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Abstract

Despite the importance of modeling the Expected Shortfalls (ES) in financial risk analysis, a
testing framework for Granger Causality (GC) in ES does not exist. This makes the econometric
specification of predictive models for ES arbitrary. It is due to the absence of an objective func-
tion to evaluate ES, i.e., ES is not “elicitable” (Gneiting, 2011 JASA). In this paper, I adopt the
concept of “higher-order elicitability” introduced by Fissler and Ziegel (FZ, 2016 AoS). While
the ES alone is not elicitable, ES is elicitable jointly with the corresponding quantile. In this
paper, using the FZ scoring function for a pair of ES and quantile, I develop a new test for GC
in ES. My test statistic is based on the forecast encompassing (ENC) statistic for a pair of ES
and quantile under the FZ scoring function, which is a “strictly consistent” scoring rule. The
ENC statistic for a pair of ES and quantile is based on the martingale difference property of a
vector of the first order conditions to minimize the higher order elicitable FZ scoring function.
I prove the asymptotic normality of the ENC statistic. Monte Carlo simulations are presented
to examine the finite sample behavior of our ENC statistic to test for GC in ES, which shows a
proper size and a good power. Finally, I consider two applications, one on Value-at-Risk and its
ES of the S&P500 financial returns and another on Growth-at-Risk and Growth Shortfall (GS)
of the US GDP growth.
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1 Introduction

Risk management is important in financial institutions, and choosing a proper risk measure is
crucial in financial risk management. Two risk measures are most widely used in financial markets:
Value at Risk (VaR) and Expected Shortfall (ES). Basel IT in 1996 proposed VaR as a proper risk
measure, so VaR has become the standard measure of financial market risk. VaR measures the
maximum potential loss of a given portfolio over a certain period at a given confidence level, so
VaR is the quantile with a given tail probability. However, A quantile-based VaR has two main
drawbacks. First, VaR cannot satisfy the “coherent” since VaR lacks subadditivity. Artzner et
al. (1999) introduce coherent risk measures. They define a risk measure to be coherent if the
risk measure satisfies translation invariance (p(X 4 a) = p(X) + a for all a € R ), subadditivity
(p(X+Y) = p(X)+p(Y)), positive homogeneity (p(AX) = Ap(X) for all p > 0) and monotonicity
(Y < X implies p(Y) < p(X)). Thus, lack of subadditivity means that the VaR of a portfolio
can be larger than the sum of the individual VaRs, which violates the conventional concept that
diversity reduces risk. Second, VaR focus on the probability of the losses but not the magnitude of
the losses. Thus, VaR might not be an appropriate risk measure in some situations. Basel III in
2013 proposed another risk measure, which is Expected Shortfall. ES is defined as the conditional
expectation of the return given that it exceeds the VaR, so more sensitive to the magnitude of
extreme losses. Artzner et al. (1999) also prove that ES is “coherent”. However, the measure of ES
is not “elicitable” (Gneiting, 2011). Elicitable risk measure means there is a “strictly consistent”
scoring function for this risk measure. Then I can compare competing forecasts of this risk measure
with respect to the consistent score (Fissler & Ziegel, 2016). There is no strictly consistent scoring
function for ES. Therefore, it is difficult to evaluate and compare the ES forecasts due to this
drawback.

Gneiting (2011) points out that the mean is elicitable, but the variance is not. However, a



pair of mean and variance is elicitable. Fissler and Ziegel (2016) introduce a strictly consistent
scoring function for VaR and ES, so the pair of VaR and ES is elicitable. The existence of a strictly
consistent scoring function for VaR and ES (FZ scoring function) accelerates the development of
ES forecast. Patton et al. (2019) propose new dynamic models to forecast VaR and ES by using
the FZ scoring function. Taylor (2019) uses the FZ scoring function to forecast VaR and ES based
on the asymmetric Laplace distribution. In this paper, in order to test Granger causality, I also
use the strictly consistent scoring function for VaR and ES to conduct in-sample estimation and
out-of-sample forecasting.

Out-of-sample forecast comparison is widely used in many fields because it is suggested to test
Granger Causality, which determines whether some independent variables can predict the dependent
variable (Ashley et al., 1980). Many papers in the literature focus on out-of-sample tests for equal
accuracy and encompassing (Diebold & Mariano, 1995; Clark & West, 2006, 2007). Out-of-sample
test for equal accuracy and encompassing need two models. When the big model includes all the
variables in the small model and has one or more other variables that are not in the small model,
these two models are called nested models because the big model nests the small model. When
these two models include the same variables and each model also has one or more unique variables,
these two models are called non-nested models. These two models overlap each other, and no one
can nest another.

When two non-nested models are to be compared, Diebold and Mariano (1995) introduce the
DM statistic for comparing predictive accuracy. Under the null hypothesis of no difference in
predictive accuracy, the test statistic DM is asymptotically N(0,1) distributed. However, Harvey et
al. (1997) point out that the DM test performs well for large samples but could oversize for moderate
samples. Hence, they modified the DM statistic by correcting the bias (HNL statistic). They use a

critical value from the student’s t-distribution instead of the standard normal distribution that the



DM test used. However, when there are two nested models to be compared, according to Clark and
McCracken (2001), the DM statistic for equal accuracy and the HNL statistic for encompassing are
invalid because these statistics cannot converge to the standard normal distribution. Moreover, If
there are two nested models, Clark and West (2006) and Clark and West (2007) prove that the DM
statistic for mean regression has a downside bias, and this downward bias can be corrected if they
add a non-negative adjustment term on it. In this paper, I extend the mean regression from Clark
and West (2006, 2007) to ES and show that DM statistics for ES using the FZ scoring function also
has a bias under the null hypothesis. I develop the encompassing statistic for Granger Causality in
ES. The encompassing statistic performs good in the size and power tests.

I consider two applications in this paper. The first application focuses on the financial market.
I want to examine if the Macroeconomic and financial variables Granger Cause the equity premium
of S&P 500 in VaR and ES. The second application is devoted to Macroeconomics. Measures of
the downside risk are essential in risk management. The increasing number of policymakers has
focused on the downside risk in the last decade. The International Monetary Fund (IMF) has
recently popularized a risk measure for GDP growth called Growth-at-Risk (GaR). GaR is the
worst conditional GDP growth distribution at a given coverage level (5th percentile) depending
on financial conditions (Adrian et al., 2019). Moreover, Adrian et al. (2019); Chavleishvili et al.
(2021) define a measure of adverse real economic impact to be Growth Shortfall (GS). GS is the
expectation of the GDP growth when it is less than GaR. Like ES, the GS is not elicitable, but a
pair of GaR and GS is elicitable. Therefore, the FZ scoring function is also a strictly consistent
scoring function for GaR and GS. In the second application, I want to check if the GDP growth
can be predicted by the financial conditions in GaR and ES by using the FZ scoring function.

The paper is organized as follows. In section 2, I review the definitions, lemmas, and theorems

of the elicitability. In section 3, I show that the DM statistic has a bias with nested models, and



introduce the encompassing test for Granger-Causality in forecasting ES by using the FZ scoring
function. In section 4, I prove the ENC for the FZ scoring function is asymptotically standard
normal as the number of out-of-sample forecasts tends to infinity. In section 5, I conduct Monte
Carlo simulations to show that the encompassing statistic has good size and power. In section 6, I

present empirical analysis. Proofs are presented in the appendix.
2 Elicitability

We denote an observation domain O for y,z € O C R+ d; = dim(y) and dy = dim(z), the
conditional distribution F' = F(Y;11|Z;) for Y41 given X;. Let F be a class of distribution function
on the observation domain O, and let A be an action domain, v € A. We define I' : F — A be a
functional. For example, I'(F(y|z)) may be E(Y|X), Q(Y|X), Var(Y|X), Mode(Y|X) or ES(Y|X),
where E(Y|X) is the conditional mean, Q(Y|X) is the conditional quantile, Var(Y|X) is the con-
ditional variance, Mode(Y|X) is the conditional mode and ES(Y|X) is the conditional Expected

Shortfall. Note that I' can be a vector of several of these.

Definition 1: (Gneiting, 2011; Fissler & Ziegel, 2016) A scoring function is an F—integrable func-
tion S : A x O — R. S is said to be F-consistent for a functional I' : F — A if EpS(I'(F'),Y) <
ErS(v,Y) for all F € F and for all v € A. Furthermore, S is strictly F-consistent for I" if it is
F-consistent for I' and if EpS(T'(F),Y) = ErS(v,Y) implies that v = T'(F') for all F' € F and for

all v € A. O

Definition 2: (Gneiting, 2011; Fissler & Ziegel, 2016) An identification function is an F—integrable
function V : A x O — R*. V is said to be an F-identification function for a functional T' : F —

A CRFif EpV(I'(F),Y) = 0 for all F € F. Furthermore, V is a strict F-identification function



for I'if EpV (7,Y) = 0 holds if and only if v = I'(F) for all F' € F and for all v € A. O

A statistical functional is elicitable if a scoring function exists that the correct forecast of
the functional is a unique minimizer of the expected score. We can compare or rank the forecasts
of the elicitable functional with their realized scores (Fissler & Ziegel, 2016). Many statistical func-
tionals are l-elicitable, such as expectation, ratios of expectations, quantiles (Value-at-Risk), and
expectiles. However, some functional are not 1-elicitable, such as variance, mode, and Expected
Shortfall (Gneiting, 2011). Osband (1985) points out that a non-elicitable functional can be a
component of an elicitable functional. For example, variance is not elicitable, but there exists a

2-elicitable functional of mean and variance.

Definition 3: (Fissler & Ziegel, 2016) A functional I' : F — A C R? is called 2-elicitable if
there exists a strictly F—consistent scoring function for I'. Then the functional I' = (I'y,T'g) : F —

A is 2 elicitable. O

According to Fissler and Ziegel (2016), there is a relation among strictly consistent scoring function
S, strict identification function V', and a matrix-valued function h. We define a vector-valued m
to be a vector of m; and me, and a vector-valued ~ to be a vector of 7, and ~,. Taking the first
order conditions of the expected loss function with respect to 7y, v1 and 72 respectively, we can get

Erm, Epmi, and Epmo to be

Erm o h(v)EFV(vy,Y) =0, (1)
OERrS(v1,v2,Y
Epmy =—2% (g’; 72 Y) = h11(71,72)ErVi(71,72,Y) + hia(71, 72) ErVa(71, 12, Y) = 0,
OEpS (.79, Y
Epmy =—- (5:2 wY) h21(71,72)ErVi(y1,72,Y) + hoa(71,72)ErVa(71,72,Y) = 0,



where

m = [mlvmz]/a Y= [717’72]/7
‘/1('7177271/)
V(Fybfy?vy) = ’
‘/2(7177271/)

hii(v1,72)  haz(y1,72)
h(vy1,72) =
ha1(71,72)  ho2(71,72)
Concerning equation (1), the strict identification function V' is a function of variable y and functional
v, and the function h is a function of v only. There is no y in the function of A. Functional forms
of V1 and V2 are shown in Eq (3).
Quantile is elicitable, but Expected Shortfall is not elicitable (Gneiting, 2011). Fissler and Ziegel

(2016) propose a strictly consistent scoring function of joint Value-at-risk (VaR) and Expected

Shortfall (ES) as

S(rmyey) =My <mt—a)Gi(n) - Hy <miGi(y) o)
2
6o () (32 =+ Uy <m0 =) =G ) +aly).

where ~y; represents VaR and 7o represents ES, G’ = Ga, G is increasing function, and Gs is
increasing and convex function. Therefore, a pair of VaR and ES is 2-elicitable. With regard to

Fissler and Ziegel (2016), taking the derivatives of the scoring function with respect to 1 and s,

we have
OEpS(11, 72, Y 1
Epmy = — (gl mY) Gi(m)+ =G2() | Er (H{y <m}—a) =0,
Y1 «
OErS(v1,72,Y G! 1
Brmy = 0L Y) 0B g, 1y <) - o) + GhwEr (2 - otly <)) =0,



where the strict identification function is

Vi(y1,72,Y) Hy <m}—o
V(11,72,y) = = : (3)
Va(v1,72,Y) Yo — 1yl{y < m}

and the matrix-valued function h is

Gi(m)+ 2Ga(2) 0
h(’Ylv 72) = . (4)
71G5(72) G/2 (72)

o
For the first component of the identification function V, Er (1{y <1} —a) = 0 if and only if
~v1 = VaRq(y). For the second component of V, Ep (72 — éyl{y < 'yl}) if and only if v = ES,4(y).
Therefore, EpV (v1,72,y) = 0 if and only if (v1;72) equals the true VaR and ES of y, so the joint
functional of VaR (Quantile) and ES is 2-elicitible. It indicates that this scoring function is strictly
consistent for a pair of VaR and ES, which means that it can be used for forecasts comparison of
VaR and ES.

Patton (2011) states that positive homogeneity of the scoring function is important for forecast
comparison. Moreover, Patton and Sheppard (2009) find out that homogeneity of degree zero leads
to the higher power of Diebold-Mariano tests in volatility forecast. Patton et al. (2019) denote
Srzo as the scoring function with homogeneity of degree zero. Sgzg is homogeneous of degree zero

if and only if G1(y) = 0 and Ga(y) = —1/~. For easy to read, let ¢ replace ;1 and e replace 7s.

Then, the “FZ0” scoring function is

1 o
SFrzo (Qa, ea,y) = Sa (Qaa eomy) = _Jl{y < QQ}(Qa - y) + ; + log(—ea) - 1L (5)

In this paper, we use this FZ scoring function Sgzo to test forecast encompassing in Expected

Shortfall.



3 Forecast Encompassing Test for Granger Causality in Expected
Shortfall

In this section, we develop the forecast encompassing test in the ES. The conditional distribution

F = F(Yi41|Zy) for Yy given X;. Define 1 = g for VaR. Define v2 = e for ES. We have two

models. One model is without conditioning on x;, and the other model is with conditioning on x;.

The unconditional ES of the unconditional distribution F} = Fy (Y) is I'(F}). The conditional ES

of the conditional distribution Fy = Fy|x(Y|X) is the functional I'(F2). The two nested models

for VaR q441 are

1 1
Model 1: g1 = cra +ult) o = 24 fra +ul ), (6)
Model 2 : — b @ = @ 7
oae . Yt+1 c2,04 + 1,0¢xt + ua7t+1 = $27t527a + ua,t+1 ( )

where qé172+1 = Cla = 71 51,0 and q((jZH = o0 = ThP20. ES for Model 1 and Model 2 are

1 1 2 2
defined as e£+)1 =Er [Y}H | Vi1 < qéﬂz“ and e§+)1 =Ep |Yit1 | Vi1 < qéﬂzﬂ . The dependent
variable y;11 is a scalar random variable. x1; is a strict subset of zg;. 33’1775 =1,010a = Cla, iL'/27t =
(L,2z¢), B2.a = (2,05 ba). Below the subscript « is omitted for simplicity.

The FZ scoring function is the scoring function Sgz in Patton et al. (2019), that is

1
Sa (g, e,y) = —il{y <q}(g—y)+ g +log (—e) — 1.

According to Patton et al. (2019), the first oder conditions of FZ scoring function with respect

to VaR ¢4+1 and ES e;y1 are

1
Ep [— WY1 <+ —| =0, (8)
Qety] Ct+1
1 Qi+1 1
EF D) 1 {}/t-l—l S Qt+1} (CIt+1 - Y) ) + - 07 (9)
o (€41 €ir1  Cttl
which means that m; = —ﬁﬂl{ypkl < @41} + etil and mg = ae%ﬂ Hy < @1 (@41 — yey1) —



Zéi + ﬁ are martingale difference sequences. In the last section, we have already defined m =
t+1

(m1,mg)’. So, rewriting equations (8) and (9), we have
Erm = h(qgi1, ve41)EPV (g1, 0041, ye41) = 0, (10)

where the strict identification functions in equation (1) are

Vi(Ge+1, €41, Yet1) Hyr1 <@} —«
V(Ga1, €041, Ye41) = = ;o (11)

Va(Ge1, €41, Yev1) err1 — =1y < g}

and the matrix-valued function h is

1
Qet41

h(giy1,ve41) = (12)
B S

2 2
ey €

In equation (11), V7 shows how we define VaR (quantile). We have EpV; = 0, so Ep(1{y+1 <
gt+1} — ) = 0 implies Ep(1{yt+1 < q+1}) = a. Vi shows how we define ES. We know that
ErVa =0, s0 Ep(ers1 — 24111{ye+1 < q41}) implies e = LEp (g1 1{ye+1 < qa1})-

In order to test equal predictive accuracy of the two nested models, we set the null and alter-

native hypotheses are

Ho: Er [Sa (g el Yir) = Sa (a2 e, Yin )| = 0 (13)
Hy :Ep [Sa (qﬁi)p e&)p Yt+1) — Sa (qg.)p eﬁ)p Yt+1ﬂ >0 (14)

We set the alternative hypothesis is one side because we expect that the forecasts from Model 2
are better than those from Model 1, as Clark and West (2006) did. When coefficient b = 0, =
does not Granger cause y. When coefficient b # 0, z Granger causes y. Define R as the in-sample

observations. Define P as the out-of-sample forecasts. The DM statistics based on the FZ loss



differential is
1 1 2 2
D = EF |:SO¢ (qngr)lv e§+)17 Yt+1) - Sa (qngr)lv e§+)17 Yt-i—l)]

T
= ~(2) (2
D= P73 [Sa (@ eih Yirt ) = Sa (a2 Y )|
t=R

where T+ 1 = R+ P. For mean regression with nested models, Clark and West (2006, 2007) prove
that the DM statistic has downward bias and show that adjusted DM statistics (DM statistics plus
the adjusted term) obtains zero mean expectation under the null hypothesis, corrects the size, and
increases the power. Thus, at first, we attempt to show that the DM statistic based on the FZ loss

differential ﬁp% p has a non-zero mean under the null hypothesis.

Thereom 1: the DM statistic of the FZ loss differential f)R,p has a non-zero mean. Thus,

EﬁR,P 2 0 under Hy. ]

Proof: In order to show that Dp is non-zero, we consider eight cases. (1).Yiy1 > in_lF)l,YtH >

(jg-)l and ez(t—l‘,-)l > gr)1 (2).Yis1 > th(Jlr)letJrl > ﬁt(i)l and érg—li-)l < égr(?’)'nﬂ = ‘jﬁr)pytﬂ > ‘jt(i)l and érg—li-)l >

(2 (1 (2 (1 2 (1 (2 (1
e£+)1.(4).Yt+1 < ‘Jt(+)1aYt+1 > qt(+)1a and ez(f+)1 < €§+)1 (5).Yip1 > QE+)1’Yt+1 < q£+)1 and e§+)1 >

e-(6)Yipn > aih, Yir < @iy, and &) < &P (MY < @)Y < @) and ey, >

5(2)

€yp1-(8).Y 1 < qﬁﬁl, Y1 < @ and éng)l < éﬁ)l In these eight cases, we can show that DR,p has

t+1

non-zero mean. See Appendix A2 for detail. O

Due to the bias of DM statistic, we want to develop the encompassing test to show that
the encompassing statistic has zero mean. In order to find out the encompassing statistic for the
ES, we build a combined FZ scoring function by combining two models, VaR ¢ and ES e, and take

the derivative of the expectation of the combined FZ scoring function with respect to the weight A.

10



Theorem 2: Under Hy,

A (1 1 9 (1
C = Er [ (1) <q§+)1 - Q§+)1> + mg ) <6§+)1 — €§+)1)] = 0. (15)
ST (0 D) L0 (1) @
~ _ ~ (1 ~(2 (1 (1 (1 (2 »
CR,P =P 1 Z [mg’t_t,_l (qt+1 - qt+1) + my t)+1 (et—i-l — €£+1>:| Ho=0 (16)
t=R
as R, P—oo and P/R—o0. .

Proof: We combine model 1 and model 2 with weight 1 — A and A respectively. To estimate
the expectation of FZ scoring function with combined VaR qgi)l and ES el(fi)l to find out the the

encompassing statistic under null hypothesis, we have
A = argmin EpS,a(q\7), e\, V7
argm;n F a(Qt+17€t+17 t+1)7

where qgi)l =(1-)) qt( +)1 + )\qﬁ)l and egi)l =(1-X) egfl + )\eﬁ)l. We define C' to be the first order
condition of the expected FZ scoring function with respect to A, then we have

O = aEF Sa(ngi)lv egi)la Yt+1)

[2))
_ OErSalaih e Yirt) 0011 | OBrSalgih, eifh, Yerr) Oeiy
vl 1)) <9€§+)1 (o))
=E [ i <q§+)1 - q§+)1) + mg) (eg)l 6&21)}
=k [mgl) (%@1 - qﬁr)1) + mgl) (61(5-21-)1 - 6’&31)] =0
under Hy.

Due to the first order condition, C' should be 0. We estimate C' by CA’R, P, SO CA’R, p is defined as

éR,P = Z [ (At—Qi-l ‘Zﬁ?l) + mgt)ﬂ (ég-)l - ég-lr)l)} 2C=0
(17)

under Hy, as R, P — oo and P/R — o0

11



Under the null hypothesis, A = 0, we obtain qlgi)l = qt(}r)l and egi)l = egl. Thus, we obtain

E(OR’p) =0, so OR’p 20 as R, P—0o. See Appendix A2 for details. O

In order to get the encompassing statistic for ES, we consider endowing Model 1 and Model 2
with the weight 1 — A and A respectively, and find out the property of optimal weight \. Theorem

3 gives the relationship between A and Cp.

Theorem 3: We denote A = argminy EpS (qgi)l,eii)l,}@rl). Under Ho,j\ — 0, CA'R’p 20 as

R, P — 0.

Proof: See Appendix B.

This theorem shows that A — 0 and CA'R, p50as R, P — oo are equivalent.

We compare the DM statistic and the encompassing statistic with the CCS statistic, the
test statistic by Chao et al. (2001). Chao et al. (2001) show that the CCS statistic is Mpp =
p-1 Z;‘F: R ﬂg_lgla:t. In order to compare the equal predictive accuracy of two nested expectile mod-
els, we standardize these three statistics. The DM statistic is DMp = 5';3701'35 VPD Rr,p, Wwhere Sg p =
var (ﬁﬁgp) and Sg p —S’RJD 20, The encompassing statistic is ENCp = Q}}?PE’\/IEC’RP, where
Qr,p = var (\/TDC’RVP) and QR,P—QR,P P 0. The CCS statistic is CCSp = Wi%’)\/}?]\}[}g,p, where

Wg p = var (\/]BMRJ:) and Wg p — WRP 2.

4 Asymptotic Normality of the ENC Statistic for ES

In this section, we compare two nested models using encompassing test and model combination,

then explore the properties of the two methodologies.

12



4.1 Encompassing Test for Equal Predictive Accuracy

We derive the asymptotic distribution of ENCp. To show ENCp to be asymptotical standard

normality, we simplify the ENCp statistic.

ENCp = Q,'/*VPCprp = %:t o 5
\/Zt Ct PCR,P
where

. - 1 (1) 1
mitq1 = _Tl{yvt—i-l < qt+1} + ROR

iy €t+1
. 1 (1) (1) Aig—li-)l 1
mopy1 = ———51 {Yﬂl < qt+1} (qt—H - Kﬁﬂ) - + -

(Y ()

T T

A — — ~ ~(2 ~(1 ~ ~(2 ~(1

Cp=P7'Y =P ') iuen (qt(+)1 - qt(+)1) — M4 <€§+)1 - 6§+)1) :
t=R t=R

In order to obtain the limiting distribution in Theorem 4, we need some notations. We define
g <u§21> = |:Oz -1 (ugl < 0)} . The score k; +(3;+) is the first order condition of expected FZ scor-
ing function with respect to 5 +. Let hj 41 = —ki¢41(8it) and H;(t+1)— % Zfil hit+1. We denote
the Hessian to be B, 1 ErA(Bi+), which is the second order condition of expected FZ scoring

-1

1 0
function with respect to 3;;. Therefore, By = 1 and By = . By the central

0 EpA(Bay)
limit theorem, VR [R7S0_, o 1 hoy] ~ N (0,22B5 1), where Z2By " = Elk;¢(Bi4)ki(Bin)'].

The following assumptions can be used to obtain the limiting distribution in Theorem 4. These

assumptions are only sufficient but not necessary and sufficient.

Assumption 1: The parameter estimates BM,Z’ =1,2,t=R,...,T, satisfy Bi,t—ﬁi = Bi(t)H;(t) =
-1 t -1 -1 t
<R Zj:t—R—i—l Ai,j) (R Zj:t—R—H hi,j) : O

13



Assumption 2: Let Uy = [Ek;(0), 25, — Eah ;, hy ,, vec (hahy , — Ehothh ), ]. (a) EU; = 0. (b)
5 ~1 t - t =\
Denote U; to be the vector of Uy. R™E (Zj:tfRH Uj> (ijt—RJrl Uj)

=Q < oo ispd. O
Assumption 3: (a) Ehlth’u = ZQBgl, (b) E (hoy | hoy—j,j =1,2,...) =0. O

Assumptions 2 and 3 allow the application of an invariance principle and are sufficient for joint weak
convergence of partial sums and averages of these partial sums to Brownian motion and integrals

of Brownian motion.
Assumption 4: limppr oo P/R =7 = 00. O

In order to get accurate out-of-sample forecasts, it is essential to select an optimal in-sample
window. However, no consensus opinion has been reached as it depends on the characteristic of
the model. Inoue et al. (2017) find the optimal window size by minimizing the conditional mean
squared forecast error in a time-varying predictive regression model. They show that the optimal
window size satisfies R = O(T?/3). Hong et al. (2020) consider minimizing various out-of-sample
forecast errors, including the unconditional, conditional, and global mean squared forecast error,
respectively. The optimal window size they found is R = O(T4/ %). The out-of sample window P

has a faster divergent rate than in sample window R. Thus, in our model, we set P/R — +0oc.

Theorem 4: Let Assumptions 1-4 hold. ENCp A, N(0,1), as PR — oo, under Hyp : A=0. O

14



West (1996) proves that ENC statistic is asymptotically normal under = > 0 for mean regres-
sion when two models are non-nested. Clark and McCracken (2001) show that ENCp statistic is
asymptotically standard normal under 7 = 0, and ENCp statistic is not standard normal under
7 > 0 when two mean models are nested models. In this theorem, we show that ENCp statistic is

asymptotically standard normality under 7 tends to oco. See Appendix C for proof of Theorem 4.

5 Monte Carlo Simulation

5.1 Simulation Design

In order to show the asymptotic distribution of encompassing test for FZ scoring function, we have
two DGPs.

In both two DGPs, we set x; in Model 2 as an AR(1) stationary process, so xy = ¢xy—1 + vy,
where v, &4 N (0,02). Thus, = has zero mean and variance 02/(1 — ¢). The error term ugr)l of

Model 2 for Value-at-risk (quantile) satisfies

E (a —1 (ufﬁl < 0) | mt) ~0 (18)

which means that oo — 1(uﬁ)1 < 0) is a martingale difference series and the conditional quantile of

(2)

Ut+1 given Iy 18 zZero.

In DGP 1, we generate the u? ; following normal distribution. The mean and variance of u? 4

satisfy
E <u£—2i-)l) ~0 Y(a)o
- - (@) (19)
Var (ut_H)

We set the Var (ugr)l) = 02, then we can get E (ugr)l) = —® !(a)o,. Second, we generate {y;i1}

from yry1 = co + bxy + egl, then we has the mean and variance as follows:
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E(yi41) =E <C12 + bray + ug)1> =ci2+0— <I)_1(oz)au

Var (y¢11) = Var (012 + b1xy + egl> = b%ag + Ji
In order to make sure all 9,41 and é;41 to be negative, we set E(Y) = —3, which implies that
c12 = =3 + @ 1(a)o,. Third, we find out mean and variance of ugi)l as follows:

E (U§l+)1) =E (Y41 —cn1) =E <C12 + by + ug)l - 011) =cip+0—-d ), — ey
Var (“Sr)l) = Var (y;+1 — ¢11) = Var <012 + bixy + eg)l — 011) = b%ag + 0'3
We set ui}ﬁl following normal distribution and should satisfy

1
E (ui(f—i-)l) _ Cl2—C11 — <I>_1(a)ou

- /12
\/ Var (ugl) biog +oi

Simplifying the above equation, ci2 — c¢11 = & 1(a)o, — @71 (a)\/b302 + 02. Since c12 = —3 +

——37'() (20)

o Ya)oy, c11 = =3+ @7 1(a)\/b302 + 02. Under the null, when by = 0, ¢11 = c12. We consider
a € {0.01,0.025,0.05,0.1}, 6 € {0,0.95}, 0 € {1}, 0 € {1}, and b € {0,0.1}.

In DGP2, we generate y;1 by using GARCH(1,1).

Yt4+1 = Ot1Ut41
o141 = w + Cuf + Bo} 4 ox?
up ~ N(0,1)
We set the parameters to be ¢ = 0.05, 8 = 0.85, b € {0,0.1}, and w =1 —( — 5 — §. We make

x¢ follow N(0,1). According to Patton et al. (2019), Under DGP2, by using standard normal

distribution for w41,

VaRg 141 = aa0i41 Ao = ‘I’fl(a)
Esa,tJrl = baO-tJrl bo = —¢ ((I)_l(a)) /Oé

In our simulation, we set the number of in-sample observations R € {120, 240,480} and out-
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of-sample forecasts P € {240,480,1200}. We use rolling windows to estimate 6 by minimizing
Srzo. In DGP1, 6, = ¢; for Model 1 and 03 = (¢2,b)" for Model 2. Then, we can obtain the one
step ahead forecast qgi)l = ¢; and eg_lgl = Ep(Yi41]Yi41 < qﬁ)l) for Model 1 and qﬁ)l = co + bry
and eg)l = Er(Yiq1|Yig1 < qg)l for Model 2. In DGP2, 0; = (w1, (1, 51,010, b1,) for Model 1
and 0 = (w2, (2, B2, 02,0, b2,a,0) for Model 2. Then, we can obtain the one step ahead forecast
’US_)I = al,aat(_lgl and 6,&_)1 = blﬂaaéi)l for Model 1 and qt(i)l = a1:2,a0§1)1 and egi)l = b27a0§i)1 for
Model 2. By using those forecast variables, we can obtain DMpg p, ENCpg p, and CCSg p statistics.

Repeating this procedure 2000 times, we get the asymptotic distributions of DMg p, ENCpg p, and

CCSRg,p, and the size and power of these three statistics.

5.2 Simulation result on encompassing test

Figures 1-2 and tables 1-2 show the Monte Carlo simulation in DGP1 for asymptotic distribution
and the size and powers of DMg p, ENCg p, and CCSg p statistics under different o, b, and ¢.
Table 1 shows the result of the size of the test under b = 0 and ¢ = 0. For different in-sample
observations R, out-of-sample forecasts P, and «, the result demonstrates that DMpg p is much
less than 5% under the 5% nominal level, implying that DMp has a downward bias under Hy.
However, the sizes of ENCpg p and CCSp p are good under the 5% nominal level. Table 2 shows
the result of the power of the test under b = 0.1 and ¢ = 0.95. It illustrates that ENCg p has the
highest power and DMpg p has the higher power than CCSg p for different in-sample observations
R, out-of-sample forecasts P and «a.

Figure 1 shows the asymptotic distribution of DMy p, ENCpg p, and CCSg p statistics under
Hp when o = 0.05. These figures demonstrate that DMpg p has a negative mean and high kurtosis,
which implies that DMg p has a downward bias under Hy. However, the asymptotic distributions of
ENCRg,p and CCSpg p are close to the standard normal distribution. Figure 2 shows the asymptotic

distribution of DMg p, ENCpg p and CCSg p statistic under o = 0.05, b = 0.1 and ¢ = 0,0.95.
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From these figures, we can see that the asymptotic distribution of CCSg p move to the left, so CCSp
has the lowest mean compared to DMg p and ENCg p. Moreover, the asymptotic distribution of

DMpg p and ENCpg p move to the right, and the means of DMg p are lower than means of ENCg p.

6 Empirical Analysis

6.1 Empirical Analysis of VaR and ES for Monthly Equity Premium

In this subsection, we use the data from Welch and Goyal (2008) to check the predictive
variable in VaR and ES for Equity Premium. We choose to use monthly data from January 1926
to December 2019, which contains 1128 observations. There is a total of 15 Macroeconomic and
financial variables.

We build two nested models for VaR and ES to test if these 15 variables Granger cause the
equity premium respectively. For Model 1, we find out the VaR and ES by using the previous R
in-sample observations of the equity premium and then use estimated VaR and ES to predict the
future equity premium at time R + 1. For Model 2, we estimate the constant term and covariance
term using the previous R in-sample observations of equity premium and an independent variable
and then use these estimated coefficients and the independent variable to forecast the future equity
premium. In this empirical work, the forecasts begin 40 years after the data are available, and the
out-of-sample forecasts begin 1965. We choose a € {0.01,0.025,0.05,0.1}.

Tables 5 - 6 show the ENC statistics for 15 Macroeconomic and financial variables under four
different «. In Table 5, forecasts begin 40 years after the data are available, which means the
number of in-sample observations R = 480. From this table, when a = 0.01, we can see that
the dividend payout ratio is the only variable that Granger Cause the equity premium in VaR
and ES at a 10% significance level. When we choose o = 0.025, the earning price ratio, stock
variance, and default yield spread Granger Cause the equity premium on VaR and ES respectively

at a 5% significance level. Moreover, the equity premium can be predicted by the dividend yield,
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treasury-bill rate, default return spread, and consumption, wealth, income ratio in VaR and ES at
a = 0.05, respectively. When o = 0.1, seven variables Granger Cause the equity premium in VaR
and ES: dividend price ratio, dividend yield, earning price ratio, dividend payout ratio, default
return spread, long term return, and consumption, wealth, income ratio.

Table 6 demonstrates the ENC statistics for 15 variables when out-of-sample forecasts begin
1965. From this table, when o = 0.01, we can see that the term spread is the only variable that
Granger Cause the equity premium in VaR and ES at a 10% significance level. The long term return
and earning price ratio Granger Cause the equity premium in VaR and ES at a 1% significance
level when a = 0.025 and « = 0.05 respectively. Moreover, when a = 0.1, the equity premium can
be predicted by the dividend price ratio, dividend yield, earning price ratio, default return spread,
and consumption, wealth, income ratio. From Tables 5 - 6, we can see that the decreasing number
of variables can Granger Cause the equity premium when we decrease a. Thus, fewer variables
have the predictive ability of the equity premium in VaR and ES when we focus on extreme losses.
Compared to forecasts beginning 1965, the equity premium can be predicted by more variables at
different o when forecasts begin 40 years after the data are available. Thus, more variables can

Granger Cause the equity premium when the number of in-sample observations becomes small.

6.2 Empirical Analysis of GaR and GS for Quarterly GDP Growth

Measures of the downside risk are essential in risk management. The increasing number of pol-
icymakers has focused on the downside risk in the last decade. The International Monetary Fund
(IMF) has recently popularized a risk measure for GDP growth called Growth-at-Risk (GaR). GaR
is the worst conditional GDP growth distribution at a given coverage level (5th percentile) depend-
ing on financial conditions (Adrian et al., 2019). Moreover, Adrian et al. (2019); Chavleishvili et
al. (2021) define a measure of adverse real economic impact to be Growth Shortfall (GS). GS is the

expectation of the GDP growth when it is less than GaR. In order to check if financial conditions
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have the predictive ability of the Macroeconomics risk, we choose to use the National Financial
Conditions Index (NFCI), which is computed by the Federal Reserve Bank of Chicago. The NFCI
is calculated from a dynamic factor model with 105 financial variables to estimate the weekly US
financial conditions. Financial conditions are tighter than average when NFCI is positive, while
financial conditions are looser than average when NFCI is negative.

In this subsection, we use the data from Adrian et al. (2019) to check if the NFCI can predict
GDP growth on GaR and GS. The data are Quarterly from 1973Q1 to 2019Q4. There is a total of
188 observations. We consider GDP growth as our y;4; and NFCI as our z;. The test is an h-step
out-of-sample Granger Causality test. We choose h € {0,1,2,3,4,5,6,7,8}. Forecasts of GaR and
GS begin 20 years after data are available, which means R = 80. The rolling window estimation is
used in this test. We also use the FZ scoring function for a pair of GaR and GS to examine the
forecast encompassing test for Granger Causality on GaR and GS.

Figure 5 shows the time series of the real GDP growth and the NFCI. This figure is the same
as Figure 2 in Adrian et al. (2019). Due to the properties of the GDP growth and the NFCI,
there is a negative relationship between these two variables. In the regular periods, when GDP
growth is positive, GDP growth is more volatile than the NFCI. During the National Bureau of
Economic Research (NBER) recession dates, the GDP growth reaches negative outcomes, and the
NFCI reaches positive outcomes. Figure 5 demonstrates the negative relationship between GDP
growth and NFCI. Thus, deteriorations in financial conditions coincide with the decreases in GDP
growth. Then, we want to use the forecast encompassing test to examine if the NFCI Granger
Causes the GDP growth on GaR and GS by using the FZ loss function.

Table 7 displays the ENC statistics and p-values of the Granger Causality test for various h
when a = 0.05. This table shows that the NFCI Granger Causes the four quarters ahead (one

year) GDP growth on GaR and GS at the 10% significance level. It implies that the downside risk

20



will increase in four quarters when the financial conditions become tighter in the current quarter.
However, the NFCI cannot Granger Cause GDP growth in the other quarters ahead.

Moreover, we want to explore if there are significant changes in C r,¢ in different periods. Section
2 states that the encompassing statistic ENCg p can be obtained by standardizing the C’R,t. Thus,
we plot C r,¢ for various of h to check the change in C Rr,¢ in the out-of-sample period when a = 0.05.
Figure 6 shows the time series of C'Rm CA’17R¢, and 627R7t, where CA’LRﬂg = My (G&RM — G&Rl,t>
is the GaR term in the Cpry, and Cy s = 1 (GASQ,t - GASM) is the GS term in the Cg,. From
Figure 6, we can see that there are pikes of CA’R,t, CA’L R,t, and 027 r,¢ for various h during the NBER
recession dates. The spike becomes smaller when the quarter ahead h becomes larger. When h is
zero, current quarter GDP growth and NFCI are used. Then the spike is more considerable. The
spike becomes negligible as the number of quarters ahead h goes up.

Furthermore, we check if there are differences between the forecast GaR without the NFCI and
with the NFCI. Figure 7 demonstrates the changes of the GlAlRl,R,n G&ngR,t, GASLR,t, and GASQ’R,t
in the out-of-sample period, where G&Rl, R, and G&RQ, r,t are the forecast GaR without the NFCI
and with the NFCI, and GASLRJ and GASg,R,t are the forecast GS without the NFCI and with the
NFCI. This figure displays that the difference between GELRL Rt and G&RZ r,+ and the difference
between G.S 1,R,t and GASZ Rr,t become small during the NBER recession dates when the number of
quarters ahead h increases from 0 to 8. For the NBER recession dates from 2007Q4 to 2009Q2,
the difference between GaRy p; and GaRg g and the difference between G'S1 ry and GSy gy are
large when h = 0,1, 2,3,4. However, the difference between G&RI,R,t and GELRQ’Rt is very small,

and the difference between CfSLRt and CfSZR’t is almost zero when h = 5,6,7, 8.
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7 Conclusion

In this paper, I develop a new forecast encompassing test for Granger Causality for VaR and
ES. The strictly consistent scoring function for VaR and ES is from Fissler and Ziegel (2016) and
Patton et al. (2019). I show that the DM statistic has a bias for the FZ scoring function with two
nested models under the null hypothesis. I exhibition that the encompassing statistic (ENC) has
zero mean under the null hypothesis with no Granger Causality. I prove that the ENC statistic
is asymptotically standard normal. Monte Carlo simulation demonstrates that the ENC statistic
has good size and has the highest power under the alternative hypothesis H; in finite samples
compared to DM and CCS statistics. I demonstrate that ENC statistic improves the predictive
accuracy compared with DM test. I consider two applications. The first empirical analysis of VaR
and ES illustrates some Macroeconomic and financial variables Granger Cause the equity premium
in VaR and ES at different a. The second empirical analysis of GaR and GS shows that the NFCI

Granger Causes the four quarters ahead GDP growth on GaR and GS when « is 0.05.
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Appendix A

Al: Proof of Theorm 1.

DM statistics of FZ loss-differential can be rewrite as follows:

E (1)
pr =t —r 1 { Yo a1} (A - Vi) + 255+ tog (el
it e

+ %1 {Ytﬂ < (?t(i)l} (@ﬁ% Yt+1) Zt}} 10g< éﬁ)l)]
t+1

O[€t+1

In order to prove that bp is non-zero at each t, we denote bp = p1 ZtT: rd¢ and show d; is

non-zero at each t.

(1). Yip1> 6]831, Yig1 > (jt(—Qi-)l’ and e§+)1 > éﬁ)l
(1) +(2)

dy = Zg)l —qi—+)1+ [l 0g <_é£-1i,-)1> - log( eﬁﬁl)}

t£1 Gt
S~ N~ <0
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(4).

(5).

(6).

(7).

(8).
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Thus, we find outEDp # 0,s0 the DM statistics has a bias.
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A2: Proof of Theorem 2.
We estimate the FZ scoring function with combined error term to find out the the encompassing

statistic. We have

\ = arg m/\in ES, (qgl, eﬁi)l, Yt+1)

where qt(i)l =(1-2x) qt(j_)l + )\qg_)l and el(ti)l =(1-\) eg +)1 + )\eﬁ)l First, we rewrite the expectation

of the FZ scoring function with combined functionals qg +)1 and eii)l as follows:
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ErSa <C]t(+)1a€z(t+)1,yi+1> Z/ - 1{Yt+1 < qt+1}(qt+1 Yip1)dFy(Yeg1) + EJr)l + log(— €E+)1) 1

—0 a€t+1 €t+1
‘IE+)1 1 (c) ( )1 ©

:/ —— @ (@ = Yip)dF(Ye) + EJF) +log(—¢; %) — 1
—oo ey €t+1

¢ 1 @, G ©
:/ — ZendFi(Zipa + q0) + — + log(—e, 7)) — 1
OO ey Ci+1

0
1
= Z1 1 Fi(Zip1 + th)IO / WFt(ZtJrl + qfi)l)dZm

0 €y
qt(fr)1 (c)
+ (0) + IOg(_et—H) -1
€iv1
( )
= / Fy(Zgy1 + qt(+)1)dZt+1 + ﬁl + log(— el(fj-)l) -1
a6t+1 €111

Taking derivative of expectation of the FZ scoring function with combined functionals ¢(© and e(®)

with respect to combined functionals ¢(© and e(©, we have
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Taking derivative of combined functionals ¢(© and e(®) with respect to weight A, we obtain

daity ((2) (1))

o Qi1 — Ay
del?, @
a;\r = (6t+1 - €t+1>

In order to find the optimal weight A*, we take the first order condition of the expected FZ scoring

function with respect to A.
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£ C=0 underHy asR,P— ooand P/R— oc.

Under Hp, A = 0, then we have qt(i)l = qt(_% and egi)l = egfl. Thus, E(C’p) =0, so Cp B 0, as

R,P — ocoand R, P — o0.
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Appendix B: Proof of Theorem 3

We have the combined VaR qgi)l =(1- )\)qﬁr)l + )\qﬁ)l and ES egj_)l =(1- )\)eg_)l + )\eg_)l. The

expected loss function from combining forecast is

© (o 1 (© 4 (.(0 qt(i)l (c)
ErpS (qt+17 €t Yt+1> =Ep |- © WY < Qt+1} <Qt+1 - Yt+1> + © + log (—€t+1) -1
ey €ir1

(21)

Taking the first order condition of Equation (21) with respect to A, we have

Cc = v,ES (qgi)p eﬁi)thH) =E [m&l (qii)l — qt(&) + mgfgﬂ (elg-?i-)l - 61&)1)] =0

To show the necessary condition, if A = 0, then qﬁ_)l = qﬁr)l and égi)l = égl, so that mgcz 1= mglt) 1

s~ (1)
My g =My iy . We have

T
& = P13 [y (42— o) + s (20— )] B0
t=R

as shown in Theorem 2 under Hy. To show the sufficient condition, taking the second order condition

of Equation (21) with respect to A, we have

O*ErS (%Ei)p egi)l’ Y;f+1> aC©

02 o\
=Ep <(1C)>3 [04 - Y1 < qgi)l}} [eij-)l (qt(i)l - qg—li-)l) +2 (eﬁ-)l - eg—li-)l)] (eﬁ)l - eg—li-)l)
@ \Ci1

2 c 1 c 2 1 2
el = VitV <] (el - effh) i (o - )

egogh“‘

1 2 1) )2
o | L (- 5o

(eg-ﬂ) ’

where Ep [a — Y1 < qgfl}} =0 and Ep egi)l — éY}Hl{Y},H < qéi)l} = 0. Therefore there is

a unique value A — 0 such that C’}f) — 0. 0

29



Appendix C: Proof of Theorem 4

Under Hy, ul&)l = ugr)l = uy1. We define g (U§21) = [a -1 (ugl < 0)] and the score k; +(5;+) as

follows:
Eivr1(Big) = OL (Yep, q”l(aﬁﬁiitt)» err1(Bit); o)
= VAR S O
=Vai1(Bit) e (Bin) g (utﬂ)
- s [ (uf] - o () |
Vo) aer1(Bie) [g (utﬂ) ar1(Bia) +(a =g (“t ))Yt+1 + aetﬂ(ﬁz,t)]

Then, let h; 11 and H;(t + 1) to be following.

hiv =—kitr1 (Bigt)
1

:V%H(ﬂi,t),_iwg (“1%321)

Qeti1

1 (i) (@)
+ V€t+1(5i,t)/m [9 (Ut+1> Q+1(Big) + (a—g (utH))YZH + Oéet—&-l(ﬁi,t)}
R
Hi(t+1) Z i1 (
=

1 i
Z {VCItH ﬂzt mg (U§421)

+Verr1(Bir) 3 [9 (uﬂl) Gt+1(Bit) + (a—g (uf@l))Ym + OletJrl(Bz',t)} }

Oé€t+1(5z',t)

We denote the Hessian to be

B! =EprA(Biy)
_ OEF (ki t(Bit)]
0B

o [ fer1 (@e+1(Bi) v A 1
=K —ceir1(Biy) Vair1(Bie) Vi (Bie) + e (B

V€t+1(5i,t)lvet+1(ﬁz‘,t)

-1

1 0
Therefore, By = 1 and By = . Let J denote the selection matrix (1,0) such

0 ErA(B24)
that Jhot = h1 . Let sup ; denote sup ;—ryi<.<¢. And matrix A and C' will defined in Lemma 3 and
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hoy = Z-VA'CBY*hyy, Hy(t) = Z-YA'CBY? Hy(t). Uy and U, will defined in Assumption 2. By the

central limit theorem, vR [R™? ZZ:FRH haos] ~ N (0,22B5"), where Z2By ' = E[k(0)k:(0)].

We use ), instead of ZE‘:t—RH and use ngl and ég?l instead of qt+1(3i,t) and et+1(,3i7t) for sim-

plicity.

Lemma 1: (Clark & McCracken, 2001) Let Assumptions 1-4 hold.

For i=1,2, >, Hi(t) Bi(t)hi1hi 1 By () Hj(t) = >y Hi(t) BiE(hip1hi 1) BiHj(E) + 0p(t). N

Proof: Adding and subtracting E(h; 111k}, 1),

ZH' Bi(t)hiy1hi 1 Bj(t)H(t)

- ZH’ ) BiE(hig1hl g 1) BiH;(t) + ZH’ Bi (higs1hf 1 — E(higiahly 1)) BiH,(t).

Now, we need to show the second term is o,(1).

Z Hz{<t)Bi (hi,t+1h;’,t+1 - E(hz‘,t+1hg,t+1)) BjHj(t)

t t
_ T _ _ _
=T72Y (P T2 W By @ T2y I Bif vec [T V2 (hi,t-*-lh;,t—&-l_E(hi,t-i-lh;,t—i—l))}
t s=1 s=1

Zt(%) |:T_1/2 Zs 1 h; sB ® T_1/2 Zs 1 h; SBi| vec |:T—1/2 (hi,t—l—lhg,t—&—l - E(hi,t-l-lhg,t—l—l))} is Op(l)
follows from Assumption 2, Corollary 29.19 of Davidson (1994) and Theorem 3.1 of Hansen (1992).

The proof is complete. ]

Lemma 2: Let Assumptions 1-3 hold. (a) Let —J'ByJ + By = M and B;1/2MB;1/2 = Q,
then @ is idempotent. (b). Define matrix A = (0,1)" and C = Isx2 Then Q = CAA'C. O
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Proof: (a).

Q= B, *MB;"?

1/2 1 1/2
_ 1 0 1 0 1 0
- 0 ErA(B2:) 0 ErpA(B2:) 0 ErA(B2:)
_ 1 0
N 0 1 7

so Q is an idempotent matrix with rank 1.

(b). Lemma A4(b) of Clark and McCracken (2001). O
Lemma 3: (Clark & McCracken, 2001) Let Assumptions 1-4 hold.
S (ke € [V ()= W (s - O1aW (5),
t 3

where { = R/T and ), denotes ZtT: R4 (similarly hereinafter). O

Proof:

t
1 ~ 1 - -
= Z hy j — = Wy i | ot

According to the continues mapping theorem and Corollary 29.19 of Davidson (1994),
T2 Ry = W(s), T2 'Thy, = W(s—¢) and T~Y2hy sy = dW (s). Since

T/R = ¢1, the proof is complete. O
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Lemma 4: (Clark & McCracken, 2001) Let Assumptions 1-4 hold.

~ ~ d 1
SO0 €2 [ () - W (s - 9P ds

Proof:

2 t t—R t t—R
DI ERD SRR W (D SRR Sy
t j=1 j=1 j=1 j=1

According to the continues mapping theorem and Corollary 29.19 of Davidson (1994),

7125t h’27j — Wi(s), T2 Z;.;If }}’27]. — W(s—£), T '2hys1 = dW (s) and 1/T —

7=1
ds. Since T/R = £¢~1, the proof is complete. O

Lemma 5: Let Assumptions 1-4 hold.
(1 . (2 A(1
Z [ml t+1 (qt—H qt(+)1> +mat+1 <e£+)1 - €§+)1ﬂ

. 1 . .
=3[~ <t ) 6 i)
t+1 1

t t+

_l’_

~(1)
a(é;r)lfl {Yt+1 < Qﬁ.bl} (‘j&)l - Yt+1> — thlrl + é(ll) (égr)l _ é&)1>

=7 Z T () ha,1 + 0p(1)
t
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Proof:

1 1 . R
Z [<_ 1{Yt+1 qt+1} + ) (ngr)l - qg?l)
t a6t+1

t+1

~(1)

+@é>{m‘ﬁ”@?m0<§3téyﬁlﬁﬂ
) Z{ Al(l) <a i = th}) (qt+)1 Qt(Jr)l)
t

Koé -1 {Y%+1 < CZSA}) qgi)l +1 {Y;H-l < qt(+)1} Y1 — 04612421} <€7E+)1 egr)l) }
-3 { e (o) (a2 - )
t

e () i+ (a- M@Uﬁm@ﬂ@%%ﬁ}

R 2
o <€t+1)

Taking Taylor Expansion and using generalized function by Galfand and Shilov, every term in the

last equation becomes

Al(l) tl) - V(&){ (5 ﬁ1) ((31,15—/31)2)

A1 Oy« (€t+1)
g (Ug«lr)1> =g (“&)1) + 5( §+)1> (“ﬁ)l §+)1> +Op <( §1+)1 “g«l&)z)

a—ith = Ve (Bos + 82)+0, <(52t @)) gV (Bie—81)+0, <(Bl,t51)2)

1 —ovel . 2
. (6,821)2 + (69)31 (Blt ﬁl) <<51,t — 51) >

1

o <€§1+)1>
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~(1)

1)
u ‘It+1 ARG qt+1 g (“t+1> di+1

<UEI+)1> qt+1 g

() atba + (i)
=g (ut+1) Qi1+ 9 ( 521) Qi1 — (Am) aih+g (U§1+)1) aih — 9 <u§1+)1) aih
= () ol + 0 (0 (6% o) + (o (32) o (u2)) o
@mwﬂ+q¢m@w ) +5 () (6 - ) o
0, (2~ k)"t

(=g () Yirr = (o = glu) = g(@) + o)) Y

= (a—g (uf))) Yirr = (9 (a2h) — g (uh) ) Vi
(o= () Yo = [0 (uf2) (a6 — ) + 0, ( (3D~ )" i
el = (D4 Teldy (e = ) + 0 (e — 1)) )

ot o (el (=) 00 (- )
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1 1 (2 1
Z [(— 1{Yt+1 < qt—i—l} + ) (q§+)1 q§+)1>
7 t+1

a€t+1

) ( A<11> ok {Y;“ = ‘ﬁ)l} (d&)l - Yt“) - fj(%)l)Q * A(12> ) (éﬁfl - é§1+)1>]

(&
(6t+1 t+1

(1)
2 |ap sy () e ()
t+

A

- A2 -
g (%E?l) +0 (ug-l&) (ag—li-)l USF)1> +Op ((“75-121 “5/21)2)] X
| Bt B2

ngr)l <32,t - 52) - Vqt(i)l (Bu — 51) +0, ((Bu - 51)2> + 0O, ((/32,1& - ﬁ1)2)]

C1 5;

+ 1(1) + Q(V(lgﬁ)l (51t 51) ((Bl,t_ﬁl)2> X

—a (etH) €t+1
D1 D
{9 ( §+)1) qt(+)1 + (a g (“Eﬁl)) Yip1 — O‘el(t}r)l
Ey

+9 (%EBl) (thgk)l - qﬁ)l) +0 <U£+)1> (“ﬁl “§+)1) qgr)l +Op ((Ugl “§1+)1> ) q§+)1

Es

- (3 () (56— with) + 0 ( (3t =) ) ) ¥oor = (wellh (= 32) < 0, ( (=) ) )|

-~

Es

vegr)l (Blt — [32> - Veﬁ)l (Bl,t - 51) +0p ((Bl,t - 51)2> +

P Fy
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AA = A1BCy + D1E 1 Fy

- Z ael(l) 9 (“E«lr)l) ( t(i)l (52 t— 52) - Vqt(i)l (Bl,t - 51))
t

t+1

S - (9 ( §1+)1) q£+)1 + (0‘ 9 <“§+)1)> Yip — aeg}r)l) ( t+1 (5215 - 52) - veg}k)l (51,1% - 51))

NEDE
=2V
t

1
- Veﬁ){a(e(l) 5 (9(“521)Q§21 + (a - 9(“&31)) Yiy1 — OéetH) (Bat — B2)
41

1
+v€§-1‘r)1a(e(1) )2 (g( §+)1)CI§J1F)1 + (a — g(u&)ﬁ) Yip1 — aet+1> (Bu - 51)]
t+1

1 1 A
t+1 ) 9(“t+1)(52t - 52) V(]t+)1 0 g(ugr)l)(ﬁl,t - 51)

Al Al

1 1
= Z { !V ﬁ)ll ) g(ugl) - Vel(ti){ M 2 (g(ug}r)l)‘ﬁﬂ + (Of - 9(“;%)) Yit1 — aet+1)] (52 t — B2)
6t+1 a(€t+1)

1y 1 1 1 1 1
- Vqt(+)1, (1) (“£+)1) — Ve £+)1 M) 2 (9( £+)1)q§+)1 + (04 g(ug—i-)l)) Yip1 — aet+1>] (ﬁlt — 51)}
RAAS| O‘(et+1)

= Z —hi 1 Bi(t) Hi(t) + h/2,t+1B2(t)H2(t)]
=" [=hh 1 BiH1(t) + hly 1 BoHa(t)] + 0p(1)
t
=" [~hbyy1J BrJ Ha(t) + hy 1y BoHo(t)] + 0p(1)
t
= [Py MH(1)] + 0p(1)
t
= 37 Mo BB 0 B B ()] + 0,(1)
= [P B 2QBY ()] + 0y(1)

t

=3 [P B PCANCBY (1) + 0,(1)
|

=Z2)  Hy(t)hai1 + 0p(1)
t
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Now we need to show that AB, AC, AD, AE, AF, AG, AH are lower order than AA. The order of

each element is showed below.

1
A =0,(1), Ay =0, <) , B = 0,(1), By =0, (R) 7

01=0p<\/lﬁ>, 02:0p<R>, D=0, (1), D2:op<\/1ﬁ>,
Bl = 0,(1), By =0, <1R> . R=0, <\/1R> , B=0, (;) ,

Besides ), 0(u; +)1)( i_lgl ifl)qﬁi)l, the order of other elements are straight forwards. For the

order of ), §(u, +1)(“§1+)1 — ug Jr)l)qg +)1, following Phillips (1991), we can get

P2 Z (ut+1 - ut+1> qgr)l ~ N(0,Q)

and

p! Z‘S <“Sr)1) <’[Lz(f-1&-)1 §+)1) qt(Jlr)l
t

5 lim P~ 1ZE( (ug—l&)) ( l(f-l‘r)l §+)1) qt(Jlr)l f(0)Q

P—oo

Thus, we have

1 P
526 () (2 = ofth) alts = P10 ) = 00 ()

t

By using the order of each element, the order of each term in the Zt(mu(@g +)1 qﬁ)l) + 1y t(egr)l

5(2)

¢,1)] can be proved as following.
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AA = Z A1B,Cy + D1E\F,
t

-5 0,000,000, (=) +0,0 0,0, ()| =0, ()

AB = ZAlBlCQ + D1E 1 F>s
t

=2 [op (1)0p (1) 0 (;) 0 (10, (1) O @)] O (@

AC = Z A1BsCy + D1 EyF)
t

-xlova(t)o. () oo (o (5] o0

AD = ZAlBQCQ + D1 EsFy
t

-5 oo (2)os (3) om0 (c5)o (2)] -0 ()

AFE = ZAgBlCl + Dy E1 Fy
t

Tl (oo ) o

AF = Z AyB1Cy + DyEL Fy
t

5o () () 0 () e (3)] -0 (1)

AG = Z Ay ByCh + DyEsFy
t

-l () (@) () -0 () o () o () = ()

AH = Z AsBoCoy + Do Es Fy
t

Sl (o (1) ()0 (o () ()] -0 ()

Therefore, all AB, AC, AD, AE, AF, AG, AH are lower order than AA. The proof is complete. [

:o"‘
SN—
Q
=
(S
VN
Sl
~—
\é
VN
SR
SN—
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Lemma 6: Let Assumptions 1-4 hold.
. (2 (1 . (2 (1) \1? =
Z [ml t+1 (qt(+)1 qu+)1> +mai+1 <€z§+)1 - 6§+)1ﬂ — PC?

1 R R
= Z [( 1{Yt+1 qt+1} + ) (qt(J2r)1 - qt(}k)l)
aé t+1 t+1
2

(1)
04<é§121>21 (Yo <} (6 - Yin) - (;?)2 + é§11+)1 (e —el)| —pc?

= Z* " Hy(t)Hy(t) + 0,(1)

Proof:
Z [m1 t+1 (qt+1 ‘jt(—li-)l) + M2ty (eg')l B e’(fi')lﬂ

1 L(2) A1
Z [( —my WY < qt+1} + ) <q1§+)1 - q£+)1>
t 1

i t+
2
(1)
a(é;r)l)Zl {Yt+1 < @Sr)l} (@&)1 - Yt+1) — (é?};ll) + {131 (égr)l — é£1+)1>

2
= 1 t+1Bl VH1(t) + hlz,t+1B2(t)H2<t)}

= Lesa BUH(8) + By BoHa ()] + 0p(1)
= Z t)Bihy s 1hh 41 BiH1(t) + ZHé(t)BéhQ,tHhIQ,t+1B2H2(t)
t t
— 2 H{(t)Biht11haer1BaHa(t) + 0p(1)
t
= H{(t)BiE (h1441h) ;1) BiH1(t) + > Hy(t)BSE (hosy1hly4y1) BoHa(t)
t t
-2 Z H{(t)BIE (hy41h 4 y1) BaHa(t) + 0p(1)
t

=Z>) H{(t)BiH(t) + Z° ) Hy(t)ByHa(t) — 22° ) Hi(t)ByHa(t) + 0p(1)
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= Z>) Hy(t)J'BiJHa(t) + Z2° ) Hy(t)ByHa(t) — 22° Y Hy(t).J' B1J Ha(t) + 0p(1)
t t t
= 7% Hj(t) [~J'B1J + By] Ha(t) + 0,(1)
t
= 7% Hj(t)MHy(t) + op(1)
t
=722y Hy()By By P MBy By Hy(t) + 0,(1)
t
= 72" Hy(t) By *CAACBY* Hy(t) + 0,(1)
t

= Z*Y " Hj(t)Ha(t) + 0p(1)

Lemma 3 implies that C' = O,(P~ 1), so PC? = 0,(1). Thus, the proof is completed. O

Theorem 2: Let Assumptions 1-4 hold. ENCp 4, N(0,1), as PR — oo, under Hy: A =0. O

Proof: In order to show that ENCp is asymptotically standard normal, we need to show

ENCp = Qp'*VPCp
214 (@@1 - éﬁl) + Mgty <ég1 - ég-l&)
\/Zt [ml,tﬂ (@91 - @521) + 2,41 (@@1 - égl)r — PC?
W W1 (s) o.1)
VERL W (5) =W (s — )P ds

We divided [0,1] to n = [1/£] = [T/ R] equal segments and let ¢t = [sn|, where [-] denote the integer
part and s € [0,1]. Let {r;}} ; is mixing sequence with E(v) = 0 and Var(v) = 1. We denote
Vi = Zle v; to be the partial sum, then V; = Zle v; ~ N(0,t). Thus,

> Vi

Vt—iz s S
NG Va(s) = W(s),
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where V;,(s) is a CADLAG process and V;,(s) is a Wiener process.

n~t ; v =n"" ; Vi —nt ; Vicowy
1 1
:>/£ W (s)dW (s) _/g W (s—&)dW (s)
1
=/£ W (s) = W (s — )] dW (s)
n2Y vt =nt ) (Vi = Viea)®
t=1

t=1

1
;»/ W (s) — W (s — €)|2ds
3
We generate an AR(1) regression to show the asymptotical standard normality of ENCp.
vit1 =Cu t €

The estimator ¢ = Y7, w104/ Sy v2 and Var($) = (S0, v2-0) " War() = (S5, v2.)
By using CLT,

Je W () =W (s =W () 5w

VEW 6 =W —oPds /S,

45 N(0,1)
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Table 1: Size of test (DGP1)

P =240 P =480 P = 1200
Repeat= 2000 DMp ENCp CCSp | DMp ENCp CCSp | DMp ENCp CCSp
R =120 | 0.006 0.091 0.040 | 0.003 0.098 0.044 | 0.001 0.089  0.047
a=0.01 R=24010.053 0.123 0.035 | 0.019 0.093 0.056 | 0.004 0.086 0.040
R =480 | 0.070 0.105 0.034 | 0.026 0.075 0.048 | 0.009 0.062 0.054
R =120 | 0.006 0.078 0.049 | 0.003 0.079 0.052 | 0.001 0.088 0.056
a=0.025 R=240 | 0.026 0.074 0.055 | 0.008 0.060 0.056 | 0.001 0.066  0.053
R =480 | 0.030 0.064 0.049 | 0.013 0.058 0.043 | 0.004 0.054 0.057
R =120 | 0.008 0.057 0.0564 | 0.003 0.065 0.045 | 0.001 0.068 0.052
a=0.00 R=24010.013 0.055 0.048 | 0.002 0.0564 0.054 | 0.000 0.050 0.048
R =480 | 0.015 0.043 0.059 | 0.009 0.049 0.059 | 0.000 0.044 0.054
R =120 | 0.003 0.053 0.043 | 0.002 0.056 0.055 | 0.000 0.064 0.047
a=01 R=240|0.009 0.047 0.052 | 0.002 0.043 0.054 | 0.000 0.045 0.054
R =480 | 0.014 0.041 0.050 | 0.007 0.044 0.054 | 0.001 0.046 0.063

This table show the size of DM p, ENCp, and CCSp test under 5% significance level, b = 0, ¢ = 0.
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Table 2: Size of test (DGP2)

P =240 P =480 P = 1200

Repeat= 2000 DMp ENCp CCSp | DMp ENCp CCSp | DMp ENCp CCSp

R=120] 0.029 0.064 0.048 | 0.011 0.055 0.035 | 0.003 0.072  0.041

a=0.05 R=240|0.032 0.059 0.096 | 0.015 0.056 0.053 | 0.004 0.066 0.040

R =480 | 0.040 0.077 0.121 | 0.025 0.057 0.076 | 0.009 0.055  0.038

This table show the size of DM p, ENCp, and CCSp test under 5% significance level, b = 0, ¢ = 0.
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Table 3: Power of test (DGP1)

P =240 P =480 P = 1200
Repeat= 2000 DMp ENCp CCSp | DMp ENCp CCSp | DMp ENCp CCSp
R=120|0.035 0.238 0.007 | 0.018 0.349 0.002 | 0.008 0.673 0.000
a=0.01 R=24010.119 0.348 0.009 | 0.112 0.493 0.002 | 0.076 0.721  0.000
R =480 | 0.240 0.460 0.028 | 0.225 0.571  0.003 | 0.232 0.790  0.000
R =120 | 0.060 0.406 0.002 | 0.153 0.500  0.003 | 0.025 0.840  0.000
a=0.025 R=240 | 0.1563 0.497 0.003 | 0.162 0.687 0.000 | 0.220 0.931  0.000
R =480 | 0.251 0.568 0.004 | 0.288 0.758 0.000 | 0.496 0.954 0.000
R=120 | 0.104 0.543 0.001 | 0.125 0.749 0.000 | 0.165 0.964 0.000
a=0.00 R=24010.221 0.664 0.001 | 0.321 0.854 0.000 | 0.535 0.986  0.000
R =480 | 0313 0.713 0.000 | 0.445 0.891 0.000 | 0.758 0.997  0.000
R =120 | 0.162 0.707 0.001 | 0.241 0.894 0.000 | 0.470 0.999  0.000
a=01 R=240 0333 0.793 0.000 | 0.480 0.956 0.000 | 0.854 1.000 0.000
R =480 | 0420 0.853 0.000 | 0.623 0975 0.000 | 0.938 1.000 0.000

This table show the power of DMp, ENCp, and CCSp test under 5% significance level, b = 0.1,

¢ = 0.95.
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Table 4: Power of test (DGP2)

P =240 P =480 P = 1200

Repeat= 2000 DMp ENCp CCSp | DMp ENCp CCSp | DMp ENCp CCSp

R=1201]0.022 0.098 0.045 | 0.012 0.100 0.136 | 0.000 0.177  0.657

a=0.05 R=240| 0.071 0.144 0.058 | 0.066 0.213 0.077 | 0.060 0.319 0.359

R =480 | 0.155 0.201 0.064 | 0.167 0.363 0.068 | 0.272 0.654  0.247

This table show the power of DMp, ENCp, and CCSp test under 5% significance level, b = 0.1,

¢ = 0.0.
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Table 7: Predicting v, = (GaRg, GS,)" of the Conditional Distribution

of the GDP Growth

h=0 h=1 h=2 h=3 h=4 h=5 h==6 h=717 h=38
ENCgrp | -1.4929 -1.2786 -1.5109 -1.4508 -1.8355 -1.4053 -1.2638 -0.8704 -1.1025
P-value | 0.1355 0.2010 0.1308 0.1468 0.0664 0.1599 0.2063 0.3841  0.2702
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Figure 5: The times series of the GDP growth and the NFCI based on the quarterly data.
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