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ABSTRACT
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our results provide less accurate approximation.
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1 Introduction

Classical statistics and econometrics theory typically relies on asymptotic results for the purpose of estimation

and inference. Thanks to various versions of central limit theorems, a typical econometric estimator can be

shown to be asymptotically normal and based on this con�dence intervals can be constructed and test

statistics can be designed. However, in many situations, the asymptotic properties of estimators and test

statistics can provide poor approximations of their behavior in �nite samples or even moderately large

samples. This has been long recognized in the literature with the earliest work dating back to Fisher

(1921), while the monograph of Ullah (2004) provides a comprehensive and up-to-date discussion of �nite

sample econometrics. Usually, the exact results are complicated to analyze and are available only under very

restrictive assumptions on the data-generating process. In light of this, approximate techniques have enjoyed

popularity, including the large-n , small-�, Laplace, and saddle-point approximations. We notice that while

most of the existing literature focuses on some speci�c estimators for some speci�c models, Bao and Ullah

(2007b) generalized Rilstone et al. (1996) to develop the approximate �rst two moments of a large class of

estimators in time-series models. An un�nished task in Bao and Ullah (2007b) remains, however, regarding

the higher moments of the estimators.

In principle, we can follow the approach of Bao and Ullah (2007b) to expand to a higher order the inverse

of the gradient of the moment function in the spirit of Nagar (1959) to derive the approximate third and

fourth moments of the estimators, say, approximate the third moment up to order O(n�3) and the fourth

moment up to order O(n�4); where n is the sample size, in the �second-order� sense, see Ullah (2004).

However, the �raw� third and fourth moments of an estimator are the absolute measures of skewness and

tail behavior of its distribution, relative measures such as the skewness and excess kurtosis coe¢ cients should

be more useful in situations when we need to judge how the �nite sample properties of this estimator can

behave di¤erently from the asymptotic properties. Moreover, even though in principle we can derive the

third moment up to order O(n�3) and the fourth moment up to order O(n�4); the terms that are of order

O(n�3) and O(n�4) may be of very small magnitude for a given n and thereby one may wonder how useful

they are to be included into the analysis.

The major purpose of this paper is to derive approximate results for two standardized measures of

deviation from normality for the estimator, namely, the skewness and excess kurtosis coe¢ cients. Given the

knowledge of the nonnormality coe¢ cients, one can not only judge the �nite sample behavior of a particular
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estimator, but also compare the �nite sample properties of two asymptotically equivalent estimators. As

an application, we study the �nite sample properties of the maximum likelihood estimator (MLE) in the

spatial autoregressive model. We �nd that the departure from normality of the MLE can be very severe in

small samples. In these cases, our approximate skewness and kurtosis results can sometimes provide poor

approximation to the true tail behaviors of the MLE when the true parameter is approaching its boundary

value and the weights matrix is dense. As the sample size increases, the performance of our approximation

results improves, especially when the weights matrix is sparse.

The plan of this paper is as follows. In Section 2, we derive our main results. Section 3 gives the

application. Section 4 contains some concluding remarks. The appendix collects some technical details in

deriving our results and their application in the spatial model.

2 Main Results

We follow Bao and Ullah (2007b) to consider a class of estimators identi�ed by the moment condition

�̂n = arg f n(�) = 0g ; (1)

where  n(�) =  n(Z;�) is a known k � 1 vector-valued function of the observable data Z = fZigni=1,

and a parameter vector �; with true value �0; of k elements (of the same dimension as  n(�)) such that

E [ n(�)] = 0 only happens at � = �0: The type of estimators identi�ed by (1) are general enough to

include the maximum likelihood, least squares, method of moments, generalized method of moments, and

other extremum estimators, as shown in Rilstone et al. (1996). Usually, the moment condition (1) can be

interpreted as the orthogonality condition between regressors and error terms, or as the �rst-order condition

of some optimization criterion. In what follows, we use trA to denote the trace, jjAjj to denote the usual norm

(trAA0)1=2; and rsA (�) is the matrix of sth order partial derivative of A (�) and is obtained recursively

(speci�cally, if A (�) is a k � 1 vector function, the jth element of the lth row of rsA (�) (a k � ks matrix)

is the 1� k vector aslj (�) = @as�1lj (�) =@�0). Throughout, the following assumptions are made.

Assumption 1: �̂n exists, and
p
n(�̂n � �0)

d! N(0; D); where D =avar(
p
n(�̂n � �0)) = O(1) is the

asymptotic variance of
p
n(�̂n � �0):

Assumption 2: The �rst four moments of �̂n exist and are bounded, and for each element of �̂n; its rth

cumulant is of order O(n(2�r)=2), r = 3; 4.
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Assumption 3: The sth order derivatives of  n(�) exist for � in a neighborhood of �0 and for s up to 3;

E(jjrs n(�0)jj
2
) <1:

Assumption 4: For � in some neighborhood of �0; [r n(�)]�1 = Op (1) :

Assumption 5: jjrs n(�) � rs n (�0) jj � jj� � �0jjMn for � in some neighborhood of �0; where

E (jMnj) < C <1 for some positive constant C; for s up to 3:

Assumptions 1-5 are fairly standard for a large class of estimators, though excluding nonstationary time-

series models involving a unit root. One may lay out a set of primitive conditions to guarantee existence

and consistency of �̂n. Assumption 2 requires that the �rst four moments of the estimator exist, which

may be regarded as somewhat strong. In general, existence of moments may be di¢ cult to verify. In that

case, the results to be derived in this paper may still be informative, though it should then be noted the

results are based on �formal�expansions, perhaps not valid expansions. For example, it is well known that

moments of the instrumental estimator for a just identi�ed structural equation do not exist. However, it does

have a well-de�ned exact distribution and limiting distribution and the �approximate moments�can still be

obtained. Assumption 2 essentially follows Sargan (1974), who showed that for the Nagar-type (Nagar, 1959)

large-n approximate moments, which we shall use later to derive our main results, to be valid as asymptotic

approximations, the corresponding moments of the exact distribution (of the standardized estimator) must

exist and are of order O(1) as n ! 1; also see Srinivasan (1970) and Basemann (1974). For each element

of �̂n; the third and fourth cumulants are nothing but the skewness and (excess) kurtosis coe¢ cients of the

estimator. Assumptions 3-5 are similar to Rilstone et al. (1996) and Bao and Ullah (2007b) to guarantee

that the moment condition is smooth enough so that a stochastic expansion of  n(�̂) as well as a Nagar-type

expansion of the inverse of the gradient of the moment function can be implemented around �0:

Following the notational conventions in Rilstone et al. (1996),  n =  n(�0) (we suppress the argument

of a function when it is evaluated at �0); Hi = ri n; Q = [E(H1)]
�1; Vi = Hi � E(Hi); 
 represent the

Kronecker product, a�s=2 represent terms of order OP
�
n�s=2

�
; and put

a�1=2 = �Q n;

a�1 = �QV1a�1=2 � 1
2QE(H2)

�
a�1=2 
 a�1=2

�
;

a�3=2 = �QV1a�1 � 1
2QV2(a�1=2 
 a�1=2)�

1
2QE(H2)(a�1=2 
 a�1 + a�1 
 a�1=2)

� 1
6QE(H3)(a�1=2 
 a�1=2 
 a�1=2):
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As shown in Rilstone et al. (1996) and Bao and Ullah (2007b), one can write a stochastic expansion

�̂n � �0 = a�1=2 + a�1 + a�3=2 + oP (n
�3=2); (2)

where the order O(n�1=2) term a�1=2 represents the the asymptotic behavior of �̂n and D = nE(a�1=2a
0
�1=2).

Note that E(a�1=2) = 0 since E( n) = 0: Based on this and the expansion (2), one can immediately derive

the second-order bias and mean squared error (MSE) of �̂n; as done in Rilstone et al. (1996) for models with

identically and independently distributed (IID) data and Bao and Ullah (2007b) for models with non-IID

data. For example, for a single parameter estimator �̂n;i; 1 � i � k; we have the following �rst two moments:1

E(�̂n;i � �0;i) = E(a�1;i) + o(n
�1);

E[(�̂n;i � �0;i)2] = E(a2�1=2;i + 2a�1=2;ia�1;i + a
2
�1;i + 2a�1=2;ia�3=2;i) + o(n

�2):

In principle, one could follow the same strategy to expand �̂n � �0 up to order O(n
�5=2) and derive the

second-order third and fourth moments, up to orders O(n�3) and O(n�4); respectively. However, as stated

in the introduction, instead of the absolute measures of skewness and tail behavior of �̂n; we are more

interested in the relative measures such as the skewness and excess kurtosis coe¢ cients. To facilitate our

derivation, we de�ne Tn;i =
p
n(�̂n;i � �0;i): Obviously, the skewness and excess kurtotis coe¢ cients of �̂n;i

are the same as those of Tn;i: Corresponding to (2), we write

Tn;i =
p
n(a�1=2;i + a�1;i + a�3=2;i) + oP (n

�1)

= �0;i + ��1=2;i + ��1;i + oP (n
�1); (3)

where ��s=2;i =
p
na�(s+1)=2;i = OP

�
n�s=2

�
for s = 0; 1; 2. By Assumption 1, �0;i

d! N(0; Dii); where

Dii denotes the iith element of D: The following theorem gives the approximation skewness and kurtosis

results.2

Theorem: The skewness and excess kurtosis coe¢ cients of �̂n;i can be approximated by 1(�̂n;i) and

2(�̂n;i); up to order O(n
�1=2) and O(n�1); respectively, and they are given by

1(�̂n;i) = [E(�20;i + 2�0;i��1=2;i)]
�3=2[E(�30;i + 3�

2
0;i��1=2;i)� 3E(�20;i)E(��1=2;i)];

2(�̂n;i) = fE(�20;i + �2�1=2;i + 2�0;i��1=2;i + 2�0;i��1;i)� [E(��1=2;i)]2g�2

�fE(�40;i + 4�30;i��1=2;i + 4�30;i��1;i + 6�20;i�2�1=2;i)� 4E(�30;i + 3�20;i��1=2;i)E(��1=2;i)

�4E(�30;i)E(��1;i) + 6E(�20;i)[E(��1=2;i)]2g � 3: (4)
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Proof: See the appendix. �

Note that the skewness result generalizes several expressions that are given in McCullagh (1987) and in

Linton (1997) in the context of maximum likelihood estimation. Given the skewness and kurtosis results

above, one may follow the lines of Rothenberg (1984) to use the two standardized measures to construct

an Edgeworth-type approximation to the distribution of a nonlinear estimator. However, it is still an open

question as to whether the Edgeworth distribution is a valid approximation to the true distribution of a

general class of (nonlinear) estimators �̂n under the general non-IID setup.

Note that the approximate results in (4) are in terms of expectations of terms involving �0;i; ��1=2;i; and

��1;i: In some cases, these expectations can be worked out explicitly (either analytically or numerically, as

demonstrated in the next section). In cases when the expectations are di¢ cult to derive, one may use sample

averages to approximate the expectations. In either situation, �0;i; ��1=2;i; and ��1;i are functions of the

unknown �0;i: In practice, we may have to replace the unknown �0;i with its consistent estimator �̂n;i.

3 Spatial Autoregressive Model

Bao and Ullah (2007a) investigated the �nite sample behavior of the MLE of the autoregressive coe¢ cient in

a spatial autoregressive model by looking at the second-order bias and MSE. Now we make a more thorough

investigation by checking the skewness and kurtosis results.

Consider the following spatial lag model

y = �0Wy + "; (5)

where y is an n�1 vector of observations on the dependent spatial variable,Wy is the corresponding spatially

lagged dependent variable for weights matrix W; which is assumed to be known a priori, " is an n� 1 vector

of IID Gaussian error terms with zero mean and �nite variance �20, and �0 is the spatial autoregressive

parameter. Under the regularity assumptions in Lee (2004), the average sample likelihood function

L(�0; �20) =
1

n
ln jI � �0W j �

1

2
ln
�
2��20

�
� "0"

2n�20
(6)

is well de�ned and continuous, and Lee (2004) proved that the MLE has the usual asymptotic properties,

including
p
n-consistency, normality, and asymptotic e¢ ciency. If �0 is known, the MLE of �

2
0 is given by

�̂2n = (y � �0Wy)0(y � �0Wy)=n = y0Cy=n; where C = I � �0(W +W 0) + �20W
0W: Usually, the estimation
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procedure is implemented by substituting �̂2n = y0Cy=n into the likelihood function (6) and maximizing a

concentrated likelihood function

L (�0) =
1

n

nX
i=1

�
ln (1� �0!i)�

1

2
ln

�
2�

n
y0Cy

�
� n

2

�
; (7)

where !i�s are the eigenvalues of W:

Denote A = I��0W; Mi = A�10[@i(I��0(W 0+W )+�20W
0W )=@�i]A�1; Bi = @i ln jAj =@�i0 (in particular,

B1 = �tr
�
A�1W

�
; B2 = �tr[

�
A�1W

�2
]; B3 = �2tr[

�
A�1W

�3
]; and B4 = �6tr[

�
A�1W

�4
]); bi = Bi=n.

Then we can write the score function  n; in terms of our notation in Section 2, for the MLE �̂n; as well as

its higher-order derivatives as follows:

 n = b1 � ("0")�1"0M1"=2;

H1 = b2 � ("0")�1"0M2"=2 + ("
0")�2("0M1")

2=2;

H2 = b3 + 3 ("
0")

�2
"0M1""

0M2"=2� ("0")�3("0M1")
3;

H3 = b4 + 3("
0")�2("0M2")

2=2� 6 ("0")�3 ("0M1")
2
"0M2"+ 3("

0")�4("0M1")
4:

As it turns out, all the derivatives are in terms of products of ratios of quadratic forms in "; and the

skewness and kurtosis results (4) essentially boil down to expectations of them. Appendix 2 outlines the

steps for numerical evaluation and we follow the steps to analyze the skewness and kurtosis behavior of

�̂n. As in Kelejian and Prucha (1999), we consider three speci�cations of the weights matrix with di¤erent

degree of sparseness, namely, the �one ahead and one behind,��three ahead and three behind,�and ��ve

ahead and �ve behind�matrices, denoted by WJ=2; WJ=6; and WJ=10; respectively.3 We row-standardize

the three matrices and set all the non-zero elements to be equal to each other. We normalize �20 = 1. Tables

1-3 give the the theoretical second-order bias (B; up to order O(n�1)), mean squared error (M; up to order

O(n�2)), the approximate skewness 1 (up to order O(n
�1=2) and excess kurtosis 2 (up to order O(n

�1)) of

the estimator �̂n; as well as the �true�values of them (denoted by Bias, MSE, SK, KR) across 1,000 Monte

Carlo replications, for n = 30; 100; 200; respectively.

Asymptotically, �̂n should be a normal variable. Bao and Ullah (2007a) documented some evidence

indicating that in small samples, when �0 is negatively large and the weights matrix is dense (corresponding

to a larger J); the behavior of �̂n can be quite di¤erent from what the asymptotic theory predicts by checking

the �rst two moments of �̂n. This is supported again by checking the �rst two moments of �̂n: For smaller

J; the theoretical bias and MSE results approximate the true bias and MSE quite well.

Of course, the behaviors of the �rst two moments alone do not necessarily indicate how severe the depar-
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ture of the �nite sample distribution of �̂n from normality is. More conclusive observations can be possibly

made by checking the standardized higher moments of �̂n; namely, 1 and 2: In general, to approximate

higher moments accurately, bigger sample sizes are needed. Moreover, in small samples, E(�20;i+2�0;i��1=2;i)

may be negative, so 1 is not de�ned (this corresponds to the missing values for 1 in Table 1). Given this,

it is not surprising that when n = 30; 1 and 2 provide in some cases very poor approximations to the

true skwness and kurtosis, especially when J is large and/or when �0 is relatively big. Overall, 1 seems to

provide a better approximation to the skewss coe¢ cient compared with 2 (as approximation to the excess

kurtosis coe¢ cien) for small J and �0: Obviously, for a sample of size as small as 30, the behavior of �̂n is

quite di¤erent from a normal density by looking at SK and KR.

When we move to a sample of bigger size 100, the performance of 1 and 2 improves signi�cantly.

This improvement can also be seen when n goes from 100 to 200. In either case, SK and KR still indicate

that the distribution of �̂n is far from being normal. In general, when J is small, both 1 and 2 provide

good approximations to SK and KR. When each spatial unit has more neighbors, however, whereas 1 still

provides reasonable approximation to the skewness of the distribution of �̂n for moderate �0; 2 proves to

approximate the excess kurtosis very poorly, especially for negatively large �0: In fact, in these cases, the

departure of �̂n from normality is most severe, as indicated by SK and KR.

4 Concluding Remarks

We have derived new results on the approximate skewness and excess kurtosis coe¢ cients for a large class

of econometric estimators. The knowledge of the two relative measures of departure from normality of

econometric estimators may not only enable researchers to judge the �nite sample behavior of a particular

estimator, but also to compare the �nite sample properties of two asymptotically equivalent estimators.

Researchers may be tempted to use the two relative measures to construct an Edgeworth-type approximation

to the �nite sample distribution of the estimator in question. The validity of such an approximation as a

distribution function is still an open question to be addressed. In our application, we demonstrate that for

the spatial autoregressive model, the departure of the MLE from normality can be quite severe and usually

our approximate results capture the true tail behaviors of the MLE quite reasonably well. However, when the

departure is most severe, our results do not seem to provide fair approximation in �nite samples. As shown

in Bao and Ullah (2007a), when a spatial unit is surrounded by many neighbors, the sample estimates of �̂n

are quite noisy and we may need really large sample size to achieve convergence. One of the key assumptions
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for deriving our large-n approximate results is
p
n-convergence of the estimator. Therefore more cautions

should be called upon to interpret the empirical results and make �rst-order inferences when we use a dense

weights matrix.

Appendix 1: Proof

The standardized ith variable T �n;i = [Tn;i �E(Tn;i)]=
p
V ar(Tn)ii has zero mean and unit variance, and we

can easily show that the skewness of �̂n;i is equal to E(T
�3
n;i), and its excess kurtosis is equal to E(T

�4
n;i)�3. By

Assumption 2, E(T �3n;i) = O(n�1=2) and E(T �4n;i)�3 = O(n�1): Since we do not know E(Tn;i) and V ar(Tn)ii;

we can approximate them to a certain order. Corresponding to the expansion (3),

E(Tn;i) = ui;�1=2 + o(n
�1=2); V ar(Tn)ii = V ar(Tn;i) = vi;�1=2 + o(n

�1=2);

where ui;�1=2 = E(��1=2;i) and vi;�1=2 = E(�20;i+2�0;i��1=2;i) are the approximate mean and variance of Tn;i;

up to O(n�1=2): De�ne the approximate standardized statistic T ��n;i = (Tn;i � ui;�1=2)=
p
vi;�1=2: Obviously,

T ��n;i = OP (1): Moreover,

T ��n;i =
Tn;i � E(Tn;i) + E(Tn;i)� ui;�1=2p
vi;�1=2 � V ar(Tn;i) + V ar(Tn;i)

=
Tn;i � E(Tn;i)p

V ar(Tn;i)

�
1+

vi;�1=2 � V ar(Tn;i)
V ar(Tn;i)

��1=2
+
E(Tn;i)� ui;�1=2p

V ar(Tn;i)

�
1+

vi;�1=2 � V ar(Tn;i)
V ar(Tn;i)

��1=2
= T �n;i

�
1� 1

2

vi;�1=2 � V ar(Tn;i)
V ar(Tn;i)

+ � � �
�
+
E(Tn;i)� ui;�1=2p

V ar(Tn;i)

�
1� 1

2

vi;�1=2 � V ar(Tn;i)
V ar(Tn;i)

+ � � �
�

= T �n;i + oP (n
�1=2) (8)

since T �n;i = OP (1); vi;�1=2 � V ar(Tn;i) = o(n�1=2); ui;�1=2 � E(Tn;i) = o(n�1=2); and V ar(Tn;i) = O(1):

Immediately, E(T ��n;i) = 0 + o(n�1=2); V ar(T ��n;i) = 1 + o(n�1=2); and E(T �3n;i) = E(T ��3n;i ) + o(n�1=2); i.e.,

the third cumulant of T �n;i; or that of Tn;i; can be approximated by E(T
��3
n;i ), up to order O(n

�1=2): Now we

expand E(T ��3n;i ) as follows

E(T ��3n;i ) = v
�3=2
i;�1=2E[(Tn;i � ui;�1=2)

3]

= v
�3=2
i;�1=2[E(T

3
n;i)� 3E(T 2n;i)ui;�1=2 + 3E(Tn;i)u2i;�1=2 � u3i;�1=2]

= v
�3=2
i;�1=2[E(�

3
0;i + 3�

2
0;i��1=2;i)� 3E(�20;i)E(��1=2;i)] + o(n�1=2): (9)
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Next, to approximate the kurtosis coe¢ cient of Tn;i, alternatively, the fourth moment of T �4n;i; up to order

O(n�1); we approximate E(Tn;i) and V ar(Tn)ii in the de�nition of T �n;i up to order O(n
�1);

E(Tn;i) = ui;�1 + o(n
�1); V ar(Tn;i) = vi;�1 + o(n

�1);

where ui;�1 = E(��1=2;i + ��1;i) and vi;�1 = E(�20;i + �2�1=2;i + 2�0;i��1=2;i + 2�0;i��1;i) � [E(��1=2;i)]2 are

the approximate mean and variance of Tn;i; up to O(n�1): De�ne the approximate standardized statistic

T ���n;i = (Tn;i � ui;�1)=
p
vi;�1: Obviously, T ���n;i = OP (1): Using a similar expansion as (8), we can show

T ���n;i = T �n;i+o(n
�1): Therefore, T ���n;i = 0+o(n

�1); V ar(T ���n;i ) = 1+o(n
�1); and E(T �4n;i) = E(T ���4n;i )+o(n�1);

i.e., the fourth cumulant of T �n;i; or that of Tn;i; can be approximated by E(T
���4
n;i )� 3, up to order O(n�1):

Now we expand E(T ���4n;i ) as follows

E(T ���4n;i ) = v�2i;�1E[(Tn;i � ui;�1)4]

= v�2i;�1[E(T
4
n;i)� 4E(T 3n;i)ui;�1 + 6E(T 2n;i)u2i;�1 � 4E(Tn;i)u3i;�1 + u4i;�1]

= v�2i;�1fE(�
4
0;i + 4�

3
0;i��1=2;i + 4�

3
0;i��1;i + 6�

2
0;i�

2
�1=2;i)

-4E(�30;i+3�
2
0;i��1=2;i)E(��1=2;i)-4E(�

3
0;i)E(��1;i)+6E(�

2
0;i)[E(��1=2;i)]

2g+o(n�1): (10)

The skewness and excess kurtosis follow immediately from (9) and (10). �

Appendix 2: Spatial Model

Using (2) and (3), we collect the following terms, which are needed in calculating the approximate results in

(4) (since we have a scalar parameter, we suppress the subscript i):

E(�20) = nQ2E( 2n); E(�
3
0) = �n3=2Q3E( 3n); E(�40) = n2Q4E( 4n);

E(��1=2) =
p
n[Q2E( nH1)� 1

2Q
3E(H2)E( 

2
n)];

E(�0��1=2) = n[Q2E( 2n)�Q3E( 2nH1) +
1
2Q

4E(H2)E( 
3
n)];

E(�20��1=2) = �n3=2[Q3E( 3n)�Q4E( 3nH1) +
1
2Q

5E(H2)E( 
4
n)];

E(�30��1=2) = n2[Q4E( 4n)�Q5E( 4nH1) +
1
2Q

6E(H2)E( 
5
n)];

E(�2�1=2) = nfQ2E( 2n)� 2Q3E( 2nH1) +Q
4[E(H2)E( 

3
n) + E( 

2
nH

2
1 )]�Q5E(H2)E( 

3
nH1)

+ 1
4Q

6[E(H2)]
2E( 4n)g;

E(�0�
2
�1=2) = �n3=2fQ3E( 3n)� 2Q4E( 3nH1) +Q

5[E(H2)E( 
4
n) + E( 

3
nH

2
1 )]�Q6E(H2)E( 

4
nH1)

+ 1
4Q

7[E(H2)]
2E( 5n)g;

E(�20�
2
�1=2) = n2fQ4E( 4n)� 2Q5E( 4nH1) +Q

6[E(H2)E( 
5
n) + E( 

4
nH

2
1 )]�Q7E(H2)E( 

5
nH1)
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+ 1
4Q

8[E(H2)]
2E( 6n)g;

E(��1) = �
p
nf�2Q2E( nH1) +Q

3[E(H2)E( 
2
n) + E( nH

2
1 ) +

1
2E( 

2
nH2)]

�Q4[ 16E(H3)E( 
3
n) +

3
2E(H2)E( 

2
nH1)] +

1
2Q

5[E(H2)]
2E( 3n)g;

E(�0��1) = nfQ2E( 2n)� 2Q3E( 2nH1) +Q
4[E(H2)E( 

3
n) + E( 

2
nH

2
1 ) +

1
2E( 

3
nH2)]

�Q5[ 16E(H3)E( 
4
n) +

3
2E(H2)E( 

3
nH1)] +

1
2Q

6[E(H2)]
2E( 4n)g;

E(�20��1) = �n3=2fQ3E( 3n)� 2Q4E( 3nH1) +Q
5[E(H2)E( 

4
n) + E( 

3
nH

2
1 ) +

1
2E( 

4
nH2)]

�Q6[ 16E(H3)E( 
5
n) +

3
2E(H2)E( 

4
nH1)] +

1
2Q

7[E(H2)]
2E( 5n)];

E(�30��1) = n2fQ4E( 4n)� 2Q5E( 4nH1) +Q
6[E(H2)E( 

5
n) + E( 

4
nH

2
1 ) +

1
2E( 

5
nH2)]

�Q7[ 16E(H3)E( 
6
n) +

3
2E(H2)E( 

5
nH1)] +

1
2Q

8[E(H2)]
2E( 6n)g:

To work out the expectations as given above, let �i;j = E[ ("0M1")
i
("0M2")

j
= ("0")

i+j
]; then by substi-

tuting  n and Hi, we can write all the expectations in terms of �i;j :

Q = (b2 � 1
2�0;1 +

1
2�2;0)

�1;

E(H2) = b3 +
3
2�1;1 � �3;0;

E(H3) = b4 +
3
2�0;2 � 6�2;1 + 3�4;0;

E( 2n) = b21 � b1�1;0 + 1
4�2;0;

E( 3n) = b31 � 3
2b
2
1�1;0 +

3
4b1�2;0 �

1
8�3;0;

E( 4n) = b41 � 2b31�1;0 + 3
2b
2
1�2;0 � 1

2b1�3;0 +
1
16�4;0;

E( 5n) = b51 � 5
2b
4
1�1;0 +

5
2b
3
1�2;0 � 5

4b
2
1�3;0 +

5
16b1�4;0 �

1
32�5;0;

E( 6n) = b61 � 3b51�1;0 + 15
4 b

4
1�2;0 � 5

2b
3
1�3;0 +

15
16b

2
1�4;0 � 3

16b1�5;0 +
1
64�6;0;

E( nH1) = b1b2 � 1
2b1�0;1 �

1
2b2�1;0 +

1
4�1;1 +

1
2b1�2;0 �

1
4�3;0;

E( 2nH1) = b21b2 � 1
2b
2
1�0;1 � b1b2�1;0 + 1

2b1�1;1 + (
1
2b
2
1 +

1
4b2)�2;0 �

1
8�2;1 �

1
2b1�3;0 +

1
8�4;0;

E( 3nH1) = b31b2 � 1
2b
3
1�0;1 � 3

2b
2
1b2�1;0 +

3
4b
2
1�1;1 + (

1
2b
3
1 +

3
4b1b2)�2;0 �

3
8b1�2;1 � (

3
4b
2
1 +

1
8b2)�3;0 +

1
16�3;1

+ 3
8b1�4;0 �

1
16�5;0;

E( 4nH1) = b41b2 � 1
2b
4
1�0;1 � 2b31b2�1;0 + b31�1;1 + ( 12b

4
1 +

3
2b
2
1b2)�2;0 � 3

4b
2
1�2;1 � (b31 + 1

2b1b2)�3;0 +
1
4b1�3;1

+( 34b
2
1 +

1
16b2)�4;0 �

1
32�4;1 �

1
4b1�5;0 +

1
32�6;0;

E( 5nH1) = b51b2� 1
2b
5
1�0;1� 5

2b
4
1b2�1;0+

5
4b
4
1�1;1+ (

1
2b
5
1+

5
2b
3
1b2)�2;0� 5

4b
3
1�2;1� ( 54b

4
1+

5
4b
2
1b2)�3;0+

5
8b
2
1�3;1

+( 54b
3
1 +

5
16b1b2)�4;0 �

5
32b1�4;1 � (

5
8b
2
1 +

1
32b2)�5;0 +

1
64�5;1 +

5
32b1�6;0 �

1
64�7;0;

E( nH
2
1 ) = b1b

2
2 � b1b2�0;1 + 1

4b1�0;2 �
1
2b
2
2�1;0 +

1
2b2�1;1 �

1
8�1;2 + b1b2�2;0 �

1
2b1�2;1 �

1
2b2�3;0 +

1
4�3;1

+ 1
4b1�4;0 �

1
8�5;0;

E( 2nH
2
1 ) = b21b

2
2�b21b2�0;1+ 1

4b
2
1�0;2�b1b22�1;0+b1b2�1;1� 1

4b1�1;2+(b
2
1b2+

1
4b
2
2)�2;0� ( 12b

2
1+

1
4b2)�2;1+

�2;2
16
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�b1b2�3;0 + 1
2b1�3;1 + (

1
4b
2
1 +

1
4b2)�4;0 �

1
8�4;1 �

1
4b1�5;0 +

�6;0
16 ;

E( 3nH
2
1 ) = b31b

2
2�b31b2�0;1+ 1

4b
3
1�0;2� 3

2b
2
1b
2
2�1;0+

3
2b
2
1b2�1;1� 3

8b
2
1�1;2+(b

3
1b2+

3
4b1b

2
2)�2;0�( 12b

3
1+

3
4b1b2)�2;1

+ 3
16b1�2;2 � (

3
2b
2
1b2 +

1
8b
2
2)�3;0 + (

3
4b
2
1 +

1
8b2)�3;1 �

1
32�3;2 + (

1
4b
3
1 +

3
4b1b2)�4;0 �

3
8b1�4;1 � (

3
8b
2
1 +

1
8b2)�5;0

+ 1
16�5;1 +

3
16b1�6;0 �

1
32�7;0;

E( 4nH
2
1 ) = b41b

2
2�b41b2�0;1+ 1

4b
4
1�0;2�2b31b22�1;0+2b31b2�1;1� 1

2b
3
1�1;2+(b

4
1b2+

3
2b
2
1b
2
2)�2;0� ( 12b

4
1+

3
2b
2
1b2)�2;1

+ 3
8b
2
1�2;2� (2b31b2+ 1

2b1b
2
2)�3;0+ (b

3
1+

1
2b1b2)�3;1�

1
8b1�3;2+ (

1
4b
4
1+

3
2b
2
1b2+

1
16b

2
2)�4;0� ( 34b

2
1+

1
16b2)�4;1

+ 1
64�4;2 � (

1
2b
3
1 +

1
2b1b2)�5;0 +

1
4b1�5;1 + (

3
8b
2
1 +

1
16b2)�6;0 �

1
32�6;1 �

1
8b1�7;0 +

1
64�8;0;

E( 2nH2) = b21b3 � b1b3�1;0 + 3
2b
2
1�1;1 +

1
4b3�2;0 �

3
2b1�2;1 � b

2
1�3;0 +

3
8�3;1 + b1�4;0 �

1
4�5;0;

E( 3nH2) = b31b3 � 3
2b
2
1b3�1;0 +

3
2b
3
1�1;1 +

3
4b1b3�2;0 �

9
4b
2
1�2;1 � (b31 + 1

8b3)�3;0 +
9
8b1�3;1 +

3
2b
2
1�4;0 � 3

16�4;1

� 3
4b1�5;0 +

1
8�6;0;

E( 4nH2) = b41b3 � 2b31b3�1;0 + 3
2b
4
1�1;1 +

3
2b
2
1b3�2;0 � 3b31�2;1 � (b41 + 1

2b1b3)�3;0 +
9
4b
2
1�3;1 + (2b

3
1 +

1
16b3)�4;0

� 3
4b1�4;1 �

3
2b
2
1�5;0 +

3
32�5;1 +

1
2b1�6;0 �

1
16�7;0;

E( 5nH2) = b51b3� 5
2b
4
1b3�1;0+

3
2b
5
1�1;1+

5
2b
3
1b3�2;0� 15

4 b
4
1�2;1�(b51+ 5

4b
2
1b3)�3;0+

15
4 b

3
1�3;1+(

5
2b
4
1+

5
16b1b3)�4;0

� 15
8 b

2
1�4;1 � ( 52b

3
1 +

1
32b3)�5;0 +

15
32b1�5;1 +

5
4b
2
1�6;0 � 3

64�6;1 �
5
16b1�7;0 +

1
32�8;0:

So we need to evaluate �i;j , moments of cross products of ratios of quadratic forms in the normal

vector " � N(0; �20I): Replacing " with "=�0 in the de�nition of �i;j does not change the expectations, so

we rewrite �i;j = E[ (�0M1�)
i
(�0M2�)

j
= (�0�)

i+j
]; where � � N(0; I): Since M1 and M2 are symmetric and

(trivially) both are commutative with I (the matrix in the quadratic form for the denominator), we can use

immediately the separation result from Bao and Ullah (2007c):

E

"
(�0M1�)

i
(�0M2�)

j

(�0�)
i+j

#
=
E[ (�0M1�)

i
(�0M2�)

j
]

E[(�0�)
i+j
]

: (11)

We can easily verify E[(�0�)i+j ] = n(i+j) =
Qi+j�1
k=0 (n+ 2k) : As for the numerator E[ (�0M1�)

i
(�0M2�)

j
];

moments of products of quadratic forms, we can utilize the recursive algorithm in Ghazal (1996) and its

generalization in Bao and Ullah (2007c): for � � N (0; I) and symmetric matrices Ai,

E(

qY
i=1

�0Ai�) = E(�0A1�) � E(
qY
i=2

�0Ai�) + 2

qX
j=2

E(�0AjA1� � �0A2� � � � �0Aj�1� �
qY

k=j+1

�0Ak�): (12)

Given the separation result (11) and the recursive algorithm (12), we collect in the following the exact

expressions of �i;j , in terms of products of traces of matrices involving M1 and M2 :
4

n(1)�0;1 =trM2;

n(1)�1;0 =trM1;
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n(2)�2;0 = 2trM2
1 + (trM1)

2
;

n(2)�0;2 = 2trM2
2 + (trM2)

2
;

n(3)�3;0 = 8trM3
1 + 6trM1�trM2

1 + (trM1)
3
;

n(4)�4;0 = 48trM4
1 + 32trM1�trM3

1 + 12trM
2
1 � (trM1)

2
+ 12

�
trM2

1

�2
+ (trM1)

4
;

n(5)�5;0 = 384trM5
1 + 240trM1�trM4

1 + 160trM
2
1 �trM3

1 + 80 (trM1)
2 �trM3

1 + 60trM1 �
�
trM2

1

�2
+20trM2

1 � (trM1)
3
+ (trM1)

5
;

n(6)�6;0 = 3840trM6
1 + 2304trM1�trM5

1 + 1440trM
2
1 �trM4

1 + 960trM1�trM2
1 �trM3

1 + 720 (trM1)
2 �trM4

1

+640
�
trM3

1

�2
+ 180 (trM1)

2 �
�
trM2

1

�2
+ 160 (trM1)

3 �trM3
1 + 120

�
trM2

1

�3
+ 30 (trM1)

4 �trM2
1

+(trM1)
6
;

n(7)�7;0 = 46080trM7
1 + 26880trM1�trM6

1 + 16128trM
2
1 �trM5

1 + 13440trM
3
1 �trM4

1 + 10080trM1�trM2
1 �trM4

1

+8064(trM1)2�trM5
1 + 4480trM1�(trM3

1 )
2 + 3360(trM2

1 )
2�trM3

1 + 1680(trM1)3�trM4
1 + 960(trM

2
1 )
2�trM3

1

+840trM1�(trM2
1 )
3 + 420(trM1)

3 � (trM2
1 )
2 + 280(trM1)4�trM3

1 + 42(trM1)
5�trM2

1 + (trM1)
7;

n(8)�8;0 = 645120trM8
1+368640trM1�trM7

1+215040trM
2
1 �trM6

1+172032trM
3
1 �trM5

1+129024trM1�trM2
1 �trM5

1

+107520(trM1)
2�trM6

1 + 107520trM1�trM3
1 �trM4

1 + 80640(trM
4
1 )
2 + 40320(trM1)

2�trM2
1 �trM4

1

+24480trM1 � (trM2
1 )
2�trM3

1 + 23520(trM
2
1 )
2�trM4

1 + 21504(trM1)
3�trM5

1 + 19040trM
2
1 � (trM3

1 )
2

+17920(trM1)
2 � (trM3

1 )
2 + 8960(trM1)

3� trM2
1 �trM3

1 + 3360(trM1)
4�trM4

1 + 3360(trM1)
2 � (trM2

1 )
3

+1680(trM2
1 )
4 + 840(trM1)

4 � (trM2
1 )
2 + 448(trM1)

5�trM3
1 + 56(trM1)

6�trM2
1 (trM1)

8;

n(2)�1;1 = 2trM1M2+trM1�trM2;

n(3)�1;2 = 8trM1M
2
2 + 4trM1M2�trM2 + 2trM1�trM2

2+trM1 � (trM2)
2
;

n(3)�2;1 = 8trM2
1M2 + 4trM1M2�trM1 + 2trM2�trM2

1+trM2 � (trM1)
2
;

n(4)�3;1 = 48trM3
1M2 + 24trM2

1M2�trM1 + 12trM1M2�trM2
1 + 8trM

3
1 �trM2 + 6trM1�trM2�trM2

1

+6trM1M2 � (trM1)
2
+ (trM1)

3 �trM2;

n(4)�2;2 = 32trM2
1M

2
2 + 16trM1�trM1M

2
2 + 16trM2�trM2

1M2 + 16trM1M2M1M2 + 8trM1�trM2�trM1M2

+8 (trM1M2)
2
+ 4trM2

1 �trM2
2 + 2trM

2
1 � (trM2)

2
+ 2trM2

2 � (trM1)
2
+ (trM1)

2 � (trM2)
2
;

n(5)�4;1 = 384trM4
1M2 + 192trM1�trM3

1M2 + 96trM2
1M2�trM2

1 + 64trM1M2�trM3
1 + 48trM

4
1 �trM2

+48trM2
1M2 � (trM1)

2
+ 48trM1�trM2

1 �trM1M2 + 32trM1�trM3
1 �trM2 + 12 (trM1)

2 �trM2
1 �trM2

+12
�
trM2

1

�2 �trM2 + 8 (trM1)
3 �trM1M2 + (trM1)

4 �trM2;

n(5)�3;2 = 192trM3
1M

2
2 + 192trM1M2M

2
1M2 + 96trM1 � trM2

1M
2
2 + 96trM

2
1M2 � trM1M2 + 96trM3

1M2�trM2

+48trM1 � trM1M2M1M2 + 48trM2
1 �trM1M

2
2 + 48trM1�trM2

1M2�trM2 + 24(trM1)
2 � trM1M

2
2

+24trM2
1 �trM1M2�trM2 + 24trM1 � (trM1M2)2 + 16trM3

1 �trM2
2 + 12(trM1)

2 � trM1M2 � trM2
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+12trM1�trM2
1 �trM2

2 + 8trM
3
1 � (trM2)2 + 6trM1�trM2

1 � (trM2)2 + 2(trM1)3�trM2
2 + (trM1)

3
(trM2)

2
;

n(6)�4;2 = 1536trM4
1M

2
2+1536trM1M2M

3
1M2+768trM1�trM3

1M
2
2+768trM

2
1M2M

2
1M2+768trM3

1M2�trM1M2

+768trM4
1M2�trM2 + 768trM1�trM1M2M

2
1M2 + 384(trM2

1M2)
2
+ 384trM1�trM2

1M2�trM1M2

+384trM1�trM3
1M2�trM2 + 384trM2

1 �trM2
1M

2
2 + 256trM

3
1 �trM1M

2
2 + 192(trM1)

2 � trM2
1M

2
2

+192trM2
1 �trM1M2M1M2+192trM1�trM2

1 �trM1M
2
2 +192trM

2
1 �trM2

1M2�trM2+128trM3
1 �trM1M2�trM2

+96trM2
1 �(trM1M2)

2
+96(trM1)2�trM1M2M1M2+96(trM1)2�trM2

1M2�trM2+96trM1�trM2
1 �trM1M2�trM2

+96trM4
1 �trM2

2 + 64trM1�trM3
1 �trM2

2 + 48(trM1)2 � (trM1M2)2 + 48trM4
1 � (trM2)2 + 32(trM1)3�trM1M

2
2

+32trM1�trM3
1 � (trM2)2 + 24(trM1)2�trM2

1 �trM2
2 + 24(trM

2
1 )
2�trM2

2 + 16(trM1)3�trM1M2�trM2

+12(trM1)2�trM2
1 � (trM2)2 + 12(trM2

1 )
2 � (trM2)2 + 2(trM1)4�trM2

2 + (trM1)4(trM2)2;

n(6)�5;1 = 3840trM5
1M2+1920trM1 �trM4

1M2+960trM2
1 �trM3

1M2+640trM3
1 �trM2

1M2+480(trM1)2�trM3
1M2

+480trM1�trM2
1 �trM2

1M2 + 480trM4
1 �trM1M2 + 384trM5

1 �trM2 + 320trM1�trM3
1 �trM1M2

+240trM1�trM4
1 �trM2 + 160trM2

1 �trM3
1 �trM2 + 120(trM1)2�trM2

1 �trM1M2 + 120(trM2
1 )
2�trM1M2

+80(trM1)3�trM2
1M2 + 80(trM1)2�trM3

1 �trM2 + 60trM1 � (trM2
1 )
2�trM2 + 20(trM1)3�trM2

1 �trM2

+10(trM1)
4 � trM1M2 + (trM1)

5 � trM2;

n(7)�6;1 = 46080trM6
1M2 + 23040trM1�trM5

1M2 + 11520trM2
1 �trM4

1M2 + 7680trM3
1 �trM3

1M2

+5760(trM1)2�trM4
1M2 + 5760trM1�trM2

1 �trM3
1M2 + 5760trM4

1 �trM2
1M2 + 4608trM5

1 �trM1M2

+3840trM1�trM3
1 �trM2

1M2 + 3840trM6
1 �trM2 + 2880trM1�trM4

1 �trM1M2 + 2304trM1�trM5
1 �trM2

+1920trM2
1 �trM3

1 �trM1M2+1440(trM1)2�trM2
1 �trM2

1M2+1440(trM2
1 )
2�trM2

1M2+1440trM2
1 �trM4

1 �trM2

+960(trM1)2�trM3
1 �trM1M2 + 960trM1�trM2

1 �trM3
1 �trM2 + 960(trM1)3�trM3

1M2

+720trM1 � (trM2
1 )
2�trM1M2 + 720(trM1)2�trM4

1 �trM2 + 640(trM3
1 )
2�trM2 + 240(trM1)3�trM2

1 �trM1M2

+180(trM1)2 � (trM2
1 )
2�trM2 + 160(trM1)3�trM3

1 �trM2 + 120(trM1)4�trM2
1M2 + 120(trM2

1 )
3�trM2

+30(trM1)4�trM2
1 �trM2 + 12(trM1)5�trM1M2 + (trM1)6�trM2:

In summary, given �0 and W; the steps to evaluate the �nite sample skewness and excess kurtosis of �̂n

are as follows:

1. Calculate �i;j as given above.

2. Plug �i;j into Q and into expectations of terms involving  n; H1; H2; and H3:

3. Plug the results from Step 2 into expectations of terms involving �0; ��1=2; and ��1:

4. Plug the results from Step 3 to (4) to calculate the approximate results.
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Notes
1We do not discuss the more complicated issue of cross moments of �̂i and �̂j , i 6= j; in this paper. This

issue is however important if we are interested in the �nite sample properties of some test statistics that
involve the whole parameter vector. We leave this for our future study.

2In an earlier version of this paper, the authors considered the standardized estimator D�1=2pn(�̂n��0):
However, as pointed out by one referee and the co-editor, since in general D is unknown, in practice
D̂
�1=2
n

p
n(�̂n � �0); where D̂n consistently estimates D and D̂n �D = OP (n

�1=2); is also of interest. The
presence of D̂n will introduce additional terms into the expansion and we can show that for the ith feasible
standardized estimator D̂�1=2

n;ii

p
n(�̂n;i��0;i) = �0;i+��1=2;i+��1;i, where �0;i =

p
nD

�1=2
ii a�1=2;i; ��1=2;i =

p
nD

�1=2
ii

h
a�1;i � 1

2

�
D̂n;ii�Dii

Dii

�
a�1=2;i

i
; and ��1;i =

p
nD

�1=2
ii

�
a�3=2;i +

3
8

�
D̂n;ii�Dii

Dii

�2
a�1=2;i � 1

2

�
D̂n;ii�Dii

Dii

�
a�1;i

�
:

With these newly de�ned ��s, the theorem presented in this paper is still valid for the skewness and kurtosis
of the feasible standardized estimator D̂�1=2

n;ii

p
n(�̂n;i � �0;i):

3A �one ahead and one behind�matrix has the i-th row with non-zero elements only in positions i � 1
and i + 1; i = 2; � � � ; n � 1; and the �rst row has non-zero elements only in positions 2 and n while for the
last row the non-zeros occur only in positions 1 and n�1: By this, we de�ne the weights matrix in a circular
way. The average number of neighboring units J for the �one ahead and one behind�matrix is hence 2:
Similarly, we can de�ne the �two ahead and two behind,��three ahead and three behind�matrices and so
on.

4Note that in Bao and Ullah (2007a), a di¤erent approach, namely, the top-order invariant polynomial
approach, was used to derive the second-order bias and MSE of �̂n:
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Table 1: Sample and Theoretical Bias, MSE, Skewness, and Kurtosis, n = 30 
 

J ρ0 Bias B MSE M SK 1γ  KR 2γ  

2 -0.9 0.020 0.018 0.004 0.003 1.404 3.977 2.602 0.428 
 -0.4 0.018 0.019 0.025 0.026 0.473 0.251 0.184 0.335 
 -0.2 0.013 0.011 0.031 0.033 0.244 0.112 -0.167 0.892 
 0 -0.002 0.000 0.031 0.035 -0.091 0.000 -0.265 1.073 
 0.2 -0.004 -0.011 0.028 0.033 -0.341 -0.112 -0.052 0.892 
 0.4 -0.019 -0.019 0.027 0.026 -0.406 -0.251 -0.187 0.335 
 0.9 -0.019 -0.018 0.003 0.003 -2.082 -3.977 13.400 0.428 

6 -0.9 0.102 0.002 0.070 0.118 1.122 0.182 0.306 0.593 
 -0.4 -0.016 -0.046 0.111 0.114 0.032 -0.140 -0.676 -2.126 
 -0.2 -0.063 -0.062 0.111 0.105 -0.224 -0.349 -0.535 -3.668 
 0 -0.076 -0.074 0.109 0.093 -0.493 -0.672 -0.102 -4.840 
 0.2 -0.084 -0.080 0.102 0.077 -0.759 -1.232 0.508 -5.029 
 0.4 -0.085 -0.080 0.076 0.060 -1.022 -2.422 1.343 -3.520 
 0.9 -0.050 -0.039 0.014 0.014 -2.448  10.354 9.685 

10 -0.9 0.144 -0.056 0.110 0.188 1.081 -0.140 0.139 -8.352 
 -0.4 -0.068 -0.122 0.160 0.182 0.192 -1.191 -1.024 -12.644 
 -0.2 -0.097 -0.138 0.178 0.178 -0.185 -2.200 -0.916 -10.195 
 0 -0.102 -0.147 0.179 0.170 -0.532 -4.327 -0.490 -5.196 
 0.2 -0.146 -0.148 0.176 0.157 -0.782 -10.486 0.069 0.932 
 0.4 -0.142 -0.139 0.156 0.137 -1.217 -60.228 1.173 6.648 
 0.9 -0.084 -0.058 0.041 0.046 -3.669  20.303 4.724 

Note: For each J and ρ0, Bias is the average bias of the sample estimates over 1,000 replications; B is the 
theoretical second-order bias; MSE is the mean squared error of the sample estimates over the 1,000 
replications; M is the theoretical second-order mean squared error; SK and KR are the sample skewness  
and excess kurtosis coefficients, respectively, of the estimates over the 1,000 replications; 1γ  and 2γ  are 
the theoretical approximate skewness and excess kurtosis coefficients. 

 

 

 



 
Table 2: Sample and Theoretical Bias, MSE, Skewness, and Kurtosis, n = 100 

 

J ρ0 Bias B MSE M SK 1γ  KR 2γ  

2 -0.9 0.006 0.005 0.001 0.001 0.839 1.133 1.324 1.015 
 -0.4 0.002 0.006 0.007 0.007 0.226 0.224 -0.073 0.072 
 -0.2 0.006 0.003 0.009 0.009 0.197 0.106 0.196 0.092 
 0 0.004 0.000 0.010 0.010 -0.038 0.000 -0.110 0.100 
 0.2 -0.001 -0.003 0.009 0.009 -0.197 -0.106 0.008 0.092 
 0.4 -0.007 -0.006 0.007 0.007 -0.330 -0.224 0.159 0.072 
 0.9 -0.005 -0.005 0.001 0.001 -0.796 -1.133 0.890 1.015 

6 -0.9 0.045 0.000 0.027 0.037 0.987 0.082 0.198 -0.085 
 -0.4 -0.012 -0.014 0.039 0.038 -0.245 -0.168 0.022 -0.275 
 -0.2 -0.008 -0.019 0.036 0.035 -0.207 -0.287 -0.105 -0.292 
 0 -0.023 -0.022 0.030 0.031 -0.462 -0.428 0.367 -0.222 
 0.2 -0.022 -0.024 0.026 0.025 -0.448 -0.606 0.351 -0.017 
 0.4 -0.024 -0.024 0.018 0.018 -0.707 -0.859 0.789 0.416 
 0.9 -0.010 -0.012 0.002 0.002 -1.479 -6.529 4.115 7.066 

10 -0.9 0.063 -0.017 0.039 0.079 1.113 -0.141 0.581 -0.580 
 -0.4 -0.027 -0.037 0.067 0.071 -0.183 -0.541 -0.429 -0.263 
 -0.2 -0.030 -0.042 0.060 0.064 -0.432 -0.766 0.019 0.165 
 0 -0.037 -0.045 0.055 0.055 -0.549 -1.062 0.290 0.824 
 0.2 -0.039 -0.045 0.041 0.044 -0.541 -1.483 0.038 1.761 
 0.4 -0.046 -0.042 0.034 0.032 -0.933 -2.165 1.505 3.082 
 0.9 -0.022 -0.018 0.004 0.004 -1.883 -148.590 7.988 10.651 

Note: For each J and ρ0, Bias is the average bias of the sample estimates over 1,000 replications; B is the 
theoretical second-order bias; MSE is the mean squared error of the sample estimates over the 1,000 
replications; M is the theoretical second-order mean squared error; SK and KR are the sample skewness  
and excess kurtosis coefficients, respectively, of the estimates over the 1,000 replications; 1γ  and 2γ  are 
the theoretical approximate skewness and excess kurtosis coefficients. 

 

 

 

 



Table 3: Sample and Theoretical Bias, MSE, Skewness, and Kurtosis, n = 200 
 

J ρ0 Bias B MSE M SK 1γ  KR 2γ  

2 -0.9 0.002 0.003 0.000 0.000 0.530 0.684 0.412 0.579 
 -0.4 0.000 0.003 0.004 0.004 0.255 0.176 0.028 0.038 
 -0.2 0.002 0.002 0.005 0.005 0.202 0.085 0.068 0.018 
 0 -0.001 0.000 0.005 0.005 0.013 0.000 -0.004 0.012 
 0.2 -0.002 -0.002 0.004 0.005 -0.108 -0.085 0.118 0.018 
 0.4 -0.006 -0.003 0.004 0.004 -0.228 -0.176 0.376 0.038 
 0.9 -0.003 -0.003 0.000 0.000 -0.547 -0.684 0.442 0.579 

6 -0.9 0.015 0.000 0.013 0.019 0.840 0.054 0.016 -0.056 
 -0.4 -0.008 -0.007 0.019 0.019 -0.057 -0.134 0.015 -0.082 
 -0.2 -0.007 -0.009 0.018 0.018 -0.171 -0.216 -0.015 -0.055 
 0 -0.009 -0.011 0.014 0.015 -0.196 -0.306 -0.180 0.007 
 0.2 -0.015 -0.012 0.012 0.012 -0.342 -0.409 0.039 0.118 
 0.4 -0.015 -0.012 0.009 0.009 -0.581 -0.539 0.312 0.313 
 0.9 -0.006 -0.006 0.001 0.001 -0.968 -1.942 1.784 3.477 

10 -0.9 0.034 -0.009 0.022 0.041 1.031 -0.104 0.413 -0.182 
 -0.4 -0.013 -0.019 0.033 0.036 -0.182 -0.351 0.079 0.010 
 -0.2 -0.019 -0.021 0.032 0.032 -0.388 -0.469 0.347 0.190 
 0 -0.028 -0.022 0.027 0.026 -0.509 -0.606 0.486 0.452 
 0.2 -0.020 -0.022 0.020 0.021 -0.571 -0.776 0.369 0.826 
 0.4 -0.025 -0.021 0.015 0.014 -0.593 -1.008 0.444 1.378 
 0.9 -0.008 -0.009 0.001 0.001 -1.440 -4.991 4.147 7.157 

Note: For each J and ρ0, Bias is the average bias of the sample estimates over 1,000 replications; B is the 
theoretical second-order bias; MSE is the mean squared error of the sample estimates over the 1,000 
replications; M is the theoretical second-order mean squared error; SK and KR are the sample skewness  
and excess kurtosis coefficients, respectively, of the estimates over the 1,000 replications; 1γ  and 2γ  are 
the theoretical approximate skewness and excess kurtosis coefficients. 

 

 

 


