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Abstract

We study adversarial information design in a regime-change context. A con-
tinuum of agents simultaneously chooses whether to attack the current regime.
The attack succeeds if and only if the mass of attackers outweighs the regime’s
strength. A designer manipulates information about the regime’s strength to
maintain the status quo. Our optimal information structure exhibits local ob-
fuscation: some agents receive a signal matching the regime’s true strength, and
others receive an elevated signal professing slightly higher strength. This policy
is the unique limit of finite-signal problems. Public signals are strictly subop-
timal, and in some cases where public signals become futile, local obfuscation
guarantees the collapse of agents’ coordination.
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1 Introduction

Many economic problems with strategic complementaries are modeled as regime-
change games where a status quo is overturned if a sufficiently large number of
agents attack it. Examples include speculation against a pegged currency, run against
a bank, and revolution against an authoritarian government.1 In these settings, a cen-
tral element determining the agents’ coordination outcome is the information struc-
ture. Therefore, a regime’s defender will pursue information manipulation to collapse
coordination and preserve the status quo to the largest possible extent. Depending
on contexts, the regime’s tool ranges from monetary policy (Angeletos et al. 2006),
to stress testing (Inostroza and Pavan 2018), and to media outlets capture (Edmond
2013).

In this paper, we study an information design problem in a regime-change context.
The designer can commit to any information policy of his choice. This framework
unveils the fundamental trade-off of information manipulation and depicts the maxi-
mum value achievable in regime-change games. Our work makes two contributions.
First, we characterize a simple optimal information policy in closed form. The char-
acterization provides a benchmark to assess the role of numerous application-specific
constraints in shaping optimal information policies.2 Second, we show that among
possibly multiple policies to attain the unconstrained optimum, this policy is the limit
of the unique solution to bounded-depth problems where only finite levels of agents’
strategic reasoning are up for manipulation. This exercise sheds light on the impact
of realistic constraint, e.g., limitation of agents’ cognitive abilities and complexity of
signals, and proposes a selection criterion for the unconstrained problem.

In our model, an information designer faces a unit mass of agents who simul-
taneously decide whether to coordinate on an attack. Attacking is costly, and each
attacker is rewarded if the status quo is overthrown. The strength of the status quo,
namely the state, is randomly selected from an interval by nature and unknown to the
agents. The status quo persists if and only if the total measure of attackers does not
exceed its state. If the state is above one, it is invincible because the status quo persists
under the attack of all agents; otherwise, it is vincible. The information designer com-
mits to a state-dependent information policy that sends a signal, which can be public

1See Morris and Shin (2003) and Angeletos and Lian (2016) for two survey papers.
2In applications, information manipulation is often subject to various restrictions. For example,

it may be unlawful to release differential information to different audiences. Another well-known
example is that audiences may have the access to other information sources which are out of the reach
of the information designer. See more discussion in section 1.1.
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or private, to each agent. His objective is to maximize the probability of preserving
the regime in his least-preferred (adversarial) equilibrium.

Adversarial information design captures the idea of robustness in the information
design, but also poses a challenge: it breaks the applicability of the standard Bayes
correlated equilibrium (BCE) method (Bergemann and Morris (2016) and Taneva (2019)),
which implicitly selects the designer’s favorite equilibrium. The key to constructing
an optimal information policy is to recognize that regime-change games are super-
modular. In these games, Milgrom and Roberts (1990) show that, under each infor-
mation structure, the adversarial (or smallest/lowest) equilibrium can be obtained
by iterative elimination of strictly dominated strategies (IESDS). Consequently, ad-
versarial information design in supermodular games can be treated as endogenzing
the process of IESDS. As far as we know, this conceptual connection is first formally
pointed out by Bergemann and Morris (2019), and has inspired several recent studies
in other applications (see subsection 1.1 for a detailed discussion).

We explore this conceptual connection in regime-change settings to study adver-
sarial information design as managing an endogenous IESDS process. It enables us
to take advantage of a potentially infinite chain of state obfuscation. As a natural
starting point, consider public persuasion where all agents are always sent identical
signals. In some vincible states, the designer sends all agents the same signal as in
invincible states, so that agents are scared off from attacking when they believe with
sufficiently high probability that the true state is invincible. This idea of leveraging on
the invincible states has been extensively studied by the literature, which is a natural
analogy of the classical single-receiver persuasion (e.g. the jury example in Kamenica
and Gentzkow (2011)). However, a coordination game allows the designer to manip-
ulate information more subtly when not constrained to sending public signals: a state
does not have to be truly invincible to be leveraged on, but only needs to convince
agents of no sufficient coordination. In this spirit, the designer may leverage not
only on the invincible states but also on weaker states. This is an iterated, possibly
infinite-step process enabled by the coordination nature of the base game: through
obfuscating signals, some invincible states are the first tier of leveraged states to save
certain weaker states; once these vincible states never face sufficiently coordinated
attacks, they, in turn, become a “conditionally invincible” tier and may be leveraged
on to save more vincible states, and so on. The linkages between these tiers are en-
dogenously characterized by the designer’s information policy, so our optimal policy
must determine the number of such tiers, the states to be included in every tier, and
how to interconnect them in agents’ beliefs via obfuscating signals.
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Local Obfuscation. The optimal information structure we identify has an important
and novel property that we call local obfuscation. Specifically, the first tier contains all
invincible states and sends signal s1 to all agents; the second tier is weaker than the
first, and it sends s1 to a (randomly selected) proportion of agents and another signal
s2 to others; the third is weaker than the second, and it sends s2 to a proportion of
agents, and another signal s3 to others; and so on. The measure of each such propor-
tion is deterministic; thus, although each agent receiving sk remains uncertain about
the true state, the measure of each signal sent conditional on states is fixed. Finally,
the weakest tier, characterized by an endogenously determined threshold, always
sends a self-identifying signal sa. In other words, except for the invincible and the
weakest states, the information designer under each state executes a local obfuscating
policy, essentially revealing the actual tier to some agents but deceiving other agents
by a slightly stronger tier. Heuristically, the designer treats some agents with loosely
defined honesty but others with “alternative facts” that marginally distort the truth.

The optimal local obfuscation collapses global coordination among agents by cre-
ating both fundamental and belief uncertainty. At the optimum, the regime-change
outcome is characterized by a cutoff value of the regime’s strength, i.e. the strongest
state sending signal sa. While each agent’s uncertainty about the regime’s strength
is limited, their higher-order uncertainty (regarding the regime’s state) remains. In
fact, the only common knowledge among all agents is whether the regime’s strength
is above the cutoff. The remaining higher-order uncertainty makes agents’ actions
perfectly coordinated: An agent attacks the regime if and only if the regime strength
is below the cutoff. In this case, the status quo fails.

Our construction can be viewed as an endogenous design of a series of “state in-
fection” which is an analogy proposed by Rubinstein (1989). We further show that to
attain optimum, it suffices at every round of the process to extend the contagion to
only the strongest currently uncontaminated states, up to a recursive belief updating
constraint. As a corollary, limitation on the designer’s degree of freedom in control-
ling information – such as confinement to public signals or exogenous information –
is the main potential source of sub-optimality compared to the unconstrained opti-
mum. Notably, the term “local” indicates the adjacency between tiers of states, which
differs qualitatively from its description of small signal perturbation in the classical
email game (Rubinstein (1989)) or standard global games (Carlsson and van Damme
(1993), Morris and Shin (2003)). Indeed, as we will discuss later, this seemingly minor
difference substantially distinguishes our construction from some recent information
design work building on a similar “small-noise signal” infection argument.
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The optimality of the monotonic relationship between the regime-change outcome
and the regime strength is a natural consequence of state monotonicity and strate-
gic complementarity of regime-change games (Frankel et al. 2003) and echoes the
intuitive constructions in previous studies (e.g., Goldstein and Huang 2016) and the
equilibrium outcome under optimal public disclosure in some circumstances (see In-
ostroza and Pavan 2018).

Our optimal information policy establishes a deterministic mapping between states
and regime-change outcomes, which differs from most canonical information design
papers. Consequently, what matters to an agent is to predict the regime’s state given
her received signal. All the higher-order uncertainty is averaged out, simplifying
the application of our model for further studies (e.g., policy intervention and the
effect of various informational constraints). A similar property emerges in the global
regime-change games due to the assumption that private signals are identical and
independent distributed (i.i.d.) across agents. However, in our model, the property is
an implication under an optimal information structure in which signal independence
is not a priori. This echoes with Inostroza and Pavan (2018), who show the optimality
of deterministic pass/fail tests when the designer can only make a public disclosure.

Level-K Obfuscation. We then investigate how the manipulable reasoning depth of
agents determines the implementable outcome of an optimal information design. A
practical way to evaluate bounded depths of manipulable reasoning is to impose the
assumption of a finite signal space of information structures. Notice that this “level-
K” obfuscation exercise substantially differs from the level-K thinking in the behav-
ioral economics literature (see, e.g., Alaoui and Penta (2016), De Clippel et al. (2019)
and Crawford (2021)). For each information structure, we still look for Nash equilib-
ria of the corresponding Bayesian regime-change game. That is, agents are capable of
conducting infinitely higher-order strategic reasoning, but only the first K levels are
up for manipulation. Hence, it captures (i) the designer’s inability of flexible infor-
mation control due to either signal design cost or communication obstacle, or (ii) the
agents’ bounded cognitive ability to comprehend/distinguish infinite signals.

We fully characterize the unique optimal information policy in closed form when
information design is constrained by the agents’ level of reasoning up for manipu-
lation. This differs from the benchmark unconstrained model that has multiple so-
lutions (we discuss some of these policies in the analysis; also see the discussion re-
garding the implementation in Morris et al. (2019)).3 In particular, when the designer

3We are also aware of a global-game like optimal policy in regime-change-games using the idea of
Morris et al. (2019) from a private communication with Stephen Morris, Daisuke Oyama and Satoru
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is only capable of manipulating agents’ higher-order reasoning up to a finite level-K,
a locally obfuscating policy producing K + 1 tiers in total is the unique optimal infor-
mation structure. Thus, our result highlights the designer’s advantage resulting from
manipulating agents’ higher-level reasoning and explicitly identifies the magnitude
of this advantage as agents’ depth of reasoning improves. Manipulating higher levels
of reasoning benefits the information designer by creating more “conditionally invin-
cible” states. It also indicates a one-to-one relation between the depth of manipulable
reasoning and signal complexity: the level-K locally obfuscating policy achieves the
designer’s unique optimum when agents are fully rational, but the designer has only
K + 1 distinct signals at his disposal. The result holds for an arbitrary K, making it a
natural selection criterion that uniquely identifies our local obfuscating policy among
policies that may achieve the designer’s optimal outcome. As a practical implication,
the designer should always adopt local obfuscation when constrained by agents’ ma-
nipulable reasoning depth or signal availability.

We discover that the optimal level-K obfuscation could lead to coordination failure
among agents. To maximize the set of infected states using finite signals, it is optimal
when the true state is slightly above the margin of collapse, to make attack condition-
ally dominated for only a fraction of agents. This is in sharp contrast to the results
in our benchmark model as well as the literature of adversarial information design in
supermodular games (see subsection 1.1).

Local obfuscation has a unique advantage over public information structures,
which manipulate agents’ reasoning only up to the first level. We demonstrate this
advantage in two distinct ways. First, given a target set of persisting states, optimal
local obfuscation allows for a lower threshold of attacking cost to achieve the target
than optimal public disclosure. The difference between the cost thresholds coincides
with the conditionally expected strength of the persisting states below one. Second,
when the measure of invincible states converges to zero, an optimal public informa-
tion structure becomes futile, while optimal local obfuscation still manages to save a
significant measure of vincible states. A sharp implication of this result is that when
the attacking cost is sufficiently high but the measure of invincible states becomes
almost negligible, virtually no state persists under public information disclosure, but
all states persist under optimal local obfuscation, making the policy ex post optimal.
It highlights the power of manipulating higher-order uncertainty: it is more likely to
relieve us from the time-inconsistent commitment concern.

Implementation. Our framework allows the information designer the maximum de-

Takahashi.
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gree of freedom to choose from all information policies, including ones with corre-
lated and/or non-anonymous signals. Nevertheless, the optimal policy only requires
a very simple implementation. It is essentially an anonymous and uncorrelated signal
whose realization is at most binary given each possible state. In practical scenarios,
the policy can be understood as either (i) i.i.d. private signals, (ii) one random signal
with each realization covering a predetermined measure of randomly selected agents,
or (iii) a combination between public signal and private endorsement a la Alonso and
Câmara (2016).4 The implementation simplicity sheds light on information manipula-
tion practices in the digital era. For instance, recent studies (e.g., Guriev and Treisman
2019) have shown that a growing number of autocrats adopt information repression
strategy, instead of terrorizing citizens in old-and-bloody style, to stabilize their gov-
ernance. Our result begins a formal investigation that (i) unpacks the secret of such
information repression and (ii) helps to understand this trend. To collapse citizens’
hostile collective coordination, all it takes is to create minor belief uncertainty among
citizens by dividing message recipients. Due to the penetration of social networks,
this less bloody and more effective repression becomes increasingly appealing to au-
tocrats.5

1.1 Related Literature

Information Manipulation in Global Games. This paper contributes to the large
literature on information manipulation in global games (see, e.g., Edmond (2013),
Goldstein and Huang (2016, 2018), Inostroza and Pavan (2018) and Basak and Zhou
(2018, 2019) through public information disclosures and Angeletos et al. (2006, 2007),
Edmond (2013), Huang (2017), and Cong et al. (2019) through policy intervention
context). On the front of information design context, our paper is mostly related to
Inostroza and Pavan (2018) which is the first paper studying adversarial information
design in global games. With attention to applications such as stress testing, they
make realistic modeling choices: agents are endowed with exogenous private infor-
mation, and the designer is allowed only to choose a public disclosure. They show an
optimal information structure takes the form of a pass/fail test and derive conditions
under which the optimal test is monotone in the regime’s state. On the contrary, we
assume that the information designer is the only source of information and possesses

4In fact, as will be clear in the subsequent analysis, exogenous complexity (such as Gaussian private
signals) or mandatory correlation (such as public signals) may result in sub-optimality for the designer.

5See, for example, Yuval Noah Harari, "Why Technology Favors Tyranny," The Atlantic, October
322(3), 2018.
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a maximum degree of freedom to choose from all information policies to isolate and
highlight the fundamental trade-off of manipulating information in regime-change
settings. Our optimal information structure preserves some feature of a global game
– each agent receives a noisy signal that forces him to take account of more than one
possible game, as well as higher-order uncertainty of his opponents. However, com-
pared to familiar Gaussian information structure that encompasses the entire class
of games in an agent’s (first-order) belief, we show that it is sufficient to maintain
fundamental and belief uncertainty locally, i.e., an agent knows that he is in one of at
most two sub-classes of games characterized by adjacent strength levels of the regime,
and he knows at the same time that all his peers receive one of at most two adjacent
signals.

Adversarial information design. In general, adversarial information design in games
inevitably involves higher-order belief manipulation, which complicates the analysis.
Mathevet et al. (2020) first point out the conceptual connection between adversarial
information design and concavification on the space of belief hierarchy. Hoshino
(2019) shows that, using the leverage of strategic uncertainty, agents can be per-
suaded to take an action profile that satisfies a generalization of risk dominance given
any non-degenerate prior. Bergemann and Morris (2019) further discuss the connec-
tion between adversarial information design and the literature on higher-order be-
liefs. The tractability of our analysis results from the fact that adversarial information
design in supermodular games is equivalent to manipulating the process of itera-
tive elimination of dominated strategies. We are certainly not the first to notice this
conceptual connection. The idea of deterring coordination by creating non-common
knowledge dates back to the classical email game by Rubinstein (1989), and also un-
derlies monotone equilibrium behavior in global games (Carlsson and van Damme
(1993), Morris and Shin (2003)) although these clever constructions are never meant
for optimal information design. In an insightful example, Bergemann and Morris
(2019) point out that adversarial information design can be achieved by an email-
game-like construction of information structure. Several companion recent studies,
e.g., Halac et al. (2021), Moriya and Yamashita (2020), and Sandmann (2020), explore
this property in various of finite supermodular games. The connection also plays a
substantial role in deriving optimal public disclosure in Inostroza and Pavan (2018).

Contemporaneously with our paper, Morris et al. (2019) propose a tractable method
to characterize the set of implementable adversarial equilibrium outcomes in all bi-
nary action supermodular games, including regime change games. Our paper’s nov-
elty is that, by taking advantage of some unique features of regime-change games
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(such as binary regime status and continuum of agents), we can derive a simple and
intuitive optimal information structure in close form. It is the unique limit of finite
signal problems and establishes a deterministic mapping between states and regime-
change outcomes.

A distinguishing feature of our construction is its robustness to the perturbation of
manipulating finite-depth reasoning. With the luxury of manipulating infinite levels
of agents’ reasoning in the unconstrained problem, the designer can afford inefficient
infection in finite steps of IESDS. Therefore, there are multiple optimal policies as we
illustrate in section 3.2. Also see the implementation discussion of Morris et al. (2019)
which is featured with small signal noise/belief uncertainty as in Rubinstein (1989)
and Carlsson and van Damme (1993). On the contrary, our information policy pos-
sesses a greedy algorithm-like feature that maximizes the measure of infected states
in each step of IESDS.This logic is crucial for our information policy being the unique
solution to the bounded-depth problem. Also, the unique optimal information policy
will lead to imperfect coordination among agents, which is in sharp contrast to the
literature of adversarial information design in supermodular games (see, e.g., Morris
et al. (2019) and Inostroza and Pavan (2018)). The difference relies on the designer’s
ability to precisely control the first K steps of state infection in IESDS endowed by the
feature of regime-change games and the flexibility to control information asymmetry
among agents.

Information design with multiple receivers. More broadly, our paper belongs to
the literature of information design with multiple audiences. See e.g., persuasion in
voting games (Alonso and Câmara (2016), Bardhi and Guo (2018), Chan et al. (2019),
Heese and Lauermann (2020)), and social network (Galperti and Perego (2019) and
Candogan and Drakopoulos (2020)), etc. In this literature, a receiver often faces un-
certainty about the set of opponents receiving signals identical to him/her, similar
to our paper. However, in these papers, the outstanding performance of discrimi-
natory information structure typically requires the designer to manage the statistical
correlation between target signals of agents. On the contrary, the optimal informa-
tion structure we identify is completely anonymous. One exception is Mathevet and
Taneva (2020), who study implementable outcome by some familiar indirect informa-
tion structure in a finite game with strategic complementarity. They find that “spread-
ing the words” to a selected group of receivers dominates public persuasion in certain
circumstances.

Organization. The rest of the paper is organized as follows. Section 2 lays out the
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model. Section 3 presents main results. Section 4 concludes. Proofs are in the Appen-
dices.

2 Model

Base game. Consider a canonical regime-change game studied by Angeletos et al.
(2007). The society is populated by a unit mass of agents, indexed by i ∈ [0, 1]. There
are two possible regimes, the status quo, and an alternative. Agent i decides to attack
the current regime (ai = 1) or not (ai = 0).

Regime change needs coordination. Denote the aggregate mass of population that
attacks by A such that

A =
∫ 1

0
aidi.

A random variable θ represents the strength of the status quo. The status quo persists
if and only if θ ≥ A. The state is drawn from a commonly known probability distri-
bution on Θ ⊆ R. The cumulative probability function (CDF) of the distribution F(·)
is differentiable for every θ, and let f (θ) denote its density function.

If an agent does not attack, her payoff is zero. If she attacks, her payoff depends
on her action and the regime status: she incurs cost c ∈ (0, 1) regardless of the regime
status, and if the regime is overthrown, she receives a benefit, which is normalized to
be 1. An agent’s utility function is therefore

u(ai, A, θ) = ai(1{θ < A} − c)

where 1{·} is the indicator function. To avoid a trivial case, we assume that

Θ ≡ [0, θ̄], and θ̄ > 1.

In other words, the regime never fails if no agent attacks,6 and there are states (θ > 1)
in which the corresponding base game is dominance solvable with no attack.

Information structure. An information designer commits to disclosing information
to the agents about the state θ. This is modeled as an information structure con-
sisting of a signal space S and a state-dependent distribution over the signal profile
S[0,1], where S contains at least countably infinite distinct signals. The information

6This assumption rules out only an uninteresting case and is not essential. When θ ≤ 0, it automat-
ically collapses. There is no point in manipulating information.
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designer’s proposed information structure is a mapping from Θ to ∆(M(S)), where
M(S) ⊂ {S[0,1]} is a set of integrable functions with codomain S. That is, an in-
formation structure is a conditional probability distribution over the signal profile
of agents. This configuration allows arbitrary correlation among signals and non-
anonymous information structures that send different signal distributions to differ-
ent agents. Without loss of generality, we focus on the class of distributions where the
density is almost everywhere well-defined and integrable, and thereby restrict our at-
tention to policies under which the regime outcome is measurable in the designer’s
information. We use πi(s|θ) to denote the probability of agent i receiving signal s ∈ S.
In an anonymous information structure, i.e. when πi(s|θ) = πj(s|θ) ∀i, j ∈ [0, 1], we
omit the subscript and simply refer to the probability as π(s|θ).

Bayesian game and solution concept. The combination of information structure and
base game constitutes a Bayesian game, which proceeds as follows. First, θ is drawn
by nature. Then, given an information structure, each agent i receives signal s ∈
S according to πi(s|θ), and all agents simultaneously choose their actions. Agent
i’s strategy ai : S → [0, 1] specifies the probability of attack. In a Bayesian Nash
equilibrium, given a−i and her own signal s, agent i attacks if and only if she strictly
prefers to attack.7

For a given information structure, there may be multiplicity. We solve for the
information designer’s worst Bayesian Nash equilibrium to capture the idea of ad-
versarial/robust information design.8 That is, for each information structure, agents
coordinate on a strategy profile such that the largest measure of agents attacks. In the
remainder of the article, we refer to the information designer’s worst Bayesian Nash
equilibrium as (adversarial) equilibrium.

The information designer’s problem is to choose an information structure to in-
duce an adversarial Bayesian Nash equilibrium which maximizes the regime’s ex-
pected probability of persistence.

3 Analysis

We begin with equilibrium characterization for an arbitrary information structure.

7The requirement of an agent’s strict preference for attacking on defining a Bayesian Nash equi-
librium is only technical but without loss of any generality. In this way, the information designer’s
optimum in preserving the regime can be exactly achieved, rather than only approximated.

8The implementation based on the designer’s favorite equilibrium is trivial. Since θ ≥ 0, the de-
signer can disclose nothing, and there is an equilibrium where no agent attacks.
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Proposition 1. For every information structure, the induced Bayesian game has a unique
(adversarial) equilibrium.

The regime-change game is supermodular. Given an information structure, the
adversarial (also known as lowest/smallest) equilibrium can be established by the
familiar argument of iterated elimination of strictly dominated strategies (IESDS) as
in Milgrom and Roberts (1990) and Frankel et al. (2003). We relegate the proof to on-
line Appendix B and provide the intuition using an anonymous information structure
for expositional convenience. Beginning with the most aggressive strategy where all
agents attack regardless of their signals, we identify a set of no-attack signals S1 such
that an individual agent finds attack to be dominated when receiving a signal in S1.
Then we examine an agent’s incentive when she believes all other agents play a less
aggressive strategy: attack if and only if their signals are outside of S1. We identify an-
other set of no-attack signals S2 such that an agent finds it sub-optimal to attack when
receiving signals in S2. Since agents’ actions are strategic complements, the best re-
sponse to a less aggressive strategy must be less aggressive, making S2 ⊇ S1. This
iteration proceeds further for S3, S4 · · · . As k goes to infinity, we obtain the maximal
set of no-attack signals S∗ = limn→∞ Sn ⊆ S. In doing so, we construct an equilibrium
where an agent attacks if and only if his signal lies in S \ S∗. To see the uniqueness,
suppose two distinct (adversarial) equilibria with different sets of no-attack signals
S∗ and S∗∗. Since two equilibria induce an identical probability of regime changes,
both S∗ and S∗∗must contain some exclusive signals, respectively. We show that there
must be another equilibrium where agents play weakly more aggressively than the
following strategy: attack if and only if receiving signals from S \ (S∗ ∩ S∗∗). This is,
once again, due to the strategic complementarity: a more aggressive strategy leads to
a more aggressive best response. However, this equilibrium induces a strictly larger
probability of regime change, which leads to a contradiction.

3.1 Local Obfuscation

One of our main results is the characterization of an optimal information structure,
which maximizes the probability of the status quo’s persistence. This information
policy will be the benchmark to be compared to various sub-optimal policies in the
rest of the paper. In what follows, we introduce a class of information structures.

First, notice that an information structure stochastically specifies a distribution
over agents receiving signal s ∈ S for each state.9 An information structure is deter-

9For instance, consider an anonymous information structure that sends all agents s1 with proba-
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ministic if (i) for each θ, such a distribution is deterministically pinned down, and (ii)
it is anonymous. Under a deterministic information structure, the fraction of agents
who receive signal s in state θ is equal to π(s|θ), the probability that each agent re-
ceives signal s. It is immediate that the equilibrium regime-change outcome is fully
determined by the state, the strategic uncertainty is completely averaged out, and an
agent essentially faces only fundamental uncertainty. A familiar example of deter-
ministic information structure is considered by Morris and Shin (1998): each agent
independently draws a private signal from an identical and state-dependent distri-
bution. Another example is the public pass/fail test studied by Goldstein and Huang
(2016) and Inostroza and Pavan (2018), which sends a “pass” signal to every agent
if the state belongs to some pre-specified set and a “fail” signal to every agent other-
wise. In what follows, we show that a very simple deterministic information structure
is indeed optimal.

Definition 1. A deterministic information structure is a local obfuscator if

1. there is a cutoff state θ∗ ∈ [0, θ̄] that partitions the state space into a sequence of inter-
vals {(θk+1, θk]}∞

k=0 ∪ (0, θ∗], where θ0 = θ̄, and limk→∞ θk = θ∗,

2. the signal space S is such that {sk}∞
k=1 ∪ {sa} = S, and

3. the state-dependent signal distribution satisfies
π(s1|θ) = 1 if θ ∈ (θ1, θ0]

π(sk+1|θ) + π(sk|θ) = 1 if θ ∈ (θk+1, θk], ∀k ≥ 1

π(sa|θ) = 1 if θ ∈ (0, θ∗]

.

In other words, if an information structure locally obfuscates agents, a set of ad-
jacent states is categorized into a number of intervals, each of which corresponds to
a unique signal. We interpret interval (θk+1, θk] as the face value of signal sk+1. When
θ ≥ 1, all agents receive signal s1. When the state is (θk+1, θk], an agent receives either
signal sk+1 or a slightly elevated signal, sk. When the state does not belong to any such
interval, all agents receive the same signal sa which conclusively reveals θ ∈ (0, θ∗].
Figure 1 visualizes an information structure that exhibits local obfuscation.

We refer to the obfuscation induced by the aforementioned information structure
as local for two reasons. First, an agent can never distinguish states that belong to

bility p ∈ (0, 1) and s2 with probability 1− p under θ. The measure of agents receiving s1 is 1 with
probability p and 0 with probability 1− p.
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Figure 1: Illustration of local obfuscator. The horizontal axis represents states and the vertical axis
represents signals and their face values. We use differential shades to distinguish information sets
following different signals.

the same interval. Second, when an agent is misinformed about the true interval, the
signal she receives just marginally elevates the true state interval. Obfuscation makes
the agent skeptical about the face value of signals. When receiving signal sk, instead
of taking the signal at face value, the agent believes that the true state is in either
(θk+1, θk] or (θk, θk−1], so her unresolved uncertainty about the fundamental state is
local. Moreover, the obfuscation creates belief uncertainty among agents, making
the coordination harder. Thanks to the optimal information structure, such a belief
uncertainty is also local. An agent who receives signal sk is uncertain whether other
agents receive signals {sk−1, sk} or {sk, sk+1}. The information designer can manage
agents’ posterior beliefs about other agents’ signals, beliefs, and action profiles by
manipulating the information structure.

We are now ready to present our main result.

Theorem 1. The designer’s optimum is achieved by a local obfuscator where

1. the state-dependent signal distribution π∗ satisfies π∗(s1|θ) = 1 if θ ∈ (θ1, θ0], and
for each k = 1, 2, ...., if θ ∈ (θk+1, θk] ∩Θ,

π∗(sk+1|θ) = 1− π∗(sk|θ) = θ.

13



2. the sequence {θk}∞
k=1 is such that θ1 = 1, θ2 = max{0, θ̂2} where θ̂2 solves

− c
∫ θ̄

1
f (θ)dθ︸ ︷︷ ︸

θ>1, receive s1

+(1− c)
∫ 1

θ̂2

(1− θ) f (θ)dθ︸ ︷︷ ︸
θ∈(θ̂2,1], receive s1

= 0, (1)

θk = max{0, θ̂k} where θ̂k recursively solves

− c
∫ θk−2

θk−1

θ f (θ)dθ︸ ︷︷ ︸
θ∈(θk−1,θk−2], receive sk−1

+(1− c)
∫ θk−1

θ̂k

(1− θ) f (θ)dθ︸ ︷︷ ︸
θ∈(θ̂k,θk−1], receive sk−1

= 0, (2)

for k = 3, 4, ..., and θ∗ is uniquely characterized by

θ∗ = inf

{
θ′ ∈ Θ :

∫ θ̄
1 f (θ)dθ +

∫ 1
θ′ θ f (θ)dθ∫ 1

θ′(1− θ) f (θ)dθ
≥ 1− c

c

}
. (3)

Given π∗, an agent attacks if and only if receiving signal sa, and the status quo persists if and
only if θ ∈ (θ∗, θ̄].

Theorem 1 says that there is an optimal information structure that exhibits local
obfuscation. In other words, to maintain the status quo, the information designer
needs only to slightly exaggerate the true state to some agents. The state set is parti-
tioned into tiers by what signal to send: the invincible tier 1, or (1, θ̄], always sends
s1 to all agents. When θ ≤ 1, state θ in tier k sends a face-value-matching signal sk to
exactly fraction θ of agents and a slightly elevated signal sk−1 to the remaining agents.
The fraction θ coincides with the maximum measure of attack that the regime would
be able to tolerate, assuming that agents receiving sk−1 refrained from attacking. The
partition of states is characterized by (1) and (2). The two equations indicate that
an agent receiving signal sk would be indifferent between attacking and not attack-
ing, if she believed that all others would refrain if and only if receiving signals sk−1.
They correspond to agents’ binding incentive-compatibility constraints at each step
of IESDS. Also, Theorem 1 proposes a simple algorithm to construct the optimal local
obfuscator. Essentially, one needs only to partition the state space according to {θk}
characterized by equations (1) and (2). As we will demonstrate later, summing up
conditions (1) and (2) over k leads to condition (3), establishing the lowest state can
persist, θ∗.

Equilibrium under optimal local obfuscator. The equilibrium analysis is similar to
14



the infection argument proposed by Rubinstein (1989). To see why no agent attacks
given private signal sk, k = 1, 2, ..., one may begin with an agent who receives signal
s1. Given her knowledge about π∗, she infers that the true state θ is either in (θ1, θ0] or
in (θ2, θ1]. If θ ∈ (θ1, θ0], the status quo persists regardless of the agents’ coordinated
action, making attack strictly sub-optimal. If θ ∈ (θ2, θ1], the regime changes only if a
sufficiently large amount of agents attack. Since θ2 solves equation (1), given s1, the
conditional expected benefit of attack does not exceed the cost even if all other agents
attack. Consequently, the agent does not attack regardless of what others do. Given
that no agent attacks at signal s1, consider an agent’s belief when receiving s2. On the
one hand, the agent knows that either θ ∈ (θ3, θ2] or θ ∈ (θ2, θ1], while θ1 = 1); on
the other hand, she is also aware that attacking will never succeed when θ ∈ (θ2, θ1]

because fraction 1− θ of agents will receive s1 and choose not to attack. Therefore the
best scenario for attacking is when all other agents coordinate to attack given s2 or s3,
overthrowing the regime when θ ∈ (θ3, θ2]. However, since θ2 and θ3 solve (2), the
agent’s expected net payoff from attacking remains non-positive even under the best
scenario. Therefore the agent does not attack either given s2. We can then apply math-
ematical induction to generate the sequence {θk}∞

k=1 and associated signals {sk}∞
k=1,

and by a similar IESDS argument, no agent attacks given signal sk, k = 1, 2, ....
The equilibrium regime status is fully determined by θ∗, which is pinned down

by (3). If θ∗ = 0, the status quo essentially persists for sure; otherwise, in which
case θ∗ is the limit of sequence {θk}, the regime status is state-dependent. When
θ ≤ θ∗, every agent receives signal sa and attacks, and the status quo collapses. When
θ > θ∗, agents are locally obfuscated, and the status quo persists. However, the
only common knowledge among agents is whether θ is above the cutoff θ∗, making
the local obfuscator have a global impact. First, when θ > θ∗, it prevents all agents
from attacking by sending disinformation to a proportion of agents only. Second, it
suppresses agents’ attacks in a large set of states through obfuscating nearby states.

For the sake of simplicity in notation, we will henceforth suppress the signal space
S and refer to the optimal local obfuscator as π∗. A formal proof of Theorem 1 is in the
Appendix; we devote the rest of this section to heuristically explaining the optimality
of π∗ as characterized above.

Endogenized iterated reasoning. For better exposition, we develop a “credit-discredit”
system to describe the hierarchy of endogenously induced beliefs among the agents.
It depicts information manipulation as a process of alternating states obfuscation (Berge-
mann and Morris 2016) and infection (Rubinstein 1989). The mix differentiates our
construction from Rubinstein (1989) whose construction is featured with small i.i.d.
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“noise” at each step of infection.
We illustrate how the system works by using the example in Figure 1 and consid-

ering the process of IESDS that determines the agent equilibrium. To make any agent
restrain from attacking given signal s1 (the first round of IESDS), the signal must in-
duce a sufficiently high belief that she is facing an invincible state (θ ≥ 1); hence the
invincible states provide the initial endowment of “credit” and the other states send-
ing s1 consume the credit or create “discredit.” To deter agents’ attack upon receiving
s1, the credit consumption

∫ 1
θ2
(1− θ) f (θ)dθ must be limited by the credit endowment∫ θ̄

1 f (θ)dθ adjusted by the “relative price” c/(1− c). The budget balance of credit and
discredit in equation (1) corresponds to the standard obedient state obfuscation.

However, credit consumption does not stop here: for some states θ < 1 sending s1

(only to a fraction of agents), when the measure of agents receiving s1 exceeds 1− θ,
the state becomes “conditionally invincible” to the rest of agents. That is, the regime
persists even if all of these agents manage to coordinate in attacking. This is the classic
states infection argument. The designer can then send the signal s2 to these agents in
state θ ∈ (θ2, θ1]. In doing so, additional credit is produced since signal s2 matches its
face value. More < 1 states can then consume this credit, avoid being attacked and
further create credit themselves, and the process moves on as IESDS proceeds.

This process of credit production and consumption implies that agents’ obedi-
ence constraints upon receiving each signal, and therefore each step of IESDS, are en-
dogenously interconnected. The mix between credit and discredit to restrain an agent’s
attack upon receiving signal sk generates a positive externality on the obedience con-
straint for signal sk+1 thanks to the coordination friction.10

Despite our illustration using deterministic information structure, this system ap-
plies to every (non-deterministic or even non-anonymous) information structure. In
the first round of IESDS under an arbitrary information structure, the agents refrain
from attacking given any signal suggesting that the state is sufficiently likely to be
invincible. The signal may not be a single determinate one as in the above example,
but again the invincible states represent the initial credit endowment. Every θ < 1
in this round, which has convinced at least 1 − θ of agents not to attack, becomes
“conditionally invincible” and can continue credit production in the next round. The

10The coordination feature of the base game plays a key role here. When θ ∈ (0, 1), neither attacking
nor refraining is dominant – attacking is optimal if and only if enough others also attack. Hence, in
some rounds of IESDS, a state that will survive even under the currently most adversarial coordination
possible creates credit, while another state that survives only by mimicking the former’s signal creates
discredit. In the next round, however, the latter state becomes one to create credit with weakened
coordination among agents.
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process then continues analogously. Still, in each round of IESDS, the ratio between
the total credit created by the states that persists the former round of IESDS and the
total discredit created by the states that persists this round of IESDS must be at least
(1 − c)/c. Note that in an arbitrary information structure, it is not necessary that
stronger states create credit earlier than weaker states during IESDS; Figure 2 presents
such an example.

The optimality of π∗. Again, we will explain the optimality of π∗ first among deter-
ministic information structures heuristically and briefly discuss why its optimality is
preserved in the most general environment. Proofs are relegated to Appendix A.

The above iterated reasoning process reveals two basic principles that the designer
must abide by when seeking the optimal information structure. First, every informa-
tion structure induces IESDS, possibly of infinite rounds, in the adversarial equilib-
rium among agents. Second, each round of IESDS features an incentive compatibility
constraint, which asserts that discredit created (or equivalently, credit consumed) in
the current round cannot exceed c

1−c of net credit accumulated up to the previous
round. Combining these constraints provides a necessary condition on what states
may persist under the particular information structure: the total credit created by the
persisting states must be no less than 1−c

c of the total discredit.
To further characterize an optimum, we now observe a third principle: in each

round of IESDS, it always weakly benefits the designer to infect the highest not-yet-
infected states, i.e., letting such states consume the existing credit for the current
round and create new credit for the next round. A formal argument can be found
in the proof of Lemma 2 in Appendix A. Intuitively, a state θ < 1 persists from at-
tack as long as it sends a self-identifying signal (credit) to no more than a θ fraction
of the agents, while the rest 1− θ fraction of agents receive some signal mimicking a
stronger state from the previous round (discredit); therefore a higher state always re-
quires less credit consumption to persist while it contributes more to credit creation.
Hence at least one optimal information structure must induce, through IESDS, a se-
ries of connected intervals of states in descending order of the states’ magnitude. The
set of persisting states under this information structure is then (θ∗, θ̄], which repre-
sents the union of the intervals.

We thus obtain an explicit upper bound for the status quo’s probability of persis-
tence, which also identifies a lower bound for a persisting state at optimum, by the
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Figure 2: The upper panel corresponds to IESDS for the optimal local obfuscator. Denote Θ1 = (1, θ̄]
and Θk as the set of states being leveraged in the k + 1th round of IESDS. As k → ∞, every > θ∗

state is leveraged. In the lower panel, the procedure is similar except in the first round. Θ′2 = (θ∗, θ′]

where θ′ is chosen to balance the credit constraint, c
∫ θ̄

1 f (θ)dθ = (1− c)
∫ θ′

θ∗
(1− θ) f (θ)dθ. Obviously,

the resulting measure of Θ′2 is less than Θ2. The choice of Θ′2 further tightens the credit constraints
in subsequent rounds, i.e.

∫
Θ′k

θd f (θ) <
∫

Θk
θd f (θ), making the measure of Θ′k+1 less than Θk+1 for

k = 3, 4, 5...

above-mentioned necessary condition:∫ θ̄
1 f (θ)dθ +

∫ 1
θ∗ θ f (θ)dθ∫ 1

θ∗(1− θ) f (θ)dθ
≥ 1− c

c
.

This inequality, which coincides with (3) when binding, implies that the ratio between
the total measures of credit and discredit created by (θ∗, θ̄] must be at least 1−c

c .
Finally, we verify that π∗ achieves exactly the maximum probability of the status

quo’s persistence by direct calculation. This can be easily seen by summing up (1)
and (2) over k to arrive at (3) at the limit. In π∗, the ratio between credit and discredit
in every round of IESDS is kept at precisely 1−c

c , which automatically preserves the
same ratio between the total measures.

Notice that agents coordinate perfectly under π∗. Despite the fundamental and
beliefs uncertainty, the outcome of the coordination game is always deterministic.
This is intuitive. If an agent receiving signal s has the incentive to attack, the regime
must fail with a sufficiently high probability to compensate his attacking cost. In this
event, the designer will be better off by encouraging every agent to attack to avoid
wasting credit. The result is in sharp contrast to resulting optimal information struc-
tures in the literature, which often generate a stochastic mapping between states and
players’ action profiles, but turns out to be robust in regime-change games (see In-
ostroza and Pavan (2018) where agents receive private information, and the designer
makes public disclosure). The difference is driven by the assumptions of continuum
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agents and the supermodularity of the base game. It significantly simplifies agents’
strategic reasoning as in global regime-change games: although higher-order uncer-
tainty among agents remains, what essentially matters for an agent is his belief about
the fundamental state only. Note that, unlike in the global game of regime-change
models (see, e.g., Morris and Shin (2003)), this property is derived as an optimal in-
formation structure rather than the assumption that signals are i.i.d. across agents.

We briefly discuss here why π∗ remains optimal when general information poli-
cies are feasible and leave the formal argument to the proof. On the one hand, when
the measure of realized signals given some state θ is uncertain, we can without loss
of generality re-label θ as multiple replicas of itself bearing a total density of f (θ),
each representing the same state under a realized measure distribution of signals.
Given such a distribution, the state either persists or falls with certainty, in which
case we can readily apply our previous argument for the optimality of π∗. On the
other hand, as agents coordinate on the information designer’s least preferred equi-
librium, it is only reasonable that keeping signals anonymous, i.e., introducing no
additional correlation among signals, will only reduce the threat to the regime’s per-
sistence. Therefore, compared to deterministic information structures, the ability to
further complicate the signals yields no extra leverage for the information designer.

The necessity of multiple signals. Although the optimal information structure es-
sentially produces a set of attack signals and another set of no-attack signals, the
maximum probability of the status quo’s persistence cannot be reached by pooling
all signals into binary recommendation signals. To see the logic, first notice that
the standard revelation principle/BCE approach (Bergemann and Morris (2016) and
Taneva (2019)) searches for the designer’s optimal BCE, implicitly selecting his fa-
vorite equilibrium in the corresponding Bayes game. We, on the other hand, focus on
the designer’s worst equilibrium. Second, consider the optimal local obfuscation’s
outcome-equivalent binary recommendation signal (its BCE) π† which recommends
a = 0 to every agent if θ ≥ θ∗ and a = 1 to every agent otherwise. While there
is a Bayesian Nash equilibrium where agents follow recommendations, there is an-
other equilibrium where agents attack regardless of recommendations. In this equi-
librium, invincible states fail to infect any vincible states, and the designer’s payoff
is lower. Therefore, multiple (and possibly infinite) signals are necessary to preserve
belief uncertainty which maximizes the status quo’s survival in the designer’s worst
equilibrium.
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3.2 Level-K Obfuscation

This section studies a natural way to extend our analysis to an environment where
the designer faces a constraint in his capacity of manipulating information. In partic-
ular, suppose that the signal space is now finite and contains only K ∈ N+ distinct
elements.

There are at least two practical interpretations of this setting. First, K indicates
the level of agents’ higher-order reasoning that can be manipulated. An immediate
implication of Theorem 1 is that the outcome induced by local obfuscation, or any
information policy, relies on the level of reasoning that the designer can manipulate:
the higher the level, the better outcome for the designer. Intuitively, there exists a
one-to-one correspondence between the maximum manipulable level of reasoning
and the maximum number of available signals: manipulation of up to level-K higher-
order reasoning is equivalent, in terms of the optimal outcome, to a restricted set of
K + 1 signals.

Second, K can also take the literal meaning of the number of available signals,
which partially reflects the information structure’s complexity. In practice, informa-
tion design is restricted by agents’ cognitive abilities to comprehend/distinguish sig-
nals, the communication capacity, and the designing cost. For a concrete example
where agents have bounded cognitive ability to distinguish signals, imagine K = 1
corresponds to the case where agents cannot distinguish between any number of dif-
ferent signals, and thus the designer is essentially incapable of manipulating informa-
tion; K = 2 implies that agents can tell, upon receiving a signal, whether the signal is
some s1 or not; and so on. The communication capacity matters because in reality, it
is costly for the designer to communicate with agents about the information structure
that he commits to. It is natural to assume the communication cost goes to infinity as
the signal space expands.

When K is finite, we show that an optimal information structure must exhibit local
obfuscation. The uniqueness result holds for every arbitrary K, making it a natural
selection criterion that uniquely identifies our local obfuscating policy among policies
that may achieve the designer’s optimal outcome.

Theorem 2. For K = 2, 3, · · · , let πK denote the following state-dependent signal distribu-
tion:
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πK(s1|θ) = 1 if θ ∈ (θ1, θ0]

πK(sk|θ) = 1− πn(sk−1|θ) = θ if θ ∈ (θk, θk−1] ∩Θ, ∀k = 2, · · · , K− 1

πK(sa|θ) = 1− πK(sK−1|θ) = θ if θ ∈ (θK, θK−1] ∩Θ

πK(sa|θ) = 1 if θ ∈ [0, θK] ∩Θ

.

where S = {sk}K−1
k=1 ∪ {sa}. Suppose that the information designer is restricted to using S

that contains at most K elements; then either

1. πK is the unique optimal information policy, under which agents attack if and only if
receiving sa and the status quo persists if and only if θ > θK, or

2. under an optimal information policy, no agent ever attacks and the status quo always
persists.

Generically, these two cases are mutually exclusive.11

Theorem 2 says that the finite-signal problem either has a unique optimal policy,
or is trivial since the regime can always persist. The first case is more interesting
where the regime-change outcome is determined by a cutoff state θK. Also, in the first
case, if θK > 0, the perfect coordination property fails (see Figure 3 for illustration).
These results substantially differ from the unconstrained (K = ∞) case, highlighting
the significance of agents’ reasoning depth up for manipulation. Finally, Theorem
2 immediately implies that θK decreases in the number of signals, which is intuitive
since a higher maximum level of manipulation can only benefit the designer.

Unique optimum. The argument underlying Theorem 2 is centered on maximizing
the ripple effect created by the initial credit from θ ∈ (1, θ̄]. When only finite signals
are available, the agents go through only finite rounds of IESDS. In terms of credit
creation, the iterated reasoning process among agents resembles money creation in
the banking system to a certain extent. Intuitively, a certain amount of credit created
in an earlier round proves more “useful” to the information designer than the same
amount of credit in a later round because it generates a larger sum of additional credit
through the remaining rounds. Moreover, since credit creation in each round of IESDS
is independent of the number of signals used for the particular round, a designer
constrained by finite signals should use one signal for each round to maximize the
number of rounds. By induction, the optimal information structure must seek to use

11The non-generic case corresponds to parameter combination which leads to the minimum value
of θK such that, upon receiving signal sa, no attack remains dominated.
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Figure 3: Illustration of level-4 local obfuscation. The horizontal axis represents states and the verti-
cal axis represents signals and their face values. We use differential shades to distinguish information
sets following different signals. The regime persists if and only if θ ≥ θ4, but when θ ∈ [θ4, θ3), perfect
coordination property fails.

one signal per round to create maximum possible credit sequentially, which uniquely
corresponds to πK.

Coordination failure under πK. In stark contrast to Theorem 1, perfect coordination
fails when πK is indeed the unique optimal information structure, or equivalently
when the designer is unable to preserve the status quo regardless of θ (the first al-
ternative in Theorem 2). In this case, although agents still coordinate perfectly when
θ > θK−1 (no agent ever attacks) or when θ ≤ θK (all agents attack), they choose dif-
ferent actions when θ ∈ (θK, θK−1]. Specifically, fraction 1− θ of agents receives sK−1

and refrains from attacking, while fraction θ receives sa and attacks. This is a distinct
feature introduced by the constraint in signal space: should the designer have one
additional available signal, he would have used it to create another round of IESDS
and save more states from attack, but the constraint deprives him of this option. As
a result, the last available signal is used as sa, and although the states in (θK, θK−1]

still persist because only fraction θ of agents attacks, they no longer facilitate credit
creation. The optimality of making coordination imperfect is rather easy to see in
Figure 3. Suppose, instead, that coordination is perfect (s3 is sent to all agents) when
θ ∈ [θ4, θ3). Upon receiving signal s3, an agent now believes that the state is suffi-
ciently likely to be in [θ4, θ3), and no attack is no longer dominated. To sustain perfect
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Figure 4: The horizontal axis represents the round of IESDS, and the vertical axis represents the
cumulative measure of states being leveraged until each round. The thin red curve corresponds to
the optimal local obfuscator π∗, while the thick blue curve corresponds to the alternative information
structure π′. The total measure of states being leveraged under π′ falls behind that under π∗ since the
second round of IESDS, but it eventually starts to catch up. When k = 8, the difference already shrinks
to 0.0003.

coordination, the designer has to increase the value of θ4, which is undesirable. This
is unnecessary if the entire state space has been infected in finite steps of IESDS or the
designer is not constrained by level-K obfuscation.

Multiplicity of optimum when K = ∞. It is worth noting that, although the optimal
local obfuscator is the unique optimal policy when K is finite, uniqueness is not guar-
anteed for K = ∞. In other words, the optimal local obfuscator in Theorem 1 may not
be the only information structure securing the status quo’s persistence for θ > θ∗.

To understand the multiplicity of optimum, recall the “credit-discredit” interpre-
tation. The optimal local obfuscator maximizes the credit production in every round
of IESDS and uses stocking credit most economically, i.e., saves the most states given
the credit constraint in each round. Nevertheless, alternative designs may exist un-
der which the same overall amounts of credit and discredit are created as under the
optimal local obfuscator, but different amounts occur in each round of IESDS. In such a
design, the probability of the status quo’s persistence after the first k rounds of IESDS
is strictly smaller than in π∗ regardless of k; only as the process of IESDS takes in-
finitely many rounds and the marginal production of credit diminishes to zero, the
gap becomes negligible as the procedure forwards.

We give a numerical example below, where c = 1/6, and θ is uniformly dis-

23



tributed on Θ = [0, 1.1]. We consider a design that differs from π∗ in that it identifies
the newly persisting states in the second round of IESDS from θ∗ upwards instead of
from those in the first round downwards. The result is depicted in Figure 4: after the
deviation in the second round, the probability of status quo’s persistence under π′ is
always strictly smaller than under π∗ for any k, but will converge to the same limit as
k→ ∞.

Our discussion above clearly indicates that local obfuscation dominates simple
information structures such as public disclosure; after all, a public information pol-
icy produces at best the outcome from level-1 manipulation. In section 3.3, we will
highlight this advantage of local obfuscation via comparative static analysis.

3.3 Public Disclosure

This section compares the unconstrained benchmark case studied in subsection 3.1
with the most restrictive and perhaps also the most prominent non-trivial bounded-
depth obfuscation in subsection 3.2: public disclosure.12 We study the difference
between these two cases by varying the cost of attack, c and the likelihood of attack
being dominated, F(1). This exercise allows us to understand the advantage of using
private signals to manipulate the higher-order reasoning of agents systematically.

Public signals. First, we derive the optimal public information structure, i.e., for
every state θ, signals received by any two agents i, j must be identical. In this case,
the higher-order uncertainty among agents is missing. Straightforwardly, it is optimal
to set the signal space to be binary, S = {sa, sn}, and broadcast an attack signal sa if
θ ≤ θ† and a no-attack signal sn otherwise for some cutoff θ† solving

c =
F(1)− F(θ†)

1− F(θ†)
. (4)

The right-hand side of equation (4) is an agent’s expected benefit if she attacks given
that θ > θ† and all other agents attack. Given the no-attack signal sn, the agent
believes that θ > θ†, and finds not to attack to be weakly dominant. This is because
when θ ∈ (1, θ̄], attack is a strictly dominated strategy. Obfuscating states on (θ†, θ̄]

makes attack an unwise choice given sn.

12It is worth noting that although public disclosure essentially represents one scenario of bounded-
depth obfuscation, it still imposes an additional constraint on available policies and the optimal public
information structure may not correspond to the optimal local obfuscation with K = 2 signals. In
the latter scenario and following Theorem 2, the designer may benefit from sending different (thus
non-public) signals when θ ∈ (θ2, θ1].
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Public vs private signals. We are now ready to discuss the advantage of the local ob-
fuscation compared to the public signal (or manipulating higher-order vs first-order
reasoning of agents). One way to examine the advantage is to look at F(θ†)− F(θ∗),
the measure of the set of states that coordination is crushed under local obfuscation
only.

Proposition 2. The advantage of local obfuscation relative to public propaganda F(θ†) −
F(θ∗) has the following properties:

1. It is non-negative for every c, and strictly positive when c < F(1).

2. It is increasing in c.

3. Consider {Fn}n∈N+ (with fn, θ†
n and θ∗n defined correspondingly) such that limn→∞ 1−

Fn(1) = 0, and suppose that lim infn→∞ fn(θ) > 0 for all θ ∈ Θ̂, for some non-empty
Θ̂ ⊂ [1− c, 1]. Then lim infn→∞ Fn(θ†

n)− Fn(θ∗n) > 0.

Under the optimal public information structure, even fewer states persist than
under π∗ after the first round of IESDS. The reason is that the public information
structure inevitably wastes some credit provided by (1, θ̄]. For the sake of argument,
consider a hypothetical measure 1 of some state θ < 1. The public information struc-
ture can save θ from a regime change only by designing for it the same signal as some
> 1 state, therefore inducing all agents to refrain from attacking. In other words, θ

creates discredit of measure 1 as well. Under π∗, however, θ only mimics some > 1
state towards 1− θ fraction of the agents, reducing the measure of discredit produced
to only 1− θ. The remaining measure of θ then leaves room for more < 1 states to
fill with their discredit and persist. Hence as long as the optimal public information
structure saves a proportion of states < 1, π∗ must be strictly preferred by the in-
formation designer (Property 1). It then follows directly from this argument that the
additional probability of persistence induced by π∗ over the optimal public informa-
tion structure in the first round of IESDS, as well as that in every subsequent round
under π∗, is increasing in c, which leads to Property 2. Note also that both θ† and
θ∗ approach 1 as c → 0; that is, even when non-public information structures are
available, an infinitesimal cost always renders information design futile.

Property 3 highlights a significant difference between public and non-public in-
formation structures in an extreme scenario. Although F(θ†) − F(θ∗) may not be
monotone in 1 − F(1), the probability measure of invincible states, it does remain
bounded away from 0 as the measure gradually becomes negligible. This result im-
plies that using non-public signals indeed bears a unique advantage, which does not
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vanish even when the optimal public signal becomes almost ineffective. However
small the measure of invincible states is, it creates a significant ripple effect by the in-
finite rounds of IESDS under π∗. The starkest contrast arises when c > 1−

∫ 1
0 θ f (θ)dθ

and 1 − F(1) → 0: almost no state persists under the optimal public information
structure, but all states persist under optimal local obfuscation! In this case, the ex
ante optimal information policy is also ex post optimal, making our model immune
to the usual criticism of perfect commitment assumption.

3.4 Exogenous Information

In subsections 3.2-3.3, we focused on information constraints such as the limitation
on the complexity of information structure and the impossibility of differentiating
information across agents. Now we turn to another class of constraint: agents’ exoge-
nous private information. Notably, the form of private information will significantly
shape the optimal information policy, making it difficult to draw any general con-
clusion.13 Therefore we decide to reexamine some classic information manipulation
applications in global-game environments, and compare these exercises with our re-
sults. This comparison unveils how different economic relevant factors shape optimal
information policies in different ways.

In many applications discussed in the related literature section, the agents have
access to rich private signals, and the designer is restricted to issuing only public an-
nouncements. In these cases, the endogenous contagion logic in agents’ iterated rea-
soning still prevails. The designer’s interest, therefore, is still to maximize the “infec-
tion” of states in each step of IESDS, which is essentially Inostroza and Pavan (2018)’s
logic to prove their Theorem 1. However, the designer’s state contagion manage-
ment is inefficient without full control of information structures. First, the presence
of private signals makes it inevitable for each round of IESDS to involve a signifi-
cant measure of low states, i.e., a high signal implies only a high probability instead
of certainty of a strong state. Hence our optimum can never be reached in an envi-
ronment with such exogenous information due to weakened credit creation. Second,
having only public signals at her disposal restrains the designer’s ability to distort
the influence of agents’ private information. Should the designer be free to choose

13For instance, Inostroza and Pavan (2018) shows that the optimal public disclosure is a pass/fail
test but it can be either monotone or non-monotone in states, depending on the shape of agents’ pri-
vate signals. We have also constructed some special private signals under which a local obfuscator
remains optimal, for instance when some agents observe the true state while others remain privately
uninformed. The construction is available upon request.
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any policy, she could have used a local obfuscator to exclude certain low states from
credit consumption in IESDS, thus improving upon even the optimal public signal.

As a concrete example, consider the problem studied by Goldstein and Huang
(2016). Each agent independently draws a private signal from Gaussian distribution
N (θ, α−1), while the designer chooses a public disclosure characterized by a cutoff θ∗
such that all agents receive a public signal “pass” if θ ≥ θ∗ and “fail” otherwise. The
designer looks for the smallest cutoff θ∗ s.t. upon receiving the pass signal, agents
do not attack regardless of their private signals. Given θ∗, the adversarial equilib-
rium can still be established by IESDS: there is a sequence of decreasing {θ̂k} and
a sequence of {Ŝk} s.t. after k rounds of IESDS, (i) upon receiving signals from Ŝk,
an agent finds it suboptimal to attack, and (ii) states in [θ̂k+1, θ̂k) have been infected.
However, due to the Gaussian nature of agents’ private information, each signal in Ŝk

may also be sent in every (relatively low) state above the pass-fail cutoff. Therefore,
to sustain attack being a dominated strategy, we must have θ̂k to be strictly greater
than θk established by the optimal obfuscator. The procedure continues for infinitely
many rounds to produce the final cutoff θ∗. The optimal cutoff θ∗ is the smallest value
such that limk→∞ θ̂k = θ∗, which is higher than θ∗, the cutoff established by the op-
timal local obfuscator in Theorem 1. The infection inefficiency reflects the economic
relevancy of agents’ rich private information in information manipulation.

The above Gaussian example can be viewed as an intermediate case between two
benchmarks we analyzed in subsections 3.1 and 3.3 in the sense that (i) the designer’s
ability to effectively manage infection in each step of IESDS is compromised, but (ii)
higher-order belief uncertainty among agents remains and can be partially controlled.
In the presence of exogenous information, the optimal policy deviates from the bench-
mark case due to the inefficient infection in each round of IESDS. This substantially
differs from another intermediate case studied in subsection 3.2 for K > 2 where the
inefficiency is due to the constraint of finite rounds of infection. This comparison re-
flects a conceptual difference between the impact of agents’ rich private information
and the complexity of signals on information policy.

4 Conclusion
Our analysis has shown that when the information designer has extensive power in
information design, in particular when it can endogenously determine the structure
of noise in the agents’ information, there is a optimal persuasion scheme that takes
a simple and intuitive form. The information designer randomizes between hon-
esty and deceit, which takes the particular form of local obfuscation. We believe that
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our stylized framework can be enriched to build a research agenda on many related
topics, including competitive information designers, dynamic persuasion and com-
munication among agents.
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A Proofs of Main Results

A.1 Proof of Theorem 1

We first focus on information structures that are deterministic across agents, and
show that our proposed optimal local obfuscator, π∗, achieves the designer’s opti-
mum among all such information structures. Then we extend our argument to the
most general environment allowing for arbitrary information structures.

Consider an arbitrary information structure that is deterministic across agents.
We begin by defining two useful series through agents’ iterated reasoning, assuming
that agents are adversarial against the regime. Series {Sk}∞

k=1 contains the signal sets
which the agents refrain from attacking after the kth round of IESDS. Series {Tk}∞

k=1
satisfies the following condition: ∪k

n=1Tn contains the states that persist before the kth
round of IESDS.

Definition of series {Sk}∞
k=1. Consider an initial strategy profile where everyone

attacks regardless of their signal, denoted by a0
i such that a0

i (s) ≡ 1 for every i, and
s ∈ S. Define S1 ⊆ S as the set of signal s such that

∫
Θ

f (θ)π(s|θ)∫
Θ f (θ′)π(s|θ′)dθ′

1{θ <
∫
[0,1]

∫
S

a0
j (v)π(v|θ)dvdj}dθ ≤ c. (5)

The left-hand side of (5) is the probability of θ < 1 given s. Hence the condition
means that, if agent i receives signal s ∈ S1, he weakly prefers not to attack even if all
other agents attack for certain. Define a1

i :

a1
i (s) =

0 if s ∈ S1

1 otherwise,

which induces a weakly smaller measure of attacking agents than a0
i . By Lemma 5,

an agent i weakly prefers not to attack if all other agents play a1
i .

For k = 2, 3, · · · , define Sk ⊆ S as the set of signal s such that

∫
Θ

f (θ)π(s|θ)∫
Θ f (θ′)π(s|θ′)dθ′

1{θ <
∫
[0,1]

∫
S

ak−1
j (v)π(v|θ)dvdj}dθ ≤ c.

and define

ak
i (s) =

0 if s ∈ Sk

1 otherwise.
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Since the regime change game is supermodular, Sk ⊇ Sk−1. Therefore, at the limit as
k→ ∞, the set S∗ = limk→∞ Sk exists, and S∗ ⊆ S. Also, define

a∗i (s) =

0 if s ∈ S∗

1 otherwise
(6)

for each agent i. Notice that S1 may be empty. In that case, Sk, S∗ = ∅.
Definition of series {Tk}∞

k=1. Define state set T1 = (1, θ̄]. By the definition of S1,
for every s ∈ S1, s induces the following posterior: the probability that the true state
is in T1 is larger than 1− c, i.e.

Pr(θ ∈ T1|s) ≥ 1− c, ∀s ∈ S1.

Next, we recursively define Tk as the set of states θ in addition to ∪k−1
n=1Tn where more

than 1− θ measure of agents receive signals in Sk−1 , i.e.

Tk ≡ {θ ∈ Θ, θ /∈ ∪k−1
n=1Tn :

∫
s∈Sk−1

π(s|θ)ds > 1− θ}

for every k = 2, 3, ... Then, by the definition of Sk, for every s ∈ Sk, s induces the
following posterior: the probability that the true state is in ∪k

n=1Tn is larger than 1− c,
i.e.

Pr(θ ∈ ∪k
n=1Tn|s) ≥ 1− c, ∀s ∈ Sk.

Finally, denote
T∗ = ∪∞

k=1Tk.

For convenience, we also define T0 = S0 = ∅. Note that for every k, Sk, S∗, Tk, and
T∗ are π-specific, and we use Sk|π, S∗|π, Tk|π, and T∗|π to denote the corresponding
sets under information policy when necessary.

We may now use the above terminology to characterize the regime’s persistence.

Lemma 1. A necessary and sufficient condition for the regime to persist in equilibrium is
θ ∈ T∗.

Proof. We first show the sufficiency. If θ ∈ T∗, there exists k such that θ ∈ Tk and θ /∈
Tl for l = 1, 2, ..., k− 1. We show that the regime persists for any k = 1, 2, ... Suppose
the agents coordinate on attacking if their signals are in S; then by the definition
of T1 and S1, an individual agent whose signal is in S1 would prefer to deviate to
not attacking. By the rule of coordination, no agent shall attack if her signal is in
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S1, and every θ ∈ T1 always persists under information policy π(·|θ). By a similar
argument, suppose the agents coordinate on attacking if their signals are in S\S1; then
an individual agent whose signal is in S2 would prefer to deviate to not attacking,
and every θ ∈ T1 ∪ T2 always persists. The rest of the proof follows by mathematical
induction.

We prove the necessity by contrapositive. First, by the above construction, every
agent shall attack if and only if her signal realization is not in S∗. Then by the defini-
tion of T∗, for every state θ not in T∗, the designer sends a signal in S∗ with probability
less than 1− θ; otherwise θ is in T∗. Thus, every state θ not in T∗ is attacked by a mass
greater than θ and eventually fails. This completes the proof of the necessity.

Next, we identify an upper bound of the ex ante probability that the regime per-
sists under any deterministic information structure.

Lemma 2. An upper bound of the ex ante probability that the regime persists under a deter-
ministic information structure is given by 1− F(θ∗′) where θ∗′ either uniquely solves

c
∫ θ̄

1
f (θ)dθ +

∫ 1

θ∗′
(θ + c− 1) f (θ)dθ = 0, (7)

or equals 0 when (7) has no solution.

Proof. Fix any deterministic information structure π, and define a function K : T∗ →
N such that for every θ ∈ T∗, we have θ ∈ TK(θ). By definition, K(θ) is unique for
every θ. Intuitively, for every θ ∈ T∗, K(θ) means that θ persists after and only after
K(θ)− 1 rounds of IESDS.

For k = 1, 2, ..., define

Dk =
∫

Tk

f (θ)
∫

Sk−1

π(s|θ)dsdθ,

which is the measure of signals in Sk−1 being sent for all θ ∈ Tk. Similarly, for k =

1, 2, · · · , p = k + 1, k + 2, · · · , define

Ck,p =
∫

Tk

f (θ)
∫

Sp\Sp−1

π(s|θ)dsdθ,

which is the measure of signals in Sp\Sp−1 being sent when θ ∈ Tk.
Consider round k of IESDS. By the definition of T(·) and S(·), for every s ∈ Sk, an

individual agent receiving s shall not attack even if every agent receiving a signal not
in Sk−1 attacks; that is to say, if she attacks, the probability of winning is smaller than
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or equal to c. Consider the coordination pattern at the beginning of the kth round of
the IESDS, by definition the regime fails if the true state is in Tk+1 and persists if and
only if the true state is in ∪k

n=1Tn, thus a necessary condition for an individual agent
not to attack when receiving any signal in Sk is

c ≥ Dk+1

∑k
m=1 Cm,k + Dk+1

. (ICk)

Then consider all the previous rounds of the IESDS, a necessary condition for the
regime to persist in states ∪k+1

n=1Tn is

c
k

∑
m=1

k

∑
p=m

Cm,p ≥ (1− c)
k+1

∑
m=1

Dm (ICk)

Also, by the definition of T(·) and S(·), for m = 1, 2, · · · , k + 1 and for every θ ∈ Tm,∫
Sm−1

π(si|θ)dsi ≥ min{0, 1− θ} and
∫

Sk\Sm−1
π(si|θ)dsi ≤ max{1, θ}.

Expanding (ICk) yields

c
k

∑
m=1

∫
Tm

f (θ)
∫

Sk\Sm−1

π(s|θ)dsdθ

≥ (1− c)
k+1

∑
m=1

∫
Tm

f (θ)
∫

Sm−1

π(s|θ)dsdθ

⇔ c
∫
∪k

n=1Tn
f (θ)

∫
Sk\SK(θ)−1

π(s|θ)dsdθ

≥ (1− c)
∫
∪k+1

n=1Tn
f (θ)

∫
SK(θ)−1

π(s|θ)dsdθ

⇒ c(
∫

T1

f (θ)dθ +
∫
∪k

n=2Tn
θ f (θ)dθ) ≥ (1− c)

∫
∪k

n=2Tn
(1− θ) f (θ)dθ.

Now we are in the position to identify an upper bound of the ex ante probability
that the regime persists,

∫
T∗ f (θ)dθ. Note that T∗ = ∪+∞

n=1Tn and T1 = (1, θ̄]. There-
fore, one way to identify a certain superset of the designer’s optimum, in terms of
states that survive, is to identify a T∗ – with a slight abuse of notation – to maximize∫

T∗\T1
f (θ)dθ under the following constraint

c
(∫

T1

f (θ)dθ +
∫

T∗\T1

θ f (θ)dθ

)
≥ (1− c)

∫
T∗\T1

(1− θ) f (θ)dθ
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⇔ c
∫

T1

f (θ)dθ ≥
∫

T∗\T1

(1− c− θ) f (θ)dθ

⇔
∫

T∗\T1

f (θ)dθ ≤ 1
1− c

(∫
T∗\T1

θ f (θ)dθ + c
∫

T1

f (θ)dθ

)
⇔

∫
T∗\T1

(1− θ) f (θ)dθ ≤ c
1− c

(∫
T∗\T1

θ f (θ)dθ +
∫

T1

f (θ)dθ

)
. (8)

Note that
∫

T1
f (θ)dθ is a constant. We will call this constrained maximization the

“relaxed problem.”
We assert that the desired T∗ which solves the relaxed problem must take the

form of (θ′, θ̄] for some θ′, i.e. to solve the relaxed problem, it is always optimal
to include in T∗ only the strongest states. To see this, first suppose that the right-
hand side of (8) were a constant, and suppose that some subset of states outside T∗

with a positive probability measure is stronger than another subset of states in T∗

(again with a positive probability measure). The term (1− θ) f (θ) on the left-hand
side of (8) then implies a strict improvement to increase the maximand

∫
T∗\T1

f (θ)dθ

without violating (8): switch an identical probability measure of states between the
above two subsets, then include more states in T∗. Next, note that this operation will
only increase

∫
T∗\T1

θ f (θ)dθ on the right-hand side, hence preserving the constraint.
Therefore the solution to the relaxed problem will include only the strongest states.

Next, let θ̃ = F−1(1−
∫

T∗ f (θ)dθ), as k→ ∞ we have

c
(∫

T1

f (θ)dθ +
∫
∪∞

n=2Tn
θ f (θ)dθ

)
≥ (1− c)

∫
∪∞

n=2Tn
(1− θ) f (θ)dθ

⇒ c

(∫ θ̄

1
f (θ)dθ +

∫ 1

θ̃
θ f (θ)dθ

)
− (1− c)

∫ 1

θ̃
(1− θ) f (θ)dθ ≥ 0.

Suppose that π improves and
∫

T∗ f (θ)dθ increases, θ̃ decreases, the left-hand side
of the second inequality above either always increases, or increases at first, then de-
creases. Thus, there exists a unique lower bound of θ̃. If the lower bound is strictly
positive, we use θ∗′ to denote this lower bound, and θ∗′ solves

c
∫ θ̄

1
f (θ)dθ +

∫ 1

θ∗′
(θ + c− 1) f (θ)dθ = 0.

If the lower bound is non-positive, there exists π such that every state persists, in
which case we simply let θ∗′ = 0.

It’s straightforward that θ∗′ is unique, and then the upper bound of the ex ante
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probability that the regime persists is 1− F(θ∗′).

We then prove that the optimal local obfuscator π∗ achieves exactly this upper
bound, and thus is an optimal information structure among those that are determin-
istic across agents.

Lemma 3. The probability of the status quo’s persistence under π∗ is equal to 1− F(θ∗′).

Proof. As shown in the main text, the equilibrium outcome under π∗ is that every
agent who receives a signal in {sk}∞

k=1 does not attack; as a result, the status quo
persists whenever θ ∈ (θ∗, θ̄]. When they receive sa, it is common knowledge that the
state is in (0, θ∗], so all agents attack, and the status quo is overthrown. Also, by the
definition of Tk, under π∗, for k = 1, 2, · · · , we have Tk = (θk, θk−1].

Then by (1), (2), and (3)

c

(∫ θ0

θ1

f (θ)dθ +
∞

∑
k=3

∫ θk−2

θk−1

θ f (θ)dθ

)
= (1− c)

∞

∑
k=2

∫ θk−1

θk

(1− θ) f (θ)dθ

c
(∫ θ0

θ1

f (θ)dθ +
∫ θ1

θ∗′
θ f (θ)dθ

)
= (1− c)

∫ θ1

θ∗′
(1− θ) f (θ)dθ.

Notably, θ∗ indeed solves (7); as the solution is unique, we have θ∗ = θ∗′, i.e. the
measure of

∫
T∗ f (θ)dθ exactly equals the upper bound we proposed in Lemma 2.

Lastly, all the steps above assume that not every state persists under π∗. If other-
wise, for some k we have θk < 0; then the regime will always persist under π∗, which
is consistent with θ∗′ = 0.

Lemmas 2 and 3 establish the optimality of π∗ among information structures that
are deterministic across agents, and we now proceed to show that π∗ remains optimal
when correlated or non-anonymous policies are allowed. The difference between this
specification and an i.i.d information structure is that now, for each state, the ex post
distribution of signals is not determinate; instead, it can be any distribution over all
possible ex post distributions.

Lemma 4. π∗ remains optimal when the designer may commit to any arbitrary information
structure.

Proof. We start by making slight changes to relevant notations. In the following
proofs we use si to denote the signal received by agent i. Fix any arbitrary infor-
mation policy, which we denote here by ψ. We define for every i a series Si

(·) on the
signal space.
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For every i, let Si
0 ≡ ∅ and a0

i (s) ≡ 1. Define Si
1 ⊆ S as the set of states satisfying

the following condition:

∫
Θ

f (θ)πi(s|θ)∫
Θ f (θ′)πi(s|θ′)dθ′

Pr(θ <
∫
[0,1]

a0
j (s

j)dj|θ, si = s)dθ ≤ c,

and define

a1
i (s) =

{
0 if s ∈ Si

1
1 otherwise.

The term Pr(θ <
∫
[0,1] a0

j (s
j)dj|θ, si = s) captures the possibilities that (1) ψ may

not be anonymous, since the measure of attacking agents results from integrating
their individual actions along [0, 1] instead of being represented by a single distribu-
tion/measure π; (2) ψ may correlate agents’ signals and make the aggregate signal
distribution random even for a fixed θ, which makes the event θ <

∫
[0,1] a0

j (s
j)dj bear-

ing a probability instead of either occurring or not with certainty.
For k = 2, 3, · · · , define Si

k ⊆ S as the set of signal s such that

∫
Θ

f (θ)πi(s|θ)∫
Θ f (θ′)πi(s|θ′)dθ′

Pr(θ <
∫
[0,1]

ak−1
j (sj)dj|θ, si = s)dθ ≤ c.

and define

ak
i (s) =

0 if s ∈ Si
k

1 otherwise.

We also define Si∗ = limk→∞ Si
k and a∗i (·) = limk→∞ ai

k(·) accordingly. Following the
proof of Proposition 114, {Si∗}i∈[0,1] characterizes the unique agent equilibrium.

To simplify our discussion, we may without loss of generality restrict our atten-
tion to policies under which every agent’s action upon receiving the same signal is
identical. That is, we can always construct such a policy ψ′ which always yields the
same outcome as ψ does. Note that, for every bijective mapping A from S to S and
every s ∈ S, if we let ψ′ send A(s) to agent i whenever ψ sends s, then agent i’s action
when receiving A(s) under policy ψ′ will be the same as his action when receiving s
under policy ψ. Thus through selecting for each agent an appropriate bijective map-
ping, we can always find ψ′ such that ak

i (s) ≡ ak
j (s) for every k and every i, j ∈ [0, 1],

and the status quo’s ex ante probability of persistence under ψ′ is identical to its ex
ante probability of persistence under ψ. As a result, we may now omit the superscript

14In the proof in Appendix B, we show that the unique equilibrium strategy of agent i is to attack if
and only if si ∈ Si∗.
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in Si
k for every k and i, and use notation Sk henceforward.
Next, we identify, by explicit construction, an upper bound of the regime’s ex ante

probability of persistence. First define a series of function h0(θ), h1(θ), · · · as follows:

h0(θ) = 0∀θ ∈ Θ

h1(θ) = f (θ)∀θ ∈ T1 and = 0 elsewhere

h2(θ) = f (θ)Pr(
∫

i∈[0,1] 1(s
i ∈ S1|θ)di > 1− θ)

· · ·

where hk(θ) is the probability density function that state θ survives after k rounds
of IESDS. By construction, the distance between hk(θ) and hk−1(θ) converges to 0 as
k→ +∞.

For i ∈ [0, 1], k = 1, 2, ..., define

Di
k =

∫
Θ
(hk(θ)− hk−1(θ))Pr(si ∈ Sk−1|θ)dθ.

For i ∈ [0, 1], k = 1, 2, ..., p = k + 1, k + 2, ..., define

Ci
k,p =

∫
Θ
(hk(θ)− hk−1(θ))Pr(si ∈ Sp\Sp−1|θ)dθ.

By the definition of T(·) and S(·), for every k, i, c ∑k
m=1 ∑k

p=m Ci
m,p ≥ (1− c)∑k+1

m=1 Di
m.

Thus, similar to the previous proof, for every i, θ

c
k

∑
m=1

k

∑
p=m

Ci
m,p ≥ (1− c)

k+1

∑
m=1

Dm

⇔ c
k

∑
m=1

k

∑
p=m

∫
Θ
(hm(θ)− hm−1(θ))Pr(si ∈ Sp\Sp−1|θ)dθ

≥ (1− c)
k+1

∑
m=1

∫
Θ
(hm(θ)− hm−1(θ))Pr(si ∈ Sm−1|θ)dθ

⇔ c
∫
[0,1]

k

∑
m=1

k

∑
p=m

∫
Θ
(hm(θ)− hm−1(θ))Pr(si ∈ Sp\Sp−1|θ)dθdi

≥ (1− c)
∫
[0,1]

k+1

∑
m=1

∫
Θ
(hm(θ)− hm−1(θ))Pr(si ∈ Sm−1|θ)dθdi.

The last step is an integration across all agents.
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Note that, except for the states in [1, θ̄], for the status quo to persist after the kth
round of IESDS it must send signals in Sk to a population greater than or equal to
1− θ. Also note that

∫
Θ(hm(θ)− hm−1(θ))dθ is the probability measure of the states

that persists after and only after the kth round of IESDS. Thus, for every θ, m, and
p,
∫
[0,1](hm(θ) − hm−1(θ))Pr(si ∈ Sm−1|θ)di must be greater than or equal to (1 −

θ)(hm(θ)− hm−1(θ));
∫
[0,1] ∑k

p=m(hm(θ)− hm−1(θ))Pr(si ∈ Sp\Sp−1|θ)di must be less
than or equal to θ(hm(θ) − hm−1(θ)). Then, the last inequality above leads to the
following necessary condition:

c[
∫

Θ
h1(θ)dθ +

k

∑
m=2

∫
Θ
(hm(θ)− hm−1(θ))θdθ] (9)

≥ (1− c)[
k+1

∑
m=2

∫
Θ
(hm(θ)− hm−1(θ))(1− θ)dθ +

∫
Θ

h1(θ)0dθ]

⇔ c(
∫

Θ
h1(θ)dθ +

∫
Θ
(hk(θ)− h1(θ))θdθ)

≥ (1− c)
∫

Θ
(hk+1(θ)− h1(θ))(1− θ)dθ. (10)

Note that the last condition is irrelevant to agent identity i. A necessary condition
that bound from above the measure of persisting states, is (10) with k = ∞, which
turns out to be identical to (8). Therefore we can adopt the previous proof to claim
the optimality of π∗.

A.2 Proof of Theorem 2

We prove that if the regime persists with probability less than 1 under any optimal
policy, then πK is the unique optimal policy.

If the regime persists with probability less than 1 under πK, then θk ≥ 0 for every
k ≤ K. Suppose that π′K is an optimal policy and π′K is different from πK.

It is straightforward that a information policy using K signals can manipulate the
agents’ higher-order reasoning up to level K− 1 and can induce at most K− 1 rounds
of IESDS. The later is because that, after K rounds of IESDS, an individual agent shall
not attack upon receiving at least K different signals, that is, she shall never attack,
and that contradicts our assumption that the regime persists with probability less
than 1. Suppose that π′K induces m ≤ K− 1 rounds of IESDS. By the definition of πK,
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we recursively define a sequence {Ck, k|πK, Dk|πK}K
k=1 as follows

D1|πK = 0, C1,1|πK = θ̄ − 1

D2|πK =
c

1− c
C1,1|πK

D2|πK + D3|πK =
c

1− c
(C2,2|πK + C1,1|πK)

· · ·
K

∑
p=2

Dp|πK =
c

1− c

K

∑
p=2

Cp−1,p−1|πK.

For π′K, we specify the necessary conditions for each round of IESDS:

D1|π′K = 0

D2|π′K ≤
c

1− c
C1,1|π′K

D2|π′K + D3|π′K ≤
c

1− c
(C2,2|π′K + C1,1|π′K + C1,2|π′K)

4

∑
p=2

Dp|π′K ≤
c

1− c
(C3,3|π′K +

3

∑
p=2

C2,p|π′K +
3

∑
p=1

C1,p|π′K)

· · ·
m+1

∑
p=2

Dp|π′K ≤
c

1− c
(Cm,m|π′K +

m

∑
p=m−1

Cm−1,p|π′K + ... +
m

∑
p=1

C1,p|π′K).

The rest of our proof proceeds in the following steps.

Step 1. We prove that C1,1|π′K = C1,1|πK.

If C1,1|π′K < C1,1|πK, then D2|π′K < D2|πK, then C2,2|π′K < C2,2|πK, also we know
C1,2|π′K + C1,1|π′K ≤ C1,1|πK, then D2|π′K + D3|π′K < D2|πK + D3|πK, then C3,3|π′K <

C3,3|πK, · · · following a mathematical induction we have ∑m+1
p=2 Dp|π′K < ∑m+1

p=2 Dp|πK,

as m ≤ K− 1, ∑m+1
p=2 Dp|π′K ≤ ∑K

p=2 Dp|πK.
By the proof of Theorem 1, Lemma 2, under any information policy, the minimum

discredit a state θ that persists charges is 1− θ. Thus, fixing ∑K
p=2 Dp|πK, ∪K

p=1TK|πK

uniquely maximizes the information designer’s ex ante probability of persistence. As
∑m+1

p=2 Dp|π′K < ∑K
p=2 Dp|πK, the information designer’s ex ante probability of per-

sistence under π′K is strictly smaller than under πK, and we reach a contradiction.
Thus, in every optimal design, C1,1|π′K = C1,1|πK, D2|π′K = D2|πK; then we also have
C1,p|π′K = 0 for p = 2, 3, · · · , m.
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Step 2. We prove that in every optimal information structure, the amount of credit
and discredit created in each round of IESDS must be identical to that of π, i.e., for p =

1, 2, · · · , m, Cp,p|π′K = Cp,p|πK, Dp+1|π′K = Dp+1|πK.

Similarly, given C1,1|π′K = C1,1|πK, D2|π′K = D2|πK, suppose that C2,2|π′K <

C2,2|πK, then D3|π′K < D3|πK, then C3,3|π′K < C3,3|πK, also we know C2,3|π′K +

C2,2|π′K ≤ C2,2|πK, then D3|π′K +D4|π′K < D3|πK +D4|πK, then C4,4|π′K < C4,4|πK, · · ·
following a mathematical induction we have ∑m+1

p=3 Dp|π′K < ∑m+1
p=3 Dp|πK ≤ ∑K

p=3 Dp|πK.

Note that we already have D2|π′K = D2|πK; thus we have ∑m+1
p=2 Dp|π′K < ∑K

p=2 Dp|πK,
and by the same argument as step 1, the information designer’s ex ante probability of
persistence under π′K is strictly smaller than under πK, and we reach a contradiction.
Thus, in every optimal design, C2,2|π′K = C2,2|πK, D3|π′K = D3|πK, then we also have
C2,p|π′K = 0 for p = 3, 4, · · · , m.

Iterate the above process. By a mathematical induction, we conclude that in every
optimal design, for p = 1, 2, · · · , m, Cp,p|π′K = Cp,p|πK, Dp+1|π′K = Dp+1|πK, and
Cp,q|π′K = Cp,q|πK = 0 for q = p + 1, p + 2, · · · , m.

Step 3. We prove that, for p = 1, 2, · · · , m + 1, Tp|π′K=Tp|πK. Also, if θ ∈ T1|π′K,
the regime sends signals in S1|π′K with probability 1. For p = 2, 3, · · · , m, for every θ ∈
Tp+1|π′K, the regime sends signals in Sp+1|π′K\Sp|π′K with probability θ. and signals in
Sp|π′K\Sp−1|π′K with probability 1− θ.

First, note that T1|π′K=T1|πK = T1 = (1, θ̄] by definition. Then, as C1,1|π′K =

C1,1|πK = θ̄ − 1, the regime must send signals in S1 with probability 1 when its true
state is in (1, θ̄], otherwise, C1,1|π′K < C1,1|πK.

Next, by definition, for p = 1, 2, · · · , m+ 1, for every θ ∈ Tp|π′K,
∫

Sp−1
π′K(si|θ)dsi ≥

min{0, 1 − θ}. Therefore, to have D2|π′K = D2|πK = c
1−c C1,1|πK and C2,2|π′K =

C2,2|πK simultaneously, the regime must send signals in S1|π′K with probability ex-
actly equal to 1− θ and signals in S2|π′K\S1|π′K with probability exactly equal to θ

when θ is in T2|π′K, and T2|π′K must be exactly equal to T2|πK, otherwise, C2,2|π′K <

C2,2|πK. By mathematical induction, Tp|π′K = Tp|πK, and for every θ ∈ Tp+1|π′K, the
regime sends signals in Sp+1|π′K\Sp|π′K with probability θ. and signals in Sp|π′K\Sp−1|π′K
with probability 1− θ.

Step 4. We prove that, for p = 1, 2, · · · , m, Sp|π′K contains only 1 signal. Also, there is
only one signal upon receiving which an agent will attack.

Step 3 has established that, since Tp|π′K=Tp|πK ∀p = 1, 2, · · · , m + 1, m must be
equal to K− 1 for π′K to be optimal.
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Now suppose that, for some p, Sp|π′K consists of more than 1 signal. By the proof
of step 3, these signals are sent with positive probability by and only by the states
in Tp|π′K and Tp+1|π′K. Therefore, after the pth round of IESDS, only less than K − p
signals remain available for inducing additional rounds of IESDS, which can only
induce less than K− p− 1 rounds. Thus the total number of rounds of IESDS induced
by π′K, m, is strictly less than p + K − p− 1 = K − 1. Therefore π′K is not optimal, a
contradiction.

Lastly, suppose that the agents attack upon receiving signals in Sa and Sa contains
more than 1 signal. Then π′K uses at most K− 2 signals to induce IESDS. K− 2 signals
can induce, at most, K − 2 rounds of IESDS. Again, m is strictly less than K − 1 and
π′K is not optimal, a contradiction.

Combining Steps 3 and 4, π′K and πK must be identical. This completes the proof.

A.3 Proofs in Section 3.3

Proof of Proposition 2. We first consider increasing c. Note that θ† and θ∗ are char-
acterized by

c(F(θ̄)− F(θ†))− (F(1)− F(θ†)) = 0 (11)

c(F(θ̄)− F(θ∗))− (F(1)− F(θ∗)) +
∫ 1

θ∗
θ f (θ)dθ = 0, (12)

where (12) is a representation of (3). (11)-(12) gives

(1− c)(F(θ†)− F(θ∗)) =
∫ 1

θ∗
θ f (θ)dθ

(1− c)(F(θ†)− F(θ∗)) =
∫ 1

θ∗
θ f (θ)dθ

F(θ†)− F(θ∗) =

∫ 1
θ∗ θ f (θ)dθ

1− c

It is clear that θ∗ decreases as c increases. Hence F(θ†)− F(θ∗) increases as c increases.
As F(1) → 1, F(θ†) → 1. Then if F(θ∗) → 1 we have

∫ 1
θ∗ θ f (θ)dθ → 1. Then we

require 0 = 1
1−c , contradiction. Thus θ∗ is bounded away from 1.
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B Online Appendix

B.1 Proof of Proposition 1

This proof is more general than the discussions in the main text in the sense that
correlated or non-anonymous policies are allowed. We begin by defining an order on
the strategy space.

Definition 2. For i’s two strategies ai and a′i, we denote that ai ≥ a′i if ai(s) ≥ a′i(s) for
every s ∈ S, and that ai > a′i if ai(s) ≥ a′i(s) for every s ∈ S and ai(s) > a′i(s) for some
s ∈ S. We say ai is (weakly) more aggressive than a′i.

The following Lemma regards i’s best response given s. It is an immediate conse-
quence of strategic complementarity among agents’ actions. It says that when every
other agents’ strategies become more aggressive, an agent’s best response is either
unchanged or more aggressive.

Lemma 5. Consider two strategy profiles of agents other than i, a−i and a′−i. Suppose that
aj ≥ a′j for every j 6= i, and that aj > a′j for all j in a subset of [0, 1] \ {i} with positive
measure. If it is optimal for agent i to attack given s ∈ S and a′−i, it is also optimal to attack
given s and a−i. Similarly, if it is optimal for agent i not to attack given s and a−i, it is also
optimal not to attack given s and a′−i.

Proof. We prove the first part of the lemma. The proof of the second part is almost
identical and therefore omitted. Fix s ∈ S, the signal of agent i. Suppose that it is
optimal for agent 1 to attack given a′−i and signal s, and suppose that aj ≥ a′j for
every j 6= i, and that aj > a′j for all j in a subset of [0, 1] \ {i} with positive measure.
We must have

c <
∫

Θ

(
f (θ)πi(s|θ)∫

Θ f (θ′)πi(s|θ′)dθ′
Pr(θ <

∫
[0,1]\{i}

a′j(s
j)dj|θ)

)
dθ

≤
∫

Θ

(
f (θ)πi(s|θ)∫

Θ f (θ′)πi(s|θ′)dθ′
Pr(θ <

∫
[0,1]\{i}

aj(sj)dj|θ)
)

dθ.

where the first inequality holds because of the optimality of attack given s and a′−i,
and the second inequality holds because aj ≥ a′j for every j 6= i, which implies aj(sj =

s) ≥ a′j(s
j = s) for every j 6= i and every s ∈ S. Thus, agent i finds it optimal to attack

given signal s and a−i.

Now we are ready to address the equilibrium existence.
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Lemma 6. For any information structure, there exists an equilibrium.

Proof. We show that it is indeed an equilibrium for agent i to attack if and only if
si ∈ Si∗, with Si∗ defined in the proof of Lemma 4. First, by the construction of
Si∗, agent i prefers attacking when receiving every signal in S\Si∗ given other agents
follow the strategy specified in (6). Second, we show that for any non-empty Si∗,
given that the other agents follow the strategy in (6), an individual agent i strictly
prefers not attacking for every signal in Si∗. The proof is straightforward. Pick any
s ∈ Si∗, there exists a unique k such that s ∈ Si

k\S
i
k−1. By the definition of Si

k, given
that every other agent j 6= i follows ak−1

j and does not attack if and only if receiving

signals in Sj
k−1, agent i prefers not attacking when receiving signals in Si

k\S
i
k−1. Then

by Lemma 1, if every other agent j 6= i follows a less aggressive strategy a∗j < ak−1
j

and does not attack if and only if receiving signals in Sj∗ ⊇ Sj
k−1, agent i must prefer

not attacking when receiving signals in Si
k\S

i
k−1. Thus, for every s ∈ Si∗, a∗i (s) = 0.

Hence, we have the desired result.

The definitions above guarantee a unique series of {Si
k} and a unique Si∗ for every

i ∈ [0, 1]. In what follows, we show that a∗i (s) is the unique equilibrium as well.

Lemma 7. For any information structure, there is a unique (adversarial) equilibrium.

Proof. For the sake of contradiction, suppose that for some information structure,
there are two distinct equilibria a, a′. Let {s|ai(s) = 0} denote the set of signals agent
i does not attack in equilibrium a and {s|a′i(s) = 0} denote the set of signals agent i
do not attack in equilibrium a′. By the hypothesis that a and a′ are distinct equilibria,
there exists i such that {s|a(s) = 0} 6= {s|a′(s) = 0}. Consider strategy a′′ defined as
follows:

a′′i (s) =

0 if s ∈ {s|ai(s) = 0} ∩ {s|a′i(s) = 0}
1 otherwise.

For every i, a′′ is weakly more aggressive than a and a′ and strictly more aggressive
than at least one of them. By Lemma 1, agent i receiving a signal in S\({s|ai(s) =

0} ∩ {s|a′i(s) = 0}) prefers attacking if every other agent is adopting strategy a′′.
Note that an equilibrium always exists; thus there must exist an equilibrium where
the agents play at least as aggressively as a′′. In such a case the regime changes with
a greater probability than both in a and in a′, which is a contradiction.

The combination of Lemmas 5-7 yields Proposition 1.
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B.2 Omitted Results on Comparative Statics

Comparative statics for public disclosure. To ease the discussion of comparative
statics, we rewrite equation (4) as

1− c =
1− F(1)
1− F(θ†)

. (13)

Naturally, the cutoff value θ† is decreasing in c. When c ≥ F(1), we have θ† =

0: agents never attack, and the status quo always persists. When the cost of attack
falls, the coordination becomes easier, and the status quo persists in a smaller set of
states. As c → 0, θ† → 1, and the status quo fails whenever θ 6∈ (1, θ̄]. In this case,
the leverage caused by the local domination in (1, θ̄] on lower states vanishes. We
summarize the comparative statics results in the following proposition.

Proposition 3.A. In an optimal public information structure, the ex ante probability that the
status quo persists, 1− F(θ†) has the following properties.

1. It increases in c, converges to 1− F(1) as c→ 0, and equals one if c ≥ F(1).

2. When 1− F(1) increases, and f (·) decreases arbitrarily and accordingly for θ < 1, 1−
F(θ†) increases. When 1− F(1) → 0 and f (·) increases arbitrarily and accordingly
for θ < 1, 1− F(θ†) converges to 0.

It is worth noting that the second statement immediately implies that the status
quo’s probability of persistence increases in F in the sense of first-order stochastic
dominance, i.e. if the distribution of θ becomes G which first-order stochastic dom-
inates F, the status quo persists with a higher probability under an optimal public
information structure.

Comparative statics for local obfuscation. Now we turn to optimal local obfuscation
in the unconstrained case (K = ∞). Rewrite equation (3) as

1− c =
1− F(1)
1− F(θ∗)

+

∫ 1
θ∗ θ f (θ)dθ

1− F(θ∗)
. (14)

Compared to equation (13), equation (14) has a new term on the right-hand side. It
captures the total benefit of using local obfuscation through a sequence of signals.
Notice that its numerator equals the total credit from the states being leveraged by
the local dominance interval (1, θ̄].
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Higher cost of attack makes the coordination more difficult, and therefore lowers
the cutoff state θ∗. Hence, θ∗ decreases in c, and converges to 1 as c→ 0. If

c ≥ F(1)−
∫ 1

0
θ f (θ)dθ, (15)

the agents never attack and the status quo never fails. Notice that in this case, the
ex ante optimal local obfuscator is also ex post optimal to the designer, so it remains
credible even if the designer has no commitment power.

The monotonicity of probability of persistence under first-order stochastic dom-
inance is preserved. Indeed, when the state distribution becomes more skewed to-
wards stronger states, more credit and less discredit are created for every given mea-
sure of persisting < 1 states. Thus the information designer may prevent more states
from being attacked by enrolling them into the iterated process.

Under an optimal information structure 1− F(θ∗) is bounded away from 0 even
if the dominance interval converges to measure 0. The intuition is that a non-public
information structure can leverage much more states — those in the dominance in-
terval, as well as those that persist in the subsequent rounds of IESDS. Note that the
states below but sufficiently close to 1 actually produce more leverage for subsequent
states than consumed from a previous round of IESDS to save them: in particular, ev-
ery state θ satisfying θ > 1− c lies in this category. Then no matter how small 1− F(1)
is, it will start the iterated reasoning process that keeps saving lower states, and the
process will never stop before θ < 1− c. Therefore 1− c presents an explicit upper
bound for θ∗, meaning that as long as θ ∈ [1− c, 1] with a significant probability, the
status quo persists also with a significant probability however small the measure of
invincible states is.

The comparative statics is summarized as follows.

Proposition 3.B. Under the optimal local obfuscator, the ex ante probability that the status
quo persists, 1− F(θ∗) has the following properties.

1. It increases in c, converges to 1− F(1) as c→ 0, and equals one if c ≥ c∗.

2. Suppose that G first-order stochastically dominates F, and let θ∗∗ denote the lower
bound of persisting states under the corresponding optimal local obfuscator given G.
We have 1− G(θ∗∗) ≥ 1− F(θ∗).

3. Consider {Fn}n∈N+ (with fn and θ∗n defined correspondingly) such that limn→∞ 1−
Fn(1) = 0, and suppose that lim infn→∞ fn(θ) > 0 for all θ ∈ Θ̂, for some non-empty
Θ̂ ⊂ [1− c, 1]. Then lim infn→∞ 1− Fn(θ∗n) > 0.
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Proof. The first statement is straightforward.
To prove the second statement, rewrite (3) for F and G to get

c(1− F(θ∗)) =
∫ 1

θ∗
(F(θ)− F(θ∗))dθ

c(1− G(θ∗∗)) =
∫ 1

θ∗∗
(G(θ)− G(θ∗∗))dθ.

Consider θ′ such that G(θ′) = F(θ∗) which implies that θ′ ≥ θ∗ by first-order stochas-
tic dominance. As G(θ) ≤ F(θ) for all θ, we know that

∫ 1
θ′(G(θ) − G(θ′))dθ ≤∫ 1

θ∗(F(θ) − F(θ∗))dθ, i.e. c(1− G(θ′)) ≥
∫ 1

θ′(G(θ) − G(θ′))dθ. As the left-hand side
of (3) must be negative for all θ < θ∗∗ and positive for all θ > θ∗∗, it must be that
θ∗∗ ≤ θ′. Therefore 1− G(θ∗∗) ≥ 1− G(θ′) = 1− F(θ∗).

To prove the third statement, reconsider (3). When
∫ θ̄

1 fn(θ)dθ goes to zero, (3)
becomes

lim inf
n→∞

θ∗n = inf

{
θ′ ∈ Θ : lim inf

n→∞

∫ 1
θ′ θ fn(θ)dθ∫ 1

θ′(1− θ) fn(θ)dθ
≥ 1− c

c

}
.

Note that if θ > 1− c, we have lim infn→∞ θ fn(θ) > lim infn→∞(1− θ) fn(θ), which
implies lim infn→∞

∫ 1
θ θ fn(θ)dθ > lim infn→∞

∫ 1
θ (1− θ) fn(θ)dθ. Therefore, as far as

the measure of θ ∈ [1− c, 1] is bounded away from 0, there exists ε sufficiently small

such that lim infn→∞

∫ 1
1−c θ fn(θ)dθ∫ 1

θ′ (1−θ) fn(θ)dθ
> 1 − c + ε. To get the inequality satisfied, we

need θ′ < 1− c and eventually we have lim infn→∞ θ∗n < 1− c as well. Then we have
lim infn→∞ 1− Fn(θ∗n) > 0.

The above criterion is satisfied by f (θ) > 0 for all θ ∈ Θ̂, for some non-empty
Θ̂ ⊂ [1− c, 1]. The result thus follows.
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