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Abstract

Frictions affecting human mobility have been identified as important potential sources of

the spatial gaps in wages and living standards that characterize many low-income coun-

tries. However, little direct data has been available to characterize high-frequency mobil-

ity. We use a novel data source that provides highly detailed location data on more than

one million devices across three large African countries for an entire year. This allows

us to examine high-frequency mobility patterns for a subset of high-quality observations

for whom we can determine home locations confidently. We link our users with spatial

data on population density and nationally representative micro-survey data to character-

ize this non-random sample. We then propose a number of metrics to measure characterize

mobility related to frequency, spatial extent and densities visited. We find that users are

remarkably mobile in terms of the fraction of days seen at least 10km away from their

home location, and the average distance for non-home location pings. Individuals residing

in low-density locations are well linked to high-density locations and a significant fraction

of visitors to the largest cities comes from non-urban areas. Finally, the observed mobility

patterns suggest large agglomeration effects: a doubling of population is associated with a

doubling of city fixed effects. Our estimates are in line with previous gravity estimates in

the literature across a wide range of spatial and temporal scales.
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1. Introduction

In most developing countries, there are large gaps in nominal wages and productivity across

sectors (Gollin, Lagakos, and Waugh, 2014). There are similarly large gaps in living stan-

dards across space, with people in sparsely populated rural locations consistently worse

off than those in dense urban settlements (Gollin, Kirchberger, and Lagakos, 2020). The

persistence of these gaps raises the possibility that significant frictions and market imper-

fections limit the movements of people and information, leading to spatial and sectoral

misallocation.

This paper aims to advance our understanding of sectoral and spatial gaps by documenting

and analyzing high-frequency mobility patterns within three low-income African economies.

By examining the frequency with which individuals move across space – from rural areas

to towns and villages, or from cities to rural areas – we can assess the salience of some key

frictions. For instance, a world in which rural people travel frequently to distant towns and

cities is not one in which narrowly defined costs of mobility can plausibly explain sectoral

or spatial gaps.

Understanding high-frequency mobility has previously been limited by the lack of data.

Census data or standard household surveys (e.g., those carried out in collaboration with

the World Bank’s program of Living Standards Measurement Surveys) typically measure

longer-term migration flows but lack data on day-to-day mobility over a given time period.

Surveys providing detailed commuting data available in high-income countries, such as the

American Community Survey, provide information on commutes but miss non-work related

trips. Such surveys are not available for most low-income countries.

In this paper, we measure mobility using newly available, fine-grained, but anonymized,

data on smartphone locations. Unique to our study is the scale at which we can study the

phenomenon of short- and long-term population movements. Our data covers more than

one million smartphone devices over an entire year across three large African countries:

Nigeria, Kenya, and Tanzania.1 We are therefore able to present data on mobility that is

both fine-grained and large-scale.

Each observation in our data reflects an instance when a user’s phone connects to the in-

ternet to use a certain app. For each such use, we observe the GPS location and the precise

time. This type of data has been used, for example, to study the length of time that indi-

viduals spend with their families for Thanksgiving in the US (Chen and Rohla, 2018), to

construct a measure of experienced segregation (Athey, Ferguson, Gentzkow, and Schmidt,

2020), to study the effect of chance meetings on knowledge spillovers in the Silicon Val-

1In the remainder of the paper we will refer to a device as a user. We recognize that this is an inexact
equivalence: some users possess more than one device, and some devices are shared by multiple users. We
address these issues in detail in Section 3.
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ley (Atkin, Chen, and Popov, 2020), or to measure the effectiveness of social distancing

(Mongey, Pilossoph, and Weinberg, 2020). We add to this literature by focusing on three

countries in sub-Saharan Africa and by looking at patterns of mobility.

We propose to use the fact that devices are seen at different locations within countries to

characterize movements of users across space, and particularly between rural and urban

areas. We use the data to map and categorize the movements of people and the connected-

ness of locations. For instance, we can ask how frequently a given rural location is visited

by individuals from a nearby town or city; we can also ask how frequently residents of that

rural location pass through a given city or market centre; or, how the composition of visitors

to the capital differs from visitors to secondary cities.

The paper makes three main contributions. First, we construct a novel set of metrics for

characterizing mobility across space related to frequency, spatial extent, densities and places

visited. Second, we analyze these measures to provide insights into the patterns of human

mobility within the three countries where our data originate. Third, we use findings of

recent quantitative spatial models to study returns to mobility across space. Our data allows

us to examine the sensitivity to distance of our measures of mobility and connectedness at

different spatial and temporal scales; it also allows us to compare our findings to those of

previous studies, such as those that have used gravity models to consider within-country

migration.

We find striking evidence of a high degree of mobility within these three African coun-

tries. Although the population we study is undoubtedly atypical for Kenya, Nigeria, and

Tanzania, we find evidence that a substantial fraction of the people in these countries is

highly mobile. Users are seen more than 10km away from home on about one-sixth of

the days on which they are observed. Residents from more sparsely populated areas are

more frequently away from home than city center residents and they venture far when

they do. Spatial transition matrices show that towns and many villages in these countries

appear to receive visits from urban dwellers, and in turn these villages seem to generate

travellers who go to larger towns and cities. The networks of connectivity between different

geographies are strong. This challenges, for instance, the notion that villages and towns

in relatively remote areas are isolated – and therefore ignorant of what goes on in the big

cities. The data also cast doubt on the notion that the monetary and non-monetary costs

of mobility are simply prohibitive. Beyond these qualitative findings, we show that large

cities exert a disproportionate influence: Nairobi, Lagos, and Dar es Salaam are powerful

magnetic forces that pull in visitors from every corner of their countries while secondary

cities appear to be substitutes for each other. This too is important for our understanding of

spatial frictions. One could imagine that rural people seldom venture beyond their nearest

towns or cities. But the data show persuasively that people from these remote villages and

towns do indeed travel to capital cities. These findings can help inform our understanding
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of spatial frictions in developing countries. In particular, they can discipline models that

incorporate spatial and sectoral frictions. Finally, we find large agglomeration effects: a

doubling of city size is associated with a doubling of the estimated city fixed effect. Our

estimates for the elasticity of mobility with respect to travel are robust to different spatial

and temporal scales, such as estimating mobility between virtual regions and at a quarterly

level, showing that movement costs are significant in these contexts.

Our analysis requires some serious discussion of the representativeness – or lack thereof –

of the population from which our data are drawn. While smartphone users might arguably,

in 2020, be representative of the wider population in rich countries, it would be unrea-

sonable to assume that the same holds in low-income countries. We do not have personal

information on the users of our devices, and for ethical and privacy reasons, we have not

attempted to exploit the data for the purpose of extracting identifying information.2 The

one personal characteristic that we construct for each device is its "home location". We

define this as the modal 0.01-degree cell (≈ 1.1km at the equator) at which we observe the

user between 7pm and 7am.3 We then select a subset of “high-confidence” users that we

observe at least 10 nights and who spend at least half of these in the home location.

We characterize our users in three steps. First, we compare the distribution of popula-

tion density at our users’ home locations with that of the overall population. Second, we

propose a new method to characterize the places our users reside by linking user’s home

locations with widely available micro-survey data. While we do not have characteristics of

users such as age, education or gender, this allows us to gauge how representative our users’

home locations are compared to locations where no users reside. Third, we use additional

nationally representative micro-data to compare basic characteristics such as income, age

and education of individuals across ownership of different types of phone devices, from ba-

sic phones to smartphones. We argue that these steps are crucial in order to understand the

characteristics of our users, given that our data are generated from a population that does

not represent a statistical sample, selected with the benefit of defined sampling frames and

protocols. A rough summary of our efforts to characterize the sample is that we find our

sample to be, unsurprisingly, more urban than the population as a whole, and also younger

and better off. However, our best assessment is that our population is not extraordinarily

atypical in any of these dimensions. Our users’ home locations seem generally unremark-

able. The urban users seem to live in "relatively normal" urban areas (in a sense that we

will characterize below), and our rural users live in similarly normal rural areas. Third,

we use micro-data to compare basic characteristics of individuals owning a smartphone to

2It might be possible, for instance, to use the location information from individual users to identify or infer
their religious observance, gender, and other attributes. In this paper, we do not attempt to use the data for
these purposes, in recognition of the obvious privacy concerns.

3In practice, we define the modal 2-decimal rounded location at night as the home location, so our 0.01-
degree grid cells have 2-decimal rounded coordinates as centroids.
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those owning a different type of phone or no phone. As smartphones have diffused through

sub-Saharan Africa in recent years, smartphone users have come to look more and more

like the rest of the population. In the sections that follow, we address these nature of our

sample in greater detail.

This research builds on a growing literature in economics that seeks to understand the

salience of spatial frictions for development and growth. Spatial frictions limit the mobility

of goods, information, and people within economies. In contexts where spatial frictions

are high, the allocation of factors across firms will tend to result in gaps in marginal prod-

ucts. Similarly, spatial frictions may lead to allocations such that marginal utilities are not

equalized across consumers, and utility may not be equalized across people living in differ-

ent locations. These static effects may also lead to dynamic impacts, as frictions move the

economy away from a theoretically efficient benchmark.4

The importance of within-country spatial frictions in the movement of goods has been doc-

umented in recent work (e.g., Arkolakis, Costinot, and Rodríguez-Clare (2012); Costinot

and Donaldson (2016); Atkin and Donaldson (2015); Donaldson and Hornbeck (2016);

Donaldson (2018); Allen and Arkolakis (2014)). This emerging literature has pointed out

that spatial frictions have implications for patterns of specialization and exchange. An ad-

ditional literature has documented the importance of spatial frictions as they relate to the

flow of information. In particular, a number of papers (e.g., Aker (2010); Jensen (2007))

have shown the impact of mobile phones on the dispersion of prices across space. Allen

(2014) suggests that information frictions can compound spatial frictions.

Both these literatures have used new data sources to understand spatial frictions at a highly

localized level. For movement of goods, many frictions occur in the proverbial “last mile”,

making it important to consider spatially disaggregated data. Similarly, for information fric-

tions, studies have often looked at price dispersion across nearby markets. For movement

of people, however, the literature has largely focused on crudely defined measures of mi-

gration or broad-brush comparisons of rural-urban gaps in living standards (Young (2013);

Hamory Hicks, Kleemans, Li, and Miguel (2017); Bryan, Chowdhury, and Mobarak (2014);

Akram, Chowdhury, and Mobarak (2017)). Our paper builds on the work of Blumenstock

(2012) and Lu, Wrathall, Sundsøy, Nadiruzzaman, Wetter, Iqbal, Qureshi, Tatem, Canright,

Engø-Monsen et al. (2016) in using more spatially detailed data on human mobility.

This paper is structured as follows. Section 2 discusses the smartphone app data we use and

how we define home locations. Section 3 shows our methodology to understand sample

selection and characterize the sample. Section 4 presents our mobility indicators. Section

4It is not entirely clear whether one should view real frictions – such as transport costs – as a source of
inefficiency, in the way that a tariff would be viewed as inefficient. The social planner cannot wish away
distance or mountain ranges; real resources would be required to reduce or eliminate these frictions. To
avoid this largely semantic issue, we prefer in this paper to use the term “friction” rather than “barrier” or
“distortion,” and we have sought to avoid language that would imply “inefficiency.”
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5 estimates the returns to mobility. Section 6 concludes.

2. Smartphone app data

This paper draws primarily on smartphone app location data for three African countries:

Kenya, Nigeria and Tanzania. We selected these countries based on data availability and a

sufficiently high number of users in the sample. We discuss our main choices of how we

process the raw data here and refer the interested reader to Appendix A.

Each observation in our data set (referred to hereafter as a "ping") represents an instance

where a smartphone accesses the internet via a set of apps. Pings are sourced from thou-

sands of apps that need to access location data.5 These apps include standard social, nav-

igation, information and other apps, but we do not know precisely which apps, and we

cannot associate specific pings with specific apps.

Each ping comes from a device – i.e., a particular smartphone. For each ping we know

the device identifier (i.e., a particular phone, rather than a SIM card), a timestamp and

longitude/latitude coordinates of the current position, measured to an accuracy of approx-

imately 10 meters. Each country dataset covers a period of one year.6

In the remainder of the paper we refer to a device as a user, subject to the caveats already

mentioned in footnote 1 and discussed in further detail below. In this section we start by

discussing how we assign home locations to users and outline how we identify and deal

with irregularities in the data.

We use two criteria to define home locations. First, we identify the modal 0.01-degree

cell (≈ 1.1km at the equator) in which the user is seen at night (between 7pm and 7am,

local time).7 Second, we consider two additional restrictions: (a) that a user is observed

for a minimum of 10 nights; and (b) that the user is at the inferred home location for at

least 50% of the total nights when that user is observed anywhere. These two restrictions

eliminate cases where the user is seen infrequently at night, or is seen frequently but at

multiple locations.

Given the central role home location plays in our analysis, we define our core sample –

which we call the “high-confidence” sample – as users that satisfy both criteria. Unless

specified otherwise, we use our high-confidence users for our analysis. This is a sample of

5We only observe a "ping" when a phone is connected to the internet. We are therefore not able to draw
conclusions about areas without internet coverage.

6The time frame is 2016-12-01 to 2017-12-01 in Kenya and 2017-04-01 to 2018-04-01 in Nigeria and
Tanzania.

7The accuracy of GPS data would theoretically allow us to infer home locations at higher resolutions. We
choose to settle for a relatively coarser resolution to reduce computational time and because we deem it
preferable for the analyses we conduct throughout the paper. In particular, for our purposes, we would like to
consider pings from a few hundred meters apart as belonging to the same home location, rather than defining
the home location as a particular house or plot of land.
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just under 120,000 devices across the three countries, with an average of over 2,000 pings

observed per user, as show in Table 1.8

We then examine the spatial distribution of home locations and identify users with appar-

ent mislabelled locations by tabulating home locations and displaying them visually. This

reveals what we call “irregularities” such as data sinks (e.g. a large fraction of users inex-

plicably assigned by the data-generating software to a spurious location, such as a country

centroid) and other apparent errors in the data, e.g. users with equal latitude and longitude

coordinates in locations where no people reside (visible on the 45 degree line on a map).

For example, 372,661 users in Tanzania seem to have been assigned to an arbitrary spot in

the middle of Dodoma. Examining data for outliers is important when working with any

data set. Data input errors may seem more likely in micro-surveys where misinterpretation

of questions or data entry errors are known sources of measurement error. Established pro-

cedures such as piloting of questionnaires, extensive interviewer training, and background

checks help minimize these errors. Big data such as automatically recorded smartphone

app location data - recorded without human interaction - might seem less prone to mea-

surement error. However, we find that working with data of this nature opens new sources

of error and misclassification; unless consistency of the data is examined with a similar

attention to detail than the micro data, it is not reasonable to expect meaningful results.

Appendix A provides further information on this quantitative extent of misclassification and

our procedure to remove observations affected by apparent irregularities.

Table 1 shows the number of users and pings per user for our base sample of users.

Table 1: Sample and pings per user

All High confidence
Users Pings ratio Users Pings ratio
(1) (2) (3) (4)

Kenya 195,630 593 18,535 4,867
Nigeria 659,407 304 78,694 1,722
Tanzania 234,213 457 22,728 2,123

TOTAL 1,089,250 389 119,957 2,284

Note: Columns (1) and (2) show the total number of users per country and average pings per user.
Columns (3) and (4) only use high-confidence users (users who are observed for a minimum of 10
nights and who are at the inferred home location for at least 50% of the total observed nights.)

Columns (1) and (2) show the number of users and average pings per user over the entire

year who are observed at least once at night, where the average is computed by summing

over all pings and dividing by the number of users; for this sample we have on average

8We also build other subsets based on alternative values for the minimum number of nights observed: (i)
the “medium confidence set" includes users with at least 8 nights observed and (ii) the “low confidence set"
with users seen at least 5 nights in total. Our results are generally robust to using these alternative subsets.
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slightly more than one ping per day per user. Columns (3) and (4) apply the second re-

striction to obtain our high-confidence sample by imposing that we see a user for at least

10 nights and she is at the inferred home location in at least half of these nights. This

drastically reduces our sample size and increases the ratio of pings per user to 2,284. Users

in the high-confidence dataset are therefore seen on average 6 times per day, compared to

users in the complete dataset who are seen on average slightly more than once per day.

As is common with these types of data, there is a large variation in the number of pings

across users, with about 59% of users having at most 20 pings in the initial sample. Our

two conditions defining high-confidence users reduce the fraction of users with at most 20

pings to 0.3%.

Table 2 summarizes user-level temporal statistics for our high-confidence users.

Table 2: User-level temporal statistics by country

Variable Mean Median Min Max
Length of obs. (in days) 102.1 74.4 8.7 365.0

Kenya Days seen 39.2 30.0 8.0 352.0
Mean pings per day 98.2 8.9 1.0 20,665.4

Length of obs. (in days) 100.9 81.9 8.6 365.0
Nigeria Days seen 40.4 29.0 8.0 346.0

Mean pings per day 40.1 12.8 1.0 9,585.8
Length of obs. (in days) 95.1 70.6 8.6 364.9

Tanzania Days seen 38.8 28.0 7.0 349.0
Mean pings per day 51.4 10.6 1.0 14,765.6

Length of obs. (in days) 99.0 78.1 8.6 365.0
TOTAL Days seen 39.8 29.0 7.0 349.0

Mean pings per day 42.1 11.9 1.0 14,765.6

Note: This table shows the duration over which we observe a user, the number of distinct days we
observe a user, and mean pings per day, defined as the ratio of the total number of pings for a user
divided by the number of distinct days she is seen.

It considers three different measures. The first is the duration over which we observe a

particular user in the dataset, defined as the number of days between the first and the last

observation of that user. The second is the number of distinct days on which we see a

particular user. The third statistic is the mean number of pings per day per user. The mean

number of pings per day is defined as the ratio of the total number of pings for a user,

divided by the number of distinct days she is seen.9 These statistics are roughly similar for

the three countries. We see users on average over a span of about 100 days, on about 40

distinct days, and they have between 40 and 100 pings per day on average.10

9This differs from the pings ratio in Table 1 which simply summed over all pings in the data across all users
and divided by the number of users.

10The minimum number of days is less than 10 as some users are seen on 10 nights but have pings on fewer
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Figure C.1 shows the distribution of users and pings per user over time. The graphs show

that there is an upward trend in the number of users over the period in which we observe

the sample, likely due to a combination of factors. One is the steady and secular increase in

the rate of smartphone ownership and usage. Another possible reason is the introduction

of new apps in the sourcing of data during this period. The number of pings per user shows

discontinuities, possibly due to further apps being added (or removed) and users switching

between apps. This could bias our estimates of mobility if different types of users are added

on to the sample later in the year. For example, assume that at the start only higher-income

individuals living in dense areas have access to phones, and assume that they make one

trip every three months to the largest nearby city. Later in the year, some lower-income

individuals from lower densities might be able to afford a smartphone, but their mobility is

far below the spatial mobility of higher-income individuals, so that they make one trip every

six months. The fact that they enter the sample later, means that we might not observe them

sufficiently long to observe one of their trips they make every six months and would thereby

underestimate their mobility. We do not have access to income data for our users, but we

can test whether individuals coming into the sample in later months reside in different

densities. We find that the R-squared between the date of entering our data and population

density at home location ranges from 0.0006 to 0.001 in our three countries. Most of our

metrics are aggregated over the entire year, and thus they should not be sensitive to these

particular discontinuities.

3. Characteristics of users

The key selection concern when using smartphone app location data is that we only capture

individuals who own a smartphone. A further restriction affecting selection into our sample

is that individuals require data credit on their phones, similar to requiring phone credit to

make calls or send texts. On the other hand, as app usage is increasing through the use of

messaging services (e.g., Facebook Messenger or Whatsapp), replacing “traditional” calling

and texting, we are more likely to capture locations of individuals engaging in this kind of

activity. Further, we are more likely to capture passive use of a mobile phone if a device

connects to an app without the deliberate action of the holder of the device. This would

make location detection more representative, in some sense, than relying on call and text

events only. In terms of characteristics of the selected sample, we expect this to bias our

sample towards richer, more educated and younger individuals.

Given these general concerns about selection, we seek to understand how our population

of users compares to the broader populations of these three countries. We proceed in three

steps. First, we link users’ locations with geo-coded population density data from World-

Pop to understand how representative users are for different levels of population densities.

than 10 days.
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Second, to measure how representative our users are, in terms of their home locations, we

develop a methodology to match home locations with nationally representative micro-data

from the Demographic and Health Surveys (DHS). This allows us to say something about

whether the locations where our users live are typical or atypical. Third, we draw on data

from other nationally representative surveys – specifically, the ICT Access and Usage Sur-

veys – to examine differences between individuals who own a smartphone and those who

do not. To the extent that our population of smartphone app users is typical of all smart-

phone owners, these survey data will tell us something about how our users compare to the

broader national populations of their countries.

Figure 1 shows the distribution of home locations in the left panel and compares it with

the population distribution in the right panel.
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Figure 1: Distribution of home locations and population.

Note: This figure shows the distribution of home locations of users (on the left) and the distribution
of the population (on the right).
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Darker values indicate a higher number of users. Unsurprisingly, we observe a higher num-

ber of users in the main cities. However, the figure shows that coverage of users is broadly

national, with users residing in fairly distant places as well as in the densest cities. In fact,

we have users in all but three of the 115 regional capitals in the three countries we study.11

Maps in Figures C.2 and C.3 in the appendix show these comparisons for the three capitals

as well as Mombasa, Lagos and Dar es Salaam.

To examine how representative home locations of our users are for different levels of pop-

ulation density, we extract the population density values at users’ home locations using

WorldPop population grids and we then infer the distribution of users across population

density bins. The distribution of users is largely skewed to the right with around 70 percent

of users falling in the two densest bins (see Figure 2).12 We also used other population

density products such as Landscan in Figure C.4. Using these products our users are more

represented in the lower quintiles. We therefore view these results as the most conservative

population density distributions.

Figure 2: Users by population density decile.

(a) Kenya (b) Nigeria (c) Tanzania

Note: This figure shows the distribution of users across population density deciles based on national
population data so that each decile contains one tenth of the population (rather than one thenth of
grid-cells).

We compute three further metrics to measure the representativeness of our users across

11Regional capitals are broadly understood as capital cities for subdivisions of the first administrative level.
More specifically, Kenya has 47 counties, Nigeria has 36 states and a Federal Capital Territory and there are 31
regions (or mikoa) in Tanzania. Cities’ boundaries are defined according to GRUMP 3km-buffered polygons.
For the 19 regional capitals that have no boundaries defined in the GRUMP product, we overlay the ArcGIS
labelled World Imagery basemap with our users’ home location rasters and evaluate qualitatively whether
some users are found within the built-up areas of the cities considered.

12To be specific, we divide each country into gridcells and assign each gridcell an absolute population density
based on WorldPop or other data. Using the national population data, we can divide the entire population
into equal-sized bins based on the population density in which they live. This gives rise to a set of gridcells
associated with each density decile. We can then identify each of our users with the population density and/or
the density bin of their home location; e.g., we can speak of a user whose home location is in the third density
decile. Note that our users are not evenly allocated across the density decile. As shown in Figure 2, our users
are skewed towards the more densely populated bins.
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different levels of population density: first, we take all 10-km pixels in a country and regress

the number of users in a pixel on population of the corresponding pixel. We find that the

R-squared ranges between 0.36 in Kenya to 0.81 in Tanzania, depending on the source

of the population density estimates.13 Second, we compare the rank in terms of the total

number of users at the first administrative level in our three countries with the rank of the

population. The bivariate correlation coefficients range between 0.29 in Nigeria and 0.7 in

Tanzania.14

Next, we compare the fraction of users located in cities of at least 200,000 people with the

corresponding fraction of the population living in those.15 In Nigeria, 86.1% of our users

are found in cities of 200,000 whereas these are host to only 20.5% of the population.

Similar results are observed in Kenya and Tanzania where we find 75.9% and 68% of users

in major cities that host 15.9% and 16.7% of the population respectively, which is indicative

of an urban selection pattern.

The urban tilt of our sample is unsurprising; we expect that smartphone users will be con-

centrated in cities. In all of our analysis, we account for this aspect of the data. The more

interesting question is how our urban users compare with other urban dwellers, and how

rural users compare with other rural residents. For this, we can turn to other data sources.

To characterize the home locations of our users, we draw on recently available DHS data.

The key challenges are how to link a relatively small number of DHS survey clusters (the

total number of clusters ranges from 608 in Tanzania to 1,594 in Kenya) to a large number

of home locations for our users, spread across the entire geography of our three countries.

Adding to the challenge is that the published locations for the DHS clusters are randomly

displaced (between 0 and 10 kilometers) in an effort to ensure data confidentiality.16 For

our analysis, we seek a DHS cluster that might be considered comparable to each user’s

home location. We outline our main methodology here and provide further details in Ap-

pendix B.

We start by classifying our users into urban and rural areas. For each user, we select the set

of DHS clusters located within a given distance d from her home location. We set d =10km

for rural users and d = 5km for urban users. This yields a set of DHS clusters that are com-

13We find a significantly higher correlation when using Landscan data than other sources.
14See Appendix Figure C.7.
15We use city polygons from the Global Rural-Urban Mapping Project (GRUMP) to which we apply a 3km

buffer in order to better capture commuting zones. We overlay 2018 WorldPop population grids with GRUMP
city polygons to obtain city-level population estimates and, for the sake of consistency, total population counts
are also based on 2018 population grids. Cities which have boundaries less than 3km apart are merged.
As a result, we find that there are 6, 39, and 10 cities of at least 200,000 in Kenya, Nigeria and Tanzania
respectively.

16To be precise, the published geo-referenced locations for the DHS clusters are displaced by selecting a
random compass direction and then a random distance. Urban DHS clusters are randomly displaced by 0-
2km, and rural clusters are randomly displaced by 0-5km, with 1 percent of clusters randomly selected to be
displaced by 10km (Perez-Heydrich, Warren, Burgert, and Emch, 2013).
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parable, in some sense, to the home location of our user. The number of these comparison

clusters will be either zero or a strictly positive number of clusters. Not all these nearby

clusters will offer valid comparisons, however. For example, a user at the outskirts of Dar

Es Salaam might be associated with a nearby rural cluster as well as a number of urban

clusters. To ensure that we do not falsely assign an urban cluster as a comparison location

for a rural user (or vice-versa), we add the restriction that the cluster’s average population

density (calculated over a 5km buffer) must be within 25% of the average population den-

sity that we have computed for the user’s home location. If this does not hold, we drop the

DHS comparison cluster.

Following this methodology, we pair 70% of our users in the high-confidence sample with

at least one DHS cluster.17 We call the subset of respondents within paired clusters the

“matched DHS” sample.18 Unsurprisingly, unmatched users are found in low density areas

where the probability of selection in the DHS is lower by design - the average density for

unmatched users is estimated at 2,496 people/km2 against 8,835 people/km2 for users

with at least one paired cluster.

This matching exercise allows us to see whether the home locations of our users are atyp-

ical, relative to the nationally representative sampling frames that have yielded the DHS

clusters. In other words, if we look at the set of DHS clusters where we find our users, we

can ask whether this matched DHS sample looks statistically similar to the overall ("raw")

set of DHS clusters. We carry out this analysis by conducting t-tests for equality of means

between the raw DHS and matched DHS samples on a range of directly quantifiable house-

hold characteristics, such as whether the household has a constructed floor, walls, roof,

overcrowding and access to public services such as electricity and tap piped water. More-

over, we produce results for rural and urban sub-samples separately to account for both

the prevalence of urban users in our sample and the lower matching rate in low density

areas, which together may lead to results being mainly driven by the urban component of

the sample. We produce t-tests comparing our two weighted data sets, with bootstrapped

standard errors robust to heteroskedasticity. The survey weights are used for the reference

DHS sample, while those of the matched DHS sample correspond to the number of users

each cluster is paired with. Definitions for all variables used are given in Table B.1.

Tables 3-5 show differences between clusters that are associated with the home locations

of our device users (matched clusters) compared to the full set of raw DHS clusters repre-

sentative of the whole population.

17The country-specific matching rates are 90% in Kenya, 66% in Nigeria, 72% in Tanzania.
18Some clusters are paired to more than one user so the matched DHS sample contains a number of dupli-

cates. In practice, we construct a weighted subset of unique respondents within paired clusters, with weights
being equal to the number of users each corresponding cluster is matched to.
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Table 3: T-tests for equality of means between matched DHS and DHS samples, Kenya.

Difference in characteristics of home locations
Variable All Urban Rural
Household size -0.91*** -0.26*** -0.19***
Age of HH head -5.6*** -1.8*** 0.45***
Education of HH head 2.3*** 0.56*** 0.99***
Access to electricity 0.43*** 0.15*** 0.081***
Radio 0.062*** 0.0023 0.071***
Television 0.29*** 0.091*** 0.067***
Rooms per adult 0.0023 -0.019*** 0.028***
Access to piped water 0.35*** 0.11*** 0.011
Constructed floor 0.37*** 0.1*** 0.068***
Constructed walls 0.28*** 0.075*** 0.0011
Constructed roof 0.097*** 0.014*** 0.11***

Note: This table shows differences in characteristics between households in all DHS clusters com-
pared to DHS clusters we could match with home locations of users, by rural and urban classification.

Table 4: T-tests for equality of means between matched DHS and DHS samples, Nigeria.

Difference in characteristics of home locations
Variable All Urban Rural
Household size -0.86*** -0.61*** -0.93***
Age of HH head -0.12 -0.023 -0.57***
Education of HH head 4.1*** 1.9*** 4.2***
Access to electricity 0.39*** 0.11*** 0.42***
Radio 0.24*** 0.13*** 0.14***
Television 0.41*** 0.18*** 0.43***
Rooms per adult -0.087*** -0.077*** 0.0056
Access to piped water 0.026*** -0.0075 0.049***
Constructed floor 0.23*** 0.076*** 0.32***
Constructed walls 0.16*** 0.044*** 0.21***
Constructed roof 0.11*** 0.018*** 0.16***

Note: This table shows differences in characteristics between households in all DHS clusters com-
pared to DHS clusters we could match with home locations of users, by rural and urban classification.

Tables C.1-C.3 show the levels for these variables in addition to the differences. Perhaps

unsurprisingly, we find statistically significant differences between the matched clusters and

the raw DHS clusters. Our users live in locations that are not nationally representative. In

particular, the DHS data show that individuals residing in matched clusters have smaller

household size than that found in the nationally representative DHS sample. The matched

clusters also have younger household heads with higher education, and better access to
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services and housing characteristics.

Most of the differences are statistically significant. What is perhaps more striking, how-

ever, is that the absolute levels are relatively closely comparable; the differences between

matched clusters and the raw DHS data are quantitatively small, especially within the rural

and the urban samples. For example, individuals in urban matched clusters in Kenya live

typically in households with a size of 3.02 people and a household head with 10.46 years

of education. Residents in urban clusters that we were not able to match live in households

with a size of 3.28 people and the household heads have an average of 9.9 years of educa-

tion. The magnitude of these averages for matched and unmatched clusters, within urban

and rural areas, are therefore roughly similar. This is true for housing characteristics, access

to public services and measures of asset ownership. In almost two-thirds of rural and urban

comparisons for these three categories of variables, the differences between the matched

and unmatched clusters are less than 10 percent. In short, users live in locations that are

not fully representative of the national population – but at the same time, these locations

are not wildly atypical or weirdly distorted. We are not seeing only a small population of

people living in gated communities or in rural holiday spots. The locations where our users

live look fairly similar to a nationally representative sample of locations where people live.

Table 5: T-tests for equality of means between matched DHS and DHS samples, Tanzania.

Difference in characteristics of home locations
Variable All Urban Rural
Household size -0.7*** -0.24*** -0.16***
Age of HH head -3.8*** -0.67* -2.2***
Education of HH head 2.4*** 0.39*** 1.1***
Access to electricity 0.55*** 0.17*** 0.23***
Radio 0.14*** 0.012 0.12***
Television 0.44*** 0.14*** 0.2***
Rooms per adult -0.017*** -0.03*** 0.025***
Access to piped water 0.29*** 0.00094 0.27***
Constructed floor 0.51*** 0.093*** 0.37***
Constructed walls 0.18*** 0.028*** 0.12***
Constructed roof 0.24*** 0.023*** 0.22***

Note: This table shows differences in characteristics between households in all DHS clusters com-
pared to DHS clusters we could match with home locations of users, by rural and urban classification.

This comparison of locations does not, of course, preclude the possibility that our users are

very different from other people. Smartphone users almost certainly are atypical, compared

to the general population. How different are they? To address this question, we use data

from the ICT Access and Usage Survey 2017-2018 for Nigeria, Kenya and Tanzania. These

surveys are nationally representative and have detailed questions on mobile phone own-
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ership and usage, as well as individual and household characteristics. Overall, between

19 and 43 percent of the population have either a feature phone or a smartphone in our

three countries.19 Figure 3 shows ownership rates for different types of mobile phones,

comparing rural and urban locations.

Figure 3: Device ownership by location.
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Note: These figures show device ownership rates for rural and urban respondents. All figures use
the sample weights provided.

Compared to rural areas, respondents in urban areas are unsurprisingly more likely to

own a mobile phone, and the phone is more likely to be a more sophisticated phone. The

figure shows that in all countries smartphone ownership is highest in urban areas, with rates

between 25 and 46 percent. If we include feature phones, this increases the rate to between

50 and 60 percent. The proportion of individuals with a basic mobile phone ranges between

24 and 40 percent. Across the rural areas of our three countries, smartphone and feature

phone ownership is highest in Kenya, at 37 percent penetration, and lowest in Tanzania,

with 12 percent. When asking users for the reasons they do not own a smartphone, the

main reasons given are affordability and not needing one, because a feature or basic phone

19A "feature phone" is defined as one that has a small screen and some rudimentary internet access, but
button-based data entry rather than touch screen. It is more complex than a "basic phone," which can only
carry out simple calling and texting functions.
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is enough.20

To examine how owners of these different devices differ from each other – perhaps more

important, from those without a device – we compare users by income, age and education.

Figure 4 shows that while there are differences in these distributions such that those with

no mobile phone tend to have the lowest incomes, the distributions overlap across a large

range of monthly incomes. This is particularly the case for individuals that have any type of

mobile phone. Figure C.5 compares the number of years of schooling and Figure C.6 shows

the age distributions. Both highlight that these distributions are not distinct.

Figure 4: Income and device ownership.
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Note: These figures show the distribution of income by device ownership. All figures use the sample
weights provided.

The survey also asks respondents about their usage of a range of apps from social network-

ing apps (facebook, Whatsapp, Instagram) to news, weather, trading, business, health and

dating apps. Figure 5 shows that between 76 and 83 percent of smartphone owners report

using an app weekly on their phones, and more than 55 percent use these apps daily.

20This question is available only for a small number of users from Nigeria.
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Figure 5: App usage of smartphone users.

0.83

0.55

0.76
0.73

0.83

0.62

0
.2

.4
.6

.8

Kenya Nigeria Tanzania

Use app weekly Use app daily

Note: These figures show the fraction of smart phone owners using apps weekly or daily. All figures
use the sample weights provided.

Our takeaway message from this analysis is that our population of users provides useful

information about patterns of mobility in the broader national population. Our users are

not statistically representative, but they are also not wildly atypical, at least once we con-

trol for the disproportionate concentration in urban areas. Our urban users live in places

that are similar to the places where other urban residents live; our rural users live in loca-

tions that are not especially different from other rural locations. Within urban locations,

smartphone users are a relatively large fraction of the population. Speaking very loosely,

they represent the most privileged one-third to one-half of the distribution – but not just

the top one percent. Even in rural areas, smartphone users account for over one-third of

the Kenyan population, and more than 10 percent in Tanzania. It is true that even within

the populations of smartphone owners, our users may be atypical. Our high-quality subset

consists of people who use their devices relatively frequently, and this may bias us towards

users who are more mobile and more sophisticated than the average. But as people in these

countries have begun to use their phones for messaging and social media, one suspects that

this distinction – to the extent that it ever held true – may not be very pronounced. In

sum, we believe that the evidence supports us in using these data to inform a discussion of

human mobility within these three countries. We are almost certainly looking at a subset of

the population that is more mobile than the average; but equally, we are looking at only a

subset of the total mobility. In other words, the trips that our users have taken are a subset

of the total trips made; and the connections that we identify between locations are a subset

of the total connections.

To conclude this section of the paper, we take up more fully the potential biases that we may

have introduced by equating "devices" with "users." We acknowledge that distinct users may

use the same device, and individual users might have multiple devices. We discuss these

issues in turn. Unfortunately we do not have data on the extent to which smartphones are

shared among contacts. From the ICT Access and Usage Survey we know that between 20
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and 35 percent who stated that they do not own a mobile phone say that they neverthe-

less used a mobile phone in the past three months. Unfortunately the survey does not ask

which type of mobile phone a respondent used, nor are respondents asked whether this

was the respondent’s own phone at the time.21 However, it is reasonable to assume that

device sharing is frequently likely to occur within households. If so, it would not affect

the home locations we determined for our users, nor would it alter the characteristics of

home locations we discussed. If several people share a device that is used, for example, to

travel to the nearby city, this would lead us to capture travel by several household members

rather than just one device user. Given that we are interested in the flow of people between

locations (and not necessarily the particular person), this would still give us a reasonable

measure of human mobility between locations.

Individuals could also have multiple phones or SIM cards. The latter problem is not a

significant concern for us. Our data observe devices, rather than SIM cards; even when

the SIM card is swapped, the device identifier remains the same, so our smartphone app

data are unaffected. This is an advantage of our data relative to the CDR data widely

used in many development applications; although ownership of multiple active SIM cards

is relatively rare in Kenya (more than 80 percent of individuals have only one active SIM

card), it is fairly common in Nigeria and Tanzania where less than 57 percent of individuals

have only one active SIM card.

However, there is some reason for us to be concerned about users who own multiple de-

vices. This would affect our results in the opposite way of device sharing, such that the

movement data of these two-device-owners would get a higher weight in our mobility met-

ric calculations. A possible additional complication would arise if a user maintains two

devices, with each linked to a different location or set of locations – for example, because

different mobile providers may offer better coverage in certain geographies. This would

make a highly mobile user look artificially as though she does not move very much. For ex-

ample, someone who commutes each week from home in a rural area to work in a big city,

using a different device in each location, will appear as a relatively immobile individual.

Unfortunately, we do not have information on the extent with which users own multiple

devices, but given that smartphones are relatively expensive – and given the attachment

that people feel to particular devices – it is likely to be a rather small number.

Finally, we note that users may not leave their devices turned on at all times, and they may

not connect with apps during all of their travels (e.g., if data charges are high). This would

lead to a systematic underestimation of the frequency of travel and the distance travelled.

With all these caveats, however, we proceed to analyze the mobility data.

21It is possible, for instance, that the respondent lost his/her phone or had it stolen during that time period,
or perhaps even that the phone died or was sold.
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4. Quantifying mobility

In this section, we develop and implement a number of indicators to measure high-frequency

mobility patterns. We consider mobility on two levels: the mobility of individual users

across locations, and the connectedness of different locations through these individual

movements. We characterize mobility at the user level on three key dimensions: frequency,

spatial extent and densities visited. Our preferred indicators in this respect are the fraction

of days with mobility beyond 10km away from home (frequency), the average distance away

from home (spatial extent), and the distribution of (non-home) pings/users across popula-

tion density categories (densities visited). We investigate how these vary across subsets of

users residing in different population density categories - we use population density deciles

as cutoff values to define these density bins. In characterizing the connectivity of locations,

we quantify incoming and outgoing flows separately. We characterize incoming mobility

flows by their size: the number of distinct visitors during the period of observation, the

frequency of visits to the city, the distance travelled, and the population density at visitors’

home locations. Similarly, we calculate the size of outgoing flows: i.e., the number of dis-

tinct residents seen outside the city during the period, the frequency of movements outside

the city, their spatial extent and the population densities visited. In addition, we provide

measures of mobility flows for pairs of cities. We examine the origin locations of visitors in

the five largest cities in each of our three countries, and we also look at the top destinations

visited by their residents. We then disaggregate both the origin and destination locations

into densities and summarize our data in the form a spatial transition matrix to examine

the connections between remote and dense areas.

We begin by considering the mobility of people beyond their immediate surroundings to

evaluate users’ frequency of mobility. Some initial notation is helpful. Let x ∈ X denote

a location defined by rounded coordinates, with X the (finite) set of all possible locations

within the extent of a given country. For any given user i in the set of users I , we can parti-

tion X in two ways. First, we partition X into the home location and non-home locations.

Let di(x) denote the haversine distance to location x from the home location of user i.22

Define the distance threshold d̄ to be the limit of the home location. Then for user i, the set

of locations such that di(x)≤ d̄ defines a set of locations near home, Hi. Similarly, di(x)> d̄

defines a set of non-home locations, H̄i. For any user i, it is true that Hi ∪ H̄i = X .

A second useful way to partition X for a given user i is into the subset of locations (typically

a strict subset) where user i is observed with a ping and those where the user is not observed.

We use Zi to represent the set of locations where we observe a ping from i during the period

of observation, and we in turn partition Zi into those locations that belong to i’s home

22Strictly speaking, we use the haversine distance between 2-decimal rounded latitude-longitude locations.
This is approximately the same as taking the haversine distance between the centroids of two narrowly defined
gridcells.
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location - as defined by d̄ - denoted ZH
i and those that are non-home locations, denoted

Z H̄
i . In addition, we denote by Zi t the set of locations where we observe a ping from i on

any given day t and that we can partition into ZH
it and Z H̄

i t .

As a final notational preliminary, define an integer-valued function pi(x) that counts the

number of pings for user i in each location x ∈ X . Clearly, pi(x)≥1 for x ∈ Zi, and pi(x)=0

elsewhere. Let Pi =
∑

x∈X

pi(x) give the total number of pings for user i.

As our first measure, we use the fraction of days a user is seen more than 10 km away from

her home location (i.e., we set d̄ =10km). Let Mi t be a mobility indicator such that Mi t =1

on any day, t, if there is at least one ping observed for person i at a location away from

home; i.e., Z H̄
i t 6= ;. Define Mi =

365
∑

t=1

Mi t to be the number of days the user is seen more than

10 km away from her home location. Similarly, let Ti t be a dummy indicating whether at

least one ping is observed for person i at any location on day t; i.e., Ti t = 1 if Zi t 6= ;; and

let Ti =
365
∑

t=1

Ti t be the number of days over the period of study where at least one ping from

user i is observed. Then we define the mobility frequency for user i as:

Fi =
Mi

Ti
(1)

In this expression, the numerator denotes the number of days with at least one ping 10 km

away from home for user i, and the denominator gives the total number of days on which

user i is observed (i.e., days with at least one ping). A limitation of this metric is that it does

not allow us to distinguish between users making a lot of short trips and those travelling

less but spending more time at their destinations.

To translate this individual measure into a characteristic of a group of people, we average

across the members of that group. For this, it is useful to define some groups of people. As

noted above in Section 3, we assign each user to a population density bin, based on the char-

acteristics of the user’s home location. For instance, we consider the set of decile-bounded

bins, B = {b1, b2, ..., b10}, and we define the corresponding subsets of users I1, ..., I10. Let

n j denote the number of users assigned to bin b j, i.e. the number of users in I j. We then

compute:

F j =
1
n j

∑

i∈I j

Fi. (2)

Figure 6 shows this frequency for all three countries, broken down by density bin. The pat-

tern is consistent across countries: on roughly 10-20 percent of the days when we observe

them, users appear beyond the 10 km radius from their home locations. There is a distinct

pattern, too, in that those who live in the most densely populated areas are the least likely to

be observed away from home. We also calculate the fraction of days with mobility beyond
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20km and observe similar and even more marked patterns. One plausible interpretation

is that those who live in relatively remote areas are likely to travel more frequently than

those who live in towns and central cities. We cannot, of course, distinguish between the

frequency of trips and the frequency with which users turn to their phones for informa-

tion. It is possible that users are more likely (or less likely) to use their devices when they

are travelling, compared to when they are home; and these patterns may differ for people

whose home locations are in different bins of population density. Nevertheless, the data are

suggestive both of a relatively high overall frequency of mobility and of differences between

rural and urban residents.

Figure 6: Fraction of days with mobility beyond 10km by density bin.

(a) Kenya (b) Nigeria

(c) Tanzania

Note: These figures show the fraction of days on which a user is seen more than 10km away from
their home location by density decile over the period of a year.

Figure 7 focuses not on the frequency with which people travel, but the distance from home
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at which they are seen. We define the spatial extent of mobility for user i as the average

distance between non-home pings and the home location. Note that for this metric, we take

d̄=0 to define the sets of home locations and non-home locations, Hi and H̄i. As before, let

pi(x) be the number of pings we observe for user i at location x . Then let PiH =
∑

x∈Hi

pi(x)

and PiH̄ =
∑

x∈H̄i

pi(x); consistent with our notation above, the total number of pings observed

for user i is simply Pi = PiH+PiH̄ . In simple terms, PiH̄ is the number of non-home pings of

user i.

Given this, we can construct the spatial extent of user i’s mobility, which is the average

distance to each of her non-home pings. Thus:

Si =
1

PiH̄

∑

x∈ZiH̄

di(x)pi(x) (3)

In extrapolating this measure to a group of people, we can once again take an average.

For example, we can measure the average of our spatial extent measure for the individuals

belonging to a population density bin b j by simply averaging the individual values of Si.

Thus:

S j =
1
n j

∑

i∈I j

Si (4)

Figure 7 shows that non-home pings are not all highly local. In fact, the average distance

– across countries and density bins – ranges from 30-100 km. As in Figure 6, we see a

pattern across density bins suggesting that those in relatively sparsely populated areas seem

to travel the farthest – in the sense that their average distance away from home (conditional

on being away from home) is higher than for those in more densely populated locations.

It is interesting that both the absolute distances and the relative patterns across density

deciles look quite similar across the three countries.

Taken together, Figures 6 and 7 seem suggestive of a pattern in which those from relatively

remote areas travel more frequently and farther – possibly to get to towns and cities. To

assess this conjecture, we next turn to the third dimension of mobility and construct a first

measure that allows us to characterize locations visited by users in terms of population

density.
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Figure 7: Mean distance away from home by density decile.

(a) Kenya (b) Nigeria

(c) Tanzania

Note: These figures show the average distance from users’ home locations of non-home pings by
density decile over the period of a year.

Let N(x) denote the population density at location x . Based on this, let Ñ(x) be an indicator

mapping locations into density bins; in other words, Ñ : X → B. We consider the set of non-

home locations pinged by person i, and we assign each ping to a density bin b j. Then the

fraction of visits (i.e., pings in non-home locations) by user i to locations in density bin b j

is given by:

vi j =

∑

x∈{x∈H̄i :Ñ(x)=b j}

pi(x)

PiH̄
(5)

Once again, we summarize our measure at the level of each group Io of users with home

location in density bin of origin bo by calculating the average fraction of non-home pings
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in each one of the 10 density bins of destination (bd)d∈[1;10]. Then our measure becomes:

Vod =
1
no

∑

i∈Io

vid (6)

Results are shown in Table 6 for our three countries. Each column j of these tables can be

interpreted as the average distribution of non-home pings across density bins for users with

home locations in the density bin j.

Alternatively, we construct an aggregate metric at the density bin level to describe the

population densities visited at least once by users belonging to each density bin b j. For

each user i ∈ I j and each density bin bk, we define pik as a dummy indicating whether user

i ever visited a location in density bin bk:

pik =







1, if ∃x ∈ {x ∈ X |Ñ(x) = bk} : pi(x)> 0

0, otherwise

Then the fraction of users whose home location is in density bin b j and who are seen at

least once in a location belonging to population density bin bk is:

∆ jk =

∑

i∈I j

pik

n j
(7)

Tables 6 to 7 show more detail about the locations visited by people when they are trav-

elling. Specifically, these tables show, for individuals whose home locations are assigned

to different population density bins (across the columns of these tables), the proportion of

non-home pings that they record in locations of different population densities.

To give an example, Table 6a shows that for the Kenyan users in our data who live in the

least densely populated areas, just over one-third (36.3%) of their non-home pings are

recorded in other relatively sparsely populated areas. This would include any observations

relatively near to home but outside the immediate home location. But nearly one-fourth of

their non-home pings (23.3%) are recorded in locations that fall in the top two deciles of

the density distribution. Tables 6b and 6c show comparable data for Nigeria and Tanzania,

respectively.

Table 7 offers a slightly different angle on the data. These give the fraction of users residing

in a given density bin who are seen over the course of the year on at least one occasion in a

non-home location within each of the ten density bins. For instance, this tells us that 6.9% of

those Kenyans living in the most densely populated locations in the country, were observed
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on at least one occasion during the year in a cell that falls within the least densely populated

parts of the country. At the other end of the distribution, 29.3% of the users whose home

locations are in the most sparsely populated areas of the country were observed at least

once during the year in the most densely populated parts of the country.

Table 6: Average distribution of pings across visited density bin, by home density bin.

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 36.3% 7.8% 2.7% 2% 1% 1.7% 1.1% 1.2% 0.7% 0.3%
2 9.3% 24.3% 11.8% 2.9% 2.2% 1.7% 1.5% 1.6% 0.7% 0.4%
3 4.8% 11.9% 14.5% 7.5% 4.5% 2.4% 3.2% 2.3% 1.2% 0.8%
4 4.8% 5% 11.5% 12.6% 9.2% 4.6% 4.6% 3.2% 2.2% 1.6%
5 5.3% 4.2% 7.5% 10.3% 12.5% 6.3% 7.1% 3.1% 2.3% 1.4%
6 2.8% 4.5% 7.1% 6.2% 12.2% 11.2% 9.3% 5.6% 5.4% 5%
7 4.7% 3.3% 4.3% 4.9% 9% 7.4% 13% 9.5% 3.4% 1.6%
8 8.6% 8.2% 11.4% 11.8% 11.3% 10.6% 18.4% 20.2% 11.4% 5.6%
9 18.8% 21.8% 23.1% 29.4% 27.8% 36.3% 32% 42.1% 50.8% 40.4%
10 4.5% 8.9% 6.1% 12.4% 10.3% 17.8% 9.8% 11.3% 21.9% 42.9%

(a) Kenya

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 2.3% 2.7% 2.2% 1.4% 0.5% 0.2% 0.2% 0.1% 0.1% 0.1%
2 3.7% 12.7% 6% 1.6% 0.8% 0.6% 0.4% 0.2% 0.2% 0.2%
3 1.5% 9% 6.4% 6.1% 1.2% 1% 0.6% 0.3% 0.2% 0.1%
4 2.3% 5% 10.8% 5.4% 4.9% 2.6% 1.1% 0.6% 0.5% 0.3%
5 2.1% 6.8% 6.2% 9.5% 11.9% 5.9% 2.6% 1.6% 1% 0.5%
6 4.5% 6.4% 6.8% 12.4% 16% 20.2% 9% 3.7% 2.2% 1.4%
7 7.3% 12.6% 12.7% 14.6% 15.7% 21.6% 26.2% 12.4% 5.1% 2.6%
8 20% 13.9% 11.9% 11% 16.2% 15% 24.3% 29.6% 16% 5.3%
9 42% 19.6% 27.1% 26.4% 20.7% 19.8% 24.7% 40.3% 54.6% 18%
10 14.4% 11.3% 10% 11.6% 12.1% 13.1% 10.9% 11.2% 20.1% 71.5%

(b) Nigeria

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 32.5% 10.5% 4.7% 2.5% 2.5% 2.3% 1.7% 0.6% 0.4% 0.2%
2 3% 18.5% 7.2% 3.1% 2.5% 1.7% 0.9% 0.6% 0.3% 0.1%
3 5.4% 8.2% 8% 8.4% 7.9% 3.4% 1.9% 0.6% 0.5% 0.2%
4 3.2% 3.2% 8.8% 10.6% 9.6% 5.8% 2.7% 0.8% 0.6% 0.3%
5 4.4% 10.4% 6.6% 8.3% 10.2% 5.8% 4% 1.5% 0.8% 0.4%
6 5% 1.3% 7.1% 9.1% 10.5% 14.4% 11.4% 2.7% 1.4% 0.6%
7 6.3% 5.7% 8.7% 12.3% 10.5% 18.2% 20.9% 8.6% 3.4% 1.4%
8 14.6% 16.4% 15.9% 15.8% 17% 19.5% 26.3% 37.1% 17% 6.4%
9 14.9% 17.3% 19.8% 20.9% 20.5% 20.9% 21.5% 33.2% 49.1% 27.7%
10 10.7% 8.5% 13% 9% 8.8% 7.9% 8.7% 14.4% 26.5% 62.8%

(c) Tanzania

Note: These matrices show the average fraction of non-home pings of users residing in density bin
i for density bin j over the period of a year.
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Table 7: Share of users by home bin-visited bin pair.

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 70.7% 31.5% 20.1% 13.6% 13.1% 13.8% 14.5% 14% 10.5% 6.9%
2 43.1% 57% 39.6% 23.5% 23.5% 18.9% 21.8% 20.4% 16.2% 11.8%
3 35.8% 50.3% 55.3% 40.6% 35.4% 28.7% 31.4% 27% 23.4% 16.2%
4 37.4% 37.6% 52% 55.1% 48.8% 38.2% 40% 34.2% 31.3% 24.2%
5 34.1% 32.1% 45.4% 50.8% 55.3% 40.3% 44.4% 32.8% 29.5% 20.3%
6 26.8% 30.9% 43.2% 47.7% 54.2% 48% 52.1% 43.6% 44.3% 37.6%
7 33.3% 30.3% 37% 40.8% 44.9% 43.1% 54.7% 50.1% 35.3% 23.1%
8 48.8% 41.8% 52.7% 55.7% 53.7% 53.6% 68.3% 69.8% 58% 39.2%
9 56.9% 54.5% 59% 67.6% 67.5% 74.5% 72.1% 82.1% 87.9% 79.1%
10 29.3% 30.9% 33.7% 46.7% 45.6% 54.4% 46.1% 51% 67.9% 84.8%

(a) Kenya

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 19% 22.7% 16.5% 11.9% 7.9% 4.9% 4.6% 4.8% 4.5% 2.6%
2 27.5% 39.1% 33.8% 20% 14.5% 11.2% 10% 8.9% 10.5% 9.8%
3 16.2% 34.5% 31.2% 29.4% 19.3% 13.5% 11.3% 9% 7.9% 4.9%
4 34.5% 25.5% 40.4% 37.3% 32.9% 23.6% 17.7% 14% 14.5% 11%
5 31.7% 32.7% 42.3% 43.8% 49.3% 39.4% 26% 20.4% 17.5% 11.8%
6 40.8% 37.3% 46.2% 56.2% 61.5% 67.7% 48.4% 34% 28.1% 19.8%
7 61.3% 42.7% 53.8% 59.3% 61.9% 70.1% 75.8% 58.2% 42.7% 28.6%
8 76.1% 57.3% 59.6% 58.4% 61.5% 62.8% 74.5% 81.2% 66.6% 39.6%
9 86.6% 54.5% 65.4% 64.7% 62.5% 63.5% 66.9% 82% 90.7% 63.7%
10 63.4% 34.5% 43.5% 49% 46.2% 47.9% 43.7% 43.7% 57.5% 95.3%

(b) Nigeria

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 67.5% 32.8% 24.4% 18.2% 20.1% 13.6% 13.4% 9.9% 8.2% 4.6%
2 25% 55.2% 35.8% 26.4% 19.6% 16.6% 13.2% 12.4% 11.2% 7.1%
3 25.8% 36.2% 37.4% 35.2% 34.1% 22.4% 18.2% 13.8% 11.5% 6.9%
4 21.7% 20.7% 35.8% 40.3% 37.4% 27.1% 22.9% 16.3% 13.4% 8%
5 25.8% 37.9% 37.4% 39% 40.8% 39.9% 27.6% 18.8% 14% 8.1%
6 32.5% 27.6% 40.7% 40.3% 43.6% 51.3% 41.9% 26.1% 19.4% 11.8%
7 37.5% 36.2% 40.7% 49.7% 42.5% 57% 60.7% 42.6% 28.8% 17%
8 49.2% 53.4% 55.3% 55.3% 55.3% 59% 66.3% 80.3% 63.3% 41.3%
9 45.8% 51.7% 52% 57.2% 54.7% 59.5% 58.1% 72.6% 87.5% 70.4%
10 39.2% 29.3% 44.7% 38.4% 35.8% 37.4% 37.8% 47.7% 66% 91.9%

(c) Tanzania

Note: These matrices show the proportion of users residing in density bin i that are seen at least
once in density bin j over the period of a year.

Taken together, these tables offer a picture of highly mobile populations across all three

countries, with people travelling both far (measured in terms of distance) and to locations

that differ markedly from their home locations. Nigeria offers a slight exception to the

pattern. Pings are heavily concentrated in the most densely populated parts of the country,
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to a greater degree than in either Kenya or Tanzania, although there still appear (see Table

7b) to be substantial flows of users across locations at different population density levels.

As an alternative to using density deciles for our analysis, we consider in Tables 8 to 10 the

"visitors" to the major cities of our three countries.

Table 8: Origin of visitors in top 5 cities, Kenya.

Nairobi Mombasa Nakuru Eldoret Kisumu
(1,699 visitors) (953 visitors) (891 visitors) (448 visitors) (437 visitors)
Origin Visitors Origin Visitors Origin Visitors Origin Visitors Origin Visitors

Mombasa 20.2% Nairobi 68.4% Nairobi 62.5% Nairobi 51.3% Nairobi 57%
Nakuru 4.9% Nakuru 1.5% Eldoret 3.1% Mombasa 3.3% Mombasa 4.6%
Kisumu 4.1% Kisumu 0.6% Mombasa 2.9% Kisumu 2.9% Eldoret 2.3%
Eldoret 4.1% Eldoret 0.5% Kisumu 2% Nakuru 2.2% Nakuru 1.4%
Garissa 1.1% Garissa 0.1% Garissa 0.1% - - - -

Non-urban 65.6% Non-urban 28.9% Non-urban 29.3% Non-urban 40.2% Non-urban 34.8%

Note: This table shows the origin of visitors for the five most populated cities. Origin and destination
city boundaries are defined using 3km-buffered GRUMP polygons. Visitors are defined as being seen
at least once in a location over the year. "Non-urban" refers to locations outside boundaries of cities
with 200,000 or more residents. "Other urb." refers to all cities that are not in the top 5 origin cities.

Table 9: Origin of visitors in top 5 cities, Nigeria.

Lagos Kano Ibadan Abuja Kaduna
(5,258 visitors) (807 visitors) (2,916 visitors) (3,232 visitors) (1,296 visitors)
Origin Visitors Origin Visitors Origin Visitors Origin Visitors Origin Visitors

Abuja 21.9% Abuja 43.5% Lagos 68.7% Lagos 47% Abuja 54.9%
Ibadan 13.1% Lagos 18.5% Abuja 6.6% Kaduna 8.8% Lagos 12%

Abeokuta 7.4% Kaduna 11% Abeokuta 3.8% Port Harc. 5.3% Kano 10.3%
Shagamu 6.4% Maiduguri 2.9% Ilorin 2.9% Kano 5.2% Zaria 5.9%

Port Harc. 6.4% Zaria 2.9% Shagamu 2.7% Jos 3.2% Katsina 1.7%
Other urb. 5.7% Other urb. 2.5% Other urb. 2.4% Other urb. 2.6% Other urb. 1.2%
Non-urban 39.1% Non-urban 18.8% Non-urban 12.9% Non-urban 27.9% Non-urban 13.9%

Note: This table shows the origin of visitors for the five most populated cities. Origin and destination
city boundaries are defined using 3km-buffered GRUMP polygons. Visitors are defined as being seen
at least once in a location over the year. "Non-urban" refers to locations outside boundaries of cities
with 200,000 or more residents. "Other urb." refers to all cities that are not in the top 5 origin cities.
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Table 10: Origin of visitors in top 5 cities, Tanzania.

Dar Es Salaam Zanzibar Mwanza Arusha Mbeya
(1,850 visitors) (743 visitors) (704 visitors) (859 visitors) (395 visitors)
Origin Visitors Origin Visitors Origin Visitors Origin Visitors Origin Visitors

Arusha 9.7% Dar Es Sa. 53.3% Dar Es Sa. 32.4% Dar Es Sa. 39.5% Dar Es Sa. 38.2%
Zanzibar 8.9% Arusha 4% Arusha 3.1% Moshi 10.4% Mwanza 2.8%
Mwanza 6.7% Mwanza 0.8% Dodoma 1.3% Mwanza 3% Arusha 2.3%

Morogoro 6% Moshi 0.8% Mbeya 0.9% Dodoma 2.3% Dodoma 1.8%
Dodoma 4.3% Dodoma 0.8% Moshi 0.7% Zanzibar 2.2% Morogoro 1.5%

Other urb. 3.5% Other urb. 0.3% Other urb. 0.6% Other urb. 1.6% Other urb. 0.8%
Non-urban 61% Non-urban 40% Non-urban 61.1% Non-urban 41% Non-urban 52.7%

Note: This table shows the origin of visitors for the five most populated cities. Origin and destination
city boundaries are defined using 3km-buffered GRUMP polygons. Visitors are defined as being seen
at least once in a location over the year. "Non-urban" refers to locations outside boundaries of cities
with 200,000 or more residents. "Other urb." refers to all cities that are not in the top 5 origin cities.

A visitor is defined here as someone whom we observe in a city whose home location falls

outside the city boundaries. We categorize visitors as those who are residents of other major

cities in the same country, and then we also consider a group of "non-urban" visitors, who

are those who live outside the boundaries of any city of more than 200,000 people.

The data for all three countries show similar and interesting patterns. The largest city con-

sistently has a large number of visitors defined as "non-urban," implying that these cities

are magnets for travellers from the entire country. There are consistently large flows from

secondary cities to these primate cities, but the proportions fall off sharply to more minor

cities. In contrast, the secondary cities typically see large inflows of visitors from the pri-

mate cities, along with large inflows from non-urban areas. The flows across and between

secondary cities are typically fairly modest, according to this metric. Eldoret has little that

Kisumu lacks, and vice versa – so even though these cities are less than 150 km apart, each

accounts for less than 3% of the visitors in the other. The same patterns are seen in Nigeria

and Tanzania. For Nigeria, to give another example, although visitors from Kano make up

10% of the documented visitors to Kaduna, relatively few of those visiting Kano are from

Kaduna. In each city, far more visitors come from towns, villages, and rural areas (together

characterized as "non-urban").

We can similarly look at the destinations of those whose home locations are in the major

cities of our three countries. For these urban dwellers, we can ask what proportion were

seen during the year in other major cities and in non-urban areas (defined as in Table 8.

The results of this analysis are shown in Tables 11 to 13.
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Table 11: Top 5 destinations of residents from top 5 cities, Kenya.

Nairobi Mombasa Nakuru Eldoret Kisumu
(11,290 residents) (1,683 residents) (413 residents) (340 residents) (258 residents)

Destination Residents Destination Residents Destination Residents Destination Residents Destination Residents
Mombasa 5.8% Nairobi 20.4% Nairobi 20.1% Nairobi 20.3% Nairobi 27.1%

Nakuru 4.9% Nakuru 1.5% Mombasa 3.4% Nakuru 8.2% Nakuru 7%
Kisumu 2.2% Kisumu 1.2% Eldoret 2.4% Kisumu 2.9% Eldoret 5%
Eldoret 2% Eldoret 0.9% Kisumu 1.5% Mombasa 1.5% Mombasa 2.3%
Garissa 0.3% Garissa 0.1% Garissa 0.2% Garissa 0.6% - -

Non-urban 31.4% Non-urban 24.4% Non-urban 37% Non-urban 38.2% Non-urban 51.9%

Note: This table shows the destinations of residents for the five most populated cities. Origin and
destination city boundaries are defined using 3km-buffered GRUMP polygons. Visitors are defined
as being seen at least once in a location over the year. "Non-urban" refers to locations outside
boundaries of cities with 200,000 or more residents. "Other urb." refers to all cities that are not in
the top 5 origin cities.

Table 12: Top 5 destinations of residents from top 5 cities, Nigeria.

Lagos Kano Ibadan Abuja Kaduna
(35,957 residents) (1,496 residents) (2,555 residents) (7,988 residents) (1,303 residents)

Destination Residents Destination Residents Destination Residents Destination Residents Destination Residents
Shagamu 5.9% Abuja 11.2% Lagos 26.9% Lagos 14.4% Abuja 21.8%

Ibadan 5.6% Kaduna 9% Shagamu 9.2% Kaduna 8.9% Zaria 10.4%
Abuja 4.2% Lagos 6.7% Abeokuta 3.8% Kano 4.4% Kano 6.8%

Abeokuta 2.8% Zaria 5.9% Oshogbo 3.5% Zaria 3% Lagos 5.8%
Benin City 2.1% Katsina 2.2% Abuja 3.3% Port Harc. 2.7% Katsina 2.2%
Other urb. 14.1% Other urb. 12.1% Other urb. 20.8% Other urb. 33.6% Other urb. 19.1%
Non-urban 20.9% Non-urban 21.9% Non-urban 25.5% Non-urban 32.2% Non-urban 28.2%

Note: This table shows the destinations of residents for the five most populated cities. Origin and
destination city boundaries are defined using 3km-buffered GRUMP polygons. Visitors are defined
as being seen at least once in a location over the year. "Non-urban" refers to locations outside
boundaries of cities with 200,000 or more residents. "Other urb." refers to all cities that are not in
the top 5 origin cities.

Table 13: Top five destinations of residents from largest cities, Tanzania.

Dar Es Salaam Zanzibar Mwanza Arusha Mbeya
(10,370 residents) (832 residents) (963 residents) (1,253 residents) (439 residents)

Destination Residents Destination Residents Destination Residents Destination Residents Destination Residents
Morogoro 4.9% Dar Es Sa. 19.8% Dar Es Sa. 12.9% Moshi 14.9% Dar Es Sa. 14.6%
Zanzibar 3.8% Arusha 2.3% Dodoma 3.6% Dar Es Sa. 14.3% Morogoro 3.4%
Dodoma 3.7% Dodoma 1.4% Arusha 2.7% Dodoma 2.9% Dodoma 3%

Arusha 3.3% Tanga 1.3% Morogoro 1.7% Zanzibar 2.4% Arusha 2.5%
Moshi 2.4% Morogoro 1% Moshi 1.3% Mwanza 1.8% Mwanza 1.4%

Other urb. 5.9% Other urb. 0.7% Other urb. 2.4% Other urb. 3.9% Other urb. 1.1%
Non-urban 26.4% Non-urban 36.5% Non-urban 37.8% Non-urban 42.9% Non-urban 36.4%

Note: This table shows the destinations of residents for the five most populated cities. Origin and
destination city boundaries are defined using 3km-buffered GRUMP polygons. Visitors are defined
as being seen at least once in a location over the year. "Non-urban" refers to locations outside
boundaries of cities with 200,000 or more residents. "Other urb." refers to all cities that are not in
the top 5 origin cities.

The striking feature of these tables is that a larger fraction of the urban dwellers in our

data are seen visiting non-urban areas than other cities. This is true for each of the five
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largest cities in all three countries; our urban dwellers are more likely to have been seen

in a non-urban area than in any other city in the country. Although some of these non-

urban areas may be within commuting distance – or at least within relative proximity to

the cities of residence – it is striking that our cities appear to be substitutes for one another.

In each country, the one or two largest cities serve as magnets, attracting visitors from other

cities; but there is relatively little flow between secondary cities. This may reflect a lack of

specialization and differentiation between cities – an issue that has been raised previously

in sub-Saharan Africa – but even in a country like Nigeria, where there are substantial

differences in geography and demographics across cities, there seem to be relatively limited

movements of people between cities. This contrasts with more substantial flows connecting

cities with smaller towns, villages, and rural areas.

This section has reported on a number of different measures of mobility. These measures

point to some consistent stories. The smartphone users in our data represent a mobile pop-

ulation. On average, they are more than 10 km from home on about one-sixth of the days

on which they are observed. Those in more sparsely populated areas are more frequently

away from home than those who live in city center locations. When they venture from

home, they frequently travel far; when we sight them away from home, they are on aver-

age more than 50 to 100 km away. Flows are not limited to inter-urban movements of city

dwellers visiting other cities; on the contrary, the data show extensive movement across

and between many different locations.

Clearly the data point to a world in which mobility frictions are insufficient to choke off

human mobility. At least some subset of the population in our three countries is highly

mobile and provides a network of information flows across locations. If individuals are

moving, there must also be comparable movement of goods and of information. Even if

our data comes from a selected subset of the population, their movements may be sufficient

to generate flows of knowledge and information about spatial gaps in living conditions or

opportunities. The data provide at least a reason to question frameworks in which spatial

gaps arise from a complete failure of information to flow across locations.

5. Agglomeration effects

Our analysis so far illustrates that individuals move a substantial amount across space.

One interpretation of this finding is that mobility costs are not insurmountable in our three

countries. Another explanation is that movement costs are high but the returns to visiting

certain places outweigh the high costs. We do not know what the return of visiting a certain

location is for individuals. However, we can say something approximate about the costs as

captured by the distance or travel time between two locations. If we see disproportionate

amounts of visits to one location while similar locations are within equal or smaller dis-
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tances, it must be that visitors to this location experience high returns. The intuition is

simple: take a resident of New York City who can chose to visit Boston or Washington D.C..

The travel time to each of these cities by car is about three hours and 45 minutes and the

approximate distance is 220 miles. If we see twice as many visits to Boston than we see

to D.C., we can infer that – by revealed preference – this individual experiences twice the

return from visiting Boston than they do from visiting Washington D.C..23

Taking this logic to our countries, we examine the probability that residents from Kano

(located in Nigeria’s north) are seen in Abuja (the capital, located in the center) and Lagos

(located in the south) compared to the rest of Nigeria’s cities (see the illustrative map in

Figure 8. The driving distance between Kano and Abuja is about 450km and from Kano to

Lagos it is about twice as long. The data suggests that residents from Kano are almost 4

times as likely to go to Lagos than to any other city, but only 1.3 times as likely to go to

Abuja. We also repeat this exercise for residents Tanzania analyzing movement patterns

Figure 8: Distances between selected cities in Nigeria and Tanzania

Note: This figure shows the main cities considered in the example given in Section 5. It is ap-
parent that Abuja is far closer to Kano than Lagos; similarly, Dodoma is much closer to Mwanza
and Mbeya than Dar Es Salaam. Yet, we see much higher mobility toward Lagos and Dar Es
Salaam than to Abuja or Dodoma.

from residents of Mwanza (located in the the north-west of Tanzania), and Mbeya (located

in the south) and examine the probability that residents from these cities visit Dodoma

(the capital, located in the center), Dar Es Salaam (located in the east), or any other city.

The driving distance between Mwanza/Mbeya and Dodoma is about 600-700km and from

Mwanza/Mbeya to Dar Es Salaam it is slightly less than twice as far, about 1100km. We

find that residents from Mwanza and Mbeya are more than three times as likely to visit

Dar Es Salaam than the other cities and only 1.2 times as likely to visit Dodoma. These

findings are in line with the descriptive evidence presented in Section 4 which suggested

23For this logic to be correct we assume that returns for residents of New York are homogeneous.
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that particularly large cities, e.g., Lagos and Dar Es Salaam, attract visitors from throughout

the country. Despite larger costs compared to visiting agglomerations that are closer in

space, people are voting with their feet to visit these large cities.

We explore this revealed preference argument and use our smartphone app location data to

estimate returns to visiting certain destinations relying on the theoretical underpinning of

within-city commuting in recent quantitative spatial models (Ahlfeldt, Redding, Sturm, and

Wolf, 2015; Kreindler and Miyauchi, 2020).24 Specifically, consider an individual i living in

o who can consider one location d to visit. The individual has the following utility function

Uodi =
Rd Zodi

Dτod

(8)

where Rd represents the return from visiting d, Dod represents the driving time between o

and d, and Zodi represents an idiosyncratic preference draw that follows a Fréchet distri-

bution with scale parameter T and shape parameter ε. These shocks allow, for example,

for the fact that individuals might have family in one location. Workers observe the shocks

and chose the location that maximizes their utility. Conditional on residing in o, Ahlfeldt

et al. (2015) show that the probability that an individual visits d is

Πod|o =
(Rd/D

τ
od)

ε

∑S
s=1(Rs/Dτos)ε

(9)

This is similar to trade models where the enumerator captures ’bilateral resistance’ and the

denominator ’multilateral resistance’. Taking logs, this becomes

lnΠod|o = ε lnRd−ετ ln Dod− ln
S
∑

s=1

(Rs/D
τ
os)
ε (10)

We then use Quasi Poisson Maximum Likelihood and two-way clustered standard errors to

estimate

lnΠod =δd−β ln Dod+φo+εod (11)

where φo and δd are origin and destination fixed effects. We consider cities above 200,000

residents in Nigeria. Due to the low number of large cities we lower this threshold to

100,000 in Tanzania and Kenya. A resident is classified as living in a city if her home

location is within a 3km buffered polygon around GRUMP city polygons. In this part of the

analysis, we therefore only consider flows between residents of urban locations, abstracting

from rural residents. A visitor to a city is a resident seen in a city other than her home city

24Couture (2016) uses trip diary data from the National Household Travel Survey to estimate the amenity
value of restaurants.
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over the specified time span.

Table 14 shows the estimates for the gravity equation. The coefficient on travel time is

Table 14: Gravity model for inter-city mobility.

Kenya Nigeria Tanzania
(1) (2) (3)

Gravity Equation
Log(Traveltime) -.953∗∗∗ -1.468∗∗∗ -1.027∗∗∗

(0.061) (0.092) (0.04)

Origin FE YES YES YES
Destination FE YES YES YES
Obs. 210 4422 239
R2 0.975 0.935 0.993

Note: This table estimates equation (11). The dependent variable is the mobility flow
between city o and d. Reported standard errors are two-way clustered at the origin and
destination levels. ∗, ∗∗, ∗∗∗ denote significance at 10%, 5% and 1% levels.

around one in Kenya and Tanzania and somewhat higher in Nigeria. We next retrieve

the estimated destination fixed-effects δ̂d which capture returns to visits to a certain city,

conditional on the distances between origins o and destinations d, and origin fixed effects.

Origin fixed effects capture time-invariant characteristics of residents at the origin, such as

income, overall mobility and geographic factors of a location, e.g., remoteness and access

to transport infrastructure.

Figure 9 plots the city fixed effects against city size, where we use the smallest city in our

sample as the omitted category in each of our countries. A few points are worth highlight-

ing: first, it is remarkable how tightly the city fixed effects correlate with city size. Second,

the figures highlight that that Lagos, Dar Es Salaam and Nairobi are outliers in terms of

city size; all have the highest city fixed effects, conditional on distances between city pairs

and origin city fixed effects. The two recent capitals, Abuja and Dodoma, are well above

the predicted regression lines, indicating that that they receive more visits than their pop-

ulation size would predict. Other locations, like Kano and Zanzibar, receive fewer visits

than predicted by their population size. The model suggests that Zanzibar, located on an

island, clearly would receive more visitors than it does without this barrier. Table 15 shows

the results from the regressions of the city fixed effects on log population to investigate the

relationship more formally.

The table shows a precisely estimated elasticity of around one for all three countries, indi-

cating that as a city’s population doubles, incoming mobility doubles. This underlines the

magnetic forces large cities play. This also highlights that as as cities in Africa are expected

to double in the coming decades, infrastructure will have to not only accommodate their

resident populations, but also the large numbers of people from all over the country who

are attracted by these locations.
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Figure 9: City fixed effects.
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Note: This figure shows the city fixed effects δ̂d from equation (11) and log city size.

Table 15: Relationship between city fixed effects and population

Kenya Nigeria Tanzania
(1) (2) (3)

Agglomeration effects
Log(Population) 0.981∗∗∗ 1.028∗∗∗ 0.874∗∗∗

(0.109) (0.078) (0.084)

Obs. 14 66 15
R2 0.735 0.764 0.778

Note: This table regresses the city fixed effects from equation (11) on log city size. Robust
standard errors are reported in parentheses. ∗, ∗∗, ∗∗∗ denote significance at 10%, 5% and
1% levels.

Finally, we estimate standard gravity models to link to a previous literature that is struc-

tured around gravity models that use distance as a proxy of movement costs (Bryan and

Morten, 2019). We follow Bryan and Morten (2019) in estimating these with OLS to be

able to compare the estimated coefficients. We test whether the elasticity of mobility with

respect to distance is sensitive to different definitions of origin-destination pairs and tempo-

ral intervals. Most gravity estimates are constrained by limitations in the data available to

define origins and destinations. Much of the literature relies on recall data with relatively

low spatial and temporal granularity. For example, some surveys ask respondents to name
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the region where they were born – which can then be compared with the region where

a respondent is currently living. Other surveys may ask whether people were living in a

different location five years ago; if so, they are asked to name the place. Matching their

responses to identifiable locations sometimes requires artful interpretation. Many standard

surveys, such as the Demographic Health Surveys, only classify previous locations or loca-

tions at birth into types of places (i.e. city, town, countryside), which makes it impossible

to generate origin-destination matrices. Due to the richness of our data, however, we are

entirely flexible in defining both the spatial unit for origins and destinations and the time

frame we are investigating. We then contrast our estimates with those in the literature.

We start by presenting a basic region-level gravity model over the entire year by linking

home locations to administrative units in our countries where the dependent variable is the

fraction of users from o that travelled to d in the specified sample period. This is similar

to what we would observe in a detailed survey module that contained spatial detail up to

the region. The fraction of pairs with non-zero flows between regions amounts to 50% in

Kenya, 77.25% in Nigeria and 70% in Tanzania.

Table 16 shows the results for the region-level specification. Reassuringly, distance is nega-

tively related to mobility. Overall, the simple gravity model fits the data well, with distance

alone explaining 0.34 percent of mobility between regions. In all specifications, the coef-

ficient on the distance variable is significant and precisely estimated. Including origin and

destination fixed effects gives an estimate of the elasticity of mobility with respect to dis-

tance of -1.2 for Kenya, -2 for Nigeria and -1.3 for Tanzania. This suggests that a 10 percent

increase in movement costs is associated with a 12-20 percent decrease in mobility.

We next define a mobility metric that takes into account the intensive margin as well, by

multiplying the number of residents at origin o that are seen at least once at destination d

with the number of distinct days these residents are seen in d, and dividing this by the total

number of days these residents are seen. Our results are quantitatively robust to including

the intensive margin, so that we focus on the extensive mobility measure in the analysis

that follows.
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Table 16: Gravity model for inter-region mobility at the extensive margin.

(1) (2)

log(distance) −1.499∗∗∗

(0.068)
log(distance)xKEN −1.220∗∗∗

(0.055)
log(distance)xNGA −1.953∗∗∗

(0.051)
log(distance)xTZA −1.342∗∗∗

(0.109)

Origin FE Yes Yes
Dest. FE Yes Yes
Observations 2,713 2,713
R2 0.818 0.834

Note: The dependent variable is the fraction of people at
origin o that were seen in d in over the entire sample pe-
riod. Reported standard errors are two-way clustered at
the origin and destination levels. ∗, ∗∗, ∗∗∗ denote signifi-
cance at 10%, 5% and 1% levels.

Since regions reflect arbitrary boundaries involving irregular geometries, we follow the

work of Michalopoulos and Papaioannou (2013) in constructing virtual regions by gener-

ating country-level grids of 50km by 50km and using flows between cell pairs as units of

analysis.25 We also examine the robustness of our results to removing one or two rows of

adjacent cell pairs in columns (3)-(6) to exclude short trips within cities, for example. Table

17 shows that, as one would expect, movement costs are somewhat lower at lower spatial

scales for the three countries but roughly in line with what we found in the region-level

analysis.

25We count 159, 328 and 313 virtual regions with at least one resident user in Kenya, Nigeria and Tanzania
respectively.
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Table 17: Gravity model for mobility at the extensive margin between virtual regions.

(1) (2) (3) (4) (5) (6)

log(distance) −0.894∗∗∗ −0.794∗∗∗ −0.790∗∗∗

(0.036) (0.047) (0.058)
log(distance)×KEN −0.881∗∗∗ −0.731∗∗∗ −0.696∗∗∗

(0.061) (0.078) (0.104)
log(distance)×NGA −1.085∗∗∗ −0.982∗∗∗ −1.001∗∗∗

(0.055) (0.073) (0.093)
log(distance)×TZA −0.688∗∗∗ −0.602∗∗∗ −0.586∗∗∗

(0.042) (0.054) (0.063)

Origin FE Yes Yes Yes Yes Yes Yes
Dest. FE Yes Yes Yes Yes Yes Yes
Observations 16,513 16,513 14,100 14,100 11,909 11,909
R2 0.876 0.880 0.882 0.884 0.889 0.891

Note: The dependent variable is the fraction of people at origin o that were seen in d in over the en-
tire sample period. Columns (1) and (2) report results for all cell pairs with positive mobility. Columns
(3)-(4) show results for the subset of non-adjacent cell pairs and columns (5)-(6) provide coefficient esti-
mates for a subset of cell pairs at least two rows/columns apart. Reported standard errors are two-way
clustered at the origin and destination levels. ∗, ∗∗, ∗∗∗ denote significance at 10%, 5% and 1% levels.

One concern might be that some regions have few residents so that a handful of residents

might lead to large shares. To examine to what degree our results are sensitive to this, Table

C.4 limits the sample to origin cells of 50 residents or more.

The general patterns are similar to what we see in Table 17, with slightly higher estimates.

So far we have estimated the model over the entire period over which we have data. We

next turn to estimating the model at a quarterly level. Columns (2), (4) and (6) in Table 18

show the coefficients for the different quarters for each of our countries. The table suggests

that our results are in line with our previous estimates. In brief, the estimates appear to be

robust to different spatial and temporal aggregations.
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Table 18: Gravity model for mobility at the extensive margin between virtual regions, by
quarter.

(1) (2) (3) (4) (5) (6)

log(distance)xKEN −0.881∗∗∗ −0.731∗∗∗ −0.696∗∗∗

(0.061) (0.078) (0.104)
log(distance)xNGA −1.085∗∗∗ −0.982∗∗∗ −1.001∗∗∗

(0.055) (0.073) (0.093)
log(distance)xTZA −0.688∗∗∗ −0.602∗∗∗ −0.586∗∗∗

(0.042) (0.054) (0.063)
log(distance)xKEN-201703 −0.665∗∗∗ −0.508∗∗∗ −0.499∗∗∗

(0.072) (0.089) (0.112)
log(distance)xKEN-201707 −0.826∗∗∗ −0.664∗∗∗ −0.646∗∗∗

(0.062) (0.078) (0.101)
log(distance)xKEN-201711 −0.852∗∗∗ −0.695∗∗∗ −0.680∗∗∗

(0.059) (0.075) (0.098)
log(distance)xNGA-201707 −0.880∗∗∗ −0.758∗∗∗ −0.778∗∗∗

(0.063) (0.083) (0.101)
log(distance)xNGA-201711 −0.976∗∗∗ −0.857∗∗∗ −0.877∗∗∗

(0.054) (0.074) (0.091)
log(distance)xNGA-201803 −1.003∗∗∗ −0.888∗∗∗ −0.910∗∗∗

(0.050) (0.070) (0.087)
log(distance)xTZA-201707 −0.503∗∗∗ −0.409∗∗∗ −0.400∗∗∗

(0.056) (0.066) (0.074)
log(distance)xTZA-201711 −0.623∗∗∗ −0.528∗∗∗ −0.516∗∗∗

(0.043) (0.053) (0.060)
log(distance)xTZA-201803 −0.649∗∗∗ −0.555∗∗∗ −0.543∗∗∗

(0.039) (0.049) (0.056)

Origin FE Yes Yes Yes Yes Yes Yes
Dest. FE Yes Yes Yes Yes Yes Yes
Observations 16,513 33,421 14,100 28,032 11,909 23,425
R2 0.880 0.879 0.884 0.883 0.891 0.891

Note: The dependent variable is the fraction of people at origin o that were seen in d in a particu-
lar quarter. Columns (1) and (2) report results for all cell pairs with positive mobility. Columns (3)-
(4) show results for the subset of non-adjacent cell pairs and columns (5)-(6) provide coefficient esti-
mates for a subset of cell pairs at least two rows/columns apart. Reported standard errors are two-way
clustered at the origin and destination levels. ∗, ∗∗, ∗∗∗ denote significance at 10%, 5% and 1% levels.

While our estimates are not directly comparable to existing estimates in the literature using

survey and census data, it is still worthwhile to investigate the magnitudes, while highlight-

ing differences in the time periods covered. Bryan and Morten (2019) look at migration

defined as the current location differing from the location at birth and find a value of about

0.7 for Indonesia and 0.5 for the United States, using regencies for Indonesia and states for

the United States as spatial units to define origins and destinations. This represents lower

movement costs than what we find for our extensive measure of mobility at larger spatial

scales such as administrative regions in Table 17. When we define virtual regions of size

50km x 50km our estimates are lower and more in line with the estimates found in Bryan

and Morten (2019).
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6. Conclusion

Most of our data on human mobility in low-income countries comes from surveys that

show migration flows between survey rounds. Often the surveys are several years apart or

longer (e.g., decennial censuses). This means that mobility is only evident in these data

sources at a very long time horizon. In many studies, we can observe modest flows from

rural to urban areas between successive waves of panel data. We can sometimes see in

these data that households are connected to family members who have moved to other

parts of the country (or even across the world). The data from these surveys are useful and

informative in thinking about human mobility, but they provide little information about

higher-frequency mobility. The daily and weekly movements of people within countries

are crucial to the dissemination of information (e.g., about market opportunities) as well

as to the maintenance of family and social cohesion. We know anecdotally that this kind

of mobility is both important and ubiquitous; anyone who spends time at a bus station in

Accra or Arusha can see first-hand the numbers of people in motion. But we have hitherto

had little ability to quantify these flows or to understand their patterns.

In this paper, we use a new data source – pings from smartphone apps – that provides

objectively measured observations on the frequency with which people move around within

three African countries, and on the locations that they visit. The data reveal a strikingly

high degree of mobility – albeit for a non-representative subset of the population. Our

smartphone users travel frequently and relatively far. Travel is not limited to peri-urban

commuting, nor to city-to-city interchanges. On the contrary, we see substantial flows of

people between rural areas and big cities.

Are these flows sufficient to break down information barriers across locations? We have

no firm basis on which to answer that question. However, it would be difficult, given these

data, to argue that rural areas are completely cut off from cities – or even that rural residents

only have access to information about their nearby market towns. On the contrary, we see

that the largest cities attract flows of people from the entirety of their countries, serving

as magnets of economic activity. Using data on observed trips we estimate high returns to

visiting these locations. Returns are increasing with city size which has important impli-

cations for future city growth in Africa: cities will have to not only provide infrastructure

for their own resident populations but also for a large number of visitors. The analysis of

mobility costs reveals that these remain relevant and roughly proportional across different

spatial and temporal scales. Costs are also large enough to be highly salient, implying that

a reduction in mobility costs (e.g., through improvements in transportation infrastructure)

would likely generate an expansion in mobility at all levels.

Our data and analysis suffer from some limitations. We cannot entirely overcome the selec-

tion issues that make our sample unrepresentative, and we also cannot distinguish places
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that people visit deliberately – destinations – from those that they merely pass through.26

But we benefit from the large number of observations and the large number of users; our

smartphone owners are not outliers, even if they are in some degree unrepresentative.

In spite of these limitations, our analysis offers insights that can help guide future work on

spatial frictions and their relevance for development. The findings of this paper encourage

us to think critically and carefully before invoking models in which human mobility costs

are prohibitive (i.e., models in which people are unable to move across locations). The data

also suggest that we need to be careful in using models in which information does not flow

across locations; even though we observe only a fraction of the total mobility in our three

countries, the movements of people seem sufficient to spread information across space.

We need to look elsewhere, perhaps, for frictions that seem more capable of explaining

persistent sectoral and spatial gaps. For instance, movements from rural to urban areas

may involve the loss of social connection or informal insurance, or the loss of claims to land

and other resources in rural areas. There may be barriers for rural people – particularly

those who are older – in learning new kinds of work or new ways of life. Certainly there is

no shortage of potential frictions to consider.

We should also bear in mind that, for the poorest people in our three countries, the story

may be very different. Our data shed little light on the mobility of the poor within these

countries, and there is much work still to be done to understand the costs of mobility fric-

tions for the poor. Even small monetary costs of mobility can be highly salient for poor

people, and information may not flow freely across barriers of ethnicity, social class, age,

and other dividing lines. For this reason, we should continue to look for other ways to

assess the relevance of mobility frictions for the poor.

26In part, this reflects the lack of conceptual clarity between destinations and way points; the underlying
distinction is really based on the intent of the traveller, rather than on the characteristics of the locations or
the trips.
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Appendix (For Online Publication)

A. Details on data smartphone app data

A.1. Construction of the base sample

Our initial samples have 317,420 users in Kenya, 958,207 users in Nigeria and 780,760

users in Tanzania. According to the methodology presented in Section 2, we cannot infer

home locations for users never observed at night (7pm-7am) and 121,790, 297,895 and

173,886 users are thus removed in Kenya, Nigeria and Tanzania respectively. Moreover,

in Nigeria, inferred home locations with equal latitude and longitude were deemed erro-

neous which resulted in 905 users being removed. In Tanzania, we identified a data sink

of 372,661 users with an inferred home location at (35.75;-6.18), which is located within

the city of Dodoma. This represents 52% of the initial sample while we estimated the city

of Dodoma to host 0.5% of the population.27 We entirely remove users with home location

coordinates at the data sink from the sample.

A.2. Inferred home locations

The calculation of users’ home locations plays a critical role in our analysis of high-frequency

mobility patterns. First, home locations are often used as reference locations to observe

mobility trajectories. Second, home locations are used to evaluate the spatial coverage of

our sample by comparing the spatial distribution of users to the distribution of the pop-

ulation. Third, knowing where our users live help us infer key information allowing to

characterize them, e.g. by pairing users with DHS clusters. In our base sample, we define

home locations as the most frequently observed 2-decimal rounded coordinates at night

(between 7pm and 7am, local time). We consider that the likelihood of correct home loca-

tion prediction increases with both the number of nights a user is seen and the fraction of

these she is observed at the inferred home location. Therefore, we select a subset of users

that are seen at least 10 nights, of which at least half are at their home location. We call

this subset the "high-confidence" sample and use it as our core sample in the analysis of

high-frequency mobility patterns throughout the paper. We also build medium- and low-

confidence subsets that include users seen at least 8 and 5 nights respectively in order to

evaluate the robustness of our results - the required fraction of nights seen at home is kept

at 0.5. The corresponding sample sizes are given in Table A.1. Unsurprisingly, the sample

size decreases with the minimum number of observed nights imposed and nearly doubles

between the high- and low-confidence subsets.

However, differences in the distributions of users across density deciles between the subsets

27We use GRUMP polygons to which we apply a 3km buffer to define the city boundaries and we overlay
the WorldPop 2018 population map to estimate the population in Dodoma.
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is only minimal, as shown in Figures C.8 to C.10 , which supports the idea that the minimum

number of nights criterion used to build our core sample does not imply a selection of

atypical users.

Table A.1: Number of users by subset and country

Base High Medium Low
Kenya 195,630 18,535 23,490 37,249
Nigeria 659,407 78,694 96,954 146,346
Tanzania 234,213 22,728 28,853 46,116

TOTAL 1,089,250 119,957 149,297 229,711
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B. Pairing users with DHS information

In Section 3, we link users’ home locations with data from the most recently available

Demographic and Health Survey (DHS) data to characterize areas where our users live:

the 2014 standard DHS in Kenya, the 2018 standard DHS in Nigeria and the 2015-2016

standard DHS in Tanzania.28 DHS data are geo-referenced at the cluster level and cluster

coordinates are randomly displaced to maintain respondents’ confidentiality. Urban clusters

are displaced by up to 2 kilometers and rural clusters by up to 5 kilometers with 1% of

rural clusters being displaced up to 10 kilometers. The displacement is restricted such that

clusters stay within the administrative 2 area where the survey was conducted.

We first classify our users within urban and rural categories based on the overlay of users’

home location with GRUMP 3-km buffered city polygons (see section ?? for more details

on GRUMP city polygons). We then apply two criteria to associate each user with a set of

DHS clusters: (i) we select the set of DHS clusters located within a given distance from

her home location (10km for urban users and 5km for rural users) and (ii) we calculate

the average population density within a 5km buffer - that we call the ‘’experienced density‘’

- for both the user and the selected DHS clusters and we keep the subset of clusters with

an experienced density within 25% of the user’s. We assume there is some level of spa-

tial continuity in household characteristics conditional on population density to argue that

our phone users and DHS respondents selected through the matching procedure are likely

to have similar characteristics. Following that methodology, we pair 70% of our users in

the high-confidence sample with at least one DHS cluster (90% in Kenya, 66% in Nigeria,

72% in Tanzania). We call the subset of respondents within paired clusters the ‘’matched

DHS‘’ sample.29 Unsurprisingly, unmatched users are found in low density areas where the

probability of selection in the DHS is lower by design - the average experienced density for

unmatched users is estimated at 2,496 inh./km2 against 8,835 inh./km2 for users with at

least one paired cluster.

In order to appreciate potential differences between our users and the population as a

whole, we conduct t-tests for equality of means between the raw DHS and matched DHS

samples on a range of household characteristics. We rely mainly on characteristics for which

the spatial continuity is more likely to hold (e.g. housing characteristics (floor, walls, roof,

overcrowding), access to public services (electricity, water)). Moreover, we produce results

for rural and urban sub-samples separately to account for both the prevalence of urban users

in our sample and the lower matching rate in low density areas, which together may lead

to results being mainly driven by the urban component of the sample. We produce t-tests

28More information on sampling design at https://dhsprogram.com/
29Some clusters are paired to more than one user so the matched DHS sample contains a number of dupli-

cates. It is in fact equivalent to the weighted subset of respondents in clusters paired to at least one user, with
weights begin equal to the number of users the corresponding cluster is matched to.
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comparing our two weighted data streams, with bootstrapped standard errors robust to

heteroskedasticity. The survey weights are used for the reference DHS sample while those

of the matched DHS sample correspond to the number of users each cluster is paired with.

Definitions for all variables used are given in Table B.1.

Table B.1: Definitions of variables used in mean testing between DHS and matched DHS
samples.

Variable Definition Notes
Household size Total number of (de jure) household

members
Age of HH head Age of the household head
Education of HH

head
Level of education of the household
head in single years

Access to
electricity

Dummy equal to 1 if the household
has access to electricity

Radio Dummy equal to 1 if the household
has a radio

Television Dummy equal to 1 if the household
has a television

Rooms per adult Number of rooms used for sleeping
divided by the number of household
members older than 6

Access to piped
water

Dummy equal to 1 if the household
has an access to piped water

Calculated based on the main source
of drinking water for household
members. Our dummy is equal to 1
if the source of water is one of "piped
water", "piped into dwelling", "piped
to yard/plot", "public tap/standpipe"
or "piped to neighbor".

Constructed floor Dummy equal to 1 if main material
of the floor is not one of "natural",
"earth/sand", "dung", "rudimentary",
"wood planks", "palm/bamboo"

Constructed walls Dummy equal to 1 if main material
of the walls is not one of "natural",
"no walls", "cane/palm/trunks",
"cane/palm/trunks/bamboo",
"poles with mud", "dirt", "rudimen-
tary", "dung/mud/sod", "grass",
"bamboo with mud"

Constructed roof Dummy equal to 1 if main ma-
terial of the roof is not one of
"natural", "grass/thatch/palm leaf",
"no roof", "thatch/grass/makuti",
"mud", "rudimentary", "rustic mat",
"dung/mud/sod", "palm/bamboo",
"wood planks", "cardboard"
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C. Additional Tables and Figures

Figure C.1: Users and pings per user over time.

(a) Users - Kenya (b) Pings per users - Kenya

(c) Users - Nigeria (d) Pings per users - Nigeria

(e) Users - Tanzania (f) Pings per users - Tanzania
49



Figure C.2: Distribution of home locations in capital cities, high-confidence sample.

(a) Nairobi (b) Nairobi

(c) Abuja (d) Abuja

(e) Dodoma (f) Dodoma
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Figure C.3: Distribution of home locations in major cities, high-confidence sample.

(a) Mombasa (b) Mombasa

(c) Lagos (d) Lagos

(e) Dar Es Salaam (f) Dar Es Salaam
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Figure C.4: Users by population density decile, Landscan.

(a) Kenya (b) Nigeria (c) Tanzania
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Table C.1: T-tests for equality of means between matched DHS and DHS samples, Kenya.

Variable DHS Matched DHS Difference SE p-value

All

Household size 3.99 3.08 -0.91 0.02 0.000***
Age of HH head 42.93 37.29 -5.64 0.11 0.000***

Education of HH head 8.00 10.32 2.33 0.03 0.000***
Access to electricity 0.37 0.80 0.43 0.01 0.000***

Radio 0.67 0.74 0.06 0.01 0.000***
Television 0.35 0.64 0.29 0.01 0.000***

Rooms per adult 0.66 0.66 0.00 0.00 0.522
Access to piped water 0.44 0.79 0.35 0.01 0.000***

Constructed floor 0.53 0.90 0.37 0.01 0.000***
Constructed walls 0.64 0.92 0.28 0.01 0.000***
Constructed roof 0.89 0.99 0.10 0.01 0.000***

Urban

Household size 3.28 3.02 -0.26 0.03 0.000***
Age of HH head 38.60 36.82 -1.78 0.17 0.000***

Education of HH head 9.90 10.46 0.56 0.05 0.000***
Access to electricity 0.68 0.83 0.15 0.02 0.000***

Radio 0.74 0.74 0.00 0.01 0.774
Television 0.56 0.65 0.09 0.02 0.000***

Rooms per adult 0.68 0.66 -0.02 0.01 0.001***
Access to piped water 0.71 0.82 0.11 0.02 0.000***

Constructed floor 0.82 0.92 0.10 0.01 0.000***
Constructed walls 0.86 0.94 0.07 0.01 0.000***
Constructed roof 0.98 0.99 0.01 0.00 0.002***

Rural

Household size 4.52 4.33 -0.19 0.02 0.000***
Age of HH head 46.15 46.60 0.45 0.16 0.005***

Education of HH head 6.58 7.58 0.99 0.04 0.000***
Access to electricity 0.13 0.21 0.08 0.01 0.000***

Radio 0.63 0.70 0.07 0.01 0.000***
Television 0.19 0.25 0.07 0.01 0.000***

Rooms per adult 0.64 0.67 0.03 0.00 0.000***
Access to piped water 0.24 0.25 0.01 0.02 0.464

Constructed floor 0.31 0.38 0.07 0.01 0.000***
Constructed walls 0.46 0.46 0.00 0.02 0.949
Constructed roof 0.82 0.93 0.11 0.01 0.000***
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Table C.2: T-tests for equality of means between DHS and matched DHS samples, Nigeria.

Variable DHS Matched DHS Difference SE p-value

All

Household size 4.69 3.83 -0.86 0.02 0.000***
Age of HH head 45.29 45.17 -0.12 0.12 0.344

Education of HH head 7.43 11.52 4.10 0.04 0.000***
Access to electricity 0.60 0.98 0.39 0.01 0.000***

Radio 0.61 0.84 0.24 0.01 0.000***
Television 0.49 0.90 0.41 0.01 0.000***

Rooms per adult 0.74 0.65 -0.09 0.00 0.000***
Access to piped water 0.11 0.14 0.03 0.01 0.003***

Constructed floor 0.74 0.96 0.23 0.01 0.000***
Constructed walls 0.84 1.00 0.16 0.01 0.000***
Constructed roof 0.89 1.00 0.11 0.01 0.000***

Urban

Household size 4.44 3.83 -0.61 0.03 0.000***
Age of HH head 45.21 45.18 -0.02 0.18 0.900

Education of HH head 9.66 11.56 1.91 0.06 0.000***
Access to electricity 0.88 0.99 0.11 0.01 0.000***

Radio 0.72 0.85 0.13 0.01 0.000***
Television 0.73 0.90 0.18 0.01 0.000***

Rooms per adult 0.72 0.65 -0.08 0.01 0.000***
Access to piped water 0.14 0.14 -0.01 0.01 0.572

Constructed floor 0.89 0.96 0.08 0.01 0.000***
Constructed walls 0.95 1.00 0.04 0.01 0.000***
Constructed roof 0.98 1.00 0.02 0.00 0.000***

Rural

Household size 4.85 3.92 -0.93 0.03 0.000***
Age of HH head 45.34 44.77 -0.57 0.16 0.000***

Education of HH head 6.03 10.23 4.20 0.06 0.000***
Access to electricity 0.42 0.84 0.42 0.02 0.000***

Radio 0.54 0.67 0.14 0.01 0.000***
Television 0.35 0.77 0.43 0.01 0.000***

Rooms per adult 0.75 0.75 0.01 0.01 0.503
Access to piped water 0.09 0.14 0.05 0.01 0.000***

Constructed floor 0.64 0.96 0.32 0.01 0.000***
Constructed walls 0.77 0.98 0.21 0.01 0.000***
Constructed roof 0.83 0.99 0.16 0.01 0.000***

54



Table C.3: T-tests for equality of means between DHS and matched DHS samples, Tanzania.

Variable DHS Matched DHS Difference SE p-value

All

Household size 5.03 4.33 -0.70 0.04 0.000***
Age of HH head 45.43 41.66 -3.77 0.22 0.000***

Education of HH head 5.90 8.33 2.42 0.05 0.000***
Access to electricity 0.23 0.78 0.55 0.02 0.000***

Radio 0.52 0.66 0.14 0.01 0.000***
Television 0.21 0.65 0.44 0.02 0.000***

Rooms per adult 0.61 0.59 -0.02 0.00 0.000***
Access to piped water 0.38 0.67 0.29 0.02 0.000***

Constructed floor 0.44 0.95 0.51 0.02 0.000***
Constructed walls 0.80 0.98 0.18 0.01 0.000***
Constructed roof 0.75 0.99 0.24 0.01 0.000***

Urban

Household size 4.54 4.30 -0.24 0.07 0.001***
Age of HH head 42.22 41.56 -0.67 0.37 0.073*

Education of HH head 8.01 8.40 0.39 0.10 0.000***
Access to electricity 0.63 0.80 0.17 0.03 0.000***

Radio 0.65 0.66 0.01 0.02 0.462
Television 0.52 0.67 0.14 0.03 0.000***

Rooms per adult 0.62 0.59 -0.03 0.01 0.000***
Access to piped water 0.67 0.67 0.00 0.04 0.980

Constructed floor 0.87 0.96 0.09 0.02 0.000***
Constructed walls 0.96 0.98 0.03 0.01 0.005***
Constructed roof 0.97 0.99 0.02 0.01 0.002***

Rural

Household size 5.21 5.04 -0.16 0.05 0.002***
Age of HH head 46.61 44.40 -2.21 0.27 0.000***

Education of HH head 5.13 6.28 1.14 0.07 0.000***
Access to electricity 0.08 0.31 0.23 0.02 0.000***

Radio 0.47 0.59 0.12 0.01 0.000***
Television 0.09 0.29 0.20 0.02 0.000***

Rooms per adult 0.61 0.63 0.03 0.01 0.000***
Access to piped water 0.27 0.54 0.27 0.03 0.000***

Constructed floor 0.27 0.65 0.37 0.02 0.000***
Constructed walls 0.73 0.85 0.12 0.02 0.000***
Constructed roof 0.67 0.89 0.22 0.02 0.000***
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Figure C.5: Education and device ownership.
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Note: These figures show the distribution of education by device ownership. All figures use the
sample weights provided.
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Figure C.6: Age and device ownership.
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Note: These figures show the distribution of age by device ownership. All figures use the sample
weights provided.
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Figure C.7: Comparing user and population ranks at the first administrative level.

(a) World Pop, Kenya (b) Lanscan, Kenya

(c) World Pop, Nigeria (d) Lanscan, Nigeria

(e) World Pop, Tanzania (f) Lanscan, Tanzania
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Table C.4: Gravity model for mobility at the extensive margin between virtual regions,
origin cells of 50 residents or more.

Dependent variable:

(1) (2) (3) (4) (5) (6)

log(distance) −1.079∗∗∗ −0.964∗∗∗ −0.958∗∗∗

(0.039) (0.052) (0.066)
log(distance)×KEN −1.018∗∗∗ −0.829∗∗∗ −0.794∗∗∗

(0.058) (0.080) (0.115)
log(distance)×NGA −1.246∗∗∗ −1.129∗∗∗ −1.136∗∗∗

(0.051) (0.073) (0.095)
log(distance)×TZA −0.863∗∗∗ −0.770∗∗∗ −0.750∗∗∗

(0.043) (0.063) (0.073)

Origin FE Yes Yes Yes Yes Yes Yes
Dest. FE Yes Yes Yes Yes Yes Yes
Observations 11,015 11,015 9,954 9,954 8,674 8,674
R2 0.825 0.830 0.818 0.821 0.827 0.830

Note: Columns (1) and (2) report results for all cell pairs with positive mobility. Columns (3)-(4)
show results for the subset of non-adjacent cell pairs and columns (5)-(6) provide coefficient estimates
for a subset of cell pairs at least two rows/columns apart. Reported standard errors are two-way clus-
tered at the origin and destination levels. ∗, ∗∗, ∗∗∗ denote significance at 10%, 5% and 1% levels.
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Figure C.8: Fraction of users by population density deciles in Kenya.

(a) Base sample (b) High-confidence subset

(c) Medium-confidence subset (d) Low-confidence subset
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Figure C.9: Fraction of users by population density deciles in Nigeria.

(a) Base sample (b) High-confidence subset

(c) Medium-confidence subset (d) Low-confidence subset
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Figure C.10: Fraction of users by population density deciles in Tanzania.

(a) Base sample (b) High-confidence subset

(c) Medium-confidence subset (d) Low-confidence subset
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Table C.5: Origin of visitors in top 5 cities, Kenya.

Nairobi Mombasa Nakuru Eldoret Kisumu
(1,598 visitors) (942 visitors) (858 visitors) (437 visitors) (426 visitors)
Origin Visitors Origin Visitors Origin Visitors Origin Visitors Origin Visitors

Mombasa 21.5% Nairobi 69.2% Nairobi 64.9% Nairobi 52.6% Nairobi 58.5%
Thika 5.7% Malindi 3.4% Eldoret 3.3% Kitale 4.1% Mombasa 4.7%

Nakuru 5.2% Nakuru 1.5% Mombasa 3% Mombasa 3.4% Kakamega 2.8%
Kisumu 4.4% Thika 1% Kisumu 2.1% Kisumu 3% Eldoret 2.3%
Eldoret 4.3% Kisumu 0.6% Naivasha 1.4% Nakuru 2.3% Nakuru 1.4%

Other urb. 1.6% Other urb. 0.5% Other urb. 1.3% Other urb. 0.9% Other urb. 0.9%
Non-urban 57.3% Non-urban 23.8% Non-urban 24% Non-urban 33.6% Non-urban 29.3%

Note: Details provided in Table 8 note.

Table C.6: Origin of visitors in top 5 cities, Nigeria.

Lagos Kano Ibadan Abuja Onitsha
(4,921 visitors) (769 visitors) (2,842 visitors) (3,075 visitors) (1,777 visitors)
Origin Visitors Origin Visitors Origin Visitors Origin Visitors Origin Visitors

Abuja 23.5% Abuja 45.6% Lagos 70.5% Lagos 49.4% Lagos 43.3%
Ibadan 14% Lagos 19.5% Abuja 6.8% Kaduna 9.2% Abuja 11.8%

Abeokuta 8.1% Kaduna 11.6% Abeokuta 3.9% Port harc. 5.6% Enugu 8.2%
Port harc. 6.8% Maiduguri 3% Ilorin 3% Kano 5.5% Port harc. 5.9%
Benin city 6.1% Zaria 3% Oshogbo 2.5% Jos 3.3% Owerri 4.8%
Other urb. 4.6% Other urb. 2.6% Other urb. 2.3% Other urb. 2.7% Other urb. 3.7%
Non-urban 36.9% Non-urban 14.7% Non-urban 11.1% Non-urban 24.2% Non-urban 22.3%

Note: Details provided in Table 8 note.

Table C.7: Origin of visitors in top 5 cities, Tanzania.

Dar es salaam Zanzibar Mwanza Arusha Mbeya
(1,753 visitors) (738 visitors) (688 visitors) (832 visitors) (378 visitors)
Origin Visitors Origin Visitors Origin Visitors Origin Visitors Origin Visitors

Arusha 10.2% Dar es sa. 53.7% Dar es sa. 33.1% Dar es sa. 40.7% Dar es sa. 39.9%
Zanzibar 9.4% Arusha 4.1% Arusha 3.2% Moshi 10.7% Mwanza 2.9%
Mwanza 7.1% Mwanza 0.8% Musoma 2.5% Mwanza 3.1% Iringa 2.4%

Morogoro 6.3% Moshi 0.8% Tabora 1.7% Dodoma 2.4% Arusha 2.4%
Dodoma 4.5% Dodoma 0.8% Dodoma 1.3% Zanzibar 2.3% Sumbawanga 2.4%

Other urb. 3.7% Other urb. 0.4% Other urb. 0.9% Other urb. 1.7% Other urb. 1.9%
Non-urban 58.8% Non-urban 39.4% Non-urban 57.3% Non-urban 39.1% Non-urban 48.1%

Note: Details provided in Table 8 note.
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