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Abstract

I construct a consistent nonparametric test for endogeneity using a triangular simultaneous

equations model. In such a setting, I take the control function approach to obtain the condi-

tional moment of interest E[U |V ] , where U is the error term of the structural equation and

V is the error term from the reduced-form equation. This conversion opens a new way of

constructing a test because it significantly reduces the dimension when estimating the condi-

tional moment, which can alleviate the curse of dimensionality. In constructing a test, I use

nonparametric residuals to obtain the consistency of the test. My test has strengths in that it is

easy to implement as its asymptotic distribution is the standard normal and it can capture the

locally nonlinear correlation with kernel weighting. Also, a wild bootstrap test is proposed to

improve the finite sample performance. Using the data from Autor, Dorn, and Hanson (2013),

I test if the Chinese import exposure is endogenous with the US local employment. I find a

contradicting result between the Hausman test and the nonparametric tests.
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I Introduction

Endogeneity is commonly observed in many economic contexts. While assuming endogeneity

by economic theory, econometricians have focused on developing consistent estimation methods

to tackle endogeneity (See Card (2001), Miguel et al. (2004), and Killian et al. (2017) among

others). However, variables can be exogenous in one setting, but endogenous in another setting

even in the same data context (See Kocherlakota and Yi (1996), Semykina (2018) among others).

Therefore, detecting the presence of endogeneity is important as a preliminary step for determining

the estimation strategy in any empirical analysis. Due to a challenging testing procedure, there

are only a few tests for endogeneity. This paper develops a consistent nonparametric test for

endogeneity to aid in more accurate estimation strategy of the model.

My nonparametric test is based on a nonparametric triangular simultaneous equations model

from Newey et al. (1999) and Su and Ullah (2008). This model is essential to incorporate en-

dogeneity by introducing instrumental variables. Triangular simultaneous equations consist of a

structural equation (or second-stage equation) and a reduced-form equation (or first-stage equa-

tion). In addition, nonparametric estimation in each equation is run to overcome the weaknesses

of a parametric estimation because the misspecification of a model undermines the consistency of

a test.

Under the given setting, I take the control function approach (CFA), which allows an endoge-

nous factor to enter the structural equation. This endogenous factor in the structural equation is

presented as the conditional momentE[U |V ], where U is the error terms from a structural equation

and V is the error terms of a reduced-form equation. The CFA is practical in that it is equivalent

to a two-stage least squares estimation but simpler in that the estimation can be done only through

the structural equation (See Blundell and Powell (2003), Das et al. (2003), Horowitz (2011), Kasy

(2011), Murtazashvilli and Wooldridge (2016) among others).

Another advantage of implementing the CFA also relates to constructing a test for endo-

geneity, and it has not been used for any nonparametric test for endogeneity. In a conventional

triangular simultaneous equations setting, the moment condition of interest for testing endogeneity
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is E[U |X,Z] = 0, where X is a set of potentially endogenous variables, and Z is a set of poten-

tial instruments. With the CFA, I can convert the moment condition of interest to a simpler form

to construct a test with the reduced dimension. This contributes to resolving the curse of dimen-

sionality in a nonparametric setting as well as the computational burden in the estimation of the

conditional moment.

Using the converted moment condition, I set up the null hypothesis as no endogeneity against

a presence of endogeneity. Then I construct a conditional moment test using kernel weighting

(Li and Wang (1998), Hsiao and Li (2001), Henderson et al. (2008), Wang et al. (2018) among

others). The conditional moment test is simple to construct as it only requires the null hypothesis

compared to other nonparametric tests using the estimation under the alternatives (See Gonzalo

(1993), Fan and Li (2001), Su et al. (2013), Lee et al. (2013), Yao and Ullah (2013), Chen and

Pouzo (2015) among others). In addition, the kernel weighting enables the local approximation of

the conditional moment.

Once constructing a test, I introduce a Wild bootstrap procedure using Mammen’s distribu-

tion to improve the finite-sample performance of a test. Wild bootstrap is resampling residuals

using a two-point distribution, which allows heteroskedasticity as well as non-i.i.d. structure (See

Wu (1983), Liu (1988), Mammen (1993), Davidson and Flachaire (2008) among others). Since

Wild bootstrap is more robust than a pair bootstrap and resampling bootstrap (See Efron (1979),

Horowitz (2001, 2003) among others), it has been used in many previous studies (See Li and Wang

(1998), Fan and Li (2001) among others), but not in a simultaneous equations model.

There are two main contributions of this paper to econometrics. For one part is in the es-

timation in that I take the control function approach in a nonparametric triangular simultaneous

equations model. By applying the nonparametric estimation, this nonparametric test overcomes

the chronic limitations of a misspecification of the functional form. The nonparametric estimation

improves the power of the test because a correct model specification under the alternative ensures

the consistency of a test. In addition, I can convert the conditional moment of interest E[U |X,Z]

to E[U |V ] by taking the control function approach. I reduce the dimension of a conditional mo-
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ment of interest, which is important to resolve a potential problem of curse of dimensionality. This

converted moment condition has not been used for testing in the current literature and makes the

estimation of the conditional moment simpler.

The other part of the contributions lies in the simple construction and implementation of the

test by using a kernel weighting. Even though there are some test statistics that are difficult to

implement despite their advantages in accuracy, my test statistic is easy to implement because it

only requires the null hypothesis. Furthermore, I can capture nonlinear correlations with the kernel

weighting. Using the kernel increases the accuracy for detecting endogeneity as local approxi-

mation of the correlation between U and V becomes possible. In addition to the improvement in

accuracy, it can be a useful test due to its simplicity since it follows the standard normal under the

null. I also introduce a Wild bootstrap procedure to enhance the finite-sample performance.

A large literature has been developed on estimation methods of nonparametric simultaneous

equations (See Newey et al. (1999), Su and Ullah (2008), Matzkin (2008), Berry and Haile (2018),

Hahn et al. (2018), Imbens and Newey (2009) among others). However, as my test requires only

the null hypothesis, I do not need to implement these nonparametric two-stage estimation methods.

Rather, I can apply conventional nonparametric estimation methods to obtain Nadaraya-Watson

estimator or local linear estimator (See Pagan and Ullah (1999), and Li and Racine (2007) among

others).

For the current parametric tests for endogeneity, the Hausman test and Wu test are the most

popular endogeneity test in a parametric regression setting (See Wu (1973), Hausman (1978)).

Even though both tests are constructed in a different way, they are analogous in that the model

specification under the alternative is confined to parametric estimation. As noted earlier, the power

of a test inevitably declines if the model specification under the alternative is incorrect. Acknowl-

edging this, many empirical papers instead report the difference between OLS estimates and 2SLS

estimates as an alternative (Angrist and Evans (1998), Autor et al. (2013), Killian et al. (2017),

Semykina (2018) among others).

There have been a few papers on nonparametric tests for endogeneity (See Blundell and
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Horowitz (2007), Breunig (2015)). The advantage of these tests lies in their great performance

in size and power in a finite sample and they are good for a global approximation. Meanwhile, a

kernel weighting method is suited for the local approximation. If the data have nonlinear elements

in a small range of a variable, then local approximation with the kernel can capture the endogene-

ity more accurately. The use of kernel weighting in constructing my test can require additional

computational burden. However, as I reduce the dimension in the conditional moment of interest,

such computational burden of using the kernel function is lessened. Also, my test can enhance the

finite-sample performance with bootstrapping.

The paper is organized as follows. Section II introduces a model, hypotheses, and the test

statistic for endogeneity. In Section III, I conduct Monte Carlo simulations with other current test

statistics for endogeneity. Once introducing the extension of the conditional moment test to include

other exogenous variables in Section IV, I then apply the test to the empirical data in Section V.

I will test the endogeneity of Chinese import shock to the US with the US local unemployment

share using Autor et al. (2013). Section VI concludes the paper.

II A Consistent Nonparametric Test for Endogeneity

In this section, I introduce a triangular simultaneous equations model and hypotheses. Then, I

propose the test statistic for endogeneity and its asymptotic properties. Lastly, a wild bootstrap

procedure is proposed to improve the test’s performance in a finite sample using Mammen’s distri-

bution.

II.A Model and Hypotheses

In constructing a test for endogeneity, I consider a triangular nonparametric simultaneous equations

model of Newey et al. (1999) and Su and Ullah (2008), which is given as

{
yi = m (xi) + ui
xi = g (zi) + vi

(1)
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for i = 1, . . . , n, where yi is an observable scalar random variable, xi is a dx×1 vector of regressors,

and zi is a dz × 1 vector of instrumental variables with the unknown functions m : Rdx → R1

and g : Rdz → Rdx . All the variables are i.i.d. over i. ui and vi are disturbances such that

E[ui | xi, zi] = 0 and E[vi | zi] = 0 are satisfied. From equation (1), the moment condition of

interest in the structural equation is E[ui | xi, zi] = 0. Assuming the exogeneity of instrumental

variables, the moment condition itself can be used to test for endogeneity (Blundell and Horowitz

(2007) and Breunig (2015)).

As an alternative to estimate this triangular simultaneous equations model, the structural equa-

tion can be re-written as follows by taking the control function approach (Blundell and Powell

(2003), Das et al. (2003), Horowitz (2011), Kasy (2011), Murtazashvilli and Wooldridge (2016)

among others):

yi = m(xi) + ui

= m(xi) + E[ui | vi] + ui − E[ui | vi] (2)

= m(xi) + h(vi) + εi, where εi = ui − E[ui | vi]

= m1(xi, vi) + εi

It is easy to show E[εi | vi] = E[ui − E[ui | vi] | vi] = E[ui | vi] − E[ui | vi] = 0. More

importantly, for testing endogeneity, the moment condition E[ui | xi, zi] can be also expressed

from the equation (2) as

E[ui | xi, zi] = E[ui | xi − g(zi), zi]

= E[ui | vi]

The two moment conditions are equivalent under the exogeneity of Z. But the latter condition can

be useful because this conversion reduces the dimension, which can resolve curse of dimensionality

to some degree. Based on the re-written model, I develop a direct test for the endogeneity under the
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assumptions above, i.e., whether E[ui|vi] = 0 a.s. or not. The testing hypotheses are as follows:

H0 : Pr (E [ui|vi] = 0) = 1

H1 : Pr (E [ui|vi] = 0) < 1

Under H0, if E[ui | vi] = 0, this implies that there is no endogeneity in the model. If not, there

exists endogeneity. The test results will suggest which estimation strategy can give a consistent

and most efficient estimator.

I will first show E [ui|vi] = 0 is equivalent to E[f (vi)uiE[ui|vi]] = 0 since I use the latter

moment condition in constructing a test statistic. This has been used in other nonparametric test

literatures as well (Li and Wang (1998), Hsiao and Li (2001), Henderson et al. (2008), Wang et al.

(2018) among others). Showing the equivalence of two moment conditions is given in Theorem

1. Even though they are equivalent, the latter condition has an advantage by simplifying the form

of the test statistic by cancelling out the marginal density of vi in the denominator for estimating

E [ui|vi]. I will use the moment condition in Theorem 1 in constructing a test for endogeneity.

Theorem 1 E[ui|vi] = 0 iff E[f (vi)uiE[ui|vi]] = 0, where f (·) is the density function of vi that

is bounded away from zero for all v.

Proof of Theorem 1 I let f (v) and f(u|v) be the marginal density of vi and the conditional

density of ui given vi = v, respectively.

For any f (vi) > 0, I have

E [f (vi)uiE[ui|vi]] =

∫∫
u1

(∫
u2f (v, u2) du2

)
f (v, u1) du1dv

=

∫ (∫
u1f (u1|v) du1

)(∫
u2f (u2|v) du2

)
f 2 (v) dv

=

∫ (∫
uf (u|v) du

)2
f 2 (v) dv,

since ui is i.i.d. over i. Therefore, E[ui|vi] =
∫
uf (u|v) du = 0 iff E[f (vi)uiE[ui|vi]] = 0 since
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f (v) > 0. �

II.B Test Statistic and Asymptotic Properties

Define the probability density function of v̂i as f̂(v̂i) = 1
n−1

∑n
j 6=iK (H−1v (v̂j − v̂i)). The sample

analogue of E[uiE[ui | vi]f(vi)] = 0 can be derived as follows:

In = Ê[f̂ (v̂i) ûiÊ[ûi|v̂i]]

=
1

n

n∑
i=1

ûif̂ (v̂i)

{
1

(n− 1) |Hv| f̂ (v̂i)

n∑
j 6=i

ûjK
(
H−1v (v̂j − v̂i)

)}
(3)

=
1

n

n∑
i=1

ûi

{
1

(n− 1) |Hv|

n∑
j 6=i

ûjK
(
H−1v (v̂j − v̂i)

)}

=
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

ûiûjK
(
H−1v (v̂j − v̂i)

)
,

where K is a non-negative dx-variate kernel function, and Hv is a dx× dx bandwidth matrix that is

symmetric and positive definite; |Hv| is the determinant of Hv. The difference with Li-Wang type

test is that I use generated regressors inside the kernel function1. Note that

ûi = yi − m̂ (xi) ,

v̂i = xi − ĝ (zi)

where m̂(·) and ĝ (·) are consistent estimators under H0 using the conventional nonparametric

regression (either local constant or local linear). Since the test statistic is constructed under the

null hypothesis, I do not consider instrumental variable estimation.

For characterizing the asymptotic distribution, the following assumptions will be used.

(A1) {yi, Xi, Zi}ni=1 is independently and identically distributed (IID).

1Li and Wang (1998) use fixed regressors X inside the kernel function. Theorem 5 from Hsiao and Li (2001)

suggests a test using generated regressors inside the kernel function, but those generated regressors are from the

parametric estimation.
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(A2) E[u | z] = 0, σ2(v) = E[u2 | v], σ2(v) is continuous at v and E[σ2(v)] <∞.

The model assumes the i.i.d. distribution of {yi, Xi, Zi}ni=1. Also, as my interest lies in testing the

endogeneity of X , I assume the exogeneity of Z. The conditional variance σ2(v) is continuous at

v and its expectation is finite. I do not assume the homoskedasticity for the conditional variance.

(A3) f(x) is uniformly continuous at x,∀x ∈ G,G compact subset of R, 0 < f(x) ≤ Bf <

∞, and |f(x)− f(x′)| < mf |x− x′| for some 0 < mf <∞ is satisfied.

(A4) The kernel function K(·) is bounded and symmetric density function with compact support

such that
∫
K(ψ)dψ = 1. For ∀x ∈ R , |K(x)| < Bk < ∞. I assume |Kj(u)−Kj(v)| ≤

C1 |u− v| , for j = 0, 1, 2, 3.

In (A3), the conditional density f(x) satisfies the Lipschitz continuous condition. In addition, as it

is smooth and bounded, a Taylor expansion can be applied. When constructing the test, I use the

kernel function as a weighting function. Regarding properties of the kernel function, it is bounded

and symmetric. As in f(x) , the kernel function satisfies the Lipschitz continuous function.

(A5) As n → ∞, each element of Hv, Hz, Hx → 0. i) It satisfies n1/2 |Hz| |Hv|1/2 / lnn → ∞,

n |Hv|2 →∞, and n |Hv|6 → 0. ii) n |Hz| / lnn→∞ and n |Hx| / lnn→∞.

This assumption is on the restriction of the bandwidth. A5-i) is for the asymptotic properties of the

proposed test statistic and A5-ii) is the standard assumptions for nonparametric estimation. (A5)-i)

are the additional assumptions because I apply the nonparametric estimation to obtain the residuals

inside the kernel function. For parametric residuals, this assumption is not needed as seen in Hsiao

and Li (2001).

(A6) m(·) and g(·) are continuous and twice differentiable in X and Z respectively.

The last assumption (A6) is to allow for the Taylor expansion and especially differentiability of

g(·) is necessary in terms of applying a Taylor expansion inside the kernel function of the test

statistic for all the following theorems.
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Based on the assumptions, I standardize the estimator,

Jn =
√
n2 |Hv|In/

√
Ω̂,where Ω̂ =

2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

û2i û
2
jK
(
H−1v (v̂j − v̂i)

)

Theorem 2 Under H0, as Ω̂ is a consistent estimator of Ω = 2[
∫
K2(ψ)dψ]E[σ4(v)f(v)],

Jn → N(0, 1) as n→∞

This shows that the asymptotic distribution of this test statistic follows the standard normal distri-

bution. Based on this, the asymptotic critical value of the test can be calculated. Therefore, when

Jn is large enough to exceed the critical value of N(0, 1) at α-percent level, then I reject the null

hypothesis, meaning that the variable of our interest is not endogenous. Otherwise, I accept the

null hypothesis.

For the asymptotic properties under the alternative, I introduce the Pitman local alternatives

as follows:

H1(δn) : m1(xi, vi) = m(xi) + δnl(vi) ,

where l(·) is continuously differentiable and bounded, and δn = n−1/2 |Hv|−1/4. Based on the

equation (2), note that l(·) does not include the elements of xi because m1(xi, vi) is separable by

construction of the model2.

Theorem 3 Under the Pitman local alternative, if δn = n−1/2 |Hv|−1/4, then

Jn
d→ N(E[l(vi)

2f(vi)]/
√

Ω, 1) as n→∞.

Then, as the magnitude of E[l(vi)
2f(vi)]/

√
Ω increases, the test statistic deviates farther from

the zero mean, and the local power increases. However, the variance remains at one for both

2This is different from Yao and Ullah (2013) which tests for a relevant variable. Under the alternative, as they do

not assume the separability of two sets of variables x1i and x2i ,m(x1i, x2i) = m(x1i) + δn l(x1i, x2i) under the

alternative.
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hypotheses.

Theorem 4 Assuming (A1)-(A6) and under H1, Pr[Ĵn > Bn] → 1 for any non-stochastic se-

quence {Bn : Bn = o(
√
n2 |Hv|)}. Under H1, În = In + op((n |Hv|1/2)−1), where In =

E[(h(vi))
2f(vi)], and Ω̂ = Ω + op(1).

Theorem 4 suggests the consistency of the test statistic. Under H1, the probability of rejecting the

null will converge to 1.

II.C Bootstrap Method

As the asymptotic normal approximation does not perform well in small sample settings, I propose

a wild bootstrap test as an alternative. Hardle and Mammen (1993) proposed a wild bootstrap

method using two-point distribution. Wild bootstrap method has advantages among different boot-

strap methods in that it can generate the non-i.i.d. samples as well as allowing heterogeneity in the

sample. Among the choices for a two-point distribution, I use Mammen’s distribution rather than

Rademacher distribution because it does not require the symmetry of a distribution. In this regard,

I apply a wild bootstrap method using Mammen’s distribution. Steps to get a bootstrap test statistic

are given below.

Step 1 Estimate ĝ(zi) and m̂(xi) by a nonparametric kernel estimation (either LCLS or LLLS)

for a structural and reduced-form equation respectively. Note that this is not an instrumental

variable (IV) estimation.

Step 2 Generate u∗i as the wild bootstrap error. I construct u∗i = 1−
√
5

2
ûi with the probability of

1+
√
5

2
and u∗i = 1+

√
5

2
ûi with the probability of 1 − 1+

√
5

2
. It is easy to show E[u∗i ] = 0,

E [u∗2i ] = û2i , and E[u∗3i ] = û3i .

Step 3 Generate y∗i , where y∗i = m̂(xi) + û∗i under the null hypothesis.
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Step 4 Using the bootstrap sample {y∗i , xi, zi}ni=1, regress y∗i on x∗i to obtain m̂∗(x∗i ), and get

û∗i = y∗i − m̂∗(xi). Under the null, the variable of interest lies in the structural equation by

taking a control function approach. Thus, I do not generate the wild bootstrap sample on

{xi, zi}ni=1. Therefore, v̂∗i = v̂i.

Step 5 With {û∗i , v̂∗i }ni=1, compute the bootstrap test statistic J∗n and repeat above procedure for B

times. In the simulation, the number of bootstrapping used is 399.

Step 6 Based on the empirical distribution of J∗n, calculate the critical value c∗ and obtain the p-

value, which is P (Jn ≥ c∗). If p-value is less than 0.05 at 5% significance level, the null is

rejected.

Following these bootstrap procedures, I can obtain the asymptotic distribution of J∗n. I will show

how the bootstrap test performs in the Monte Carlo Simulations. The asymptotic distribution of

bootstrap test under the null is shown in Theorem 5.

Theorem 5 Let J∗n = n |Hv|1/2 I∗n/
√

Ω̂∗, where Ω̂∗ = 2
n(n−1)|Hv |

∑n
i=1

∑n
j 6=i û

∗2
i û
∗2
j K

(
H−1v (v̂∗j − v̂∗i )

)
.

Under H∗0 , as Ω̂∗ is a consistent estimator of Ω = 2[
∫
K2(ψ)dψ]E[f(v)σ4(v)], J∗n → N(0, 1) in

distribution as n→∞.

The proofs of Theorem 5 will follow similarly to those of Theorem 2. Under the H1(δn), P (Jn >

c∗) → 1 asymptotically, where c∗ denotes the bootstrap critical valude based on the boostrap

samples. This shows the consistency of the bootstrap test statistic.

III Simulations

III.A Data Generating Processes
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Now, I perform the test for endogeneity using three different data generating processes. For DGP1,

I followed data generating process from Newey and Powell (2003). Here, {Yi, Xi, Zi}ni=1 does not

have a bounded support.

DGP1:

 Yi = m(Xi) + Ui = log(| Xi − 1 | +1)sgn(Xi − 1) + Ui

Xi = g(Zi) + Vi = Zi + Vi

,

where i = 1, ..., n ,

and errors Ui Vi, and Zi are generated as
Ui

Vi

Zi

 ∼ i.i.d. N


1 θ 0

θ 1 0

0 0 1



Next, I do the simulations where {Yi, Xi, Zi}ni=1 has a bounded support in DGP2 and DGP3. DGP2

is from Su and Ullah (2008) and DGP3 is modified from DGP2. Yi = 1 + 2exp(Xi)/(1 + exp(Xi)) + Ui

Xi = Zi + Vi

, where i = 1, ..., n

errors Vi, and Zi are generated as

Vi = 0.5wi + 0.2vx, Zi = 1 + 0.5vz,

in which vy, vx, wi are i.i.d. sum of 48 independent random variables each uniformly distributed

on [-0.25,0.25].

DGP2 : Ui = θwi + 0.3vy

DGP3 : Ui = θ(wi + 2w2i ) + 0.3vy

For all three data generating processes, θ = 0, 0.2, 0.5, and 0.8, which indicates no endogeneity,

weak endogeneity, medium endogeneity and strong endogeneity, respectively. In particular, when
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θ = 0, note that it refers to no endogeneity and DGP2 and DGP3 become identical. The main

difference between two data generating processes is how Ui and Vi are correlated in terms of a

functional form in the presence of endogeneity while the model is still correctly specified. In

this regard, the simulation results for DGP3 will present how my nonparametric test captures such

nonlinear terms under the alternative.

For bandwidth selection, I use rule-of-thumb bandwidths for both the estimation and the test.

For the estimation, I use local linear estimation with a second-order Epanechnikov kernel by using

a rule-of-thumb bandwidth3, which is hx = 2.34std(xi)n
−1/5 and hz = 2.34std(zi)n

−1/5 for the

structural equation and reduced-form equation respectively. I obtain m̂(xi) = α̂ from (α̂, β̂) =

arg max
α,β

∑n
t=1(yt − α − β(xi − xt))

2. For the test bandwidth, hv = c · std(xi)n
−1/5 and c =

0.5, 1.06, 1.5. For the Blundell and Horowitz (2007) test, I use the cross-validation bandwidth for

estimating the joint density of (X,Z), and obtain the bandwidth by multiplying n1/5−7/24 times

the cross-validation bandwidth. For the Breunig test (2015), I use series estimation based on his

simulation settings. Since both tests use a Fourier series as a basis function, and I implement cosine

basis functions given by fj(t) =
√

2 cos(jπt) for j = 1, 2, ...M . I set M = 40 and the smoothing

parameter as τ j = j−1. The number of repetition is 1000 for the sample size of 100, and 500 for

the sample size of 400. The number of bootstrap repetitions is 399 for both sample sizes.

III.B Simulation Results

For each data generating process, both the size and the power are estimated by changing the

strength of endogeneity (the value of θ). I then compare my test’s performance with the Haus-

man test, the Blundell and Horowitz (2007) test (BHn), and the Breunig (2015) test (Bn). The

Hausman test is a parametric test, where it measures the difference between OLS and 2SLS esti-

mates. While Blundell and Horowitz (2007) apply a kernel-based estimation and Breunig (2015)

applies a series-based estimation, both use Fourier series in constructing a test statistic.

3This rule-of-thumb bandwidth when using a second-order Epanechnikov kernel is suggested by Henderson et al.

(2012).
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Table 1-4 represent both size and power for each data generating process with different values

of bandwidth. Other than my conditional moment test (Jn and J∗n), all other tests’ performance

does not vary with the bandwidth.4 In addition, I apply bootstrap procedure to the conditional

moment test (Jn and J∗n) as its asymptotic distribution follows the standard normal as in Theorem

5 to improve a finite-sample performance. However, as the asymptotic distribution for both BHn

and Bn is not pivotal, I do not apply bootstrap procedure.

Table 1 presents the estimated size for all cases. As mentioned earlier, DGP2 and DGP3 results

are identical when there exists no endogeneity. The bootstrap size of my conditional moment test

is close to the correct size at each significance level although Jn is undersized in the asymptotic

test5. For different bandwidths, their estimated size is close to the nominal size in all significance

levels and its performance improves with the increase in size. Overall, the size of the Hausman

test is close to the correct size for other significance levels. In addition, the BHn and Bn tests are

undersized, but their performance is better in the bounded support of {Yi, Xi, Zi}ni=1 since both

tests assume the bounded support.

In Table 2, the power of DGP1 is shown for a different level of endogeneity under an un-

bounded support of {Yi, Xi, Zi}ni=1. With weak endogeneity, the power of the test is slightly over

the nominal size. As the strength of endogeneity increases, the test becomes more powerful. Fur-

thermore, the power increases as the bandwidth increases, which can be explained by Theorem

3. In all sample sizes, the Hausman test performs better than the conditional moment test except

when there is a stronger endogeneity (θ = 0.8). While the rejection probabilities of BHn, and Bn

test rise as the sample size as well as the level of endogeneity increase, it does not perform as well

as the conditional moment test.

The power of DGP2 is presented in Table 3. In a small sample, my conditional moment test is

the most powerful at each level of endogeneity among all tests. The power of the conditional mo-

ment test is almost equal to 1 with the sample size of 400 even in the presence of weak endogeneity

4Even though Blundell and Horowitz (2007) applies a kernel-based estimation, they construct a series-based test.

Thus, different bandwidths for the test only applied to the conditional moment test.
5This underestimation of the size has been also noted in Li and Wang (1998) and Hsiao and Li (2002).
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with the bounded support case. Hausman test performs equally as well as the conditional moment

test except when under the weak endogeneity for both small and large sample sizes. Overall, BHn

test performs better mostly in a large sample. However, the power of BHn is slightly over the

nominal size in a small sample. BHn test outperforms Bn both in small and large samples.

Table 4 presents the power of DGP3, where a nonlinear correlation between Ui and Vi is

present. Considering that my nonparametric test can capture the nonlinear relationship between

Ui and Vi, the test performance compared to Hausman test is noticeable in estimating the power

for all sample sizes. First, due to a presence of the nonlinear term in the data generating process,

my test’s power reaches almost 1 even in a small sample size as well as the weak endogeneity.

In contrast, as Hausman test cannot capture the nonlinear relationship, power falls compared to

DGP2 in a small sample. In addition, the Hausman test’s power is less than its performance with

the presence of a linear correlation. This implies that the Hausman test can be inconsistent if the

model specification is incorrect under the alternative.

In summary, even though I observed the undersized test for Jn using asymptotic critical val-

ues, the estimated size based on bootstrap procedure is close to the nominal size for all the data

generating processes. As the strength of endogeneity increases, the test becomes more powerful.

At the same time, as the sample size increases, the tests become more powerful for all cases. Com-

pared to the Hausman test, BHn, and Bn tests, my conditional moment test performs the best in

that it can detect the nonlinear relationship between Ui and Vi and it is robust to any choice of

bandwidth.

Furthermore, I can compare clearly the nonparametric tests’ performance between a kernel

method and a series-based method. BHn test uses a series method for the test but still applies a

kernel method in the estimation while Bn test is solely on series-based estimator. As kernel-based

method performs well in a local approximation, BHn test is better than Bn test overall. However,

the current test dominates all the other tests in both sample sizes in that I use kernel techniques in

running an estimation and constructing a test to capture the local correlation.

15



Table 1: Size of Each Test

DGP1 DGP2 DGP3

c 1% 5% 10% 1% 5% 10% 1% 5% 10%

n = 100 J∗n 0.5 0.011 0.048 0.093 0.015 0.053 0.102 0.015 0.053 0.102

1.06 0.011 0.045 0.084 0.009 0.050 0.106 0.009 0.050 0.106

1.5 0.009 0.043 0.089 0.005 0.048 0.089 0.005 0.048 0.089

Jn 0.5 0.007 0.022 0.042 0.013 0.028 0.053 0.013 0.028 0.053

1.06 0.006 0.010 0.018 0.008 0.014 0.022 0.008 0.014 0.022

1.5 0.004 0.005 0.010 0.002 0.007 0.011 0.002 0.007 0.011

BHn − 0.000 0.002 0.004 0.004 0.005 0.008 0.004 0.005 0.008

Bn − 0.026 0.040 0.053 0.034 0.051 0.061 0.034 0.051 0.061

Hn − 0.009 0.047 0.099 0.007 0.055 0.103 0.007 0.055 0.103

n = 400 J∗n 0.5 0.010 0.058 0.090 0.008 0.048 0.098 0.008 0.048 0.098

1.06 0.008 0.046 0.098 0.010 0.044 0.104 0.010 0.044 0.104

1.5 0.012 0.046 0.100 0.010 0.030 0.088 0.010 0.030 0.088

Jn 0.5 0.010 0.026 0.058 0.004 0.014 0.050 0.004 0.014 0.050

1.06 0.010 0.018 0.028 0.002 0.008 0.016 0.002 0.008 0.016

1.5 0.004 0.010 0.018 0.002 0.006 0.006 0.002 0.006 0.006

BHn − 0.000 0.006 0.022 0.004 0.020 0.042 0.004 0.020 0.042

Bn − 0.000 0.002 0.008 0.000 0.004 0.004 0.000 0.004 0.004

Hn − 0.018 0.050 0.100 0.014 0.050 0.098 0.014 0.050 0.098

Note: Note that there is no difference in size between DGP2 and DGP3 because the difference between the

two data generating processes comes from the non-zero value of θ. Except for Jn and J∗n, all other tests

are not constructed based on the kernel techniques. Therefore, the test performance does not vary with the

bandwidth choice.
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Table 2: Power of Each Test of DGP1

θ = 0.2 θ = 0.5 θ = 0.8

c 1% 5% 10% 1% 5% 10% 1% 5% 10%

n = 100 J∗n 0.5 0.009 0.054 0.116 0.084 0.206 0.313 0.675 0.884 0.936

1.06 0.013 0.065 0.121 0.174 0.379 0.506 0.901 0.981 0.996

1.5 0.017 0.085 0.138 0.254 0.491 0.621 0.958 0.998 0.998

Jn 0.5 0.007 0.023 0.055 0.091 0.174 0.233 0.772 0.888 0.933

1.06 0.005 0.020 0.033 0.138 0.224 0.290 0.931 0.973 0.981

1.5 0.005 0.015 0.023 0.135 0.227 0.302 0.955 0.981 0.990

BHn − 0.015 0.067 0.141 0.029 0.107 0.190 0.008 0.016 0.022

Bn − 0.020 0.034 0.043 0.018 0.037 0.045 0.078 0.110 0.144

Hn − 0.497 0.635 0.711 0.558 0.678 0.752 1.000 1.000 1.000

n = 400 J∗n 0.5 0.030 0.118 0.190 0.708 0.908 0.966 1.000 1.000 1.000

1.06 0.068 0.192 0.300 0.948 0.994 0.998 1.000 1.000 1.000

1.5 0.100 0.272 0.360 0.978 1.000 1.000 1.000 1.000 1.000

Jn 0.5 0.042 0.094 0.146 0.788 0.908 0.950 1.000 1.000 1.000

1.06 0.070 0.128 0.180 0.954 0.982 0.994 1.000 1.000 1.000

1.5 0.070 0.144 0.188 0.972 0.994 1.000 1.000 1.000 1.000

BHn − 0.472 0.636 0.730 0.564 0.724 0.798 0.052 0.068 0.090

Bn − 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.028 0.046

Hn − 0.936 0.960 0.974 0.946 0.976 0.982 1.000 1.000 1.000

Note: Except for Jn and J∗n, all other tests are not constructed based on the kernel techniques. Therefore,

the test performance does not vary with the bandwidth choice.
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Table 3: Power of Each Test of DGP2

θ = 0.2 θ = 0.5 θ = 0.8

c 1% 5% 10% 1% 5% 10% 1% 5% 10%

n = 100 J∗n 0.5 0.372 0.621 0.730 0.995 1.000 1.000 1.000 1.000 1.000

1.06 0.601 0.827 0.888 1.000 1.000 1.000 1.000 1.000 1.000

1.5 0.722 0.882 0.939 1.000 1.000 1.000 1.000 1.000 1.000

Jn 0.5 0.443 0.597 0.677 0.997 0.999 1.000 1.000 1.000 1.000

1.06 0.604 0.756 0.808 1.000 1.000 1.000 1.000 1.000 1.000

1.5 0.640 0.780 0.839 1.000 1.000 1.000 1.000 1.000 1.000

BHn − 0.004 0.005 0.008 0.016 0.036 0.056 0.026 0.048 0.077

Bn − 0.034 0.051 0.061 0.062 0.091 0.114 0.065 0.100 0.128

Hn − 0.007 0.055 0.103 1.000 1.000 1.000 1.000 1.000 1.000

n = 400 J∗n 0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.06 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Jn 0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.06 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BHn − 0.004 0.020 0.042 0.726 0.756 0.802 0.744 0.802 0.830

Bn − 0.000 0.004 0.004 0.006 0.016 0.044 0.010 0.024 0.048

Hn − 0.014 0.050 0.098 1.000 1.000 1.000 1.000 1.000 1.000

Note: Except for Jn and J∗n, all other tests are not constructed based on the kernel techniques. Therefore,

the test performance does not vary with the bandwidth choice.
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Table 4: Power of Each Test of DGP3

θ = 0.2 θ = 0.5 θ = 0.8

c 1% 5% 10% 1% 5% 10% 1% 5% 10%

n = 100 J∗n 0.5 0.993 0.996 0.998 0.999 1.000 1.000 0.999 1.000 1.000

1.06 0.994 1.000 1.000 0.999 1.000 1.000 0.999 1.000 1.000

1.5 0.995 1.000 1.000 0.999 1.000 1.000 0.999 1.000 1.000

Jn 0.5 0.997 0.998 0.999 1.000 1.000 1.000 1.000 1.000 1.000

1.06 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.5 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BHn − 0.004 0.005 0.008 0.029 0.107 0.190 0.034 0.116 0.206

Bn − 0.034 0.051 0.061 0.018 0.037 0.045 0.020 0.038 0.047

Hn − 0.007 0.055 0.103 0.558 0.678 0.752 0.562 0.691 0.748

n = 400 J∗n 0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.06 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Jn 0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.06 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BHn − 0.472 0.636 0.730 0.564 0.724 0.798 0.578 0.734 0.810

Bn − 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Hn − 0.936 0.960 0.974 0.946 0.976 0.982 0.952 0.976 0.982

Note: Except for Jn and J∗n, all other tests are not constructed based on the kernel techniques. Therefore,

the test performance does not vary with the bandwidth choice.
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IV Extension: The Case with Other Exogenous Variables

Extending the prvious model, I consider a case with both endogenous and exogenous regressors.

{
yi = m(xi1, xi2) + ui
xi = g(zi, xi2) + vi,

where i = 1, ..., n, yi is an observable scalar random variable, m(·) denotes a structural function

of unknown form, xi1 is a dx1 × 1 vector of endogenous regressors, and xi2 is a dx2 × 1 vector

of exogenous regressors. g(·) is a dx1 × 1 vector of functions of the instruments. zi is a dz × 1

vector of instrumental variables. ui and vi are disturbances such that E[ui | zi, xi2] = 0 and

E[vi | zi, xi2] = 0 are satisfied. Additional assumptions are needed for this extension.

(B1) {Yi, X1i, X2i, Zi}ni=1 is independent and identically distributed.

(B2) E [u| z, x2] = 0.σ2(v) = E[u2 | v], σ2(v) is continuous at v and E[σ2(v)] <∞.

(B3) f(x) is differentiable, 0 < f(x) ≤ Bf < ∞, and |f(x)− f(x)| < mf |x− x′| for some

0 < mf <∞ is satisfied.

(B4) The kernel function K(·) is bounded and symmetric density function with compact support

such that
∫
K(ψ)dψ = 1. For ∀x ∈ R , |K(x)| < Bk < ∞. I assume |Kj(u)−Kj(v)| ≤

C1 |u− v| , for j = 0, 1, 2, 3.

(B5) As n → ∞, |Hv| , |Hz| , |Hx1| , |Hx2 | → 0. i) It satisfies n1/2 |Hz| |Hv|1/2 / lnn → ∞,

n |Hv|2 →∞, and n |Hv|6 → 0. ii) n |Hz| / lnn→∞ and n |Hx| / lnn→∞.

(B6) m(·) and g(·) are continuous and twice differentiable in X and Z respectively.

The test statistic will be written as follows:

In =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

ûiûjK
(
H−1v (v̂j − v̂i)

)
,

where ûi = yi − m̂(xi1,xi2), v̂i = x1i − ĝ(zi, xi2), and both m̂(·) and ĝ(·) are nonparametric

estimates.
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Note that the moment condition of interenst with other exogenous variables are identical to the

previous case.

E[ui | x1i, x2i, zi] = E[ui | x1i − g(zi, x2i), x2i, zi]

= E[ui | vi]

The standardized test statistic is

Jn =
√
n2 |Hv|In/

√
Ω̂,

where Ω̂ =
2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

û2i û
2
jK
(
H−1 (v̂j − v̂i)

)
The extension of the test statistic is not complicated because the test statistic does not change as it

analyzes the correlation between ui and vi. The only difference is how the residuals are obtained

from the estimation, where ûi = yi − m̂(xi) and v̂i = xi − ĝ(zi). In the next section, I will apply

the test for endogeneity using the extension.

V Application

By extending the empirical analysis of Autor, Dorn, and Hanson (ADH, 2013), I apply my test

for endogneity. In their paper, they analyze the impact of Chinese import exposure on the US

local labor market outcomes including employment share and wages. I mainly focus on the US

local employment share in manufacturing. The triangular simultaneous equations are set up is as

follows. {
∆Lmit = αt + β1∆IPWuit +X ′itβ2 + uit
∆IPWuit = γt + δ1∆IPWoit +X ′itδ2 + vit

∆Lmit is decadel change in the manufacturing share of the working-age population in commuting

zone i. ∆IPWuit is the change in import exposure to the US. ∆IPWoit is the change in import

exposure to other high-income markets. Following the same model specifications given in ADH
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(2013), my main interest is on testing the endogeneity of US trade exposure, ∆IPWuit.

For the testing, two model specifications are considered: One (Model 1) is including only a

time dummy, and the other (Model 2) is including ∆(imports from China to US)/worker, percent-

age of employment in manufacturing in the previous period, and census division dummies. For

the parametric estimation, the pooled 2SLS is used as in ADH (2013) for constructing the Haus-

man test. As I did in simulations, I present the results of my test in comparison with the Blundell

and Horowitz (2007) test (BHn), the Breunig (2015) test (Bn), and the Hausman test (Hn). For

the nonparametric tests, local linear estimation is used and its bandwidth is chosen with cross-

validation. For Breunig (Bn) test, I run the local polynomial estimation in getting the residuals. I

report both asymptotic and bootstrap p-values. The number of bootstrap is 399. For a test statistic,

the rule of thumb bandwidth is used for constructing a test statistic using a Gaussian kernel.

Before presenting the test results, Figure 1 and Figure 2 gives an idea how the residuals ui

and vi are correlated when they are estimated differently either in parametric or in nonparametric

estimation. The dotted line is to denote the 95% confidence interval. If the zero line is inside the

confidence interval, it implies no significant correlation. For Figure 1, both parametric and non-

parametric residuals present a positive significant correlation. In terms of nonparametric residuals,

the positive correlation is more present where the data are concentrated. However, the correla-

tion between parametric residuals and nonparametric residuals is shown differently for Model 2 in

Figure 2. While I can observe a positive correlation using parametric residuals, I do not see any

significant correlation in nonparametric residuals ui,NP and vi,NP . This contradicting pattern of

the correlation can imply a potential problem of misspecification.

The test results are given in Table 5. For the test bandwidth of my test, I use hv = c ·

std(vi)n
−1/5 and c = 0.5, 1.06, 1.5. For Model 1, I reject the null hypothesis both in asymptotic

and bootstrap test at 5% significance level. This result is also consistent with the Hausman test, the

Blundell and Horowitz (2007) test, and the Breunig (2015) test. However, I have a contradicting

test result with Hausman test in Model 2. All nonparametric tests do not reject the null hypothesis

with the high p-values while the Hausman test still rejects the null hypothesis at 5% significance
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Figure 1: Correlation between ûi and v̂i in Model 1

Figure 2: Correlation between ûi and v̂i in Model 2
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level.

Table 5: P-Values of Each Model

J∗n Jn BHn Bn Hn

c 0.5 1.06 1.5 0.5 1.06 1.5 − − −

Model 1 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.034 0.000

Model 2 0.115 0.499 0.679 0.232 0.487 0.616 0.120 1.000 0.000

Note: Except for Jn and J∗n, all other tests are not constructed based on the kernel tech-

niques. Therefore, the test performance does not vary with the bandwidth choice.

There can be two possible explanations why I have such a contradicting test results for endo-

geneity. Considering that Model Specification 2 is estimated by adding other exogenous variables,

some factors which cause endogeneity of Chinese import variable might have been filtered out by

those variables. In addition, there could the misspecification of the model in terms of the functional

form. While the nonparametric tests are not confined to a functional form of the model, parametric

tests are. Thus, the misspecification of the functional form can result in the inaccurate detection of

endogeneity.

Based on the test results, I further estimate the marginal effect of the Chinese import exposure

to US local employment share in manufacturing to discuss the potential bias for both models. The

estimation results are given in Figure 3. For Model 1, the nonparametric instrumental variable

estimation is applied following Darolles et al. (2011). The global nonparametric estimate is -0.883

while the estimate in ADH (2013) is -0.746. This implies that the estimate is overestimated in

ADH (2013).

For Model 2, I apply conventional nonparametric estimation because the null hypothesis is

not rejected. The global nonparametric estimate is -0.06 and the 2SLS estimate in ADH (2013)

is -0.538. The difference between the global nonparametric estimate and 2SLS estimate becomes

larger because I do not implement the nonparametric instrumental variable estimation. Even with

the parametric OLS estimate, -0.183, it is underestimated in this model specification. In brief,

this estimation result implies that the presence of endogeneity is a preliminary step and then the
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functional form of the estimation strategy is the secondary step in reducing the potential bias of an

estimator.

The economic intuition why Chinese import exposure may not be endogenous lies in the in-

clusion of a variable for the percentage of employment in manufacturing in the previous period. By

controlling the percentage of employment in manufacturing in the previous period, this can reflect

the shift in the US demand curve to the left, which accompanies the decrease in income. Then,

the Chinese import exposure shifts the domestic supply to the left, but it may not further increase

Chinese imports because of a decrease domestic demand, which can cut down the simultaneous

causality of Chinese import exposure and the current US local employment share.

Figure 3: Marginal Effect of Chinese Import Exposure

VI Conclusion

Endogeneity is commonly observed in economics by assumption and estimated with instrumen-

tal variables in many applied economic papers (Angrist and Evans (1998), Autor et al. (2013),

among others). However, testing for the presence of endogeneity cannot be underestimated due

to consistency and efficiency issues. Moreover, not every variable which has been believed to be
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endogenous is endogenous in every context. Even though there is a large literature on how to deal

with the endogeneity in the estimation, testing for endogeneity should be a priority for a more

efficient estimator. In this paper, I propose a consistent nonparametric test for endogeneity.

By introducing an alternative way of using the conditional moment in a triangular equations

model by taking the control function approach, I can convert the conditional moment for endo-

geneity test E[U | X,Z] = 0 to E[U | V ] = 0. As the dimension of V is smaller than that of X

and Z, it suffers less from the curse of dimensionality. Based on the modified moment condition,

I construct a Li-Wang type test. The advantages of the current test are; i) it follows the standard

normal distribution under the null hypothesis, and ii) it can capture the nonlinear correlation be-

tween the disturbances U and V aside from the advantage of a nonparametric estimation over a

parametric estimation.

As with other nonparametric conditional moment tests (Zheng (1996), Li and Wang (1998),

Hsiao and Li (2001), among others), I introduce a wild bootstrap method using Mammen’s dis-

tribution to improve the finite-sample performance. In simulations, I show that my bootstrap test

performs better in finite samples than the asymptotic test for both size and power. In particular,

when I have a bounded support for {Yi, Xi, Zi}ni=1, my test statistic performed better both in esti-

mating size and power than having a unbounded support. Compared to the Hausman, the Blundell

and Horowitz (2007), and the Breunig (2015) test, my test statistic outperforms them when the

error terms are nonlinearly correlated with each other at all levels of endogeneity. When the error

terms are nonlinearly correlated, it seems that the test statistic using a kernel method is better than

the statistics using a series estimator.

I also apply this test to the empirical analysis of Autor, Dorn, and Hanson (2013) to test en-

dogeneity of Chinese import exposure with the US local employment. As this estimation includes

other exogenous variables, I use the extension of the test statistic given in Section IV. When in-

cluding a variable for the percentage of employment in manufacturing in the previous period, I

obtain a contradicting result between the Hausman test and my test. There can be the cases where

the model might have a functional form misspecification or the nonlinear correlation between the
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error terms U and V . For these two possible reasons, my nonparametric test can be used more ac-

curately for testing for endogeneity. With the comparison in the estimates based on the test results,

the potential bias can occur.

In summary, the proposed nonparametric test can be useful in many aspects since endogeneity

can be present in different forms and contexts. In addition to a triangular simultaneous equations

setting, I can observe endogeneity when having measurement errors in the data or when misspec-

ifying the model by omitting a variable. In this regard, my test statistic can provide a generic

approach to test endogeneity in other econometric problems in future research.
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Appendix

Proof of Theorem 2 I let

∆̂ij = v̂j − v̂i and ∆ij = vj − vi.

I also let ∆∗ij be a vector between ∆̂ij and ∆ij . Note that

∆̂ij −∆ij = (ĝ (zi)− g (zi))− (ĝ (zj)− g (zj)) ,

ûi = yi − m̂ (xi) = ui − (m̂ (xi)−m (xi)) .

Assuming that K (·) is twice continuously differentiable, I expand:

K
(
H−1v ∆̂ij

)
= K

(
H−1v ∆ij

)
+K(1)

(
H−1v ∆ij

)′
H−1v

(
∆̂ij −∆ij

)
+

1

2

(
∆̂ij −∆ij

)′
H−1v K(2)

(
H−1v ∆∗ij

)
H−1v

(
∆̂ij −∆ij

)
,

from which I have

In =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

ûiûjK
(
H−1v ∆̂ij

)
=

1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

ûiûjK
(
H−1v ∆ij

)
+

1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

ûiûjK
(1)
(
H−1v ∆ij

)′
H−1v

(
∆̂ij −∆ij

)
+

1

2n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

ûiûj

(
∆̂ij −∆ij

)′
H−1v K(2)

(
H−1v ∆∗ij

)
H−1v

(
∆̂ij −∆ij

)
≡ I1n + I2n + I3n.

To derive the asymptotic distribution of In, I will show

(I)
√
n2 |H|I1n

d→ N(0,Ω)

(II) I2n = O

((
lnn

n3/2
√
|Hv |1/2|Hz |

) 1
2

)
+O

(
|Hz |2

n|Hv |1/2

)
= op((

√
n2 |Hv|)−1) by (A5)

(III) I3n = O

(
lnn

n2
√
|Hv |1/2|Hz |

)
+O

(
|Hz |4√
n2|Hv |

)
+O

(
(lnn)1/2|Hz |3/2

n3/2|Hv |1/2

)
= op((

√
n2 |Hv|)−1) by (A5)
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(IV) Ω̂ = Ω + op(1)

(I) Let µn (x) = m̂ (x)−m (x). I first decompose

I1n =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

(ui − µn (xi)) (uj − µn (xj))K
(
H−1∆ij

)
=

1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uiujK
(
H−1v ∆ij

)
+

2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uiµn (xj)K
(
H−1v ∆ij

)
+

1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

µn (xi)µn (xj)K
(
H−1v ∆ij

)
≡ I11n + I12n + I13n.

(I)-(A) Following Lemma 1 from Yao and Ullah (2013), define second-order U-statisticUn = 1
n(n−1)

∑n
i=1

∑n
j=1

i<j

φn(Xi, Xj), where φn(Xi, Xj) is symmetric function of Xj and Xi, where {Xi}ni=1 is a sequence of IID

random variables. E[φn(Xi, Xj) | Xj ] = 0. I can easily verify that I11n is a degenerated second order

U-statistic.

I11n =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uiujK
(
H−1v ∆ij

)
=

1

n(n− 1) |Hv|

n∑
i=1

n∑
j=1

i<j

[uiujK
(
H−1v ∆ij

)
+ ujuiK

(
H−1v ∆ij

)
]

=
1

n(n− 1) |Hv|

n∑
i=1

n∑
j=1

i<j

[ψn(Wi,Wj) + ψn(Wj ,Wi)], where Wi = (ui, vi)

=
1

n(n− 1) |Hv|

n∑
i=1

n∑
j=1

i<j

φn(Wi,Wj)
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As E[φ2n(Wi,Wj)] =E[ψ2n(Wi,Wj)]+E[ψ2n(Wj ,Wi)] + 2E[ψn(Wi,Wj)ψn(Wj ,Wi)],

1

|Hv|
E[ψ2n(Wi,Wj)] =

1

|Hv|
E[ψ2n(Wj ,Wi)]

=
1

|Hv|
E[K2

(
H−1v ∆ij

)
u2iu

2
j ]

=
1

|Hv|
E[K2

(
H−1v ∆ij

)
σ2(vi)σ

2(vj)]

=
1

|Hv|

∫
K2
(
H−1v ∆ij

)
σ2(vi)σ

2(vj)f(vi)f(vj)dvidvj

=

∫
K2(ψ)σ2(vi +Hvψ)σ2(vi)f(vi)f(vi +Hvψ)dvidψ

→
∫
K2(ψ)dψE[σ4(vi)f(vi)] <∞

By (A2),

2

|Hv|
E[ψn(Wi,Wj)ψn(Wj ,Wi)] =

2

|Hv|
E[K2

(
H−1v ∆ij

)
σ4(vi)f(vi)]

→ 2

∫
K2(ψ)dψE[σ4(vi)f(vi)] <∞

Then, I have
(
E[φ2n(Wi,Wj)]

)2
= O(|Hv|2).

By Cr inequality, E[φ4n(Wi,Wj)] ≤ C
[
E[ψ4n(Wi,Wj)] + E[ψ4n(Wj ,Wi)]

]
1

|Hv|
E[ψ4n(Wi,Wj)] =

1

|Hv|
E
[
E
[
K4
(
H−1v ∆ij

)
u4iu

4
j | vi, vj

]]
=

1

|Hv|
E
[
σ4(vi)σ

4(vj)K
4
(
H−1v ∆ij

)]
=

∫
K4(ψ)σ4(vi)σ

4(vi +Hvψ)f(vi)f(vi +Hvψ)dvidψ

=

∫
K4(ψ)σ8(vi)f

2(vi)dvidψ

=

(∫
K4(ψ)dψ

)(∫
σ8(vi)f

2(vi)dvi

)

Here, I have 1
nE[φ4n(Wi,Wj)] = O(n−1 |Hv|).
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Lastly, define

Gn(Wi,Wj) = E [φn(Wt,Wi)φn(Wt,Wj) |Wi,Wj ]

= E [(ψn(Wt,Wi) + ψn(Wi,Wt))(ψn(Wt,Wj) + ψn(Wj ,Wi)) |Wi,Wj ]

= E[ψn(Wt,Wi)ψn(Wt,Wj) |Wi,Wj ] + E[ψn(Wt,Wi)ψn(Wj ,Wt) |Wi,Wj ]

+ E[ψn(Wi,Wt)ψn(Wt,Wj) |Wi,Wj ] + E[ψn(Wi,Wt)ψn(Wj ,Wt) |Wi,Wj ]

= G1(Wi,Wj) +G2(Wi,Wj) +G3(Wi,Wj) +G4(Wi,Wj)

By Cr inequality,

E
[
G2n(Wi,Wj)

]
= E[(G1(Wi,Wj) +G2(Wi,Wj) +G3(Wi,Wj) +G4(Wi,Wj))

2]

≤ C
[
G21(Wi,Wj) +G22(Wi,Wj) +G23(Wi,Wj) +G24(Wi,Wj)

]
Then,

E[G21(Wi,Wj)]

= E
[
E [ψn(Wt,Wi)ψn(Wt,Wj) |Wi,Wj ]

2
]

= E
[
E
[
K
(
H−1v ∆it

)
K
(
H−1v ∆jt

)
uiuju

2
t | vi, vj

]2]
= E

[(
uiujE

[
K
(
H−1v ∆it

)
K
(
H−1v ∆jt

)
σ2(vt) | vi, vj

])2]
= E

[(
uiuj

∫
K
(
H−1v ∆it

)
K
(
H−1v ∆jt

)
σ2(vt)f(vt)dvt

)2]

= E

[
E

[
u2iu

2
j

(∫
K (ψ1)K

(
ψ1 +H−1v ∆ij

)
σ2(vi +Hvψ1)f(vi +Hvψ1) |Hv| dψ1

)2
| vi, vj

]]

= E

[
σ2(vi)σ

2(vj)

(∫
K (ψ1)K

(
ψ1 +H−1v ∆ij

)
σ2(vi +Hvψ1)f(vi +Hvψ1) |Hv| dψ1

)2]

= |Hv|2
∫
σ2(vi)σ

2(vj)

(∫
K (ψ1)K

(
ψ1 +H−1v ∆ij

)
σ2(vi +Hvψ1)f(vi +Hvψ1)dψ1

)2
×f(vi)f(vj)dvidvj
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= |Hv|2
∫
σ2(vi)σ

2(vi −Hvψ2)

(∫
K (ψ1)K (ψ1 + ψ2)σ

2(vi +Hvψ1)f(vi +Hvψ1)dψ1

)2
×f(vi)f(vi −Hvψ2) |Hv| dvidψ2

= |Hv|3
∫
σ4(vi)

(∫
K (ψ1)K (ψ1 + ψ2)σ

2(vi)f(vi)dψ1

)2
f2(vi)dvidψ2

= |Hv|3
(∫

σ8(vi)f
4(vi)dvi

)∫ (∫
K (ψ1)K (ψ1 + ψ2) dψ1

)2
dψ2

= O(|Hv|3)

I can conclude that

E[G2n(Wi,Wj)] + n−1E[ /φ4n(Wi,Wj)](
E[φ2n(Wi,Wj)]

)2 =
O(|Hv|2) + n−1O(|Hv|)

O(|Hv|2)
= O(|Hv|) +O((n |Hv|)−1)

→ 0 as n→∞

Also, I have 1
|H|E[φ2n(Wi,Wj)]→ Ω, where Ω ≡ 2

∫
K2(ψ)dψE[σ4(vi)f(vi)].

By applying Hall’s Central Limit Theorem,

√
n2 |Hv|I11n

d→ N(0,Ω)

(I)-(B) As m̂(xi) is a local linear estimator and z′t = (1, xt−xihx
),

m̂(xi)−m(xi) = e′1
1

2

(
n∑
t=1

z′tK
(
H−1x (xt − xi)

)
zt

)−1 n∑
t=1

z′tK
(
H−1x (xt − xi)

)
(xi − xt)m(2)(xit)(xi − xt)′

+e′1

(
n∑
t=1

z′tK
(
H−1x (xt − xi)

)
zt

)−1 n∑
t=1

z′tK
(
H−1x (xt − xi)

)
ut

= e′1

(
n∑
t=1

z′tK
(
H−1x (xt − xi)

)
zt

)−1 n∑
t=1

z′tK
(
H−1x (xt − xi)

)(1

2
m∗(xit) + ut

)
,

where m∗(xit) = (xi − xt)m(2)(xit)(xi − xt)′ and xit = λxi + (1− λ)xt
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Define

µ̂n(xi) = m̂(xi)−m(xi) = µn(xi) + µ̂n(xi)− µn(xi),

where µn(xi) = 1
n|Hx|f(xi)

∑n
t=1K

(
H−1x (xt − xi)

)
(12m

∗(xit) + ut).

I12n = − 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj(m̂(xi)−m(xi))K
(
H−1v (vj − vi)

)

= − 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj

e′1
(

n∑
t=1

zttK
(
H−1x (xt − xi)

)
zt

)−1 n∑
t=1

ztK
(
H−1x (xt − xi)

)
×
(

1

2
m∗(xit) + ut

)]
K
(
H−1v (vj − vi)

)
= − 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj µ̂n(xi)K
(
H−1v (vj − vi)

)
= − 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj (µn(xi) + µ̂n(xi)− µn(xi))K
(
H−1v (vj − vi)

)
= − 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj

(
1

nhxf(xi)

n∑
t=1

K
(
H−1x (xt − xi)

) 1

2
m∗(xit)

)
K
(
H−1v (vj − vi)

)
− 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj

(
1

nhxf(xi)

n∑
t=1

K
(
H−1x (xt − xi)

)
ut

)
K
(
H−1v (vj − vi)

)
+

2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj (µ̂n(xi)− µn(xi))K
(
H−1v (vj − vi)

)
≡ S1n + S2n + S3n

(I)-(B)-(i)

S1n = − 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj

(
1

n |Hx| f(xi)

n∑
t=1

K
(
H−1x (xt − xi)

) 1

2
m∗(xit)

)
K
(
H−1v (vj − vi)

)
= − 2

n2(n− 1) |Hv| |Hx|

n∑
i=1

n∑
j 6=i

n∑
t=1

1

2f(xi)
ujm

∗(xit)K
(
H−1x (xt − xi)

)
K
(
H−1v (vj − vi)

)
= − 2

n2(n− 1) |Hv| |Hx|

n∑
i=1

n∑
j 6=i

n∑
t=1

1

2f(xi)
ujm

∗(xit)K
(
H−1x (xt − xi)

)
K
(
H−1v (vj − vi)

)
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1) i = t

S1n = − 2

n(n− 1) |Hv| |Hx|

n∑
i=1

n∑
j 6=i

1

2f(xi)
ujm

∗(xi)K(0)K
(
H−1v (vj − vi)

)
= 0

∵ m∗(xi) = (xi − xi)m(2)(xi)(xi − xi) = 0

2) j = t, j 6= i, t 6= i

S1n = − 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

1

2f(xi)
ujm

∗(xij)K
(
H−1x (xt − xi), H−1v (vj − vi)

)

Given E[u | x, v] = 0,

S1n = − 1

n(n− 1)

n∑
i=1

n∑
j 6=i

[
1

2f(xi) |Hv|
ujm

∗(xij)K
(
H−1x (xt − xi), H−1v (vj − vi)

)
+

1

2f(xj) |Hv|
uim

∗(xji)K
(
H−1x (xt − xi), H−1v (vj − vi)

)]

By letting Wi = (ui, xi, vi),

S1n = − 1

n(n− 1)

n∑
i=1

n∑
j 6=i

[ψ(Wi,Wj) + ψ(Wj ,Wi)]

= − 1

n(n− 1)

n∑
i=1

n∑
j 6=i

φn(Wi,Wj)

= − 2

n(n− 1)

n∑
i=1

n∑
j=1

i<j

φn(Wi,Wj)

By applying Lemma 1 of Yao and Ullah (2013),

S1n −
[

2

n(n− 1)

n∑
i=1

∫
φn(Wi,Wj)dP (Wj)− n−1E[φn(Wi,Wj)]

]
= Op

(
n−1(E[φ2n(Wi,Wj)]

1
2

)
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Note that E[φn(Wi,Wj)] = 0 (∵E[ui | xi, vi] = 0). By Lipschitz-condition,

E[φ2n(Wi,Wj)] ≤ C
[
E[ψ2(Wi,Wj)] + E[ψ2(Wj ,Wi)]

]
Then,

E[ψ2(Wi,Wj)]

= E

[
1

4f(xi)2 |Hv|2
u2j (m

∗(xij))
2K2

(
H−1x (xt − xi), H−1v (vj − vi)

)]
= E

[
|Hx|4

4f(xi)2 |Hv|2
u2j
(
H−1x (xj − xi)

)2
(m(2)(xij))

2
(
H−1x (xj − xi)

)2
K2
(
H−1x (xt − xi), H−1v (vj − vi)

)]
=

∫ |Hx|4

4f(xi)2 |Hv|2
σ2(wj)

(
H−1x (xj − xi)

)2
(m(2)(xij))

2
(
H−1x (xj − xi)

)2
×K2

(
H−1x (xt − xi), H−1v (vj − vi)

)
f(wi)f(wj)dwidwj

Let ψx = H−1x (xj − xi), ψv = H−1v (vj − vi), and ψ = (ψx, ψv).

=

∫ |Hx|4

4f(xj +Hxψx)2 |H|2
σ2(wj)ψ

2
x(m(2)(xj + (1− λ)Hxψx))2ψ2xK

2 (ψx, ψv)

×f(ψ)f(wj +HxHvψ) |H| dψdwj

=

∫ |Hx|4

4f(xj)2 |Hv|
σ2(wj)ψ

2
x(m(2)(xj))

2ψ2xK
2 (ψx, ψv) f(wj)

2dψdwj +O()

=
|Hx|4

|Hv|

(∫
K2(ψ)ψ4xdψ

)(∫
1

f(xj)2
σ2(wj)(m

(2)(xj))
2f(wj)

2dwj

)

Then, I have

n−1
(
E[φ2n(Wi,Wj)]

) 1
2 = Op(n

−1 |Hv|−1/2 |Hx|2)
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3) j 6= t and t 6= i

S1n = − 2

n2(n− 1)

n∑
i=1

n∑
j=1

n∑
t=1

i 6=j 6=t

1

2f(xi) |Hv|
ujm

∗(xit)K
(
H−1x (xt − xi)

)
K
(
H−1v (vj − vi)

)
By letting Wi = (ui, xi, vi),

= − 2

3n2(n− 1)

n∑
i=1

n∑
j=1

n∑
t=1

i 6=j 6=t

[ψn(Wi,Wj ,Wt) + ψn(Wj ,Wt,Wi) + ψn(Wt,Wi,Wj)]

= − 2

n2(n− 1)

n∑ n∑ n∑
i<j<t

2φn(Wi,Wj ,Wt)

=

(
− 2

n2(n− 1)
−
(
n

3

)−1
+

(
n

3

)−1) n∑ n∑ n∑
i<j<t

2φn(Wi,Wj ,Wt)

E[φ2n(Wi,Wj ,Wt)] ≤ C
[
E[ψ2(Wi,Wj ,Wt)] + E[ψ2(Wj ,Wt,Wi)] + E[ψ2(Wt,Wi,Wj)]

]
By H-decomposition,

E[φn(Wi,Wj ,Wt) |Wj ,Wt]

= ujE

[
1

2f(xi) |Hv|
m∗(xit)K

(
H−1x (xt − xi)

)
K
(
H−1v (vj − vi)

)
|Wj ,Wt

]
= φ2n(Wj ,Wt)

Then,

E[φ22n(Wj ,Wt)]

= E

[(
ujE

[
1

2f(xi) |Hv|
m∗(xit)K

(
H−1x (xt − xi)

)
K
(
H−1v (vj − vi)

)
|Wj ,Wt

])2]

= E

[
uj

(
E

[
|Hx|4

2f(xi) |H|
(
H−1x (xt − xi)

)2
(m(2)(xit))

2
(
H−1x (xt − xi)

)2
× K

(
H−1x (xt − xi)

)
K
(
H−1v (vj − vi)

)
|Wj ,Wt

])2]
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= E

[
σ2(vj)

(∫ |Hx|4

2f(xi) |H|
(
H−1x (xt − xi)

)2
(m(2)(xit))

2
(
H−1x (xt − xi)

)2
K
(
H−1x (xt − xi)

)
× K

(
H−1v (vj − vi)

)
f(wi)dwi

)2]
= E

[
σ2(vj)

(∫ |Hx|4

2f(xt −Hxψx,1) |H|
ψ2x,1(m

(2)(xt − λHxψx,1))
2ψ2x,1K

(
ψx,1

)
× K

(
ψv,1 +H−1v (vj − vt)

)
f(wt −HHxψ1) |H| dψ1

)2]
=

∫
σ2(vj)

(∫ |Hx|4

2f(xt − hxψx,1)
ψ2x,1(m

(2)(xt − λHxψx,1))
2ψ2x,1K

(
ψx,1

)
K
(
ψv,1 +H−1v (vj − vt)

)
f(wt −HHxψ1)dψ1

)2
f(wj)f(wt)dwjdwt

=

∫
σ2(vt +Hvψv,2)

(∫ |Hx|4

2f(xt −Hxψx,1)
ψ2x,1(m

(2)(xt − λHxψx,1))
2ψ2x,1K

(
ψx,1

)
K
(
ψv,1 + ψv,2

)
f(wt −Hψ1)dψ1)2 f(wj)f(wt)dwjdwt

=
|Hx|8 |H|

4

∫
σ2(vt)

f4(wt)

f2(xt)
(m(2)(xt))

2dwt

∫ (∫
ψ4x,1K

(
ψx,1

)
K
(
ψv,1 + ψv,2

)
dψ1

)2
dψ2

= O(|Hx|8 |H|)

Then, I have

S1n = O(n−2 |H|1/2 |Hx|4)

(I)-(B)-(ii)

S2n = − 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj

(
1

n |Hx| f(xi)

n∑
t=1

K
(
H−1x (xt − xi)

)
ut

)
K
(
H−1v (vj − vi)

)
= − 2

n(n− 1) |Hv| |Hx|

n∑
i=1

n∑
j 6=i

n∑
t=1

1

f(xi)
ujutK

(
H−1x (xt − xi)

)
K
(
H−1v (vj − vi)

)

= − 2

n(n− 1) |Hv| |Hx|

n∑
i=1

1

f(xi)

 n∑
j 6=i

n∑
t=1

ujutK
(
H−1x (xt − xi)

)
K
(
H−1v (vj − vi)

)

+

n∑
j 6=i

n∑
t=1

utujK
(
H−1x (xt − xi)

)
K
(
H−1v (vj − vi)

)
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1) i = t

S2n = − 2

n(n− 1) |Hv| |Hx|

n∑
i=1

n∑
j 6=i

1

f(xi)
ujuiK

(
H−1x (xj − xi), H−1v (vj − vi)

)
= − 2

n(n− 1) |Hv| |Hx|

n∑ n∑
i<j

[
1

f(xi)
ujuiK

(
H−1x (xj − xi), H−1v (vj − vi)

)
+

1

f(xj)
uiujK

(
H−1x (xj − xi), H−1v (vj − vi)

)]
By letting Wi = (ui, xi, vi),

= − 2

n(n− 1)

n∑ n∑
i<j

[ψn(Wi,Wj) + ψn(Wj ,Wi)]

= − 2

n(n− 1)

n∑ n∑
i<j

φn(Wi,Wj)

As E[φ2n(Wi,Wj)] =E[ψ2n(Wi,Wj)]+E[ψ2n(Wj ,Wi)] + 2E[ψn(Wi,Wj)ψn(Wj ,Wi)],

1

|Hv| |Hx|
E[φ2n(Wi,Wj)] =

1

|Hv| |Hx|
E[φ2n(Zj , Zi)]

=
1

|Hv| |Hx|
E

[
1

f(xi)2
u2ju

2
iK

2
(
H−1x (xj − xi), H−1v (vj − vi)

)]
=

1

|Hv| |Hx|

∫
1

f(xi)2
σ2(wi)σ

2(wj)K
2
(
H−1x (xj − xi), H−1v (vj − vi)

)
×f(wi)f(wj)dwidwj

=
1

|Hv| |Hx|

∫
1

f(xi)2
σ2(wi)σ

2(wi +Hψ)K2 (ψ) f(wi)f(wi +Hψ) |H| |Hx| dwidψ

=

∫
1

f(xi)2
σ4(wi)K

2 (ψ) f(wi)
2dwidψ

=

(∫
K2(ψ)dψ

)(∫
1

f(xi)2
σ4(wi)f(wi)

2dwi

)

Therefore, I have

n (|Hv| |Hx|)1/2 S2n
d→ N(0,Σ), where Σ =

(∫
K2(ψ)dψ

)(∫
1

f(xi)2
σ4(wi)f(wi)

2dwi

)
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Then,

n |Hv|1/2 S2n = (n−1 |Hx|−1/2)(n (|Hv| |Hx|)1/2 S2n)

→ 0 as n→∞

2) t = j, j 6= i, t 6= i

S2n = − 2

n(n− 1) |Hv| |Hx|

n∑
i=1

n∑
j 6=i

1

f(xi)
u2jK

(
H−1x (xj − xi), H−1v (vj − vi)

)

E[ψ2n(Wi,Wj)] = E

[
1

f2(xi) (|Hv| |Hx|)2
u2jK

2
(
H−1x (xj − xi), H−1v (vj − vi)

)]
=

∫
1

f2(xi) (|Hv| |Hx|)2
σ2(vj)K

2
(
H−1x (xj − xi), H−1v (vj − vi)

)
f(wi)f(wj)dwidwj

=

∫
1

f2(xi) (|Hv| |Hx|)2
σ2(vi +Hvψv)K

2 (ψ) f(wi)f(wi +HHxψ)hdwidψ

=
1

|H|

∫
1

f2(xi)
σ2(vi)K

2 (ψ) f2(wi)dwidψ

=
1

|Hv| |Hx|

(∫
K2 (ψ) dψ

)∫
1

f2(xi)
σ2(vi)f

2(wi)dwi

= O((|Hv| |Hx|)−1)

Then, I have

S2n = n−1
(
E[ψ2n(Wi,Wj)]

)1/2
= O(n−1 (|Hv| |Hx|)−1/2)
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3) j 6= t and t 6= i

S2n = − 2

n2(n− 1)

n∑
i=1

n∑
j=1

n∑
t=1

i 6=j 6=t

1

f(xi) |Hv| |Hx|
ujutK

(
H−1x (xt − xi)

)
K
(
H−1v (vj − vi)

)

= − 2

3n2(n− 1)

n∑
i=1

n∑
j=1

n∑
t=1

i 6=j 6=t

[ψn(Wi,Wj ,Wt) + ψn(Wj ,Wt,Wi) + ψn(Wt,Wi,Wj)]

= − 2

n2(n− 1)

n∑ n∑ n∑
i<j<t

2φn(Wi,Wj ,Wt)

=

(
− 2

n2(n− 1)
−
(
n

3

)−1
+

(
n

3

)−1) n∑ n∑ n∑
i<j<t

2φn(Wi,Wj ,Wt)

By H-decomposition,

E[φn(Wi,Wj ,Wt) |Wj ,Wt] = ujutE

[
1

f(xi) |H|
K
(
H−1x (xt − xi)

)
K
(
H−1v (vj − vi)

)
|Wj ,Wt

]
= φ2n(Wj ,Wt)

Then, I can write U-statistic

Un =
6

n(n− 1)

n∑ n∑
j<t

φ2n(Wj ,Wt) +Op(H
(3)
n )

E[φ22n(Wj ,Wt)]

= E

[(
ujutE

[
1

f(xi) |Hv| |Hx|
K
(
H−1x (xt − xi)

)
K
(
H−1v (vj − vi)

)
| Zj , Zt

])2]

= E

[
u2ju

2
t

(∫
1

f(xi) |Hv| |Hx|
K
(
H−1x (xt − xi)

)
K
(
H−1v (vj − vi)

)
f(wi)dwi

)2]

= E

[
E

[
u2ju

2
t

(∫
1

f(xt −Hxψx,1) |Hv| |Hx|
K
(
ψx,1

)
K
(
ψv,1 +H−1v (vj − vt)

)
× f(wt −HHxψ1) |H| dψ1)2 | Zj , Zt

]]
= E

[
σ2(vj)σ

2(vt)

(∫
1

f(xt −Hxψx,1)
K
(
ψx,1

)
K
(
ψv,1 +H−1v (vj − vt)

)
f(wt −HHxψ1)ψ1

)2]
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=

∫
σ2(vj)σ

2(vt)

(∫
1

f(xt −Hxψx,1)
K
(
ψx,1

)
K
(
ψv,1 +H−1v (vj − vt)

)
f(wt −HHxψ1)dψ1

)2
×f(wj)f(wt)dwjdwt

=

∫
σ2(vt)σ

2(vt +Hψv,2)

(∫
1

f(xt −Hxψx,1)
K
(
ψx,1

)
K
(
ψv,1 + ψv,2

)
f(wt −HHxψ1)dψ1

)2
×f(wt)f(wt +HHxψ2) |Hv| |Hx| dψ2dwt

= |Hv| |Hx|
(∫

σ4(vt)
f4(wt)

f2(xt)
dwt

)∫ (∫
K
(
ψx,1

)
K
(
ψv,1 + ψv,2

)
dψ1

)2
dψ2

= O(|Hv| |Hx|)

I have σ23n = O(1), V ar(H
(3)
n ) = O(n−3) = o(n−2 |Hv|2).

In summary,

S2n = O(n−2 |Hv|1/2)

(I)-(B)-(iii)

Note that 1
f̂(xi)

− 1
f(xi)

= Op

((
lnn
n|Hx|

)1/2)
+Op(|Hx|).

S3n = − 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj (µ̂n(xi)− µn(xi))K
(
H−1v (vj − vi)

)
= − 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj

(
1

f̂(xi)
− 1

f(xi)

)
K
(
H−1x (xt − xi)

)
×
(

1

2
m∗(xit) + ut

)
K
(
H−1v (vj − vi)

)
≤

(
Op

((
lnn

n |Hx|

)1/2)
+Op(|Hx|)

)− 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj

(
1

2
m∗(xit) + ut

)
× K

(
H−1x (xt − xi)

)
K
(
H−1v (vj − vi)

)]
= Op(n

−5/2 |Hx|−1 |Hv|−1/2 (lnn)1/2) +Op(n
−2 |Hx|1/2 |Hv|−1/2)

= o((n |Hv|1/2)−1)

(I)-(C)
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By letting Sn(zt) = (
∑n

t=1 ztKitzt)
−1

and S(zt) =

f(xt) 0

0 f(xt)σ
2
k

 ,

|µ̂n(xi)− µn(xi)| =
1

n |Hv|

∣∣∣∣∣e′1Sn(zt)
−1

n∑
t=1

ztK
(
H−1x (xt − xi)

)(1

2
m∗(xit) + ut

)

− 1

f(xi)

n∑
t=1

ztK
(
H−1x (xt − xi)

)(1

2
m∗(xit) + ut

)∣∣∣∣∣
=

1

n |Hv|

∣∣∣∣∣e′1(Sn(zt)
−1 − S(zt)

−1)
n∑
t=1

ztK
(
H−1x (xt − xi)

)(1

2
m∗(xit) + ut

)∣∣∣∣∣
≤ 1

|Hv|
((1, 0)(Sn(zt)

−1 − S(zt)
−1)2(1, 0)′)1/2

∗ 1

n

(∣∣∣∣∣
n∑
t=1

K
(
H−1x (xt − xi)

)(1

2
m∗(xit) + ut

)∣∣∣∣∣
+

∣∣∣∣∣
n∑
t=1

(
H−1x (xt − xi)

)′
K
(
H−1x (xt − xi)

)(1

2
m∗(xit) + ut

)∣∣∣∣∣
)

I follow Lemma 2 of Martins-Filho and Yao (2007) to obtain |µ̂n(xi)− µn(xi)| = O

(
|H|

(
lnn
n|Hx|

) 1
2

)
+

O(|Hx|3).

Then, I have

sup |m̂(xi)−m(xi)| = O

((
lnn

n |Hx|

) 1
2

)
+O(|Hx|2)

Using m̂(xi) = m(1)(xij)(xi − xj), where xij = λxi + (1− λ)xj ,

I13n =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

µ̂n(xi)
′µ̂n(xj)K

(
H−1v (vj − vi)

)
=

1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

(µn(xi) + µ̂n(xi)− µn(xi))
′

×(µn(xj) + µ̂n(xj)− µn(xj))K
(
H−1v (vj − vi)

)
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Note that

sup |µn(xi) + µ̂n(xi)− µn(xi)| ≤ sup |µn(xi)|+ sup |µ̂n(xi)− µn(xi)|

= Op

((
lnn

n |Hx|

)1/2)
+Op(|Hx|2)

sup
∣∣(µn(xi) + µ̂n(xi)− µn(xi))

′(µn(xj) + µ̂n(xj)− µn(xj))
∣∣

≤ (sup |µn(xi) + µ̂n(xi)− µn(xi)|)2

= Op

(
lnn

n |Hx|

)
+Op (|Hx|)

Therefore,

I13n ≤ (sup |µn(xi) + µ̂n(xi)− µn(xi)|)2
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

K
(
H−1v (vj − vi)

)
= Op

(
n−2 |Hv|

(
lnn

n |Hx|

))
+Op

(
n−2 |Hv|−1 |Hx|2

)

(II)

By using

sup |ĝ(zi)− g(zi)− (ĝ(zj)− g(zj))| ≤ sup |ĝ(zi)− g(zi)|+ sup |ĝ(zj)− g(zj)|

= O

((
lnn

n |Hz|

) 1
2

)
+O(|Hz|2),

Î2n =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

ûiûjK
(1)
(
H−1v (vj − vi)

)′
H−1v (ĝ(zi)− g(zi)− (ĝ(zj)− g(zj)))

∣∣∣Î2n∣∣∣ ≤ sup
∣∣H−1v (ĝ(zi)− g(zi)− (ĝ(zj)− g(zj)))

∣∣ 1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

ûiûjK
(1)
(
H−1v (vj − vi)

)
=

((
lnn

n |Hz| |Hv|2

) 1
2

)
+O

(
|Hz|2

n |Hv|

)
= o((n |Hv|1/2)−1)
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(III)

sup |ĝ(zi)− g(zi)− (ĝ(zj)− g(zj))| ≤ sup |ĝ(zi)− g(zi)|+ sup |ĝ(zj)− g(zj)|

= O

((
lnn

n |Hz|

) 1
2

)
+O(|Hz|2),

Î3n =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

ûiûj(ĝ(zi)− g(zi)− (ĝ(zj)− g(zj)))
′

×H−1v K(2)
(
H−1v (vj − vi)

)
H−1v (ĝ(zi)− g(zi)− (ĝ(zj)− g(zj)))

∣∣∣Î3n∣∣∣ ≤ C
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

∣∣ûiûjG (H−1v (
v∗j − v∗i

))∣∣ · (H−1v sup |ĝ(zi)− g(zi)|)2

= O

(
lnn

n |Hz| |Hv|2

)
+O

(
|Hz|4

n |Hv|2

)
= o((n |Hv|1/2)−1)

(IV)

Ω̂ =
2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

û2i û
2
jK

2
(
H−1v (v̂j − v̂i)

)
=

2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

û2i û
2
jK

2
(
H−1v (vj − vi)

)
+ op(1)

=
2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

u2iu
2
jK

2
(
H−1v (vj − vi)

)
+ op(1)

=
2

n(n− 1) |Hv|

n∑ n∑
i<j

[
u2iu

2
jK

2
(
H−1v (vj − vi)

)
+ u2ju

2
iK

2
(
H−1v (vi − vj)

)]

By using the properties of U-statistics, I can easily derive that Ω = 2
∫
K2(ψ)dψE[σ4(v)f(v)].
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Proof of Theorem 3

Under the alternative, m1(xi, vi) = m(xi) + δnl(vi).

Then, ui = εi + δnl(vi), where εi = yi −m(xi, vi) and δn = n−1/2 (|Hv|)−1/4 .

In =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

ûiûjK̂
(
H−1v (vj − vi)

)
= Î1nG + o(

(
n |Hv|1/2

)−1
)

Here, note that

Î1nG =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

ûiûjK
(
H−1v (vj − vi)

)
=

1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uiujK
(
H−1v (vj − vi)

)
− 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj(m̂(xi)−m(xi))K
(
H−1v (vj − vi)

)
+

1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

(m̂(xi)−m(xi))(m̂(xj)−m(xj))K
(
H−1v (vj − vi)

)
= I11nG + I12nG + I13nG

For the following sections, I will show

n |Hv|1/2 I11nG
d→ N(0,Ω)

I11nG =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uiujK
(
H−1v (vj − vi)

)
=

1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

(εi + δnl(vi))(εj + δnl(vj))K
(
H−1v (vj − vi)

)
=

1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

εiεjK
(
H−1v (vj − vi)

)
+

2δn
n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

εil(vj)K
(
H−1v (vj − vi)

)
+

δ2n
n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

l(vi)l(vj)K
(
H−1v (vj − vi)

)
= Q1n + 2δnQ2n + δ2nQ3n

49



(I)-(A)

Q1n =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

εiεjK
(
H−1v (vj − vi)

)
=

1

n(n− 1) |Hv|

n∑
i=1

n∑
j=1

i<j

[
εiεjK

(
H−1v (vj − vi)

)
+ εjεiK

(
H−1v (vi − vj)

)]
By letting Wi = (vi, εi),

=
1

n(n− 1) |Hv|

n∑
i=1

n∑
j=1

i<j

[ψn(Wi,Wj) + ψn(Wj ,Wi)]

=
1

n(n− 1) |Hv|

n∑
i=1

n∑
j=1

i<j

φn(Wi,Wj)

As E[φ2n(Wi,Wj)] =E[ψ2n(Wi,Wj)]+E[ψ2n(Wj ,Wi)] + 2E[ψn(Wi,Wj)ψn(Wj ,Wi)],

1

|Hv|
E[ψ2n(Wi,Wj)]→

(∫
K2 (ψv) dψv

)
E
[
σ4(vi)f(vi)

]
<∞

2

|Hv|
E[ψn(Wi,Wj)ψn(Wj ,Wi)]→ 2

(∫
K2 (ψv) dψv

)
E
[
σ4(vi)f(vi)

]
Therefore, I have

n |Hv|1/2Q1n
d→ N(0,Ω), where Ω = 2

(∫
K2 (ψv) dψv

)
E
[
σ4(vi)f(vi)

]
(I)-(B)

Q2n =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

1

|Hv|
εil(vj)K

(
H−1v (vj − vi)

)
=

1

n(n− 1)

n∑
i=1

n∑
j 6=i

[
1

|Hv|
εil(vj)K

(
H−1v (vj − vi)

)
+

1

|Hv|
εjl(vi)K

(
H−1v (vj − vi)

)]

=
1

n(n− 1)

n∑
i=1

n∑
j 6=i

[ψn(Wi,Wj) + ψn(Wj ,Wi)] , where Wi = (v,εi)
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E[ψn(Wi,Wj)] = 0. By applying Lipschitz condition,

E[ψ2n(Wi,Wj)] = E

[
1

|Hv|2
ε2i l(vj)

2K2
(
H−1v (vj − vi)

)]
=

1

|Hv|2
∫
σ2(vi)l(vj)

2K2
(
H−1v (vj − vi)

)
f(vi)f(vj)dvidvj

=
1

|Hv|

∫
σ2(vi)l(vi +Hvψ)2K2 (ψ) f(vi)f(vi +Hvψ)dvidψ

=
1

|Hv|

(∫
K2 (ψ) dψ

)(∫
σ2(vi)l(vi)

2f(vi)
2dvi

)

Then, I have

Q2n = n−1
(
E[φ2n(Wi,Wj)]

) 1
2 = O(n−1 |Hv|−1/2)

Therefore,

n |Hv|1/2 δnQ2n = n−1/2 |Hv|−1/4
p→ 0

(I)-(C)

Q3n =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

l(vi)l(vj)K
(
H−1v (vj − vi)

)

1

|Hv|
E
[
l(vi)l(vj)K

(
H−1v (vj − vi)

)]
=

1

|Hv|

∫
l(vi)l(vi +Hvψ)K (ψ) f(vi)f(vi +Hvψ) |Hv| dvidψ

=

∫
l(vi)

2K (ψ) f(vi)
2dvidψ

=

(∫
K (ψ) dψ

)(∫
l(vi)

2f(vi)
2dvi

)
= E[l(vi)

2f(vi)]

= O(1)

Therefore, I have

n |Hv|1/2 δ2nQ3n = n |Hv|1/2 (n−1 |Hv|−1/2)Q3n = Q3n
p→ E[l(vi)

2f(vi)]

In summary,

n |Hv|1/2 I11nG
d→ N(E[l(vi)

2f(vi)],Ω)
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Proof of Theorem 4

Under H1,

ûi = yi − m̂(xi)

= yi −m(xi, vi) +m(xi, vi)− m̂(xi)

= εi +m(xi, vi)− m̂(xi)

= εi + (m(xi, vi)−m(xi))− (m̂(xi)−m(xi))

= ui − (m̂(xi)−m(xi))

Then, note that

E
[
u2i | vi

]
= E

[
(εi + h(vi))

2 | vi
]

= σ2(vi) + (h(vi))
2

My test statistic is then written as follows:

In =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

ûiûjK
(
H−1v (v̂j − v̂i)

)
=

1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uiujK
(
H−1v (vj − vi)

)
+ o(

(
n |Hv|1/2

)−1
)

=
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

(εi + h(vi))(εj + h(vi))K
(
H−1v (vj − vi)

)
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Define φn(Wi,Wj) = 1
|Hv |h(vi)h(vj)K

(
H−1v (vj − vi)

)
E[φn(Wi,Wj)]

= E[E[φn(Wi,Wj) |Wi,Wj ]]

= E

[
1

|Hv|
K
(
H−1v (vj − vi)

)
h(vi)h(vj)

]
=

1

|Hv|

∫
K
(
H−1v (vj − vi)

)
h(vi)h(vj)f(vi)f(vj)dvidvj

=

∫
K (ψ)h(vi)h(vi +Hvψ)f(vi)f(vi +Hvψ)dvidψ

=

∫
K (ψ) dψ

∫
(h(vi))

2f(vi)
2dvi

= E[(h(vi))
2f(vi)]

Now,

Ω̂ =
2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

û2i û
2
jK

2
(
H−1v (v̂j − v̂i)

)
=

2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

û2i û
2
jK

2
(
H−1v (vj − vi)

)
+ o

(
(n |Hv|)−1

)

Then,

E [φn(Wi,Wj)]

= E [E [φn(Wi,Wj) | vi]]

= E

[
1

|Hv|
K2
(
H−1v (vj − vi)

) (
σ2(vi) + (h(vi))

2
) (
σ2(vj) + (h(vj))

2
)]

=
1

|Hv|

∫
K2
(
H−1v (vj − vi)

) (
σ2(vi) + (h(vi))

2
) (
σ2(vj) + (h(vj))

2
)
f(vi)f(vj)dvidvj

=

∫
K2 (ψ)

(
σ2(vi) + (h(vi))

2
) (
σ2(vi +Hvψ) + (h(vi +Hvψ))2

)
f(vi)f(vi +Hvψ)dvidψ

=

(∫
K2(ψ)dψ

)(∫ (
σ2(vi) + (h(vi))

2
)2
f(vi)

2dvi

)
=

(∫
K2(ψ)dψ

)[
E
[
σ4(vi)f(vi)

]
+ 2E

[
σ2(vi)(h(vi))

2f(vi)
]

+ E
[
(h(vi))

2f(vi)
]]

= B1
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Therefore, I have

Ω̂
p→ 2B1

In summary,

Jn =
n |Hv|1/2 In√

Ω̂
> cn = op(n |Hv|1/2)
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