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Abstract

We study the response of monthly U.S. dollar (USD) real exchange rates of 76 countries

to global and country-specific temperature shocks. A positive global temperature shock

yields statistically significant appreciations against the USD in 38 percent of the sample’s

countries and statistically significant depreciations in 17 percent of the countries. Four

years after a positive 1oC increase in global temperature over its historical average, the

Czech Republic currency appreciates by 6.4 percent against the USD. The determinants of

response heterogeneity are studied by regressing local projection response coefficients on

country characteristics. The real exchange rate is more likely to depreciate if the country

is warmer, wealthier, more dependent on agriculture, less open and more dependent on

tourism.
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Introduction

This paper studies how monthly U.S. dollar (USD) real exchange rates of 76 countries respond

to country-specific and global temperature shocks. The study employs a two-step empirical

methodology. In the first step, we employ local projections (Jordà (2005)) to estimate the real

exchange rate response to temperature shocks at various horizons. The local-projection slope

coefficients measure the real exchange rate’s exposure to a temperature shock. In finance, these

estimates would be referred to as real exchange rate ‘betas’. In the second step, we regress

the local-projection slope coefficients on various country characteristics to study potential

explanations for the variation in the estimated local-projection coefficients. This procedure

has similarities with research in finance where average returns are regressed on ‘betas’ to

determine if various risk factors are ‘priced,’ and is particularly closely related to that of

Lustig and Richmond (2020), who regress the exchange rate’s dollar-factor ’beta’ on gravity

variables.

Two features distinguish our research design. First, in addition to using country-specific

temperatures, as is typically done in extant macroeconomic and financial research on climate,

we also consider a global temperature factor, which we estimate by principal components. The

common factor approach emphasizes the notion that climate change is a global, rather than a

country-specific phenomenon, and opens the possibility that the exchange rate may be exposed

to both country-specific and global temperature risks. Second, a central focus of our analysis is

in estimating and understanding the cross-country heterogeneity of exchange-rate responses to

a common climate shock. To focus on this heterogeneity, we expressly avoid panel estimation

methods. Instead, we estimate the impact of temperature shocks on the exchange rate with

impulse responses from single-equation local projections. If, as conventionally believed, real

currency strength represents relative strength in that country’s current and future economic

fundamentals, a real appreciation following a global climate shock means foreign exchange

market participants believe the country in question to be less adversely affected by the shock

than the U.S.

Our estimates reveal substantial response heterogeneity and in several cases, the impulse

responses appear to be permanent. A positive global temperature shock yields 5 percent

statistically significant appreciations against the USD in 37 percent of the sample countries and

significant depreciations in 19 percent of the countries. The analogous proportions in response

to positive country-specific shocks are 37 percent appreciations and 25 percent depreciations.
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Four years after a positive global 1-degree Celsius (1.8-degree Farenheit) temperature shock,

the real exchange rate of Burundi rate falls by 1.85 percent against the USD while the real

exchange rate of the Czech Republic appreciates by 6.4 percent. At horizons of 36 or 48

months, a country is more likely to experience a real depreciation if it is warmer, wealthier,

more dependent on agriculture, less open to trade, and more dependent on tourism.

Two facets of climate change and the economics of exchange rates motivate our study. One

of these is the view that the exchange rate measures macroeconomic value. To cite Engel

(2016),

‘The foreign exchange rate is one of the few, if not the only, aggregate asset for an

economy whose price is readily measurable, so its pricing offers an opportunity to

investigate some key predictions of asset pricing theories.”

Thus, as a national asset price, the exchange rate is determined by forward-looking market par-

ticipants who assess the future effects of climate shocks experienced today, on future economic

fundamentals. Since the potentially most harmful effects generated by current greenhouse gas

emissions will be realized in the future (Stern, 2007), it is natural to assess these effects through

the lens of asset prices (here, real exchange rates). A second facet is the substantial uncertainty

surrounding currently predicted damages and risk assessments due to current emissions (Bar-

nett, Hansen, and Brock (2020), Pindyk (2020)). Since asset markets are institutions where

risk and uncertainty are priced into traded assets, it is again natural to look to how foreign

exchange market participants assess the impact of climate risks and uncertainty on national

economies.

The interpretation of our results is based on two considerations. First, a strong economy

should have a strong currency. Second, positive temperature shocks cause economic harm, as

reported in the empirical damage assessment literature (discussed below). Together, they imply

that market participants interpret positive temperature shocks that result in real appreciations

to be more harmful to the U.S. economy than to the country in question.

We conceptualize these points with the stochastic discount factor (SDF) approach to the

exchange rate, where a real USD depreciation relative to currency j is given by difference

between the logarithm of country j’s stochastic discount factor and the U.S.’s. We then project

the SDF onto country temperatures which themselves are decomposed into an orthogonal

factor representation. If a positive temperature shock is bad news for a particular economy, it
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will lower its discount factor.1 Variation in the exposure of national economies to temperature

shocks, because of differences in economic structure or geography, are reflected in the responses

of their relative stochastic discount factors to the shocks. The effect on a country’s real

exchange rate depends on whether the global climate shock lowers that country’s stochastic

discount factor by more or less than it lowers the discount factor of the U.S.

Our paper is part of an empirical literature to assess the impact of climate change on

macroeconomic activity and on asset prices. In aggregate asset pricing, Bansal, Kiku, and

Ochoa (2016) finds temperature to have a negative impact on international equity valuations,

but they do not investigate impact heterogeneity. On the macroeconomics of climate change,

the current evidence on exposure heterogeneity and the impact of temperature is mixed. Study-

ing the effect of temperature on income growth within the U.S., Hsiang et al. (2017) finds that

low-income U.S. counties are more adversely affected than high-income counties. At the state

level, Colacito, Hoffmann, and Pham (2019) finds differentiation in U.S. states by latitude

where higher temperatures reduces income growth by more in southern states but they find

the adverse effects of temperature on income growth does not vary by the level of state develop-

ment. In research using international data Letta and Tol (2019) and Henseler and Schmuacher

(2019) find that total factor productivity of low-income countries are more adversely affected

than higher-income countries by higher temperatures. Similarly, Burke, Hsiang, and Miguel

(2015), and Dell, Jones, and Olken (2012), find negative effects on GDP growth of temper-

ature but only for low-income countries. In contrast, Kahn, Mohaddes, Ng, Pesaran, Raissi,

and Yang (2019) finds no difference in the deleterious effects of temperature between high- and

low-income countries. Existing macroeconomic studies generally employ annual data and use

local-temperature measures. The contrast provided by our paper is that we construct shocks

to global temperature factors, use data sampled at monthly intervals, and allow additional

heterogeneity by using single-equation methods.2

1Stern (2007) notes that positive temperature shocks can potentially be good news for some very high
latitude countries. For these countries, some short-run warming can improve crop yields, lower heating bills,
and reduce cold-related deaths. See also Nordhaus and Yang (1996) and Tol (2002) who report results from
regional integrated assessment models.

2Climate change research from a finance perspective also includes Bernstein, Gustafson, and Lewis (2019),
who estimate the discount on houses subject to flooding due to sea-level rise and Li and Xu (2018) who report
that stock prices of food companies respond (but insufficiently so) to country-specific drought trends. In other
work, Gorgen, Jacob, Nerlinger, Riordan, Rohleder, and Wilkens (2019) estimate a brown-minus-green risk
premium internationally for firms, Balachandrana and Nguyen (2018) show a dependence of firm dividend
policy on its carbon risk, while Choi, Gao, and Jiang (2019) estimate how local temperature shocks cause
people to adjust their portfolios between stocks with high and low climate sensitivities.
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The remainder of the paper is organized as follows. The next section presents the stochastic

discount factor approach to the exchange rate as an analytical framework for interpreting the

empirical results. Section 2 discusses the data and construction of the global temperature

factors. Our first-stage local projection estimates are reported in Section 3 and the cross-

sectional analysis is presented in Section 4. Section 5 concludes.

1 Analytical Framework

We draw on the stochastic discount factor approach to the exchange rate as an analytical

framework for interpreting our empirical work. It begins with the assumption of complete

markets. Since many of the countries in our sample are limited in their industrialization and

are less developed, it may seem inappropriate to assume complete markets. However, research

in international macroeconomics typically finds there to be only small differences in behavior

of exchange rates and macroeconomic quantities under complete and incomplete markets.3

Let there be n + 1 countries, indexed by j = 0, 1, ..., n, where the U.S. is country 0. Let

qjt be the logarithm of the real U.S. dollar value of currency j. An increase in qjt means a

gain in currency j or a loss in the dollar. Let mjt be the logarithm of country j’s stochastic

discount factor.4 In the stochastic discount factor approach to the exchange rate (Lustig and

Verdelhan (2012), Backus, Foresi, and Telmer (2001), Backus and Smith (1993)) the real USD

depreciation relative to currency j is given by the difference in log stochastic discount factors,

∆qjt+1 = mjt+1 −m0t+1. (1)

Eq.(1) has two relevant implications for us. First, the absence of heterogeneity in the cross-

country stochastic discount factors (in the sense that mjt = m0t), implies a constant exchange

rate. Because real exchange rates are observed to vary (quite a bit) over time, there must

be heterogeneity in the way that discount factors of different countries respond to shocks.

This heterogeneity might stem from cross-country differences in income, stage of economic

development, geography, and latitude. Second, stochastic discount factors are affected by

both global and country-specific shocks. Country-specific shocks are idiosyncratic while global

shocks are common or systematic. Our interest is in how both types of temperature shocks

3See, for example, Berg and Mark (2019).
4In utility terms, the stochastic discount factor is the intertemporal marginal rate of substitution.
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may affect the exchange rate.

To be specific, assume people have (Epstein and Zin (1989)) recursive utility,

Vt =

[
(1− β)C1−ρ

t + β
(

EtV
1−γ
t+1

) 1−ρ
1−γ
] 1

1−ρ

, (2)

where Ct is consumption, 0 < β < 1 is the subjective discount factor, 0 < ρ = 1
ψ , ψ is the

intertemporal elasticity of substitution, and γ > 0 is the coefficient of relative risk aversion.

We follow the literature (e.g., Bansal and Yaron (2004), Bansal, Kiku, and Ochoa (2016)),

and assume γ > ρ, which implies that people have a preference for the early resolution of

uncertainty.5 Under log-normality of V, the logarithm of the stochastic discount factor is

mt+1 = −ρ (∆ct+1) + (γ − ρ)︸ ︷︷ ︸
(+)

Et [ln (Vt+1)]− ln (Vt+1)︸ ︷︷ ︸
forecast error

+
(1− γ)

2︸ ︷︷ ︸
(−)

Vart [ln (Vt+1)]

 , (3)

where we suppress the (constant) discount factor β. To see how a climate shock at time t is

expected to affect the future depreciation ∆qt+1, project mt+1 onto the time t information set.

This eliminates the ‘forecast error’ component and yields

Et (mt+1) = −ρ︸︷︷︸
(−)

Et (∆ct+1) + (γ − ρ)

(
1− γ

2

)
︸ ︷︷ ︸

(−)

Vart (ln (Vt+1)) . (4)

Current climate events convey noisy and uncertain information about future climate. In eq.(4),

if an adverse climate shock (a positive innovation in global temperature) generates higher un-

certainty in consumption growth, expected future consumption growth is increased by reduced

current consumption. This contributes to reducing Et (mt+1) . The forward-looking aspect of

the the stochastic discount factor, and hence to the exchange rate, enters through future util-

ity, Vt+1. Given the current state of knowledge, we think an adverse climate shock today will

cause Vart (ln (Vt+1)) to increase. Thus, if γ > ρ, there are two channels by which adverse

temperature shocks cause Et (mt+1) to decrease.6 Hence, we expect a positive (adverse) global

5γ > ρ has empirical support from research that estimates parameters of Epstein-Zin (Epstein and Zin
(1989)) utility. See Bansal and Shaliastovich (2013), Chen, Favilukis, and Ludvigson (2007) and Choi, Lugauer,
and Mark (2017).

6Alternatively, if people learn from additional climate shock observations and become better able to forecast
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temperature shock to lower the log stochastic discount factor. Looking back at eq.(1), the real

exchange rate response depends on the shock’s relative impact on the log stochastic discount

factors of country j and the U.S. If the shock results in a real USD depreciation ∆qjt+1 > 0,

we infer that the magnitude of the decline in m0t+1 exceeds the decline in mjt+1. That is, the

U.S. is more adversely affected than country j.

A key feature of integrated assessment models (e.g., Nordhaus (2007), Nordhaus and Yang

(1996), Golosov, Hassler, Krusell, and Tsyvinski (2014), Cai and Lontzek (2019), Bansal, Kiku,

and Ochoa (2016)), is the specification of the damage function, which maps temperature in-

creases into reductions in income and/or consumption. We draw on these studies to model

temperature to have a direct effect on the SDF. Let τjt be temperature of country j. Tempera-

ture impacts welfare by affecting current and future consumption. Projecting the log stochastic

discount factor on τjt

mjt+1 = δjτjt + ujt+1, (5)

where ujt+1 is the projection error. We further decompose country-specific temperature τjt,

into a common global temperature factor τt and an idiosyncratic temperature factor τ ojt,

τjt = λjτt + τ ojt, (6)

where λj is the common factor loading. Substituting (6) and (5) into (1) gives the basis of our

empirical work in which global and idiosyncratic temperature shocks impact the real exchange

rate,

∆qjt+1 = βjτt + δjτ
o
jt − δ0τ

o
0t + (ujt+1 − u0t+1) , (7)

where βj = δjλj − δ0λ0. Estimation based on eq.(7) and associated impulse response analysis

allows us to see how the climate shock affects country j relative to the U.S. over horizons

beyond one period and also to detect potential delayed effects.

We present this as an organizing framework for interpreting the empirical results but we

are not arguing that it is literally true because if it were, the δ0 estimates must be equal across

the different regressions. This is not a restriction that we impose or test.

future consequences from climate shocks, V art (Vt+1) might decrease over time.
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2 Real Exchange Rate and Climate Data

Real Exchange Rate Data. Monthly nominal exchange rates and consumer price indices are

from DataStream which were available for 75 countries plus the euro. Let Sj be the USD price

of currency j, P0 be U.S. price level, and Pj the price level of country j. Then the real exchange

rate, Qj = SjPj/P0, is the real USD price of currency j with qj = ln(Qj). An increase in Qj

means a real appreciation of currency j or a real depreciation of the USD.

Climate Data. We construct the population-weighted temperature data for each country and

month from 1970 to 2017. The global temperature data are from Willmott, Matsuura and

Collaborators’ Global Climate Resource Pages, http://climate.geog.udel.edu/~climate/.

These are monthly observations of air temperature (Celsius) on a 0.5-degree by 0.5-degree

latitude/longitude grid. The country to which the grid belongs is based on country borders in

the shape file of thematicmapping, http://thematicmapping.org.

The population data are from the Gridded Population of the World database (GPW.v4) of

the Center for International Earth Science Information Network (CIESIN), which includes pop-

ulation counts in 2010 for grid cells matching teh grids of the temperature data http://www.

ciesin.org/search.html?q=gridded+population&btnG=Search. After identifying the grid

points within the country, we take the monthly average of the station temperature observations

to the grid, then weight them by population.

Finally, we aggregate to the country level by summing the population-temperature points

in the country and dividing this total by the country’s total population.

2.1 Temperature Shocks

Our global temperature measure is the first principal component of the temperature data. As

is well known, the first principal component is approximately the cross-sectional average.7

To get a sense of what the global factor captures, we estimate the first three temperature

principal components and report the proportion of each country’s temperature variation ex-

plained by the three components in Table 1. The results have been sorted by proportion of

temperature variation explained by the first component. As can be seen, the first component

explains over 65% of country temperature variation for 60 of the countries (ending at Tanza-

nia). For the majority of countries, more than 90% of temperature variation is explained by

7Regressing the 1st factor on the cross-sectional average of temperatures yields a regression R2 = 0.991.
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the first factor. The second component has sizable explanatory power for only 15 countries,

primarily located in tropical Africa and Asia, whereas the third component has sizable ex-

planatory power only for the neighboring countries of Rwanda and Burundi. Hence, due to its

dominant explanatory power, we employ the first component and drop explicit consideration

of the second and third components. We construct the idiosyncratic temperature factors as

the residuals from regressing country temperature τjt on the global temperature factor.

We make two additional adjustments to the temperature factors. First, to give it more of

a shock-like interpretation, we use its deviation from the backward-looking average. For the

global factor,

ft = τt −
1

t

t∑
t=1

τt (8)

and similarly for the idiosyncratic factor,

fjt = τjt −
1

t

t∑
t=1

τjt (9)

Secondly, ft and fjt need to be seasonally adjusted and detrended. A visualization of

the global temperature shock is shown in Figure 1. The shocks are seasonally adjusted by

regression on monthly dummy variables. As can be seen in the figure on the left, even after

subtracting the historical mean, the temperature shock has an upward trend. The figure on

the right shows the detrended series.8

To fix terminology, we refer to ft as the global temperature shock, and the idiosyncratic

components fjt, as country-specific temperature shocks.

3 Local Projections

We estimate the response of each country’s log real exchange rate (in percent) with local pro-

jections (Jordà (2005)). Since the global and idiosyncratic temperature shocks are othogonal

components, we treat them separately. For the global temperature shock, the local projections

are the sequence of regressions at horizons h = 1, ..., 48 estimated separately for each country

8As in Burke, Hsiang, and Miguel (2015), Dell, Jones, and Olken (2012), Colacito, Hoffmann, and Pham
(2019), and Hsiang, Kopp, Jina, Rising, Delgado, Mohan, Rasmussen, Muir-Wood, Wilson, Oppenheimer,
Larson, , and Houser (2017), we assume weak exogeneity of the temperature shocks. While it is widely believed
that climate change has been caused by human activity, we are assuming that the climate shocks we employ
are exogenous to the exchange rate.
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Table 1: Proportion of Variance Explained by Principal Components

Country pc1 pc2 pc3 Total Country pc1 pc2 pc3 Total
China 0.980 0.004 0.000 0.985 Spain 0.936 0.007 0.014 0.957
S.Korea 0.976 0.000 0.001 0.977 Finland 0.929 0.003 0.000 0.932
Italy 0.975 0.001 0.004 0.980 Gt.Britain 0.929 0.010 0.006 0.945
U.S. 0.972 0.000 0.000 0.972 Pakistan 0.923 0.036 0.010 0.969
Bulgaria 0.971 0.000 0.000 0.971 Uruguay 0.921 0.001 0.006 0.928
Austria 0.971 0.001 0.000 0.972 Morocco 0.911 0.004 0.028 0.944
Slovenia 0.970 0.002 0.000 0.972 New Zealand 0.909 0.008 0.000 0.918
Russia 0.970 0.002 0.001 0.974 Portugal 0.908 0.007 0.015 0.930
Romania 0.970 0.003 0.000 0.973 Ireland 0.904 0.016 0.007 0.927
Hungary 0.969 0.004 0.000 0.972 Israel 0.899 0.000 0.017 0.916
Croatia 0.968 0.002 0.000 0.970 S.Africa 0.878 0.001 0.049 0.928
Iran 0.968 0.000 0.002 0.970 Iceland 0.871 0.006 0.003 0.879
Canada 0.968 0.000 0.000 0.968 Brazil 0.825 0.019 0.049 0.894
Czech Rep. 0.966 0.000 0.000 0.966 Mexico 0.807 0.110 0.015 0.933
Greece 0.964 0.004 0.003 0.971 Bangladesh 0.776 0.110 0.004 0.890
Saudi Arabia 0.963 0.008 0.001 0.972 Mozambique 0.764 0.014 0.082 0.860
Kazakhstan 0.961 0.003 0.001 0.966 India 0.703 0.216 0.033 0.952
Switzerland 0.961 0.000 0.001 0.962 Jamaica 0.699 0.003 0.086 0.789
Ukraine 0.961 0.002 0.000 0.963 Namibia 0.685 0.009 0.141 0.836
Poland 0.959 0.000 0.000 0.959 Peru 0.658 0.154 0.010 0.822
Tajikistan 0.958 0.003 0.001 0.962 Tanzania 0.652 0.079 0.129 0.859
Germany 0.958 0.000 0.001 0.959 Angola 0.527 0.126 0.124 0.777
Turkey 0.957 0.001 0.003 0.961 Kenya 0.477 0.314 0.026 0.817
France 0.954 0.002 0.003 0.959 Sudan 0.446 0.362 0.032 0.839
Japan 0.952 0.006 0.010 0.968 Philippines 0.407 0.367 0.033 0.806
Australia 0.950 0.005 0.005 0.959 Ghana 0.365 0.515 0.018 0.897
Luxembourg 0.949 0.000 0.000 0.949 Thailand 0.349 0.481 0.026 0.855
Lithuania 0.947 0.000 0.000 0.947 Ecuador 0.286 0.359 0.006 0.651
Egypt 0.947 0.001 0.003 0.951 Malaysia 0.167 0.549 0.021 0.736
Armenia 0.945 0.000 0.001 0.945 Liberia 0.155 0.620 0.006 0.781
Netherlands 0.943 0.002 0.003 0.948 Mali 0.142 0.671 0.101 0.915
Tunisia 0.943 0.006 0.015 0.964 Venezuela 0.114 0.486 0.154 0.754
Sweden 0.942 0.004 0.000 0.947 Sierra Leone 0.086 0.755 0.041 0.882
Algeria 0.941 0.007 0.013 0.961 Rwanda 0.077 0.019 0.366 0.462
Belgium 0.941 0.001 0.003 0.945 Costa Rica 0.042 0.559 0.061 0.661
Latvia 0.940 0.001 0.000 0.941 Colombia 0.028 0.355 0.173 0.556
Cyprus 0.938 0.011 0.011 0.960 Burundi 0.023 0.048 0.573 0.645
Jordan 0.938 0.000 0.005 0.943 Ethiopia 0.015 0.779 0.015 0.808
Denmark 0.937 0.010 0.003 0.950 Nigeria 0.001 0.821 0.101 0.922
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Figure 1: Global Temperature Shocks

j = 1, . . . , 76.

100 (qjt+h − qjt) = βjhft +

4∑
i=0

bjh,i∆qjt−i + ujt+h, (10)

where the constant has been suppressed. The local projections include controls for past real

depreciations.9 The coefficient of interest is βjh, which measures the percent change in the real

exchange rate response from time t to t+ h due to the climate shock at time t.

For country-specific temperature shocks, the local projections are

100 (qjt+h − qjt) = δjhfjt + δ0
jhf0t +

4∑
i=0

bjh,i∆qjt−i + ujt+h (11)

where fjt is the temperature shock for country j = 0, ..., 76, with the U.S. as country 0. Here,

the coefficient δ0
jh measures the impact on the real exchange rate from a temperature shock in

the U.S.

As there are a large number of impulse response results (48 horizons, 76 exchange rates),

we report a summary of the local projection results in Table 2. The first column reports the

summary for the global temperature shock, where for 28 countries, there was a significantly

positive βh at some horizon h = 1, . . . , 48 and significantly negative for 15 exchange rates. No

countries had both a significantly positive at one horizon and a significantly negative response

at another. Column 2 reports analogous results for δjh from eq.(11). Panel B reports the

9Under weak exogeneity of the shocks, it is not necessary to control for past depreciations.
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Table 2: Local Projection Summary

Country-Specific

Global Own U.S.

A. Number of Countries

Significantly Positive 28 28 30

Significantly Negative 15 19 13

Significantly Pos. and Neg. 0 4 6

B. Proportion of Countries

Significantly Positive 0.368 0.368 0.395

Significantly Negative 0.197 0.250 0.171

Significantly Pos. and Neg. 0.0 0.053 0.079

Notes: Standard errors computed by Newey-West. Significantly Positive (Negative) : Number of countries for which βh,
for some h is significantly positive (negative) at the 5 percent level for a two-sided test. Significantly Pos. and Neg.:
Number of countries for which βh is significantly positive at some h and significantly negative at some h′, h 6= h′.

estimation summary in terms of sample proportions.

We observe substantial and significant response heterogeneity across countries. In terms

of the global shocks, for some countries, the exchange rate appreciates while for others, it

depreciates. More countries experience significant appreciations than depreciations. Under the

hypothesis that a positive temperature shock is bad news, its effect should be to increase the

conditional variance of the (log) future utility and to increase expected consumption growth

through a decline in current consumption, both of which lower the expected log stochastic

discount factor. For those countries that experience a subsequent appreciation, the shock

would have had a larger depressing effect on Et(mt+1) for the U.S. than the country in question,

and vice-versa if the country experiences a depreciation. Interestingly, the alternative shocks

generate currency appreciations for most currencies against the USD, even though they contain

different information.

Figure 2 plots the impulse responses to to global temperature shocks, where the real ex-

change rates are ranked by t-ratios at horizon h = 48. Panel A plots the nine exchange rates

with the largest positive t-ratios and Panel B plots the nine with the largest (in magnitude)

negative t-ratios.

Of the nine appreciating currencies, whose countries evidently are less severely affected by

global temperature shocks than the U.S., seven are European. In many cases, the response
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appears to be increasing over time and permanent. Amongst the depreciating countries, only

Finland and Latvia are European. The other countries tend to be lower income and located

in tropical latitudes.

Figure 3 plots impulse responses (δjh) to their own country-specific temperature shocks

of the nine appreciators with the largest horizon 48 t-ratios. Panel B shows the response

(δ0h) of the same countries to the shock in U.S.-specific temperature. We note, for Pakistan,

Venezuelan, Angola, Kenya and Uruguay, the response to U.S. temperature shocks are opposite

the response to the own-country specific shock, as predicted by eq.(7). For the other countries,

the response to U.S. temperature shocks is lower than to the country’s own temperature shock

(δ0h < δjh) .

Figure 4 shows the analagous figure for the nine depreciators. Again, we see that the

response to U.S.-specific temperature shocks generally goes in the opposite direction from the

response to the country’s own temperature shock.

Because the local projections estimate the exchange rate response relative to the U.S.,

which range from positive to negative, there will be many responses that are close to zero. It

can be no surprise, then, that many of these responses will not display statistical significance.

We can demonstrate a higher degree of significance with a limited amount of pooling. Let

us sort the 76 local projection slopes at horizon h = 12 in descending order, from which we

form five size response-based groups of exchange rates. There are 15 exchange rates in groups

1-4 and 16 in Group 5. For each group, estimate the panel local projection using the global

temperature shock ft,

100 (qjt+h − qjt) = βhft +

4∑
i=0

bjh,i∆qjt−i + αjh + ujt+h, (12)

at horizons h = 1, ..., 48. Panel standard errors are constructed by Newey-West.10 The response

to the temperature shock is constrained to be identical across the individual exchange rates

in the group, but the constant (αjh) and lag coefficients (bjh,i) are allowed to vary. As can be

seen, at some horizon, groups 1-4 show a significantly positive (at the 5% levle) response at

some horizon and group 5 shows a significantly negative response.11

10Specifically, the system is estimated by GMM where the individual regressors in each equation serve as
instruments.

11The appendix shows analagous figures for groups sorted by response at horizons 2 and 48, which are
qualitatively similar.
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Figure 2: Impulse Responses to Global Temperature Shocks

A. Nine Countries with the Largest Positive t-ratios

B. Nine Countries with that Largest Negative t-ratios

Note: Shaded area indicates plus and minus 1.65 standard error band.
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Figure 3: Impulse Responses of Appreciators to Country-Specific Temperature Shocks

A. Response to Own Country-Specific Temperature Shock

B. Response to U.S. Temperature Shock

Note: Shaded area indicates plus and minus 1.65 standard error band.
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Figure 4: Impulse Responses of Depreciators to Country-Specific Temperature Shocks.

A. Response to Own Country Idiosyncratic Temperature Shock

B. Response to U.S. Idiosyncratic Temperature Shock

Note: Shaded area indicates plus and minus 1.65 standard error band.
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Figure 5: Panel Impulse Responses to Global Temperature Shocks. Groups Sorted by Size of
Horizon 12 Individual Response

Note: Shaded area indicates plus and minus 1.96 standard error band.

To summarize, this section has documented evidence that global climate shocks have sig-

nificant and heterogeneous effects on real exchange rates both across countries and within

countries to local and global temperature shocks. Pooling can achieve higher statistical signif-

icance, but our primary interest is in observing individual response heterogeneity. In the next

section, we undertake an empirical analysis to better understand the sources of exchange rate

response heterogeneity.

4 Cross-Sectional Analysis

The local projection estimates finds the U.S. to be more adversely affected by global climate

shocks than some countries (the appreciators) and to be less adversely affected than others
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(the depreciators). In this section, we investigate the role of differences in geography, economic

structure, and economic development, that may explain these heterogeneous responses.

To investigate potential sources of the long-horizon cross-sectional response heterogeneity,

we regress the 48-month horizon local-projection coefficients, shown in Figure 6, on a set of

country characteristics observed in 2017. We note that the majority of responses to global

temperature shocks are positive, indicating that the U.S. is more adversely affected by global

temperature shocks than most countries in the sample. The responses to country-specific and

to U.S.-specific shocks are more balanced between positive and negative. This second-step in

the empirical work is similar to research in finance where average asset returns are regressed

on ‘betas’ of various risk factors. Our procedure is also closely related to Lustig and Richmond

(2020), who regress the exchange rate’s base factor ‘betas’ on ‘gravity’ variables.

To be clear, there is no ‘first-stage error’ problem in the analysis. The local projection

response forms the dependent variable in the second-stage regression, which is asymptotically

normal. While there would be a generated-regressors problem requiring adjustments to obtain

the correct asymptotic standard errors if the estimated betas enter as regressors, that is not

the case here.

Let Xj be the vector of country j′s characteristics, We run the regressions

Yh,j = X ′jγ + uj , (13)

where Yh,j = {β̂hj , δ̂hj , δ̂0
jh} for global temperature shocks, country-specific shocks and U.S.

specific shocks at horizon h for slopes measuring the response to global shocks and to local

and U.S.
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Figure 6: Local Projection Slopes at 48 Month Horizon

A. Global Temperature Slopes

B. Own Idiosyncratic Temperature Slopes

C. U.S. Idiosyncratic Temperature Slopes
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The country characteristics we examine, are potentially related to the country’s economic

exposure to warming. The variables and rationale for including them are as follows.

1. Average Temperature. The presumption is that hotter countries, where temperature

already makes it difficult to work, will do worse than cooler countries. Very cold countries

could benefit from warming, at least over a certain range of temperatures (Stern (2007)).

Cook and Heyes (2020) reports evidence that outdoor cold has adverse effects on indoor

cognitive performance. Warming, potentially can improve high-skilled labor productivity

in some locations. Hence, we expect the likelihood of depreciation to increase with

average temperature.

2. GDPPC – Per capita GDP. If the presumption is higher-income countries are better

able to adapt to rising temperatures, we expect per capita GDP to enter with a positive

sign. Lower-income countries employ technologies that are more labor intensive and

for which labor is more exposed to climate–they tend not to work in air-conditioned

offices. Microeconomic studies estimate negative effects of higher temperature on labor

productivity. Heal and Park (2016) review the empirical literature on the direct effects

of high temperatures on labor productivity and conclude that the negative effects are of

first-order significance. There are multiple channels linking income to climate exposure,

such as adverse effects on health, labor productivity, and possibly reductions in human

capital accumulation. Due to resource limitations, lower-income countries are less able

to adapt to warming, which leaves them more exposed.

3. Agriculture/GDP – the share of agriculture in GDP. Macroeconomic exposure to warming

through agriculture is ambiguous. From Stern (2007), crop yields may increase initially

in the higher latitudes, due to the carbon fertilization effect. For these countries, agri-

cultural productivity may display a hump-shape with respect to temperature–warming

initially is beneficial to agriculture but only up to a certain threshold temperature. How-

ever, in tropical regions, warming has adverse effects on agricultural yield. Climate

change is also likely to result in more heatwaves, droughts, and severe floods leaving

countries with a relatively large agricultural sector to be more exposed to these risks.

But physical crop yields are not the only consideration. Agriculture represents a larger

share of GDP in lower-income countries and employs a larger share of labor who are

exposed to the elements.
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4. Services/GDP – the share of services in GDP. We expect the share of services to enter with

a positive sign. The relative size of the service sector is higher in high-income countries.

While technologies in lower-income countries are more labor intensive, their output is

less service oriented. We include the service sector share in GDP as a complementary

measure of labor’s exposure to temperature.

5. Trade/GDP – the share of trade to GDP (openness). We expect the trade variable

to enter with a positive sign. Trade is measured as the sum of exports and imports.

While standard trade theory predicts that increased openness through reductions of trade

barriers leads to greater efficiency, more recently, the literature has presented convincing

evidence that openness leads to higher economic growth (see Irwin (2019) for a survey

of recent work).12 Hence, we might expect that countries that engage in more trade are

more resilient to adverse climate shocks.

6. Tourism/Export – tourism as a share of exports. Tourism is measured as expenditures

by international visitors. Macroeconomic exposure through tourism is ambiguous. On

the one hand, tourist spending on cold-weather related leisure activities, such as alpine

skiing, are clearly at risk.13 Similarly, for countries that are already hot, tourism may

decline with additional warming. Alternatively, warming could enhance leisure tourism

by extending warm-weather activities. Chan and Wichman (2020), using data from

bike-sharing programs finds potential gains for outdoor recreation, at least initially, from

warming.

7. Warming – the country average temperature growth from 1970 to 2017, to investigate

how a direct measure of climate change may impact economic prospects as reflected in

the real exchange rate.

Per capita GDP data are from the Penn World Tables. The other data on country char-

acteristics are from the World Bank database. We use year 2017 for all variables, or the most

12Irwin (2019) points out that some of the largest and most important growth accelerations (in Taiwan [1962],
Brazil [1967], China [1991], India [ 1991], and Poland [1991]), seemed to occur around the time of major trade
reforms.

13See Climate Change is Killing Alpine Skiing as We Know It,
https://www.bloomberg.com/news/articles/2020-01-15/climate-change-is-killing-alpine-skiing-as-we-know-it,
and How Climate Change is Affecting Tourism,
https://www.travelpulse.com/news/destinations/how-climate-change-is-affecting-tourism.html.
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recent year available. We omit the U.S., since the exchange rate response is relative to the

dollar, and including U.S. variables does not contribute any variation.

Mean values of the variables for hot and cold (above and below average temperature)

countries are shown in Table 3. As can be seen, agriculture’s share in GDP is substantially

higher in hot countries. Trade is a much larger share of GDP in temperate countries, while

the importance of tourism for trade is roughly similar across tropical and temperate countries.

Table 4 shows the country-characteristic correlation matrix. Hot countries tend to be poorer,

more reliant on agriculture and tourism, less reliant on services and less open. Cold countries

are warming faster than hot ones.

Table 4 shows the correlation matrix of the country characteristics. The negative correlation

between per capita GDP and temperature is well known. Agriculture plays a larger role in

economies of hot and poor countries. Richer countries are more open to trade. Export earnings

from tourism and the speed of warming are not highly correlated with the other characteristics.

Table 3: Mean Country Characteristics by Average Temperature

Mean Value Hot Cold

Avg. Temp 22.228 9.809
GDPPC 11,106 35,590
Agriculture/GDP 15.581 3.943
Trade/GDP 63.797 101.228
Services/GDP 53.412 61.013
Tourism/Export 13.424 9.193
Warming 0.836 0.895

Notes: Ratios stated in percent. GDP Per Capita in 2017 U.S. Dollars.

Table 5 shows the results for global temperature shocks. Country characteristics have more

explanatory power for real exchange rate responses to global temperature shocks at the longer

horizons. At the one-month horizon, only tourism is significant (at the 10 percent level).

Countries that rely more on tourism tend to appreciate at horizon 1, but tend to depreciate at

horizons 36 and 48. At horizons 36 and 48, countries with higher income, larger agricultural

sectors, less openness, earn more from tourism and slower warming tend to depreciate in

response to a global temperature shock. We obtain the expected signs for agriculture’s GDP

share and trade openness. It is interesting that richer countries tend to depreciate since the

empirical literature reports that poorer countries are more adversely affected by temperature
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Table 4: Correlations Amongst Characteristics

Avg. Agricul- Trade/ Services/ Tourism/
Temp GDPPC ture/GDP GDP GDP Export Warming

Avg. Temp 1 -0.669 0.597 -0.352 -0.459 0.167 -0.216
GDPPC 1 -0.644 0.620 0.729 -0.217 0.032
Agriculture/GDP 1 -0.291 -0.798 0.109 -0.144
Trade/GDP 1 0.340 -0.085 0.081
Services/GDP 1 -0.021 0.038
Tourism/Export 0.044

Table 5: Global Temperature Shocks

Dep. Var. GDPPC Ag Trade Tour Warming R2

β̂i,1 0.006 -0.006 0.001 0.011 -0.001 0.192
(1.588) (-0.902) (0.617) (1.885) (-1.070)

β̂i,18 -0.020 -0.062 0.013 -0.030 0.117 0.109
(-0.756) (-1.373) (1.701) (-1.044) (0.077)

β̂i,36 -0.075 -0.131 0.021 -0.051 0.203 0.190
(-2.420) (-2.945) (2.223) (-1.341) (1.449)

β̂i,48 -0.106 -0.126 0.034 -0.090 0.237 0.234
(-3.025) (-3.021) (3.367) (-1.990) (3.234)

Note: T-ratios in parentheses. Bold indicates significance at 10 percent level.

22



shocks. The sign on GDP per capita was unexpected.

Table 6 shows the regression results for responses to country-specific temperature shocks.

Although Table 2 reports many significant responses to country-specific shocks, the responses

are unsystematic, in the sense that they are not explained well by country characteristics. Of

all the coefficient estimates in the table, only tourism is significant at horizon 18, and that is

in response to U.S. temperature shocks.

Table 6: Idiosyncratic Temperature Shocks

Dep. Var. Shock GDPPC Ag Trade Tour Warming R2

δ̂i,1 Own 0.000 0.001 -0.001 0.005 0.000 0.080
(-0.154) (0.491) (-1.094) (1.347) (0.007)

δ̂0
i,1 U.S. 0.000 -0.001 0.000 -0.002 0.001 0.046

(0.281) (-0.594) (-1.121) (-1.033) (0.276)

δ̂i,18 Own -0.017 0.011 0.000 -0.001 -0.032 0.020
(-0.564) (0.386) (-0.011) (-0.029) (-0.253)

δ̂0
i,18 U.S. 0.003 0.010 0.001 0.013 -0.029 0.081

(0.364) (0.973) (0.395) (2.095) (-1.474)

δ̂i,36 Own -0.030 -0.015 -0.001 0.019 -0.062 0.028
(-0.837) (-0.431) (-0.081) (0.594) (-0.397)

δ̂0
i,36 U.S. 0.006 0.008 -0.001 0.011 -0.046 0.067

(0.674) (0.775) (-0.457) (1.203) (-1.559)

δ̂i,48 Own -0.038 -0.017 -0.004 -0.001 0.000 0.070
(-1.448) (-0.539) (-0.568) (-0.022) (-0.001)

δ̂0
i,48 U.S. -0.002 0.005 0.000 0.009 -0.006 0.031

(-0.234) (0.483) (-0.084) (0.835) (-0.267)

Note: T-ratios in parentheses. Bold indicates significance at 10 percent level.

Table 7 stratifies the regression of responses to global temperature shocks by ‘poor’ and

’rich’ countries (above and below the median per capita GDP). The stratified results show that

the negative relationship between GDP per capita at horizons 36 and 48 in Table 5, are driven

by the rich countries. That is, the poor among the ‘rich’ tend to appreciate. Similarly, the

relationship with trade openness is primarily driven by rich countries. Tourism revenues at

horizon 1 is driven by rich countries but is driven by poor countries at horizon 48. Agriculture’s

share loses its significance here, perhaps due to loss of sample size in the stratification.

Table 4 stratifies the regression of responses to global temperature shocks by whether

the country is landlocked. Landlocked countries are less economically connected to other
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Table 7: Global Temperature Shocks, Poor and Rich Split

Dep.Var. Group GDPPC Ag Trade Tour Warming R2

β̂i,1 Poor 0.014 -0.001 0.001 0.009 0.007 0.227
(0.602) (-0.099) (0.343) (1.077) (0.309)

Rich 0.001 0.004 0.001 0.014 -0.023
(0.187) (0.114) (0.918) (1.808) (-1.396)

β̂i,18 Poor 0.190 0.021 0.009 -0.025 0.085 0.157
(0.935) (0.249) (0.342) (-0.573) (0.634)

Rich -0.071 -0.035 0.018 -0.026 0.088
(-1.625) (-0.169) (2.087) (-0.511) (0.819)

β̂i,36 Poor 0.325 0.006 0.004 -0.037 0.196 0.261
(1.592 (0.083) (0.145) (-0.846) (1.081)

Rich -0.148 -0.260 0.031 -0.030 0.111
(-2.659) (-0.859) (2.691) (-0.368) (0.656)

β̂i,48 Poor 0.145 -0.024 0.047 -0.119 0.254 0.287
(0.781) (-0.443) (2.199) (-2.817) (1.534)

Rich -0.164 -0.153 0.039 -0.028 0.087
(-2.299) (-0.316) (2.722) (-0.308) (0.455)

Note: T-ratios in parentheses. Bold indicates significance at 10 percent level.

Table 8: Global Temperature Shocks, Landlocked and Unlocked Split

Dep.Var. Group GDPPC Ag Trade Tour Warming R2

β̂i,1 Locked 0.002 0.002 0.002 0.023 0.101 0.261
(0.236) (0.112) (1.193) (1.918) (3.030)

Unlocked 0.006 -0.010 0.001 0.008 -0.007
(1.421) (-1.598) (0.454) (1.393) (-0.427)

β̂i,18 Locked -0.136 -0.071 0.047 -0.043 0.261 0.171
(-3.086) (-0.688) (5.246) (-0.575) (1.264)

Unlocked -0.010 -0.077 0.001 -0.029 0.118
(-0.354) (-1.473) (0.120) (-0.813) (1.273)

β̂i,36 Locked -0.192 -0.316 0.052 0.000 0.229 0.263
(-5.272) (-5.248) (7.181) (0.005) (0.792)

Unlocked -0.062 -0.094 0.004 -0.041 0.217
(-1.769) (-1.801) (0.329) (-0.891) (1.566)

β̂i,48 Locked -0.258 -0.371 0.066 -0.073 0.164 0.317
(-4.920) (-2.127) (6.045) (-0.475) (0.620)

Unlocked -0.093 -0.101 0.015 -0.078 0.268
(-2.326) (-2.824) (1.173) (-1.516) (1.943)
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countries due to higher trade costs, which might make them more vulnerable to increasing

temperature. At horizons 36 and 48, GDP per capita and agriculture’s share are significant for

both landlocked and unlocked countries, but the magnitude of the point estimates are larger

for the landlocked, as are the t-ratios (generally). Landlocked countries with higher trade

openness are more likely to appreciate as well.

We close this section with two additional comments. First, when stratifying countries by in-

come, or by whether they are landlocked, the responses to country-specific temperature shocks

continue to show little systematic variation to country characteristics. As a result, we sup-

press the reporting of those results. Second, the explanatory power of country characteristics

on the exchange rate response seems to confined as a USD phenomenon, possibly due to the

outsized economic and financial importance of the U.S. We report in the appendix, results of

our analysis with the Swiss franc and the British pound as numeraire currencies. The impulse

responses for an alternative numeraire amounts to a simple rotation of eq.(7). While we find

significant and heterogeneous impulse responses, whether for global or country-specific shocks,

those responses showed little systematic variation with country characteristics.

5 Conclusion

This paper presents evidence that temperature shocks move real exchange rates. As a national

asset, the exchange rate values current and future relative fundamentals, and its response to

temperature shocks can inform how market participants view the economic consequences of

those shocks.

While our real interest is in how climate change impacts national economies, because climate

is a gradually evolving process it doesn’t lend itself well to time-series regression. As a result, we

followed the empirical literature by analyzing the real exchange rate response to temperature

shocks. We showed that the real exchange rate responds to both global and country-specific

temperature shocks, but only the responses to global shocks are systematically related to

country characteristics. Countries that are poorer, less reliant on agriculture, and are more

open to trade, tend to appreciate in real terms against the U.S. dollar, especially for landlocked

countries.
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A Appendix

Cross-sectional results for Switzerland (CHE) and the U.K. (GBR) as numeraire currencies.

Table A–1: Global Temperature Shocks: Swiss Franc as Numeraire Currency

Dep. Var. GDPPC Ag Trade Tour Warming R2

β̂i,1 -0.007 -0.011 -0.001 -0.005 0.018 0.100
(-1.398) (-1.993) (-0.615) (-1.060) (1.322)

β̂i,18 -0.019 -0.043 0.000 0.018 -0.002 0.014
(-0.485) (-1.229) (-0.013) (0.549) (-0.021)

β̂i,36 0.016 0.006 -0.005 0.045 0.064 0.022
(0.408) (0.166) (-0.461) (1.317) (0.513)

β̂i,48 -0.035 -0.023 0.002 0.041 0.116 0.050
(-0.861) (-0.462) (0.168) (0.977) (0.980)

Note: T-ratios in parentheses. Bold indicates significance at 10 percent level.
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Table A–2: Idiosyncratic Temperature Shocks

Dep. Var. Shock GDPPC Ag Trade Tour Warming R2

δ̂i,1 Own 0.000 0.001 -0.001 0.005 0.000 0.080
(-0.154) (0.491) (-1.094) (1.347) (0.007)

δ̂0
i,1 CHE 0.000 -0.001 0.000 -0.002 0.001 0.046

(0.281) (-0.594) (-1.121) (-1.033) (0.276)

δ̂i,18 Own -0.017 0.011 0.000 -0.001 -0.032 0.020
(-0.564) (0.386) (-0.011) (-0.029) (-0.253)

δ̂0
i,18 CHE 0.003 0.010 0.001 0.013 -0.029 0.081

(0.364) (0.973) (0.395) (2.095) (-1.474)

δ̂i,36 Own -0.030 -0.015 -0.001 0.019 -0.062 0.028
(-0.837) (-0.431) (-0.081) (0.594) (-0.397)

δ̂0
i,36 CHE 0.006 0.008 -0.001 0.011 -0.046 0.067

(0.674) (0.775) (-0.457) (1.203) (-1.559)

δ̂i,48 Own -0.038 -0.017 -0.004 -0.001 0.000 0.070
(-1.448) (-0.539) (-0.568) (-0.022) (-0.001)

δ̂0
i,48 CHE -0.002 0.005 0.000 0.009 -0.006 0.031

(-0.234) (0.483) (-0.084) (0.835) (-0.267)

Note: T-ratios in parentheses. Bold indicates significance at 10 percent level.

Table A–3: Global Temperature Shocks: British Pound as Numeraire Currency

Dep. Var. GDPPC Ag Trade Tour Warming R2

β̂i,1 -0.005 -0.003 -0.001 -0.008 0.013 0.084
(-1.016) (-0.584) (-0.955) (-1.801) (0.848)

β̂i,18 0.014 0.022 -0.001 -0.008 -0.064 0.010
(0.368) (0.590) (-0.089) (-0.255) (-0.568)

β̂i,36 0.029 0.071 0.000 0.015 0.046 0.024
(0.660) (1.389) (-0.009) (0.511) (0.319)

β̂i,48 -0.028 0.003 0.011 0.013 0.096 0.022
(-0.559) (0.041) (0.731) (0.291) (0.631)

Note: T-ratios in parentheses. Bold indicates significance at 10 percent level.
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Table A–4: Idiosyncratic Temperature Shocks

Dep. Var. Shock GDPPC Ag Trade Tour Warming R2

δ̂i,1 Own 0.003 0.002 -0.001 0.005 0.002 0.042
(1.281) (0.520) (-1.597) (1.106) (0.154)

δ̂0
i,1 GBR 0.000 0.001 -0.001 -0.002 0.009 0.054

(0.085) (0.260) (-1.200) (-0.820) (1.171)

δ̂i,18 Own 0.019 0.016 -0.005 0.001 -0.047 0.014
(0.648) (0.609) (-0.623) (0.019) (-0.421)

δ̂0
i,18 GBR 0.011 0.021 0.001 -0.002 0.043 0.060

(1.155) (2.040) (0.306) (-0.275) (1.262)

δ̂i,36 Own 0.023 -0.004 -0.005 0.016 -0.114 0.031
(0.687) (-0.151) (-0.528) (0.539) (-0.925)

δ̂0
i,36 GBR 0.002 0.017 0.003 0.001 0.026 0.019

(0.110) (1.106) (0.564) (0.104) (0.444)

δ̂i,48 Own 0.042 0.001 -0.014 0.012 -0.042 0.045
(1.353) (0.026) (-1.606) (0.326) (-0.402)

δ̂0
i,48 GBR -0.020 -0.019 0.011 0.008 0.056 0.065

(-0.903) (-0.770) (1.693) (0.423) (0.864)

Note: T-ratios in parentheses. Bold indicates significance at 10 percent level.
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Figure A–1: Impulse Responses to Global Temperature Shocks with Swiss Franc Numeraire

A. Nine Countries with the Largest Positive t-ratios

B. Nine Countries with that Largest Negative t-ratios

Note: Shaded area indicates plus and minus 1.65 standard error band.
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Figure A–2: Impulse Responses to Global Temperature Shocks with British Pound Numeraire

A. Nine Countries with the Largest Positive t-ratios

B. Nine Countries with that Largest Negative t-ratios

Note: Shaded area indicates plus and minus 1.65 standard error band.
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Figure A–3: Panel Impulse Responses to Global Temperature Shocks. Groups Sorted by Size
of Horizon 2 Individual Response
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Figure A–4: Panel Impulse Responses to Global Temperature Shocks. Groups Sorted by Size
of Horizon 48 Individual Response
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