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Abstract

Models with sunspot equilibria have long been a topic of inter-
est among economists. It then became an interesting question to ask
whether there is empirical support for their existence. One approach to
answer this question is through lab experiments. Such equilibria have
been successfully reproduced in the lab, but little is known about their
determinants and, most importantly, about their convergence dynam-
ics: when, and how, do individuals assign a coordination role to signals
which are publicly known to have no fundamental value? In order to
answer this question, we run a laboratory experiment in which individ-
uals, connected through a network, directly observe the actions of their
neighbors as well as aggregated information. By manipulating both the
type of information available and the structure of the network, we show
that general information about other players’ behavior hinders coordi-
nation, while information specifically related to the sunspot enhances
it.
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1 Introduction

Can factors that do not directly affect the fundamentals of an economy nev-
ertheless affect its performance? In macroeconomics, models in which this
extrinsic uncertainty is the driving force behind fluctuations have a rich his-
tory. Early work by authors such as Azariadis (1981) and Cass and Shell
(1983) established the theoretical basis for the literature that followed. In
these models, the extrinsic or “sunspot” shock is most easily thought of as a
coordination device in choosing among multiple equilibria, i.e., through self-
fulfilling expectations on the parts of agents. Benhabib and Farmer (1994)
and Farmer and Guo (1994) are seminal examples. The Benhabib-Farmer-Guo
model represented a huge achievement: when calibrated largely in line with its
contemporary – the real business cycle model (Kydland and Prescott, 1982)
– it could similarly replicate real world data. However, in order for sunspot
equilibria to obtain, certain parameters of the model needed to be outside
the range of empirical plausibility. Hence, much subsequent work focused on
producing variations of this model that were more empirically plausible. Ex-
amples include Wen (1998) and Harrison (2001). See Benhabib and Farmer
(1999) for an extensive review of the sunspot literature in macroeconomics.
As a whole, then, this literature helped bring the idea of sunspot equilibria
into the mainstream of macroeconomics, and to establish the foundation for
the belief, now more widely held, that these models are in fact relevant for
explaining the real world.

A more recent literature directly tests the hypothesis that sunspot equilib-
ria can occur in the real world, by seeking to observe coordination on sunspot
equilibria in human interaction, based on experimental evidence. The labora-
tory setting provides the unique ability to create an actual sunspot signal –
that is, a message which (i) is random, (ii) does not directly affect fundamen-
tals, and (iii) is known as such by participants, but is still potentially useful as
a coordination device. Early work includes Marimon et al. (1993), and Duffy
and Fisher (2005), which provide convincing evidence that, at least in some
contexts, sunspot shocks do matter. Fehr et al. (2019) also find evidence of
sunspot equilibria in the presence of noisy sunspot signals. Agents are able
to coordinate with the help of sunspot shocks in each of these games. In
addition, in two recent papers, Arifovic et al. (2019) and Arifovic and Jiang
(2019) show the emergence of sunspot equilibria in laboratory experiments, re-
producing respectively a simple macroeconomic environment, and bank runs
dynamics.

In this paper, we add to this literature by improving our understanding
of how sunspot equilibria emerge. We do so by manipulating the possibilities
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for participants to coordinate, connecting them through a predefined social
network structure. Models in which agents are connected and communicate via
a social network have been used widely in economics over the past decade (see
for example Jackson, 2010 and Jackson and Yariv, 2011). In our experiment,
each individual is a member of a network, and is able to observe her neighbors’
behavior following a sunspot shock, which may aid in the coordination on
a sunspot equilibrium. Agents must decide between two symmetric assets,
exploiting a sunspot signal as a coordination device. The return on each asset
is increasing in the number of agents who invest in it. The payoff structure
we pose is based on that of Keser et al. (2012), which can be seen as a special
case of models studied in the game theoretic literature on coordination.

Compared to the existing experimental literature on sunspot equilibria,
we introduce the novel element of local information on other players’ actions
– which mimics the importance of private interactions and ties in a large
number of investment settings, including the financial world (Fracassi, 2017).
In addition, we consider a simplified but more general coordination game,
where framing is very limited, but both an idiosyncratic fundamental value
and a positive complementarity effect affect individual payoffs, hence requiring
players to balance contrasting incentives. We focus on the roles of different
types of information in helping or hindering synchronization on the sunspot
signal.

It is worth mentioning that the game we analyze is a local information
game, as opposed to the large literature on local interaction games: “locality
is represented by information and not necessarily by payoffs” (Chwe, 2000). It
is closely related to the literature on global games (Carlsson and Van Damme,
1993; Morris and Shin, 2003), but it relies on purely strategic uncertainty,
rather than on individual noisy signals about an unknown state of the world.
On the other hand, our setup differs from that of Chwe (2000) because the
local information our agents care about concerns actions rather than types. In
this sense, our work is more similar to Cassar (2007) and Battiston and Stanca
(2015).

We study different treatments, manipulating two main dimensions. First,
we vary the extent to which subjects see other people’s actions, by changing
the structure of the network, or suppressing it entirely. Second, we introduce
a form of nudging which affects the semantics of, but is distinct from, the
sunspot signal by implicitly referring to it as a potential coordination device
(Duffy and Fisher, 2005).

We confirm previous evidence that the sunspot signal can spontaneously
emerge as a coordination device, and we show that this coordination increases
over time. We find that messages that subjects receive can substantially affect
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their reliance on the sunspot. In particular, while mere information about
other players’ actions can crowd out the sunspot signal, explicit nudging can
increase its adoption. We also find that the position of a subject in the net-
work can make her more or less important in driving the group towards the
sunspot equilibrium. Specifically, subjects with more connections play a more
important role in convergence to the sunspot equilibrium.

The rest of the paper proceeds as follows. In the next section, we outline
our model; in Section 3, we describe the experimental design; in Section 4 we
present results of our analysis; and Section 5 concludes.

2 Theory

Our model is similar to that of Keser et al. (2012). Suppose that N ≥ 2
investors choose between two assets, A and B. The return for investor i in
asset j is:

Rij = qj + rij + kNj (1)

where j ∈ {A,B}, Nj ∈ {0, . . . , N − 1} is the number of agents besides i that
choose asset j, and k > 0. Positive externalities, or complementarities, are
captured by the last term in the equation: each investor earns k times the
number of other investors who invest in the same asset. The terms qj + rij
form instead the base, or standalone, value for the investor. It is the return
the asset would earn with no complementarities; that is, if no one else besides
investor i chooses the asset,1 and it is composed by a common term qj and an
idiosyncratic term rij. For the purpose of the present paper, where we focus
on complementarities between players’ actions, we assume qj = 0. Future
research will be devoted to the interaction between common and idiosyncratic
base values.

Fehr et al. (2019) and Keser et al. (2012) also consider a context in which
agents face a coordination problem in their decision between different assets,
with similarly defined complementarities. But in their work, the assets are
differentiated by their risk profiles; in our case, the two assets are perfectly
symmetric, sharing the same k and with (riA, riB) being i.i.d. pairs of values
from a common distribution.2 For simplicity, we assume that the sum of the

1Equation (1) can be considered as a special case of the payoffs scheme adopted by (Chwe,
2000), in which the individual utility function is supermodular.

2That individual fundamental values are uncorrelated might seem like a strong departure
from reality, where fundamental values might differ from investor to investor but typically
share a substantial common component. This design decision sacrifices some level of realism
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base values is constant, and that the difference between them, γ = riA −
riB, is uniformly distributed over a set Γ of values that partition the interval
[−γM , γM ] into intervals of equal length , where γM = max(riA − riB) =
max(riB − riA).3

The decision to play one asset over the other will naturally depend on the
expected number of other players also playing it:

xi =

{
A if E[RiA] ≥ E[RiB]

B otherwise.
(2)

where E[Rij] = rij + kE[Nj]. When not specified otherwise, we will be inter-
ested in the case in which the maximum difference between base values is less
than the maximum benefit from coordination:

γM < k(N − 1). (3)

Under this assumption, the one-shot game has exactly two pure Nash equi-
libria that hold for any realization of the base values: full coordination on each
of the two assets.4 Once we consider the repeated version of this game, any
sequence of plays in {A,B}T is a potential pure Nash equilibrium, and the
problem becomes that of coordinating on the same sequence.

Given that the two assets are perfectly symmetric, and that the base values
of different players are independent, we can assume that ex ante they are
expected to be played with the same probability:

E[NA] = E[NB] =
N − 1

2
. (4)

2.1 Introducing the sunspot

We introduce a nonfundamental sunspot device S, taking value S = A or
S = B with the same probability 1

2
. How does introduction of the sunspot

affect the equilibrium properties of the game?
We enrich the model by allowing each agent to have expectations about

the influence of the sunspot on other agents’ choice. We are not interested, at
this stage, in modeling the mechanics of such influence; we simply capture it
with a coefficient α ∈ [−1, 1], where α = 1 represents the belief that everybody

in favor of a much clearer interpretation – one with complementarity being the only common
component of different agents’ payoffs.

3In our experiment, riA + riB = γM = 5. The case in which the distribution of riA and
riB is continuous is analyzed in Appendix A.1.

4If γM > k, asymmetric equilibria might exist for specific combinations of base values.
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follows the sunspot, α = −1 represents the belief that everybody deviates from
it, and in general 1+α

2
is the expected share of other group members playing

the sunspot: E[NS] = 1+α
2

(N − 1). Hence,

E[Rij] =

{
rij + k(N − 1) · 1+α

2
if S = j

rij + k(N − 1) · 1−α
2

otherwise.
(5)

Notice that α = 0 (falling back to equation 4) represents the belief that the
sunspot does not, on average, affect agents’ decisions.

Given α, each subject forms E[Rij], and hence chooses xi, based on the
value of riA and riB. Let T ∈ {A,B} denote the non-sunspot asset, and
γ = riS − riT ∈ [−γM , γM ] be the relative advantage, in terms of base value,
from choosing the sunspot: strategies are mappings σ : [−γM , γM ] 7→ {S, T}.

Given beliefs about other players (α) and own difference between base
values (γ), the condition for picking asset S is:

xi = S ⇐⇒ E[RiS] > E[RiT ] ⇐⇒ γ > −k(N − 1)α (6)

Equation (6) guarantees that best replies are always pure strategies, and
allows us to state the following.

Lemma 1. Best replies are monotonic in γ: given an α, if a player chooses
S for a given γ′, she should do the same for γ′′ > γ′.

Proof. If equation (6) holds for γ = γ′, it holds also for γ = γ′′ > γ′.

Corollary 1. Optimal strategies can take only three forms:

1. Always strategy: i.e., always play the sunspot:

If α = 1, equation (6) becomes −γ < k(N − 1), which is always true by
virtue of equation 3. In other words, if other players are always expected
to play the sunspot, the best reply is to always play the sunspot.

2. Threshold strategy: i.e., play the sunspot if and only if γ > γ̄, for some
γ̄ ∈ R,

For example, if α = 0, equation (6) becomes γ > 0. In this case, other
players are expected to not take the sunspot into consideration, hence
picking the asset with the larger base value (which is S if and only if
γ > 0), and this is precisely the best reply.

3. Never strategy: i.e., never play the sunspot.
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If α = −1, equation (6) becomes γ > k(N − 1), which is always false
by virtue of equation 3. In other words, if other players are expected to
never play the sunspot the best reply is to never play the sunspot.

The three examples presented above, α ∈ {−1, 0, 1}, are clearly symmetric
Nash equilibria. In order to analyze all possible values for α, we state another
result based on equation (6).

Lemma 2. Best replies are monotonic in α: given γ, if a player chooses S
for a given α′, she should do the same for α′′ > α′.

Proof. The right hand side of equation (6) is decreasing in α, so if it holds for
α = α′, it also holds for α = α′′ > α′.

Lemma (2), combined with the analysis above for α ∈ {−1, 0, 1}, guar-
antees that the possible values of α for which the best reply is to never play
the sunspot (the never strategy) are an interval [−1, α], and that the possible
values of α for which the best reply is to always play the sunspot (the always
strategy) are an interval [α, 1], with α < 0 < α.

Lemma 3. No value of α ∈ (−1, α] ∪ [α, 1) results in a symmetric Nash
equilibrium.

Proof. If we take α ∈ (−1, α], the best reply is (by definition) to never play
the sunspot, but this strategy induces a belief αBR = −1 6= α: hence, beliefs
are not consistent. Analogously, if we take α ∈ [α, 1), then αBR = 1 6= α.

2.1.1 Threshold Nash Equilibria

We now look for Nash equilibria in the intermediate region α ∈ (α, α). In this
case, strategies are defined by a threshold (see Corollary 1) being the value of
γ for which equation (6) is binding, that is, γ̄ = −k(N−1)α. In the following,
we refer to symmetric Nash Equilibria with strategies of this kind as Threshold
Nash Equilibria (TNE).

In a TNE, the value of α induced by γ̄ is αγ̄ = αBR = P{γ > γ̄}: the only
value of α consistent with believing that other players use γ̄ as a threshold.
Hence, each γ̄ induces a given αγ̄, and each αγ̄ induces a given γ̄′.

Importantly, multiple values of γ̄ (or of α) can correspond to the same
threshold strategy. For instance, in our experiment, Γ = {−5,−3,−1, 1, 3, 5},
so γ̄ = 1.5 and γ̄ = 2, which are both between 1 and 3, denote the same
threshold strategy: “choose the sunspot if and only if γ is equal to 3 or 5”.
And, if the strategy given by γ̄ is the same that best replies to αγ̄, then it is
a TNE.
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The elements of Γ partition the interval [−γM , γM ] in H intervals of equal
size: if we parametrize such elements as γh = γM − h2γM

H
for h ∈ {0, . . . , H},

then the values of α they induce are clearly of the form αh = −1 + 2 h
H

(notice
that the γh are decreasing, and the αh increasing, in h, as larger thresholds
result in smaller expected shares of sunspot players). In turn, each αh induces
a γ′h such that equation (6) is binding; that is, γ′h = k(N − 1)(1− 2 h

H
).

The two thresholds γh and γ′h represent the same strategy whenever the
latter is included in the interval between the former and the subsequent element
of Γ, that is, if

|γh − γ′h| ≤
2γM
H
⇐⇒

∣∣∣∣∣12 − h

H
−
k(N − 1)(1− 2 h

H
)

2γM

∣∣∣∣∣ ≤ 1

H

⇐⇒

∣∣∣∣∣∣∣∣
(
H

2
− h
)

︸ ︷︷ ︸
A

(
1− k(N − 1)

γM

)
︸ ︷︷ ︸

B

∣∣∣∣∣∣∣∣ ≤ 1. (7)

Hence, equation (7) is crucial in identifying conditions for existence of non–
trivial equilibria, as in the following result.

Result 1. The coordination game admits non–trivial symmetric Nash equilib-
ria if and only if equation (7) is satisfied for h =

⌈
H
2

⌉
− 1.

Proof. One implication directly comes from the definition of equation (7): if
it is satisfied for h, then γh is a TNE. For the other implication, notice that
keeping all other parameters fixed, given a symmetric equilibrium at h = h̄,
then each value of h at least as close to H

2
(i.e.,

∣∣H
2
− h
∣∣ ≤ ∣∣H

2
− h̄
∣∣) also

corresponds to a symmetric equilibrium (because the absolute value of the
term A is smaller, or equal, while the term B is unchanged). Since h =

⌈
H
2

⌉
−1

is the closest value of h to H
2

, then if non–trivial equilibria exist, it corresponds
to one of them.

Furthermore, we know that B is strictly negative because of equation (3),
but at the limit for k → γM

N−1
, it tends to 0. Hence, for any choice of H, h, N

and γM , we can find a value of k that satisfies equation (3) and equation (7),
and results in a symmetric equilibrium. We can hence conclude what follows.

Result 2. The coordination game can admit any strictly positive number of
symmetric equilibria.
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Figure 1: Possible configurations of symmetric equilibria for H = 6
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Note: γM = 5, N = 4, H = 6, k as specified. Black dots denote trivial symmetric

equilibria. Blue dots denote nontrivial symmetric equilibria – cases in which α and αγ̄

(orange dots) fall in the same interval.

Proof. If k is small enough so that equation (3) is not satisfied and H is even
(so that 0 6∈ Γ), then the only resulting symmetric equilibrium will be α = 0.

If H = 0, so that Γ = {0}, then clearly both playing the sunspot and not
playing the sunspot are symmetric Nash equilibria, and there are no others.

To obtain a number of equilibria p ≥ 3, it is sufficient to design a game
with H = p − 1, and, for any choice of other parameters, pick k such that
equation (3) is satisfied, and equation (7) is satisfied for h = 1 (and hence for
all h).

Figure 1 displays, for γM , N , and H corresponding to our experimental
design, the possible configurations of symmetric equilibria, in terms of induced
α. Equation (3) is binding for 5 = k ·3 =⇒ k = 5

3
, so the two corner solutions

α = −1 and α = 1 exist if and only if k > 5
3

(that is, in all panels of Figure 1
except the first one).

The equilibria identified in the two previous results differ systematically
from the point of view of expected payoffs, as summarized by the following.

Lemma 4. The larger |γh|, the higher the expected payoff from a symmetric
equilibrium γh.

Proof. See Appendix A.2

Given that the game is ex–ante symmetric, expected payoffs directly map
into Pareto efficiency, hence allowing us to conclude what follows.

Result 3. Any symmetric Nash equilibrium is Pareto dominated by any other
symmetric Nash equilibrium where the sunspot is attributed more importance
(larger |α|).
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In particular, α ∈ {−1, 1} strictly dominate all other equilibria. Notice
that such Pareto ranking refers to the choice of α before knowing the value
of rij. Once such base values are drawn, an agent with γ < 0 might prefer a
Nash equilibrium with α ∈ (−1, 0] to one with α = 1, and vice–versa, an agent
with γ > 0 might prefer α ∈ [0, 1) to α = −1.

2.2 Testable hypotheses

In our experimental setting, with parameters γM = 5, N = 4, H = 6 and k = 5,
equation (3) is satisfied, so trivial equilibria α ∈ {−1, 0, 1} exist. Instead,
equation 7 is |(3− h)(−2)| ≤ 1: since it is not satisfied for h =

⌈
H
2

⌉
− 1 = 2,

Result 1 guarantees that no non–trivial equilibria exist — as in the second
panel of Figure 1. Hence, the model naturally suggests some hypotheses that
can be tested empirically. First, that the sunspot does play a role, consistent
with previous results in the literature (Marimon et al., 1993; Duffy and Fisher,
2005; Fehr et al., 2019):

[HYPOTHESIS 1] α 6= 0: the selection criterion that individuals
adopt takes into account the sunspot realization.

Then, equilibria α = −1 and α = 1 are particularly relevant, as they
Pareto dominate α = 0 (Result 3). Moreover, if players start from any belief
α > 1

15
and update their beliefs based on observed decisions, they converge to

α = 1 with probability > 0.5; if their initial belief is α > 1
3
, they converge to

α = 1 with probability 1.5 Similarly, convergence to α = −1 happens with
probability > 0.5 if initially α < 1

15
, and is guaranteed if α < −1

3
. That is, the

basins of attraction (Dal Bó and Fréchette, 2011; Ghidoni and Suetens, 2019)
of these two corner equilibria cover most of the [−1, 1] interval. It is hence
natural to hypothesize that, in the repeated version of the game, choices will
converge towards one of the two corner solutions.

[HYPOTHESIS 2] α→ {−1, 1}: individuals eventually converge to
one of the two “extreme” equilibria in which they entirely disregard
base values.

Finally, convergence on common strategies requires information about other
players’ actions (α). In other words, the basins of attraction defined above rely
on such information: within each of them, evidence obtained on other players’
actions allows for updating of the value of α towards that equilibrium. But

5These numbers are obtained by solving equation (6) with γ = −1 and γ = −5, the
smallest and largest possible private incentives against the sunspot asset.
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other players’ actions do not transparently reveal their strategies and beliefs;
they only represent incomplete and noisy (because other players’ base values
are unknown) signals. The literature on learning in social networks (Gale and
Kariv, 2003; Golub and Jackson, 2008), shows that more connections lead to
faster convergence. In our setup, variations in our experimental design allow
us to manipulate information available about other subjects’ decisions: it is
natural to hypothesize that the speed of convergence will increase along with
the amount of information provided.

[HYPOTHESIS 3] Convergence to a symmetric equilibrium is faster
if more information is available to each player about other players’
choices.

Next, we test these hypotheses experimentally.

3 Experimental design

Our experiment brings this model into the lab, and inspired especially by Duffy
and Fisher (2005), introduces sunspot shocks as a possible coordination device
in a multiple equilibrium setting. In addition, we specifically look at the effect
of local information (i.e. concerning specific individuals, and flowing over a
predefined network structure) on individual decisions. We start by describing
the reference design (BASE). Then we describe our three alternative designs.

In each session, subjects were randomly and anonymously assigned to
groups of four participants, in which they remained for the entire session.
Each session consisted of 80 rounds, split into 4 phases of 20 rounds each. At
the beginning of each round, the experimenter drew a ball from an urn con-
taining 2 red and 2 blue balls, and all screens in the room turned that color.
This color was the sunspot signal, though we avoided any reference to this
language in the experimental instructions, which only read:

“During each round, all screens will be colored the same color, either RED
or BLUE, randomly selected in front of all participants. This color does not
enter payoff computations.”

For each subject, independently, the computer then randomly split $5.00
between two assets RED and BLUE, assigning an integer “base value” to each
(hence two numbers in {0, 1, 2, 3, 4, 5}, adding up to 5). Subsequently, each
subject chose which asset to invest in: RED or BLUE. The return from the
investment was the subject’s base value for the chosen asset plus $5 for every
other member of her group who invested in the same asset in that round. At
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Figure 2: Structure of local information
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(b) Unbalanced network

the end of each session, each subject was paid the return from a randomly
chosen round of the session (plus a $5.00 show-up fee).6

During each session, some groups of four received local information in
phases I and III, others in phases II and IV. We will refer to the other phases
of the game as “no information” phases. Local information consisted in the
decision of another member of one’s group in the previous round (except for
the very first round of the session), according to the cycle network depicted in
Figure 2a, where the arrow from B to A means for instance that A got to know
B’s previous choice. We showed this network structure to the participants, and
explicitly told them that each participant always receives information about
the same other peer.

All information provided was also repeated in subsequent periods of the
same phase. Moreover, after each phase, each participant saw a summary of
her choices and of all information obtained during the phase, together with:
(1) her average earnings in that phase (2) average earnings for her group in
that phase (3) what her average earnings would have been if all members of
her group had always chosen the asset with the higher base value in that phase
(4) what average earnings in her group would have been if all members of her
group had always chosen the asset with the higher base value in that phase
(5) what her average earnings would have been if all members of her group
had always followed the sunspot in that phase (6) what average earnings in
her group would have been if all members of her group had always followed
the sunspot in that phase.

Notice that having the same subjects receive both information on peers’
past choices and the end–of–phase summary does not hinder our ability to
independently study the effect of each. Indeed, choices in the first phase
were unaffected by the summary; meanwhile, due to the alternating scheme

6This game is essentially a 4-players Battle of the Sexes (BoS) game, but with incomplete
information (the base values of other players are unknown). See Banks and Calvert (1992)
for a version of the 2-player BoS with incomplete information.
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previously described, half of groups obtained no information on peers’ past
choices until the end of the first phase.

See Figure 8 in Appendix B.2 for a screenshot of this.

3.1 Alternative treatments

In order to unveil the mechanism by which sunspot shocks can emerge as
coordination devices, we designed and implemented three variations of the
BASE design.

1. Unbalanced network (UNB): local information was allowed to flow
according to the richer, and unbalanced, network shown in Figure 2b

2. Aggregate information (AGG): participants did not receive infor-
mation from the network, and were instead informed of the number of
players in their group selecting RED in the previous period.

3. No hint (NOH): same as the base treatment, except the end-of-phase
summaries did not contain the two statements about what average earn-
ings would have been if everyone had played the sunspot throughout the
phase.

Notice that treatment NOH provides subjects with strictly less informa-
tion than BASE, UNB with strictly more (see Figure 3, left, where each
arrow represents an increase of information available to participants). In par-
ticular, the literature on learning over social networks, both with fully rational
agents (Gale and Kariv, 2003) and under limited rationality (Golub and Jack-
son, 2008), shows that more connections lead to faster convergence. Strictly
speaking, treatment AGG is not directly comparable with any other treat-
ment, since in comparison with BASE it brings a tradeoff between aggregate
and local information (whereby the former does not allow for analysis of the
behavior of any specific neighbor over time). The fact, however, that payoffs
depend on the choices of all peers makes the available information set in AGG
richer for the purpose of coordination.

Note also that information available to subjects in the experiment takes
two very different forms. That concerning other players’ actions (which is
manipulated in the UNB and AGG treatments) does not involve the sunspot
signal, and hence we refer to it as generic information. On the other hand, the
“hint” provided at the end of phases mentions the sunspot signal, and therefore
the possibility to coordinate by exploiting it. Hence, we refer to it as explicit
information. The difference is summarized in Figure 3, right. Our experiment
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Figure 3: Schema of experimental treatments
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employed a between-subjects design; in each treatment, we released generic
information every other phase, as described for the BASE treatment. One
nice implication of this is that half of all subjects played the first phase with
no information, allowing us to pool their results in some of the analysis below.

4 Results

We ran the experiments between February 21 and February 28, 2017 in the
“Columbia Experimental Laboratory in the Social Sciences” (CELSS). 124
subjects, recruited via ORSEE (Greiner, 2015), participated in six sessions,
each with between 16 and 24 participants. We excluded one group of four
subjects because one participant left the experiment before its conclusion: our
analysis is hence based on 30 groups of four subjects each, observed over 80
rounds, for a total of 9600 observations. 36 subjects played design BASE, 40
subjects played design UNB, 24 played design AGG and 20 played design
NOH. Average payment (excluding the show-up fee) was $14.38: $ 15.78 for
BASE, $ 13.20 for UNB, $ 14.50 for AGG and $ 14.05 for NOH.

We begin with a look at the general evidence of coordination. Figure 4
(left) shows a slight preference for BLUE overall (p = 0.000 from a binomial
test), but this preference weakens after the first phase. Figure 4 (right) shows
that during the first phase the distribution of choices inside groups is qualita-
tively analogous to the expected one had players made their decision randomly
(or according to their base signals, which were independently drawn). Coor-
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dination is very limited, and the most frequently observed outcome is two
participants playing BLUE and two playing RED. In subsequent phases coor-
dination increases, and this configuration becomes the least frequent.

4.1 Evidence of sunspot relevance

In principle, coordination could be reached by other means than via the
sunspot: for instance, always playing RED would seem like a simpler sym-
metric strategy to guarantee perfect coordination. Hence, we now specifically
check whether the color of the sunspot signal has any effect.

Figure 5 (left) shows that participants’ choices are uncorrelated with the
sunspot signal in the very first rounds (the probability of playing the sunspot
being 0.5), but the correlation quickly increases and reaches 0.9 in the last
rounds of play. In particular, adoption of the sunspot seems to get a strong
boost in the transition to the second phase: we later analyze in detail the
determinants of this shift. Figure 5 (right) shows the other side of the coin:
the decreasing importance, from phase to phase, of the individual base value.
For instance, having a base value of $5 for RED results in playing RED 86.49
% of the time in phase 1, and only 60.7 % of the time in phase 4. Furthermore,
in the last phase, when convergence was massive, no group played either BLUE
or RED more than 76% of times; for comparison, in all groups but four the
sunspot was being played more than 76% of the time.

Figure 4: Frequency of RED
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Note: Frequency of RED at the individual (left) and group (right) level. The dashed line

denotes the expected distribution assuming players randomly selected each of the two

assets with equal probability 1
2 .

Next, in order to pinpoint the specific determinants of the individual deci-
sion, we analyze the BASE treatment. We define rsunst = 1 if the sunspot
signal was RED at round t, 0 if it was BLUE; and redi,t = 1 if participant i

15



Figure 5: Influence of base value and sunspot signal
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Note: Left: correlation between sunspot and chosen color, calculated for each round of

play. Right: frequency of RED as a function of its base value.

played RED at round t, 0 if blue. Finally, let rbasei,t be the base value for
the RED asset for participant i at period t (recall that the base value for the
BLUE asset is just 5 − rbasei,t). We quantify the main determinants of the
individual decision by estimating the following equation:

redi,t = β0 + β1rsunst + β2rbasei,t + βτ t+ εi,t (8)

where t, the round of play, controls for a time trend.

Table 1: Main determinants of playing RED

(1) (2) (3)

rsuns 0.816∗∗∗ 0.817∗∗∗ 0.807∗∗∗

(0.031) (0.031) (0.058)
rbase 0.192∗∗∗ 0.189∗∗∗ 0.162∗∗∗

(0.021) (0.021) (0.037)
red 1 0.009 0.096∗

(0.032) (0.056)
neigh 1 0.010

(0.044)
t 0.001 0.001 0.001

(0.001) (0.001) (0.001)

Observations 2,880 2,844 1,104

Note: Marginal effects from probit estimation with clustered standard errors at the group

level. Dependent variable: redi,t. ***p< 0.01, **p< 0.05, *p< 0.10.
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Table 1 shows results from estimating equation 8 with probit,7 also con-
trolling for own (redi,t−1) and own neighbor’s (neighi,t−1) past choices, where
applicable.8 It is worth emphasizing that in columns (2) and (3), the same
variable (“red”) appears both as dependent variable and, lagged, as regressor.
The interpretation of the lagged dependent variable is non-trivial;9 however,
typical panel data models (Arellano and Bond, 1991) are not appropriate to
our case of a Boolean variable and a relatively large number of periods (as
compared to the number of observations). In any case, this problem does not
affect the crucial regressors for our analysis – “rsuns” and “rbase” – because
these variables are randomly drawn round by round, uncorrelated with past
realizations and choices.

The preference for playing the asset with the highest base value is strongly
significant, but an overwhelming role is played by the value of the sunspot,
leading us to confirm [HYPOTHESIS 1]:

Result 4. The sunspot signal has a significant and substantial in-
fluence on individual choices.

Next, in order to better understand the decision to follow the sunspot,
we create a new dependent variable encoding whether the sunspot signal was
followed or not:

followi,t =

{
1 if redi,t = rsunst

0 otherwise
.

Moreover, we transform rbasei,t into a new variable representing the base
value for the asset corresponding to the sunspot signal :

sbasei,t =

{
rbasei,t if rsunst = 1

5− rbasei,t otherwise
.

Notice that sbasei,t, just like rbasei,t, takes values in the set {0, 1, 2, 3, 4, 5},
and has expected mean 2.5. A value of 3 or more means that the sunspot signal

7All regressions in this study were also estimated via OLS, including by considering
individual and group fixed effects, in all cases without qualitatively affecting the results (if
anything, OLS resulted in more significant coefficients).

8We consider a “neighbor” the subject whose action is observed by i; for instance, in
Figure 2a, B is a neighbor of A.

9Nickell (1981) shows why introducing fixed effects would still result in a biased coeffi-
cient.
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and the base value are aligned (e.g. sbasei,t = 5 if the sunspot is RED and the
base value for RED is 5, or the sunspot is BLUE and the base value for BLUE
is 5); a value of 2 or less implies a tension between following the sunspot and
playing the asset with the largest base value.

We then estimate the analog of equation (8) looking at the choice to play
the sunspot rather than to play RED:

followi,t = β0 + β1rsunst + β2sbasei,t + εi,t. (9)

We still include rsunst in order to control for any idiosyncratic preference for
following the sunspot when RED (we saw in Figure 4 that the two assets are
not perceived in a perfectly symmetric way).

Table 2: Main determinants of choice

(1) (2) (3) (4) (5)

rsuns 0.009 0.013∗ 0.010 0.014∗∗∗ 0.0001
(0.008) (0.007) (0.008) (0.005) (0.010)

sbase 0.077∗∗∗ 0.070∗∗∗ 0.070∗∗∗ 0.060∗∗∗ 0.047∗∗∗

(0.013) (0.014) (0.014) (0.012) (0.014)
follow 1 0.220∗∗∗ 0.210∗∗∗

(0.036) (0.077)
fneigh 1 0.001

(0.016)
t 0.003∗∗∗ 0.005∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.001) (0.001) (0.001) (0.001)
t2 −0.00003∗∗∗

(0.00001)

Observations 2,880 2,880 2,880 2,844 1,104

Note: Marginal effects from probit estimation with clustered standard errors at the group

level. Dependent variable: followi,t. ***p< 0.01, **p< 0.05, *p< 0.10.

Table 2 provides results from equation (9), augmented with various controls
(fneigh 1, analogous to neigh 1, denotes whether the neighbor followed the
sunspot in the previous period). The coefficient on sbase is significant in
every model: subjects again tend to follow the sunspot more when it has a
higher base value, be it red or blue. Enriching the minimal model (column
(1)) by controlling for the round of play and for its second power (given the
curvature which clearly emerges from Figure 5), we see that subjects follow
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the sunspot more over time (positive coefficient on t) but the effect decreases
over time (negative coefficient on t2). This persistence in following the sunspot
is also captured by the positive coefficient on followi,t−1. All of the previous
coefficients are significant.

The above analysis provides a conclusion concerning [HYPOTHESIS 2]:

Result 5. In the baseline treatment, propensity to follow the sunspot
signal increases over time.

The positive and strongly significant coefficient for one’s lagged action
(followi,t−1) in columns (4) and (5) suggests a strong persistence in the deci-
sion to follow the sunspot. However, we do not find significant evidence that
subjects imitate their neighbor’s behavior in the previous period (coefficient on
fneighi,t−1 in column (5)). It is important to note that fneighi,t−1 is strongly
correlated with followi,t−1. Hence, the latter’s coefficient does not have an
obvious interpretation. We defer the analysis of the effect of local information
to later sections.

The coefficient on rsunst is always positive, and significant in some of
our models. This suggests that the sunspot is more salient when it is RED
(possibly as a consequence of BLUE being considered a “default” choice – see
Figure 436). While there is no obvious explanation for this preference, it can
be argued that the fact that the coefficient is occasionally significant supports
the decision to control for it.

4.2 Comparison of treatments

In this section, we compare results across different treatments. Hence, we
expand the sample to include data from all treatments, and we include a
dummy variable for each treatment, with the BASE treatment as the default:

followi,t = β0+β1rsunst + β2sbasei,t

+βUNBUNB + βAGGAGG+ βNOHNOH

+β4info starti + βτ t+ βτ2t
2 + εi,t (10)

where info starti denotes whether in the alternating scheme subject i was
among those who received information in the first phase. See Table 3 for the
results. Again, the coefficient on rsuns is positive and significant: all else
equal, subjects follow the sunspot more often when it is RED. According with
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the analysis in the previous section, information on peers’ past choices nega-
tively affects the propensity to follow the sunspot (see coefficient “info start i”
in columns (3)). When looking at coefficients for treatment dummies, the dis-
tinction, made in Section 3, between generic and explicit information becomes
crucial. Increasing the availability of generic information (treatments UNB
and AGG) results in the sunspot being played less. However, decreasing
the availability of this sunspot-specific information (treatment NOH) also
decreases the propensity to follow the sunspot signal. As a result, every treat-
ment dummy has a negative coefficient10 – subjects follow the sunspot less
often in each of these treatments than in the BASE treatment.

Both the unbalanced and the aggregate information treatments provide
more generic information than the BASE treatment. The fact that increas-
ing communication opportunities decreases the ability to coordinate on the
sunspot signal could seem surprising. But it in fact makes sense. With more
generic information, subjects don’t rely on a separate coordination device, i.e.,
the sunspot, as much. Aggregate or network information about the sunspot
asset being chosen does not per se provide proof that other players are pur-
posely following the sunspot; vice-versa, such information can crowd out at-
tention devoted to the sunspot. On the other hand, the sunspot nudge has a
clear interpretation. In the case of the NOH treatment, we intentionally did
not give the subjects information about the sunspot itself. As a result, they
are less likely to follow it. We interpret this as strong evidence reinforcing
Duffy and Fisher (2005)’s assertion that the semantics of the sunspot matters.

4.3 More on the effect of information

Next, we investigate further, and more directly, the causal effect of generic
information on the decision to follow the sunspot.

Recall that information was provided according to an alternating scheme
(in phases I and III for some groups, II and IV for others). Hence, we can
more carefully separate out the subjects that received information from those
that did not. In particular, here, we restrict to the first phase, and run a
between-subjects comparison, on four samples of participants:

B) those who receive local information according to the balanced network
(reference category) – sourced from treatments BASE and NOH,

U) those who receive local information according to the unbalanced network
– sourced from treatment UNB,

10NOH in the first phase is an exception (column (3)), but at that time the treatment
was still identical to BASE.
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Table 3: Cross-treatments comparison

All All (t2) Ph. 1 Ph. 2 Ph. 3 Ph. 4

(1) (2) (3) (4) (5) (6)

rsuns 0.015∗∗ 0.017∗∗∗ 0.041 0.008 0.006 0.016∗

(0.007) (0.007) (0.026) (0.009) (0.008) (0.009)
sbase 0.101∗∗∗ 0.102∗∗∗ 0.226∗∗∗ 0.098∗∗∗ 0.060∗∗∗ 0.055∗∗∗

(0.012) (0.012) (0.022) (0.011) (0.011) (0.012)
UNB −0.082∗ −0.083∗ −0.142∗∗ −0.075 −0.054 −0.074

(0.046) (0.046) (0.059) (0.052) (0.048) (0.054)
AGG −0.078∗ −0.078∗ −0.212∗∗∗ −0.080∗ −0.043 −0.027

(0.046) (0.047) (0.069) (0.044) (0.051) (0.075)
NOH −0.060 −0.058 0.098 −0.078 −0.093 −0.100

(0.063) (0.063) (0.068) (0.056) (0.076) (0.076)
info start −0.049 −0.049 −0.093∗∗ −0.053∗ −0.010 −0.057

(0.033) (0.033) (0.038) (0.030) (0.030) (0.044)
t 0.004∗∗∗ 0.009∗∗∗ −0.005 −0.003 −0.015 0.003

(0.0004) (0.001) (0.007) (0.010) (0.015) (0.018)
t2 −0.0001∗∗∗ 0.0004 0.0001 0.0001 −0.00002

(0.00001) (0.0003) (0.0002) (0.0002) (0.0001)

Observations 9,600 9,600 2,400 2,400 2,400 2,400

Note: Marginal effects from probit estimation with clustered standard errors at the group

level. Dependent variable: followi,t. See Table 9 in Appendix E for interaction effects.

***p< 0.01, **p< 0.05, *p< 0.10.

A) those who receive aggregate information – sourced from treatment AGG,

N) groups in a “no information” phase (recall Section 3), who receive neither
local nor aggregated information – sourced from all four treatments.

Restricting to the first phase guarantees both that NOH is indistinguish-
able from BASE (since the hint was provided at the end of each phase), and
that groups in sample N) were not exposed to any local or aggregate informa-
tion.

Columns 1 to 3 of Table 4 provide the results from estimating the following
equation:

followi,t = β0 + β2sbasei,t + γUUi + γAAi + γNNi + βτ t+ εi,t. (11)

(analogous to equation (9)) on (parts of) phase I. Columns 4 to 6 reproduce
the same model using the (round-specific) payoffs as dependent variable, i.e.,
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estimating the determinants of welfare. We do this because, given that the
sunspot does not directly affect fundamentals, payoffs could in principle be un-
related to the decision to follow the sunspot. The pattern identified in Section
4.2 is clearly confirmed: additional information about the actions of group-
mates causes a significant decrease in the willingness to follow the sunspot
signal (coefficients γA and γU), which results in a (albeit non-significant) de-
crease of average payoffs. More ambiguous results emerge from the analysis of
group N), whose members seem to play the sunspot slightly less but initially
gain comparatively high payoffs (higher base values are relatively important
at the beginning, when coordination is very low). Summing up, Table 4 con-
firms the results in the previous section about the effect of generic and explicit
information. We can summarize such results in the following, related to [HY-
POTHESIS 3]:

Result 6. Providing generic information about peers’ past choices
is detrimental to the decision to follow the sunspot signal and,
hence, to coordination.

4.4 Effect of sunspot specific nudging

Figure 6: Distribution of last round of non-sunspot play
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Note: left: data from all treatments except NOH; right: data from NOH. Not shown:

subjects who always played the sunspot (11 in the left sample, 5 in the right sample).

Figure 6 presents suggestive evidence of the influence that the end of phase
has on participants’ actions, identified by the concentration of non-sunspot
plays just before, followed by a sharp decrease. This phenomenon is driven by
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Table 4: Between-subject results on phase I

follow Payoffs
t=1-20 t=1-10 t=11-20 t=1-20 t=1-10 t=11-20

(1) (2) (3) (4) (5) (6)

rsuns 0.039 0.039 0.014 −1.231∗∗∗ −0.175 −2.290∗∗∗

(0.029) (0.029) (0.032) (0.195) (0.279) (0.278)
sbase 0.222∗∗∗ 0.222∗∗∗ 0.216∗∗∗ 0.713∗∗∗ 0.732∗∗∗ 0.631∗∗∗

(0.022) (0.022) (0.023) (0.057) (0.080) (0.079)
U) −0.212∗∗∗ −0.212∗∗∗ −0.207∗∗ −0.414 −0.127 −0.636

(0.070) (0.070) (0.082) (0.360) (0.499) (0.506)
A) −0.227∗∗∗ −0.227∗∗∗ −0.270∗∗∗ −0.502 −0.283 −1.025∗∗

(0.085) (0.085) (0.084) (0.360) (0.505) (0.506)
N) −0.034 −0.034 −0.019 0.085 0.730∗∗ −0.500

(0.071) (0.071) (0.078) (0.240) (0.332) (0.338)
t 0.003 0.003 0.008 0.013 0.068 −0.217∗∗∗

(0.002) (0.002) (0.005) (0.016) (0.047) (0.046)

Observations 2,400 2,400 1,200 2,400 1,200 1,200
R2 0.104 0.087 0.159

Note: Dependent variable: followi,t for columns 1 to 3 (probit marginal effects), payoffs

for columns 4 to 6 (OLS coefficient estimates). Standard errors are clustered at the group

level. Each column provides the result of the estimation on a subset of periods of Phase I.

***p< 0.01, **p< 0.05, *p< 0.10.

subjects who start following the sunspot from the first round of the following
phase, and before that, seem to play it by mere chance. Since the probability
of playing the sunspot by chance is 1

2
, the number of consecutive chance non-

sunspot plays is distributed as 2−n.
We now further examine the effect of our end-of-phase hints or sunspot

nudges, motivated by Duffy and Fisher (2005), who state that inducing a
“common understanding of the meaning of the sunspot realization” can influ-
ence the propensity to follow the sunspot.

Recall that treatment NOH is perfectly comparable with treatment BASE
except for the absence of two messages, on the screen at the end of each phase,
reporting what (1) own gains and (2) average group gains, respectively, would
have been, had everybody in the group followed the sunspot signal at every
round of the phase:
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hint
(1)
i = 5× 3 +

T+20∑
t=T+1

sbasei,t hint
(2)
i = 5× 3 +

1

4

T+20∑
t=T+1

∑
j∈G(i)

sbasej,t

where the first term of each, 5 × 3, is the outcome of perfect coordination,
T ∈ {0, 20, 40, 60}, and G(i) denotes the group of i.

It is important to recognize that these hints provided no actual informa-
tion which could be used for future play: they can hence be interpreted as a
pure nudging mechanism. hint(1) could have been entirely reconstructed by
subjects based on information they already possessed (their base values and
the value of the sunspot at each round). hint(2) in principle allowed them to
reconstruct the average of the 60 base values of other group members – which
were unknown to the subject. But in addition to the complexity of the oper-
ation – which subjects had little time to execute – its result would have been
of little importance to them: its average was strongly concentrated around 2.5
(the average base value), and most importantly it was unrelated to future base
values (which were to be independently drawn).

In order to specifically analyze the effect of nudging, we construct and esti-
mate a difference-in-differences model, interacting the variable post, indicating
rounds from 21 onwards (i.e., when subjects in BASE have been nudged at
least once) with the NOH treatment, including control variables rsunst and
sbasei,t:

followi,t = β0+β1rsunst + β2sbasei,t + β3NOHi + β4postt + β5NOHi × postt
+β6info starti + εi,t (12)

The results are in Table 5. The positive and highly significant coefficient
for post indicates that, as already observed in Figure 5 (left), the sunspot
is played more frequently as the game progresses. The differential effect of
transitioning to the second phase is captured by the negative and significant
sign of the interaction coefficient (“NOH × post”). It proves that nudging has
an important effect on the decision to follow the sunspot, and consequently
on payoffs. The effect is sizeable: given that synchronization increases overall
from around 50% to around 90% (see Figure 5, left), the coefficient of 17.9%
for “NOH × post” means that the message is responsible for more than one
third of this increase – and for an increase in average payoffs of at least $ 1.62.
In light of this, we can now better assert the importance of the hints:
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Table 5: Difference-in-differences results for BASE and NOH.

follow Payoffs
t=1-40 t=1-60 t=1-80 t=1-40 t=1-60 t=1-80

(1) (2) (3) (4) (5) (6)

rsuns 0.006 −0.008 0.002 −0.856∗∗∗ −0.877∗∗∗ −0.714∗∗∗

(0.010) (0.008) (0.006) (0.188) (0.145) (0.123)
sbase 0.127∗∗∗ 0.096∗∗∗ 0.084∗∗∗ 1.450∗∗∗ 1.488∗∗∗ 1.455∗∗∗

(0.017) (0.014) (0.013) (0.053) (0.042) (0.036)
info start −0.035 0.007 0.018 −0.783∗∗∗ 0.004 0.324∗∗∗

(0.040) (0.035) (0.032) (0.184) (0.146) (0.124)
NOH 0.053 0.034 0.026 0.506∗ 0.306 0.189

(0.040) (0.032) (0.030) (0.266) (0.255) (0.250)
post 0.191∗∗∗ 0.220∗∗∗ 0.251∗∗∗ 2.165∗∗∗ 2.692∗∗∗ 2.934∗∗∗

(0.027) (0.038) (0.048) (0.222) (0.184) (0.171)
NOH × post −0.179∗∗∗ −0.158∗∗∗ −0.151∗∗∗ −1.723∗∗∗ −1.625∗∗∗ −1.895∗∗∗

(0.047) (0.059) (0.054) (0.376) (0.311) (0.287)

Observations 2,240 3,360 4,480 2,240 3,360 4,480
R2 0.316 0.346 0.340

Note: Dependent variable: decision to follow (followi,t) for columns 1 to 3 (probit

marginal effects), payoffs for columns 4 to 6 (OLS coefficient estimates). Standard errors

are clustered at the group level. Each column provides the result of the estimation on a

subset of phases. Treatments UNB and AGG are excluded. ***p< 0.01, **p< 0.05,

*p< 0.10.
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Result 7. Sunspot specific nudging results in more subjects starting
to follow the sunspot, and hence in a positive welfare effect.

This result once more emphasizes the difference between generic informa-
tion on other players’ actions – which we have seen, in Result 3, actually
hinders coordination – and sunspot specific hints. This is consistent with Fig-
ure 5, left, where a main shift from a low to a high level of coordination seems
to happen from the first to the second phase. Indeed, adoption of the sunspot
seems to increase in the very first couple of rounds, but then it lags at a value
of around 60% to 70% until round 20.

By focusing our analysis on the NOH design (see Table 10 in Appendix E),
we find that synchronization on the sunspot is still significant, and significantly
increasing over time, although at a slower pace than in the BASE design
(Table 2).

The sunspot nudge could affect players’ actions in two different ways.11

On one hand, it could function as a shared focal point (Mehta et al., 1994;
Bacharach and Bernasconi, 1997) to solve the problem of strategic uncertainty
(also discriminating between α = −1 and α = 1, which are perfectly symmet-
ric, and hence indistinguishable in our model). On the other hand, it could
simply reveal that the sunspot strategy performed well in the past, something
which a large empirical literature shows is important in investment decisions
(Ippolito, 1989; Chevalier and Ellison, 1997; Karceski, 2002; Del Guercio and
Tkac, 2002). The latter channel can be expected to be less relevant in the
first rounds (when the sunspot strategy was less played, and hence less effec-
tive), including in the transition from the first to the second phase. Cleanly
disentangling the two channels is outside of the scope of our experiment.

4.5 Network analysis

Next we examine more in depth the influence of the network structure on the
actions of partipants. We focus on the UNB design depicted in Figure 2b.
Specifically, borrowing from the social network literature (Hojman and Szeidl,
2008), we refer to nodes A and C, who each have two incoming and two outgo-
ing connections, as central nodes, and to nodes B and D as peripheral nodes.
Each central node has a central and a peripheral neighbor; each peripheral
node only has a central neighbor.

In examining the BASE treatment, in equation (9), we included a dummy
variable for whether the neighbor played the sunspot in the previous period,

11We thank an anonymous referee for this observation.
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and we saw in Table 2, column (5), that it was not significant. The UNB
treatment allows us to improve our analysis in two directions. First, we can
check whether central nodes exhibit different behavior than peripheral nodes.
Second, we can compare the importance attributed to central versus peripheral
nodes.

Table 6: Analysis of network position

By network position Restricted to central

(1) (2) (3)

sunspot 0.027∗ 0.004 −0.001
(0.014) (0.025) (0.028)

v suns 0.132∗∗∗ 0.077∗∗ 0.075∗∗

(0.036) (0.034) (0.032)
central 0.109

(0.080)
follow 1 0.218∗∗

(0.087)
info1 follow 1 0.039 0.029

(0.049) (0.037)
info2 follow 1 0.090∗ 0.100∗∗

(0.054) (0.042)
Period 0.010∗∗∗ 0.008∗ 0.005

(0.002) (0.004) (0.003)
Period2 −0.0001∗∗∗ −0.00005 −0.00003

(0.00001) (0.00004) (0.00003)
info start −0.092 −0.029 −0.029

(0.101) (0.099) (0.070)

Observations 960 456 456

Note: Marginal effects from probit estimation with clustered standard errors at the group

level. Dependent variable: decision to follow the sunspot. ***p< 0.01, **p< 0.05,

*p< 0.10.

We answer the first question by adding a dummy variable equal to 1 if a
node is central and 0 otherwise in equation (9). The result is shown in column
(1) of Table 6: the coefficient for central is positive but not significant.

As to the second question, to answer it we need to restrict our analysis
to those nodes which have two neighbors – that is, to central nodes. We can
then discriminate between information coming from the peripheral node (e.g.
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A receiving information from B in Figure 2b) and that coming from the other
central node (e.g. A receiving information from C). The results are presented
in Table 6 column (2). Similarly to the balanced network, subjects don’t seem
to imitate their peripheral neighbor. But, they do pay attention to their central
neighbor: the coefficient on fneighCi,t−1 is positive and statistically significant.
Two interpretations of this result are possible. The first is that, as observed
by Corazzini et al. (2012), subjects fail to account for repeated information –
i.e., for the fact that their “second” neighbor in turn receives information from
themselves. A complementary explanation is that, as observed by Battiston
and Stanca (2015), subjects tend to attribute more importance to neighbors
who are themselves better connected in the network. Whatever the case,
central nodes seem to play a crucial role in pushing their group towards the
adoption of the sunspot signal as a coordination device.

5 Conclusions

The study of sunspot equilibria has long been a topic of interest for economists.
It then becomes an interesting empirical question to ask whether there is
support for their existence. A limited stream of literature has approached the
issue through experimental studies. Inspired by it, we designed an experiment
in which information flows over a social network. By manipulating the amount
and type of information obtained by subjects, we are able to better analyze
the factors behind the birth of a sunspot equilibrium.

Several aspects of interaction over social networks have been studied exper-
imentally in the literature. In particular, some studies (Farrell, 1988; Cooper
et al., 1992) have looked at coordination games, and at how the availability of
communication devices allows nodes to reach efficient equilibria. Meanwhile,
the literature on opinion formation has studied experimentally network games
in which the only available communication device is the ability to observe
one’s neighbors’ past actions (Corazzini et al., 2012; Battiston and Stanca,
2015). In this paper, we bridge the two streams by analyzing a game of coor-
dination in which imitation can possibly affect choices. We then analyze the
interplay between such local information – obtained from the network – and
the alternative coordination device represented by the sunspot signal.

This is, to the best of our knowledge, the first study showing evidence of
the importance of local interaction in sunspot equilibria. It does so by bridging
the experimental literature on sunspots with the literature on social networks.
Our design allows us to manipulate the amount and type of messages that
subjects receive, and hence determine their importance in the realization of
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sunspot equilibria.
Our results confirm that the sunspot signal is an effective coordination de-

vice, and that subjects spontaneously rely on it increasingly over time. How-
ever, we also find out that generic information on other players’ actions can
crowd out the sunspot signal, reducing the propensity of subjects to rely on
it, and hence reducing payoffs. Vice-versa, messages which explicitly refer to
the sunspot significantly increase the salience of the sunspot, and thus en-
hance coordination. We also find that the way in which people are connected
matters for their ability to exploit sunspot equilibria: in particular, more con-
nected subjects emerge as “endogenous leaders” (in the spirit of Andreoni
et al., 2017), and play a stronger role in driving the adoption of the sunspot
signal as a coordination device.

This study opens new avenues for future research. The importance of
nodes’ centrality in explaining coordination is an insight with important impli-
cations, and calls for a more in depth exploration of how the network topology
influences coordination when individuals can observe their neighbors’ behav-
ior. In addition, for simplicity, our study analyzed two perfectly identical
assets, but the determinants of sunspot equilibria in the presence of corre-
lated base values, resulting in asymmetric and/or more than two assets, and
their interaction with the network structure, are also important issues left to
investigate.
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A Theoretical appendix

A.1 The continuous model

In what follows, we show that the possibility of non-trivial TNE equilibria
showcased in Section 2 does not arise, whatever the choice of parameters, if γ
follows a continuous uniform distribution over Γ = [−γM , γM ].

We first observe that the analysis of α ∈ [−1, α]∪ [α, 1] does not rely on Γ
being discrete, and it remains valid. That is, the only Nash equilibria in these
ranges occur at α = −1 and α = 1.

For what concerns threshold strategies, the value of α induced by a given
γ̄ is αBR = αγ̄ = P{γ > γ̄},= 1 − P{γ < γ̄}. To pin down αγ̄, we exploit
the fact that γ is uniformly distributed, and hence its CDF is, for x ∈ [a, b],
F (x) = x−a

b−a . In our case a = −γM and b = γM , hence αγ̄ = 2(1− F (γ̄))− 1 =

− γ̄+γM
γM
− 1 = − γ̄

γM
.

One last intermediate result will help us characterize αγ̄:

Lemma 5. For α ∈ [α, α], if γ̄ is the threshold for the best reply to beliefs α,
then αγ̄ − α is strictly increasing in α, and it is 0 for α = 0.

Proof. By definition,

αγ̄ = − γ̄

γM
=
k(N − 1)α

γM
.

Hence, αγ̄ − α = k(N−1)α
γM

− α,which is seen to be equal to zero at α = 1
2
. Its

gradient with respect to α is k(N−1)
γM

− 1, which is guaranteed to be positive by

equation (3).

Hence, α = 0 is the only TNE, leading us to formulate the following result.

Result 8. The coordination game with a sunspot signal, when base values
follow a symmetric, uniform, continuous distribution and the benefits from co-
ordination dominate differences in base values, admits exactly three symmetric
Nash equilibria: always follow the sunspot, always deviate from the sunspot,
and always play the asset with the highest base value.

Proof. We already know that when equation (3) is satisfied, all values of α ∈
{−1, 0, 1} correspond to Nash equilibria. Lemma 3 guarantees that there are
no other Nash equilibria in (−1, α] ∪ [α, 1); Lemma 5 guarantees that there
are no other Nash equilibria (TNE) in (α, α).
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Figure 7: Comparison of α and αγ̄ in the continuous case
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Figure 7 plots αγ̄ against α for some example parameters.
Note: γM = 5, N = 4, k as specified.

We conclude this analysis by showing that however Γ being discrete is not
a necessary condition for the existence of non-trivial equilibria.

Result 9. The coordination game with a sunspot signal, when base values
follow a generic continuous distribution, can admit any number of symmetric
equilibria.

Proof. Equation (6) – and hence the determination of γ̄ from a given α – is
unchanged from the uniform case. For its part, Result 2 does not depend
on the actual numerosity of Γ, but only on the CDF for α – that is, the
correspondence γh and αh.

Now consider the discrete game defined by any combination of values of
k, N , γM and H: let FΓ be the resulting CDF, and FU the CDF for the
uniform distribution over [−γM , γM ]. The CDF Fλ(γ) = λFΓ + (1 − λ)FU
defines a probability distribution that, for λ → 1 is arbitrarily close to that
of the discrete case, while still assigning a strictly positive probability to any
interval in [−γM , γM ].

In other terms, the existence of non-trivial TNEs does depend on the prob-
ability distribution of γ being heterogeneously distributed over [−γM , γM ], but
it needs not being concentrated in a finite number of points.
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A.2 Proofs

Proof of Lemma 4. We can write the expected payoff for any equilibrium strat-
egy γ as

π̄γ = r̄γ︸︷︷︸
E[rij ]

+ c̄γ︸︷︷︸
kE[Niĵ ]

with r̄γ decreasing, and c̄γ increasing, as |γ| increases. Moreover, given any
two equilibrium strategies γ and γ′, let us denote as π̄γ|γ′ = r̄γ|γ′ + c̄γ|γ′ the
expected payoff for a player who plays strategy γ while all other players are
playing strategy γ′. Given that the expected base value only depends on one’s
strategy, r̄γ|γ′ = r̄γ.

Now let us consider an equilibrium strategy γh with h ≥ H
2

. The expected
complementarity term for strategy γh is given by the probability of any two
players playing the same strategy, which in turn depends on the expected share
of players choosing each strategy:

c̄γh =k(N − 1)

((
1 + αh

2

)2

+

(
1− 1 + αh

2

)2
)

=k(N − 1)

((
1 + αh

2

)2

+

(
1− αh

2

)2
)

=k(N − 1)

(
1− 2

h

H
+ 2

h2

H2

)
.

Similarly,

c̄γh|γh+1
=k(N − 1)

(
1 + αh

2

1 + αh+1

2
+

(
1− 1 + αh

2

)(
1− 1 + αh+1

2

))
=k(N − 1)

(
1 + αh

2

1 + αh+1

2
+

1− αh
2

1− αh+1

2

)
=k(N − 1)

(
h(h+ 1)

H2
+

(
1− h

H

)(
1− h+ 1

H

))
=k(N − 1)

(
1− 2h+ 1

H
+

2h2 + 2h

H2

)
.

Hence, we can take the difference between the expected values of the two
complementarity terms:

c̄γh|γh+1
− c̄γh = k(N − 1)

2h−H
H2
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which is positive because of the initial assumption h ≥ H
2

. Moreover, from
γh+1 being a TNE, and hence a best reply to itself, it follows that

π̄γh+1
≥ π̄γh|γh+1

=⇒ r̄γh+1
+ c̄γh+1

≥ r̄γh|γh+1︸ ︷︷ ︸
=r̄γh

+ c̄γh|γh+1︸ ︷︷ ︸
≥cγh

=⇒ π̄γh+1
≥ π̄γh .

By replacing h with H − h and comparing γh to γh−1 in the steps above,
the result is also proven for the symmetric case h ≤ H

2
.

It can be observed that while this proof results in a weak dominance only, it
becomes strict if either of the two following conditions holds: (i) γh+1 is a strict
Nash equilibrium; (ii) h 6= H

2
. In other words, the only possible case in which

the dominance is weak is for h = H
2

and k such that equation (7) is binding
(with γ′h, the best reply to γh, coinciding with γh+1) – which means that weak
dominance can happen only when γh+1 and γh−1 are the only non-trivial TNE.

B Additional material

B.1 Experimental instructions

Below are the instructions for the BASE and NOH designs.

Welcome, and thanks for your participation in this experiment. During
the experiment, talking or communicating with other participants is not
allowed in any way. If you have a question at any time, please raise your
hand and one of the experimenters will come to answer your question.

General instructions

• At the beginning of the experiment, you will be randomly assigned
to a group of 4 people: during the entire experiment, you will in-
teract only with the other three members of your group, and the
composition of your group will never be revealed.

• All members in your group are subject to the same rules, and your
earnings are not influenced in any way by members of other groups.

Structure of the task
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• The experiment will take place in four phases: each phase is in turn
composed of 20 rounds.

• In each round, you will be asked to perform a choice between two
“assets”: RED and BLUE.

• Before each round, the computer will assign a base value to each
of the assets, RED and BLUE, by randomly subdividing a sum of
$ 5.00 between them. Each asset yields a payoff equal to its base
value, plus $5.00 for each other member in your group (excluding
you) who chooses the same asset.

• These values will always be summarized on the screen.

Example
If, in a given round, the computer assigned to you $ 4.00 as the base value
for the RED asset and $ 1.00 for the BLUE asset, you will see the following
sentence written on the screen:

In this round,
the RED asset yields $4.00 plus $5.00 for every other participant
in your group who chooses RED;
the BLUE asset yields $1.00 plus $5.00 for every other partici-
pant in your group who chooses BLUE.
See the following tables:

Other RED players Payoff from RED ($)
0 $4.00
1 $9.00
2 $14.00
3 $19.00

Other BLUE players Payoff from BLUE ($)
0 $1.00
1 $6.00
2 $11.00
3 $16.00

Information
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• During each round, all screens will be colored the same color, either
RED or BLUE, randomly selected in front of all participants. This
color does not enter payoff computations.

• Starting from the second round, you might (depending on your group
and on the phase of play) also receive information about the decision
of another member of your group in the previous round.

In this case, each member in your group gets to observe the choice of
a different member, as in the following figure, where the arrow from
B to A means for instance that A gets to know B’s previous choice:

A

B

C

D

For your convenience, all information revealed to you at any round will
also be provided at later rounds of the same phase.

In addition, at the end of each phase you will be provided with a summary
of the phase, including your payoffs.

Earnings

• In each round of the game, a payoff is determined, as explained
above.

• At the end of the session, one round will be randomly drawn by the
computer. Your earnings from this experiment will correspond to
your payoff in this round.

• To these earnings, we will add the $5 show-up fee, which you will
receive in any case.

Instructions for the other designs differed in the second bullet point of “Infor-
mation” (from “Starting from the second round” to the network representa-
tion). It was replaced with the following:

• AGG design:
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Starting from the second round, you might (depending on your group
and on the phase of play) also receive information about the number
of members of your group who chose each asset in the previous round
(in this case, each member in your group receives exactly the same
information), and also your payoff from the previous round.

• UNB design:

Starting from the second round, you might (depending on your group
and on the phase of play) also receive information about the decision
of another member of your group in the previous round.

In this case, each member in your group gets to observe the choice
of a different member, as in one of the two following figures, where
the arrow from B to A means for instance that A gets to know B’s
previous choice:

A

B

C

D

A

B

C

D

Note that each participant always keeps the same position across
rounds.

B.2 Screenshots

C Session design

Within each session, the phases with information and those without informa-
tion were alternated, according to the scheme in Table 7

The specific kind of information depended on the treatment: for instance
in the BASE design it was local information, based on the network in Figure
2a.

The decision to have sets of base values shared amoung pairs of groups –
but vary across pairs of groups – represented a tradeoff between maximizing
comparability in the between-subjects design, and increasing variability of the
base values themselves. Notice that some sessions only had 4 or 5 groups; in
the latter case, one group was actually unpaired.
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Figure 8: End of phase summary
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Table 7: General structure of sessions

Group
1 2 3 4 5 6

Random base values
A B C

Phase Condition
1 Info Info Info
2 Info Info Info
3 Info Info Info
4 Info Info Info
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D Robustness tests

Table 8: Main determinants of choice - OLS estimation

(1) (2) (3) (4) (5)

Constant 0.619∗∗∗ 0.445∗∗∗ 0.381∗∗∗ 0.280∗∗∗ 0.248∗∗∗

(0.014) (0.017) (0.021) (0.020) (0.035)
rsuns 0.009 0.020 0.013 0.020∗ 0.010

(0.013) (0.012) (0.012) (0.012) (0.018)
sbase 0.087∗∗∗ 0.090∗∗∗ 0.090∗∗∗ 0.086∗∗∗ 0.077∗∗∗

(0.004) (0.004) (0.003) (0.003) (0.005)
follow 1 0.254∗∗∗ 0.283∗∗∗

(0.016) (0.026)
fneigh 1 0.006

(0.026)
t 0.004∗∗∗ 0.009∗∗∗ 0.003∗∗∗ 0.004∗∗∗

(0.0003) (0.001) (0.0003) (0.0004)
t2 −0.0001∗∗∗

(0.00001)

Observations 2,880 2,880 2,880 2,844 1,104
R2 0.170 0.235 0.242 0.291 0.324

Note: OLS estimation with clustered standard errors at group level (equivalent of Table

2). Dependent variable: followi,t. ***p< 0.01, **p< 0.05, *p< 0.10.
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E Further results

Figure 9: Convergence to sunspot by treatment
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Table 9: Cross-treatments comparison: interactions

(1) (2) (3)

rsuns 0.010∗ 0.012∗∗ 0.010∗

(0.006) (0.006) (0.006)
sbase 0.098∗∗∗ 0.098∗∗∗ 0.098∗∗∗

(0.010) (0.010) (0.011)
follow 1 0.274∗∗∗ 0.290∗∗∗ 0.279∗∗∗

(0.019) (0.048) (0.048)
t 0.007∗∗∗ 0.007∗∗∗ 0.007∗∗∗

(0.001) (0.001) (0.001)
t2 −0.00005∗∗∗ −0.00005∗∗∗ −0.00005∗∗∗

(0.00001) (0.00001) (0.00001)
info start −0.037 −0.037 −0.039

(0.024) (0.024) (0.024)
UNB −0.024 −0.042∗ −0.016

(0.027) (0.023) (0.020)
AGG −0.083∗∗ −0.046∗∗ −0.068∗∗

(0.040) (0.019) (0.033)
NOH 0.041∗ −0.072∗∗ 0.021

(0.025) (0.033) (0.018)
t × UNB −0.001 −0.001

(0.001) (0.001)
t × AGG 0.001 0.001

(0.001) (0.001)
t × NOH −0.002∗∗∗ −0.002∗∗∗

(0.001) (0.001)
follow 1 × UNB −0.020 −0.013

(0.039) (0.038)
follow 1 × AGG −0.010 −0.022

(0.039) (0.037)
follow 1 × NOH 0.025 0.032

(0.031) (0.030)

Observations 9,480 9,480 9,480

Note: Additional specifications of cross-treatment comparisons (see Table 3). Marginal

effects from probit estimation with clustered standard errors at group level. Dependent

variable: followi,t. ***p< 0.01, **p< 0.05, *p< 0.10.
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Table 10: Analysis of NOH

(1) (2) (3) (4) (5) (6)

rsuns −0.014 −0.008 −0.010 −0.021 −0.003 −0.005
(0.012) (0.014) (0.016) (0.015) (0.014) (0.014)

sbase 0.113∗∗∗ 0.112∗∗∗ 0.107∗∗∗ 0.106∗∗∗ 0.111∗∗∗ 0.112∗∗∗

(0.028) (0.028) (0.024) (0.025) (0.025) (0.025)
follow 1 0.369∗∗∗ 0.324∗∗∗

(0.019) (0.044)
fneigh 1 −0.040

(0.067)
t 0.002∗∗∗ 0.001∗∗∗ 0.001 0.001∗

(0.0004) (0.0002) (0.001) (0.001)
info start 0.096 0.097

(0.065) (0.066)
post 0.086∗∗ 0.038

(0.037) (0.044)

Observations 1,600 1,600 1,580 792 1,600 1,600

Note: Selection of specifications from tables 2 and 5, estimated only on subjects playing

the NOH design. Marginal effects from probit estimation with clustered standard errors

at group level. Dependent variable: followi,t. ***p< 0.01, **p< 0.05, *p< 0.10.
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