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Abstract

Despite the importance of modeling the Expected Shortfalls (ES) in financial risk analysis, a
testing framework for Granger Causality (GC) in ES does not exist. This makes the econometric
specification of predictive models for ES arbitrary. It is due to the absence of an objective func-
tion to evaluate ES, i.e., ES is not “elicitable” (Gneiting, 2011 JASA). In this paper, I adopt the
concept of “higher-order elicitability” introduced by Fissler and Ziegel (FZ, 2016 AoS ). While
the ES alone is not elicitable, ES is elicitable jointly with the corresponding quantile. In this
paper, using the FZ scoring function for a pair of ES and quantile, I develop a new test for GC
in ES. My test statistic is based on the forecast encompassing (ENC) statistic for a pair of ES
and quantile under the FZ scoring function, which is a “strictly consistent” scoring rule. The
ENC statistic for a pair of ES and quantile is based on the martingale difference property of a
vector of the first order conditions to minimize the higher order elicitable FZ scoring function.
I prove the asymptotic normality of the ENC statistic. Monte Carlo simulations are presented
to examine the finite sample behavior of our ENC statistic to test for GC in ES, which shows a
proper size and a good power. Finally, I consider two applications, one on Value-at-Risk and its
ES of the S&P500 financial returns and another on Growth-at-Risk and Growth Shortfall (GS)
of the US GDP growth.
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1 Introduction

Risk management is important in financial institutions, and choosing a proper risk measure is

crucial in financial risk management. Two risk measures are most widely used in financial markets:

Value at Risk (VaR) and Expected Shortfall (ES). Basel II in 1996 proposed VaR as a proper risk

measure, so VaR has become the standard measure of financial market risk. VaR measures the

maximum potential loss of a given portfolio over a certain period at a given confidence level, so

VaR is the quantile with a given tail probability. However, A quantile-based VaR has two main

drawbacks. First, VaR cannot satisfy the “coherent” since VaR lacks subadditivity. Artzner et

al. (1999) introduce coherent risk measures. They define a risk measure to be coherent if the

risk measure satisfies translation invariance (ρ(X + a) = ρ(X) + a for all a ∈ R ), subadditivity

(ρ(X +Y ) = ρ(X) + ρ(Y )), positive homogeneity (ρ(λX) = λρ(X) for all ρ ≥ 0) and monotonicity

(Y ≤ X implies ρ(Y ) ≤ ρ(X)). Thus, lack of subadditivity means that the VaR of a portfolio

can be larger than the sum of the individual VaRs, which violates the conventional concept that

diversity reduces risk. Second, VaR focus on the probability of the losses but not the magnitude of

the losses. Thus, VaR might not be an appropriate risk measure in some situations. Basel III in

2013 proposed another risk measure, which is Expected Shortfall. ES is defined as the conditional

expectation of the return given that it exceeds the VaR, so more sensitive to the magnitude of

extreme losses. Artzner et al. (1999) also prove that ES is “coherent”. However, the measure of ES

is not “elicitable” (Gneiting, 2011). Elicitable risk measure means there is a “strictly consistent”

scoring function for this risk measure. Then I can compare competing forecasts of this risk measure

with respect to the consistent score (Fissler & Ziegel, 2016). There is no strictly consistent scoring

function for ES. Therefore, it is difficult to evaluate and compare the ES forecasts due to this

drawback.

Gneiting (2011) points out that the mean is elicitable, but the variance is not. However, a
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pair of mean and variance is elicitable. Fissler and Ziegel (2016) introduce a strictly consistent

scoring function for VaR and ES, so the pair of VaR and ES is elicitable. The existence of a strictly

consistent scoring function for VaR and ES (FZ scoring function) accelerates the development of

ES forecast. Patton et al. (2019) propose new dynamic models to forecast VaR and ES by using

the FZ scoring function. Taylor (2019) uses the FZ scoring function to forecast VaR and ES based

on the asymmetric Laplace distribution. In this paper, in order to test Granger causality, I also

use the strictly consistent scoring function for VaR and ES to conduct in-sample estimation and

out-of-sample forecasting.

Out-of-sample forecast comparison is widely used in many fields because it is suggested to test

Granger Causality, which determines whether some independent variables can predict the dependent

variable (Ashley et al., 1980). Many papers in the literature focus on out-of-sample tests for equal

accuracy and encompassing (Diebold & Mariano, 1995; Clark & West, 2006, 2007). Out-of-sample

test for equal accuracy and encompassing need two models. When the big model includes all the

variables in the small model and has one or more other variables that are not in the small model,

these two models are called nested models because the big model nests the small model. When

these two models include the same variables and each model also has one or more unique variables,

these two models are called non-nested models. These two models overlap each other, and no one

can nest another.

When two non-nested models are to be compared, Diebold and Mariano (1995) introduce the

DM statistic for comparing predictive accuracy. Under the null hypothesis of no difference in

predictive accuracy, the test statistic DM is asymptotically N(0,1) distributed. However, Harvey et

al. (1997) point out that the DM test performs well for large samples but could oversize for moderate

samples. Hence, they modified the DM statistic by correcting the bias (HNL statistic). They use a

critical value from the student’s t-distribution instead of the standard normal distribution that the
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DM test used. However, when there are two nested models to be compared, according to Clark and

McCracken (2001), the DM statistic for equal accuracy and the HNL statistic for encompassing are

invalid because these statistics cannot converge to the standard normal distribution. Moreover, If

there are two nested models, Clark and West (2006) and Clark and West (2007) prove that the DM

statistic for mean regression has a downside bias, and this downward bias can be corrected if they

add a non-negative adjustment term on it. In this paper, I extend the mean regression from Clark

and West (2006, 2007) to ES and show that DM statistics for ES using the FZ scoring function also

has a bias under the null hypothesis. I develop the encompassing statistic for Granger Causality in

ES. The encompassing statistic performs good in the size and power tests.

I consider two applications in this paper. The first application focuses on the financial market.

I want to examine if the Macroeconomic and financial variables Granger Cause the equity premium

of S&P 500 in VaR and ES. The second application is devoted to Macroeconomics. Measures of

the downside risk are essential in risk management. The increasing number of policymakers has

focused on the downside risk in the last decade. The International Monetary Fund (IMF) has

recently popularized a risk measure for GDP growth called Growth-at-Risk (GaR). GaR is the

worst conditional GDP growth distribution at a given coverage level (5th percentile) depending

on financial conditions (Adrian et al., 2019). Moreover, Adrian et al. (2019); Chavleishvili et al.

(2021) define a measure of adverse real economic impact to be Growth Shortfall (GS). GS is the

expectation of the GDP growth when it is less than GaR. Like ES, the GS is not elicitable, but a

pair of GaR and GS is elicitable. Therefore, the FZ scoring function is also a strictly consistent

scoring function for GaR and GS. In the second application, I want to check if the GDP growth

can be predicted by the financial conditions in GaR and ES by using the FZ scoring function.

The paper is organized as follows. In section 2, I review the definitions, lemmas, and theorems

of the elicitability. In section 3, I show that the DM statistic has a bias with nested models, and
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introduce the encompassing test for Granger-Causality in forecasting ES by using the FZ scoring

function. In section 4, I prove the ENC for the FZ scoring function is asymptotically standard

normal as the number of out-of-sample forecasts tends to infinity. In section 5, I conduct Monte

Carlo simulations to show that the encompassing statistic has good size and power. In section 6, I

present empirical analysis. Proofs are presented in the appendix.

2 Elicitability

We denote an observation domain O for y, x ∈ O ⊆ Rd1+d2 , d1 = dim(y) and d2 = dim(x), the

conditional distribution F ≡ F (Yt+1|It) for Yt+1 given Xt. Let F be a class of distribution function

on the observation domain O, and let A be an action domain, γ ∈ A. We define Γ : F → A be a

functional. For example, Γ(F (y|x)) may be E(Y |X), Q(Y |X), Var(Y |X), Mode(Y |X) or ES(Y |X),

where E(Y |X) is the conditional mean, Q(Y |X) is the conditional quantile, Var(Y |X) is the con-

ditional variance, Mode(Y |X) is the conditional mode and ES(Y |X) is the conditional Expected

Shortfall. Note that Γ can be a vector of several of these.

Definition 1: (Gneiting, 2011; Fissler & Ziegel, 2016) A scoring function is an F−integrable func-

tion S : A × O → R. S is said to be F-consistent for a functional Γ : F → A if EFS(Γ(F ), Y ) ≤

EFS(γ, Y ) for all F ∈ F and for all γ ∈ A. Furthermore, S is strictly F-consistent for Γ if it is

F-consistent for Γ and if EFS(Γ(F ), Y ) = EFS(γ, Y ) implies that γ = Γ(F ) for all F ∈ F and for

all γ ∈ A.

Definition 2: (Gneiting, 2011; Fissler & Ziegel, 2016) An identification function is an F−integrable

function V : A × O → Rk. V is said to be an F-identification function for a functional Γ : F →

A ⊆ Rk if EFV (Γ(F ), Y ) = 0 for all F ∈ F . Furthermore, V is a strict F-identification function
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for Γ if EFV (γ, Y ) = 0 holds if and only if γ = Γ(F ) for all F ∈ F and for all γ ∈ A.

A statistical functional is elicitable if a scoring function exists that the correct forecast of

the functional is a unique minimizer of the expected score. We can compare or rank the forecasts

of the elicitable functional with their realized scores (Fissler & Ziegel, 2016). Many statistical func-

tionals are 1-elicitable, such as expectation, ratios of expectations, quantiles (Value-at-Risk), and

expectiles. However, some functional are not 1-elicitable, such as variance, mode, and Expected

Shortfall (Gneiting, 2011). Osband (1985) points out that a non-elicitable functional can be a

component of an elicitable functional. For example, variance is not elicitable, but there exists a

2-elicitable functional of mean and variance.

Definition 3: (Fissler & Ziegel, 2016) A functional Γ : F → A ⊆ R2 is called 2-elicitable if

there exists a strictly F−consistent scoring function for Γ. Then the functional Γ = (Γ1,Γ2) : F →

A is 2 elicitable.

According to Fissler and Ziegel (2016), there is a relation among strictly consistent scoring function

S, strict identification function V , and a matrix-valued function h. We define a vector-valued m

to be a vector of m1 and m2, and a vector-valued γ to be a vector of γ1 and γ2. Taking the first

order conditions of the expected loss function with respect to γ, γ1 and γ2 respectively, we can get

EFm, EFm1, and EFm2 to be

EFm ≡ ∂EFS(γ, Y )

∂γ
= h(γ)EFV(γ, Y ) = 0, (1)

EFm1 ≡
∂EFS(γ1, γ2, Y )

∂γ1
= h11(γ1, γ2)EFV1(γ1, γ2, Y ) + h12(γ1, γ2)EFV2(γ1, γ2, Y ) = 0,

EFm2 ≡
∂EFS(γ1, γ2, Y )

∂γ2
= h21(γ1, γ2)EFV1(γ1, γ2, Y ) + h22(γ1, γ2)EFV2(γ1, γ2, Y ) = 0,
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where

m = [m1,m2]
′, γ = [γ1, γ2]

′,

V(γ1, γ2, Y ) =

 V1(γ1, γ2, Y )

V2(γ1, γ2, Y )

 ,

h(γ1, γ2) =

h11(γ1, γ2) h12(γ1, γ2)

h21(γ1, γ2) h22(γ1, γ2)

 .
Concerning equation (1), the strict identification function V is a function of variable y and functional

γ, and the function h is a function of γ only. There is no y in the function of h. Functional forms

of V1 and V2 are shown in Eq (3).

Quantile is elicitable, but Expected Shortfall is not elicitable (Gneiting, 2011). Fissler and Ziegel

(2016) propose a strictly consistent scoring function of joint Value-at-risk (VaR) and Expected

Shortfall (ES) as

S (γ1, γ2, y) = (1{y ≤ γ1} − α)G1 (γ1)− 1{y ≤ γ1}G1 (y)

+G2 (γ2)

(
γ2 − γ1 +

1

α
1{y ≤ γ1} (γ1 − y)

)
− G (γ2) + a (y) ,

(2)

where γ1 represents VaR and γ2 represents ES, G′ = G2, G1 is increasing function, and G2 is

increasing and convex function. Therefore, a pair of VaR and ES is 2-elicitable. With regard to

Fissler and Ziegel (2016), taking the derivatives of the scoring function with respect to γ1 and γ2,

we have

EFm1 =
∂EFS(γ1, γ2, Y )

∂γ1
=

[
G′1(γ1) +

1

α
G2(γ2)

]
EF (1{y ≤ γ1} − α) = 0,

EFm2 =
∂EFS(γ1, γ2, Y )

∂γ2
=
γ1G

′
2(γ2)

α
EF (1{y ≤ γ1} − α) +G′2(γ2)EF

(
γ2 −

1

α
y1{y ≤ γ1}

)
= 0,
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where the strict identification function is

V(γ1, γ2, y) =

 V1(γ1, γ2, Y )

V2(γ1, γ2, Y )

 =

 1{y ≤ γ1} − α

γ2 − 1
αy1{y ≤ γ1}

 , (3)

and the matrix-valued function h is

h(γ1, γ2) =

G′1(γ1) + 1
αG2(γ2) 0

γ1G′2(γ2)
α G′2(γ2)

 . (4)

For the first component of the identification function V , EF (1{y ≤ γ1} − α) = 0 if and only if

γ1 = VaRα(y). For the second component of V , EF
(
γ2 − 1

αy1{y ≤ γ1}
)

if and only if γ2 = ESα(y).

Therefore, EFV (γ1, γ2, y) = 0 if and only if (γ1; γ2) equals the true VaR and ES of y, so the joint

functional of VaR (Quantile) and ES is 2-elicitible. It indicates that this scoring function is strictly

consistent for a pair of VaR and ES, which means that it can be used for forecasts comparison of

VaR and ES.

Patton (2011) states that positive homogeneity of the scoring function is important for forecast

comparison. Moreover, Patton and Sheppard (2009) find out that homogeneity of degree zero leads

to the higher power of Diebold-Mariano tests in volatility forecast. Patton et al. (2019) denote

SFZ0 as the scoring function with homogeneity of degree zero. SFZ0 is homogeneous of degree zero

if and only if G1(γ) = 0 and G2(γ) = −1/γ. For easy to read, let q replace γ1 and e replace γ2.

Then, the “FZ0” scoring function is

SFZ0 (qα, eα, y) = Sα (qα, eα, y) = − 1

αeα
1{y ≤ qα}(qα − y) +

qα
eα

+ log(−eα)− 1. (5)

In this paper, we use this FZ scoring function SFZ0 to test forecast encompassing in Expected

Shortfall.
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3 Forecast Encompassing Test for Granger Causality in Expected
Shortfall

In this section, we develop the forecast encompassing test in the ES. The conditional distribution

F ≡ F (Yt+1|It) for Yt+1 given Xt. Define γ1 = q for VaR. Define γ2 = e for ES. We have two

models. One model is without conditioning on xt, and the other model is with conditioning on xt.

The unconditional ES of the unconditional distribution F1 = FY (Y ) is Γ(F1). The conditional ES

of the conditional distribution F2 = FY |X(Y |X) is the functional Γ(F2). The two nested models

for VaR qt+1 are

Model 1 : yt+1 = c1,α + u
(1)
t+1,α ≡ x

′
1,tβ1,α + u

(1)
α,t+1 (6)

Model 2 : yt+1 = c2,α + b1,αxt + u
(2)
α,t+1 ≡ x

′
2,tβ2,α + u

(2)
α,t+1 (7)

where q
(1)
α,t+1 = c1,α = x′1,tβ1,α and q

(2)
α,t+1 = c2,α = x′2,tβ2,α. ES for Model 1 and Model 2 are

defined as e
(1)
t+1 = EF

[
Yt+1 | Yt+1 ≤ q(1)α,t+1

]
and e

(2)
t+1 = EF

[
Yt+1 | Yt+1 ≤ q(2)α,t+1

]
. The dependent

variable yt+1 is a scalar random variable. x1,t is a strict subset of x2,t. x
′
1,t = 1, β1,α = c1,α, x

′
2,t =

(1, xt) , β2,α = (c2,α, bα). Below the subscript α is omitted for simplicity.

The FZ scoring function is the scoring function SFZ0 in Patton et al. (2019), that is

Sα (q, e, y) = − 1

αe
1{y ≤ q} (q − y) +

q

e
+ log (−e)− 1.

According to Patton et al. (2019), the first oder conditions of FZ scoring function with respect

to VaR qt+1 and ES et+1 are

EF
[
− 1

αet+1
1{Yt+1 ≤ qt+1}+

1

et+1

]
= 0, (8)

EF
[

1

α (et+1)
21 {Yt+1 ≤ qt+1} (qt+1 − Y )− qt+1

e2t+1

+
1

et+1

]
= 0, (9)

which means that m1 = − 1
αet+1

1{yt+1 ≤ qt+1} + 1
et+1

and m2 = 1
αe2t+1

1{y ≤ qt+1}(qt+1 − yt+1) −
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qt+1

e2t+1
+ 1

et+1
are martingale difference sequences. In the last section, we have already defined m =

(m1,m2)
′. So, rewriting equations (8) and (9), we have

EFm = h(qt+1, vt+1)EFV(qt+1, vt+1, yt+1) = 0, (10)

where the strict identification functions in equation (1) are

V(qt+1, et+1, yt+1) =

 V1(qt+1, et+1, yt+1)

V2(qt+1, et+1, yt+1)

 =

 1{yt+1 ≤ qt+1} − α

et+1 − 1
αyt+11{yt+1 ≤ qt+1}

 , (11)

and the matrix-valued function h is

h(qt+1, vt+1) =

− 1
αet+1

0

− qt+1

αe2t+1

1
e2t+1

 . (12)

In equation (11), V1 shows how we define VaR (quantile). We have EFV1 = 0, so EF (1{yt+1 ≤

qt+1} − α) = 0 implies EF (1{yt+1 ≤ qt+1}) = α. V2 shows how we define ES. We know that

EFV2 = 0, so EF (et+1 − 1
αyt+11{yt+1 ≤ qt+1}) implies et+1 = 1

αEF (yt+11{yt+1 ≤ qt+1}).

In order to test equal predictive accuracy of the two nested models, we set the null and alter-

native hypotheses are

H0 : EF
[
Sα

(
q
(1)
t+1, e

(1)
t+1, Yt+1

)
− Sα

(
q
(2)
t+1, e

(2)
t+1, Yt+1

)]
= 0 (13)

H1 : EF
[
Sα

(
q
(1)
t+1, e

(1)
t+1, Yt+1

)
− Sα

(
q
(2)
t+1, e

(2)
t+1, Yt+1

)]
> 0 (14)

We set the alternative hypothesis is one side because we expect that the forecasts from Model 2

are better than those from Model 1, as Clark and West (2006) did. When coefficient b = 0, x

does not Granger cause y. When coefficient b 6= 0, x Granger causes y. Define R as the in-sample

observations. Define P as the out-of-sample forecasts. The DM statistics based on the FZ loss
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differential is

D = EF
[
Sα

(
q
(1)
t+1, e

(1)
t+1, Yt+1

)
− Sα

(
q
(2)
t+1, e

(2)
t+1, Yt+1

)]
D̂R,P = P−1

T∑
t=R

[
Sα

(
q̂
(1)
t+1, ê

(1)
t+1, Yt+1

)
− Sα

(
q̂
(2)
t+1, ê

(2)
t+1, Yt+1

)]
where T + 1 = R+P . For mean regression with nested models, Clark and West (2006, 2007) prove

that the DM statistic has downward bias and show that adjusted DM statistics (DM statistics plus

the adjusted term) obtains zero mean expectation under the null hypothesis, corrects the size, and

increases the power. Thus, at first, we attempt to show that the DM statistic based on the FZ loss

differential D̂R,P has a non-zero mean under the null hypothesis.

Thereom 1: the DM statistic of the FZ loss differential D̂R,P has a non-zero mean. Thus,

ED̂R,P 6= 0 under H0.

Proof: In order to show that D̂P is non-zero, we consider eight cases. (1).Yt+1 > q̂
(1)
t+1, Yt+1 >

q̂
(2)
t+1 and ê

(1)
t+1 > ê

(2)
t+1.(2).Yt+1 > q̂

(1)
t+1, Yt+1 > v̂

(2)
t+1 and ê

(1)
t+1 < ê

(2)
t+1.(3).Yt+1 ≤ q̂(1)t+1, Yt+1 > q̂

(2)
t+1 and ê

(1)
t+1 >

ê
(2)
t+1.(4).Yt+1 ≤ q̂

(1)
t+1, Yt+1 > q̂

(2)
t+1, and ê

(1)
t+1 < ê

(2)
t+1.(5).Yt+1 > q̂

(1)
t+1, Yt+1 ≤ q̂

(2)
t+1 and ê

(1)
t+1 >

ê
(2)
t+1.(6).Yt+1 > q̂

(1)
t+1, Yt+1 ≤ q̂

(2)
t+1, and ê

(1)
t+1 < ê

(2)
t+1. (7).Yt+1 ≤ q̂

(1)
t+1, Yt+1 ≤ q̂

(2)
t+1 and ê

(1)
t+1 >

ê
(2)
t+1.(8).Yt+1 ≤ q̂(1)t+1, Yt+1 ≤ v̂(2)t+1 and ê

(1)
t+1 < ê

(2)
t+1. In these eight cases, we can show that D̂R,P has

non-zero mean. See Appendix A2 for detail.

Due to the bias of DM statistic, we want to develop the encompassing test to show that

the encompassing statistic has zero mean. In order to find out the encompassing statistic for the

ES, we build a combined FZ scoring function by combining two models, VaR q and ES e, and take

the derivative of the expectation of the combined FZ scoring function with respect to the weight λ.
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Theorem 2: Under H0,

C ≡ EF
[
m

(1)
1

(
q̂
(2)
t+1 − q̂

(1)
t+1

)
+m

(1)
2

(
ê
(2)
t+1 − ê

(1)
t+1

)]
= 0. (15)

ĈR,P ≡ P−1
T∑
t=R

[
m̂

(1)
1,t+1

(
q̂
(2)
t+1 − q̂

(1)
t+1

)
+ m̂

(1)
2,t+1

(
ê
(1)
t+1 − ê

(2)
t+1

)]
p→ C = 0 (16)

as R,P→∞ and P/R→∞.

Proof: We combine model 1 and model 2 with weight 1 − λ and λ respectively. To estimate

the expectation of FZ scoring function with combined VaR q
(c)
t+1 and ES e

(c)
t+1 to find out the the

encompassing statistic under null hypothesis, we have

λ = arg min
λ

EFSα(q
(c)
t+1, e

(c)
t+1, Yt+1),

where q
(c)
t+1 = (1− λ) q

(1)
t+1 +λq

(2)
t+1 and e

(c)
t+1 = (1− λ) e

(1)
t+1 +λe

(2)
t+1. We define C to be the first order

condition of the expected FZ scoring function with respect to λ, then we have

C ≡
∂EF

[
Sα(q

(c)
t+1, e

(c)
t+1, Yt+1)

]
∂λ

=
∂EFSα(q

(c)
t+1, e

(c)
t+1, Yt+1)

∂v(c)
∂q

(c)
t+1

∂λ
+
∂EFSα(q

(c)
t+1, e

(c)
t+1, Yt+1)

∂e
(c)
t+1

∂e
(c)
t+1

∂λ

= E
[
m

(c)
1

(
q
(2)
t+1 − q

(1)
t+1

)
+m

(c)
2

(
e
(2)
t+1 − e

(1)
t+1

)]
= E

[
m

(1)
1

(
q
(2)
t+1 − q

(1)
t+1

)
+m

(1)
2

(
e
(2)
t+1 − e

(1)
t+1

)]
= 0

under H0.

Due to the first order condition, C should be 0. We estimate C by ĈR,P , so ĈR,P is defined as

ĈR,P ≡ P−1
T∑
t=R

[
m̂

(1)
1,t+1

(
q̂
(2)
t+1 − q̂

(1)
t+1

)
+ m̂

(1)
2,t+1

(
ê
(2)
t+1 − ê

(1)
t+1

)]
p→ C = 0

under H0, as R,P →∞ and P/R→∞

(17)
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Under the null hypothesis, λ = 0, we obtain q
(c)
t+1 = q

(1)
t+1 and e

(c)
t+1 = e

(1)
t+1. Thus, we obtain

E(ĈR,P ) = 0, so ĈR,P
p→ 0 as R,P→∞. See Appendix A2 for details.

In order to get the encompassing statistic for ES, we consider endowing Model 1 and Model 2

with the weight 1− λ and λ respectively, and find out the property of optimal weight λ̂. Theorem

3 gives the relationship between λ̂ and ĈP .

Theorem 3: We denote λ = arg minλ EFS
(
q
(c)
t+1, e

(c)
t+1, Yt+1

)
. Under H0, λ̂ → 0, ĈR,P

p→ 0 as

R,P →∞.

Proof: See Appendix B.

This theorem shows that λ̂→ 0 and ĈR,P
p→ 0 as R,P →∞ are equivalent.

We compare the DM statistic and the encompassing statistic with the CCS statistic, the

test statistic by Chao et al. (2001). Chao et al. (2001) show that the CCS statistic is M̂R,P =

P−1
∑T

t=R û
(1)
t+1xt. In order to compare the equal predictive accuracy of two nested expectile mod-

els, we standardize these three statistics. The DM statistic is DMP ≡ Ŝ−0.5R,P

√
PD̂R,P , where SR,P =

var
(√

PD̂R,P

)
and SR,P −ŜR,P

p→ 0. The encompassing statistic is ENCP ≡ Q̂−0.5R,P

√
PĈR,P , where

QR,P = var
(√

PĈR,P

)
and QR,P−Q̂R,P

p→ 0. The CCS statistic is CCSP ≡ Ŵ−0.5R,P

√
PM̂R,P , where

WR,P = var
(√

PM̂R,P

)
and WR,P − ŴR,P

p→ 0.

4 Asymptotic Normality of the ENC Statistic for ES

In this section, we compare two nested models using encompassing test and model combination,

then explore the properties of the two methodologies.
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4.1 Encompassing Test for Equal Predictive Accuracy

We derive the asymptotic distribution of ENCP . To show ENCP to be asymptotical standard

normality, we simplify the ENCP statistic.

ENCP = Q
−1/2
P

√
PĈR,P =

∑
t ct√∑

t c
2
t − PĈ2

R,P

,

where

m̂1,t+1 = − 1

αê
(1)
t+1

1{Yt+1 ≤ q̂(1)t+1}+
1

ê
(1)
t+1

m̂2,t+1 =
1

α
(
ê
(1)
t+1

)21
{
Yt+1 ≤ q̂(1)t+1

}(
q̂
(1)
t+1 − Yt+1

)
−

q̂
(1)
t+1(

ê
(1)
t+1

)2 +
1

ê
(1)
t+1

.

ĈP = P−1
T∑
t=R

ct = P−1
T∑
t=R

m̂1,t+1

(
q̂
(2)
t+1 − q̂

(1)
t+1

)
− m̂2,t+1

(
ê
(2)
t+1 − ê

(1)
t+1

)
.

In order to obtain the limiting distribution in Theorem 4, we need some notations. We define

g
(
u
(i)
t+1

)
=
[
α− 1

(
u
(i)
t+1 < 0

)]
. The score ki,t(βi,t) is the first order condition of expected FZ scor-

ing function with respect to βi,t. Let hi,t+1 = −ki,t+1(βi,t) and Hi(t+1)− 1
R

∑R
t=1 hi,t+1. We denote

the Hessian to be B−1i = EFΛ(βi,t), which is the second order condition of expected FZ scoring

function with respect to βi,t. Therefore, B1 = 1 and B2 =

 1 0

0 EFΛ(β2,t)


−1

. By the central

limit theorem,
√
R
[
R−1

∑t
s=t−R+1 h2,s

]
∼ N

(
0, Z2B−12

)
, where Z2B−12 = E[ki,t(βi,t)ki,t(βi,t)

′].

The following assumptions can be used to obtain the limiting distribution in Theorem 4. These

assumptions are only sufficient but not necessary and sufficient.

Assumption 1: The parameter estimates β̂i,t, i = 1, 2, t = R, . . . , T, satisfy β̂i,t−βi = Bi(t)Hi(t) =(
R−1

∑t
j=t−R+1 Λi,j

)−1 (
R−1

∑t
j=t−R+1 hi,j

)
.
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Assumption 2: Let Ut =
[
Ekt(θ), x′2,t − Ex′2,t, h′2,t, vec

(
h2,th

′
2,t − Eh2,th′2,t

)
,
]
. (a) EUt = 0. (b)

Denote Ũt to be the vector of Ut. R
−1E

(∑t
j=t−R+1 Ũj

)(∑t
j=t−R+1 Ũj

)′
= Ω <∞ is p.d.

Assumption 3: (a) Eh2,th′2,t = Z2B−12 , (b) E (h2,t | h2,t−j , j = 1, 2, . . .) = 0.

Assumptions 2 and 3 allow the application of an invariance principle and are sufficient for joint weak

convergence of partial sums and averages of these partial sums to Brownian motion and integrals

of Brownian motion.

Assumption 4: limP,R→∞ P/R = π =∞.

In order to get accurate out-of-sample forecasts, it is essential to select an optimal in-sample

window. However, no consensus opinion has been reached as it depends on the characteristic of

the model. Inoue et al. (2017) find the optimal window size by minimizing the conditional mean

squared forecast error in a time-varying predictive regression model. They show that the optimal

window size satisfies R = O(T 2/3). Hong et al. (2020) consider minimizing various out-of-sample

forecast errors, including the unconditional, conditional, and global mean squared forecast error,

respectively. The optimal window size they found is R = O(T 4/5). The out-of sample window P

has a faster divergent rate than in sample window R. Thus, in our model, we set P/R→ +∞.

Theorem 4: Let Assumptions 1-4 hold. ENCP
d−→ N(0, 1), as P,R→∞, under H0 : λ = 0.

14



West (1996) proves that ENC statistic is asymptotically normal under π ≥ 0 for mean regres-

sion when two models are non-nested. Clark and McCracken (2001) show that ENCP statistic is

asymptotically standard normal under π = 0, and ENCP statistic is not standard normal under

π > 0 when two mean models are nested models. In this theorem, we show that ENCP statistic is

asymptotically standard normality under π tends to ∞. See Appendix C for proof of Theorem 4.

5 Monte Carlo Simulation

5.1 Simulation Design

In order to show the asymptotic distribution of encompassing test for FZ scoring function, we have

two DGPs.

In both two DGPs, we set xt in Model 2 as an AR(1) stationary process, so xt = φxt−1 + vt,

where vt
iid∼ N(0, σ2v). Thus, x has zero mean and variance σ2v/(1 − φ). The error term u

(2)
t+1 of

Model 2 for Value-at-risk (quantile) satisfies

E
(
α− 1

(
u
(2)
t+1 < 0

)
| xt
)

= 0 (18)

which means that α− 1(u
(2)
t+1 < 0) is a martingale difference series and the conditional quantile of

v
(2)
t+1 given xt is zero.

In DGP 1, we generate the u2t+1 following normal distribution. The mean and variance of u2t+1

satisfy

E
(
u
(2)
t+1

)
√

Var
(
u
(2)
t+1

) =
−Φ−1(α)σu

σu
= −Φ−1(α) (19)

We set the Var
(
u
(2)
t+1

)
= σ2u, then we can get E

(
u
(2)
t+1

)
= −Φ−1(α)σu. Second, we generate {yt+1}

from yt+1 = c2 + bxt + e
(2)
t+1, then we has the mean and variance as follows:
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E (yt+1) = E
(
c12 + b1xt + u

(2)
t+1

)
= c12 + 0− Φ−1(α)σu

Var (yt+1) = Var
(
c12 + b1xt + e

(2)
t+1

)
= b21σ

2
x + σ2u

In order to make sure all v̂t+1 and êt+1 to be negative, we set E(Y ) = −3, which implies that

c12 = −3 + Φ−1(α)σu. Third, we find out mean and variance of u
(1)
t+1 as follows:

E
(
u
(1)
t+1

)
= E (yt+1 − c11) = E

(
c12 + b1xt + u

(2)
t+1 − c11

)
= c12 + 0− Φ−1(α)σu − c11

Var
(
u
(1)
t+1

)
= Var (yt+1 − c11) = Var

(
c12 + b1xt + e

(2)
t+1 − c11

)
= b21σ

2
x + σ2u

We set u
(1)
t+1 following normal distribution and should satisfy

E
(
u
(1)
t+1

)
√

Var
(
u
(1)
t+1

) =
c12 − c11 − Φ−1(α)σu√

b21σ
2
x + σ2u

= −Φ−1(α) (20)

Simplifying the above equation, c12 − c11 = Φ−1(α)σu − Φ−1(α)
√
b21σ

2
x + σ2e . Since c12 = −3 +

Φ−1(α)σu, c11 = −3 + Φ−1(α)
√
b21σ

2
x + σ2e . Under the null, when b1 = 0, c11 = c12. We consider

α ∈ {0.01, 0.025, 0.05, 0.1}, φ ∈ {0, 0.95}, σu ∈ {1}, σv ∈ {1}, and b ∈ {0, 0.1}.

In DGP2, we generate yt+1 by using GARCH(1,1).

yt+1 = σt+1ut+1

σt+1 = ω + ζu2t + βσ2t + δx2t

ut ∼ N(0, 1)

We set the parameters to be ζ = 0.05, β = 0.85, b ∈ {0, 0.1}, and ω = 1 − ζ − β − δ. We make

xt follow N(0, 1). According to Patton et al. (2019), Under DGP2, by using standard normal

distribution for ut+1,

VaRα,t+1 = aασt+1 aα = Φ−1(α)

ESα,t+1 = bασt+1 bα = −φ
(
Φ−1(α)

)
/α

In our simulation, we set the number of in-sample observations R ∈ {120, 240, 480} and out-
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of-sample forecasts P ∈ {240, 480, 1200}. We use rolling windows to estimate θ by minimizing

SFZ0. In DGP1, θ1 = c1 for Model 1 and θ2 = (c2, b)
′ for Model 2. Then, we can obtain the one

step ahead forecast q
(1)
t+1 = c1 and e

(1)
t+1 = EF (Yt+1|Yt+1 ≤ q

(1)
t+1) for Model 1 and q

(2)
t+1 = c2 + bxt

and e
(2)
t+1 = EF (Yt+1|Yt+1 ≤ q

(2)
t+1 for Model 2. In DGP2, θ1 = (ω1, ζ1, β1, a1,α, b1,α) for Model 1

and θ2 = (ω2, ζ2, β2, a2,α, b2,α, δ) for Model 2. Then, we can obtain the one step ahead forecast

v
(1)
t+1 = a1,ασ

(1)
t+1 and e

(1)
t+1 = b1,ασ

(1)
t+1 for Model 1 and q

(2)
t+1 = a1=2,ασ

(2)
t+1 and e

(2)
t+1 = b2,ασ

(2)
t+1 for

Model 2. By using those forecast variables, we can obtain DMR,P , ENCR,P , and CCSR,P statistics.

Repeating this procedure 2000 times, we get the asymptotic distributions of DMR,P , ENCR,P , and

CCSR,P , and the size and power of these three statistics.

5.2 Simulation result on encompassing test

Figures 1-2 and tables 1-2 show the Monte Carlo simulation in DGP1 for asymptotic distribution

and the size and powers of DMR,P , ENCR,P , and CCSR,P statistics under different α, b, and φ.

Table 1 shows the result of the size of the test under b = 0 and φ = 0. For different in-sample

observations R, out-of-sample forecasts P , and α, the result demonstrates that DMR,P is much

less than 5% under the 5% nominal level, implying that DMP has a downward bias under H0.

However, the sizes of ENCR,P and CCSR,P are good under the 5% nominal level. Table 2 shows

the result of the power of the test under b = 0.1 and φ = 0.95. It illustrates that ENCR,P has the

highest power and DMR,P has the higher power than CCSR,P for different in-sample observations

R, out-of-sample forecasts P and α.

Figure 1 shows the asymptotic distribution of DMR,P , ENCR,P , and CCSR,P statistics under

H0 when α = 0.05. These figures demonstrate that DMR,P has a negative mean and high kurtosis,

which implies that DMR,P has a downward bias under H0. However, the asymptotic distributions of

ENCR,P and CCSR,P are close to the standard normal distribution. Figure 2 shows the asymptotic

distribution of DMR,P , ENCR,P and CCSR,P statistic under α = 0.05, b = 0.1 and φ = 0, 0.95.
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From these figures, we can see that the asymptotic distribution of CCSR,P move to the left, so CCSP

has the lowest mean compared to DMR,P and ENCR,P . Moreover, the asymptotic distribution of

DMR,P and ENCR,P move to the right, and the means of DMR,P are lower than means of ENCR,P .

6 Empirical Analysis

6.1 Empirical Analysis of VaR and ES for Monthly Equity Premium

In this subsection, we use the data from Welch and Goyal (2008) to check the predictive

variable in VaR and ES for Equity Premium. We choose to use monthly data from January 1926

to December 2019, which contains 1128 observations. There is a total of 15 Macroeconomic and

financial variables.

We build two nested models for VaR and ES to test if these 15 variables Granger cause the

equity premium respectively. For Model 1, we find out the VaR and ES by using the previous R

in-sample observations of the equity premium and then use estimated VaR and ES to predict the

future equity premium at time R+ 1. For Model 2, we estimate the constant term and covariance

term using the previous R in-sample observations of equity premium and an independent variable

and then use these estimated coefficients and the independent variable to forecast the future equity

premium. In this empirical work, the forecasts begin 40 years after the data are available, and the

out-of-sample forecasts begin 1965. We choose α ∈ {0.01, 0.025, 0.05, 0.1}.

Tables 5 - 6 show the ENC statistics for 15 Macroeconomic and financial variables under four

different α. In Table 5, forecasts begin 40 years after the data are available, which means the

number of in-sample observations R = 480. From this table, when α = 0.01, we can see that

the dividend payout ratio is the only variable that Granger Cause the equity premium in VaR

and ES at a 10% significance level. When we choose α = 0.025, the earning price ratio, stock

variance, and default yield spread Granger Cause the equity premium on VaR and ES respectively

at a 5% significance level. Moreover, the equity premium can be predicted by the dividend yield,
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treasury-bill rate, default return spread, and consumption, wealth, income ratio in VaR and ES at

α = 0.05, respectively. When α = 0.1, seven variables Granger Cause the equity premium in VaR

and ES: dividend price ratio, dividend yield, earning price ratio, dividend payout ratio, default

return spread, long term return, and consumption, wealth, income ratio.

Table 6 demonstrates the ENC statistics for 15 variables when out-of-sample forecasts begin

1965. From this table, when α = 0.01, we can see that the term spread is the only variable that

Granger Cause the equity premium in VaR and ES at a 10% significance level. The long term return

and earning price ratio Granger Cause the equity premium in VaR and ES at a 1% significance

level when α = 0.025 and α = 0.05 respectively. Moreover, when α = 0.1, the equity premium can

be predicted by the dividend price ratio, dividend yield, earning price ratio, default return spread,

and consumption, wealth, income ratio. From Tables 5 - 6, we can see that the decreasing number

of variables can Granger Cause the equity premium when we decrease α. Thus, fewer variables

have the predictive ability of the equity premium in VaR and ES when we focus on extreme losses.

Compared to forecasts beginning 1965, the equity premium can be predicted by more variables at

different α when forecasts begin 40 years after the data are available. Thus, more variables can

Granger Cause the equity premium when the number of in-sample observations becomes small.

6.2 Empirical Analysis of GaR and GS for Quarterly GDP Growth

Measures of the downside risk are essential in risk management. The increasing number of pol-

icymakers has focused on the downside risk in the last decade. The International Monetary Fund

(IMF) has recently popularized a risk measure for GDP growth called Growth-at-Risk (GaR). GaR

is the worst conditional GDP growth distribution at a given coverage level (5th percentile) depend-

ing on financial conditions (Adrian et al., 2019). Moreover, Adrian et al. (2019); Chavleishvili et

al. (2021) define a measure of adverse real economic impact to be Growth Shortfall (GS). GS is the

expectation of the GDP growth when it is less than GaR. In order to check if financial conditions
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have the predictive ability of the Macroeconomics risk, we choose to use the National Financial

Conditions Index (NFCI), which is computed by the Federal Reserve Bank of Chicago. The NFCI

is calculated from a dynamic factor model with 105 financial variables to estimate the weekly US

financial conditions. Financial conditions are tighter than average when NFCI is positive, while

financial conditions are looser than average when NFCI is negative.

In this subsection, we use the data from Adrian et al. (2019) to check if the NFCI can predict

GDP growth on GaR and GS. The data are Quarterly from 1973Q1 to 2019Q4. There is a total of

188 observations. We consider GDP growth as our yt+h and NFCI as our xt. The test is an h-step

out-of-sample Granger Causality test. We choose h ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8}. Forecasts of GaR and

GS begin 20 years after data are available, which means R = 80. The rolling window estimation is

used in this test. We also use the FZ scoring function for a pair of GaR and GS to examine the

forecast encompassing test for Granger Causality on GaR and GS.

Figure 5 shows the time series of the real GDP growth and the NFCI. This figure is the same

as Figure 2 in Adrian et al. (2019). Due to the properties of the GDP growth and the NFCI,

there is a negative relationship between these two variables. In the regular periods, when GDP

growth is positive, GDP growth is more volatile than the NFCI. During the National Bureau of

Economic Research (NBER) recession dates, the GDP growth reaches negative outcomes, and the

NFCI reaches positive outcomes. Figure 5 demonstrates the negative relationship between GDP

growth and NFCI. Thus, deteriorations in financial conditions coincide with the decreases in GDP

growth. Then, we want to use the forecast encompassing test to examine if the NFCI Granger

Causes the GDP growth on GaR and GS by using the FZ loss function.

Table 7 displays the ENC statistics and p-values of the Granger Causality test for various h

when α = 0.05. This table shows that the NFCI Granger Causes the four quarters ahead (one

year) GDP growth on GaR and GS at the 10% significance level. It implies that the downside risk
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will increase in four quarters when the financial conditions become tighter in the current quarter.

However, the NFCI cannot Granger Cause GDP growth in the other quarters ahead.

Moreover, we want to explore if there are significant changes in ĈR,t in different periods. Section

2 states that the encompassing statistic ENCR,P can be obtained by standardizing the ĈR,t. Thus,

we plot ĈR,t for various of h to check the change in ĈR,t in the out-of-sample period when α = 0.05.

Figure 6 shows the time series of ĈR,t, Ĉ1,R,t, and Ĉ2,R,t, where Ĉ1,R,t = m̂1,t

(
ˆGaR2,t − ˆGaR1,t

)
is the GaR term in the ĈR,t, and Ĉ2,R,t = m̂2,t

(
ĜS2,t − ĜS1,t

)
is the GS term in the ĈR,t. From

Figure 6, we can see that there are pikes of ĈR,t, Ĉ1,R,t, and Ĉ2,R,t for various h during the NBER

recession dates. The spike becomes smaller when the quarter ahead h becomes larger. When h is

zero, current quarter GDP growth and NFCI are used. Then the spike is more considerable. The

spike becomes negligible as the number of quarters ahead h goes up.

Furthermore, we check if there are differences between the forecast GaR without the NFCI and

with the NFCI. Figure 7 demonstrates the changes of the ˆGaR1,R,t, ˆGaR2,R,t, ĜS1,R,t, and ĜS2,R,t

in the out-of-sample period, where ˆGaR1,R,t and ˆGaR2,R,t are the forecast GaR without the NFCI

and with the NFCI, and ĜS1,R,t and ĜS2,R,t are the forecast GS without the NFCI and with the

NFCI. This figure displays that the difference between ˆGaR1,R,t and ˆGaR2,R,t and the difference

between ĜS1,R,t and ĜS2,R,t become small during the NBER recession dates when the number of

quarters ahead h increases from 0 to 8. For the NBER recession dates from 2007Q4 to 2009Q2,

the difference between ˆGaR1,R,t and ˆGaR2,R,t and the difference between ĜS1,R,t and ĜS2,R,t are

large when h = 0, 1, 2, 3, 4. However, the difference between ˆGaR1,R,t and ˆGaR2,R,t is very small,

and the difference between ĜS1,R,t and ĜS2,R,t is almost zero when h = 5, 6, 7, 8.
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7 Conclusion

In this paper, I develop a new forecast encompassing test for Granger Causality for VaR and

ES. The strictly consistent scoring function for VaR and ES is from Fissler and Ziegel (2016) and

Patton et al. (2019). I show that the DM statistic has a bias for the FZ scoring function with two

nested models under the null hypothesis. I exhibition that the encompassing statistic (ENC) has

zero mean under the null hypothesis with no Granger Causality. I prove that the ENC statistic

is asymptotically standard normal. Monte Carlo simulation demonstrates that the ENC statistic

has good size and has the highest power under the alternative hypothesis H1 in finite samples

compared to DM and CCS statistics. I demonstrate that ENC statistic improves the predictive

accuracy compared with DM test. I consider two applications. The first empirical analysis of VaR

and ES illustrates some Macroeconomic and financial variables Granger Cause the equity premium

in VaR and ES at different α. The second empirical analysis of GaR and GS shows that the NFCI

Granger Causes the four quarters ahead GDP growth on GaR and GS when α is 0.05.
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Appendix A

A1: Proof of Theorm 1.

DM statistics of FZ loss-differential can be rewrite as follows:

D̂P =P−1
T∑
t=R

[
− 1

αê
(1)
t+1

1
{
Yt+1 ≤ q̂(1)t+1

}(
q̂
(1)
t+1 − Yt+1

)
+
q̂
(1)
t+1

ê
(1)
t+1

+ log
(
−ê(1)t+1

)
+

1

αê
(2)
t+1

1
{
Yt+1 ≤ q̂(2)t+1

}(
q̂
(2)
t+1 − Yt+1

)
−
q̂
(2)
t+1

ê
(2)
t+1

− log
(
−ê(2)t+1

)]

In order to prove that D̂P is non-zero at each t, we denote D̂P = P−1
∑T

t=R dt and show dt is

non-zero at each t.

(1). Yt+1 > q̂
(1)
t+1, Yt+1 > q̂

(2)
t+1, and ê
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t+1
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t+1

ê
(1)
t+1︸︷︷︸
>0

−
q̂
(2)
t+1

ê
(2)
t+1︸ ︷︷ ︸
<0

+
[
log
(
−ê(1)t+1

)
− log

(
−ê(2)t+1

)]
︸ ︷︷ ︸

<0
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t+1, Yt+1 > q̂

(2)
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−
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+
[
log
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−ê(1)t+1

)
− log
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−ê(2)t+1

)]
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>0

(3). Yt+1 ≤ q̂(1)t+1, Yt+1 > q̂
(2)
t+1, and ê
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−ê(2)t+1
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=
(α− 1) q̂

(1)
t+1 + Yt+1

αê
(1)
t+1︸ ︷︷ ︸
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−
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(4). Yt+1 ≤ q̂(1)t+1, Yt+1 > q̂
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t+1, and ê
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ê
(1)
t+1

+ log
(
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ê
(2)
t+1

− log
(
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(1)
t+1 < ê
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ê
(1)
t+1

+ log
(
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−ê(2)t+1

)]

=
q̂
(1)
t+1

ê
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Thus, we find outED̂P 6= 0, so the DM statistics has a bias.
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A2: Proof of Theorem 2.

We estimate the FZ scoring function with combined error term to find out the the encompassing

statistic. We have

λ = arg min
λ
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of the FZ scoring function with combined functionals q
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Taking derivative of expectation of the FZ scoring function with combined functionals q(c) and e(c)

with respect to combined functionals q(c) and e(c), we have
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Taking derivative of combined functionals q(c) and e(c) with respect to weight λ, we obtain
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In order to find the optimal weight λ∗, we take the first order condition of the expected FZ scoring

function with respect to λ.
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Under H0, λ = 0, then we have q
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p→ 0, as
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Appendix B: Proof of Theorem 3

We have the combined VaR q
(c)
t+1 = (1− λ)q

(1)
t+1 + λq
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t+1 and ES e

(c)
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Taking the first order condition of Equation (21) with respect to λ, we have
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To show the necessary condition, if λ = 0, then q̂
(c)
t+1 = q̂

(1)
t+1 and ê
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as shown in Theorem 2 under H0. To show the sufficient condition, taking the second order condition
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Appendix C: Proof of Theorem 4

Under H0, u
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t+1 = u
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We denote the Hessian to be

B−1i = EFΛ(βi,t)

=
∂EF [ki,t(βi,t)]
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Therefore, B1 = 1 and B2 =

 1 0

0 EFΛ(β2,t)


−1

. Let J denote the selection matrix (1,0) such

that Jh2,t = h1,t. Let sup t denote sup t−R+1≤·≤t. And matrix A and C will defined in Lemma 3 and
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h̃2,t = Z−1A′CB
1/2
2 h2,t, H̃2(t) = Z−1A′CB

1/2
2 H2(t). Ut and Ũt will defined in Assumption 2. By the

central limit theorem,
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Lemma 1: (Clark & McCracken, 2001) Let Assumptions 1-4 hold.
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H ′i(t)BiE(hi,t+1h
′
i,t+1)BjHj(t) +

∑
t

H ′i(t)Bi
(
hi,t+1h

′
i,t+1 − E(hi,t+1h

′
i,t+1)

)
BjHj(t).

Now, we need to show the second term is op(1).

∑
t

H ′i(t)Bi
(
hi,t+1h

′
i,t+1 − E(hi,t+1h

′
i,t+1)

)
BjHj(t)

= T−1/2
∑
t

(
T

t
)2

[
T−1/2

t∑
s=1

h′j,sBj ⊗ T−1/2
t∑

s=1

h′i,sBi

]
vec
[
T−1/2

(
hi,t+1h

′
i,t+1 − E(hi,t+1h

′
i,t+1)

)]

∑
t(
T
t )2
[
T−1/2

∑t
s=1 h

′
j,sBj ⊗ T−1/2

∑t
s=1 h

′
i,sBi

]
vec
[
T−1/2

(
hi,t+1h

′
i,t+1 − E(hi,t+1h

′
i,t+1)

)]
isOp(1)

follows from Assumption 2, Corollary 29.19 of Davidson (1994) and Theorem 3.1 of Hansen (1992).

The proof is complete.

Lemma 2: Let Assumptions 1-3 hold. (a) Let −J ′B1J + B2 = M and B
−1/2
2 MB

−1/2
2 = Q,

then Q is idempotent. (b). Define matrix A = (0, 1)′ and C = I2×2 Then Q = CAA′C.
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Proof: (a).

Q ≡ B−1/22 MB
−1/2
2

=

 1 0

0 EFΛ(β2,t)


1/2 1 0

0 EFΛ(β2,t)


−1 1 0

0 EFΛ(β2,t)


1/2

=

 1 0

0 1

 ,

so Q is an idempotent matrix with rank 1.

(b). Lemma A4(b) of Clark and McCracken (2001).

Lemma 3: (Clark & McCracken, 2001) Let Assumptions 1-4 hold.

∑
t

H̃ ′2(t)h̃2,t+1
d−→ ξ−1

∫ 1

ξ
[W (s)−W (s− ξ)] dW (s) ,

where ξ = R/T and
∑

t denotes
∑T

t=R+1 (similarly hereinafter).

Proof:

∑
t

H̃ ′2(t)h̃2,t+1 =
∑
t

 1

R

t∑
j=t−R+1

h̃′2,j

 h̃2,t+1

=
∑
t

 1

R

t∑
j=1

h̃′2,j −
1

R

t−R∑
j=1

h̃′2,j

 h̃2,t+1

=
T

R

∑
t

T−1/2 t∑
j=1

h̃′2,j − T−1/2
t−R∑
j=1

h̃′2,j

(T−1/2h̃2,t+1

)
According to the continues mapping theorem and Corollary 29.19 of Davidson (1994),

T−1/2
∑t

j=1 h̃
′
2,j =⇒ W (s) , T−1/2

∑t−R
j=1 h̃

′
2,j =⇒ W (s− ξ) and T−1/2h̃2,t+1 =⇒ dW (s). Since

T/R = ξ−1, the proof is complete.
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Lemma 4: (Clark & McCracken, 2001) Let Assumptions 1-4 hold.

∑
t

H̃ ′2(t)H̃2(t)
d−→ ξ−2

∫ 1

ξ
[W (s)−W (s− ξ)]2 ds.

Proof:

∑
t

H̃ ′2(t)H̃2(t) =
∑
t

 1

R

t∑
j=t−R+1

h̃′2,j

′ 1

R

t∑
j=t−R+1

h̃′2,j


=
∑
t

 1

R

t∑
j=1

h̃′2,j −
1

R

t−R∑
j=1

h̃′2,j

′ 1

R

t∑
j=1

h̃′2,j −
1

R

t−R∑
j=1

h̃′2,j


=

1

T

(
T

R

)2∑
t

T−1/2 t∑
j=1

h̃′2,j − T−1/2
t−R∑
j=1

h̃′2,j

′T−1/2 t∑
j=1

h̃′2,j − T−1/2
t−R∑
j=1

h̃′2,j


According to the continues mapping theorem and Corollary 29.19 of Davidson (1994),

T−1/2
∑t

j=1 h̃
′
2,j =⇒W (s) , T−1/2

∑t−R
j=1 h̃

′
2,j =⇒W (s− ξ) , T−1/2h̃2,t+1 =⇒ dW (s) and 1/T =⇒

ds. Since T/R = ξ−1, the proof is complete.

Lemma 5: Let Assumptions 1-4 hold.

∑
t

[
m̂1,t+1

(
q̂
(2)
t+1 − q̂

(1)
t+1

)
+ m̂2,t+1

(
ê
(2)
t+1 − ê

(1)
t+1

)]
=
∑
t

[(
− 1

αê
(1)
t+1

1{Yt+1 ≤ v̂(1)t+1}+
1

ê
(1)
t+1

)(
q̂
(2)
t+1 − q̂

(1)
t+1

)

+

 1

α
(
ê
(1)
t+1

)21
{
Yt+1 ≤ q̂(1)t+1

}(
q̂
(1)
t+1 − Yt+1

)
−

q̂
(1)
t+1(

ê
(1)
t+1

)2 +
1

ê
(1)
t+1

(ê(2)t+1 − ê
(1)
t+1

)
= Z2

∑
t

H̃ ′2(t)h̃2,t+1 + op(1)
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Proof:

∑
t

[(
− 1

αê
(1)
t+1

1{Yt+1 ≤ q̂(1)t+1}+
1

ê
(1)
t+1

)(
q̂
(2)
t+1 − q̂

(1)
t+1

)

+

 1

α
(
ê
(1)
t+1

)21
{
Yt+1 ≤ q̂(1)t+1

}(
q̂
(1)
t+1 − Yt+1

)
−

q̂
(1)
t+1(

ê
(1)
t+1

)2 +
1

ê
(1)
t+1

(ê(2)t+1 − ê
(1)
t+1

)
=
∑
t

{
1

αê
(1)
t+1

(
α− 1{Yt+1 ≤ q̂(1)t+1}

)(
q̂
(2)
t+1 − q̂

(1)
t+1

)

− 1

α
(
ê
(1)
t+1

)2 [(α− 1
{
Yt+1 ≤ q̂(1)t+1

})
q̂
(1)
t+1 + 1

{
Yt+1 ≤ q̂(1)t+1

}
Yt+1 − αê(1)t+1

] (
ê
(2)
t+1 − ê

(1)
t+1

)
=
∑
t

{
1

αê
(1)
t+1

g
(
û
(1)
t+1

)(
q̂
(2)
t+1 − q̂

(1)
t+1

)

− 1

α
(
ê
(1)
t+1

)2 [g (û(1)t+1

)
q̂
(1)
t+1 +

(
α− g

(
û
(1)
t+1

))
Yt+1 − αê(1)t+1

] (
ê
(2)
t+1 − ê

(1)
t+1

)
Taking Taylor Expansion and using generalized function by Galfand and Shilov, every term in the

last equation becomes

1

αê
(1)
t+1

=
1

αe
(1)
t+1

−
∇e(1)′t+1

α
(
e
(1)
t+1

)2 (β̂1 − β1)+Op

((
β̂1,t − β1

)2)

g
(
û
(1)
t+1

)
= g

(
u
(1)
t+1

)
+ δ

(
u
(1)
t+1

)(
û
(1)
t+1 − u

(1)
t+1

)
+Op

((
û
(1)
t+1 − u

(1)
t+1

)2)

q̂
(2)
t+1−q̂

(1)
t+1 = q

(2)
t+1+∇q

(2)
t+1

(
β̂2,t + β2

)
+Op

((
β̂2,t − β2

)2)
−q(1)t+1−∇q

(1)
t+1

(
β̂1,t − β1

)
+Op

((
β̂1,t − β1

)2)

1

α
(
ê
(1)
t+1

)2 =
1

α
(
e
(1)
t+1

)2 +
−2∇e(1)′t+1

α
(
e
(1)
t+1

)3 (β̂1,t − β1)+Op

((
β̂1,t − β1

)2)
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g
(
û
(1)
t+1

)
q̂
(1)
t+1 = g

(
u
(1)
t+1

)
q
(1)
t+1 + g

(
û
(1)
t+1

)
q̂
(1)
t+1 − g

(
u
(1)
t+1

)
q
(1)
t+1

= g
(
u
(1)
t+1

)
q
(1)
t+1 + g

(
û
(1)
t+1

)
q̂
(1)
t+1 − g

(
û
(1)
t+1

)
q
(1)
t+1 + g

(
û
(1)
t+1

)
q
(1)
t+1 − g

(
u
(1)
t+1

)
q
(1)
t+1

= g
(
u
(1)
t+1

)
q
(1)
t+1 + g

(
û
(1)
t+1

)(
q̂
(1)
t+1 − q

(1)
t+1

)
+
(
g
(
û
(1)
t+1

)
− g

(
u
(1)
t+1

))
q
(1)
t+1

= g
(
u
(1)
t+1

)
q
(1)
t+1 + g

(
û
(1)
t+1

)(
q̂
(1)
t+1 − q

(1)
t+1

)
+ δ

(
u
(1)
t+1

)(
û
(1)
t+1 − u

(1)
t+1

)
q
(1)
t+1

+Op

((
û
(1)
t+1 − u

(1)
t+1

)2)
q
(1)
t+1

(
α− g

(
û
(1)
t+1

))
Yt+1 =

(
α− g(u

(1)
t+1)− g(û

(1)
t+1) + g(u

(1)
t+1)

)
Yt+1

=
(
α− g

(
u
(1)
t+1

))
Yt+1 −

(
g
(
û
(1)
t+1

)
− g

(
u
(1)
t+1

))
Yt+1

=
(
α− g

(
u
(1)
t+1

))
Yt+1 −

[
δ
(
u
(1)
t+1

)(
û
(1)
t+1 − u

(1)
t+1

)
+Op

((
û
(1)
t+1 − u

(1)
t+1

)2)]
Yt+1

αê
(1)
t+1 = α

(
e
(1)
t+1 +∇e(1)t+1

(
β̂1,t − β1

)
+Op

((
β̂1,t − β1

)2))
= αe

(1)
t+1 + α

(
∇e(1)t+1

(
β̂1,t − β1

)
+Op

((
β̂1,t − β1

)2))
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∑
t

[(
− 1

αê
(1)
t+1

1{Yt+1 ≤ q̂(1)t+1}+
1

ê
(1)
t+1

)(
q̂
(2)
t+1 − q̂

(1)
t+1

)

+

 1

α
(
ê
(1)
t+1

)21
{
Yt+1 ≤ q̂(1)t+1

}(
q̂
(1)
t+1 − Yt+1

)
−

q̂
(1)
t+1(

ê
(1)
t+1

)2 +
1

ê
(2)
t+1

(ê(1)t+1 − ê
(1)
t+1

)

=
∑
t




1

αe
(1)
t+1︸ ︷︷ ︸
A1

−
∇e(1)′t+1

α
(
e
(1)
t+1

)2 (β̂1,t − β1)+Op

((
β̂1,t − β1

)2)
︸ ︷︷ ︸

A2

×
g (u(1)t+1

)
︸ ︷︷ ︸

B1

+ δ
(
u
(1)
t+1

)(
û
(1)
t+1 − u

(1)
t+1

)
+Op

((
û
(1)
t+1 − u

(1)
t+1

)2)
︸ ︷︷ ︸

B2

×
∇q(2)t+1

(
β̂2,t − β2

)
−∇q(1)t+1

(
β̂1,t − β1

)
︸ ︷︷ ︸

C1

+Op

((
β̂1,t − β1

)2)
+Op

((
β̂2,t − β1

)2)
︸ ︷︷ ︸

C2



+


1

−α
(
e
(1)
t+1

)2
︸ ︷︷ ︸

D1

+
2∇e(1)′t+1

α(e
(1)
t+1)

3

(
β̂1,t − β1

)
−Op

((
β̂1,t − β1

)2)
︸ ︷︷ ︸

D2

×
g (u(1)t+1

)
q
(1)
t+1 +

(
α− g

(
u
(1)
t+1

))
Yt+1 − αe(1)t+1︸ ︷︷ ︸

E1

+ g
(
û
(1)
t+1

)(
q̂
(1)
t+1 − q

(1)
t+1

)
+ δ

(
u
(1)
t+1

)(
û
(1)
t+1 − u

(1)
t+1

)
q
(1)
t+1 +Op

((
û
(1)
t+1 − u

(1)
t+1

)2)
q
(1)
t+1︸ ︷︷ ︸

E2

−
(
δ
(
u
(1)
t+1

)(
û
(1)
t+1 − u

(1)
t+1

)
+Op

((
û
(1)
t+1 − u

(1)
t+1

)2))
Yt+1 − α

(
∇e(1)t+1

(
β̂1,t − β1

)
+Op

((
β̂1,t − β1

)2))]
︸ ︷︷ ︸

E2

×

∇e(2)t+1

(
β̂2,t − β2

)
−∇e(1)t+1

(
β̂1,t − β1

)
︸ ︷︷ ︸

F1

+Op

((
β̂1,t − β1

)2)
+Op

((
β̂2,t − β2

)2)
︸ ︷︷ ︸

F2



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AA = A1B1C1 +D1E1F1

=
∑
t

1

αe
(1)
t+1

g
(
u
(1)
t+1

)(
∇q(2)t+1

(
β̂2,t − β2

)
−∇q(1)t+1

(
β̂1,t − β1

))
− 1

α
(
e
(1)
t+1

)2 (g (u(1)t+1

)
q
(1)
t+1 +

(
α− g

(
u
(1)
t+1

))
Yt+1 − αe(1)t+1

)(
∇e(2)t+1

(
β̂2,t − β2

)
−∇e(1)t+1

(
β̂1,t − β1

))

=
∑
t

[
∇q(2)′t+1

1

αe
(1)
t+1

g(u
(1)
t+1)(β̂2,t − β2)−∇q

(1)′
t+1

1

αe
(1)
t+1

g(u
(1)
t+1)(β̂1,t − β1)

−∇e(2)′t+1

1

α(e
(1)
t+1)

2

(
g(u

(1)
t+1)q

(1)
t+1 +

(
α− g(u

(1)
t+1)

)
Yt+1 − αe(1)t+1

)
(β̂2,t − β2)

+∇e(1)t+1

1

α(e
(1)
t+1)

2

(
g(u

(1)
t+1)q

(1)
t+1 +

(
α− g(u

(1)
t+1)

)
Yt+1 − αe(1)t+1

)
(β̂1,t − β1)

]

=
∑
t

{[
∇q(2)′t+1

1

αe
(1)
t+1

g(u
(1)
t+1)−∇e

(2)′
t+1

1

α(e
(1)
t+1)

2

(
g(u

(1)
t+1)q

(1)
t+1 +

(
α− g(u

(1)
t+1)

)
Yt+1 − αe(1)t+1

)]
(β̂2,t − β2)

−

[
∇q(1)′t+1

1

αe
(1)
t+1

g(u
(1)
t+1)−∇e

(1)
t+1

1

α(e
(1)
t+1)

2

(
g(u

(1)
t+1)q

(1)
t+1 +

(
α− g(u

(1)
t+1)

)
Yt+1 − αe(1)t+1

)]
(β̂1,t − β1)

}

=
∑
t

[
−h′1,t+1B1(t)H1(t) + h′2,t+1B2(t)H2(t)

]
=
∑
t

[
−h′1,t+1B1H1(t) + h′2,t+1B2H2(t)

]
+ op(1)

=
∑
t

[
−h′2,t+1J

′B1JH2(t) + h′2,t+1B2H2(t)
]

+ op(1)

=
∑
t

[
h′2,t+1MH2(t)

]
+ op(1)

=
∑
t

[
h′2,t+1B

1/2
2 B

−1/2
2 MB

−1/2
2 B

1/2
2 H2(t)

]
+ op(1)

=
∑
t

[
h′2,t+1B

1/2
2 QB

1/2
2 H2(t)

]
+ op(1)

=
∑
t

[
h′2,t+1B

1/2
2 CAA′CB

1/2
2 H2(t)

]
+ op(1)

= Z2
∑
t

H̃ ′2(t)h̃2,t+1 + op(1)
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Now we need to show that AB, AC, AD, AE, AF, AG, AH are lower order than AA. The order of

each element is showed below.

A1 = Op (1) , A2 = Op

(
1√
R

)
, B1 = Op(1), B2 = Op

(
1

R

)
,

C1 = Op

(
1√
R

)
, C2 = Op

(
1

R

)
, D1 = Op (1) , D2 = Op

(
1√
R

)
,

E1 = Op(1), E2 = Op

(
1√
R

)
, F1 = Op

(
1√
R

)
, F2 = Op

(
1

R

)
,

Besides
∑

t δ(u
(1)
t+1)(û

(1)
t+1 − u

(1)
t+1)q

(1)
t+1, the order of other elements are straight forwards. For the

order of
∑

t δ(u
(1)
t+1)(û

(1)
t+1 − u

(1)
t+1)q

(1)
t+1, following Phillips (1991), we can get

P−1/2
∑
t

(
û
(1)
t+1 − u

(1)
t+1

)
q
(1)
t+1

d−→ N(0, Q)

and

P−1
∑
t

δ
(
u
(1)
t+1

)(
û
(1)
t+1 − u

(1)
t+1

)
q
(1)
t+1

p−→ lim
P→∞

P−1
∑
t

E
(
δ
(
u
(1)
t+1

))(
û
(1)
t+1 − u

(1)
t+1

)
q
(1)
t+1 = f(0)Q

Thus, we have ∑
t

δ
(
u
(1)
t+1

)(
û
(1)
t+1 − u

(1)
t+1

)
q
(1)
t+1 = Pf(0)Op(

1

R
) = Op

(
P

R

)

By using the order of each element, the order of each term in the
∑

t(m̂1,t(q̂
(1)
t+1− q̂

(2)
t+1)+m̂2,t(ê

(1)
t+1−

ê
(2)
t+1)] can be proved as following.
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AA =
∑
t

A1B1C1 +D1E1F1

=
∑
t

[
Op (1)Op (1)Op

(
1√
R

)
+Op (1)Op (1)Op

(
1√
R

)]
= Op

(
P√
R

)
)

AB =
∑
t

A1B1C2 +D1E1F2

=
∑
t

[
Op (1)Op (1)Op

(
1

R

)
+Op (1)Op (1)Op

(
1

R

)]
= Op

(
P

R

)
AC =

∑
t

A1B2C1 +D1E2F1

=
∑
t

[
Op (1)Op

(
1

R

)
Op

(
1√
R

)
+Op (1)Op

(
1√
R

)
Op

(
1√
R

)]
= Op

(
P

R

)
AD =

∑
t

A1B2C2 +D1E2F2

=
∑
t

[
Op (1)Op

(
1

R

)
Op

(
1

R

)
+Op (1)Op

(
1√
R

)
Op

(
1

R

)]
= Op

(
P

R3/2

)
AE =

∑
t

A2B1C1 +D2E1F1

=
∑
t

[
Op

(
1√
R

)
Op (1)Op

(
1√
R

)
+Op

(
1√
R

)
Op (1)Op

(
1√
R

)]
= Op

(
P

R

)
AF =

∑
t

A2B1C2 +D2E1F2

=
∑
t

[
Op

(
1√
R

)
Op (1)Op

(
1

R

)
+Op

(
1√
R

)
Op (1)Op

(
1

R

)]
= Op

(
P

R3/2

)
AG =

∑
t

A2B2C1 +D2E2F1

=
∑
t

[
Op

(
1√
R

)
Op

(
1

R

)
Op

(
1√
R

)
+Op

(
1√
R

)
Op

(
1√
R

)
Op

(
1√
R

)]
= O

(
P

R3/2

)
AH =

∑
t

A2B2C2 +D2E2F2

=
∑
t

[
Op

(
1√
R

)
Op

(
1

R

)
Op

(
1

R

)
+Op

(
1√
R

)
Op

(
1√
R

)
Op

(
1

R

)]
= Op

(
P

R2

)
Therefore, all AB, AC, AD, AE, AF, AG, AH are lower order than AA. The proof is complete.
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Lemma 6: Let Assumptions 1-4 hold.

∑
t

[
m̂1,t+1

(
q̂
(2)
t+1 − q̂

(1)
t+1

)
+ m̂2,t+1

(
ê
(2)
t+1 − ê

(1)
t+1

)]2
− PC̄2

=
∑
t

[(
− 1

αê
(1)
t+1

1{Yt+1 ≤ q̂(1)t+1}+
1

ê
(1)
t+1

)(
q̂
(2)
t+1 − q̂

(1)
t+1

)

+

 1

α
(
ê
(1)
t+1

)21
{
Yt+1 ≤ q̂(1)t+1

}(
q̂
(1)
t+1 − Yt+1

)
−

q̂
(1)
t+1(

ê
(1)
t+1

)2 +
1

ê
(1)
t+1

(ê(2)t+1 − ê
(1)
t+1

)
2

− PC̄2

= Z4
∑
t

H̃ ′2(t)H̃2(t) + op(1)

Proof:

∑
t

[
m̂1,t+1

(
q̂
(2)
t+1 − q̂

(1)
t+1

)
+ m̂2,t+1

(
ê
(2)
t+1 − ê

(1)
t+1

)]2
=
∑
t

[(
− 1

αê
(1)
t+1

1{Yt+1 ≤ q̂(1)t+1}+
1

ê
(1)
t+1

)(
q̂
(2)
t+1 − q̂

(1)
t+1

)

+

 1

α
(
ê
(1)
t+1

)21
{
Yt+1 ≤ q̂(1)t+1

}(
q̂
(1)
t+1 − Yt+1

)
−

q̂
(1)
t+1(

ê
(1)
t+1

)2 +
1

ê
(1)
t+1

(ê(2)t+1 − ê
(1)
t+1

)
2

=
∑
t

[
−h′1,t+1B1(t)H1(t) + h′2,t+1B2(t)H2(t)

]2
=
∑
t

[
−h′1,t+1B1H1(t) + h′2,t+1B2H2(t)

]2
+ op(1)

=
∑
t

H ′1(t)B
′
1h1,t+1h

′
1,t+1B1H1(t) +

∑
t

H ′2(t)B
′
2h2,t+1h

′
2,t+1B2H2(t)

− 2
∑
t

H ′1(t)B
′
1h1,t+1h2,t+1B2H2(t) + op(1)

=
∑
t

H ′1(t)B
′
1E
(
h1,t+1h

′
1,t+1

)
B1H1(t) +

∑
t

H ′2(t)B
′
2E
(
h2,t+1h

′
2,t+1

)
B2H2(t)

− 2
∑
t

H ′1(t)B
′
1E
(
h1,t+1h

′
2,t+1

)
B2H2(t) + op(1)

= Z2
∑
t

H ′1(t)B1H1(t) + Z2
∑
t

H ′2(t)B2H2(t)− 2Z2
∑
t

H ′1(t)B2H2(t) + op(1)
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= Z2
∑
t

H ′2(t)J
′B1JH2(t) + Z2

∑
t

H ′2(t)B2H2(t)− 2Z2
∑
t

H ′2(t)J
′B1JH2(t) + op(1)

= Z2
∑
t

H ′2(t)
[
−J ′B1J +B2

]
H2(t) + op(1)

= Z2
∑
t

H ′2(t)MH2(t) + op(1)

= Z2
∑
t

H ′2(t)B
1/2
2 B

−1/2
2 MB

−1/2
2 B

1/2
2 H2(t) + op(1)

= Z2
∑
t

H ′2(t)B
1/2
2 CAA′CB

1/2
2 H2(t) + op(1)

= Z4
∑
t

H̃ ′2(t)H̃2(t) + op(1)

Lemma 3 implies that C̄ = Op(P
−1), so PC̄2 = op(1). Thus, the proof is completed.

Theorem 2: Let Assumptions 1-4 hold. ENCP
d−→ N(0, 1), as P,R→∞, under H0 : λ = 0.

Proof: In order to show that ENCP is asymptotically standard normal, we need to show

ENCP = Q
−1/2
P

√
PĈP

=

∑
t m̂1,t+1

(
q̂
(2)
t+1 − q̂

(1)
t+1

)
+ m̂2,t+1

(
ê
(2)
t+1 − ê

(1)
t+1

)
√∑

t

[
m̂1,t+1

(
q̂
(2)
t+1 − q̂

(1)
t+1

)
+ m̂2,t+1

(
ê
(2)
t+1 − ê

(1)
t+1

)]2
− PC̄2

=⇒
ξ−1

∫ 1
ξ [W (s)−W (s− ξ)] dW (s)√

ξ−2
∫ 1
ξ [W (s)−W (s− ξ)]2 ds

d−→ N(0, 1)

We divided [0, 1] to n = [1/ξ] = [T/R] equal segments and let t = [sn], where [·] denote the integer

part and s ∈ [0, 1]. Let {νi}ni=1 is mixing sequence with E(ν) = 0 and V ar(ν) = 1. We denote

Vt =
∑t

i=1 νi to be the partial sum, then Vt =
∑t

i=1 νi ∼ N(0, t). Thus,

Vt√
n

=

∑t
i=1 νi√
n

= Vn(s)⇒W (s),
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where Vn(s) is a CADLAG process and Vn(s) is a Wiener process.

n−1
n∑
t=1

νt−1νt = n−1
n∑
t=1

Vt−1νt − n−1
n∑
t=1

Vt−2νt

⇒
∫ 1

ξ
W (s) dW (s)−

∫ 1

ξ
W (s− ξ) dW (s)

=

∫ 1

ξ
[W (s)−W (s− ξ)] dW (s)

n−2
n∑
t=1

ν2t−1 = n−2
n∑
t=1

(Vt−1 − Vt−2)2

⇒
∫ 1

ξ
[W (s)−W (s− ξ)]2 ds

We generate an AR(1) regression to show the asymptotical standard normality of ENCP .

νt+1 = ζνt + εt

The estimator ζ̂ =
∑n

t=1 νt−1νt/
∑n

t=1 ν
2
t−1 and V ar(ζ̂) = (

∑n
t=1 ν

2
t−1)

−1V ar(ν) = (
∑n

t=1 ν
2
t−1)

−1.

By using CLT, ∫ 1
ξ [W (s)−W (s− ξ)] dW (s)√∫ 1

ξ [W (s)−W (s− ξ)]2 ds
⇒
∑n

t=1 ut−1ut√∑n
t=1 u

2
t−1

d−→ N(0, 1)
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Table 1: Size of test (DGP1)

P = 240 P = 480 P = 1200

Repeat= 2000 DMP ENCP CCSP DMP ENCP CCSP DMP ENCP CCSP

R = 120 0.005 0.091 0.040 0.003 0.098 0.044 0.001 0.089 0.047

α = 0.01 R = 240 0.053 0.123 0.035 0.019 0.093 0.056 0.004 0.086 0.040

R = 480 0.070 0.105 0.034 0.026 0.075 0.048 0.009 0.062 0.054

R = 120 0.006 0.078 0.049 0.003 0.079 0.052 0.001 0.088 0.056

α = 0.025 R = 240 0.026 0.074 0.055 0.008 0.060 0.056 0.001 0.066 0.053

R = 480 0.030 0.064 0.049 0.013 0.058 0.043 0.004 0.054 0.057

R = 120 0.008 0.057 0.054 0.003 0.065 0.045 0.001 0.068 0.052

α = 0.05 R = 240 0.013 0.055 0.048 0.002 0.054 0.054 0.000 0.050 0.048

R = 480 0.015 0.043 0.059 0.009 0.049 0.059 0.000 0.044 0.054

R = 120 0.003 0.053 0.043 0.002 0.056 0.055 0.000 0.064 0.047

α = 0.1 R = 240 0.009 0.047 0.052 0.002 0.043 0.054 0.000 0.045 0.054

R = 480 0.014 0.041 0.050 0.007 0.044 0.054 0.001 0.046 0.063

This table show the size of DMP , ENCP , and CCSP test under 5% significance level, b = 0, φ = 0.
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Table 2: Size of test (DGP2)

P = 240 P = 480 P = 1200

Repeat= 2000 DMP ENCP CCSP DMP ENCP CCSP DMP ENCP CCSP

R = 120 0.029 0.064 0.048 0.011 0.055 0.035 0.003 0.072 0.041

α = 0.05 R = 240 0.032 0.059 0.096 0.015 0.056 0.053 0.004 0.066 0.040

R = 480 0.040 0.077 0.121 0.025 0.057 0.076 0.009 0.055 0.038

This table show the size of DMP , ENCP , and CCSP test under 5% significance level, b = 0, φ = 0.
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Table 3: Power of test (DGP1)

P = 240 P = 480 P = 1200

Repeat= 2000 DMP ENCP CCSP DMP ENCP CCSP DMP ENCP CCSP

R = 120 0.035 0.238 0.007 0.018 0.349 0.002 0.008 0.673 0.000

α = 0.01 R = 240 0.119 0.348 0.009 0.112 0.493 0.002 0.076 0.721 0.000

R = 480 0.240 0.460 0.028 0.225 0.571 0.003 0.232 0.790 0.000

R = 120 0.060 0.406 0.002 0.153 0.500 0.003 0.025 0.840 0.000

α = 0.025 R = 240 0.153 0.497 0.003 0.162 0.687 0.000 0.220 0.931 0.000

R = 480 0.251 0.568 0.004 0.288 0.758 0.000 0.496 0.954 0.000

R = 120 0.104 0.543 0.001 0.125 0.749 0.000 0.165 0.964 0.000

α = 0.05 R = 240 0.221 0.664 0.001 0.321 0.854 0.000 0.535 0.986 0.000

R = 480 0.313 0.713 0.000 0.445 0.891 0.000 0.758 0.997 0.000

R = 120 0.162 0.707 0.001 0.241 0.894 0.000 0.470 0.999 0.000

α = 0.1 R = 240 0.333 0.793 0.000 0.480 0.956 0.000 0.854 1.000 0.000

R = 480 0.420 0.853 0.000 0.623 0.975 0.000 0.938 1.000 0.000

This table show the power of DMP , ENCP , and CCSP test under 5% significance level, b = 0.1,

φ = 0.95.
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Table 4: Power of test (DGP2)

P = 240 P = 480 P = 1200

Repeat= 2000 DMP ENCP CCSP DMP ENCP CCSP DMP ENCP CCSP

R = 120 0.022 0.098 0.045 0.012 0.100 0.136 0.000 0.177 0.657

α = 0.05 R = 240 0.071 0.144 0.058 0.066 0.213 0.077 0.060 0.319 0.359

R = 480 0.155 0.201 0.064 0.167 0.363 0.068 0.272 0.654 0.247

This table show the power of DMP , ENCP , and CCSP test under 5% significance level, b = 0.1,

φ = 0.0.
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Table 7: Predicting γα = (GaRα,GSα)′ of the Conditional Distribution

of the GDP Growth

h = 0 h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

ENCR,P -1.4929 -1.2786 -1.5109 -1.4508 -1.8355 -1.4053 -1.2638 -0.8704 -1.1025

P-value 0.1355 0.2010 0.1308 0.1468 0.0664 0.1599 0.2063 0.3841 0.2702
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