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Abstract

Machine learning (ML) techniques are used to construct a financial conditions index (FCI).
The components of the ML-FCI are selected based on their ability to predict the
unemployment rate one-year ahead. Three lessons for macroeconomics and variable
selection/dimension reduction with large datasets emerge. First, variable transformations
can drive results, emphasizing the need for transparency in selection of transformations
and robustness to a range of reasonable choices. Second, there is strong evidence of
nonlinearity in the relationship between financial variables and economic activity—tight
financial conditions are associated with sharp deteriorations in economic activity and
accommodative conditions are associated with only modest improvements in activity.
Finally, the ML-FCI places sizable weight on equity prices and term spreads, in contrast to
other measures. These lessons yield an ML-FCI showing tightening in financial conditions
before the early 1990s and early 2000s recessions, in contrast to the National Financial

Conditions Index (NFCI).
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1. Motivation

A broad set of financial conditions affect household and business demand: Equity prices
influence household consumption through wealth effects; interest rates shape mortgage
borrowing and home purchases as well as business investment; and exchange rates affect
spending on imported and domestic goods and services. Researchers, the private sector,

and policy institutions have developed indexes summarizing financial conditions.?

| uses prediction approaches popular in the machine-learning (ML) literature to reconsider
construction of a financial conditions index (FCl). Earlier research, including English et al
(2005), Hatzius et al (2010), and Aramonte et al (2017), examined whether FCls constructed
from principal-components analysis or similar techniques were useful in prediction
equations for economic activity. Building off this work, the approach herein defines the FCI
as the aggregate of financial variables selected to predict economic activity by the ML
algorithms. The measure of economic activity chosen is the unemployment rate, reflecting
the central role this measure plays as a summary statistic for the state of the business cycle

in the United States.

The ML algorithms considered include LASSO, elastic net, and random forests. Varian
(2014) and Mullainathan and Spiess (2018) provide accessible introductions to these
approaches for an economics’ audience and suggest references that explore their
properties in more detail.3 For the purposes herein, three considerations determined the
choice of algorithms. First, they are popular in the prediction literature. Second, LASSO and
elastic-net represent algorithms for selection of predictors from a potentially large set of

possibilities that have a form similar to econometric techniques commonly used by

2 E.g., Guichard, 2009; Hatzius et al, 2010; Brave and Butters, 2011; Matheson, 2012; Koop and
Korobilis, 2014; Hatzius and Stehn, 2018 (which presents the Goldman Sachs approach); Bartsch,
2018 (which presents the BlackRock approach); Federal Reserve Bank of Kansas City, 2019; Federal
Reserve Bank of Cleveland, 2019; and IMF, 2019.

3 Reichlin et al (2017) and Athey (2018) discuss a broader set of related “big data” issues. The
analysis herein focuses on simple LASSO; Diebold and Shin (2019) discuss alternative LASSO
approaches that may perform better in certain applications.



economists. Third and finally, the random forest approach represents an approach that
differs notably from standard econometric techniques and provides a means to examine
the robustness of key results from LASSO and elastic net. Importantly, LASSO and elastic
net are linear equations for prediction, whereas a random forest can capture nonlinear

relationships.

The resulting ML-FCls shows sizable differences from other FCls, notably from the Federal
Reserve Bank of Chicago’s National Financial Conditions Index (NFCI). A striking difference is
the state of financial conditions before the recessions of the early 1990s and the early
2000s. During those periods, the NFCI did not tighten, suggesting that a tightening of
financial conditions was not an important precursor to those recessions. In contrast, the
ML-FCI tightens during those periods, suggesting that a tightening in financial conditions
was a contributor to the subsequent downturns. One reason for this difference is that the
variable selection approaches deployed are tuned to be correlated with future
unemployment—so the ability to capture business cycle aspects is hard-wired in the
approach. An out-of-sample exercise considers the robustness of the results and
demonstrates that some of the peak in the ML-FCI before a recession weakens out-of-
sample. However, the approach herein reveals a number of useful insights and is not

primarily focused on forecast performance.

In particular, the ML-FCI places a significant weight on term spreads and equity prices as a
contributor to the financial conditions relevant for economic activity, in contrast to the
NFCI. Research has long suggested that a relatively flat or inverted yield curve (i.e., long-
term interest rates that are low relative to short-term interest rates) foreshadows a
weakening in economic activity (e.g., Stock and Watson, 1989; Estrella and Mishkin, 1996;
Rudebusch and Williams, 2009). The ML approach selects the near-term slope of the yield
curve as among the variables that predict unemployment, as in Engstrom and Sharpe

(2019).% The idea that equity prices are among the key determinants of economic activity

4 Other variables emphasized in some research are not significant contributors to the ML-FCls
herein. For example, the NFCI places large weights on measures of corporate bond spreads as



has a long history and central role in the literature on monetary policy transmission (e.g.,
Boivin, Kiley, and Mishkin, 2010). Paul Samuelson summarized the idea that equity price
movements may signal future economic activity in his humorous quip, from 1966, that the
stock market has predicted nine of the past five recessions. Despite the role of equity prices
as an impetus to activity in theory, several FCls show little imprint from, for example, the

run-up and subsequent decline of equity prices in the late 1990s and early 2000s.

Perhaps more Importantly, the ML approach yields these insight for reasons that shed light
on important issues for macroeconomics, forecasting, and analyses of big data (specifically,
variable selection and dimension reduction). In particular, the ML approach naturally allows
consideration of a range of variables and transformations as well as nonlinearity. Data
transformations are often chosen on an a priori basis for reasons related to the stationarity
of the variables (e.g., Forni et al, 2000; Stock and Watson, 2002, and 2011, 2016;
McCracken and Ng, 2016). However, there are many transformations that may render a
variable stationary, and these alternative transformations may emphasize different aspects
of the series (e.g., introduce peaks in the spectrum of the data at different points in the
frequency domain).® As a result, these choices are consequential, and the ML approaches
allow an algorithmic approach to consideration of such choices. The ML approach herein
considers both high-frequency transformations (e.g., percent changes in equity prices) as
well as lower frequency transformations (e.g., twelve-month percent changes or the level
of price-to-earnings ratios). The algorithms select the lower-frequency transformations as
carrying the information in equity prices that is relevant for predicting unemployment and

assigns an important role for equity prices in the MI-FCI. In contrast, the related literature,

determinants of financial conditions—a finding consistent with direct examinations of the predictive
power of bond spreads such as Gilchrist and Zakrajsek (2012)—while these measures receive
relatively small weights in the ML-FCI. In addition, the ML-FCI places little weight on the level of
interest rates, a finding similar to that embedded in construction of the NFCI. This finding is difficult
to square with the central role of the level of interest rates in the conduct of monetary policy and
could reflect a number of factors, including trend shifts in the equilibrium real interest rate (e.g.,
Holston et al, 2017; Kiley, 2020a & 2020b).

5 The role of transformations is documented in the literature, e.g., in analysis of business-cycle facts
and the Hodrick and Prescott (1997) filter (e.g., Cogley and Nason, 1995; and Hamilton, 2018).



such as the NFCI, only considers the transformations that emphasize higher frequencies.
Sensitivity of results to variable choice and data transformations is important for other “big
data” approaches in economics and finance including dimension-reduction (shrinkage)
techniques such as dynamic factor models, as variable transformations are often specified
on a priori grounds with limited discussion of the sensitivity of results to such choices (e.g.,

Stock and Watson, 2002, 2011 and 2016; Reichlin et al, 2017; and Kiley, 2018).

The FCl emerging from the random forest approach also shows striking evidence of
nonlinearity. Tight financial conditions are associated with large subsequent increases in
the unemployment rate. Accommodative financial conditions are associated with only
modest declines in the unemployment rate. These nonlinear relationships are consistent
with macroeconomic theories in which financial constraints can weigh heavily on economic
activity as they become increasingly binding, as emphasized in Barnichon et al
(forthcoming). Despite the emphasis on potential nonlinearities in macroeconomic theory,
previous empirical work has not emphasized such nonlinear relationships between financial
conditions and economic activity, with limited exceptions including Barnichon et al
(forthcoming) and references therein. The findings of nonlinearity demonstrate the value of
considering the machine-learning approaches such as a random forest to identify features
of the data. Such features cannot be detected by linear approaches including linear
approaches that identify the common factor of interest through the correlation with a
variable of interest (as is done herein using the ML approaches for the unemployment
rate), such as the algorithms in Brauning and Koopmans (2014), Kelley and Pruitt (2015),
and Brave et al (2019).

The next section reviews the ML approaches considered. Section 3 presents core results for
the LASSO and elastic-net approaches. Section 4 presents from a random forest. Section 5

considers some robustness exercises, and section 6 concludes.



2. Constructing a Financial Conditions Index via Machine Learning

Machine learning techniques take large amounts of data to create tools for decision-
making. Their strength lies in their ability to combine large numbers of observations of
different types of data — numerical, textual, or other — to produce tools that predict
outcomes. A key weakness, especially in economic contexts, is the difficulty that arises in
interpreting the resulting prediction algorithm (which may be large, complex, and

nonlinear, resulting in a “black box”).®

The problem herein is relatively simple. As a result, a simple approach, using a moderately
large number of financial indicators, is used. Given a set of financial variables, | search for a
summary index of financial conditions—an FCI. | define financial conditions as the
combination of the financial variables most closely connected with economic activity—
thereby adopting the perspective that defines popular FCls (e.g., by the investment banking
firm Goldman Sachs, as presented in Hatzius and Stehn, 2018) and that underlies analyses
linking FCls to real activity (e.g., Adrian, Boyarchenko, and Giannone, 2019). To
operationalize the notion of connection with economic activity, | look for an FCl that is
correlated with the unemployment rate one-year ahead; in the monthly dataset (described
below), this means looking for an FCl to predict the unemployment rate twelve-months

ahead, at t+12.

This approach to construction of an FCl looks like a standard econometric problem. The role
of ML approaches is to help reduce the dimension of the financial variables entering the
FCl, as a large number of financial variables may not be amenable to standard econometric
forecasting techniques (e.g., least squares). | will return to the question of whether the ML
approaches provide value beyond typical econometric approaches in the robustness
analysis, along with a brief discussion of the implications of the results for alternative

dimension-reduction techniques (such as principal components or dynamic factor models).

6 Varian (2014) and Mullainathan and Spiess (2018).



For the remainder of the analysis, let

e U(t) denote the unemployment rate in month (period) t;

e x|(t) denote the ith financial variable (of N total variables) in period t;

e X(t) denote the 1x(N+1) vector containing all financial variables and the current
(period t) value of the unemployment rate); and

e X denote the Tx(N-1) matrix of containing all observations (T) of financial variables.

The approaches to constructing the FCI follow two different paths. The primary path uses
ML techniques most similar to regression — LASSO and elastic net. The robustness of key
results from this path are examined through comparison to results from a random forest. |

first discuss the data and then turn to the ML algorithms.

2.1 Data

All variables used in the analysis are described in table 1 and are taken from the monthly
macroeconomic database of McCracken and Ng (2016), which supports replicability. Data
span the period January 1962 to the first half of 2020, with estimation based on the sample

ending in December 2019.7

The unemployment rate, the variable the ML-FCl is tuned to predict, is measured by the
civilian unemployment rate for the non-institutional population age 16 and over. Nominal
interest rates are transformed to real interest rates using the trailing 12-month percent

change in the all items CPI.

Financial variables are included in the analysis based on a mix of economic and data
availability factors. Measures of real interest rates are included given the central role of the
real interest rate in macroeconomics and monetary economics (e.g., such rates are

traditionally the measure of financial conditions in an IS curve). Equity prices are included

7 The sample period does not include the impact of COVID-19, which resulted in a large increase in
the unemployment rate. The rise in the unemployment rate induced by COVID-19 is clearly
unrelated to financial conditions twelve months prior, and future econometric work will need to
address the implications of such an outsized move in the unemployment rate.



as a widely watched indicator with clear macroeconomic interpretation (e.g., as part of
Tobin’s Q influencing investment). Factors related to the slope of the yield curve are
included given the empirical record in predicting recessions. Corporate bond spreads are
included in light of their role in the cost of finance for large corporations, the idea that they
may capture financial frictions, and previous empirical work. Exchange rates are included

given their role in international trade and finance.

The financial predictor variables (i.e., elements of X(t) excluding the unemployment rate)

can be organized into five categories.

o Level of (real) interest rates: This set includes the federal funds rate, the
commercial paper rate, three-month and six-month Treasury bill rates, rates on
Treasury securities with maturities of one, five, and ten years, and Moody’s
Seasoned Corporate Bond yields for Aaa and Baa ratings. In all cases, these nominal

IM

interest rates are transformed to “real” interest rates by subtracting the average
rate of inflation, as measured by the Consumer Price Index, over the preceding
three years (36 months). (Note this differs from the transformation suggested by
McCracken and Ng (2016), which involved first differencing the nominal rates.)

e Term spreads (yield curve slope): This set includes the three-month, six-month,
one-year, five-year, and ten-year Treasury rates, all minus the federal funds rate.

e Credit spreads: This set includes the three-month commercial paper rate minus the
federal funds rate and Moody’s Seasoned Corporate Bond yields for Aaa and Baa
rating minus the yield on the ten-year Treasury.

e Equity Prices: This set includes the S&P 500 and Industrials Composite Price
Indexes and the S&P Composite dividend yield and price-to-earnings ratio. Two
transformations for each variable are considered. The low-frequency
transformation uses the twelve-month percent change for the price indexes and
the levels for the two ratios. The high-frequency transformation uses the simple
percent changes for the composite price indexes and the simple change for the

dividend yield (as suggested by McCracken and Ng, 2016).



e Exchange rates: This set includes the exchange value of the U.S dollar relative to
the Swiss Franc, Japanese Yen, U.K. Pound Sterling, and the Canadian dollar. In each
case, the set includes two transformations—the twelve-month percent change (to
capture lower frequencies) and the simple percent change (as suggested by

McCracken and Ng, 2016).

All told, the set of financial variables, including alternative transformations, results in 33
elements of X(t) (in addition to the unemployment rate). This set of predictors is not
linearly independent, as, for example, it includes the levels of interest rates and spreads
computed from such levels. This is not a technical challenge for the algorithms, although it
could lead to problems such as instability in the set of selected predictors—an issue

analyzed in the robustness section.

While this set of variables is smaller than that used in some FCls (e.g., Brave and Butters,

2011), it is similar-in-size or larger than the set used in many FCls.

2.2. LASSO and Elastic Net

As the goal is to gauge the role of various financial variables as predictors for the
unemployment rate one-year ahead, the problem relates to variable selection. The class of
penalized regression techniques used in ML applications is well suited to this task. The
robustness section will return to the challenges associated with variable selection given

limited observations and correlated predictors.

The penalized regression approaches considered choose the weights in the ML-FCI, B, to

minimize

> WG +12) - X()BY? +A<Z(a|Bu>| +(1- a>80)2)>

T! N+1

where T’ is the sample used to estimate the parameters. Note that this sample size may be
less than the full set of observations T, in order to allow assessments of fit outside the

estimation window as a tool to avoid overfitting the data.



The parameter A governs the weight given to the penalty function on parameters. A equal
to 0 returns least-squares estimates. In LASSO, a equals 1—that is, LASSO penalizes the
absolute value of coefficients and hence prefers to set coefficients to zero (i.e., not select a
variable) if the coefficient is small, all else equal. Elastic net involves choosing a between 0
and 1. Both LASSO and elastic net have been widely used for prediction and variable
selection in ML contexts and are computationally efficient to estimate (e.g., Varian, 2014;

Mullainathan and Spiess, 2018).2

Several observations are important. First, the data used to predict the unemployment rate
twelve-months ahead, X(t), includes the current level of the unemployment rate, reflecting
the persistence in the level of this series. As the interest herein is in the role of financial
conditions and not the intrinsic persistence in the unemployment rate, the ML-FCl is
computed as XB, where the “hat” indicates that the column/row in the data/coefficient

vector corresponding to the unemployment rate has been deleted.

| implement these approaches in R using the gimnet package. Rather than split the data
into a training and test datasets, | use k-fold cross validation in the estimation of
parameters with five folds—i.e., k-fold cross validation is used to select the subsample for
estimation T. | do not use a training set in the baseline results as | am interested in
understanding relationships across the full set of data. In order to eliminate randomness in
the results related to the choice of folds, | estimate parameters 500 times, creating folds
randomly on each iteration and subsequently considering results across these iterations
(via averaging). The robustness section below considers a training dataset (which ignores
the final 15 years of observations).’ Finally, | consider values of a equal to 1 (LASSO) and 0.5
(a specific choice for elastic net), for 1000 values of A. The results choose the largest value

of A such that the prediction error is within 1 standard error of the minimum value; this is a

8 a equal to 0 is ridge regression, which penalizes large value of the coefficients and hence is like a
Bayesian approach in which the researcher has a prior hat all variables are important, and no
variable is likely to be especially important. See Hoerl and Kennard (1970) and Reichlin et al (2017).
% To preview results, the ML approaches are robust along this dimension, while traditional
econometric techniques, e.g., least squares, are not.



standard approach in the literature, as a choice of 1 away from the value that minimizes

the prediction error limits the risk of spuriously overfitting the data.

2.2 An Alternative ML Approach: Random Forests

Both LASSO and elastic net resemble traditional regressions: The equation is linear, and the
estimation of parameters involves standard (albeit nonlinear) minimization of an objective
function. An alternative ML approach is a random forest. Consideration of an alternative
approach yields at least two advantages. First, it may yield similar or different results,
thereby speaking to robustness. Second, an approach that may elicit nonlinear
relationships has the ability to detect such nonlinearities, which theory suggests may be

important.

Figure 1 provides a brief summary of the algorithm. First, the objective and data are
defined. Next, observations to train the forest are selected. At the third stage, a subset of
potential predictors are randomly chosen. Given these observations and predictors, step 4
finds the variable and associated threshold value that best splits the observations in two
groups—i.e., the best branching of the tree is identified, as measured by some loss
function. Step 5 involves repeating this process along each resulting branch to select new
branches until some predefined number of final branches/nodes is achieved. Finally, the
process of randomly selecting a subset of predictors and each subsequent step is repeated

to construct another tree. A random forest is the collection of these trees (Breiman, 2001).
<<INSERT FIGURE 1 HERE>>

In the implementation, | use the entire sample to develop the forest, as | am focused on
relationships within the full sample (and in parallel to the treatment using LASSO and
elastic net). The robustness section considers a forest grown on a training sample that
excludes the final 15 years of data. | grow 500 individual forests to construct the random
forest. Each forest randomly chooses 10 potential predictors at step 3 (from a possible 34,
as discussed above) and | allow the tree to have 8 final nodes. The analysis is conducted in

R using the randomForest package (with supporting analysis via the randomForestExplainer
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package). Note that an individual tree with 8 final nodes can only predict (up to) 8 values
for the unemployment rate. The random forest, of 500 trees, can predict (up to) 4000
values. The presence of many trees in the forest allows the random forest to fit a
continuous variable like the unemployment rate via an approach using a decision tree

framework.

3. Results from LASSO and Elastic Net

The central results from the LASSO and elastic-net exercises are two-fold. First, LASSO and
elastic net produce nearly identical FCIs and in both cases the ML-FCI shows clear cyclical
properties, with notable tightening before recessions—in contrast to, for example, the
NFCI. Second, equity prices play an important role in driving the ML-FCI, and this result
owes importantly to the inclusion of low-frequency transformations. In addition to equity
prices, term spreads are an important set of predictors. The following subsections take

these points up in turn.

3.1. ML-FClIs

In principle, LASSO and elastic net could provide different estimates of the ML-FCl and/or
differ significantly in the set of predictors selected. However, the results suggest that for
this objective and dataset, results are very similar. This is illustrated in figure 2, which

presents the ML-FCl implied by LASSO and elastic net.
<<INSERT FIGURE 2 HERE>>
In light of these similarities, | focus primarily on LASSO in the remaining discussion.

The pattern of the ML-FCI in figure 2 shows a clear lead relative to the business cycle, as
should be expected given that the FCl is constructed to predict the unemployment rate
one-year ahead. (Note that k-fold cross validation avoids overfitting, but the entire time
period is used and hence these are in-sample results; for understanding relationships, this
may be appropriate, and the robustness section considers out-of-sample results.) The

cyclical pattern simply indicates that, within sample, the financial variables have predictive

11



power for the unemployment rate. For example, financial conditions tighten discernably in
advance of the 1990s and early 2000s recession and tighten dramatically before and during

the Global Financial Crisis.

These patterns contrast with those from the Federal Reserve Bank of Chicago’s NFCI, as
shown in figure 3. The NFCI did not tighten appreciably in the late 1980s and early 1990s or
in the late 1990s and early 2000s. The ML-FCI differs from the NFCl in two fundamental
ways: Different data is used, including data transformations that focus on lower-
frequencies; and the ML-FCl is designed to forecast unemployment, whereas the NFCl is
from a factor model estimated to account for the comovement among the included
financial variables.® The cyclical contrast owes to the latter difference—the tuning of the
ML_FCI to future unemployment—as is intuitive and will be clear in various robustness
exercises in section 5. Finally, note that the NFCl is a dynamic factor model that also uses

the entire sample of data.
<<INSERT FIGURE 3 HERE>>

3.2. Identified Important Predictors
As the LASSO and elastic net algorithms select from the set of predictors, it is interesting to
consider the variables that are selected and how they contribute to the business-cycle

properties just discussed.

Figure 4 presents the ML-FCI (from LASSO) and the contributions to this FCI from each set
of predictors—interest rates, term spreads, exchange rates, equity prices, and credit
spreads. Two classes of aggregates stand out as especially important. First, equity-price
measures play a large role in fluctuations in the ML-FCI, especially since the 1990s. Recall
that the set of variables related to equity prices include lower-frequency measures, such as
the twelve-month changes in the equity price indexes or level of the price-to-earnings ratio,

as well as higher-frequency measures. It turns out that the low-frequency measures—

10 Note that algorithms other than machine learning can also be tuned to a forecast an objective,
e.g., Brauning and Koopmans (2014), Kelly and Pruitt (2015) and Brave et al (2019).
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measures not common in factor model analyses such as that underlying the NFCl—are the
important drivers. | return to this below in the random forest results, where related

summary statistics are intuitive.
<<INSERT FIGURE 4 HERE>>

The second set of variables important for the FCl are term spreads. Spreads are more
clearly important in the 1970s and 1980s and somewhat less important subsequently. The
sizable non-zero coefficients are typically selected for the near-term yield-curve slope
variables, consistent with research emphasizing the slope of the yield curve in recession

prediction such as Engstrom and Sharpe (2019).

Note that other variables contribute relatively little. The set of real interest rates
contributes essentially nothing, as does the set of exchange rates. The set of corporate
bond spreads also contribute relatively little—a result seemingly in contrast to that of

Gilchrist and Zakrajsek (2012) and related research.?

4. Results from a Random Forest

The core results from LASSO (and elastic net) are both novel and intuitive: Equity-price
measures have long been viewed as key macroeconomic factors (e.g., Boivin et al, 2011),
but played little role in (many) FCls. It is plausible that the high-frequency transformations
popular in big-data applications hide the role of equity prices, as month-to-month changes
are volatile while indicators such as twelve-month changes, dividend yields or price-to-
earnings ratios capture important business-cycle components. The ML algorithms select

equity-price indicators with the intuitive properties.

However, a review of the degree to which the properties of an ML-FCI are robust along

several dimensions is important. First, LASSO (and elastic net) are very similar to standard

11 Gilchrist and Zakrajsek (2012) find evidence for bond spreads but emphasize their measure of the
excess bond premium, which removes default risk from bond spreads. This measure is not readily
available in databases of macroeconomic indicators (e.g., McCracken and Ng, 2016) and hence is not
included in the analysis for replicability reasons.

13



econometric approaches and comparison with an ML-FCI based on alternative algorithms,

especially algorithms that allow for nonlinear interactions, is revealing.

A random forest differs substantially from LASSO or elastic net. In its search for predictors,
an individual tree creates branches that predict whether the outcome variable (i.e., the
unemployment rate one-year ahead) should be placed in one of two buckets/branches, and
then branches again. While this approach may appear most natural for outcomes with
discrete values/buckets, these “regression” trees can be effective prediction algorithms for
continuous outcomes because many trees are grown within the forest, and hence there are

many final buckets that are predicted across the forest.

Finally, this approach allows nonlinear interactions and a way to assess the importance of
an indicator by examining how close an indicator is to the “trunk” of the tree—that is, an
indicator is important if it is very early in the branch structure of the tree. Figure 5 provides
an illustrative example. In this example, the predictor closest to the trunk of the tree is the
twelve-month percent change in the S&P 500 composite index. The second most important
predictors selected are the near-term slope of the yield curve (the difference between the
6-month Treasury rate and the federal funds rate) or the Baa corporate bond spread—that
is, these financial conditions contain information on whether unemployment is likely to rise
or fall over the coming year on top of equity prices. This branching continues until the tree
is fully-grown. As outlined in section 2, this process is repeated to grow 500 trees with 8
final nodes, via random selection of potential predictors, and the random forest prediction

is the average value predicted from these trees.
<<INSERT FIGURE 5 HERE>>

Recall that in the LASSO case, the ML-FCI only accounts for the role of the financial
variables in predicting the unemployment rate; the role of the unemployment rate itself,
owing to serial correlation, is ignored. For the random forest, an analogous approach is
used. However, the approach needs to be different, as a random forest which included the

unemployment rate as a predictor would include nonlinear interactions between current

14



unemployment and the financial variables. A simple alternative is to estimate an equation
that predicts the unemployment rate twelve months ahead using only the current
unemployment rate, and to fit the random forest to predict the residuals from this first
stage regression using only financial variables. | use this approach, which is based on the
full sample; the robustness exercise that considers out-of-sample results in section 5 uses

residuals from rolling (out-of-sample) forecasts.

Figure 6 presents the resulting ML-FCls from LASSO and the random forest. Both FCls share
similar business cycle properties, as should be expected given that they are designed to
predict unemployment. Relatedly, the ML-FCI from the random forest looks much more like

the ML-FCI from LASSO then the NFCI.

However, there is one striking difference: the ML-FCI from the random forest is very
nonlinear. Tight financial conditions are associated with a high value for the unemployment
rate (as that is what a high value of the FCl implies). In contrast, the FCI only becomes
modestly accommodative—indeed, it reaches a floor implying a modest low value for the
unemployment rate. This pattern cannot emerge from a linear approach (such as LASSO,
elastic net, or a dynamic factor model). It is also consistent with macroeconomic theory
predicting such nonlinearities and a limited set of previous empirical work (e.g., Barnichon

et al, forthcoming).
<<INSERT FIGURE 6 HERE>>

While the similarity in business-cycle properties is expected given the common objective
(predict unemployment) behind both ML-FCls, the degree to which the algorithms
emphasize similar predictors is of central interest. Figure 7 presents the branch level of the
top 5 predictors from the random forest—a branch level of one indicates the predictor is at
the trunk and hence very important for classifying outcomes, whereas a high branch level
indicates the predictor is less important. Within financial variables, measures of the term
spread (e.g., the six-month Treasury yield relative to the federal funds rate and others) are

four of the top five predictors. The top predictor is the twelve-month percent change in
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the S&P 500 (and two other equity price indicators fall in the top ten predictors). These
results echo those from LASSO along the critical dimensions highlighted earlier—term
spreads and equity prices are key measures of financial conditions, and the low-frequency

transformations of equity prices are the important measures among that set of indicators.

<<INSERT FIGURE 7 HERE>>

5. Robustness

The dataset used is small (by ML standards, albeit not by macroeconomic standards) and
results on variable selection can be fragile with correlated predictors (e.g., de Mol, 2008;
and Mullainathan and Spiess, 2018). As a result, it is useful to examine the degree to which
the results are robust by ignoring the final 15 years of data. It is also useful to compare the
ML-FCI results to a simple least-squares prediction and the fragility of that approach
relative to the ML approaches. Finally, the machine-learning approach focuses on variable
selection. An alternative approach to “big data” in macroeconomics is dimension
reduction—indeed, the NFCl is an example of that approach. The final robustness exercise
demonstrates how this approach can be dependent on choices regarding variable inclusion
and transformations—thereby demonstrating the value of the approaches herein that

allow selection across alternative transformations.

5.1. Stability: Training and Test Data

Variable selection among correlated predictors is inherently challenging and subject to
instability: Because certain sets of predictors are highly correlated, it can be largely
irrelevant which individual predictors are chosen and/or the set of chosen predictors can
shift with small changes in specification or sample period (even though the resulting
predictions may be very similar) (as discussed in de Mol, 2008, and Mullainathan and
Spiess, 2018). These fragilities underlie the preference in some econometric applications
for factor-model approaches (e.g., Forni et al, 2000; Stock and Watson, 2002, 2011, and
2016; de Mol et al, 2008). The random forest results provide some evidence of robustness

in variable selection to change in specification.
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A further robustness check involves examination of results ignoring some of the data in
estimation. To this end, the analysis was executed ignoring the final 15 years of data in the
estimation step (and thereby excluding the most severe tightening in financial conditions in
many decades, as the estimation sample ends in 2004, four years before the most intense
phase of the Global Financial Crisis). The projections were then created for the full sample.
Figure 8 presents the resulting ML-FCI from LASSO and the random forest, in each case
comparing the full-sample version to the restricted-sample version. There are some
important differences. Most notably, the out-of-sample performance is clearly worse, as
the tightening in financial conditions around the Global Financial Crisis is less severe and
occurs later when the crisis is not in the estimation sample. At the same time, the character
of the ML-FCl is broadly similar and remains distinctly different from that of the NFCI. In
this sense, the ML algorithms deliver robust results across the full and restricted samples.

Moreover, the nonlinear character of the results from the random forest is preserved.
<<INSERT FIGURE 8 HERE>>

Evidence of robustness in variable selection to sample period is shown in figure 9, which
presents the contributions to the LASSO ML-FCI from each set of variables. As in the full
sample, term spreads are important in the estimation window. Equity-price measures are
also important in the estimation window, especially in the loosening of financial conditions
in the late 1990s and subsequent tightening. That said, the results out of sample
demonstrate that the role of equity prices in the tightening around the Global Financial
Crisis estimated using the full sample only comes through partially when that episode is not

included in the estimation window.
<<|INSERT FIGURE 9 HERE>>

Figure 10 presents the top five predictors from the random forest for the full sample and
restricted samples. Again, equity price measures are among the most important, with the

12-month percent changes in both the S&P industrials index and the S&P 500 index within
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the top five predictors. In addition, yield-curve slope variables are consistently in the top

five. These results point further to robustness in the ML approach.
<<INSERT FIGURE 10 HERE>>

A final consideration with regard to subsample results is whether the use of machine
learning techniques provides value beyond more standard approaches such as least
squares. The nonlinearity of the random forest FCI provides one insight that least squares
cannot. Focusing on other dimensions, figure 11 compares an FCl constructed via least
squares and the ML-FCI (from LASSO). The upper panel presents results for the full sample,
and the lower panel for the restricted sample. Over the full sample, the least squares
approach matches that of the ML approach. But these results are fragile, with the restricted
sample results performing somewhat poorly out of sample (where poor performance, in
this case, is defined as swings that do not match common views on the degree of tightening
in financial conditions during the Global Financial Crisis and developments thereafter).
These exercises highlight the value of using ML approaches to find robust relationships
within the data to assess financial conditions without spuriously overfitting the researcher’s

objective.
<<INSERT FIGURE 11 HERE>>

5.2. Variable transformations and dimension reduction

A final set of considerations focuses on whether the focus on machine learning techniques
provide variable beyond more commonly-used approaches to big data in macroeconomics
that employ dimension reduction, such as dynamic factor models or principal component

analysis (as discussed in, most prominently, Stock and Watson, 2002, 2011, and 2016).

Along one dimension, the machine learning techniques clearly point in a new direction: the
random forest approach points to strong nonlinear relationships, consistent with
macroeconomic theory and suggesting avenues for further exploration. Dynamic factor

models are linear.
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However, the insights gleaned from the analysis herein arguable go further. The machine
learning techniques considered a set of alternative transformations for certain variables
and demonstrated that these choices are consequential. For example, the default
transformation for equity prices (and many other variables) is typically a simple change or
simple percent change (log-difference), as captured in the suggestions of McCracken and

Ng (2016). But the machine learning algorithm preferred a lower frequency transformation.

This insight suggests that a priori choices—sometimes made by default—may drive some
results. For example, the NFCl is a dynamic factor model and it contains many measures of
credit spreads and no measures of the level of interest rates. Taking the first principal
component of the 33 financial variables used herein—a simple version of a dynamic factor
model—yields figure 12. It is clear that this first principal component captures the level of
real interest rates. This result is somewhat mechanical: the levels of real interest rates are
highly correlated, and the data includes both levels and several spreads relative to the
federal funds rate—implying that the federal funds rate is very important in the dataset
used. But the mechanical relation emphasizes the need to transformations and variable
selection to be purposeful and/or for techniques to be robust to such choices. For example,
standard approaches that do not include the level of real interest rates—as in the default
choices suggested by McCracken and Ng (2016)—would not even look at the information in

the level of real interest rates.
<<INSERT FIGURE 12 HERE>>

These results highlight how choices regarding variables to include and transformations can
drive results. Approaches that allow greater flexibility to consider alternative data
transformations and let the data speak, as used herein, may be useful in future

applications.
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6. Conclusions

Assessments of financial conditions are important in policy discussions, forecasting
exercises, and efforts to understand the economic mechanisms driving business and

household decisions.

| used machine-learning techniques to construct a financial conditions index, selecting the
components of the FCl based on their ability to predict the unemployment rate one-year
ahead. The ML-FCI shows a tightening in financial conditions before the early 1990s and
early 2000s recessions, in contrast to the Federal Reserve Bank of Chicago’s National
Financial Conditions Index. This finding owes, in part, to the tuning of the ML-FCI to predict
unemployment. The ML-FCI places sizable weight on equity prices, in contrast to the NFCI.
This occurs because the ML approaches select lower-frequency changes in equity prices as
important predictors, whereas the dynamic factor model underlying the NFCI mechanically

considers only high-frequency movements in equity prices.

These results highlight the importance of objectives and variable transformation in
construction of FCls, issues important more broadly in prediction with large datasets. Other
research has similarly emphasized how a priori choices regarding data transformations can
affect assessments of the links between financial conditions and economic outcomes: for
example, Kiley (2018) illustrates the sensitivity of crisis prediction models to such
considerations. The analysis herein highlights how machine learning and big data may allow
researchers to consider a wider range of variables and transformations, thereby improving
both the measurement and theory of economic and financial conditions. A related area
that may benefit from this approach involves financial-stability assessments, which have
often relied on approaches more similar to factor or principal-components analysis (e.g.,

Aikman et al, 2017; and Lee et al, 2018).

Finally, there is strong evidence of nonlinearity in the relationship between financial
variables and economic activity from a random forest. Tight financial conditions are

associated with sharp deteriorations in economic activity and accommodative conditions
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are associated with only modest improvements in activity. These results highlight how
nonlinear approaches in the machine learning literature are useful for macroeconomists
and deserve further exploration (as in, for example, Pike et al, 2019). The results also
emphasize the need for empirical macroeconomics to consider the nonlinearities implied

by macroeconomic theories more thoroughly.
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Table 1: Variables Used in the Analysis

Description FRED mnemonic Baseline High-frequency | Transformation
transformation | transformation | in FRED-MD
Interest rates
Effective Federal Funds Rate FEDFUNDS Xt 012 In(pe) , A (x¢)
3-Month AA Financial Commercial Paper Rate CP3Mx Xt -1 In(py) A (xt)
3-Month Treasury Bill: TB3MS Xt -1 In(py) A (xt)
6-Month Treasury Bill: TB6MS Xt -D12 In(py) A (x¢)
1-Year Treasury Rate GS1 Xt -D12 In(py) A (xy)
5-Year Treasury Rate GS5 Xt -D12 In(pe) A (xi)
10-Year Treasury Rate GS10 Xt -D12 In(pe) A (x)
Moody'’s Seasoned Aaa Corporate Bond Yield AAA Xt -D12 In(py) A (x)
Moody’s Seasoned Baa Corporate Bond Yield BAA Xt -1 In(py) A (xt)
Term spreads
3-Month Treasury C Minus FEDFUNDS TB3SMFFM Xt Xt
6-Month Treasury C Minus FEDFUNDS TB6SMFFM Xt Xt
1-Year Treasury C Minus FEDFUNDS T1YFFM Xt Xt
5-Year Treasury C Minus FEDFUNDS T5YFFM Xt Xt
10-Year Treasury C Minus FEDFUNDS T10YFFM Xt Xt
Credit spreads
3-Month Commercial Paper Minus FEDFUNDS COMPAPFFx Xt Xt
Moody’s Aaa Corporate Bond Minus GS10 AAAFFM-T10YFFM Xt Xt
Moody’s Baa Corporate Bond Minus GS10 BAAFFM-T10YFFM Xt Xt
Exchange rates
Switzerland / U.S. Foreign Exchange Rate EXSZUSx Aq3 In(xy) A In(x) A In(x)
Japan / U.S. Foreign Exchange Rate EXJPUSxX A1 In(x) A In(xe) A In(xe)
U.S. / U.K. Foreign Exchange Rate EXUSUKx Aq7 In(xy) A In(x) A In(x)
Canada / U.S. Foreign Exchange Rate EXCAUSX A1z In(xy) A In(xe) A In(x¢)
Equity prices
S&P’s Common Stock Price Index: Composite S&P 500 Aq3 In(xy) A In(x) A In(x)
S&P’s Common Stock Price Index: Industrials S&P: indust Aq3 In(xy) A In(x) A In(x)
S&P’s Composite Common Stock: Dividend Yield S&P div yield Aq3 In(xy) A (xe) A (x¢)
S&P’s Composite Common Stock: Price-Earnings Ratio S&P PE ratio A1> In(xy) A In(x;) A In(xe)
Other variables used in analysis
Civilian Unemployment Rate UNRATE Xt A (x¢)
CPI: All Items CPIAUCSL A1z In(xy) A (x)

The FRED mnemonic column gives mnemonics in-the Federal Reserve Bank of St. Louis’s
FRED database. In the transformation columns “A” refers to the change from the previous
month, and “A1,” refers to the change from 12 months earlier. For additional details on the
data and the construction of the FRED-MD database, see the working paper version of
McCracken and Ng (2017), https://research.stlouisfed.org/wp/2015/2015- 012.pdf.
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Figure 1
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Figure 2: Financial Conditions Indexes from LASSO and Elastic Net
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Figure 3: Financial Conditions Indexes from LASSO and FRB-Chicago NFCI
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Figure 4: Financial Conditions Indexes from LASSO and Contributions

Contribution of Term Spreads Contribution of Interest Rates

—— Term spreads

Standard Deviations

- 19067 1077 1BET 1097 2007 2047 - - 1087 1977 1687 1007 2007 2017
“fear “fear
Contribution of Exchange Rates Contribution of Credit Spreads
8 i 8 i

'g —— Exchange Rates.
;
§
3

- _2 _2 -
1967 1977 1887 1907 2007 2017 1967 1977 1887 1907 2007 2017
Year Year
Contribution of Equity Prices

-2 -2
1862 1987 1972 1977 1882 1887 19E2 1BOT 2002 2007 2012 2M7 2022
Year

Source: Author’s calculations

30



Figure 5

An example tree
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Figure 6: Random Forest FCl vs LASSO FCI
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Figure 7: Random Forest Results on Variable Selection
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Figure 8: ML-FCI from LASSO and Random Forest: Full Sample vs Restricted Sample (ending December 2004)
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Figure 9: ML-FCI from LASSO, Contributions in restricted sample (ending December 2004)
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Figure 10: Random Forest Results on Variable Selection: Restricted Sample (ending
December 2004)
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Figure 11: ML-FCI vs Least Squares FCI: Full Sample and Restricted Sample
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Figure 12: First Principal Component of Financial Variables and Real Federal Funds Rate
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