVID pandemic, the most recent episode of skyrocketing inflation and the

resulting aggressive monetary policy tightening undoubtedly raises the question of whether

this low interest rate regime will persist. Accurately tracking the long-run trend of the real

interest rate is instrumental for both monetary policy conduct and asset management, and

thus of great interest to both academics and industry practitioners.

We propose a novel shadow rate dynamic term structure model (SDTSM) with drift-

ing trends to better estimate the long-run trend of the real interest rate and improve yield

curve forecasts. Our model explicitly accounts for both the lower bound constraint of the

short-term nominal interest rate in the spirit of Wu and Xia (2016) and the low-frequency

movement of the interest rate by following Bauer and Rudebusch (2020). Under the conven-

tional notion that all permanent shocks to real interest rates are derived from real shocks,

our trend estimate of the real interest rate can also be taken as a trend estimate of the

natural rate of real interest, which is key to assessing the monetary policy stance (Barsky

et al. (2014)).

A growing body of literature has documented this declining interest rate trend and has

attempted to shed light on its underlying driving forces. For example, Laubach and Williams

(2016) and Laubach and Williams (2003) apply a multivariate unobserved components model

consisting of several macroeconomic variables and provide a popular trend estimate of the

natural rate in the United States. They find that the U.S. natural rate has trended sharply
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downward since the Great Recession, to a near-zero level. Their methodology directly con-

nects a slower trend of output growth to the declining natural rate trend, and thus, is

unambiguous about its source. In a related study, Holston et al. (2017) employs a similar

approach and presents evidence that the United States, Canada, the Euro Area, and the

United Kingdom all witnessed large declines in their natural rate trends, together with large

declines in output growth trends during the same time period. In another notable example,

Del Negro et al. (2017) estimates the interest rate trend in a multivariate unobserved compo-

nents model comprising short- and long-term bond yields and discover a similarly declining

interest rate trend in the United States, but their study highlights the important role of the

convenience yield of treasury bonds as the driving force.

Estimating and tracking the long-run trend of interest rates in environments with ex-

tremely low short-term nominal interest rates near their effective lower bounds pose serious

challenges. In models such as that of Laubach and Williams (2003), the small size of trend

variations in output growth has already plagued the estimation with the “pile-up” issue

(Stock (1994)), leading to a two-step approach. The near-zero short-term nominal interest

rate since the Great Recession further exacerbates this identification issue, particularly in

models that rely primarily on the short end of the yield curve (Lubik and Matthes (2015)).

Therefore, it is not surprising that long-term interest rates are increasingly brought in to

help forecast interest rate trends (e.g., see Del Negro et al. (2017)and Johannsen and Mertens

(2021)). However, the well-documented failure of the expectation hypothesis suggests that

a model that can coherently and flexibly deal with term premiums is crucial to correctly

extract interest rate trends from long-term yields.

To directly address this issue, this study provides an alternative estimate of interest rate

trends by exploring a broad set of yield data in the Treasury bond market and carefully

handling the zero lower bound (ZLB). To this end, we develop a no-arbitrage dynamic term

structure model (DTSM) that features a shifting endpoint in the spirit of Kozicki and Tins-
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ley (2001) by following Bauer and Rudebusch (2020) and explicitly accounts for the ZLB

by employing the shadow rate approach akin to Wu and Xia (2016, 2020) and Krippner

(2015). The proposed approach has several advantages. First, as demonstrated in Wu and

Zhang (2019), the shadow rate summarizes the overall financial market condition including

both short-term and long-term lendings, the role of the latter being particularly important

during the ZLB period. By adopting a common approach of defining the interest rate trend

as the long-run forecast, namely the Beveridge-Nelson trend, of the shadow rate, our model

works as a device to effectively transform the long-run forecast of macroeconomic equilib-

rium information embodied in the entire yield curve into a single series. The resulting more

variable shadow rate lends itself to improved identification of its trend. Second, our approach

harnesses the entire yield curve and exploits no-arbitrage restrictions to efficiently extract

information. This sets us apart from Del Negro et al. (2017) and Johannsen and Mertens

(2021), who select a few yields and do not impose no-arbitrage restrictions1. Notably, Chris-

tensen and Rudebusch (2019) directly extract a long-run forecast of the real interest rate

from a no-arbitrage dynamic term structure model using Treasury Inflation Protected Se-

curity (TIPS) market data. However, TIPS yields are known to contain variable liquidity

premiums, and despite their careful modeling of this component, they necessarily introduce

additional sources of model misspecifications.

Third, in contrast to models that rely primarily on macroeconomic variables, we provide

rich information in the Treasury bond market to identify the slow-moving interest rate trend

in order to improve estimation efficiency. Estimates from models using primarily macroe-

conomic variables are often criticized because they are subject to data revisions and thus

unreliable for policy guidance in real time (see Orphanides (2001) and Orphanides and van

1Many studies, with the exception of Johannsen and Mertens (2021), choose to drop the short-term
interest rate by treating them as missing variables and switching to long-term interest rates during the
ZLB period. Nevertheless, this practice is not innocuous given the important role of the time-varying term
premium.
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Norden (2002)). On the other hand, financial market data reflect more directly and timely

market participants’ views of the economy and are forward looking. Finally, our approach

avoids restricting the interest rate trend movement to any specific macroeconomic variables

or structural model, and thus remains agnostic about the underlying driving forces. Al-

though the literature has proposed several potential driving forces of the declining interest

rate trend, including slower productivity growth (Laubach and Williams (2003)), secular

stagnation (Summers (2016)), changing demographics (Carvalho et al. (2016) and Favero

et al. (2016)), and convenience yield (Del Negro et al. (2017)), there is no consensus on the

role of each factor (Hamilton et al. (2016) and Lunsford and West (2019)). Instead, our

approach exploits information in the liquid Treasury bond market and utilizes no-arbitrage

restrictions on bond price movements across maturities to efficiently estimate interest rate

trends.

Our model is built upon a strand of literature that develops a no-arbitrage dynamic

term structure model of interest rates. Specifically, our model extends the model proposed

by Bauer and Rudebusch (2020) (BR hereafter), which introduces an unspanned stochastic

trend of the short-term interest rate into the Gaussian DTSM, as in Duffee (2011) and Joslin

et al. (2011). Most DTSMs assume a stationary physical process for the yield curve and thus

often underestimate interest rate trend variations (Kim and Orphanides (2012) and Bauer

et al. (2014)). By introducing a shifting endpoint into the DTSM in the spirit of Kozicki and

Tinsley (2001), the BR model is a convenient device to robustly track the drifting interest

rate trend. We introduce the shadow rate of Black (1995) into the BR model and derive an

analytical form of the term structure of interest rates by exploiting the Gaussian feature of

the BR model and following a strategy similar to those of Wu and Xia (2016) and Krippner

(2015). To the best of our knowledge, our study is the first to explicitly account for issues

pertaining to the ZLB when estimating interest rate trends in a DTSM.

The analytical solution greatly facilitates the model estimation. Following Wu and Xia
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(2016), we apply the extended Kalman filter and estimate our DTSM model using treasury

bond forward rates at maturities ranging from 3 months to 10 years in the sample span-

ning from January 1972 to April/March 2022 for the United States, the United Kingdom,

and Germany. Following Bauer and Rudebusch (2020), we employ a Bayesian estimation

procedure that strategically combines Gibbs sampling and Metropolis-Hasting algorithms to

simulate the posterior distributions of model parameters and state variables.

Our main findings can be summarized as follows: (1) The long-run trends of real interest

rates have been declining in all three countries since as early as the 1990s, and have all turned

negative in recent years. Furthermore, there is strong co-movement among the three interest

rate trends, corroborating the findings of Diebold et al. (2008) and Holston et al. (2017). (2)

The out-of-sample forecast exercises indicate that our model can significantly improve the

yield curve forecast based on the existing term structure models. (3) The estimated duration

of the ZLB at each time point corresponds well with relevant macroeconomic events and

monetary policy announcements. (4) The term premium estimates vary substantially over

time, but remain quite stationary, similar to Kim and Orphanides (2012) and Bauer and

Rudebusch (2020), and are significantly and positively correlated with inflation uncertainty

measures, lending support to the findings of Wright (2011).

The remainder of this paper is organized as follows. Section 2 describes the proposed

method. Section 3 presents the data and Section 4 describes the estimation methodology.

Section 5 discusses empirical results. Finally, Section 6 concludes the paper.

2 Model Specification
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2.1 A Shadow Rate DTSM with Unspanned Drifting Trends

Following the DTSM literature, we assume yields are driven by a small number of latent

factors in Xt that follows a parsimonious time series dynamics. To deal with the high

persistence in yields across all maturities due to drifting trends in interest rates (see Kim

and Orphanides (2012)), we follow Bauer and Rudebusch (2020) to introduce two stochastic

trends: real interest rate trend, r∗t , and inflation trend, π∗t , and employ the following Stock-

Watson type of common-trend representation for Xt:

Xt = X̄ + Γ′τt + X̃t (1)

X̃t = ΦX̃t−1 + ũt (2)

τt =

r∗t
π∗t

 =

1 0

0 1


r∗t−1

π∗t−1

+

ηrt
ηπt

 (3)

where all eigenvalues of Φ are within the unit circle. To the extend that the shocks ũt, ηrt, ηπt

are assumed to be i.i.d. and mutually orthogonal, this is a somewhat restricted model in the

sense of Morley et al. (2003). r∗t and π∗t are the Beveridge-Nelson trends of their corresponding

variables: r∗t = limj→∞Et (rt+j) and π∗t = limj→∞Et (πt+j), where rt is real interest rate, and

πt inflation rate. We discuss how to pin down π∗t using inflation data in the next subsection.

We use yields to identify nominal interest rate trend which can be used together with the

long-run Fisher equation to back out real interest rate trend.

To proceed, we first specify the short-run nominal interest rate that is not subject to the

ZLB, or the shadow rate st, to be an affine function of the latent factors:

st = δ0 + δ′1Xt (4)

The large-scale monetary policy easing by major central banks around the world in
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the wake of the 2008-2009 great financial crisis (GFC) have pushed short-term nominal

interest rates in major advanced economies to levels around zero since then for more than

a decade until very recently when the central banks started to lift rates to combat rising

inflation. The fact that investors always have the option of holding cash earning zero interest

places an effective lower bound, or the ZLB, on the interest rate level central banks can

set2. Introducing this shadow rate st that is not bounded from below allows us to preserve

technical tractability of the DTSM to a large extent. Following the approach in Black (1995),

the actual short-term nominal rate (it) can be viewed as a sum of the shadow rate and the

value of an option of holding cash:

it = st +max(−st, i
¯
) (5)

where i
¯

is the effective lower bound, and is 0 in most cases.

As in Johannsen and Mertens (2021), we define nominal interest rate trend, which is

given by r∗t + π∗t according to the long-run Fisher equation, as the long-run forecast of the

shadow rate:

r∗t + π∗t = lim
j→∞

Etst+j (6)

Note this, together with equations (1) and (4), immediately implies the parameter restrictions

pertaining to the trend identification: δ0 + δ′1X̄ = 0 and δ′1Γ′[r∗t , π
∗
t ]
′ = 1.

As discussed in Wu and Xia (2016) the short-term nominal interest rate being stuck at

the ZLB effectively shifts the information contained in the yield curve from the short end

to the long end. The shadow rate can conveniently subsumes the information contained in

the entire yield curve and better reflects both monetary policies and economic condition as

2Although ECB was able to lower its policy rate below zero, the amount of convenience premium investors
are willing to pay still places an effective lower bound on its interest rate

8



perceived by market participants.

Following the DTSM literature, we include three factors in Xt that are assumed to be

spanned by the yield curve. Evidence from Cieslak and Povala (2015),Coroneo et al. (2016),

and Bauer and Rudebusch (2020) suggests that real interest trend and inflation trend may

not be spanned by the yield curve. Therefore, these two factors are specified as unspanned

(hidden) factors, akin to the approach in Bauer and Rudebusch (2020). Spanned factors

directly drive the yield curve, whereas hidden factors do not contemporaneously determine

yields. Instead, they enter the term structure model by interacting with the spanned factors

in the physical process. Unlike the model in Joslin et al. (2014), where the unspanned factors

are directly observable macroeconomic variables, all factors, including hidden factors, in our

model are latent factors, similar to the model of Duffee (2011).

Rewritting the common-trend representation in equation (1) yields the following VAR(1)

process for the latent factors under the physical (P ) measure3:


Xt

r∗t

π∗t

 =


(I3 − Φ)X̄

0

0

+


Φ (I3 − Φ)γ (I3 − Φ)γ

01×3 1 0

01×3 0 1



Xt−1

r∗t−1

π∗t−1

+


ut

ηrt

ηπt

 (7)

where ũt = ut−γ(ηrt+ηπt). Note although the transitory shock ũt is assumed to be orthogonal

to the two trend shocks, the above structure implies that, in equation (7), the shock to the

spanned factors Xt is correlated with the shocks to the hidden factors: cov(ut,ηit) = γσ2
ηi,

and finally, ut
iid∼ N(0,ΣΣ′).

Let Z̃t denote a vector containing all five latent factors, including spanned and hidden

factors, with an arbitrary rotation. In a Gaussian DTSM, such as in Joslin et al. (2011),yields

(Yt) are affine in factors: Yt = a+ b̃ · Z̃t, where the n× 1 vector a and the n× 5 matrix b̃ are

3We estimate a slightly restricted version of the model by assuming homogenous impacts of the two trends
on interest rates: Γ′ = [γ, γ].
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functions of the underlying model parameters under no-arbitrage restrictions, and n denotes

the number of yields. Hidden factors exist if b̃ has a reduced rank. As noted by Duffee

(2011), because all factors are latent, hidden factors can only be anchored by adopting a

certain rotation. Specifically, the latent factors may be rotated using a full-rank matrix D

such that Yt = a+ b · Z̄t, where b = b̃ ∗D and Z̄t = D−1 ∗ Z̃t = (X ′t, r
∗
t , π

∗
t )
′, and the last two

columns of b are all zeros because the last two factors in Z̄t are hidden factors. We employ

the same rotation as in Duffee (2011), and hence:

st = δ0 + (δ′1, 0, 0) (X ′t, r
∗
t , π

∗
t )
′ (8)

where this equation is simply repeating equation (4) but to highlight the unspanned nature

of the two trends: the hidden factors r∗t and π∗t do not further influence the shadow rate st

conditioning on Xt. Consequently, as long as r∗t and π∗t are restricted to have zero impact on

Xt, in the equivalent risk-neutral (Q) process under the no-arbitrage restriction, these two

hidden factors are unspanned in the sense that their loadings on yields are exactly zero. As

a result, the required Q-process for the latent factors is


Xt

r∗t

π∗t

 =


µQ

◦

◦

+


ΦQ 03×1 03×1

◦ ◦ ◦

◦ ◦ ◦



Xt−1

r∗t−1

π∗t−1

+


uQt

◦

◦

 (9)

The parameters at ◦ positions for the hidden factors are unidentified and thus, are excluded

from the parameterization. The hidden factors result from the so-called ”knife-edge” restric-

tion, in which their impacts on the expected future values of Xt exactly offset their impacts

on the risk price.
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The above model implies a risk price (λt) that is affine in the latent factors:

Σλt = λ0 + λ1 · (X ′t, r∗t , π∗t )′

λ0 = (I3 − Φ)X̄ − µQ (10)

λ1 =
(
Φ, (I3 − Φ)γ, (I3 − Φ)γ)− (ΦQ, 03×1, 03×1

)
Contrary to the yields, the risk price loads on both spanned and hidden factors. However, the

loadings of r∗t and π∗t on the risk price exactly equal their marginal impacts on the expected

Xt+1 in equation (7). This restricts that the effects of r∗t and π∗t on the risk premium offset

their effects on expected future short rates. Intuitively, since longer-term yields are the sum

of expected future short rates and risk premiums, any variation in these hidden factors leaves

yields unchanged under this restriction.

Given such a shadow rate and the risk-neutral (Q) process in equation (9) the bond prices

are exponentially affine in factors Xt as given in equation (A.1), and the coefficients can be

computed recursively as in (A.3) and (A.4) in Appendix A.

Since latent factors may be arbitrarily rotated (see Dai and Singleton (2000)), a set of

parameter restrictions is necessary to normalize the latent factors. We employ the rotation

in Joslin et al. (2011):

δ0 = 0 δ1 = (1, 1, 1)′ µQ = (kQ∞, 0, 0)′

ΦQ =


λQ1 0 0

0 λQ2 0

0 0 λQ3


Σ is lower triangular

where λQ s are real, distinct eigenvalues of ΦQ and lie between 0 and 1.
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A closed-form solution for the forward rate subject to the lower bound can be conveniently

derived in this model under certain approximations. The corresponding yield curve can then

be readily obtained from the term structure of the forward rates. We sketch the derivation,

summarize the necessary approximations, and present the solution below; interested readers

are referred to Appendix A for further details.

We work directly on the m-period-ahead shadow forward rate at time t (ft,m):

ft,m = (m+ 1)yt,m+1 −myt,m (11)

where yt,m is the yield of m-period maturity in the shadow rate DTSM. Under the risk-neutral

measure, the shadow forward rate ft,m is the center of the distribution of the adjusted future

shadow rate:

ft,m = EQ
t (s̃t+m) (12)

where s̃t+m = st+m−CATm and CATm is a time-invariant convexity adjustment term given

in (A.6). Equation (A.9) in Appendix A also gives the conditional variance of s̃t+m (and

st+m) denoted by σ2
m.

However, when the short rate is subject to the ZLB, such a relationship is generally not

expected to hold between the actual forward rate and the actual short rate because the short

rate is no longer normally distributed:

f
t,m
6= EQ

t (it+m)− CATm (13)

where f
t,m

is the actual forward rate and it+m = max(i, st+m) is the actual short rate.

Instead, we show in Appendix A that approximations that are worked out in Wu and Xia

(2016) are necessary to arrive at an analytical solution. To summarize these approximations,
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we postulate that:

f
t,m
≈ EQ

t (max(i, st+m))− C̃AT t,m (14)

where C̃AT t,m reflects the convexity adjustment term for it+m, which becomes the time-

invariant convexity adjustment term CATm if it+m is completely Gaussian. The following

approximation holds.

f
t,m
≈ EQ

t (max(i, s̃t+m)) (15)

given the following requirement for term C̃AT t,m:

C̃AT t,m = σmg

[
(ft,m − (i− CATm))

σm

]
− σmg

[
ft,m − i
σm

]
(16)

where the functions g(x) = x ·Φ(x)+φ(x) and Φ(·) and φ(·) are the cumulative distribution

function and probability density function of the standard normal distribution, respectively.

Note that when the short rate is far above the lower bound, we have Φ(·)→ 1 and φ(·)→ 0

in the limit, that is, when C̃AT t,m becomes exactly CATm.

Using equation (A.11) and the conditional distribution of s̃t+m under the risk-neutral

measure, an analytical solution to the actual forward rate is:

f
t,m

= i+ σm

[
(ft,m − i)

σm
·Φ
(
ft,m − i
σm

)
+ φ

(
ft,m − i
σm

)]
= i+ σm · g

(
ft,m − i
σm

)
(17)
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where,

ft,m = δ′1

(m−1∑
j=0

(ΦQ)j
)
µQ + δ0 + δ′1(ΦQ)m ·Xt − CATm (18)

σ2
m = δ′1

(m−1∑
j=0

(ΦQ)jΣΣ′(ΦQ′)j
)
δ1 (19)

2.2 Inflation Dynamics

We employ a standard trend-cycle decomposition model, akin to those in Del Negro et al.

(2017) and Johannsen and Mertens (2021), to extract inflation trend.

πt = π∗t + πct (20)

π∗t = π∗t−1 + ηπt (21)

πct = φ1π
c
t−1 + φ2π

c
t−2 + εcπt εcπt

iid∼ N(0, σ2
πc) (22)

where πt is inflation rate. πct is the cyclical component that is governed by a stationary

AR(2) process.

To bring more information to bear on identifying inflation trend, we also include the

information of long-run inflation expectation in the model. Specifically, we obtain data on

the long-run inflation expectation πst and assume it consists of inflation trend, π∗t , and a

temporary disturbance term, εsπt:

πst = π∗t + εsπt εsπt
iid∼ N(0, σ2

πs) (23)

We follow Bauer and Rudebusch (2020) and use the Federal Reserve’s perceived target rate

(PTR) as a proxy for πst for the U.S.. In the U.K., inflation targeting was adopted by the

Bank of England in October 1992, but an explicit target rate was not established until 1998
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(e.g., Mishkin and Posen (1998)). Consequently, we treat the inflation targets of the U.K.

before 1998 as missing observations and set it to its explicit inflation target, which is 2.5%

between 1998 and 2003 and 2% since 2004. Similarly, Bundesbank started to implement

many features of an inflation-targeting regime in the 1970s, as pointed out in Bernanke and

Mihov (1997). Therefore, we employ the inflation target derived in Bernanke and Mihov

(1997) for πst for Germany between 1975 and 1998, and then switch to 2%, around which

the ECB sets its inflation target starting in 1999.

3 Data

We apply our model to three representative countries—the United States, the United

Kingdom, and Germany—to extract real interest rate trends. For the U.S. and Germany,

forward rates for maturities of 3 months, 6 months, and 12-120 months in 12-month intervals

are constructed from the Federal Reserve Board’s dataset and Bundesbank’s website respec-

tively, using the approach in Gürkaynak et al. (2007) 4. For the U.K., the forward rates cover

maturities between 1 and 10 years and are obtained from the Bank of England’s database.

The U.K. forward rates with maturities of less than one year are discarded because they are

not consistently available and are contaminated by severe liquidity issues. The U.S. inflation

rate is computed using the core PCE price index. The U.K. and German inflation rates

are constructed using the core CPI obtained from the OECD database. The PTR data is

retrieved from the Federal Reserve Board website. The sample for the U.S. spans October

1971 to April 2022. The dataset for Germany ranges from October 1972, when German

yield data started to be available, to March 2022. The U.K. date date from January 1983 to

March 2022. We dropped the data before 1983 because of the abnormally high inflation in

4We do not use 3-month yields directly, instead we utilize 3-month forward rates, avoiding the potential
problem for the short end of yield curve constructed from their approach.
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the U.K. during the 1970s5.

The effective lower bound i
¯

is set to zero for the U.S. because the actual short rate in

the U.S. has never dropped below zero 6. The effective lower bound for the U.K. is also

fixed to zero, as suggested by Andreasen and Meldrum (2015). For Germany, we adopt a

time-varying effective lower bound following Kortela (2016). Before June 2016, the lower

bound for Germany is set to zero, because the ECB’s deposit rate was positive. Since then,

the ECB has begun experimenting with negative interest rates. As a result, from June 2016

to the end of our sample period, we rely on the release of new ECB deposit rates to divide

the sample into several intervals. In each subsample, the lower bound is set as the minimum

of ECB deposit rate and observed forward rates.

4 Estimation

A state-space representation of our shadow rate unspanned DTSM can be written as


f ot

πt

πst

 = H̄ t(Zt) +


et

0

εsπt

 et
iid∼ N(0, R) (24)

Zt = µ̃+ FZt−1 + ṽt ṽt
iid∼ N(0, Q) (25)

where f ot is an n×1 vector containing n observed forward rates at time t, and the vector Zt =

(X1t, X2t, X3t, r
∗
t , π

∗
t , π

c
t , π

c
t−1)′ stores all latent factors. et represents i.i.d. measurement errors

with a diagonal variance-covariance matrix R.7 ṽt = (u′t, ηrt, ηπt, ε
c
πt, 0)′. The parameters

5All empirical results remain qualitatively similar if this period in the U.K. is included and those results
are available upon request.

6Our empirical results are robust to altering i
¯

to 0.25 which is adopted as the effective lower bound in

Wu and Xia (2016).
7We follow Joslin et al. (2011) and Bauer and Rudebusch (2020) to posit an identical variance to mea-

surement errors of various maturities.
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have the following forms:

µ̃ =



(I3 − Φ)X̄

0

0

0

0


F =



Φ (I3 − Φ)γ (I3 − Φ)γ 0 0

01×3 1 0 0 0

01×3 0 1 0 0

01×3 0 0 φ1 φ2

01×3 0 0 1 0



R = σ2
eIn Q =



ΣΣ′ γσ2
ηr γσ2

ηπ 0 0

γ′σ2
ηr σ2

ηr 0 0 0

γ′σ2
ηπ 0 σ2

ηπ 0 0

0 0 0 σ2
πc 0

0 0 0 0 0


The specific representation of H̄ t(Zt) is

H̄ t(Zt) =

(
Ht(X1t, X2t, X3t), π∗t + πct , π∗t

)′

where Ht(·) is a nonlinear function approximating the forward rates of various maturities

when the short rate is subject to an effective lower bound, according to equation (17).

Because the measurement equation (24) is nonlinear in the state variables owing to the

approximation function Ht(·), the Kalman filter cannot be applied directly. Therefore, we

employ the extended Kalman filter (EKF) based on a linear expansion of the nonlinear

function to predict and update the state variables.

Denote by Ht(Xt|t−1) the estimate of Ht(Xt) using information up to time t− 1. Let the

3 × n matrix H̃t be the first-order derivative of the nonlinear function Ht(Xt) with respect
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to Xt evaluated at Xt|t−1. Specifically,

H̃mt =

(
∂Hmt(Xt|t−1)

∂X1t

∣∣∣∣
Xt|t−1

∂Hmt(Xt|t−1)

∂X2t

∣∣∣∣
Xt|t−1

∂Hmt(Xt|t−1)

∂X3t

∣∣∣∣
Xt|t−1

)′
(26)

Each column of H̃t, H̃mt stacks the first-order derivatives of the m-period forward rate

with respect to the state variable Xt given information up to time t − 1. H̃mt is given

by H̃mt = Φ

(
Ãm+B̃′mXt|t−1−i

σm

)
× B̃m, where Ãm, B̃m, and σm are computed for different

maturities m, according to (A.5) and (A.9). The updating of the state variables proceeds as

follows.

Kt = Vt|t−1H̃t(H̃
′
tVt|t−1H̃t +R)−1 (27)

Xt|t = Xt|t−1 +Kt(f
o
t −H ′t) (28)

Vt|t = (I3 −KtH̃
′
t)Vt|t−1 (29)

Vt|t−1 = FVt−1|t−1F
′ +Q (30)

Meanwhile, the part of inflation decomposition in the measurement equation is linear in

state variables, and thus, the standard Kalman filter can be applied directly to update and

predict related state variables.

In total, we have 30 parameters to estimate: three in ΦQ, kQ∞; six in Σ; nine in Φ; four

standard deviations of innovations to r∗t , π
∗
t , π

c
t , and πst , σe, φ1 and φ2; and four free pa-

rameters in X̄ and γ. To better account for estimation uncertainty, we employ the MCMC

estimation algorithm similar to that in Bauer and Rudebusch (2020) to simulate the poste-

rior distribution of state variables and model parameters. The log-likelihood function of our

model is composed of three components, which we label as the Q-likelihood and P -likelihood

regarding forward rates and the π-likelihood involving inflation rate. The Q-likelihood mea-

sures the cross-section fitting of the forward rate curve, whereas the P -likelihood pertains
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to the dynamics of all state variables. We compute the π-likelihood from the trend-cycle

decomposition of the inflation rate in equations (20) through (23). Each component involves

different groups of parameters. The Q-likelihood is proportional to the measurement errors

at any time t:

llkQ ∝ −1

2
|f ot −H ′t|/σ2

e (31)

Consequently, it involves only the parameter set (kQ∞,Φ
Q,Σ, σe). The P -likelihood at each

period can be written as

llkP = −1

2
(log|Ωv|+ v′tΩ

−1
v vt) (32)

Ωv =

 ΣΣ′ (σ2
ηr + σ2

ηπ)γ

(σ2
ηr + σ2

ηπ)γ′ (σ2
ηr + σ2

ηπ)

 vt = (u′t, (ηrt + ηπt))
′

Therefore, P -likelihood is determined by (Σ,Φ, X̄, γ, σ2
ηr, σ

2
ηπ). Similarly, π-likelihood de-

pends on (φ1, φ2, σ
2
ηπ, σ

2
πc, σ

2
πs).

Our approach employs a block-wise Bayesian estimation that combines the Metropolis-

Hastings (M-H) sampler and Gibbs sampler. First, given parameter draws, state variables

are simulated using a smoother, as outlined in Kim and Nelson (1999). Conditional on state

variables, parameters are drawn block by block. The parameters are divided into 10 blocks:

(1) (kQ,ΦQ), (2) Σ, (3) (γ, X̄), (4) σ2
ηr, (5) Φ, (6) σ2

e , (7) (φ1, φ2), (8) σ2
ηπ, (9) σ2

πc, and (10)

σ2
πs. The parameters in block (1) only affect the Q-likelihood, whereas those in blocks (3)

and (4) affect P -likelihood. Σ in block (2) is related to both Q- and P -likelihoods. The

parameters in blocks (7)-(10) determine the π-likelihood.

Following Chib and Greenberg (1995), we apply the block-wise M-H algorithm to blocks

(1)-(4). In each block, we optimize the log-likelihood functions over the parameters in the

block, conditional on all other parameters and state variables. Then, we use the resulting
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mode and Hessian matrix to construct independence proposal distributions, similar to Chib

and Ergashev (2009). The proposal distribution is a multivariate t-distributions with five

degrees of freedom. For blocks (5) and (6), Φ and σ2
e are parameters in the linear equations,

where the posterior distribution of parameters are known functions of prior and data. There-

fore, the Gibbs sampling method is employed to simulate draws for Φ and σ2
e . Similarly, the

conditional posterior distribution of parameters in blocks (7)-(10) can also be obtained using

the Gibbs sampler. Once all the parameters are drawn, we move to the next iteration to

stimulate state variables conditional on parameter draws.

The priors of the parameters for each country is described in Appendix B. The starting

values of the simulation are obtained by maximizing the joint log-likelihood function through

the classical estimation. All parameters have the same type of prior distribution but with

different means and tightnesses in different countries. We set the number of simulations to

100,000 and use the second half of the draws to construct the posterior distribution of the

state variables and parameters8.

5 Empirical Results

5.1 Estimates of the Real Interest Rate Trend

Figure 1 reports our estimates of the shadow rates with 90%-confidence intervals for

the U.S. (top panel), the U.K. (middle panel), and Germany (bottom panel)9. Note that

when the short rate is far above its effective lower bound, prior to roughly 2010, the shadow

8There are related papers where parameters are time-varying over the zero lower bound period, such
as Kulish et al. (2017), Mavroeidis (2021), and Aruoba et al. (2022). We re-estimate our SDTSM using a
subsample till the end of 2017 for a robustness check. The estimates from the subsample do not change
substantially compared to the full-sample estimates.

9All other figures showing estimates separately for the three countries are also organized in this particular
order.
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rate estimate coincides with the short rate estimate10; during this period, the uncertainty

around the shadow rate estimates is considerably smaller than that during the ZLB period

after 2010, consistent with intuition. In the U.S., the shadow rate started rising in the

middle of the 1970s and reached a peak in the first half of the 1980s. Starting in the mid-

80s, the shadow rate in the U.S. declined persistently following a downward trend and fell

persistently below zero, the effective lower bound, at the beginning of 2009. Since then,

the shadow rate continued to drift downward in the negative region until the end of 2011,

when it was elevated for a short period of time, approaching zero by the end of 2012. Since

then, it has resumed declining and reached a bottom around 2014 before starting to climb

up again until the first half of 2019. The shadow rate quickly fell below zero at the onset

of the COVID pandemic and remained in the negative regime for two years. The shadow

rate has risen above zero since 2022, as the Fed suddenly started to tighten its monetary

policy. Our shadow rate estimates share a broadly similar pattern to those of Wu and

Xia (2016). However, our estimates are noticeably more variable and more negative at the

bottom, reflecting the drifting trend embedded in our model 11.

In the U.K., the shadow rate started to decline persistently since the beginning of the

1990s, and similar to the U.S., its decline was further accelerated by the GFC when the

U.K. shadow rate also dropped below zero persistently in 2009 and remained negative until

the end of 2017. The shadow rate in the U.K. remained positive since 2018 but also turned

negative during the COVID pandemic. Earlier than its counterpart in the U.S., the shadow

rate in the U.K. bounced back to positive at the end of 2021 and continued to rise afterwards.

Again, our estimates of the U.K. shadow rate are similar to those using the methods of Wu

and Xia (2016), Wu and Xia (2017), and Wu and Xia (2020)12. The shadow rate in Germany

10Note that the short rate is assumed to be latent, as standard in the DTSM literature, which explains
the estimation uncertainty.

11The cointegrating vectors are reported in Table A1.
12Their U.K. shadow rate estimates are published on their website

https://sites.google.com/view/jingcynthiawu/shadow-rates?authuser=0.
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experienced some fluctuations in the 70s and 80s and did not start a persistent decline until

around the mid-90s. It fell below zero in the second half of 2009 but quickly turned positive

in 2010. It then dropped below zero again around the end of 2011 and remained negative

until the end of our sample, except for 2014 and the first month of 2015 13.

Figure A1 plots our shadow rate estimates together and shows the co-movement among

shadow rates in the three countries. All shadow rates have been declining persistently in

recent decades. Despite a slightly different starting time, the shadow rates all share a similar

downward trend since the mid-90s and all shadow rates fell below zero following the GFC.

The U.S. shadow rate experienced the largest decline and the lowest bottom in the wake of

the GFC. However, it also embraced the strongest comeback and stayed above the ZLB for

the longest period before the COVID pandemic (from the end of 2016 to the end of 2020),

whereas the U.K. shadow rate remained positive for a shorter period between 2018 and 2020.

During the COVID pandemic, the shadow rates in the U.S. and U.K. fell below zero again.

They both declined to around −3% and returned to positive territory at the beginning of

2022 and the end of 2021, respectively. On the other hand, the German shadow rate was

stuck in the negative region for almost the entire post-GFC period.

Figure 2 presents our real interest rate trend estimates with the 90% confidence bands

for the three countries. For the U.S. and Germany, the real interest rate trends appear to

have an upward trend in the 1970s and the 1980s, respectively, before they started to decline

in the mid-80s for the U.S. and the mid-90s for Germany. The U.K. real interest rate trend

reached a plateau in the 1980s and then dropped to a low level around 1990. Although it

climbed to around 10% in the early 90s the real interest rate trend has declined persistently

since then. This figure also reveals that the real interest rate trends in all three countries

fell below zero and stayed in the negative territory in the wake of the GFC. To facilitate

13Although a Euro shadow rate is also published on Wu and Xia’s website it is based on a different set
of interest rates using a substantially different sample period and thereby we do not attempt to make a
comparison.
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a cross-country comparison, Figure A2 plots three real interest rate trends in one figure.

Visually, the three real interest rate trends all share a pattern of persistent decline starting

from the mid-90s. This notable declining trend began well before the GFC, but the GFC

undoubtedly accelerated this trend. Recall that the real interest rate trend is defined as the

long-run forecast of the shadow rate (in real term). Therefore, the real interest rate trends

move more smoothly than the shadow rates do. For example, although the U.S. shadow rate

dropped below zero in 2008, its real interest rate trend did not drop below zero until the

beginning of 2015. On the other hand, this also reflects a very aggressive U.S. monetary

policy easing at the time to cope with the unprecedented financial crisis. The German real

interest rate trend was the first to consistently fall below zero around the middle of 2014,

whereas the U.K. interest rate trend did not fall below zero until the end of 2014.

Even if the magnitudes of the declines differ among the real interest rate trends, a similar

trajectory is evident. We follow the empirical approach of Holston et al. (2017) to study

the co-movement among the three real interest rate trends. We first perform the augmented

Dickey-Fuller test for real interest rate trends, and the results in Panel A of Table A2 confirm

that they all have a unit root. We then choose the real interest rate trends between January

1991 and March 2022 and employ the Johansen cointegration test for three real interest rate

trends. The results are presented in Panel B of Table A2. The cointegration test suggests two

cointegrating vectors and one common stochastic trend for three real interest rate trends. In

light of these results, we estimate a VECM model with 24 lags; the error-correction estimates

are reported in Panel C of Table A2. Based on the VECM model, we implement a variance

decomposition using Cholesky factorization with the ordering of the U.K., Germany, and the

U.S.. The decomposition results are shown in Figure 3. The decomposition results indicate

clear interdependence among the three real interest rate trends. For instance, shocks to the

US real interest rate trend contribute greatly to variations in German and UK real interest

rate trends, and the longer the horizon, the larger the contributions. To check the robustness
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of the results, we also employ a different ordering and report the variance decomposition

results using the ordering of Germany, the U.K., and the U.S. in Figure A4. Although the

numerical results somewhat change, the co-movement and interdependence among the three

real interest rate trends remain robust. These results lead us to draw a conclusion similar

to Holston et al. (2017) that whatever forces behind the declining real interest rate trends

must have had cross-country impacts.

5.2 Forecast of Shadow Rate and Zero Lower Bound Probabilities

Since the trajectory of the shadow rate and probability of a binding ZLB is of great

interest to policymakers and market participants, we take the U.S. as an example to illustrate

how our model works to deliver these estimates. According to equations (8) and (25), we

forecast h-month-ahead shadow rate at time t:

st+h|t = Et(st+h)

= δ0 + δ′1Et(Xt+h)

= δ0 + δ′1

[
(I3 − Φ)

h−1∑
k=0

ΦkX̄ + ΦhXt + (I3 − Φ)
h−1∑
k=0

Φkγ(r∗t + π∗t )

]
(33)

We employ 50,000 sets of estimated parameters and latent factors in MCMC to compute

the distribution of the rate forecast. Figure 4 plots the median of h-month-ahead forecasts

of the shadow rate, st+h, at time t with 90%-confidence intervals. The horizons are 1, 3, 6,

12, and 24 months. Our model suggests that at the end of our sample period (April 2022),

the short rate is forecasted to continue to rise and stay above the ZLB at all horizons.

It is worth noting that the shadow rate we forecast contains a slow-moving trend by

construction and needs enough sample to build its movement. Beside, our forecasts of

shadow rate reflect the belief of the market on future short rate, which may be at odds with
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what the FOMC signals. For example, in early 2012 the FOMC committed to keep zero

interest rate through to late 2014. However, our 24-month forecast of shadow rate implies

that in 2012 the market expected the rate to rise in the middle of 2014 earlier than the date

the FOMC indicated.

Next, we compute the probability of a binding ZLB for different horizons at each time

point. Specifically, the h-horizon-ahead expected shadow rate at time t is laid out in equation

(33). Based on equation (25), we define the variance-covariance matrix of [ut ηrt ηπt]
′ as Ωv,

and the conditional variance of the forecasted shadow rate can be expressed as

V art(st+h) = Ωv + ΦΩvΦ
′ + (Φ2)Ωv(Φ

2)′ + · · ·+ (Φh−1)Ωv(Φ
h−1)′ (34)

Because the Gaussian feature is maintained in our model, we can compute the probability

of st+h < 0 given Et(st+h) and V art(st+h).

Again, we rely on the same set of 50,000 MCMC draws to compute the estimate and

confidence interval of this probability. The results are shown in Figure 5. In the panel of

h-Month Forecast Probability, at each time point t we show the median probability that the

ZLB binds at t + h and its 90%-confidence interval. A few points are worth noting. First,

in each panel, the probability of a binding ZLB is almost negligible before 2008, with the

exception of a few months in the early 2000s. Second, the probability starts to rise at the

end of 2008 and remains at a very high level until the middle of 2011, when the Fed finished

its second round of quantitative easing (QE) and the probability takes a downturn. The

probability of a binding ZLB starts to climb in the second quarter of 2012, when the Fed

launched QE3 in September of that year. This probability reaches and remains at a high

level in 2014, and then starts to decline as the Fed halted its bond purchase at the end of

2014. Notably, Fed Chairman Bernanke, in May 2013, surprised the market by mentioning

a potential taper. Although the probability rises during 2013 in our forecasts, there is an
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evident drop around that time point, reflecting the impact of Bernanke’s speech. Later,

the forecast probability experiences another slide around October when the Fed officially

announced its plan to taper. Third, at all horizons, the probability spikes again at the

onset of the pandemic in 2020. However, it starts to decline persistently around October

2021 before the Fed officially announced to taper bond purchase in November in response

to increasing inflation, which points to the market participants’ expectation of higher policy

rates as the Fed attempts to contain rising inflation. These results show that our model

generates useful forecasts of the shadow rate and the probability of a binding ZLB that seem

consistent with major macroeconomic events and policy announcements.

5.3 Out-of-sample Forecasts

Joslin et al. (2011) show that the no-arbitrage restrictions are irrelevant to forecast the

pricing factors in an affine and Gaussian term structure model. However, we are interested

in whether our model, which becomes nonlinear due to the ZLB constraint, can improve the

yields forecast upon most existing affine models by imposing the no-arbitrage restrictions

and explicitly accounting for the ZLB constraint. This exercise is interesting in its own right

as it can shed light on the aspects of the DTSM that we need to further work on. To this

end, we conduct out-of-sample forecast exercises to compare the performance of our model

and several existing models. For each country, we forecast the ten-year forward rate using

four different models: the random walk (RW) model, the standard DTSM in Joslin et al.

(2011), DTSM with drifting trends as in Bauer and Rudebusch (2020) (BR), and our shadow

rate DTSM with drifting trends (SDTSM). The RW model assumes a driftless random-walk

process for forward rates. The DTSM has three stationary factors, which are the first three

principal components of yields. We focus on the forecasting horizons of 6, 10, 20, 30, and 40

months, and the forecasts start once 20 observations are available. In each period, all data
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up to that date are used to estimate the model and then make forecasts14.

Table 1 shows the results of this study. In each panel, the root mean squared errors

(RMSEs) are shown in the first three rows. To compare forecasts from different models,

we apply the Diebold Mariano (DM) test using RMSE as the evaluation metric against the

null hypothesis that forecasts from our SDTSM are not more accurate than the benchmark

model. The associated p-values reported in the last two rows of each panel are adjusted to

improve the small-sample performance following Harvey et al. (1997). These results show

that our SDTSM can yield better forecasts than DTSM for almost all three countries and all

horizons, except for three long horizons in the U.K. and the 30-month horizon in Germany.

Furthermore, the improvement is statistically significant at short horizons for the U.S. and

Germany. Compared to RW, the RMSEs from our SDTSM are close to those from RW, and

the improvement is not significant. The results above suggest that adopting the shadow rate

and drifting trends into an otherwise standard DTSM can significantly improve interest rate

forecasts.

To compare the forecast results of our SDTSM with those of BR, we conduct a quarterly

out-of-sample forecast for the U.S. forward rate spanning from 1977Q3 to 2018Q1, which is

identical to the sample period in Table 5 of BR15. The last forecast is made during the first

quarter of 2008. In our model, the forecast is conducted in the last month of each quarter

and we take the average of three monthly forward rates in each quarter as the corresponding

quarterly forward rate. For the BR forecast, we adopt their estimated shifting endpoint

model by pre-estimating parameters using full-sample data, but only using information up

to each forecast date to generate state variables and make forecasts. The results are shown

in the lower part of Panel A of Table 1. We choose the same forecasting horizons that cover

14We do not re-estimate the SDTSM in each period because of the very high computational cost. Instead
we use the parameter estimates from 5.1 and then use data available up to each forecast date to extract the
latent factors and forecast forward rates.

15The BR model relies on PTR and external estimates of natural rate that are quarterly. Thus we compare
quarterly forecasts.
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4 through 40 quarters. Our SDTSM yields lower RMSEs than the BR model at all horizons,

and the improvement is statistically significant at the 4-quarter horizon. These results seem

to suggest that introducing a shadow rate to account for the ZLB helps further improve the

forecast accuracy of the yield curve upon adding persistent interest trends.

5.4 Term Premium and Inflation Uncertainty

We follow Wright (2011) and investigate the relationship between term premium and

inflation uncertainty as an important diagnostic check of our model. As noted in the previous

sections, our model device essentially summarizes the economic condition embodied in the

entire yield curve with a single series of the shadow rate and relies on its long-run forecast

to reflect the dynamics of the real interest rate trend. As such, the key to this successful

transformation is a sensible term premium estimate. Intuitively, the term premium is defined

as the difference between the long-term yields and expectations of future short rates. Past

literature employing standard DTSM without drifting trends mostly attributes the high

persistence of yields to the term premium. As illustrated in Kim and Orphanides (2012)

and Bauer and Rudebusch (2020), models such as ours can produce more stationary term

premium estimates by allowing persistent dynamics for the short (shadow) rate. In addition,

by explicitly accounting for the ZLB, the shadow rate in our model is allowed to drift even

further than the short rate in a standard Gaussian DTSM, helping produce an even more

stable term premium estimate.

Figure 6 reports the estimated term premium of the ten-year yield with 90%-confidence

intervals as a representative term premium for all three countries16. The estimated term

premiums all appear stationary, and the Augmented Dickey-Fuller (ADF) test rejects the

null and confirms stationarity. A cursory glance at Figure A5 suggests some co-movements

16We refer interested readers to Appendix C for details on the technical derivations of the term premium
in our model.
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among the term premia in the three countries. To investigate this issue, we apply the

Principal Component Analysis (PCA) to the three term premia. The results in Panel A of

Table A3 show that the first principal component can account for approximately 66% of the

total variations. To investigate the extent to which each term premium is exposed to this

common factor, we regress each of the three term premiums on the first PC and present the

results in Panel B of Table A3. The adj.R2 for the U.S. term premium is as high as 91%

indicating that this first PC originates primarily from the U.S. term premium.

Past literature has built relationships between the term premium and inflation. For ex-

ample, Rudebusch and Swanson (2008) show the role of inflation in the fitting term premium

in a DSGE model. Wright (2011) works on yields and inflation in ten countries and finds

that inflation uncertainty is able to explain term premium movement. As he elaborates on

the paper intuitively, an increasing inflation uncertainty in principle makes long-term bonds

riskier and thus raises the term premium. We attempt to investigate whether such a re-

lationship exists for a more stationary term premium estimate from our model. We first

construct an inflation uncertainty measure following Stock and Watson (2007) and Wright

(2011). Specifically, we use the unobserved component stochastic volatility (UCSV) model

to decompose the inflation rate πt for each country into a stochastic trend τπt and transitory

shock ηt,

πt = τπt + ηt ηt
iid∼ N(0, ξ2

ηt) (35)

τπt = τπt−1 + ετt ετt
iid∼ N(0, ξ2

τt) (36)

logξ2
ηt = logξ2

ηt−1 + vηt (37)

logξ2
τt = logξ2

τt−1 + vτt (38)

where (vηt, vτt) follow an i.i.d N(0, I2). Because the term premium estimates for the U.K.

start from January 1983, we focus on inflation uncertainty and the term premium since
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then. The UCSV model is applied to the monthly inflation rate in each country and is

estimated using the MCMC method proposed by Stock and Watson (2007). We select the

estimated standard deviation of the permanent shock as a measure of inflation uncertainty,

as in Wright (2011). The standard deviation of the permanent shock to the inflation rate

for each economy is displayed in Figure A6. The inflation uncertainty measure was large in

the early 2000s for the U.S. and the 1990s for Germany. There was a hike in the measures

taken in all three countries at the beginning of the COVID pandemic.

With each country’s inflation uncertainty measure, we run a panel regression with the

fixed effect of the term premium on the inflation uncertainty measure as follows:

TPit = ai + b · INFit + εit (39)

where TPit is the term premium for country i at time t, ai accounts for country-specific fixed

effect, and INFit denotes the inflation uncertainty measure. The results are reported in

Table 2. The corresponding p-values are obtained using block bootstrap, where the original

data is divided into blocks consisting of six observations. In each bootstrapped sample, we

reconstruct a set of term premiums and inflation uncertainty using blocks of six months’

original data under the null hypothesis, run the panel regression of equation (39), and com-

pute the t-statistic of coefficient b. The number of bootstrap iterations is 50,000, and the

last 25,000 iterations are kept to generate our bootstrapped distribution of the t-statistic.

The estimate of coefficient b in the regression is positive and statistically significant. This

result suggests that, on average, a higher term premium is associated with higher inflation

uncertainty among these countries, strongly corroborating the findings of Wright (2011)17.

17We also use the survey measure of inflation uncertainty in Wright (2011) to carry out the same exercises.
The results are contained in Appendix D.
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5.5 Excess Return and Risk Factors

Cochrane and Piazzesi (2005) showed that the realized U.S. excess returns across various

maturities can be forecasted by a single risk factor which is tent-shaped and a linear function

of forward rates. To check whether our shadow rate DTSM with drifting trends can generate

such risk factor dynamics, we use our estimated parameters and latent factors to analyze

the relationship between excess returns and forward rates.

Specifically, with each of the 50,000 simulated sets of parameter estimates and state

variables for the U.S., we compute the forward rates of different maturities using equation

(17) and add the simulated innovation term êt to obtain our simulated forward rates, f̂ st,m.

The simulated yields ŷst,m are then computed using the simulated forward rates. As a result,

we construct a group of {f̂ st,m, ŷst,m} for maturities ranging from one month to ten years

spanning the entire sample period for the U.S.. Given the simulated monthly forward rates

and yields, we calculate the annual excess return for a m-month bond bought at time t and

sold at t+ 12:

rxmt+12 = mŷst,m − (m− 12)ŷst+12,m−12 − ŷst,12 (40)

where ŷst,m is the simulated m-month yield at time t. Following Cochrane and Piazzesi (2005),

we collect the excess returns of 24-, 36-, 48-, and 60-month U.S. treasury bonds over our

sample period,{rx24
t , rx

36
t , rx

48
t , rx

60
t }, and regress the time series of each excess return on

a constant, 12-month yield, and four forward rates.

rxmt+12 = b0 + b1ŷ
s
t,12 + b2f̂

s
t,12 + b3f̂

s
t,24 + b4f̂

s
t,36 + b5f̂

s
t,48 (41)

where f̂ st,m denotes the simulated m-month forward rate at time t. Because we have 50,000

groups of simulated yields and forward rates, equation (41) is run 50,000 times for each
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excess return, rxmt . We then compute the mean of the parameter estimates for all m.

The results are shown in Figure 7. The median adjusted R2 for these regressions fall

between 0.1 and 0.15. In general, our plots corroborate the results shown in Figure 1 in

Cochrane and Piazzesi (2005). The lines representing the parameters for different excess

returns appear close to a tent shape, although notably, the loadings on longer maturity rates

in our exercise do not decline as much. Similar to their study, excess returns with longer

maturities tend to have larger loadings on forward rates than returns with shorter maturities.

We conclude that our model captures the risk dynamics as reported in Cochrane and Piazzesi

(2005).

6 Conclusion

We develop a shadow rate DTSM with drifting trends to extract the long-run forecast of

the shadow rate (in real term) as the real interest rate trend. Although the shadow rate, based

on which our real interest rate trend is estimated, is not an actual rate that the household

and business faces or the Fed sets, it more accurately reflects the overall financial market

condition during the ZLB period (Wu and Zhang (2019)). As such, our estimate of the

real interest rate trend provides a useful measure to track the shifting economic equilibrium

condition and serves as a benchmark against which monetary policy stances may be assessed

and on which asset management strategies may be based.

By utilizing a convenient analytical solution to forward rates, we provide estimates of real

interest rate trends for the United States, the United Kingdom, and Germany by exploring

treasury yield data in these countries. We find that the real interest rate trend in all the three

countries has declined persistently since the 1990s. Although our model remains agnostic

about the driving forces behind the declining trends and our estimation relies on an entirely

different set of information, we reach a conclusion similar to that of Holston et al. (2017)
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that there appears to be a strong co-movement among the falling real interest rate trends

in these three major advanced economies, suggesting an important role of global factors in

shaping their dynamics.

As a diagnostic check of our model, we find that our term premium estimates are notably

more stationary than, for example, those in Wright (2011), who assumes a mean-reverting

yield curve. However, our term premium estimates remain significantly and positively cor-

related with inflation uncertainty measures, consistent with the major findings of Wright

(2011). We also find that the risk factor dynamics simulated from our model share a similar

pattern to that in Cochrane and Piazzesi (2005) so that a tent-shaped linear combination of

forward rates helps forecast the excess bond holding period return. We deem these results

to support our model device that primarily works with long rates during the ZLB period to

disentangle the expectation movements of future short rates from term premium dynamics.

We employ our model to produce the time-varying probabilities of a binding ZLB. We

find that the changes in probabilities align well with major monetary policy announcements.

Through an extensive out-of-sample forecast exercise, we show that our model compares

favorably with several existing term structure models in forecasting the yield curve. In par-

ticular, explicitly accounting for the ZLB via the shadow rate approach can further improve

the yield curve forecast upon the BR model that contributes to the literature by incorporat-

ing a drifting interest rate trend into the DTSM.
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Table 1: Out-of-sample forecasts for the ten-year forward rate

Horizon in months

Panel A: U.S. 6 10 20 30 40

Random Walk (RW) 0.77 0.98 1.34 1.52 1.69

Standard DTSM (DTSM) 0.86 1.11 1.72 2.18 2.82

Shadow rate DTSM (SDTSM) 0.77 1.01 1.37 1.56 1.75

p-values: SDTSM≥RW 0.61 0.83 0.80 0.79 0.78

p-values: SDTSM≥DTSM 0.02 0.10 0.13 0.12 0.11

Quarterly forecast: 1977Q3-2018Q1 Horizon in quarters

4 10 20 30 40

DTSM with drifting trends (BR) 1.28 1.65 2.25 2.23 2.59

Shadow rate DTSM (SDTSM) 1.11 1.62 2.18 2.19 2.46

p-values: SDTSM≥BR 0.05 0.34 0.23 0.29 0.00

the table is continued on the next page

The standard DTSM has three stationary observed factors which are the first three principal components of

yield data. The SDTSM method is our shadow rate DTSM with drifting trends. The BR is the shifting endpoint

model in Bauer and Rudebusch (2020). The monthly forecast spans full sample while the quarterly forecast for

the U.S. starts in 1977Q3 and ends in 2018Q1. In the upper part of Panel A, the first three rows report the

root mean squared errors (RMSE) from different models. The last two rows report p-values of Diebold-Mariano

test with the small sample adjustment of Harvey et al. (1997), against the null hypothesis that the SDTSM

does not improve the forecast compared with RW, DTSM. The lower part of Panel A follows the same manner

comparing SDTSM to BR.
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Table 1 (ctd.)

Horizon in months

Panel B: U.K. 6 10 20 30 40

Random Walk (RW) 0.63 0.81 1.12 1.35 1.56

Standard DTSM (DTSM) 0.75 0.96 1.29 1.50 1.69

Shadow rate DTSM (SDTSM) 0.72 0.95 1.34 1.61 1.84

p-values: SDTSM≥RW 0.99 0.99 0.99 0.98 0.97

p-values: SDTSM≥DTSM 0.32 0.49 0.64 0.70 0.69

Horizon in months

Panel C: Germany 6 10 20 30 40

Random Walk (RW) 0.73 0.88 1.11 1.31 1.43

Standard DTSM (DTSM) 0.87 0.99 1.21 1.36 1.53

Shadow rate DTSM (SDTSM) 0.72 0.90 1.17 1.37 1.48

p-values: SDTSM≥RW 0.44 0.82 0.96 0.95 0.86

p-values: SDTSM≥DTSM 0.01 0.15 0.32 0.53 0.33

In Panel B and C, the first three rows report the root mean squared errors (RMSE) from different models. The

last two rows in each panel report p-values of Diebold-Mariano test with the small sample adjustment of Harvey

et al. (1997), against the null hypothesis that the SDTSM does not improve the forecast compared with RW or

DTSM.
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Table 2: Panel Dataset of Term Premium and Inflation Uncertainty

Regression of term premium on inflation uncertainty

s.d. of permanent shock to inflation rate

Estimate 1.60

p-value (0.02)

The table shows the estimates of b in the regression of term premium on inflation uncertainty as

in equation (39). The p-values in parenthesis are obtained from a block bootstrap.
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Figure 1: The shadow rates for US, UK, and GM
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Figure 2: The real interest rate trend for US, UK and GM
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Figure 3: Variance decomposition of real interest rate trend with
ordering of US,GM,UK
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Figure 4: Forecasts of shadow rate for US
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Figure 5: Forecast probability of zero lower bound for US
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Figure 6: Term premium on ten-year bonds
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Figure 7: Coefficients of regressing excess return on forward rates
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s
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s
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Appendix A Derivation of forward rates with lower

bound

In GATSM equipped with a shadow rate, the bond prices are

Pm
t = exp(Am +B′m ·Xt) (A.1)

st = δ0 + δ′1 ·Xt (A.2)

where

Am = Am−1 +B′m−1µ
Q +

1

2
B′m−1ΣΣ′Bm−1 − δ0 (A.3)

B′m = −δ′1
m−1∑
j=0

(ΦQ)j (A.4)

The shadow forward rate in a world in which the lower bound is not binding is:

ft,m = pmt − pm+1
t

= (Am − Am+1) + (Bm −Bm+1) ·Xt

= δ′1

m−1∑
j=0

(ΦQ)jµQ + δ0 −
1

2
δ′1

(m−1∑
j=0

(ΦQ)j
)

ΣΣ′
(m−1∑

j=0

(ΦQ)j
)′
δ1 + δ′1(ΦQ)mXt

= Ãm + B̃′m ·Xt (A.5)

where pmt and pm+1
t are the natural logs of the bond prices.
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The conditional expectation of the future shadow rate under Q-measure is:

EQ
t (st+m) = δ0 + δ′1 · E

Q
t (Xt+m)

= δ0 + δ′1

{m−1∑
j=0

(ΦQ)jµQ + (ΦQ)m ·Xt

}

= ft,m +
1

2
δ′1

(m−1∑
j=0

(ΦQ)j
)

ΣΣ′
(m−1∑

j=0

(ΦQ)j
)′
δ1 (A.6)

= ft,m + CATm (A.7)

where we define the second term in equation (A.6) as the convexity adjustment term (CATm).

Therefore, the expectation of the future shadow rate under Q-measure can be expressed

as a summation of the shadow forward rate and CATm which is a maturity-specific but

time-invariant constant. To simplify the derivation, we define the adjusted shadow rate

s̃t+m = st+m − CATm, and equation (A.7) readily yields:

ft,m = EQ
t (s̃t+m) (A.8)

Note that this is similar to equation (4.5) in Krippner (2015) under the forward measure in

his continuous-time framework.

The conditional second moment of st+m (and s̃t+m) under the Qmeasure, denoted by σ2
m,

is:

σ2
m = V arQt (st+m) = V arQt

(
st+m − EQ

t (st+m)
)

= V arQt
(
δ′1(uQt+m + ΦQuQt+m−1 + · · ·+ (ΦQ)m−1uQt+1)

)
= δ′1

(m−1∑
j=0

(ΦQ)jΣΣ′(ΦQ′)j
)
δ1 (A.9)
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Consequently, under the risk-neutral measure, the adjusted future shadow rate s̃t+m follows

a conditional normal distribution with mean ft,m and variance σ2
m as described above.

We denote the effective forward rate when the short rate is subject to the lower bound as

f
t,m

. The no-arbitrage condition suggests approximately a risk-neutral pricing relationship

between the effective forward rate and the actual short rate subject to the lower bound:

f
t,m
≈ EQ

t (it+m)− C̃AT t,m (A.10)

= EQ
t (max(i, st+m))− C̃AT t,m (A.11)

where the first line involves the first-order approximation error, as demonstrated in equation

(A.1) in Wu and Xia (2016). Note that a similar approximation to yield equation (4.8) in

Krippner (2015) is not made explicit. This is because when the short rate is subject to a

lower bound, its underlying distribution is not Gaussian, or it does not follow a well-defined

Brownian motion in a continuous-time setting. Consequently, the usual change of measure

operation cannot go through directly. Additionally, the term C̃AT t,m reflects the convexity

adjustment term for the actual short rate, which can be shown to become the time-invariant

convexity adjustment term CATm in (A.7) if it+m is completely Gaussian or it+m = st+m.

Under those conditions the following approximation holds:

f
t,m
≈ EQ

t (max(i, s̃t+m)) (A.12)
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Then it is straightforward to derive the analytical form of the effective forward rate:

f
t,m
≈ EQ

t (max(i, s̃t+m))

= EQ
t [max(i, (st+m − CATm))]

= EQ
t (st+m − CATm) + EQ

t [max(i− (st+m − CATm), 0)]

= ft,m +

∫ ∞
−∞

max(i− st+m + CATm, 0)f(st+m)dst+m

= ft,m +

∫ i+CATm

−∞
(i− st+m + CATm)

1√
2πσ2

m

exp

[
− 1

2

(
st+m − EQ

t (st+m)

σm

)2]
dst+m

= ft,m + zt,m (A.13)

We define µ = EQ
t (st+m) = ft,m +CATm and y = st+m; then, the analytical form of zt,m can

be further derived as:

zt,m =

∫ i+CATm

−∞
(i+ CATm − y)

1√
2πσ2

m

exp

[
− 1

2

(
y − µ
σm

)2]
dy

=

∫ i+CATm

−∞
(i+ CATm − y)

1√
2π
exp

[
− 1

2

(
y − µ
σm

)2]
d

(
y − µ
σm

)
=

∫ i+CATm−µ
σm

−∞
(i+ CATm − µ− σmx)

1√
2π
exp

(
− 1

2
x2

)
dx

= (i+ CATm − µ)

∫ i+CATm−µ
σm

−∞

1√
2π
exp

(
− 1

2
x2

)
dx

− σm
∫ i+CATm−µ

σm

−∞
x

1√
2π
exp

(
− 1

2
x2

)
dx

= (i+ CATm − µ)Φ

(
i+ CATm − µ

σm

)
+ σm

1√
2π

∫ i+CATm−µ
σm

−∞
exp

(
− 1

2
x2

)
d

(
−x2

2

)
= (i+ CATm − µ)Φ

(
i+ CATm − µ

σm

)
+ σm

1√
2π
exp

[
− 1

2

(
i+ CATm − µ

σm

)2]
= (i− ft,m)

[
1−Φ

(
ft,m − i
σm

)]
+ σmφ

(
ft,m − i
σm

)
(A.14)
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where the third equality follows by defining x = y−µ
σm

and the last equality is obtained using

(A.7). Finally, Φ(·) and φ(·) are the cumulative distribution function and the probability

density function of the standard normal distribution, respectively. Substituting equation

(A.14) into equation (A.13), we obtain the final analytical form of f
t,m

:

f
t,m

= ft,m + (i− ft,m)

[
1−Φ

(
ft,m − i
σm

)]
+ σmφ

(
ft,m − i
σm

)
= i+ (ft,m − i)Φ

(
ft,m − i
σm

)
+ σmφ

(
ft,m − i
σm

)
= i+ σm

[
(ft,m − i)

σm
·Φ
(
ft,m − i
σm

)
+ φ

(
ft,m − i
σm

)]
= i+ σmg

(
ft,m − i
σm

)
(A.15)

We note that the conditions under which the above derivations can go through can be

concisely summarized as the following requirement of the term C̃AT t,m:

C̃AT t,m = σmg

[
(ft,m − (i− CATm))

σm

]
− σmg

[
ft,m − i
σm

]
(A.16)

To illustrate this, the work on equation (A.11) is as follows:

f
t,m

= EQ
t (max(i, st+m))− C̃AT t,m

= EQ
t (st+m) + EQ

t (max(i− st+m, 0))− C̃AT t,m

= EQ
t (st+m) + EQ

t (max(i− CATm − (st+m − CATm), 0))− C̃AT t,m

= EQ
t (st+m) + (i∗ − ft,m)

[
1−Φ

(
ft,m − i∗

σm

)]
+ σmφ

(
ft,m − i∗

σm

)
− C̃AT t,m

= i− C̃AT t,m + σmg

(
ft,m − (i− CATm)

σm

)
(A.17)

where the fourth equality uses the integral result in (A.14), with i∗ = i−CATm replacing i,

and the last equality uses EQ
t (st+m) = ft,m + CATm. Taking the difference between (A.17)
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and (A.15), we obtain (A.16).

Note that in (A.16), when the short rate is far above the lower bound, we have Φ(·)→ 1

and φ(·)→ 0 in the limit; that is, when C̃AT t,m becomes exactly CATm and (A.10) coincides

with (A.7).

Although our derivation is similar to Krippner (2015) in that we also work directly on

the mapping between the forward rates and expected future short rates, we operate under

the risk-neutral measure instead of relying on the forward measure in a continuous-time

framework, as in his derivation. We also corroborate Wu and Xia (2016) in highlighting the

necessary approximations owing to the non-Gaussian feature of the effective forward rate

and short rate when the lower bound is binding.

Finally, we note that this analytical form is robust to the DTSM with drifting trends as

long as the conditional distribution of s̃t+m is well defined. Therefore, the same analytical

form appears to be valid theoretically even when the unit roots are present in the risk-

neutral process as well as the physical process so long as the consol bond is excluded from

consideration.
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Appendix B Prior Distributions

Table B1: Prior distribution for parameters in three countries

Panel A

US Distribution Values

σ2
τ IG(αη/2, δη/2) αη = 100, δη = 0.16(αη − 2)

ΣΣ′ IW (κ, Ψ) κ = 5, Ψ = (κ− 4)Ω̃

Ω̃ from classical estimation

Φ N(Φ̄, ΩΦ) Minnesota prior

γ N(µγ, Ωγ) µγ = [−0.42, −0.12]′

Ωγ = diag(0.01, 0.01)

X̄ N(µX , ΩX) µX = [2.83, 1.00]′

ΩX = diag(1, 1)

σ2
e IG(αe/2, δe/2) αe = 4, δe = 0.01(αe − 2)

kQ∞ N(µk, σ
2
k) µk = 0.03, σ2

k = 0.022

σ2
ηπ IG(αηπ/2, δηπ/2) αηπ = 4, δηπ = 0.01(αηπ − 2)

σ2
πc IG(απc/2, δπc/2) απc = 4, δπc = 0.02(απc − 2)

σ2
πs IG(απs/2, δπs/2) απs = 4, δπs = 0.002(απs − 2)

φ1 N(µ1, σ
2
µ1) φ1 = 1.40, σ2

µ1 = 4

φ2 N(µ2, σ
2
µ2) φ2 = −0.45, σ2

µ2 = 4

IG means a inverse Gamma distribution. IW is inverse-Wishart distribution. N refers to Normal

distribution. Priors for parameters not listed in the table are completely uninformative. σ2
τ = σ2

ηr + σ2
ηπ

according to Equation (6). And we use σ2
τ to pin down σ2

ηr in our estimation.
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Panel B

UK Distribution Values

σ2
τ IG(αη/2, δη/2) αη = 100, δη = 0.10(αη − 2)

ΣΣ′ IW (κ, Ψ) κ = 5,Ψ = (κ− 4)Ω̃

Ω̃ from classical estimation

Φ N(Φ̄, ΩΦ) Minnesota prior

γ N(µγ, Ωγ) µγ = [−1.50, 0.06]′

Ωγ = diag(0.01, 0.01)

X̄ N(µX , ΩX) µX = [3.79, −0.14]′

ΩX = diag(1, 1)

σ2
e IG(αe/2, δe/2) αe = 4, δe = 0.01(αe − 2)

kQ∞ N(µk, σ
2
k) µk = 0.04, σ2

k = 0.022

σ2
ηπ IG(αηπ/2, δηπ/2) αηπ = 4, δηπ = (αηπ − 2)

σ2
πc IG(απc/2, δπc/2) απc = 4, δπc = 0.01(απc − 2)

σ2
πs IG(απs/2, δπs/2) απs = 4, δπs = 100(απc − 2)

φ1 N(µ1, σ
2
µ1) φ1 = 1.20, σ2

µ1 = 4

φ2 N(µ2, σ
2
µ2) φ2 = −0.50, σ2

µ2 = 4
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Panel C

Germany Distribution Values

σ2
τ IG(αη/2, δη/2) αη = 100, δη = 0.02(αη − 2)

ΣΣ′ IW (κ, Ψ) κ = 5,Ψ = (κ− 4)Ω̃

Ω̃ from classical estimation

Φ N(Φ̄, ΩΦ) Minnesota prior

γ N(µγ, Ωγ) µγ = [−1.50, 0.18]′

Ωγ = diag(0.01, 0.01)

X̄ N(µX , ΩX) µX = [−1.17, 0.90]′

ΩX = diag(1, 1)

σ2
e IG(αe/2, δe/2) αe = 4, δe = 0.04(αe − 2)

kQ∞ N(µk, σ
2
k) µk = 0.02, σ2

k = 0.022

σ2
ηπ IG(αηπ/2, δηπ/2) αηπ = 4, δηπ = (αηπ − 2)

σ2
πc IG(απc/2, δπc/2) απc = 4, δπc = 0.01(απc − 2)

σ2
πs IG(απs/2, δπs/2) απs = 4, δπs = 100(απs − 2)

φ1 N(µ1, σ
2
µ1) φ1 = 0.6, σ2

µ1 = 4

φ2 N(µ2, σ
2
µ2) φ2 = 0.2, σ2

µ2 = 4
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Appendix C Derivation of Term Premium

The term premium of yield with m-period maturity at time t, TPm
t , is defined as

TPm
t+1 = myt,m − (m− 1)yt+1,m−1 − yt,1 (C.1)

where yt,1 denotes the short rate at time t. In our unspanned DTSM, the yield is affine in

latent factors and maintains no-arbitrage constraints. Thus, we have18

yt,m = − 1

m
Ām −

1

m
(B̄′m, 0, 0) · (X ′t, r∗t , π∗t )′

B̄′m = B̄′m−1ΦQ − δ′1

Ām = Ām−1 + B̄′m−1µ
Q +

1

2
(B̄′m−1, 0, 0)Ω(B̄′m−1, 0, 0)′ − δ0 (C.2)

Ω =


ΣΣ′ γσ2

ηr γσ2
ηπ

γ′σ2
ηr σ2

ηr 0

γ′σ2
ηπ 0 σ2

ηπ


Substituting (C.2) into (C.1), plugging in the physical process of factors in equation (7), and

the risk price in equation (10), and taking the expectation, we obtain the expected term

premium on m-period yield19:

Et(TP
m
t+1) = B̄′m−1[(I3 − Φ)X̄ − µQ + (Φ− ΦQ, (I3 − Φ)γ, (I3 − Φ)γ) · (X ′t, r∗t , π∗t )′]

− 1

2
(B̄′m−1, 0, 0)Ω(B̄′m−1, 0, 0)′

= B̄′m−1[λ0 + λ1 · (X ′t, r∗t , π∗t )′]−
1

2
(B̄′m−1, 0, 0)Ω(B̄′m−1, 0, 0)′ (C.3)

18See Duffie and Kan (1996) for detailed proofs.
19In our analysis of the term premium we ignore the convexity adjustment term but focus on the first term

of equation (C.3).
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Appendix D Different Measures of Inflation Uncertainty

In this section, we estimate equation (39) using the other three measures of inflation un-

certainty: the standard deviation of transitory shock from the UCSV model, the combination

of the standard deviation of transitory shock and the standard deviation of permanent shock

from the UCSV model, and the survey dispersion of inflation forecasts employed in Wright

(2011). Specifically, the survey dispersion measure is the standard deviation of individual

forecasts based on the Consensus Forecasts report of inflation forecasts that we do not have

access to. Thus, we use the survey dispersion provided by Wright (2011) covering October

1989 to January 2009. All estimations in this sector are based on monthly data and the

estimates of coefficient b are presented in Table A5. In the first column of Table A5, the s.d.

of transitory shocks, as a single regressor, is negatively correlated with the term premium.

The second column contains two explanatory variables in the regression. The coefficient of

s.d. of permanent shock is positive and statistically significant, while the coefficient of s.d. of

transitory shock is negative and significant. In the third column, we regress our estimates of

the term premium on the same survey dispersion of inflation from Wright (2011) and obtain

a negative, but insignificant coefficient.
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Table A1: Cointegrating vectors among latent factors

Panel A: U.S.

Γ 1 0 0 1.55
(0.20)

1.55
(0.20)

0 1 0 −0.65
(0.17)

−0.65
(0.17)

0 0 1 0.10
(0.15)

0.10
(0.15)

Panel B: U.K.

Γ 1 0 0 2.27
(0.16)

2.27
(0.16)

0 1 0 −1.60
(0.12)

−1.60
(0.12)

0 0 1 0.32
(0.12)

0.32
(0.12)

Panel C: Germany

Γ 1 0 0 1.96
(0.13)

1.96
(0.13)

0 1 0 −1.35
(0.12)

−1.35
(0.12)

0 0 1 0.39
(0.13)

0.39
(0.13)

There are five latent factors in our SDTSM, (X1t, X2t, X3t, r
∗
t , π
∗
t ), and three cointegrating vectors. The

3 × 5 matrix, Γ = [I3, γ, γ], stacks cointegrating vectors in rows. According to the normalization in

Section ??, only the second and third elements in γ are freely estimated.
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Table A2: Cointegration: estimates of real interest rate trend

Panel A

U.S. U.K. Germany

ADF test (p-value) 0.25 0.83 0.93

Panel B

Johansen cointegration test stat p-value h

r=0 63.40 0.00 1

r=1 32.34 0.01 1

r=2 5.48 0.58 0

Panel C

VECM model with 2 cointegrating vectors

Error-correction coefficients
(S.E.)

0.78
(0.01)

−3.15
(0.01)

0.62
(0.01)

0.16
(0.01)

2.18
(0.01)

−1.74
(0.01)

Note: The the number of lags in the ADF test is selected according to the AIC.
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Table A3: Correlation: term premium estimates

Panel A

1st PC 2nd PC 3rd PC

Principal Component Analysis

Total variance explained (%) 66.45 26.25 7.30

Panel B

US UK GM

Regress term premium on the first PC

adjusted-R2 0.91 0.36 0.22

Note: We use the overlapping sample period from Jan 1983 to Mar 2022 to analyze the

correlation among term premium estimates across countries.
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Table A4: Forecast of economic recessions

Panel A: In-sample 1-month 3-month 6-month 12-month

TP ES TP ES TP ES TP ES

Coefficient 0.24 -0.09 0.25 -0.17 0.14 -0.27 0.04 -0.44

P-value 0.00 0.01 0.00 0.00 0.00 0.00 0.46 0.00

R-square 0.06 0.02 0.06 0.06 0.02 0.13 0.00 0.26

Correct Months 1 0 1 0 0 4 0 13

Panel B: Out-of-sample 1-month 3-month 6-month 12-month

TP ES TP ES TP ES TP ES

RMSE 0.29 0.29 0.28 0.29 0.27 0.29 0.27 0.27

0|0 436 437 437 437 436 437 435 432

1|1 3 0 5 0 4 0 2 5

This table provides the results of economic recession in-sample and out-of-sample forecasting ex-

ercise for the U.S. data. TP is the term premium of ten-year yield derived from our model. ES

represents the empirical slope, ten-year yield minus three-month yield.
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Table A5: Term premium and various measures of inflation uncer-
tainty

Regression of term premium on inflation uncertainty

Regressors Estimate

S.D. of transitory shock -0.79
(0.00)

-0.84
(0.00)

S.D. of permanent shock 1.75
(0.01)

Survey dispersion -0.57
(0.05)

This table shows the estimates of b in equation (39) using different measures of inflation uncertainty

as explanatory variables. The p-values in parenthesis are obtained from a block bootstrap. The

regression involving survey dispersion covers the time period from October 1989 to January 2009.

Other regressions use monthly data spanning from January 1983 to March 2022.
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Figure A1: Comparing shadow rates
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Figure A2: Comparing real interest rate trends
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Figure A3: The trend of shadow rate for US, UK, and GM
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Figure A4: Variance decomposition of real interest rate trends with
ordering of GM, UK, US
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Figure A5: Comparing term premiums
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Figure A6: Standard deviation of the permanent shock to inflation
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Table 6: Out-of-sample forecasts for the ten-year forward rate

Quarterly forecast: 1976Q3-2008Q1 Horizon in quarters

(127 quarters) 4 10 20 30 40

DTSM with drifting trends (BR) 1.28 1.65 2.25 2.23 2.59

Shadow rate DTSM (SDTSM) 1.11 1.62 2.18 2.19 2.46

p-values: SDTSM≥BR 0.05 0.34 0.23 0.29 0.00

the table is continued on the next page

Quarterly forecast: 1976Q3-2016Q1 Horizon in quarters

(159 quarters) 1 2 4 8

DTSM with drifting trends (BR) 0.65 0.88 1.21 1.48

Shadow rate DTSM (SDTSM) 0.60 0.74 1.12 1.48

p-values: SDTSM≥BR 0.10 0.01 0.16 0.51

the table is continued on the next page

The standard DTSM has three stationary observed factors which are the first three principal components of

yield data. The SDTSM method is our shadow rate DTSM with drifting trends. The BR is the shifting endpoint

model in Bauer and Rudebusch (2020). The monthly forecast spans full sample while the quarterly forecast for

the U.S. starts in 1971Q4 and ends in 2018Q2. In the upper part of Panel A, the first three rows report the

root mean squared errors (RMSE) from different models. The last two rows report p-values of Diebold-Mariano

test with the small sample adjustment of Harvey et al. (1997), against the null hypothesis that the SDTSM

does not improve the forecast compared with RW, DTSM. The lower part of Panel A follows the same manner

comparing SDTSM to BR.
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