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Abstract

Derivatives play an important role in economics; they help determine partial marginal

effects (e.g. returns to schooling) and check the curvature or concavity of functions

(e.g. production function). These play key roles in economic policy evaluations and

predictions. Therefore, it is essential to estimate derivatives precisely and robustly. In

this paper, we propose a derivative estimator that is completely data driven to esti-

mate the first and second derivatives. The estimator uses difference quotients, based

on a variant of random forests, that are smoothed. Incorporating random forests in

estimating derivatives help add more interpretability of forest-based models to explain

the relationships between variables via marginal effects. Asymptotic properties of the

estimator are established, and the performance of the estimator is addressed in both

simulation and in an empirical application of evaluating the concavity of a power plant

production function.
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1 Introduction

Derivative estimation plays a major role in economics. Derivatives help provide inter-

pretability of the relationships between an independent variable and a dependent variable,

for example, changing X by one unit, how much will be the change on Y , holding all else

fixed? This is known as the partial marginal effect (first derivative) of X on Y . An economic

example of the need of derivatives include estimating the marginal propensity to consume

(MPC), the proportion of extra income that is spent on consumption. In this case, consump-

tion, as a function of income, savings, and other determinants, is estimated. To determine

the MPC, the partial derivative of this estimated equation is taken. Another economic ex-

ample is estimating the effect of schooling or experience on earnings. In labor economics,

the relationship between education, experience, and earnings is widely studied. It is often

the case that people with more education and experience have higher earnings than those

with less education and experience. To quantify how much more a person would earn with

more education or experience, the derivative of an earnings regression is estimated to de-

termine the returns to schooling or experience. Clearly, estimating derivatives are vital in

understanding and solving economic problems.

After estimating a linear parametric model, to find the partial effect of a given variable,

the derivative of the estimated regression equation is usually taken.1 However, for certain

data based nonparametric or machine learning models, there may not be an analytical form

of the estimated regression equation and as a result, the partial effect may not be estimated.

As an example, the derivative of the machine learning based random forest estimator of the

regression function does not have an explicit analytical form nor it is smooth. Forest based

regression models produce step-wise regression functions that are not differentiable, which

is a huge hindrance in determining the partial marginal effect. Machine learning models

1In the classical case of Ordinary Least Squares, the derivative of the estimated linear regression function
is a constant. However, a constant marginal effect may be too restrictive and the derivative may vary across
the space of X. To deal with this, instead of specifying a parametric form of the regression function, resulting
in a parametric form of the derivative, both the regression function and the derivative are estimated in a
data driven way using nonparametric methods in this paper.
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are very flexible and can estimate any function well; however, some of these models are

considered to be “black boxes.” To alleviate this issue, we estimate derivatives of a foreset

based model, which allows for a better understanding of the underlying relationship between

the data and can be more interpretable in terms of how a change in a variable will change

the outcome variable.

In econometrics, the partial marginal effect can be estimated by taking the derivative

of the estimated regression function. However, such a marginal effect estimation obtained

from the linear or non-linear parametric regression model is well known to be biased and

inconsistent unless it is from a correctly specified model, which is rare. When the model is

from a data based nonparametric kernel regression, the estimates of derivatives are obtained

by the local polynomial regression method (Fan and Gijbels, 1996), which may not be very

smooth. Also, see the estimation of derivatives from spline regression (Zhou and Wolfe

(2000) and Ma et al. (2019)). Recently, in the data based machine learning regression area,

some interest in estimating derivatives has emerged. This includes, for example, a paper by

Fonseca et al. (2018) where a machine learning model using logistic function, called boosted

smooth transition regression trees (BooST) is introduced to estimate derivatives. However, if

a logistic specification is not correct then the proposed estimator of derivatives may become

statistically inconsistent.

Some other methods have also developed, in which data based difference quotients (DQ)

have been utilized to estimate derivatives, where the derivative is determined by taking

the ratio of differences between two data points. For example, Wang and Lin (2015) use

symmetric DQ to run a locally weighted linear regression where the estimate of the derivative

is just the intercept term under an equispaced design, where data points are equally spaced

along the support of the independent variable. Also, see Iserles (2008) and Brabanter et al.

(2013) papers for the estimation of derivatives using DQ method under the equispaced design.

Liu and De Brabanter (2018) and Liu and Brabanter (2020) then apply this DQ method

under the random design, where the regressor X is no longer restricted to be equally spaced
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apart. Such a procedure is denoted as DQSmooth. The results based on DQSmooth produce

noisy estimates of the derivative, and local polynomial regression is then used to smooth the

derivatives in attempt to reduce the variance. However, the derivative estimation procedure

proposed by Liu and Brabanter (2020) has some shortcomings. First, their estimator uses

observed data on the dependent variable Y, whereas we propose to consider estimated values

of Y, in order to further reduce the variance of the derivative estimator, based on a variant of

the machine learning estimator, like random forest. Second, their method only considers the

scalar X variable whereas we extend the estimator and its derivatives to include multivariate

X, which is commonly used in econometrics.

Random forests procedure (Breiman, 2001) is a popular method for estimating nonpara-

metric regression estimation for predictions. However, a drawback of random forests is that

they are unable to capture any smoothness in the estimated regression surface. This is most

likely why derivative estimation based on random forests is limited, which is due to the

nonsmooth-like nature of the estimator. In an effort to address the issue of the inability to

fit smooth signals, Friedberg et al. (2018) use random forests as an adaptive kernel method,

where random forests are incorporated in a local polynomial regression framework with a

ridge penalty, denoted as Local Linear Forests. Since Friedberg et al. (2018) consider a

local linear regression, the derivative can be estimated by the coefficient of the first order

derivative of the local linear regression. However, Friedberg et al. (2018) do not focus on

estimating the derivative in their paper and instead only estimate the regression function.

Instead of using local linear regression, any degree polynomial may be desired, especially

if higher order derivatives need to be estimated. This procedure will be denoted as Local

Random Forests (LRF).2 However, we show in simulation that the derivative obtained by

LRF are not only very noisy but they also tend to zero, and thus, LRF is a poor estimator

of the derivative.

Under above scenarios, in this paper, we propose to estimate derivatives using a proce-

2Local Random Forest is simply an extension to Local Linear Forests (Friedberg et al., 2018), where
instead of local linear regression, local polynomial regression of any degree can be used.
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dure, denoted as DQSmoothLRF, where difference quotients are first obtained using pre-

dictions from LRF. Then, they are smoothed through a local polynomial kernel regression.

The proposed derivative estimator contributes to both the nonparametric derivative esti-

mation literature and random forest literature by providing more interpretability of forest

based models to explain the relationships between variables via marginal effects estimation.

It is shown that the proposed derivative estimator improves substantially relative to LRF

considered by Friedberg et al. (2018).

The rest of the paper is as follows: section 2 goes through the procedure for estimating

the first derivative and its properties, section 3 discusses second derivative estimation and its

properties, section 4 extends the estimator to the multivariate case, section 5 briefly discusses

the LRF estimator, section 6 displays the simulation results in comparison to the benchmark

estimators, section 7 walks through an emprical example of evaluating the concavity of a

Chilean power plant production function, and section 8 concludes the paper.

2 First Order Derivative Estimation

Consider the bivariate data (X1, Y1), . . . , (Xn, Yn), which are independently and identically

distributed sampled from a population (X, Y ), where X ∈ R and Y ∈ R. Under the random

design, X is a random variable generated from some unkown density f and distribution F .

Consider the model

Yi = m(Xi) + ei, i = 1, . . . , n, (1)

where m(X) = E[Y |X = x] is the conditional mean function. Assume that E[e|X = x] = 0

and Var[e|X = x] = σ2
e < ∞. Now, consider a special case of X when X is standard

uniformly distributed. That is, letX = U ∼ U(0, 1), where U(0, 1) is the uniform distribution

between 0 and 1. Now, let U ∼ U(0, 1) and consider the same model but in the special case

where X ∼ U(0, 1)

Yi = r(Ui) + ei, i = 1, . . . , n, (2)

5



where r(u) = E[Y |U = u], E[e|U = u] = 0, and Var(e|U = u) = σ2
e < ∞. Assume that the

bivariate data (U, Y ) is ordered with respect to U .

2.1 Weighted Difference Quotients

Using the weighted combination of symmetric difference quotients around the ith point from

Iserles (2008), the noisy derivative estimator proposed by Liu and Brabanter (2020) under a

random design is

Ŷ
(1)
i =

k∑
j=1

ωi,j

(
Yi+j − Yi−j
Ui+j − Ui−j

)
, (3)

for k+1 ≤ i ≤ n−k and hence k ≤ (n−1)/2, where ωi,j sum to one for j = 1, . . . , k and Ŷ
(1)
i

is an estimator of the first derivative. The term noisy is used to differentiate this derivative

estimator and the smoothed derivative estimator later in this section. By minimizing the

variance of Eq. (3), Liu and Brabanter (2020) show that the optimal weights are

ωi,j =
(Ui+j − Ui−j)2∑k
l=1(Ui+l − Ui−l)2

, j = 1, . . . , k, (4)

where the weights sum to one across j = 1, . . . , k. This estimator is only for the interior

points, so Eq. (3) as well as the weights need to be modified for the boundaries, with

observation 1 < i < k + 1 being in the left boundary and n − k < i < n being in the right

boundary. Note that this estimator will not produce estimates for i = 1, n, and these two

observations can be ignored.

For this paper, instead of using observed values of Y for Yi+j and Yi−j, we propose using

estimated values from a Local Random Forest (LRF) model, a machine learning (ML) model.

First, we estimate Eq. (2) by LRF, and produce its fitted values as

Ŷi,LRF = r̂(Ui), i = 1, . . . , n. (5)

In the papers previously mentioned about derivative estimation, all estimate the derivative
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via the difference quotient using observed values of Y . By estimating the relationship between

U and Y first, this allows us to try to pick up the signal from the data before taking the

derivative, extend the procedure to the multivariate case, and provide more interpretability

of forest based models. Therefore, the proposed noisy derivative estimator is

Ŷ
(1)
i,LRF =

k∑
j=1

wi,j
r̂(Ui+j)− r̂(Ui−j)
Ui+j − Ui−j

, (6)

where Ŷ
(1)
i,LRF denotes the derivative estimator based on LRF predictions, r̂(·). By min-

imizing the variance of Eq. (6), the optimal weights are obtained in Proposition 1. Let

U = (Ui−j, . . . , Ui+j) for i > j, i+ j ≤ n, and j = 1, . . . , k.

Proposition 1. Under the model in Eq. (2) and for interior data points, k + 1 ≤ i ≤

n− k, minimizing the variance of Eq. (6) subject to
∑k

j=1wi,j = 1 gives the optimal weights

(minimum conditional variance) as

wi,j =
(Ui+j − Ui−j)2/(σ2

r̂,i+j + σ2
r̂,i−j)∑k

j=1(Ui+j − Ui−j)2/(σ2
r̂,i+j + σ2

r̂,i−j)
, j = 1, . . . , k, (7)

where σ2
r̂,i±j ≡ Var[r̂(Ui±j)|U], the variance of LRF estimator, r̂(Ui±j), for observation i± j.

Proof: see Appendix A.

We can see that the optimal weights in Eq. (7) are similar to that of Eq. (4), however these

weights depend on the variance of the LRF estimator, σ2
r̂,i±j. If we make the assumption

that the variance of the estimator is the same for i > j, i + j ≤ n, and j = 1, . . . , k, then

the optimal weights are the same as Eq. (4) in Liu and Brabanter (2020).

2.2 Asymptotic Properties of the Noisy Derivative Estimator

First, notice that the difference Ui − Uj is simply the difference of uniform order statistics,

where

Ui − Uj ∼ Beta(i− j, n− i+ j + 1) for i > j (8)
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(David and Nagaraja, 1970).

Lemma 1. Define U
iid∼ U(0, 1) and sort the random variables in order of magnitude such

that U1 < · · · < Un. Then,

Ui+j − Ui−j =
2j

n+ 1
+Op

(√
j

n2

)

Ui+j − Ui =
j

n+ 1
+Op

(√
j

n2

)

Ui − Ui−j =
j

n+ 1
+Op

(√
j

n2

)
.

Proof: see Liu and Brabanter (2020).

This result, combined with Proposition 1 leads to the bias and variance of the first order

derivative estimator.

Theorem 1. Under the model in Eq. (2) and assume r is twice continuously differentiable

on [0, 1], k → ∞ as n → ∞, and under the assumptions of Theorem 1 in Friedberg et al.

(2018), with ω ≤ 0.2 and subsamples of size s with s = nβ, for

βmin := 1−
(

1 +
d

1.56π

log(ω−1)

log((1− ω)−1)

)
< β < 1,

Var[r̂(·)] = O(n−(1−β)), where ω is the minimum fraction of parent observations into each

child node, π is the minimum probability that a variable is split, and d is the number of

regressors. Then, from the optimal weights obtained in Proposition 1, under the uniform

random design on the interval [0, 1], the conditional absolute bias and conditional variance

of the proposed derivative estimator in Eq. (6) for the interior data points k+ 1 ≤ i ≤ n− k
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are

∣∣∣∣ bias[Ŷ
(1)
i,LRF |U]

∣∣∣∣ ≤ sup
u∈[0,1]

∣∣r(2)(u)
∣∣ 3k(k + 1)

4(n+ 1)(2k + 1)
+ op

(
n−1k

)
(9)

Var[Ŷ
(1)
i,LRF |U] ≤ 3n−(1−β)(n+ 1)2

k(k + 1)(2k + 1)
+ op(n

(1+β)k−3). (10)

Proof: see Appendix B.

Then, from Theorem 1, the pointwise consistency of the derivative estimator can be

obtained.

Corollary 1. Under the assumptions of Theorem 1, k →∞ as n→∞ such that n(1+β)k−3 →

0 and n−1k → 0. Then, using the weights in Proposition 1, for any ε > 0 and for

k + 1 ≤ i ≤ n− k,

P

(∣∣Ŷ (1)
i,LRF − r

(1)(Ui)
∣∣ ≥ ε

)
→ 0 (11)

Proof: see Appendix C.

The parameter k, the number of symmetric differences around the ith data point, depicts the

bias-variance tradeoff; larger k increases bias but decreases variance. Therefore, k is chosen

by minimizing the asymptotic upper bound of the coniditonal mean integrated squared error

(MISE).

Corollary 2. Under the assumptions of Theorem 1, the optimal k that is chosen by mini-

mizing the asymptotic upper bound of the conditional MISE is

kopt = arg min
k∈N+\{0}

{(
B 3k(k + 1)

4(n+ 1)(2k + 1)

)2

+
3n−(1−β)(n+ 1)2

k(k + 1)(2k + 1)

}
, (12)

where B ≡ supu∈[0,1]

∣∣r(2)(u)
∣∣.

Proof: See Appendix D.

To find the optimal number of symmetric difference quotients, B needs to be estimated,
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which can be done by a local cubic polynomial regression. A grid search for k or any

optimization solver can then be used to find the optimal value of k.

Remark 1. Taking the first order condition of Eq. (12), we will not get an analytical solution

for kopt. However, if we retain the higher order terms, we can get an approximation for kopt

k̂opt = b24/5B̂−2/5n(3+β)/5c (13)

given an estimate for B.

2.3 Boundary Correction

So far, we have only discussed points in the interior. In order to reduce the variance,

slight modifications to the estimator is needed at the boundaries. Similar to the boundary

corrections made in Charnigo et al. (2011), Brabanter et al. (2013), and Liu and Brabanter

(2020), the observations lying at the left boundary with index 1 < i < k + 1, the modified

weighted difference estimator is

Ŷ
(1)
i,LRF =

k(i)∑
j=1

wi,j

(
r̂(Ui+j)− r̂(Ui−j)
Ui+j − Ui−j

)
+

k∑
j=k(i)+1

wi,j

(
r̂(Ui+j)− r̂(Ui)
Ui+j − Ui

)
(14)

with weights

wi,j =


(Ui+j−Ui−j)2/(σ2

r̂,i+j+σ
2
r̂,i−j)∑k(i)

l=1 (Ui+l−Ui−l)2/(σ2
r̂,i+l

+σ2
r̂,i−l)+

∑k
l=k(i)+1(Ui+l−Ui)2/(σ2

r̂,i+l
+σ2

r̂,i
)
, 1 ≤ j ≤ k(i)

(Ui+j−Ui)2/(σ2
r̂,i+j+σ

2
r̂,i)∑k(i)

l=1 (Ui+l−Ui−l)2/(σ2
r̂,i+l

+σ2
r̂,i−l)+

∑k
l=k(i)+1(Ui+l−Ui)2/(σ2

r̂,i+l
+σ2

r̂,i
)
, k(i) < j ≤ k

(15)

for k(i) = i− 1. Here, the weights are similar to those from the interior in that the weights

are standardized by the inverse variances of the LRF estimator. The observations at the

right boundary can be estimated in a similar fashion for k(i) = n− i.
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2.4 Smoothing Weighted Difference Quotients

The first order derivative estimators Eq. (6) and Eq. (14) depend on the variance of the LRF

estimator; forest based estimators are very noisy and therefore may affect the variance of

the derivative estimator. Another issue of the weighted difference quotient estimator is that

it cannot be evaluated at any arbitrary test point, and can only be evaluated for points in

the training sample. Therefore, Liu and De Brabanter (2018) and Liu and Brabanter (2020)

propose smoothing the estimator via local polynomial regression.

First, observe that the first order derivative estimator in Eq. (6), along with their modified

boundary correction estimators, will create a new variable for observations i = 2, . . . , n− 1.

Then, consider the new model,

Ŷ
(1)
LRF = r(1)(U) + ẽ, (16)

where the first derivative estimator, Ŷ
(1)
LRF , is some unknown first derivative function, r(1)(·),

of U , with error, ẽ. By construction of the first derivative estimator, the errors will be

correlated and assume that E[ẽ|U ] = 0, Cov[ẽi, ẽj|Ui, Uj] = σ2
ẽρn(Ui−Uj) for i 6= j, and σ2

ẽ <

∞. The correlation function, ρn(·) goes to zero as n→∞ and must satisfy ρn(0) = 1, ρn(u) =

ρn(−u), and −1 ≤ ρn(u) ≤ 1, assumed in Liu and Brabanter (2020) and Brabanter et al.

(2018). The goal is then to enhance the noisy derivative estimator Ŷ
(1)
LRF by nonparametric

smoothing. However, the correlation in the errors will affect the bandwidth selection for any

nonparametric smoothing and to counteract these effects, Brabanter et al. (2018) propose

using a bimodal kernel K such that K(0) = 0 and showed that under mild assumptions,

using such a kernel will remove any effects of the correlation on the bandwidth selection

without the need to estimate the correlation structure. We will denote the bimodal kernel

as K̄:

K̄(u) = (2/
√
π)u2 exp(−u2). (17)

Next, we fit a local polynomial regression of Ŷ
(1)
LRF on U . The local polynomial regression
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estimator of degree p for a given test observation u0 is provided by minimizing

min
βL∈R

n∑
i=1

{
Ŷ

(1)
i,LRF −

p∑
L=0

βL (Ui − u0)L
}2

K

(
Ui − u0

h

)
(18)

where βL are the solutions to the weighted least squares problem andK(·) is a kernel function.

The Lth order derivative r(L)(u0) for L = 0, 1, . . . , p is estimated by r̂(L)(u0) = L!β̂L. In

matrix notation, the solution is

β̂ = (U>WU)−1U>Wŷ(1), (19)

where β̂ = (β̂0, . . . , β̂p)
> is the (p + 1)× 1 vector of solutions to the minimization problem,

W = diag(K((Ui − u0)/h)) is the (n − 2) × (n − 2) diagonal matrix of weights based on a

specified kernel function, ŷ(1) = (Ŷ
(1)

2,LRF , . . . , Ŷ
(1)
n−1,LRF ) is the (n − 2) × 1 vector of the first

derivative estimators, and

U =


1 (U2 − u0) · · · (U2 − u0)p

...
...

...

1 (Un−1 − u0) · · · (Un−1 − u0)p

 ,

the (n−2)×(p+1) centered regression matrix. Therefore, the smoothed first order derivative

estimator is

r̂(1)(u0) = ε>1 β̂ = ε>1 (U>WU)−1U>Wŷ(1) (20)

where εi is a column vector that picks out the ith element.

2.5 Asymptotic Properties of the Smoothed Derivative Estimator

Next, we discuss some asymptotic results of the final smoothed derivative estimator in Eq.

(20). The following theorem states the upper bound of the conditional bias and variance of

r̂(1)(·).
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Theorem 2. Under the assumptions in Theorem 2 of Liu and Brabanter (2020) and in

Theorem 1, k →∞ as n→∞, and the weights given in Proposition 1, the conditional bias

and variance of Eq. (20) for p odd is

Bias[r̂(1)(u0)|Ũ] ≤ ε>1 S−1

[
cp

(p+ 1)!
r(p+2)(u0)hp+1 + B 3k(k + 1)

4(n+ 1)(2k + 1)
c̃p

]
{1 + op(1)}

=

[(∫
tp+1K∗0(t)dt

)
1

(p+ 1)!
rp+2(u0)hp+1

+ B 3k(k + 1)

4(n+ 1)(2k + 1)

(∫
K∗0(t)dt

)]
{1 + op(1)}

and

Var[r̂1(u0)|Ũ] ≤ 3n−(1−β)(n+ 1)2

k(k + 1)(2k + 1)

1 + ρc
h(n− 2k)

ε>1 S−1S∗S−1ε1{1 + op(1)},

=

∫
K∗20 (t)dt

3n−(1−β)(n+ 1)2

k(k + 1)(2k + 1)

1 + ρc
h(n− 2k)

{1 + op(1)}

where B = supu∈[0,1] |r(2)(u)|, S = (µi+j)0≤i,j≤p with µj =
∫
ujK(u)du, S∗ = (νi+j)0≤i,j≤p

with νj =
∫
ujK2(u)du, cp = (µp+1, . . . , µ2p+1)>, c̃p = (µ0, µ1, . . . , µp)

>, ε1 = (1, 0, . . . , 0)>,

and the equivalent kernel K∗0(t) = ε>1 S−1(1, t, . . . , tp)>K(t).

Proof: see Appendix E.

With smoothing using local polynomial regression, the bandwidth h needs to be esti-

mated. Following Liu and Brabanter (2020), we find k and h as follows: k is found by

optimizing AMISE in Corollary 2 and the bandwidth h is then estimated by using the bi-

modal kernel K̄ in Eq. (17), denoted as ĥb by cross validation. Then, ĥb can be used as a

pilot bandwidth which can be related to the bandwidth, ĥ, of the usual unimodal kernel,

such as the gaussian kernel,

K(u) = 1/
√

2π exp(−u2/2). (21)
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Brabanter et al. (2013) show the relationship between the bimodal and unimodal bandwidth,

ĥ = 1.01431ĥb, (22)

for local cubic regression using a gaussian kernel.3 Therefore, after fitting a local cubic

regression of Ŷ
(1)
LRF on U with bimodal kernel, K̄(·), and bandwidth, ĥb, we refit a local cubic

regression with unimodal kernel, K(·) and bandwidth, ĥ, defined in Eq. (22).

From Theorem 2, for p odd, the pointwise consistency follows.

Corollary 3. Under the assumptions of Theorem 1 and Theorem 2, h→ 0 and nh→∞ as

n → ∞, k → ∞ as n → ∞ such that n−1k → 0 and nβk−3h−1 → 0. Then, for the weights

given in Proposition 1, for any ε > 0,

P (|r̂(1)(u0)− r(1)(u0)| ≥ ε)→ 0. (23)

Proof: See Appendix F.

2.6 Generalizing to Arbitrary Distributions

In general, X may not follow a standard uniform distribution. To generalize X with unknown

distribution F , Liu and Brabanter (2020) suggest using probability integral transform (PIT)

F (X) ∼ U(0, 1). (24)

By using the PIT, we know that the transformed data is (F (X1), Y1), . . . , (F (Xn), Yn) which

has the same distribution as (U1, Y1), . . . , (Un, Yn). Then, the same procedure can be used

under the transformed data set. Notice, however, that the derivatives, r̂(1)(Ui) are in the

3For pth degree local regression and for different kernel functions, please see Brabanter et al. (2018).
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transformed space. Now, to get the derivative in the original space, the chain rule is used

dm(X)

dX
=
dr(U)

dU

dU

dX
= f(X)

dr(U)

dU
(25)

where m(X) = r(F (X)). Since the distribution and density, F and f , are unknown, kernel

estimators can be used to estimate the distribution and density, with plug-in bandwidths.

As a result, the full smoothed first order derivative estimator in the original space is

m̂(1)(X) = f̂(X)r̂(1)(U) (26)

To summarize, the full algorithm is described in Algorithm 1.

Note that this procedure gives the pointwise derivatives of Y with respect to X, which

may vary across the space of X. To summarize the overall derivative, we can take the sample

average of the derivative estimates to estimate the average derivative, that is

m̂(1)
avg =

1

n′

n′∑
i=1

m̂(1)(Xi) (27)

This result may be useful in estimating the global partial effect of a variable or even in

comparison to the partial effect given by an OLS coefficient.
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Algorithm 1 Smoothed Nonparametric Derivative Estimation using Weighted Difference
Quotients based on LRF

procedure DQSmoothLRF(training independent variable X, training dependent variable
Y , number of symmetric difference quotients k, degree of local polynomial d = 3, grid of
bandwidths to be considered hgrid, tunable hyperparameters of LRF model θ)

1: U ← F̂ (X)
. kernel cumulative distribution function estimation

2: r̂(U)← regress Y on U by a LRF model with tunable hyperparameters θ

3: Ŷ
(1)
LRF ← difference quotient in Eq. (6)

4: ĥb ← bandwidth selection from local polynomial regression of Ŷ
(1)
LRF on U

. with degree deg, kernel K̄ in Eq. (17), and searched over bandwidths hgrid
5: ĥ← 1.01431ĥb (for local cubic regression)

. bandwidth relationship between bimodal and unimodal gaussian kernels
6: r̂(1)(U)← local polynomial regression

. with degree deg, unimodal gaussian kernel K, and bandwidth ĥ

7: m̂(1)(X)← f̂(X)r̂(1)(U)

. back transform into original space as in Eq. (26) after kernel density estimation
of X

3 Second Order Derivatives

At times, economists are interested in the second derivative, which help depict the curvature

of the function and how the slope changes due to a change in the independent variable.

For example, with second derivatives, we can determine whether the earnings function is

concave or convex or see if a production function exhibits diminishing marginal returns.

Again, assume U is standard uniformly distributed and that the data (U, Y ) is sorted with

respect to U . The second order weighted difference quotient proposed by Liu and Brabanter

(2020) is

Ŷ
(2)
i = 2

k2∑
j=1

wi,j,2

(
Yi+j+k1−Yi+j
Ui+j+k1−Ui+j

− Yi−j−k1−Yi−j
Ui−j−k1−Ui−j

)
Ui+j+k1 − Ui+j − Ui−j−k1 − Ui−j

, (28)

with weights

wi,j,2 =
(2j + k1)2∑k2
j=1(2j + k1)2

, (29)
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where k1 and k2 are positive integers that represent the number of first and second order

difference quotients about observation i such that the weights wi,j,2 sum to one across j.

Note that the estimator is for observations in the interior for k1 + k2 + 1 ≤ i ≤ n− k1 − k2.

Also note that the Liu and Brabanter (2020) choose the second order derivative weights to

be proportional to the inverse of the conditional variance of each quotient. Similar to the

first order derivative, we replace Y with estimates of Y using the LRF estimator, denoted

by r̂. Define +Ŷ
(1)
i+j,LRF =

r̂(Ui+j+k1 )−r̂(Ui+j)
Ui+j+k1−Ui+j

and −Ŷ
(1)
i−j,LRF =

r̂(Ui−j−k1 )−r̂(Ui−j)
Ui−j−k1−Ui−j

. This leads to

the following proposition.

Proposition 2. Under the assumptions of Theorem 1 and r(·) is three times differentiable,

the estimator for the second derivative based on symmetric difference quotients is

Ŷ
(2)
i,LRF =

k2∑
j=1

wi,j,2

+Ŷ
(1)
i+j,LRF −− Ŷ

(1)
i−j,LRF

Ci,j,k1
, (30)

where Ci,j,k1 = (Ui+j+k1−Ui+j−Ui−j−k1−Ui−j)/2 is chosen such that each individual quotient
+Ŷ

(1)
i+j,ML−

−Ŷ
(1)
i−j,ML

Ci,j,k1
is an asymptotically unbiased estimator of the second order derivative r(2)(·)

for j = 1, . . . , k2 and where each weight is selected to be proportional to the inverse of the

conditional variance of each quotient:

wi,j =

(Ui+j+k1+Ui+j−Ui−j−k1−Ui−j)
2

+Vi+j+−Vi−j∑k2
j=1

(Ui+j+k1+Ui+j−Ui−j−k1−Ui−j)
2

+Vi+j+−Vi−j

, (31)

with +Vi+j ≡
σ2
r̂,i+j+k1

+σ2
r̂,i+j

(Ui+j+k1−Ui+j)
2 and −Vi−j ≡

σ2
r̂,i−j−k1

+σ2
r̂,i−j

(Ui−j−k1−Ui−j)
2 .

Proof: See Appendix appendix G.

Applying Lemma 1, and using the leading order of the weight, the weight can be approx-

imated by

wi,j,2 =
(2j + k1)2/(σ2

r̂,i+j+k1
+ σ2

r̂,i+j + σ2
r̂,i−j−k1 + σ2

r̂,i−j)∑k2
j=1(2j + k1)2/(σ2

r̂,i+j+k1
+ σ2

r̂,i+j + σ2
r̂,i−j−k1 + σ2

r̂,i−j)
. (32)
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Notice that if the variances are approximately the same for the 2 · (k1 + k2) observations

around i, the the proposed weights will be equal to that of Liu and Brabanter (2020) in Eq.

(29).

Theorem 3. Assume the model in Eq. (2), r is three times continuously differentiable on

[0, 1], k1 → ∞ and k2 → ∞ as n → ∞, and the assumptions of Theorem 1 in Friedberg

et al. (2018), with Var[r̂(·)] = O(n−(1−β)). Then, from the optimal weights obtained in

equation (32), under the uniform random design on the interval [0, 1], the conditional absolute

bias and conditional variance of the proposed second derivative estimator in Eq. (30) for the

interior data points k1 + k2 + 1 ≤ i ≤ n− k1 − k2 are

∣∣∣∣Bias[Ŷ
(2)
i,LRF |Ũ]

∣∣∣∣ ≤ supu∈[0,1] |r(3)(u)|
n+ 1

2
∑k2

j=1 j
3 + 3k1

∑k2
j=1 j

2 + 5
3
k2

1

∑k2
j=1 j + 1

3
k3

1k2

4
∑k2

j=1 j
2 + k2

1k2 + 4k1

∑k2
j=1 j

{1 + op(1)}

(33)

Var[Ŷ
(2)
i,LRF |U] ≤ 4n−(1−β)(n+ 1)4

k2
1

∑k2
j=1(2j + k1)2

{1 + op(1)}. (34)

Proof: see Appendix H.

From Theorem 3, the pointwise consistency of Ŷ
(2)
i,LRF can be obtained.

Corollary 4. Under the assumptions of Theorem 3, k1 →∞ and k2 →∞ as n→∞ such

that n−1k1 → 0, n−1k2 → 0, n3+βk−2
1 k−3

2 → 0, and n3+βk−4
1 k−1

2 → 0. Then, using the weights

in equation (32), for any ε > 0 and for k1 + k2 + 1 ≤ i ≤ n− k1 − k2,

P

(∣∣Ŷ (2)
i,LRF − r

(2)(Ui)
∣∣ ≥ ε

)
→ 0 (35)

Proof: see Appendix I.

From Theorem 3, the number of difference quotients k1 and k2 play a role in the bias

variance tradeoff. Similar to the symmetric difference quotients for the first derivative, the

higher k1 and k2 are, the higher the bias but the lower the variance and vice versa. The
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following corollary chooses the numbers of symmetric difference quotients for the second

derivative considering the bias variance tradeoff.

Corollary 5. Under the assumptions of Theorem 3, the optimal k1 and k2 that is chosen by

minimizing the asymptotic upper bound of the conditional MISE is

(k1, k2)opt = arg min
k∈N+\{0}


(
B2

n+ 1

2
∑k2

j=1 j
3 + 3k1

∑k2
j=1 j

2 + 5
3
k2

1

∑k2
j=1 j + 1

3
k3

1k2

4
∑k2

j=1 j
2 + k2

1k2 + 4k1

∑k2
j=1 j

)2

+
4n−(1−β)(n+ 1)4

k2
1

∑k2
j=1(2j + k1)2

} (36)

where B2 ≡ supu∈[0,1]

∣∣r(3)(u)
∣∣.

Proof: See Appendix J.

The quantity B2 can be estimated by a local polynomial regression of order p = 4 to obtain

an estimate of the third derivative of r. The optimal value pair (k1, k2)opt can be obtained

using a grid search or any optimization method. Points on the left boundary, i < k1 +k2 +1,

and points on the right boundary, i > n− k1 − k2, need to be adjusted and can be done in

a similar analysis for the noisy first derivative estimator.

In order to smooth the second order weighted difference quotients, a local polynomial

regression of the second order derivative estimates on U . First, rewriting Eq. (28) as

Ŷ
(2)
i = 2

k2∑
j=1

wi,j,2

(
r(Ui+j+k1 )−r(Ui+j)
Ui+j+k1−Ui+j

− r(Ui−j−k1 )−r(Ui−j)
Ui−j−k1−Ui−j

)
Ui+j+k1 − Ui+j − Ui−j−k1 − Ui−j

+ 2

k2∑
j=1

wi,j,2

(
ei+j+k1−ei+j
Ui+j+k1−Ui+j

− ei−j−k1−ei−j
Ui−j−k1−Ui−j

)
Ui+j+k1 − Ui+j − Ui−j−k1 − Ui−j

,

(37)

where the first term is denoted as the true second derivative, r(2)(U) and the last term is the

new error term, é,

Ŷ
(2)
i = r(2)(U) + é. (38)

As in the case for the first derivative, a bimodal kernel, K such that K(0) = 0, is used to
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counteract the effect of the correlated errors on bandwidth selection. Instead of using the

second order weighted difference quotient in Eq. (28), we propose using Eq. (30) with weights

Eq. (32) for the estimate of the second derivative,

Ŷ
(2)
i,LRF = r(2)(U) + é. (39)

Now, a local polynomial regression is estimated for the model Eq. (39), where Ŷ
(1)
i,LRF is

replaced by Ŷ
(2)
i,LRF in Eq. (18) is minimized. Following Liu and Brabanter (2020), the error

term é satisfies E[é|U ] = 0 and Cov[éi, éj|Ui, Uj] = σ2
éρ
′
n(Ui − Uj). Then, the solution is

β̂ = (U>WU)−1U>Wŷ(2), (40)

where U is the centered regression matrix with the first column being ones, W is the diagonal

matrix of kernel weights, and ŷ(2) is the vector of second order weighted difference quotients

in Eq. (30). Therefore, the smoothed second order derivative estimator is given by

r̂(2)(u0) = ε>1 β̂ = ε>1 (U>WU)−1U>Wŷ(2) (41)

To generalize to any unknown distribution for X, we again use PIT to transform the

variables X to U . Since, m(X) = r(F (X)), the second derivative of m with respect to X is

d2m

dX2
=

(
dr

dU

dU

dX

)
=

d

dX

(
f(X)r(1)(U)

)
= f (1)(X)r(1)(U) + f(X)r(2)(U) (42)

4 Extension to the Multivariate Case

It is very rare to have models with univariate X in economics. In this section we try to

extend the procedure to the multivariate case. Suppose we have the model

Yi = m(Xi,1, . . . , Xi,d) + ei, i = 1, . . . , n, (43)
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where d is the number of independent variables. For now, suppose all of the regressors are

standard uniformly distributed. Then, consider the regression of the form

Yi = r(Ui,1, . . . , Ui,d) + ei. (44)

Then, we follow the same steps as before. First, we estimate r(·) by LRF. Now, the first

partial derivative with respect to the sth variable is given by the weighted difference quotient

Ŷ
(1)
i,s,LRF =

ks∑
j=1

wi,j
r̂(Ui+j,s, Ū)− r̂(Ui−j,s, Ū)

Ui+j,s − Ui−j,s
, (45)

where Ū contains the other d− 1 variables evaluated at their medians. Note that we order

the data with respect to the sth variable and that variables can have different number of

symmetric difference quotients denoted by ks. We can then use this estimate of the first

partial derivative as the dependent variable in a local polynomial regression on U1, . . . , Ud,

Ŷ
(1)
s,LRF = r(1)

s (U1, . . . , Ud) + ẽ, (46)

where the subscript s denotes the derivative with respect to the sth variable. Since the errors

are correlated, we use the multivariate bimodal kernel,

K̄(u) = (2d/π
d
2 )||u||2 exp(−||u||2). (47)

Then, we can correct the bandwidth using the relationship between bimodal and unimodal

kernel functions as in Brabanter et al. (2013) for each bandwidth to get an estimate of the

partial derivative, r̂
(1)
s (Us, Ū).

Now, suppose that Xm for m = 1 . . . , d are not all standard uniformly distributed. First,

we can estimate the joint CDF function of all independent variables, FX1,...,Xd(x1, . . . , xd).

To obtain the marginal CDFs of a specified variable, we take the limits in the arguments of
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the joint CDF of the other variables, FXs(xs) = FX1,...,Xd(+∞, . . . , xs, . . . ,+∞). Then, we

have for each regressor,

FXm(Xm) ∼ U(0, 1), m = 1, . . . , d. (48)

Therefore, the new data (FX1(X1,1), . . . , FXd(X1,d), Y1), . . . , (FX1(Xn,1), . . . , FXd(Xn,d), Yn),

has the same distribution as (U1,1, . . . , U1,d, Y1), . . . , (Un,1, . . . , Un,d, Yn).

Yi = r(FX1(Xi,1), . . . , FXd(Xi,d)) + ei

= r(Ui,1, . . . , Ui,d) + ei,

(49)

which is the case where we have all standard uniform variables as regressors. To get deriva-

tives in the original space,

∂m(Xs, X̄)

∂Xs

=
∂r(Us, Ū)

∂Us

∂Us
∂Xs

= fXs(Xs)
∂r(Us, Ū)

∂Xs

(50)

Using a multivariate kernel density estimator for fX1,...,Xd , and marginalizing for the s− th

variable, the final smooth partial derivative with respect to the sth variable is

m̂(1)
s (Xs, X̄) = f̂Xs(Xs)r̂

(1)
s (Us, Ū), (51)

where f̂Xs(Xs) =
∑

x1
· · ·
∑

xs−1
,
∑

xs+1
· · ·
∑

xd
f̂X1,...,Xd(x1, . . . , xs, . . . , xd) Note that X̄ and

Ū mean we are holding the other variables fixed (at their medians or some other fixed

constant). So, we evaluate the derivatives holding the other variables fixed at their medians

in the X space and transform these fixed values in the U space when fitting a regression

function and smoothing the derivatives. The second derivative in the multivariate case can

be estimated in a similar fashion.

m̂(2)
s (Xs, X̄) = f̂

(1)
Xs

(Xs)r̂
(1)(Us, Ū) + f̂Xs(Xs)r̂

(2)(Us, Ū) (52)
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5 Local Random Forest

This section briefly discusses the Local (Linear) Random Forest (LRF) estimator. In what

follows, assume the i.i.d data (xi, yi), for i = 1, . . . , n, where xi ∈ Rd and assume the model

in Eq. (1), either for the univariate case (d = 1) or the multivariate case (d > 1). LRF uses

a local polynomial regression with p = 1 (local linear) with forest based weights instead of

kernel based weights (Friedberg et al., 2018). The objective function includes a weighted

quadratic loss with L2 regularization,

arg min
δq

n∑
i=1

(
yi −

p∑
q=0

δTq (xi − x0)q

)2

ai(xi,x0) + λ||δ1||2 (53)

where λ is the regularization strength parameter and ai(·) = 1
B

∑B
b=1

1{xi∈Lb(x0)}
|Lb(x0)| is the weight

function. Here, B is the number of bootstrap replications, 1{·} is the indicator function,

and Lb(x0) denotes the the leaf of the b-th bootstrapped tree that contains the testing point

x0. δq, for q = 0, 1 denotes the conditional mean function and its derivative evaluated at x0.

The minimization problem is the same as in Eq. (18), except for the weight function and

the regularization term. Using similar notation as before, the minimization problem can be

expressed in matrix form as

arg min
δ

(y −Xδ)>W(y −Xδ) + λδ>Jδ, (54)

where J is the identity matrix with the first diagonal element as zero, X is the centered

regression matrix with the first column being ones, W is the diagonal matrix of weights a(·),

y is the vector of the dependent variable, and δ is the gradient vector with the first element

being the estimate for the mean regression function. Then, the solution is

δ̂ = (X>WX + λJ)−1X>Wy (55)
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and the resulting prediction function evaluated at a test point x0 is

m̂(x0) = ε>1 δ̂. (56)

To find λ, a random forest model is trained first and the weights ai(·) are obtained from

the forest. Then, the regularization parameter λ can be found by cross validation. LRF can

then be used in step 3 of Algorithm 1, with transformed regressor, U .

As a reference, the first derivative can be obtained from LRF.

m̂(1)(x0) = ε>2 δ̂ (57)

However, as stated in section 1, the derivative based on LRF will be noisy and tend to zero

due to the ridge penalty. Even when there is no ridge penaly, λ = 0, the derivative will still

have high variance. This is due to the nature of the high variance in random forests. In the

following section, we will show that there is a huge improvement when the derivative based

on LRF is compared to the proposed estimator, DQSmoothLRF.

6 Simulations

This section shows derivative estimation based on the proposed estimator, DQSmoothLRF

as well as other estimators. To compare results, we consider the following data generating

process (DGP)

m(X) = cos(2πX)2 for X ∼ beta(2, 2), (58)

which is from Liu and De Brabanter (2018) with sample size n = 700 and e ∼ N(0, 0.22).

Since we know the true function, the analytical expression of the derivative is

m(1)(X) = −4π cos(2πX) sin(2πX). (59)

24



For all simulations, we estimate the density f and distribution F by the R package ks (Duong,

2020). The parameter k, the number of symmetric difference quotients, is estimated by

Corollary 2. For the weights wi,j based on the variances of the LRF estimator in Eq. (7), we

assume that the variances are constant for the k points round i, so that the weights collapse

to Eq. (4). Therefore, plots and results show the derivative estimators based on the weights

obtained in Eq. (4). We do this so that results under the proposed model can be easily

compared to the benchmark model, the model proposed by Liu and Brabanter (2020), and

since the simulated errors are homoskedastic, this assumption may be reasonable.

For this DGP, we also consider estimating the second derivative. Given the true function

for m, the second derivative is

m(2)(X) = 8π2(sin(2πX)2 − cos(2πX)2). (60)

Then, we follow the procedure outlined in section 3, where the numbers of symmetric differ-

ence quotients for the first and second derivative, k1 and k2, are estimated by Corollary 5.

Similar to the first derivative, for the weights wi,j,2 in Eq. (32), we assume that the variances

are constant for the k1 and k2 points round i, so that the weights do not depend on the

variances of the LRF estimator.

We show estimates of the first and second derivatives considering four different models, (1)

DQSmooth, the benchmark model of the derivative based on difference quotients proposed

by Liu and Brabanter (2020), (2) DQSmoothLRF, the proposed estimator based on LRF

estimates of Y , (3) LocCubic, a local cubic regression, a common regression technique to

estimate derivatives in the nonparametric literature, and (4), LRF, the model proposed by

Friedberg et al. (2018), a benchmark model of the derivative based on random forests. For

the last estimator, LRF, the original paper by Friedberg et al. (2018) focuses on estimating

the conditional mean function, not its derivatives. The paper also considers only a local

linear approach. For these simulations, we consider a local cubic with λ = 0 for the LRF
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estimator. The reason for zero ridge penalty, is that since the ridge parameter, λ, penalizes

the curvature of the function, it will force the derivative estimates toward zero, although the

conditional mean function may not be flat. All local polynomial regressions are estimated

using locpol package (Cabrera, 2018). When estimating LRF based models, we use the grf

package (Tibshirani et al., 2020). To assess the models, we use mean squared error (MSE)

and mean absolute error (MAE), defined as

MSE =
1

m

m∑
j=1

(
m̂(1)(Xj)−m(1)(Xj)

)2

(61)

MAE =
1

m

m∑
j=1

∣∣∣∣m̂(1)(Xj)−m(1)(Xj)

∣∣∣∣. (62)

We evaluate all models at 500 evenly spaced points from 0.05 to 0.95, where m = 500.

Models for the second derivative is evaluated in a similar fashion.

Results for the first derivative are plotted in Figure 1. The grey curves depict one

estimated first derivative function for a simulation run, where all simulations are plotted.

The solid colored curves represent the average of all simulations at each of the 500 evenly

spaced points of X from 0.05 to 0.95 and the black curve represents the true derivative we

wish to estimate. As seen from the figure, all models on average seem to estimate the true first

derivative accurately. However, the difference is notable due to the variance of the models,

which is depicted by how far away on average the grey curves are from their solid curves. By

first glance, both DQsmooth and DQSmoothLRF seem to have lower variance and are more

accurate in the sense of lower variability. In addition, DQSmoothLRF also appears to have

slightly smaller variability in estimating the first derivative compared to DQSmooth. This is

a direct result of using estimated values of Y by a LRF, where the signal is picked up from

the noise, instead of using raw values of Y , which is the case for DQSmooth. The LocCubic

and LRF models seem to have larger variability than the DQSmooth models. Notice the

extremely large variability in the LRF estimator for the first derivative; this justifies the

need to enhance derivative estimates based on LRF.
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First Derivative

Figure 1: Each plot shows the estimates for the first derivative for DQSmooth (Liu and
Brabanter, 2020), DQSmoothLRF (the proposed estimator), LocCubic, and LRF estimators.
Note that the first derivative estimator based on LRF is for λ = 0. The grey curves in each
plot depict estimates of the first derivative for one simulation, where 100 simulations are
plotted. The solid colored curves represent the mean predicted values across all simulations.
The solid black curve represents the true first derivative. All estimators are evaluated at 500
evenly spaced points from 0.05 to 0.95.

Results for the second derivative are plotted in Figure 2. The colored curves are analagous

to those from the first derivative plot. Here, it appears that that most estimators roughly get

the overall shape of the second derivative. Similar to the first derivative, the first noticeable

difference is the variance of each estimator, where both DQSmooth and DQSmoothLRF

estimators have the smallest variance. Although LocCubic seems to have smaller bias, the

variance is significantly larger than the DQSmooth procedures. In the last case, LRF has

extremely large variance, and there is much improvement on estimating the second derivative

based on DQSmoothLRF compared to LRF alone.

Results for the simulations are shown in Table 1, where the bias, variance, MSE, and
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Second Derivative

Figure 2: Each plot shows the estimates for the second derivative for DQSmooth (Liu and
Brabanter, 2020), DQSmoothLRF (the proposed estimator), LocCubic, and LRF estimators.
Note that the second derivative estimator based on LRF is for λ = 0. The grey curves in each
plot depict estimates of the second derivative for one simulation, where 100 simulations are
plotted. The solid colored curves represent the mean predicted values across all simulations.
The solid black curve represents the true second derivative. All estimators are evaluated at
500 evenly spaced points from 0.05 to 0.95.

MAE are reported for both the first and second derivative across the four models under

consideration. First, the mean bias from DQSmooth and DQSmoothLRF estimators are

roughly the same indicating that the bias of derivative estimates for DQSmoothLRF is similar

to that of the bias for DQSmooth. However, improvement on DQSmooth is shown through

the variance of the DQSmoothLRF estimator, with a 20% and 32% reduction in the variance

relative to the variance of DQSmooth. Although the LocCubic model has lower absolute

mean bias compared to all models, the variance is over double of those of the DQSmooth

models. The LRF estimator performs the worst and we can see a significant improvement in

estimates for the first derivative and second derivative estimator when using DQSmoothLRF.
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Lastly, DQSmooth performs the best in terms of both MSE and MAE compared to all models

for both the first derivative and second derivative estimations. Overall, in these simulations,

we have shown that DQSmoothLRF outperforms all other estimators in terms of variance,

MSE, and MAE.

Model Assessment

First Derivative Bias Variance MSE MAE

DQSmooth 0.0168 0.2618 0.3194 0.4221
DQSmoothLRF 0.0121 0.2085 0.2943 0.4180
LocCubic -0.0045 0.4437 0.4789 0.4565
LRF -0.0209 12.9508 13.1182 2.7767

Second Derivative Bias Variance MSE MAE

DQSmooth 5.7984 86.0250 259.8858 12.6552
DQSmoothLRF 5.4323 58.7255 231.5355 12.1516
LocCubic -1.9564 631.8972 747.2560 15.8320
LRF -4.1653 18, 042.3700 18, 892.7700 96.5819

Table 1: The top and bottom panel show the bias, variance, MSE, and MAE for the first
and second derivative respectively, comparing the four models, DQSmooth (Liu and Braban-
ter, 2020), DQSmoothLRF (the proposed estimator), LocCubic, and LRF. All estimates are
averaged across all simulations. Note that the results based on LRF is for λ = 0. All models
are evaluated at 500 evenly spaced points from 0.05 to 0.95.

7 Empirical Application: Convex Technology

A conventional assumption of a production possibility set or technology is convexity (Ker-

stens and de Woestyne, 2021). One way to check the convexity assumption is to evaluate the

curvature of the production function, known as the criterion of quasi-concavity. Sauer (2006)

shows that the the law of diminishing marginal productivity in at least one input and quasi-

concavity are violated, indicating nonconvexities in agricultural technology. Kerstens and

de Woestyne (2021) test the convexity assumption and show that cost functions determined

by convex technology are heavily downward biased compared to those determined by non-

convex technology. In this paper, we will check the curvature and quasi-concavity criterion
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of the production function by estimating its second derivative by the proposed method.

We will use Chilean hydro-electric power generation plants (Atkinson and Dorfman,

2009). To avoid any technical change over time, we single out the year 1997 for 16 power

plants with monthly data, providing 188 observations.4 The data contain one output, elec-

tricity generated (q), prices, and quantities of three inputs: capital (k), water (w), and labor

(l).5

First, the production function can be modeled as an unknown function of the three inputs.

q = m(k, w, l) + e. (63)

We wish to evaluate the curvature of the production function to test quasi-concavity by

estimating its second derivative in each of the three arguments. First, we transform the

inputs as in section 4 and can rewrite the model as

q = r(Uk, Uw, Ul) + ei, (64)

where Uk, Uw, and Ul are the uniformly transformed variables of capital, water, and labor,

respectively. Figure 3 depicts the first (left three plots) and second (right three plots)

derivatives of the production function in Eq. (63). The first derivatives with respect to

capital m̂(1)(k, w̄, l̄), water m̂(1)(k̄, w, l̄), and labor m̂(1)(k̄, w̄, l) are evaluated at 200 evenly

spaced points across the sample space of each input while holding the other inputs fixed at

their medians. The second derivatives are evaluated analogously.

From Figure 3, for capital, the first derivative is positive when capital is small, indicating

that electricity output is increasing in capital. The second derivative is positive around

this support, indicating that the slope of the production function with respect to capital is

increasing, which implies that this part of the production function is convex. As a result the

4The data can be found from the Journal of Applied Econometrics Data Archive. Note that there are
four missing observations for the 16 power plants during the year 1997.

5Further details about the data can be found in Atkinson and Dorfman (2009).
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First and Second Derivatives of Chilean Power Plant Production

Figure 3: The three figures on the left and right are the first and second derivatives, re-
spectively, estimated by DQSmoothLRF. All estimates are evaluated across 200 evenly spaced
points for each of the three inputs, while holding the other two inputs fixed at their medians.

level set will be nonconvex, violating the quasi-concavity criterion and convex technology

assumption. The bottom plots of Figure 3, referring to the input labor, seem to also violate

these assumptions, where the production function is convex in parts of the support for labor.

The middle plots show that production is increasing in the input for water and the second
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derivative is negative in the start of the support for water. Therefore, production appears

to be quasi-concave in water. Overall, electricity production is convex in at least two of its

inputs and does not produce convex technology, which would further confirm the nonconvex

results obtained in Kerstens and de Woestyne (2021).

Table 2 shows the estimated average first and second derivatives of the production func-

tion with respect to the input variables, capital, water, and labor. Average derivatives for

OLS are also reported as reference, where a naive linear regression function is estimated.

The first derivatives, partial marginal effects, will be constant, and as a result, the second

derivative will be zero. All inputs have a positive average partial effect and the production

function is increasing in the three inputs. However, when evaluating the first derivative,

the average partial effect is underestimated compared to the average effect estimated by

DQSmoothLRF for all of the inputs. The second derivative with respect to water is negative

on average, implying that the estimated production function is concave in the input water.

However, the other two inputs have a positive average second derivative, implying that the

estimated production function is convex in the inputs capital and labor. Furthermore, the

results from Table 2 regarding the positive second derivatives with respect to capital and

labor further justify that the electricity production function breaks the convex technology

assumption.

Average Derivatives of Chilean Power Plant Production

First Derivative Second Derivative

OLS DQSmoothLRF OLS DQSmoothLRF

Capital 0.00001 0.0002 0 0.3264
Water 0.2176 0.5296 0 -30.0765
Labor 0.2815 4.5731 0 975.8699

Table 2: Average partial first and second derivatives with respect to each of the inputs,
capital, water, and labor, are reported. The partial derivatives are evaluated at 200 evenly
spaced points across the support of each regressor, where each derivative is held constant for
other factors. The reported results are the average of the evaluated 200 derivative points.
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8 Conclusion

Overall, derivatives can help economists find the partial marginal effect (first derivative)

of a variable or check convexity assumptions by evaluating the curvature of a production

function (second derivative). In this paper, we propose a method, DQSmoothLRF, that

smooths random forest based difference quotients to estimate first and second derivatives.

We improve on the original method in Liu and Brabanter (2020) by using estimated values

of the dependent variable from LRF in forming difference quotients, instead of using the

dependent variable itself, in hopes of reducing variance and by including multiple variables

in the model, instead of the simple univariate case. Improvement is also made in comparision

to derivatives estimated by LRF in Friedberg et al. (2018), where derivatives of the regression

equation were not even focused on and in providing better interpretation for forest based

models by evaluating derivatives derived from random forests. We have shown in simulation

that the proposed estimator outperforms the benchmark ones as well as a popular method

of estimating derivatives in economics, local polynomial regression; a reduction in variance,

MSE, and MAE are all evident when using the proposed estimator. Lastly, we provide an

empirical example using Chilean hydro-electric power generation plants data to assess the

curvature of the production function in order to check the convex technology assumption

assumed in the literature, in which we found that this assumption is broken for this dataset.
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A Proof of Proposition 1

Var[Ŷ
(1)
i,ML|U] = Var

[
k∑
j=1

wi,j
r̂(Ui+j)− r̂(Ui−j)
Ui+j − Ui−j

∣∣∣∣U
]

=

(
1−

k∑
j=2

wi,j

)2

Var[r̂(Ui+1)|U] + Var[r̂(Ui−1)|U]

(Ui+1 − Ui−1)2

+
k∑
j=2

w2
i,j

Var[r̂(Ui+j)|U] + Var[r̂(Ui−j)|U]

(Ui+j − Ui−j)2

=

(
1−

k∑
j=2

wi,j

)2
σ2
r̂,i+1 + σ2

r̂,i−1

(Ui+1 − Ui−1)2
+

k∑
j=2

w2
i,j

σ2
r̂,i+j + σ2

r̂,i−j

(Ui+j − Ui−j)2
.

For all j = 1, . . . , k, take the partial derivative with respect to wi,j and set it to zero results

in

wi,j = wi,1
(Ui+j − Ui−j)2/(σ2

r̂,i+j + σ2
r̂,i−j)

(Ui+1 − Ui−1)2/(σ2
r̂,i+1 + σ2

r̂,i−1)
,

which shows the relationship between wi,1 and wi,j. Since
∑k

j=1 wi,j = 1,

k∑
j=1

wi,j =
wi,1

(Ui+1 − Ui−1)2/(σ2
r̂,i+1 + σ2

r̂,i−1)

k∑
j=1

(Ui+j − Ui−j)2/(σ2
r̂,i+j + σ2

r̂,i−j) = 1

Substituting for wi,1 gives

wi,j
(Ui+j − Ui−j)2/(σ2

r̂,i+j + σ2
r̂,i−j)

k∑
j=1

(Ui+j − Ui−j)2/(σ2
r̂,i+j + σ2

r̂,i−j) = 1,

proving the proposition.
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B Proof of Theorem 1

Consider the taylor expansions for r̂(Ui+j) and r̂(Ui−j) in the neighborhood of Ui

r̂(Ui+j) = r̂(Ui) + (Ui+j − Ui)r̂(1)(Ui) +
(Ui+j − Ui)2

2
r̂(2)(ζi,i+j)

r̂(Ui−j) = r̂(Ui) + (Ui−j − Ui)r̂(1)(Ui) +
(Ui−j − Ui)2

2
r̂(2)(ζi−j,i),

where ζi,i+j ∈]Ui, Ui+j[ and ζi−j,i ∈]Ui−j, Ui[. Then, using Lemma 1 and Proposition 1, the

absolute conditional bias is

∣∣∣∣Bias[Ŷ
(1)
i,LRF |U]

∣∣∣∣ =

∣∣∣∣∣E
[

k∑
j=1

wi,j
r̂(Ui+j)− r̂(Ui−j)
Ui+j − Ui−j

∣∣∣∣U
]
− r(1)(Ui)

∣∣∣∣∣
=

∣∣∣∣∣
k∑
j=1

wi,j
r(Ui+j) + Bias[r̂(Ui+j)|U]− r(Ui−j)− Bias[r̂(Ui−j)|U]

Ui+j − Ui−j
− r(1)(Ui)

∣∣∣∣∣
=

∣∣∣∣∣
k∑
j=1

wi,j

[
r(Ui+j)− r(Ui−j)
Ui+j − Ui−j

+
Bias[r̂(Ui+j)|U]− Bias[r̂(Ui−j)|U]

Ui+j − Ui−j

]
− r(1)(Ui)

∣∣∣∣∣
=

∣∣∣∣∣
k∑
j=1

wi,j

[
r(Ui) + r(1)(Ui)(Ui+j − Ui) + 1

2
r(2)(ζi,i+j)(Ui+j − Ui)2

Ui+j − Ui−j

−
r(Ui) + r(1)(Ui)(Ui−j − Ui) + 1

2
r(2)(ζi−j,i)(Ui−j − Ui)2

Ui+j − Ui−j

+
Bias[r̂(Ui+j)|U]− Bias[r̂(Ui−j)|U]

Ui+j − Ui−j

]
− r(1)(Ui)

∣∣∣∣
=

∣∣∣∣∣12
k∑
j=1

wi,j

[
r(2)(ζi,i+j)(Ui+j − Ui)2 − r(2)(ζi−j,i)(Ui−j − Ui)2

Ui+j − Ui−j

]

+
k∑
j=1

wi,j

[
Bias[r̂(Ui+j)|U]− Bias[r̂(Ui−j)|U]

Ui+j − Ui−j

]∣∣∣∣∣ ,
where ζi,i+j ∈]Ui, Ui+j[ and ζi−j,i ∈]Ui−j, Ui[. Now, substitute the ith weight and use σ2

r̂,i =
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O(n−(1−β)) for all i.

wi,j =
(Ui+j − Ui−j)2/(σ2

r̂,i+j + σ2
r̂,i−j)∑k

j=1(Ui+j − Ui−j)2/(σ2
r̂,i+j + σ2

r̂,i−j)

=
(Ui+j − Ui−j)2∑k
j=1(Ui+j − Ui−j)2

∣∣∣∣Bias[Ŷ
(1)
i,LRF |U]

∣∣∣∣ =

∣∣∣∣∣ 1
2

∑k
j=1(Ui+j − Ui−j)(r(2)(ζi,i+j)(Ui+j − Ui)2 − r(2)(ζi−j,i)(Ui−j − Ui)2)∑k

j=1(Ui+j − Ui−j)2

+

∑k
j=1(Ui+j − Ui−j)(Bias[r̂(Ui+j)|U]− Bias[r̂(Ui−j)|U])∑k

j=1(Ui+j − Ui−j)2

∣∣∣∣∣
=

1

2

∣∣∣∣∣
∑k

j=1(Ui+j − Ui−j)(r(2)(ζi,i+j)(Ui+j − Ui)2 − r(2)(ζi−j,i)(Ui−j − Ui)2)∑k
j=1(Ui+j − Ui−j)2

∣∣∣∣∣
The last equality holds since we have subsamples of size s with s = nβ, which allows the errors

of the forests to be variance-dominated. Then, the absolute conditional bias is bounded by

the same bound provided by Liu and Brabanter (2020) for k →∞ as n→∞.
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From Proposition 1 the conditional variance is

Var[Ŷ
(1)
i,LRF |U] = Var

[
k∑
j=1

wi,j
r̂(Ui+j)− r̂(Ui−j)
Ui+j − Ui−j

∣∣∣∣U
]

= Var

[
k∑
j=1

{
(Ui+j − Ui−j)2/(σ2

r̂,i+j + σ2
r̂,i−j)∑k

l=1(Ui+l − Ui−l)2/(σ2
r̂,i+l + σ2

r̂,i−l)

r̂(Ui+j)− r̂(Ui−j)
Ui+j − Ui−j

}∣∣∣∣U
]

= Var

[∑k
j=1[(Ui+j − Ui−j)/(σ2

r̂,i+j + σ2
r̂,i−j)][r̂(Ui+j)− r̂(Ui−j)]∑k

l=1(Ui+l − Ui−l)2/(σ2
r̂,i+l + σ2

r̂,i−l)

∣∣∣∣U
]

=

∑k
j=1[(Ui+j − Ui−j)2/(σ2

r̂,i+j + σ2
r̂,i−j)

2] Var[r̂(Ui+j)− r̂(Ui−j)|U](∑k
l=1(Ui+l − Ui−l)2/(σ2

r̂,i+l + σ2
r̂,i−l)

)2

=

∑k
j=1[(Ui+j − Ui−j)2/(σ2

r̂,i+j + σ2
r̂,i−j)

2][(σ2
r̂,i+j + σ2

r̂,i−j)](∑k
l=1(Ui+l − Ui−l)2/(σ2

r̂,i+l + σ2
r̂,i−l)

)2

=
k∑
l=1

σ2
r̂,i+l + σ2

r̂,i−l

(Ui+l − Ui−l)2
.

Then, using Lemma 1 and σ2
r̂,i = O(n−(1−β)) for all i, the conditional variance is bounded

above by

Var[Ŷ
(1)
i,LRF |U] =

k∑
l=1

σ2
r̂,i+l + σ2

r̂,i−l

(Ui+l − Ui−l)2

≤ 2n−(1−β)
∑
l=1

1

(Ui+l − Ui−l)2

= 2n−(1−β) 1
2k(k+1)(2k+1)

3(n+1)2
{1 + op(1)}

=
3n−(1−β)(n+ 1)2

k(k + 1)(2k + 1)
{1 + op(1)}

for k →∞ as n→∞.

C Proof of Corollary 1

As k →∞ as n→∞ such that n−1k → 0 and n(1+β)k−3 from Theorem 1, the upperbound
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of the conditional bias and conditional variance tend to zero. Therefore,

lim
n→∞

MSE[Ŷ
(1)
i,LRF |U] = 0.

Use Chebyshev’s inequality to complete the proof.

D Proof of Corollary 2

Using the bias-variance decomposition of means squared error (MSE), the MSE is bounded

above by

MSE[Ŷ
(1)
i,LRF |U] ≤

(
B 3k(k + 1)

4(n+ 1)(2k + 1)

)2

+
3n−(1−β)(n+ 1)2

k(k + 1)(2k + 1)
.

Then, the conditional mean integrated squared error (MISE), is

MISE[Ŷ
(1)
ML|U] = E

∫ 1

0

(
Ŷ

(1)
LRF (U)− r(1)(U)|U

)2

dU

=

∫ 1

0

E
(
Ŷ

(1)
LRF (U)− r(1)(U)|U

)2

dU

≤
(
B 3k(k + 1)

4(n+ 1)(2k + 1)

)2

+
3n−(1−β)(n+ 1)2

k(k + 1)(2k + 1)
+ op(n

−2k2 + n(1+β)k−3)

Therefore, the asymptotic conditional MISE (AMISE) is

AMISE[Ŷ
(1)
LRF |U] ≤

(
B 3k(k + 1)

4(n+ 1)(2k + 1)

)2

+
3n−(1−β)(n+ 1)2

k(k + 1)(2k + 1)
.
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E Proof of Theorem 2

Conditional bias:

Bias[r̂(1)(u0)|Ũ] = E[r̂(1)(u0)]− r(1)(u0)

= ε>1 S−1
n−2kU

>WE[ŷ(1)|Ũ]− r(1)(u0)

= ε>1 S−1
n−2kU

>W



r(1)(Uk+1)

...

r(1)(Un−k)

+


Bias[Ŷ

(1)
k+1,LRF |U]

...

Bias[Ŷ
(1)
n−k,LRF |U]


− r(1)(u0)

=

ε>1 S−1
n−2kU

>W


r(1)(Uk+1)

...

r(1)(Un−k)

− r(1)(u0)

+ ε>1 S−1
n−2kU

>W


Bias[Ŷ

(1)
k+1,LRF |U]

...

Bias[Ŷ
(1)
n−k,LRF |U]


For p odd, from Theorem 3.1 in Fan and Gijbels (1996), the first term is

ε>1 S−1
n−2kU

>W


r(1)(Uk+1)

...

r(1)(Un−k)

− r(1)(u0) = ε>1 S−1 cp
(p+ 1)!

r(p+2)(u0)hp+1 + op(h
p+1),

where cp = (µp+1, . . . , µp+1)>, µj =
∫
ujK(u)du, and S = (µi+j)0≤i,j≤p. From Theorem 1,

for k →∞ as n→∞, the second term is

ε>1 S−1
n−2kU

>W


Bias[Ŷ

(1)
k+1,LRF |U]

...

Bias[Ŷ
(1)
n−k,LRF |U]

 ≤ ε>1 S−1
n−2kU

>W


1

...

1

 sup
u∈[0,1]

|r(2)(u)| 3k(k + 1)

4(n+ 1)(2k + 1)
{1 + op(1)}

≤ sup
u∈[0,1]

|r(2)(u)| 3k(k + 1)

4(n+ 1)(2k + 1)
ε>1 S−1c̃p{1 + op(1)},
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and since from Liu and Brabanter (2020), it is shown that

Sn−2k = U>WU

= (n− 2k)f(u0)HSH{1 + op(1)},

where H = diag{1, h, . . . , hp}, and

U>W


1

...

1

 = (n− 2k)f(u0)Hc̃p{1 + op(1)}1,

where c̃p = (µ0, µ1, . . . , µp)
>. Finally, the conditional bias of the smoothed derivative esti-

mator is bounded by

Bias[r̂(1)(u0)|Ũ] ≤ ε>1 S−1

[
cp

(p+ 1)!
r(p+2)(u0)hp+1 + sup

u∈[0,1]

|r(2)(u)| 3k(k + 1)

4(n+ 1)(2k + 1)

]
{1 + op(1)}

Conditional Variance:

When k →∞ as n→∞, the conditional variance from Theorem 1 is

Var[r̂(1)(u0)|Ũ] =
3n−(1−β)(n+ 1)2

k(k + 1)(2k + 1)
{1 + op(1)}

and from Theorem 1 of Brabanter et al. (2018),

Var[r̂(1)(u0)|Ũ] = ε>1 S−1
n−2k(U

>W Var[Ŷ(1)|Ũ]WU)S−1
n−2kε1

≤ 3n−(1−β)(n+ 1)2

k(k + 1)(2k + 1)

1 + f(u0)ρc
h(n− 2k)f(u0)

ε>1 S−1S∗S−1ε1{1 + op(1)},

where limn→∞ n
∫
ρn(x)dx = ρc and S∗ = (νi+j)0≤i,j≤p with νj =

∫
ujK2(u)du. For p odd,
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from Theorem 3.1 of Fan and Gijbels (1996),

∫
K∗0(t)dt = ε>1 S−1

(∫
K(t)dt,

∫
tK(t)dt . . . ,

∫
tpK(t)dt

)>
= ε>1 S−1c̃p.

Similarly,

∫
tp+1K∗0(t)dt = ε1S

−1cp,

∫
K∗20 (t)dt = ε>1 S−1S∗S−1ε1.

F Proof of Corollary 3

For → 0, nh→∞ and k →∞ as n→∞ such that n−1k → 0 and nβk−3h−1 → 0, then

from Theorem 2, the upperbound of the conditional bias and conditional variance go to zero.

Then,

lim
n→∞

MSE[r̂(1)(u0)|Ũ] = 0

and use Chebyshev’s inequality to complete the proof.

G Proof of Proposition 2

Under the assumptions of Proposition 2 and using Lemma 1,

E[+Ŷ
(1)
i+j,LRF −

− Ŷ
(1)
i−j,LRF |U] =

r(Ui+j+k1) + Bias[r̂(Ui+j+k1)|U]− r(Ui+j)− Bias[r̂(Ui+j)|U]

Ui+j+k1 − Ui+j

− r(Ui−j−k1) + Bias[r̂(Ui−j−k1)|U]− r(Ui−j)− Bias[r̂(Ui−j)|U]

Ui−j−k1 − Ui−j

= r(1)(Ui+j) +
1

2
r(2)(Ui+j)(Ui+j+k1 − Ui+j)(1 + op(1))

− r(1)(Ui−j) +
1

2
r(2)(Ui−j)(Ui−j−k1 − Ui−j)(1 + op(1))

+
Bias[r̂(Ui+j+k1)|U]− Bias[r̂(Ui+j)|U]

Ui+j+k1 − Ui+j
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− Bias[r̂(Ui−j−k1)|U]− Bias[r̂(Ui−j)|U]

Ui−j−k1 − Ui−j

=
1

2
r(2)(Ui)(Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j)(1 + op(1))

+
Bias[r̂(Ui+j+k1)|U]− Bias[r̂(Ui+j)|U]

Ui+j+k1 − Ui+j

− Bias[r̂(Ui−j−k1)|U]− Bias[r̂(Ui−j)|U]

Ui−j−k1 − Ui−j

=
1

2
r(2)(Ui)(Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j)(1 + op(1)),

where the subsample rate β is chosen such that βmin < β < 1, the LRF estimator is

asymptotically unbiased. The weight for observation i is selected to be proportional to the

inverse of the conditional variance of each quotient,

wi,j,2 =

1/Var

[
+Ŷ

(1)
i+j,LRF−

−Ŷ
(1)
i−j,LRF

(Ui+j+k1+Ui+j−Ui−j−k1−Ui−j)

∣∣∣U]
∑k2

j=1 1/Var

[
+Ŷ

(1)
i+j,LRF−−Ŷ

(1)
i−j,LRF

(Ui+j+k1+Ui+j−Ui−j−k1−Ui−j)

∣∣∣U]

=

1/

 σ2r̂,i+j+k1
+σ2r̂,i+j

(Ui+j+k1
+Ui+j)

2 +
σ2r̂,i−j−k1

+σ2r̂,i−j
(Ui−j−k1+Ui−j)2

(Ui+j+k1+Ui+j−Ui−j−k1−Ui−j)
2


∑k2

j=1 1/

 σ2
r̂,i+j+k1

+σ2
r̂,i+j

(Ui+j+k1
+Ui+j)

2 +
σ2
r̂,i−j−k1

+σ2
r̂,i−j

(Ui−j−k1+Ui−j)2

(Ui+j+k1+Ui+j−Ui−j−k1−Ui−j)
2

 ,

where σ2
r̂ is the variance of the LRF estimator.

H Proof of Theorem 3

Since r is three times continuously differentiable on the interval [0, 1], consider the Taylor
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expansions for r(Ui+j+k1) and r(Ui−j−k1) in the neighborhood of Ui+j and Ui−j respectively

r(Ui+j+k1) = r(Ui+j) +
2∑
q=1

1

q!
(Ui+j+k1 − Ui+j)qr(q)(Ui+j) +

(Ui+j+k1 − Ui+j)3

6
r(3)(ζi+j,i+j+k1)

r(Ui−j−k1) = r(Ui−j) +
2∑
q=1

1

q!
(Ui−j−k1 − Ui−j)qr(q)(Ui−j) +

(Ui−j−k1 − Ui−j)3

6
r(3)(ζi−j−k1,i−j),

where ζi+j,i+j+k1 ∈]Ui+j, Ui+j+k1 [ and ζi−j−k1,i−j ∈]Ui−j−k1 , Ui−j[. Also, consider the Taylor

expansions for r(1)(Ui+j), r
(1)(Ui−j), r

(2)(Ui+j), and r(2)(Ui−j) in the neighborhood of Ui

r(1)(Ui+j) = r(1)(Ui) + (Ui+j − Ui)r(2)(Ui) +
(Ui+j − Ui)2

2
r(3)(ζi,i+j)

r(1)(Ui−j) = r(1)(Ui) + (Ui−j − Ui)r(2)(Ui) +
(Ui−j − Ui)2

2
r(3)(ζi−j,i)

r(2)(Ui+j) = r(2)(Ui) + (Ui+j − Ui)r(3)(ζ ′i,i+j)

r(2)(Ui−j) = r(2)(Ui) + (Ui−j − Ui)r(3)(ζ ′i−j,i)

where ζi,i+j ∈]Ui, Ui+j[, ζi−j,i ∈]Ui−j, Ui[, ζ
′
i,i+j ∈]Ui, Ui+j[, and ζ ′i−j,i ∈]Ui−j, Ui[. The absolute

conditional bias of Ŷ
(2)
i,LRF is

∣∣∣∣Bias[Ŷ
(2)
i,LRF |Ũ]

∣∣∣∣ =
∣∣∣E[Ŷ

(2)
i,LRF ]− r(2)(Ui)

∣∣∣
=

∣∣∣∣∣∣E
2

k2∑
j=1

wi,j,2

(
r̂(Ui+j+k1 )−r̂(Ui+j)
Ui+j+k1−Ui+j

− r̂(Ui−j−k1 )−r̂(Ui−j)
Ui−j−k1−Ui−j

)
Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j

− r(2)(Ui)

∣∣∣∣∣∣
=

∣∣∣∣∣∣2
k2∑
j=1

wi,j,2
(
r(Ui+j+k1 )−r(Ui+j)
Ui+j+k1−Ui+j

− r(Ui−j−k1 )−r(Ui−j)
Ui−j−k1−Ui−j

)
Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j

+

(
Bias[r̂(Ui+j+k1 )]−Bias[r̂(Ui+j)]

Ui+j+k1−Ui+j
− Bias[r̂(Ui−j−k1 )]−Bias[r̂(Ui−j)]

Ui−j−k1−Ui−j

)
Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j

− r(2)(Ui)

∣∣∣∣∣∣
=

∣∣∣∣∣∣2
k2∑
j=1

wi,j,2

(
r(Ui+j+k1 )−r(Ui+j)
Ui+j+k1−Ui+j

− r(Ui−j−k1 )−r(Ui−j)
Ui−j−k1−Ui−j

)
Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j

− r(2)(Ui)

∣∣∣∣∣∣
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≤ sup
u∈[0,1]

|r(3)(u)|

(
k2∑
j=1

wi,j,2
(Ui+j − Ui)2 + (Ui−j − Ui)2

Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j

+

k2∑
j=1

wi,j,2
(Ui+j − Ui)(Ui+j+k1 − Ui+j) + (Ui−j − Ui)(Ui−j−k1 − Ui−j)

Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j

+

k2∑
j=1

wi,j,2

1
3
(Ui+j+k1 − Ui+j)2 + 1

3
(Ui−j−k1 − Ui−j)2

Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j

)

where the last equality holds for the subsample rate β such that βmin < β < 1. Then, using

the weights in Eq. (32), Lemma 1, and σr̂ = O(n−(1−β)), where k1 → ∞ and k2 → ∞ as

n→∞ gives

∣∣∣∣Bias[Ŷ
(2)
i,LRF |Ũ]

∣∣∣∣ ≤ supu∈[0,1] |r(3)(u)|
n+ 1

2
∑k2

j=1 j
3 + 3k1

∑k2
j=1 j

2 + 5
3
k2

1

∑k2
j=1 j + 1

3
k3

1k2

4
∑k2

j=1 j
2 + k2

1k2 + 4k1

∑k2
j=1 j

{1 + op(1)}

The variance of the second derivative estimator, Ŷ
(2)
i,LRF , is

Var[Ŷ
(2)
i,LRF |Ũ] = Cov

2

k2∑
j=1

wi,j,2

(
r̂(Ui+j+k1 )−r̂(Ui+j)
Ui+j+k1−Ui+j

− r̂(Ui−j−k1 )−r̂(Ui−j)
Ui−j−k1−Ui−j

)
Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j

,

2

k2∑
l=1

wi,l,2

(
r̂(Ui+l+k1 )−r̂(Ui+l)
Ui+l+k1−Ui+l

− r̂(Ui−l−k1 )−r̂(Ui−l)
Ui−l−k1−Ui−l

)
Ui+l+k1 + Ui+l − Ui−l−k1 − Ui−l


= 4

k2∑
j=1

k2∑
l=1

wi,j,2wi,l,2
(Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j)(Ui+l+k1 + Ui+l − Ui−l−k1 − Ui−l){

Cov[r̂(Ui+j+k1)− r̂(Ui+j), r̂(Ui+l+k1)− r̂(Ui+l)]
(Ui+j+k1)− Ui+j)((Ui+l+k1)− Ui+l)

− Cov[r̂(Ui+j+k1)− r̂(Ui+j), r̂(Ui−l−k1)− r̂(Ui−l)]
(Ui+j+k1)− Ui+j)((Ui−l−k1)− Ui−l)

− Cov[r̂(Ui−j−k1)− r̂(Ui−j), r̂(Ui+l+k1)− r̂(Ui+l)]
(Ui−j−k1)− Ui−j)((Ui+l+k1)− Ui+l)

+
Cov[r̂(Ui−j−k1)− r̂(Ui−j), r̂(Ui−l−k1)− r̂(Ui−l)]

(Ui−j−k1)− Ui−j)((Ui−l−k1)− Ui−l)

}
,

46



where the first covariance is

Cov[r̂(Ui+j+k1)− r̂(Ui+j), r̂(Ui+l+k1)− r̂(Ui+l)] = Cov[r̂(Ui+j+k1), r̂(Ui+l+k1)]

− Cov[r̂(Ui+j), r̂(Ui+l+k1)]

− Cov[r̂(Ui+j+k1), r̂(Ui+l)]

+ Cov[r̂(Ui+j), r̂(Ui+l)]

The first and fourth covariances are σ2
r̂,i+j+k1

and σ2
r̂,i+j respectively when j = l, the second

covariance is σ2
r̂,i+l+k1

when j = l + k1, and the third covariance is σ2
r̂,i+l when j + k1 = l.

The other covariances can be obtained in a similar fashion. Now, using the weights in Eq.

(32), σ2
r̂ = O(n−(1−β)), and Lemma 1, where k1 →∞ and k2 →∞ as n→∞,

Var[Ŷ
(2)
i,LRF |Ũ] =

4

n1−β

k2∑
j=1

wi,j,2
(Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j)2

(
2

(Ui+j+k1 − Ui+j)2
+

2

(Ui−j−k1 − Ui−j)2

)

− 4

n1−β

k2−k1∑
j=1

wi,j,2wi,j+k1,2
(Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j)(Ui+j+2k1 + Ui+j+k1 − Ui−j−2k1 − Ui−j−k1)(

1

(Ui+j+k1 − Ui+j)(Ui+j+2k1 − Ui+j+k1)
+

1

(Ui−j−k1 − Ui−j)(Ui−j−2k1 − Ui−j−k1)

)
− 4

n1−β

k2∑
j=1+k1

wi,j,2wi,j−k1,2
(Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j)(Ui+j + Ui+j−k1 − Ui−j − Ui−j+k1)(

1

(Ui+j+k1 − Ui+j)(Ui+j − Ui+j−k1)
+

1

(Ui−j−k1 − Ui−j)(Ui−j − Ui−j+k1)

)
≤ 4

n1−β

k2∑
j=1

wi,j,2
(Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j)2

(
2

(Ui+j+k1 − Ui+j)2
+

2

(Ui−j−k1 − Ui−j)2

)

=
4n−(1−β)(n+ 1)4

k2
1

∑k2
j=1(2j + k1)2

{1 + op(1)}.
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I Proof of Corollary 4

For k1 →∞ and k2 →∞ as n→∞ and from Theorem 3,

∣∣∣∣Bias[Ŷ
(2)
i,LRF |Ũ]

∣∣∣∣ ≤ supu∈[0,1] |r(3)(u)|
n+ 1

2
∑k2

j=1 j
3 + 3k1

∑k2
j=1 j

2 + 5
3
k2

1

∑k2
j=1 j + 1

3
k3

1k2

4
∑k2

j=1 j
2 + k2

1k2 + 4k1

∑k2
j=1 j

{1 + op(1)}

= Op

(
max

{
k1

n
,
k2

n

})

and

Var[Ŷ
(2)
i,LRF |U] ≤ 4n−(1−β)(n+ 1)4

k2
1

∑k2
j=1(2j + k1)2

{1 + op(1)}

= Op

(
max

{
n3+β

k2
1k

3
2

,
n3+β

k4
1k2

})

Then, for k1 →∞ and k2 →∞ as n→∞ such that n−1k1 → 0, n−1k2 → 0, n3+βk−2
1 k−3

2 → 0,

and n3+βk−4
1 k−1

2 → 0, the conditional bias and conditional variance tend to zero. Therefore,

lim
n→∞

MSE[Ŷ
(2)
i |Ũ] = 0.

Use Chebyshev’s inequality to complete the proof.

J Proof of Corollary 5

Using the bias-variance decomposition of means squared error (MSE), the MSE is bounded

above by

MSE[Ŷ
(1)
i,LRF |Ũ] ≤

(
B2

n+ 1

2
∑k2

j=1 j
3 + 3k1

∑k2
j=1 j

2 + 5
3
k2

1

∑k2
j=1 j + 1

3
k3

1k2

4
∑k2

j=1 j
2 + k2

1k2 + 4k1

∑k2
j=1 j

)2

{1 + op(1)}

+
4n−(1−β)(n+ 1)4

k2
1

∑k2
j=1(2j + k1)2

{1 + op(1)}
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Then, the conditional mean integrated squared error (MISE), is

MISE[Ŷ
(2)
ML|Ũ] = E

∫ 1

0

(
Ŷ

(2)
LRF (U)− r(2)(U)|U

)2

dU

=

∫ 1

0

E
(
Ŷ

(2)
LRF (U)− r(2)(U)|U

)2

dU

≤

(
B2

n+ 1

2
∑k2

j=1 j
3 + 3k1

∑k2
j=1 j

2 + 5
3
k2

1

∑k2
j=1 j + 1

3
k3

1k2

4
∑k2

j=1 j
2 + k2

1k2 + 4k1

∑k2
j=1 j

)2

{1 + op(1)}

+
4n−(1−β)(n+ 1)4

k2
1

∑k2
j=1(2j + k1)2

{1 + op(1)}

Therefore, the asymptotic conditional MISE (AMISE) is

AMISE[Ŷ
(2)
LRF |Ũ] ≤

(
B2

n+ 1

2
∑k2

j=1 j
3 + 3k1

∑k2
j=1 j

2 + 5
3
k2

1

∑k2
j=1 j + 1

3
k3

1k2

4
∑k2

j=1 j
2 + k2

1k2 + 4k1

∑k2
j=1 j

)2

+
4n−(1−β)(n+ 1)4

k2
1

∑k2
j=1(2j + k1)2

.

K More Simulation Studies

The table below shows simulations, under the same DGP in section 3, for two other

candidate estimators that are not discussed in the paper. The first is SmoothLRF, where

the a LRF is trained on the data, and the fitted values are obtained, ŷLRF . Then a local

polynomial regression is used on the new dataset (x, ŷLRF ) and the first derivative can be ob-

tained from the second element of the gradient vector. The second is DoubleLocCubic where

a local cubic regression is trained on the data and the first derivative is obtained, denoted

by ŷ
(1)
LocCubic. Then another local cubic regression is used on the new dataset, (x, ŷ

(1)
LocCubic)

and the first derivative can be otbained from the first element of the gradient vector.

For the proposed estimator, DQSmoothLRF, and local cubic regression, LocCub, the re-

sults are the same as those in section 6 and are here for comparison. Overall, DQSmoothLRF

still outperforms the other estimators, where SmoothLRF does worse in reducing variance,

MSE, and MAE. However, the derivative estimated by SmoothLRF does significantly better

than the derivative estimated by LRF. DoubleLocCubic does improve upon LocCub, show-
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ing a reduction in variance, MSE, and MAE. Overall, DQSmoothLRF seems to be robust in

estimating the first derivative, even to other candidate estimators.

Simulations of Other Candidate Estimators

Bias Variance MSE MAE

DQSmoothLRF 0.0121 0.2085 0.2943 0.4180
SmoothLRF 0.0011 0.3457 0.3699 0.4395
LocCubic -0.0045 0.4437 0.4789 0.4565
DoubleLocCubic -0.0046 0.4312 0.4667 0.4503

Table 3: The table shows bias, variance, MSE, and MAE for the first derivative, comparing
four models, DQSmoothLRF (the proposed estimator), LocCubic, and DoubleLocCubic. All
estimates are averaged across all simulations. All models are evaluated at 500 evenly spaced
points from 0.05 to 0.95.
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