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ABSTRACT

The existing parametric multivariate generalized autoregressive conditional heteroskedasticity

(MGARCH) model could hardly capture the nonlinearity and the non-normality, which are widely

observed in �nancial data. We propose semiparametric conditional covariance (SCC) model to cap-

ture the information hidden in the standardized residuals and missed by the parametric MGARCH

models. Our two-stage SCC estimator incorporates the parametric and nonparametric estimators

of the conditional covariance in a multiplicative way. We prove the consistency and asymptotic

normality of our semiparametric estimator. We conduct a small set of Monte Carlo experiments to

demonstrate the advantage of our SCC estimators over their parametric counterparts in terms of

mean squared error. For both in-sample �tting and out-of-sample forecasting conditional covariance

matrix, our SCC models also outperform the parametric ones in empirical applications on bivariate

stock indices and two stock portfolios with thirty underlying stocks.

JEL Classi�cations: C3; C5; G0

Key Words: Conditional Covariance Matrix, Multivariate GARCH, Nadaraya-Watson Estimator,

Portfolio, Semiparametric Estimator.
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1 INTRODUCTION

Since the seminal work of Engle (1982), there has developed a huge literature on modeling the time-

varying volatility of economic data in univariate case. Nevertheless, for asset allocation, risk manage-

ment, hedging and asset pricing, multivariate generalized autoregressive conditional heteroskedas-

ticity (MGARCH) models are of more importance both theoretically and practically because they

model the volatility and co-volatility of multiple �nancial assets jointly. Many recent works have been

done in the area of MGARCH models, such as the VECH model of Bollerslev, Engle and Wooldridge

(1988), the BEKK model of Baba, Engle, Kraft and Kroner (1991) and Engle and Kroner (1995), the

dynamic conditional correlation (DCC) model of Engle (2002) and Engle and Sheppard (2001), the

Factor GARCH model of Engle, Ng and Rothschild (1990), to name just a few. However, all these

existing MGARCH models including the DCC model share two common features: the normality as-

sumption on the error�s distribution and the linearity of dynamic conditional covariance matrix. The

exceptions include the regime switching dynamic conditional correlation model of Pelletier (2006),

the smooth transition conditional correlation (STCC) model by Silvennoinen and Teräsvirta (2005),

and the asymmetric dynamic conditional correlation model by Capiello, Engle and Sheppard (2003),

where parametric nonlinear conditional correlation models are used with Gaussian errors, and the

copula-based MGARCH model by Lee and Long (2008), where copula is used to construct non-

Gaussian errors. The normality assumption is rejected by Fama and French (1993), Richardson and

Smith (1993), Longin and Solnik (2001), Ang and Chen (2002), Mashal and Zeevi (2002), and Chen,

Fan and Patton (2004). The linear dynamic assumption excludes possible nonlinearity. Once we

diverge from linearity, there is too much freedom to specify nonlinearity.

If the parametric model is misspeci�ed in either the joint density function or the functional

form of the conditional covariance matrix, parametric estimators of conditional covariance will often

be inconsistent. Fortunately, such misspeci�cations could be avoided by nonparametric estimation

techniques because of their ability to capture the unknown nonlinearity. Nevertheless, pure nonpara-

metric estimates are subject to the �curse of dimensionality�and have slow convergence rates.

In this paper, we propose a semiparametric conditional covariance (SCC) model, which combines

parametric and nonparametric estimators of conditional covariance matrix in a multiplicative way.

We �rst model the conditional covariance matrix parametrically just like what we do for the conven-

tional parametric MGARCH models. Then we model the conditional covariance of the standardized

residual nonparametrically. The estimate of the latter will serve as a nonparametric correction factor

for the parametric conditional covariance (PCC) estimator. As surveyed by Mishra, Su and Ullah

(2008), a lot of work has been done in the framework of combined estimation: Olkin and Speigelman

(1987) in the density function; Glad (1998) and Fan and Ullah (1999) in the conditional mean; Gozalo

and Linton (2000) in the conditional heteroskedasticity; and Engle and Gonzalez-Rivera (1991) in the
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likelihood function, among others. Nevertheless, to the best of our knowledge, there is no combined

estimator of conditional covariance matrix.

We provide asymptotic theory for our semiparametric estimator. It possesses several advantages

over both pure parametric and nonparametric estimators. First, our SCC model avoids the common

shortcomings of parametric MGARCH models on potential misspeci�cations of functional form and

density function. It does not rely on either the distributional assumption on the error term or

the parametric functional form of the conditional covariance matrix. Second, when the parametric

model is misspeci�ed, the parametric estimator of the conditional covariance is generally inconsistent

despite the fact that the �nite dimensional parameter in the parametric model may converge to some

pseudo-true parameter (see White, 1994). In contrast, our semiparametric estimator can still be

consistent with the true conditional covariance matrix under certain conditions. Third, when the

parametric model is correctly speci�ed, as expected, our semiparametric estimator is less e¢ cient

than the parametric estimator but it can achieve the parametric convergence rate with a �xed

bandwidth. Fourth, based on our estimator for the nonparametric correction factor, we propose a

test of correct speci�cation of PCC models, which has not been addressed in earlier literature on

combined estimation.

We report a small set of Monte Carlo simulation results motivated by the stylized fact that

conditional correlation tends to be high during the crisis period and low during the tranquil period.

We examine the small sample performance of various PCC and SCC models in terms of mean squared

error (MSE). We �nd that our semiparametric estimators can beat their parametric counterparts in

all DGPs under examination. We also apply our strategy to do in-sample (IS) estimating and out-

of-sample (OoS) forecasting the conditional covariance matrix of two stock market indices and two

stock portfolios with thirty underlying stocks1 . We consider two types of loss functions, one is the

statistical loss function (MSE) and the other is the economic loss function (VaR loss). Again, we �nd

that both of our SCC estimators and forecasters always outperform their parametric counterparts

signi�cantly, including the DCC model of Engle (2002).

The rest of the paper is organized as follows. We brie�y review some PCC models in Section 2.

We present our alternative SCC model and study its asymptotic properties in Section 3. In Section

4 we provide a small set of Monte Carlo experiments and three empirical applications to evaluate the

�nite sample performance of our SCC models in comparison with some widely used PCC models.

We make some concluding remarks in Section 5. All proofs are relegated to Appendix.

To proceed, we de�ne some notation that will be used throughout the paper. Let Ik denote a

k� k identity matrix. Let z =(z1; :::; zk)0 be a k� 1 vector and Z be a symmetric k� k matrix with
(i; j)th element zij . The Euclidean norm of z or Z is denoted as kzk or kZk :We de�ne the following

1We could apply our method to higher-dimensional portfolio, however, PC�s memory card is a constraint.
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operators: diag(Z) denotes the diagonal matrix with zi in the (i; i)th place; Z� denotes a diagonal

matrix with the square roots of the diagonal elements of Z on its diagonal when Z is positive de�nite;

vec(Z) stacks the columns of Z into a k2 � 1 vector; vech(Z) stacks the lower triangular part of Z
(including the diagonal elements) into a k (k + 1) =2 � 1 vector. Further, we use Dk to denote the
k2 � (k (k + 1) =2) unique duplication matrix and D+

k to denote its generalized inverse, which is of

size (k (k + 1) =2) � k2: That is, vec(Z) = Dkvech(Z) ; vech(Z) = D+
k vec(Z) ; D

+
k = (D0

kDk)
�1
D0
k

and D+
k Dk = Ik(k+1)=2: Here we have used the fact that D0

kDk is nonsingular. Let Nk � DkD
+
k :

We will use the following properties of Nk: Nk is symmetric, NkDk = Dk; NkD
+0
k = D+0

k ; and

Nk(A
A) = (A
A)Nk, where A is a k� k matrix. For more details, see Magnus and Neudecker
(1999, pp. 48-50).

2 PARAMETRIC CONDITIONAL COVARIANCE MOD-

ELS

Suppose the return series frtgTt=1 of the interested �nancial data follows the stochastic process:

rtjFt�1 � P(�t;Ht; �); t = 1; :::; T; (2.1)

where rt � (r1;t; : : : ; rk;t)
0 is an k � 1 vector, Ft�1 is the information set (���eld) at time t � 1,

E(rtjFt�1) = �t, E(rtr
0
tjFt�1) = Ht, Ht is the conditional covariance matrix, and P is the joint

cumulative distribution function (CDF) of rt, and � represents the parameters in the distribution.

Like Engle (2002), for simplicity we assume the conditional mean �t is zero. If not, necessary

standardization should be applied on the data. Thus we can write the model for rt as

rt = H
1=2
t et; (2.2)

where et � H
�1=2
t rt is the standardized error with E(etjFt�1) = 0 and E(ete0tjFt�1) = Ik. et is

typically assumed to follow the standard normal distribution: et � i.i.d. N(0; Ik). We are interested
in estimating the conditional covariance matrix Ht of rt without such a distributional assumption.

The conditional covariance matrix Ht can be decomposed as

Ht = Dt (�)Rt (�)Dt (�) ; (2.3)

where Rt (�) is the conditional correlation matrix with the (i; j)th element denoted as �ij;t (�) ; which

stands for the conditional correlation between ri;t and rj;t and can be time-varying;Dt (�) =diag(
p
h1;t;

:::;
p
hk;t) is a diagonal matrix with the square root of the conditional variances hi;t, parameter-

ized by the vector �; on the diagonal. It is well known (see e.g., Engle, 2002) that the condi-

tional correlation matrix Rt (�) is also the conditional covariance matrix of the standardized returns
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"t � ("1;t; : : : ; "k;t)0 = D�1
t (�) rt, that is

E("t"
0
tjFt�1) = Rt (�) : (2.4)

Now we review some existing parametric models for the conditional covariance matrix Ht, which

belong to the class of multivariate GARCH models. These models stem from two di¤erent modeling

methodologies.

First, both the VECH model by Bollerslev, Engle and Wooldridge (1988) and the BEKK model by

Bara, Engle, Kraft and Kroner (1990) and Engle and Kroner (1995) consider modeling the elements

of Ht directly. The VECH model speci�es the dynamics of Ht as

vech(Ht) = ! +�
p
i=1Aivech("t�i"0t�i) + �

q
j=1Bjvech(Ht�j); (2.5)

where ! is a k(k+1)=2� 1 vector, Ai and Bj are k(k+1)=2� k(k+1)=2 matrices. In contrast, the
BEKK model speci�es Ht as

Ht= ��
0+�pi=1Ai

�
rt�ir

0
t�i
�
A
0
i +�

q
j=1BjHt�jB

0
j ; (2.6)

where � is a k � k low-triangle matrix, and di¤erent matrix properties of Ai and Bj lead to three

types of BEKK models: Ai and Bj in full BEKK model, diagonal BEKK model, and scalar BEKK

model are full matrix, diagonal matrix, and scalar, respectively.

Second, instead of modeling the conditional covariance matrix directly, some researchers observe

Ht= DtRtDt in (2.3) and modelHt indirectly through modelingDt andRt separately. The resulting

models include the CCC model by Bollerslev (1990), the VC model by Tse and Tsui (2002), the DCC

model by Engle (2002) and Engle and Sheppard (2001), among others.

(1) The CCC model assumes that Rt = R, a constant matrix, and hence the time-varying

feature of conditional covariance could only be attributed to the time-varying conditional variances.

Nevertheless, Longin and Solnik (2001), Ang and Chen (2002), and Andersen, Bollerslev, Diebold

and Labys (1999) indicate asymmetric phenomena in conditional correlation, that is, high correlation

tends to be associated with high volatility or crisis period and low correlation tends to be associated

with low volatility or tranquil period. The CCC model is thus defaulted and many researchers turn

to time-varying conditional correlation, such as the VC and DCC models.

(2) The VC model by Tse and Tsui (2002) speci�es univariate GARCH(p; q) models for individual

return rit :

hi;t = !i +�
p
l=1�l;ihi;t�l +�

q
l=1�l;ir

2
i;t�l; (2.7)

and GARCH-type dynamic evolutions for the conditional correlation process fRtg:

Rt =
�
1� �mi=1�i � �nj=1j

�
�R+�mi=1�iRt�i +�

n
j=1j

bRt�j ; (2.8)
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where �R, Rt, and bRt are the unconditional, conditional, and sample correlation matrices at time t

with unit diagonal elements; the o¤-diagonal elements b�ij;t of bRt is

b�ij;t = PM
l=1 "i;t�l"j;t�lq

(
PM

l=1 "
2
i;t�l)(

PM
l=1 "

2
j;t�l)

; (2.9)

the o¤-diagonal elements of �R lie on the interval (�1; 1); and to guarantee the positiveness of bRt;

M should not be less than k. Conditional covariance inherits the time-varying property from both

the conditional variances and the conditional correlations.

(3) Similar to the CCC and VC models, the DCC model by Engle (2002) and Engle and Sheppard

(2001) also uses two-stage modeling strategy. In the �rst stage, one models the conditional variance

processes with the usual univariate GARCH models and then obtains the standardized residual "̂t.

In the second stage, one models the conditional covariance Qt of "t as

Qt =
�
1� �mi=1�i � �nj=1j

�
�Q+�mi=1�i(b"t�ib"0t�i) + �nj=1jQt�j ; (2.10)

where �Q is the sample covariance matrix for "̂t, �i > 0, j > 0, and �
m
i=1�i+�

n
j=1j < 1: The basic

properties of correlation matrix, such as positive de�niteness and unit diagonal element, are ensured

by using the transformation

Rt = Q
��1
t QtQ

��1
t (2.11)

where Q�
t is a diagonal matrix with the square roots of the diagonal elements of Qt on its diagonal.

Due to its simplicity, the DCC model is �exible for high-dimensional system.

(4) Other speci�cations forRt are also available. For example, Pelletier (2006) develops a Markov-

Switching conditional correlation model that allows the conditional correlation to switch between m

distinct values by assuming that

Rt = Rst ; (2.12)

where St is an unobservable �rst-order Markov process with m states with P (St = jjSt�1 = i) = pij ,
i; j = 1; : : : ;m; as the transition probabilities. However, noting that correlation targeting (substitut-

ing unconditional correlation by sample correlation) is not possible in this case, one has to estimate

mk (k � 1) =2+ (m� 1) parameters in the second step. Silvennoinen and Teräsvirta (2005) consider
STCC model,

Rt = R1 (1� F (xt; �; �)) +R2F (xt; �; �) ; (2.13)

F (xt; �; �) = (1 + exp (�� (xt � �)))�1 ; say, (2.14)

where R1 and R2 are positive de�nite correlation matrices, xt is a scalar transition variable that

belongs to the information set Ft�1 and � determines the smoothness of F (�) as xt increases. A crucial
element of the STCC is the choice of xt, which could be taken as the standardized lagged return or

6



market volatility. Correlation targeting is not possible in this stage either, and the estimation can

be carried out iteratively by concentrating the likelihood.

In addition to the above two classes of methodologies, there are some other models, where Ht is

indirectly studied, such as the Orthogonal GARCH (O-GARCH) or principal components GARCH

method by Ding (1994), Alexander (1998, 2001), and the Factor GARCH model of Engle, Ng and

Rothschild (1990), where some factors driving the economy or the market are considered.

In the existing parametric models given above, the functional form of covariance matrix are

assumed to be of known linear or nonlinear form and the maximum likelihood estimation is done

under the assumption of normality. In the next section, we present our semiparametric estimation

of the conditional covariance matrix which requires neither.

3 ANALTERNATIVE SEMIPARAMETRICCONDITIONAL

COVARIANCE ESTIMATOR

In this section we �rst introduce brie�y the semiparametric estimator of Hafner, Dijk and Franses

(2006, HDF hereafter) and propose an alternative semiparametric estimator for conditional covari-

ance matrix.

3.1 HDF�s Semiparametric Estimator

Motivated by the idea that the conditional correlations depend on exogenous factors such as the

market return or volatility, HDF propose the following semiparametric model for rt :

rt = Dt (�) "t; E ("tjFt�1) = 0; E ("t"0tjFt�1) = R (xt) ; (3.1)

where Dt (�) is as de�ned before (after (2.3)), and xt is observable at time t � 1 and xt 2 Ft�1:
Assuming that � can be estimated by b� at the parametric pT -rate, they de�ne standardized residuals
by e"t � "t(b�) = Dt(b�)�1rt: Then they regress e"te"0t on xt nonparametrically to obtain eQ (x) ; the
Nadaraya-Watson kernel estimator of E

�e"te"0tjxt = x� : Their semiparametric conditional correlation
matrix estimator is de�ned by

eR (x) = (eQ� (x))�1 eQ (x) (eQ� (x))�1; (3.2)

where eQ� (x) is a diagonal matrix with the square roots of the diagonal elements of eQ (x) on its
diagonal. Their semiparametric estimator of Ht can be written as follows

eHt = Dt(b�)eR (xt)Dt(b�): (3.3)
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Clearly, the HDF�s estimators require correct speci�cation of the conditional variance process in

order to obtain a �nal consistent conditional correlation or covariance estimator. This is unsatisfac-

tory since it is extremely hard to know a prior the correct form of the conditional variance process.

Below we propose an alternative SCC estimator that can be consistent even if the conditional vari-

ance process may be misspeci�ed in the �rst stage and it requires similar assumption to that in

(3.1).

3.2 An Alternative Semiparametric Estimator

Motivated by Glad (1998) and Mishra, Su, and Ullah (2008), we propose an alternative SCC es-

timator, which combines in a multiplicative way the parametric conditional covariance estimator

from the �rst stage with the nonparametric conditional covariance estimator from the second stage.

Essentially, this estimator nonparametrically adjusts the initial PCC estimator.

Let fHt = E (rtr
0
tjFt�1)g be the true time-varying conditional covariance process:

rt = H
1=2
t et; E (etjFt�1) = 0; E (ete0tjFt�1) = Ik; (3.4)

where H1=2
t is the symmetric square root matrix of Ht: Let fHp;t (�)g be a parametrically-speci�ed

time-varying conditional covariance process for rt; where � 2 � � Rp andHp;t (�) 2 Ft�1: Analogous
to Mishra, Su, and Ullah (2008), our estimation strategy builds on the simple identity

Ht = Hp;t (�)
1=2
E
�
et (�) et (�)

0 jFt�1
�
Hp;t (�)

1=2
; (3.5)

where Hp;t (�)
1=2 is the symmetric square root matrix of Hp;t (�) ; and et (�) = Hp;t (�)

�1=2
rt is the

standardized error from the parametric model. When � = ��; some pseudo-true parameter value,

we write Hp;t = Hp;t (��) and et = et (��) : It is clear that the parametric component Hp;t (�)

in (3.5) can be any PCC model reviewed in Section 2 and estimated by some standard parametric

method. To propose a reasonable estimator for the nonparametric component E
�
et (�) et (�)

0 jFt�1
�
;

we follow the HDF�s idea and assume that the conditional expectation of ete0t depends on the current

information set Ft�1 only through a q � 1 observable vector xt = (x1t; :::; xqt)0 : That is,

E [ete
0
tjFt�1] = Hnp (xt) ; (3.6)

where xt 2 Ft�1: There is a fundamental di¤erence between (3.6) and the last expression in (3.1).
In order for R (xt) in (3.1) to be a conditional correlation matrix, the conditional variance matrix

or equivalently fDt (�)g has to be speci�ed correctly. Fortunately there is no such a requirement for
our de�nition of Hnp (xt) :

Let Hnp;t = Hnp (xt) : (3.5) then reduces to

Ht = H
1=2
p;t Hnp;tH

1=2
p;t : (3.7)
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Based upon (3.5)-(3.7), we can estimate Ht in two stages:

Stage 1: Estimate the parameter � by b� in the parametric speci�cation fHp;t (�)g for the condi-
tional covariance process. De�ne the standardized residuals by bet = bH�1=2

p;t rt; where bHp;t = Hp;t(b�).
Stage 2: Estimate E [ete0tjFt�1;xt = x] nonparametrically by

bHnp (x) =

PT
s=1 besbe0sKh(xs � x)PT
s=1Kh(xs � x)

; (3.8)

where

Kh (xs � x) =
Yq

l=1
h�1l k

�
xls � xl
hl

�
h = (h1; :::; hq) ; hl = hl (T ), l = 1; :::; q; are bandwidth parameters, and k is a kernel function. LetbHnp;t = bHnp (xt) : Then our SCC estimator of Ht is obtained as

bHsp;t = bH1=2
p;t
bHnp;t

bH1=2
p;t : (3.9)

Correspondingly, the estimator of conditional correlation matrix from our SCC model is

bRsp;t =
�bH�

sp;t

��1 bHsp;t

�bH�
sp;t

��1
; (3.10)

where bH�
sp;t is a diagonal matrix with the square roots of the diagonal elements of bHsp;t on its

diagonal.

To proceed, we make a few remarks.

Remark 1. When k = 1, bHsp;t reduces to the semiparametric estimator of conditional variance

in the spirit of Mishra, Su and Ullah (2008) who use local polynomial estimation technique instead.

Remark 2. When the parametric model Hp;t is correctly speci�ed, i.e., Hp;t (�0) = Ht for some

�0 2 � and �0 = ��; we have:
Hnp (xt) = E [ete

0
tjFt�1] = Ik: (3.11)

In this case, bHnp;t is estimating the k�k identity matrix. On the other hand, if the parametric model
Hp;t is misspeci�ed,Hnp (xt) will not be an identity matrix, and bHnp;t will serve as an nonparametric

correction factor, which nonparametrically adjusts the initial PCC estimator. In Section 3.4 we will

propose a test of correct speci�cation of parametric conditional covariance models based on (3.11).

Remark 3. Our SCC estimator is quite di¤erent from that of HDF. In the special case wherebH1=2
p;t = Dt(b�); then bHnp;t is the same as eQ (xt) obtained by HDF. So

bHsp;t = Dt(b�)eQ (xt)Dt(b�):
We can show that bHsp;t is asymptotically equivalent to eHt = Dt(b�)(eQ� (xt))

�1 eQ (xt) (eQ� (xt))
�1Dt(b�).

In the general case where bH1=2
p;t 6= Dt(b�); bHnp;t is not equal to eQ (xt) and bHsp;t and eHt may have

quite di¤erent properties in both large and small samples. If the parametric models (Hp;t (�) in our
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case and Dt(�) in HDF�s case) are misspeci�ed, our estimator for the conditional covariance matrix

is still consistent under weak conditions while that of HDF is generally inconsistent.

Remark 4. In the above analysis, we assume xt is observable. It turns out this is not necessary.

In fact, we can allow xt to be estimated from the data at a certain rate. See Mishra, Su, and Ullah

(2008).

Remark 5. There are some alternatives to obtain the semiparametric estimators. For example,

instead of using the Nadaraya-Watson (local constant) estimator, one can obtain the local polynomial

estimator (e.g., Fan and Gijbels, 1996; Pagan and Ullah, 1999).

3.3 Asymptotic Properties of Our SCC Estimator

To study the asymptotic property of our SCC estimator, we make the following set of assumptions.

Assumptions

(A1) The strictly stationary process frt;xtg is �-mixing with mixing coe¢ cients � (j) satisfy-
ing

P1
j=1 j

a� (j)
�=(�+2)

< 1 for some � > 0 and a > �= (� + 2) : Also, E
�
krtk2(2+�)

�
< 1 and

E
�
kxtk2+�)

�
<1.

(A2) The pseudo-true parameter �� 2 � � Rp governing the PCC process fHp;t (�)g exists
uniquely and lies in the interior of a compact set �:

(A3) b� � �� = OP (T�1=2):
(A4) Hp;t = Hp;t (��) is symmetric, �nite, and positive de�nite for each t: The process fet =

H
�1=2
p;t rtg is strictly stationary and �-mixing with mixing coe¢ cients � (j). xt has a continuous

density f(x) that is bounded away from zero at x:

(A5) Let Hp;t (�) has continuous derivatives in the neighborhood of ��: Hnp(x) have two con-

tinuous derivatives in the neighborhood of x: For some � > 0; supf�:k����k��g k�t (�)k � Dt; where

�t (�) = @et (�) =@�
0 and E(D

2

t ) <1:
(A6) Let �ij =

R
uik (u)

j
du: The kernel k (:) is a symmetric bounded density function such that

�21 <1 and juk (u)j ! 0 as juj ! 1:
(A7) As T !1; hj ! 0; Th!!1; and limT khk4 h! = c 2 [0;1); where h! = �qj=1hj :
Assumption A1 is a high-level assumption. When the individual return series follows a GARCH(1,1)

process, HDF shows that the �-mixing of frtg can be satis�ed under weak conditions. Assumptions
A2-A3 do not require the correct speci�cation for modeling the parametric component. For example,

whether the parametric model is true or not, under some regularity conditions for quasi maximum

likelihood estimation QMLE, the pseudo true parameter �� exists uniquely (White, 1994, Ch.2) and

can be estimated consistently at the regular
p
T rate (White, 1994, Ch.6). Assumptions 4-5 im-

pose some regularity conditions on the fHp;t (�)g process. Assumptions A6-A7 are standard in the
nonparametric kernel estimation literature.
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The following theorem establishes the asymptotic property of bHnp (x) :

Theorem 3.1 Under Assumptions A1-A7,

p
Th!

n
vech( bHnp (x))� vech(Hnp (x))� vech (B (x))

o
d! N

�
0; �q02f(x)

�1D+
k 
 (x)D

+0
k

�
; (3.12)

where 
 (x) = (!ij;lm (x)) is a k2 � k2 matrix with typical elements

!ij;lm (x) = Cov
�
%ij;t; %lm;tjxt = x

�
with %ij;t = eitejt;

B (x) = (Bij (x)) is a k � k matrix with typical elements

Bij (x) =
�21
2f (x)

qX
l=1

�
2
@f (x)

@xl

@Hnp;ij (x)

@xl
+ f (x)

@2Hnp;ij (x)

@xl@xl

�
h2l ;

where eit is the ith element of et and Hnp;ij (x) is the (i; j)th element of Hnp (x) :

Remark 6. Theorem 3.1 implies that we can estimate Hnp (x) consistently by bHnp (x) ; which

has the usual asymptotic bias and variance structure as typical local constant estimators. Let

�t =vech(ete
0
t): We can get an alternative expression for D

+
k 
 (x)D

+0
k :

D+
k 
 (x)D

+0
k = Var (�tjxt = x) :

When the start-up PCC model is correctly speci�ed, i.e., Ht = Hp;t (��) ; we have: Hnp (x) = Ik;

the asymptotic bias term in (3.12) vanishes (B (x) = 0):

The asymptotic property of our semiparametric estimator for the conditional covariance matrix

Ht is stated in the following corollary.

Corollary 3.2 (i) For any xt such that f (xt) is bounded away from 0, bHsp;t and bRsp;t are consistent

for Ht and Rt; respectively. That is,

bHsp;t = bH1=2
p;t
bHnp;t

bH1=2
p;t

p! Ht; and bRsp;t =
�bH�

sp;t

��1 bHsp;t

�bH�
sp;t

��1 p! Rt:

(ii)
p
Th!

n
vech

�bHsp;t

�
� vech (Ht)�Bt (xt)

o
d! MN

�
0; �q02f(xt)

�1D+
k 
t (xt)D

+0
k

�
; where

Bt (x) =vech
�
H
1=2
p;t B (x)H

1=2
p;t

�
and 
t (x) =

�
H
1=2
p;t 
H

1=2
p;t

�

 (x)

�
H
1=2
p;t 
H

1=2
p;t

�
: That is, con-

ditional on Hp;t and xt;
p
Th!

n
vech

�bHsp;t

�
� vech (Ht)�Bt (xt)

o
is asymptotically normal with

mean zero and variance �q02f(xt)
�1
t (xt) :

Remark 7. Corollary 3.2(i) says that we can obtain a consistent estimator for the conditional

covariance and correlation matrix. Corollary 3.2(ii) essentially says that bHsp;t is also asymptotically

normally distributed conditional on Hp;t and xt; and it inherits the asymptotic bias and variance

structure of bHnp (xt) : By the delta method, one can also show that the semiparametric estimator for

11



conditional correlation matrix is also asymptotically distributed with the nonparametric convergence

rate
p
Th!.

Remark 8. To compare our estimator with the parametric estimator of conditional covariance,

�rst note that when the parametric component is correctly speci�ed, as expected, our estimator is

less e¢ cient than the parametric one since our estimator has a slower convergence rate than the

parametric estimator as khk ! 0. Nevertheless, when h is kept �xed, a careful examination of the

proof of Theorem 3.1 and Corollary 3.2 indicates that our semiparametric estimator is consistent

with the true conditional covariance with the regular parametric
p
T convergence rate. In this sense,

we say that our estimator is almost as good as the parametric estimator in terms of convergence rate

when h is kept �xed. Next, in case of misspeci�cation, the PCC estimator is usually inconsistent

(even though b� is consistent for some pseudo-true parameter ��) while our semiparametric conditional
covariance estimator is still consistent. Similar remarks hold true for the estimators of conditional

correlation matrix.

Remark 9. Like, Mishra, Su and Ullah (2008), we can also compare our semiparametric es-

timator of conditional covariance with the one-step nonparametric kernel estimator. For the ease

of comparison, we consider the simplest case where both Hp;t and Ht depend on the information

set Ft�1 only through xt: In this case, we can write Hp;t = Hp(xt) and Ht = H(xt); and the

nonparametric kernel estimator of Ht = H(xt) is given by

eHncc;t =

PT
s=1 rsr

0
sKh(xs � xt)PT

s=1Kh(xs � xt)
:

In the sequel, we will call eHncc;t as the nonparametric conditional covariance (NCC) estimator.

Standard nonparametric regression theory reveals that

p
Th!

n
vech

�eHncc;t

�
� vech (Ht)� vech(Bncc (xt) )

o
d!MN

�
0; �q02f(xt)

�1D+
k 
ncc (xt)D

+0
k

�
;

where 
ncc (x) =
�
!
(ncc)
ij;lm (x)

�
is a k2 � k2 matrix with typical elements

!
(ncc)
ij;lm (x) = Cov (ritrjt; rltrmtjxt = x) ;

and Bncc (x) = (Bncc;ij (x)) is a k � k matrix with typical elements

Bncc;ij (x) =
�21
2f (x)

qX
l=1

�
2
@f (x)

@xl

@Hij (x)

@xl
+ f (x)

@2Hij (x)

@xl@xl

�
h2l ; (3.13)

where Hij (x) denotes the (i; j)th element of H (x) ; and rit is the ith element of rt:

On the other hand, when both Hp;t and Ht depend on the information set Ft�1 only through

12



xt; it is easy to verify that


t (xt) =
�
H
1=2
p;t 
H

1=2
p;t

�

 (xt)

�
H
1=2
p;t 
H

1=2
p;t

�
=

�
H
1=2
p;t 
H

1=2
p;t

�
E
�
vec(ete0t) [vec(ete

0
t)]
0 jxt

��
H
1=2
p;t 
H

1=2
p;t

�
= E

�
vec(H1=2

p;t ete
0
tH

1=2
p;t )

h
vec(H1=2

p;t ete
0
tH

1=2
p;t )

i0
jxt
�

= E
�
vec(rtr0t) [vec(rtr

0
t)]
0 jxt

�
= 
ncc (xt)

by the fact that (A
A)vec(ete0t) =vec(Aete0tA) for any k�k matrix A: This implies that our SCC
estimator shares the same asymptotic variance-covariance matrix as the NCC estimator. So we are

left to compare the asymptotic bias of our SCC estimator with that of the NCC estimator, i.e., to

compare Bt (xt) =vech(H
1=2
p;t B (xt)H

1=2
p;t ) with vech(Bncc (xt)).

A typical element of Bt (xt) is given by

Bt;ij (xt) =
�21
2f (x)

kX
l=1

kX
m=1

H
1=2
p;il (xt)

qX
s=1

�
2
@f (xt)

@xs

@Hnp;lm (xt)

@xs
+ f (x)

@2Hnp;lm (xt)

@xs@xs

�
h2sH

1=2
p;mj (xt)

(3.14)

where H1=2
p;il (x) denotes the (i; l)th element of H

1=2
p (x) and Hnp;lm (x) is similarly de�ned. Unfortu-

nately, the above expression generally appears too complicated to compare with Bncc;ij (xt) de�ned

by (3.13). Only in the special case where k = 1 and q = 1 and where the local constant method

is replaced by the local linear method, can we follow Mishra, Su and Ullah (2008) and show that

Bt;ij (xt) is smaller than Bnp;ij (xt) in absolute value under weak conditions.

3.4 Test the Correct Speci�cation of Parametric Conditional Covariance

Model

In this subsection we propose a test of correct speci�cation of parametric conditional covariance

models based on (3.11). The null hypothesis is

H0 : Hnp (xt) = Ik a.s. (3.15)

and the alternative hypothesis is

H1 : Pr (Hnp (xt) = Ik) < 1: (3.16)

Let �ij (x) denote the (i; j) element of Hnp (x) ; i; j = 1; � � � ; k: That is, �ij (xt) = E [eitejtjFt�1] ;
where recall eit denotes the ith element of et: We can rewrite the null hypothesis as

H0 : P (�ij (x) = �ij) = 1 for all i; j = 1; � � � ; k; (3.17)
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and the alternative hypothesis as

H1 : Pr (�ij (x) = �ij) < 1 for some i; j = 1; � � � ; k; (3.18)

where �ij is Kronecker�s delta, i.e., �ij = 1 if i = j and 0 otherwise.

Recall that f (x) denotes the density function of xt: When the null and alternative hypotheses

are written in the form of (3.17) and (3.18), we can construct consistent tests of H0 versus H1 using

various distance measures. A convenient choice is to use the measure

� =
k�1X
i=1

kX
j=i

Z
(�ij (x)� �ij)2 f2 (x) dx � 0 (3.19)

and � = 0 if and only if H0 given by (3.17) holds. Note that the use of density weight in the de�nition

of � will help us avoid the random denominator issue. We will propose a test statistic based upon a

kernel estimator of �:

To construct the sample analog of �; we �rst obtain estimators of �ij (x) and f (x) ; which are

given by

b�ij (x) = T�1
PT

s=1 beitbejtKh(xs � x)bf (x) ; and bf (x) = T�1 TX
s=1

Kh(xs � x); (3.20)

where beit is the ith element of bet: Note that b�ij (x) is the (i; j) element of bHnp (xt) :We then estimate

� by the following functional:

b�1 =
k�1X
i=1

kX
j=i

Z
(b�ij (x)� �ij)2 bf2 (x) dx

=
1

T 2

k�1X
i=1

kX
j=i

TX
s=1

TX
t=1

(beisbejs � �ij) (beitbejt � �ij)Kh (xs � xt) (3.21)

where Kh (u) = �
q
l=1h

�1
l k (ul=hl) ; u = (u1; � � � ; uq); and k (u) =

R
k (v) k (u� v) dv is the convolu-

tion kernel derived from k: For example, if k (u) = exp
�
�u2=2

�
=
p
2�; then k (u) = exp

�
�u2=4

�
=
p
4�;

a normal density with zero mean and variance 2:

The above statistic is simple to compute and o¤ers a natural way to test H0 in (3.17). Neverthe-

less, we propose a bias-adjusted test statistic, namely,

b� = 1

T 2

k�1X
i=1

kX
j=i

TX
s=1

TX
t6=s

(beisbejs � �ij) (beitbejt � �ij)Kh (xs � xt) : (3.22)

In e¤ect, b� removes the �diagonal� (s = t) terms from b�1 in (3.21), thus reducing the bias of the
statistic. A similar idea has been used in Lavergne and Vuong (2000), Su and White (2007), and Su

and Ullah (2008). We will show that after being appropriately scaled, b� is asymptotically normally
distributed under suitable assumptions.
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To derive the asymptotic properties of the test statistic b�; we need to make some additional
assumptions.

Assumptions

(A8) Let "ijt � eitejt � �ij : For i; j = 1; � � � ; k; E
�
j"ijtj4(1+�)

�
� C and E

��"r1ijt1"r2ijt2 � � � "rlijtl ��1+�
� C for some C <1; where 2 � l � 4; 0 � rs � 4; and

Pl
s=1 rs � 8.

(A9) (i) Let �ij2 (x) � E("2ijtjxt = x) and �ij4 (x) = E("4ijtjxt = x): Both �ij2 (x) and

�ij4 (x) satisfy the Lipschitz condition: for i; j = 1; � � � ; k and l = 2; 4; j�ijl (x+ x�) � �ijl (x) j �
dijl (x) kx�k ; where k:k denotes the Euclidean norm and

R
dijl (x) f (x) dx < C < 1. (ii) The

joint density ft1;:::;tl (
:) of (xi1 ; :::;xil) (1 � l � 4) exists and satis�es the Lipschitz condition:

jft1;:::;tl
�
x(1) + v(1); :::;x(l) + v(l)

�
�ft1;:::;tl

�
x(1); :::;x(l)

�
j � Dt1;:::;tl

�
x(1); :::;x(l)

�
kvk, where v0 =

(v(1)
0
; :::;v(l)

0
);
R
Dt1;:::;tl

�
v(1); :::;v(l)

�
kvk2(1+�) dv � C and

R
Dt1;:::;tl

�
v(1); :::;v(l)

�
ft1;:::;tl

�
v(1); :::;v(l)

�
dv �

C for some C <1:
Assumptions A8-A9 are common in nonparametric estimation with strong mixing data (see Gao

and King, 2003). They are mainly used in the proof of Theorem 3.3 below.

De�ne

�20 � 2
Z
K
2
(u) du

k�1X
i1=1

kX
j1=i1

k�1X
i2=1

kX
j2=i2

E[b2i1j1i2j2(xt)f (xt)];

where bi1j1i2j2(x) = E [(ei1tej1t � �i1j1) (ei2tej2t � �i2j2) jxt = x] ; and K (u) = �ql=1k (ul) : The as-

ymptotic null distribution of b� is established in the next theorem.
Theorem 3.3 Under Assumptions A1-A9 and under H0; T (h!)

1=2 b� d! N(0; �20):

The proof is tedious and is relegated to the appendix. From the proof we know that T (h!)1=2 b� =
T (h!)

1=2
� + oP (1) ; where

� =
1

T 2

k�1X
i=1

kX
j=i

TX
s=1

TX
t6=s

(eisejs � �ij) (eitejt � �ij)Kh (xs � xt)

This means that the �rst stage parametric estimation of the conditional covariance matrix does not

a¤ect the �rst order asymptotic properties of the test. To implement the test, we require a consistent

estimate of the variance �20. De�ne

b�2 � 2T�2h! TX
s=1

TX
t6=s

24k�1X
i=1

kX
j=i

(beitbejt � �ij) (beisbejs � �ij)
352K2

h (xt � xs) : (3.23)

It is easy to show that b�2 is consistent for �20 under H0. We then compare
bT � T (h!)1=2 b�=pb�2 (3.24)
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with the one-sided critical value z� from the standard normal distribution, and reject the null whenbT > z�:
To examine the asymptotic local power of our test, we consider the following local alternatives:

H1(T ) : �ij (x) = �ij + T�ij(x); i; j = 1; � � � ; k; (3.25)

where �ij(x) satis�es E j4ij(xt)j2+� <1 and T ! 0 as T !1: De�ne

�0 �
Z k�1X

i=1

kX
j=i

42
ij(x)f

2(x)dx: (3.26)

The following proposition shows that our test can distinguish local alternatives H1(T ) at the

rate T = T
�1=2 (h!)

�1=4.

Theorem 3.4 Under Assumptions A.1�A.9, suppose that T = T�1=2 (h!)
�1=4 in H1(T ): Then,

the power of the test satis�es P ( bT � z�jH1( T ))! 1��(z���0=�0); where � (:) is the cumulative
distribution function of standard normal.

Theorem 3.4 implies that the test has non-trivial asymptotic power against alternatives for which

�0 > 0: The power increases with the magnitude of �0=�0: Furthermore, by taking a large band-

width we can make the alternative magnitude against which the test has non-trivial power, i.e., T ,

arbitrarily close to the parametric rate T�1=2:

4 SIMULATION AND EMPIRICAL ANALYSIS

For now, we show the outperformance of SCC model for IS estimation and OoS predictions via

simulation and empirical analysis in the next two subsections.

4.1 Monte Carlo Simulation

In this subsection, we follow the idea of Engle (2002) to compare the small sample performance of

several conditional covariance estimators by examining certain characteristics of conditional corre-

lation when the true correlation processes are observable. We simulate bivariate GARCH processes

by considering two univariate Gaussian GARCH processes (e.g., Engle, 2002):

r1;t =
p
h1;t"1;t; h1;t = 0:01 + 0:05r

2
1;t�1 + 0:94h1;t�1;

r2;t =
p
h2;t"2;t; h2;t = 0:5 + 0:2r

2
2;t�1 + 0:5h2;t�1;

where 0@ "1;t

"2;t

1A������Ft�1 � N

0@ 0

0@ 1 �t

�t 1

1A 1A :
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We consider four speci�cations of �t which are given in the following DGPs:

DGP1: �t = 0:5 + 0:4 cos (2�t=20).

DGP2: �t = 0:99� 1:98=
�
1 + exp

�
0:5�max

�
"21;t�1; "

2
2;t�1

��	
.

DGP3: �t = 0:3� 1
�
"21;t�1 � h1;t�1

�
+ 0:8� 1

�
"21;t�1 > h1;t�1

�
.

DGP4: �t = �2t with probability 0:5 and = �3t with probability 0:5, where �2t and �3t are �t

speci�ed in DGP2 and DGP3, respectively.

DGP1 was also adopted by Engle (2002). DGPs 2-3 are motivated by the stylized fact in �nancial

markets that conditional correlation in crisis periods is higher than that in tranquil periods. DGP3

also borrows idea of regime switching from Pelletier (2006). DGP 4 is the mixture of DGP 2 and

DGP 3. For each DGP, we will simulate 1000 observations on rt = (r1;t:r2;t)
0. After throwing away

the �rst 500 observations to avoid the starting-out e¤ect, we are left with T = 500 observations,

which represents roughly two-year daily data. The number of replications for each case is M = 200.

We will consider four parametric models for estimating the conditional correlation of rt; namely

the CCC, VC, SBEKK and DCC models reviewed in Section 2. In each case, we will also obtain

our SCC estimators by choosing the conditioning variable xt =rt�1. To obtain our SCC estimators,

we need to choose both the kernel function and the bandwidth parameter. It is well known that the

choice of kernel function k(�) is not important in nonparametric or semiparametric estimation. We
will simply use the Gaussian kernel:

k (u) = exp
�
�u2=2

�
=
p
2�:

For the bandwidth, we follow the idea of grid-searching and set

hj = cjb�jn�1=6; j = 1; 2;
where b�j is the sample standard deviation of rj;t; and the optimal cj is chosen from 0.5, 1, 1.5,...,5

by minimizing loss function of the corresponding semiparametric model.

Similar to Engle (2002), for each DGP and each estimator we calculate the mean squared errors

(MSE) across the M replications

MSE(b�t) = 1

MT

MX
m=1

TX
t=1

�b�(m)t � �(m)t

�2
; (4.1)

where �(m)t and b�(m)t are the true conditional correlation and its estimates at time t in the mth

replication, respectively.

In Table 1, we compare the simulation results for the CCC, VC, SBEKK, DCC models and their

semiparametric counterparts in terms of MSE(b�t) and their improvement ratio, which is de�ned as
ratio =

�
Loss (PCC)� Loss (SCC)

Loss (PCC)

�
� 100 (4.2)

17



where Loss(SCC) and Loss(PCC) are the MSE2 for the SCC estimator and for the start-up PCC

estimator, respectively. We summarize some interesting �ndings below.

(1) Our SCC estimator always beat the PCC estimator that is used as its parametric start.

Take DGP1 as an example. The DCC model by Engle (2002) has the second smallest MSE values

(0.069078) among the parametric estimators; our semiparametric estimator can further decrease it

to 0.068965.

(2) In terms of MSE, the rankings of semiparametric estimators are consistent with the rankings

of parametric estimators. In DGP3, for instance, the performance of the parametric estimators

in the CCC, VC, SBEKK and DCC models deteriorates in order, so does the performance of the

semiparametric estimators with these corresponding models as the start-up models.

(3) There is no clear relationship between the relative ranking of parametric start-up models based

on their MSE values and the improvement extent of the corresponding semiparametric estimators in

terms of their improvement ratios. We did not observe that for the parametric start-up model being

far away from the true model, its corresponding semiparametric estimator has more gain in terms

of MSE compared with the case when the parametric start model is closer to the true model. In

DGP 1, for example, the parametric model ranking with ascending MSE value is SBEKK, DCC, VC

to CCC models, which is not the ascending improvement ratio ranking of DCC-NW, SBEKK-NW,

VC-NW and CCC-NW models. Take DGP4 as another example. The range of improvement ratio

varies from 3.417% to 5.116%. The improvement ratio for the SBEKK-NW model over the SBEKK

model is the smallest whereas that for CCC-NW model over the CCC model is the largest.3 This

occurs whilst among the PCC models the SBEKK model has the largest MSE and the CCC model

has the smallest MSE.

4.2 Empirical Analysis

Although many multivariate conditional covariance models are proposed, only a few are applied to

high-dimensional case, for example, 7 stock indices in Ledoit, Santa-Clara, and Wolf (2003). To show

our capacity of expanding to high dimension, we examine the data sets consisting of 30 stocks in the

last two empirical applications in addition to the �rst example of bivariate stock indices. These three

interesting �nancial daily time series are: the NASDAQ Composite Index and Standard & Poor�s

500 Index (NASDAQ - SP) from January 2, 1990 to December 30, 1994 (T = 1265 observations); the

�rst 30 stocks4 existing since beginning (January 3, 1984) among the component stocks of Financial

Times Stock Exchange 100 Index (FTSE) sorted by alphabet from January 4, 2000 to December

2Or VaR loss discussed in the next subsection.
3The SBEKK-NW model denotes the SCC model incorporating parametric SBEKK model and nonparametric

Nadaraya-Watson model multiplicatively. Similar notation is used for the CCC-NW, VC-NW, and DCC-NW models.
4The stock name list is available upon request.
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31, 2003 (T = 1009 observations); and the 30 stocks constituting the Dow Jones Industrial Average

(DJIA) from January 4, 1993 to December 31, 1997 (T = 1264 observations). The �rst data sets

is from Yahoo and the last two are from Datastream. For stationary and ease interpretation, we

thus compute percentage returns as log returns multiplied by 100. We consider the entire sample

period for IS estimators and the corresponding standardized residuals are bootstrapped to compute

the p-value for Value-at-Risk (VaR) calculation later. We split the samples at day R, the last day of

the second last year and apply the ��xed scheme�to do one-day-ahead conditional covariance matrix

forecast throughout a whole year beyond day R: estimating parameters based on information set

FR and �xing these estimated parameter values to make forecasts throughout the forecasting period

with P = T �R� 1 = 252, 251 and 253 observations in three cases, respectively. Thus, for example,
the IS period for DJIA goes from January 5, 1993 to December 31, 1997 and the OoS period goes

from January 2, 1997 to December 31, 1997.

Any discussions on conditional mean and its relationship with conditional covariance are outside

the scope of the paper. For these data sets, we assume the conditional means are zero based on

e¢ cient market hypothesis and sample-mean �lter is used. We choose the kernel function and the

bandwidth as we do in the simulation. Although there is no consensus among the Finance profession

on the identity of the common factors, - how many and which ones are?- stock index is always the

�rst factor being picked up. Thus rather than taking the lagged studied variables as in the simulation

and in the �rst empirical application, we select the one-day lag percentage return of DJIA Index

(FTSE 100 Index) as the state variable for the 30-stock set in the second (third) application.

We consider two types of criterion functions to judge the relative �tting and predictive ability

of various conditional covariance models in terms of portfolios�certain characteristics. One is the

modi�ed mean squared error that is adapted to our framework because the true conditional covariance

matrix is not observable. Zangari (1997) addresses the advantage of focusing on the volatility hyt of

the aggregate portfolio yt � !0rt instead of the conditional covariance matrixHt, where h
y
t = !

0Ht!

and ! is a weight vector. When comparing the predictability of univariate GARCH models, Awartani

and Corradi (2005) substitute the unobservable volatility by the squared observed returns because of

the rank-preserving property of this substitution under the MSE loss function. They conclude that

both this squared returns and realized volatility are good proxies of the unobservable volatility when

interested in model comparisons. Because of the unavailability of intraday returns, the proxy in the

criteria to compare volatility and correlation forecasts in Pelletier (2006) is the cross-product of daily

return instead of cumulative cross-product of intraday returns over the forecast horizon. Following

them, we compare various models by calculating the �tting and predictive measures, MSEjIS and
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MSEjOoS
5 , for model j, as

MSEjOoS =
1

P

T�2X
t=R

�
!0t+1

bHj

t+1!t+1 � !0t+1rt+1r0t+1!t+1
�2
; (4.3)

where bHj

t+1 is the one-step-ahead forecaster of Ht+1 at time t from model j.

The second loss is based on the portfolios�VaR. The Basel Committee on Banking Supervision

uses VaR to estimate the risk exposure of �nancial institutes for a ten-day holding period and 99%

coverage (� = 1%). Denote the VaR forecast of the weighted portfolio with tail probability � from

model j within our framework as

VaR�;jOoS;t+1 = �
j
�

q
!0t+1

eHj

t+1!t+1; (4.4)

where �j� is the quantile of cumulative distribution function of weighted portfolio at tail probability

� 2 (0; 1) from model j. Apart from adopting the quantiles of standard normal distribution, Bauwens
and Laurent (2005) use a Monte Carlo simulation and HDF employ the quantiles of the standardized

IS portfolio returns. Instead, we compute �j� by repeated bootstrap sampling the weighted stan-

dardized residuals over the entire samples. Hall (1986) explains theoretically few bootstrap sampling

replications could produce satisfactory results, thus we compute bootstrap critical values via 100

replications of the bootstrap sampling process. Note that the weighted sum of the underlying asset

returns�VaR is not equal to the weighted portfolio�s VaR. The OoS VaR loss function for model j,

which is the check function of Koenker and Bassett (1978), is

QjOoS =
1

P

T�2X
t=R

(�� 1(yt+1 < VaR�;jOoS;t+1))(yt+1 �VaR
�;j
OoS;t+1); (4.5)

where 1(:) is an indicator function. The tail characteristics at � = 1% and 5% of the portfolio

constructed by the equal weight and the minimum variance weight are examined. For the equally

weighted portfolio, the constant equal weight is !t = k�1e, where e is a k � 1 vector of ones; and
for the minimum variance portfolio, the weight is !t = H

�1
t e=

�
e0H�1

t e
�
.

The IS and OoS performance measures of di¤erent conditional covariance models over these

empirical datasets are presented in Table 2-4, with the equal weight portfolio results in Panel A

and the minimum variance portfolio results in Panel B. For each pair of parametric start-up model

and the corresponding semiparametric model, the improvement ratio de�ned as loss di¤erence over

parametric model�s loss is reported in percentage for both IS and OoS cases.

Some important �ndings are presented as: (1) For both criterion functions, our semiparametric

model can always reduce the loss values of the start-up parametric model no matter which weight

5To save space, we only present formulae for MSEjOoS , VaR
�;j
OoS ;t+1 and Q

�;j
OoS . It is not di¢ cult to derive the

formulae for MSEjIS , VaR
�;j
IS ;t and Q

�;j
IS .
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or which sample period (IS or OoS) we are interested in. The improvement is signi�cant across all

these datasets. For the NASDAQ-SP dataset, the range of improvement ratio ranges from 0.586%

(OoS VaR loss at 1% for CCC vs. CCC-NW models with minimum variance weight) to 48.373% (IS

MSE for SBEKK vs. SBEKK-NW model with minimum variance weight); for the FTSE data set,

the range is from 0.460% (IS MSE for DCC vs. DCC-NW models with equal weight) to 81.446%

(IS MSE for SBEKK vs. SBEKK-NW models with minimum variance weight); and for the DJIA

data set, the range is from 2.776% (OoS VaR loss at 5% for DCC vs. DCC-NW models with equal

weight) to 80.317% (IS MSE for SBEKK vs. SBEKK-NW models with minimum variance weight).

(2) There exists no semiparametric model that is universally the best across di¤erent datasets,

weighting methods or loss functions. While the SBEKK-NW model has the smallest OoS values

across the loss functions for the minimum variance DJIA portfolio, its OoS MSE is bigger than

that of the VC-NW model for the equal weight DJIA portfolio. For the minimum variance DJIA

portfolio, the DCC-NW model beats all other models in terms of IS losses, but we do not observe

this dominance for the equal weight DJIA portfolio.

(3) For the same conditional covariance model, the minimum variance portfolio always outper-

forms the equal weight portfolio in terms of the loss functions we examine across all datasets. For

the VC model, for example, the VaR loss at 1% of equal weighted DJIA portfolio is 0.144, bigger

than that of minimum variance DJIA portfolio, 0.085; and for the DCC-NW model, the VaR loss at

5% of the minimum variance NASDAQ-SP portfolio is 0.072, smaller than that of the equal weight

NASDAQ-SP portfolio, 0.087.

(4) The improvement ratio by semiparametric methodology does in favour of the more extreme

case for high-dimensional portfolio no matter which portfolio and which start-up parametric model

we choose: the improvement ratios of VaR loss at tail probability of 1% are bigger than those at 5%.

To the minimum variance DJIA portfolio, the DCC-NW model�s improvement ratio for IS VaR loss

when � = 1% is 70.767%, 23.690% higher than the corresponding value when � = 5%, 47.077%; and

for the equal weight DJIA portfolio, this di¤erence is 17.859%. We observe the same phenomena for

FTSE portfolio: the improvement ratio di¤erence of VC-NW between OoS VaR losses at 1% and at

5% is 18.186% for minimum variance weight and 22.127% for equal weight.

5 CONCLUSION

In this paper, we propose a new semiparametric kernel-based modeling methodology for conditional

covariance matrix, which applies Nadaraya-Watson type estimator to extract the information hid-

den in the standardized residuals from the parametric MGARCH models. Our SCC model combines

parametric model and nonparametric model in a multiplicative way. For every parametric MGARCH

model, there is a semiparametric counterpart, which is robust to two common misspeci�cations of
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the conventional parametric MGARCH models: multivariate normal distribution and linear func-

tional form. We show that our semiparametric estimator is consistent and asymptotically normal

under some regularity conditions. To examine the �nite sample performance of our semiparametric

estimators, we conduct a small set of Monte Carlo experiments inspired by the asymmetric correla-

tions of �nancial time series data. We �nd that the nonparametric correction at the second stage of

our SCC estimator can indeed improve the �nite sample performance of the parametric MGARCH

estimators in terms of MSE. Empirical applications on stock indices, and high-dimensional stock

portfolio are quite encouraging: our new SCC models outperform their ancestors, the parametric

MGARCH models, including the DCC model of Engle (2002), in reducing the values of MSE and

VaR loss for both IS �tting and OoS forecasting conditional covariance matrix.
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Appendix

A Proof of the Main Results

We use C to signify a generic constant whose exact value may vary from case to case, and a0 to

denote the transpose of a. Let bf (x) = T�1PT
s=1Kh(xs � x); and

eHnp (x) = T
�1

TX
s=1

ese
0
sKh(xs � x)= bf (x) :

The following two lemmas are needed for the proof of Theorem 3.1.

Lemma A.1 Under Assumptions A1-A7,

p
Th!

n
vech

�eHnp (x)
�
� vech (Hnp (x))� vech (B (x))

o
d! N

�
0; �q02f(x)

�1D+
k 
 (x)D

+0
k

�
where recall h!=h1:::hq; and 
 (x) and B (x) are de�ned in Theorem 3.1.

Proof. Let WTijs = Kh(xs�x)eisejs and WTij = T
�1PT

s=1WTijs; where eis is the ith element

of es: De�ne two k (k + 1) =2�vectors:

WTs = (WT11s;WT21s:::;WTk1s;WT22s; :::;WTk2s; :::;WTkks)
0

WT = (WT11;WT21:::;WTk1;WT22; :::;WTk2; :::;WTkk)
0
:

Clearly, WT = T
�1PT

s=1WTs: The statistic WTij= bf (x) estimates the (i; j)th element of Hnp (x) by
using the �data�fet;xtg : Let ZTs = (h!=T )1=2 (WTs � E (WTs)) and ZT =

PT
s=1 ZTs: Write

WT = T�1
TX
s=1

E (WTs) + T
�1

TX
s=1

(WTs � E (WTs))

= T�1
TX
s=1

E (WTs) + (Th!)
�1=2

TX
s=1

ZTs

The �rst term contributes to the bias of eHnp (x) whereas the second term contributes to the variance

of eHnp (x) : The proof will be completed by proving the following claims:

bf (x) p! f (x) ; (A.1)

T�1
TX
s=1

E (WTs) = f (x) vech (Hnp (x)) + f (x) vech (B (x)) + oP (khk2): (A.2)

and

ZT =
TX
s=1

ZTs
d! N

�
0; �q02f (x)D

+
k 
 (x)D

+0
k

�
: (A.3)
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(A.1) follows from standard results in kernel density estimation. Using standard arguments for

analyzing the bias of the Nadaraya-Watson estimator, we have

E (WTijs) = E [Kh(xs � x)eitejt] = f (x) [Hnp;ij (x) +Bij (x)] + oP (khk2)

where

Bij (x) =
�21
2f (x)

qX
l=1

�
2
@f (x)

@xl

@Hnp;ij (x)

@xl
+ f (x)

@2Hnp;ij (x)

@xl@xl

�
h2l :

Thus (A.2) follows by the stationarity assumption. To show (A.3), let c = (c11; c21:::; ck1; c22;

:::; ck2; :::; ckk)
0 denote a k (k + 1) =2�vector of bounded constants such that kck = 1: By the Cramér-

Wold device, it su¢ ces to show

c0ZT =
TX
s=1

c0ZTs
d! N

�
0; �q02f (x) c

0D+
k 
 (x)D

+0
k c
�
: (A.4)

By construction, E (ZT ) = 0; and

Var (c0ZT ) = T�1h!
TX
t=1

Var (c0WTt) + 2T
�1h!

XX
1�s<t�T

Cov (c0WTs; c
0WTt) � A1 +A2: (A.5)

We calculate A1 and A2 in turn.

A1 = T�1h!
TX
t=1

Var (c0WTt)

=
XX
1�j�i�k

XX
1�m�l�k

cijclm

"
T�1h!

TX
t=1

E
�
K2
h(xt � x)Cov

�
%ij;t; %lm;tjxt = x

��#
= �q02f (x)

XX
1�j�i�k

XX
1�m�l�k

cijclm!ij;lm (x) +O (khk)

= �q02f (x) c
0D+

k 
 (x)D
+0
k c+O (khk) ; (A.6)

where %ij;t = eitejt and !ij;lm (x) =Cov
�
%ij;t; %lm;tjxt = x

�
: To calculate A2; write

A2 = 2T�1h!
XX
1�s<t�T

XX
1�j�i�k

XX
1�m�l�k

cijclmCov (WTijs;WTlmt)

= 2h!
TX
t=2

�
1� j

T

�XX
1�j�i�k

XX
1�m�l�k

cijclmCov (WTij1;WTlmt) : (A.7)

Noting that even though fvtg is a m.d.s., this does not ensure that Cov(WTijs;WTlmt) = 0 for s 6= t:
To bound the right hand side of (A.7), we split it into two terms as follows

TX
t=2

jCov (WTij1;WTlmt)j =
dTX
t=2

jCov (WTij1;WTlmt)j+
TX

t=dT+1

jCov (WTij1;WTlmt)j � J1+J2; (A.8)
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where dT is a sequence of positive integers such that dTh! ! 0 as T ! 1: Since for any t >
1; jE (WTij1WTlmt)j = O (1) ;

J1 = O (dn) : (A.9)

For J2; by the Davydov�s inequality (e.g., Hall and Heyde, 1980, p. 278; Bosq, 1996, p.19), we have

jCov (WTij1WTlmt)j � C [� (t� 1)]�=(2+�) sup
i;j

�
E jWTij1j2+�

�2=(2+�)
� C (h!)

�(2+2�)=(2+�)
[� (t� 1)]�=(2+�) :

So by Assumption A.1,

J2 � C (h!)
�(2+2�)=(2+�)

TX
t=dT+1

[� (t� 1)]�=(2+�)

� C (h!)
�(2+2�)=(2+�)

d�aT

1X
t=dT

ta [� (t)]
�=(2+�)

= o
�
(h!)

�1
�
; (A.10)

by choosing dT such that daT (h!)
�=(2+�) ! 1: The last condition can be simultaneously met with

dTh! ! 0 for a well chosen sequence fdT g because a > �= (2 + �) by Assumptions A.1 and A.7.

(A.7)-(A.10) imply that

A2 = O (dnh!) + o (1) = o (1) :

Hence,

Var (c0ZT ) = �
q
02f (x) c

0D+
k 
 (x)D

+0
k c+ o (1) :

Using the standard Doob�s small-block and large-block technique, we can �nish the rest of the

normality proof of (A.4) by following the arguments of Cai, Fan and Yao (2000, pp. 954-955) or Cai

and Ould-Saïd (2003, pp. 446-448). �

Lemma A.2 Under Assumptions A1-A7,

vech
�bHnp (x)

�
� vech

�eHnp (x)
�
= oP

�
(Th!)

�1=2
�
:

Proof. Let �(x) = [vec( bHnp (x))�vec( eHnp (x))] bf (x) : Noting that bf (x) p! f (x) > 0 and

vech(A) = D+
k vec(A) for any symmetric k�k matrixA, it su¢ ces to show that�(x) = oP ((Th!)

�1=2
):

By the �rst order expansion,

bet = et(b�) = H�1=2
p;t

�b�� rt = et + �t ��� �b� � ��� (A.11)
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where recall �t (�) = @et(�)=@�
0; and � lies between b� and ��: By Assumptions A2-A3, � p! ��: So

�(x) =
1

T

TX
t=1

Kh(xt � x)vec [betbe0t � ete0t]
=

1

T

TX
t=1

Kh(xt � x)vec
�
�t
�
�
� �b� � ����b� � ���0 �t ���0�

+
2

T

TX
t=1

Kh(xt � x)vec
�
et

�b� � ���0 �t ���0�

=
1

T

TX
t=1

Kh(xt � x)
�
�t
�
�
�

 �t

�
�
��
vec

��b� � ����b� � ���0�

+
2

T

TX
t=1

Kh(xt � x)
�
�t
�
�
�

 et

� �b� � ���
� �1 (x) + 2�2 (x) :

By the triangle inequality, Markov inequality, and Assumptions A4-A7,

k�1 (x)k � 1

T

TX
t=1

Kh(xt � x)
��t ���
 �t ���� vec ��b� � ����b� � ���0�

� 1

T

TX
t=1

Kh(xt � x)
�t ���2 b� � ��2

� 1

T

TX
t=1

Kh(xt � x)D
2

t

b� � ��2 = OP � 1

Th!

�
;

and

k�2 (x)k � 1

T

TX
t=1

Kh(xt � x)
��t ���
 et� �b� � ���

� 1

T

TX
t=1

Kh(xt � x)
�t ��� ketkb� � ��

� 1

T

TX
t=1

Kh(xt � x)Dt ketk
b� � �� = OP �T�1=2� :

Consequently, �(x) = OP ((Th!)
�1
+ T�1=2) = oP ((Th!)

�1=2
):�

Proof of Theorem 3.1

The result follows from Lemmas A.1-A.2.�

Proof of Corollary 3.2

By Assumptions A3-A5, bHp;t = H
1=2
p;t (

b�) = H1=2
p;t + oP (1) : By Theorem 3.1, bHnp;t = bHnp (xt) =

Hnp;t + oP (1) : It follows from the Slutsky theorem that

bHsp;t = bH1=2
p;t
bHnp;t

bH1=2
p;t = H

1=2
p;t Hnp;tH

1=2
p;t + oP (1) = Ht + oP (1) ;
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and bH�
sp;t = H

�
t + oP (1) ;

where H�
t is a diagonal matrix with the square roots of the diagonal elements of Ht on its diagonal.

Hence bRsp;t =
�bH�

sp;t

��1 bHsp;t

�bH�
sp;t

��1 p! (H�
t )
�1
Ht (H

�
t )
�1
= Rt:

To show (ii), noting that by Assumptions A3-A5,

bHsp;t �Ht = bH1=2
p;t
bHnp;t

bH1=2
p;t �H

1=2
p;t Hnp (xt)H

1=2
p;t

= H
1=2
p;t

�bHnp (xt)�Hnp (xt)
�
H
1=2
p;t +

n�bH1=2
p;t �H

1=2
p;t

� bHnp;t

�bH1=2
p;t �H

1=2
p;t

�
+
�bH1=2

p;t �H
1=2
p;t

� bHnp;tH
1=2
p;t +H

1=2
p;t
bHnp;t

�bH1=2
p;t �H

1=2
p;t

�o
= H

1=2
p;t

�bHnp (xt)�Hnp (xt)
�
H
1=2
p;t +Op

�
T�1=2

�
;

we have

p
Th!

h
vech

�bHsp;t

�
� vech (Ht)

i
=

p
Th!D+

k

h
vec

�bHsp;t

�
� vec (Ht)

i
=

p
Th!D+

k vec
�
H
1=2
p;t

�bHnp (xt)�Hnp (xt)
�
H
1=2
p;t

�
+ oP (1)

=
p
Th!D+

k

�
H
1=2
p;t 
H

1=2
p;t

�
vec

�bHnp (xt)�Hnp (xt)
�
+ oP (1)

=
p
Th!D+

k

�
H
1=2
p;t 
H

1=2
p;t

�
Dkvech

�bHnp (xt)�Hnp (xt)
�
+ oP (1) :

Then by Theorem 3.1,

p
Th!

h
vech

�bHsp;t

�
� vech (Ht)�Bt (xt)

i
d!MN

�
0; �q02f(xt)

�1
t (x)
�

where

Bt (x) = D+
k

�
H
1=2
p;t 
H

1=2
p;t

�
Dkvech (B (x)) = D

+
k

�
H
1=2
p;t 
H

1=2
p;t

�
vec (B (x))

= D+
k vec

�
H
1=2
p;t B (x)H

1=2
p;t

�
= vech

�
H
1=2
p;t B (x)H

1=2
p;t

�
by the de�nitions of vech, vec, Dk; and D

+
k and the fact that (A
A)vec(B (x)) =vec(AB (x)A)

for any k � k matrix A; and


t (x) = D+
k

�
H
1=2
p;t 
H

1=2
p;t

�
DkD

+
k 
 (x)D

+0
k D

0
k

�
H
1=2
p;t 
H

1=2
p;t

� �
D+
k

�0
= D+

k Nk

�
H
1=2
p;t 
H

1=2
p;t

�

 (x)

�
H
1=2
p;t 
H

1=2
p;t

�
Nk
�
D+
k

�0
= D+

k

�
H
1=2
p;t 
H

1=2
p;t

�

 (x)

�
H
1=2
p;t 
H

1=2
p;t

� �
D+
k

�0
= D+

k 
t (x)
�
D+
k

�0
by the fact thatNk � DkD+

k is symmetric, NkDk = Dk; NkD
+0
k = D+0

k ; and Nk(A
A) = (A
A)Nk
for any k � k matrix A. �
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Proof of Theorem 3.3

Let �i denote a k � 1 vector that has 1 in the ith row and 0 elsewhere. Then

beit = �0ibet = �0i bH�1=2
p;t rt = �

0
iH

�1=2
p;t rt + �

0
i

�bH�1=2
p;t �H�1=2

p;t

�
rt = eit + �it;

where �it = �0i

�bH�1=2
p;t �H�1=2

p;t

�
rt: Note that for notational simplicity we have suppressed the

dependence of �it on the sample size T: It follows that

1

T

TX
t=1

(beitbejt � �ij)Kh (xt � x) =
1

T

TX
t=1

[(eit + �jt) (eit + �jt)� �ij ]Kh (xt � x) =
4X
l=1

Aij;l (x) ;

and

1

T 2

TX
t=1

(beitbejt � �ij)2Kh (0) =
1

T

TX
t=1

[(eit + �it) (ejt + �jt)� �ij ]2Kh (0) =
4X
l=1

Bij;l;

where

Aij;1 (x) =
1
T

PT
t=1 (eitejt � �ij)Kh (xt � x) ; Bij;1 =

1
T

PT
t=1 (eitejt � �ij)

2
Kh (0) ;

Aij;2 (x) =
1
T

PT
t=1 �it�jtKh (xt � x) ; Bij;2 =

1
T

PT
t=1 �

2
it�

2
jtKh (0) ;

Aij;3 (x) =
1
T

PT
t=1 eit�jtKh (xt � x) ; Bij;3 =

1
T

PT
t=1 e

2
it�

2
jtKh (0) ;

Aij;4 (x) =
1
T

PT
t=1 ejt�itKh (xt � x) ; Bij;1 =

1
T

PT
t=1 e

2
jt�

2
itKh (0) :

Consequently,

b� =

k�1X
i=1

kX
j=i

Z "
1

T

TX
t=1

(beitbejt � �ij)Kh (xt � x)
#2
dx� 1

T 2

k�1X
i=1

kX
j=i

TX
t=1

(beitbejt � �ij)2Kh (0)

=
k�1X
i=1

kX
j=i

("Z 4X
l=1

A2ij;l (x) + 2Aij;1 (x)Aij;2 (x) + 2Aij;1 (x)Aij;3 (x) + 2Aij;1 (x)Aij;4 (x)

+2Aij;2 (x)Aij;3 (x) + 2Aij;2 (x)Aij;4 (x) + 2Aij;3 (x)Aij;4 (x)

�
dx�

4X
l=1

Bij;l

)
:

Then we can write T (h!)1=2 b� =P10
l=1 ClT ; where

ClT = T (h!)
1=2

k�1X
i=1

kX
j=i

�Z
A2ij;l (x) dx�Bij;l

�
for l = 1; 2; 3; 4;

ClT = T (h!)
1=2

k�1X
i=1

kX
j=i

Z
Aij;1 (x)Aij;l�3 (x) dx for l = 5; 6; 7;

ClT = T (h!)
1=2

k�1X
i=1

kX
j=i

Z
Aij;2 (x)Aij;l�5 (x) dx for l = 8; 9; and

C10T = T (h!)
1=2

k�1X
i=1

kX
j=i

Z
Aij;3 (x)Aij;4 (x) dx.
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The proof will be completed if we can show C1T
d! N

�
0; �20

�
; and ClT = oP (1) for l = 2; 3; � � � ; 10:

We only prove C1T
d! N

�
0; �20

�
and ClT = oP (1) for l = 2; 3; 5 since the other cases are similar.

We �rst show that C1T
d! N

�
0; �20

�
: Let &t = (x0t; e

0
t)
0 and � (&t; &s) = (h!)

1=2Pk�1
i=1

Pk
j=i(eitejt�

�ij) (eisejs � �ij) Kh (xt � xs) : We can write C1T = 2T�1
P

1�t<s�T � (&t; &s) ; which is a second

order U-statistic and it is degenerate under the null. Under Assumptions A1, A4, and A6-A9

and the null hypothesis, one can verify the conditions of Lemma B.1 in Gao and King (2003)

are satis�ed so that a central limit theorem applies to C1T : The asymptotic variance is given by

plimn!12E[� (&t; &t)
2
] = �20; where &t is an independent copy of &t:

To show C2T = oP (1) ; write

C2T = T
�1 (h!)

1=2
k�1X
i=1

kX
j=i

TX
s=1

TX
t6=s

�is�js�it�jtKh (xt � xs)

By (A.11) and Assumption A5, j�itj = j�0i(bet � et)j = j�0i�t(�)(b� � ��)j � Dtjjb� � ��jj; where recall
�t (�) = @et(�)=@�

0 and � lies between b� and ��: By Assumptions A5 and A3,
jC2T j � k (k + 1)

2
T�1 (h!)

1=2
TX
s=1

TX
t6=s

D
2

tD
2

sKh (xt � xs)
b� � ��4

= Op(T (h!)
1=2
)Op

�
T�2

�
= oP (1)

where the second line follows from a simple application of the Markov inequality, and the fact that

for t 6= s

E
h
D
2

tD
2

sKh (xt � xs)
i
�
n
E
h
D
4

tKh (xt � xs)
io1=2 n

E
h
D
4

sKh (xt � xs)
io1=2

= O (1) :

Similarly, noting that C3T = T�1 (h!)
1=2Pk�1

i=1

Pk
j=i

PT
s=1

PT
t6=s eit�jteis�jsKh (xt � xs) ; we

have,

jC3T j � k (k + 1)

2
T�1 (h!)

1=2

�����
TX
s=1

TX
t=1

ketk keskDtDsKh (xt � xs)
����� b� � ��2

= Op(T (h!)
1=2
)Op

�
T�1

�
= oP (1) :

Noting that C5T = T�1 (h!)
1=2Pk�1

i=1

Pk
j=i

PT
s=1

PT
t=1 (eisejs � �ij) �it�jtKh (xt � xs) ; we can write

C5T = C5T;a + C5T;b; where

C5T;a = T�1 (h!)
1=2

k�1X
i=1

kX
j=i

TX
s=1

TX
t6=s

(eisejs � �ij) �it�jtKh (xt � xs) ; and

C5T;b = T�1 (h!)
1=2

k�1X
i=1

kX
j=i

TX
t=1

(eitejt � �ij) �it�jtKh (0) :

29



By Assumptions A3, A5 and A8, and the Markov inequality,

jC5T;aj � k (k + 1)

2
T�1 (h!)

1=2
TX
s=1

TX
t6=s

�
kesk2 + 1

�
D
2

tKh (xt � xs)
b� � ��2

= Op(T (h!)
1=2
)Op

�
T�1

�
= oP (1) ;

and

jC5T;bj � k (k + 1)

2
T�1 (h!)

1=2
TX
t=1

�
ketk2 + 1

�
D
2

tKh (0)
b� � ��2

= Op((h!)
�1=2

)Op
�
T�1

�
= oP (1) ;

Consequently, C5T = oP (1) : This concludes the proof of the theorem.�

Proof of Theorem 3.4

Under H1(T�1=2 (h!)
�1=4

); the expression T (h!)1=2 b� =P10
l=1 ClT obtained in the proof of The-

orem 3.3 continues to hold. In addition, one can verify that under H1(T�1=2 (h!)
�1=4

); ClT = oP (1)

continue to hold for l = 2; 3; � � � ; 10: The main change is associated with the term C1T : Let �ijt =

eitejt��ij : Let Et (�ijt) denote the conditional expectation of �ijt given Ft�1 and �ijt = �ijt�Et (�ijt).
Then we can write C1T = C1T;a + C1T;b + C1T;c; where

C1T;a = T�1 (h!)
1=2

k�1X
i=1

kX
j=i

TX
s=1

TX
t6=s

�ijs�ijtKh (xt � xs) ;

C1T;b = T�1 (h!)
1=2

k�1X
i=1

kX
j=i

TX
s=1

TX
t6=s

Es (�ijs)Et (�ijt)Kh (xt � xs) ; and

C1T;c = 2T�1 (h!)
1=2

k�1X
i=1

kX
j=i

TX
s=1

TX
t6=s

�ijsExt (�ijt)Kh (xt � xs) :

C1T;a now plays the role of C1T in the proof of Theorem 3.3, and we can show that C1T;a
d! N

�
0; �20

�
:

Next, noting that under H1(T�1=2 (h!)
�1=4

); Et (�ijt) = T
�1=2 (h!)

�1=4
�ij (xt) ; we have

C1T;b = T�2
k�1X
i=1

kX
j=i

TX
s=1

TX
t6=s

�ij (xs)�ij (xt)Kh (xt � xs)

=
T � 1
T

2

T (T � 1)
X

1�t<s�T
' (xt;xs) �

T � 1
T

eC1T;b (A.12)

where ' (xt;xs) =
Pk�1

i=1

Pk
j=i�ij (xs)�ij (xt)Kh (xt � xs) : Noticing that C1T;b is a second order

U-statistic, a typical WLLN for U-statistic of strong mixing process (e.g., Borovkova et al., 1999)

would require that {' (xt;xs) : t; s � 1; t 6= sg be uniformly integrable, which is di¢ cult to verify
here. By the H-decomposition, we can write

eC1T;b = #T + 2H(1)
T +H

(2)
T ; (A.13)
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where #T =
R R

' (xt;xs) f (xt) f (xs) dxtdxs; H
(1)
T = 1

T

PT
t=1 '1 (xt)�#T ; H

(2)
T = 2

T (T�1)
P

1�t<s�T

' (xt;xs) ; '1 (xt) =
R
' (xt;xs) f (xs) dxs; and ' (xt;xs) = ' (xt;xs) � '1 (xt) � '1 (xs) + #T : By

the Fubini theorem and the change of variables, we have

#T =
k�1X
i=1

kX
j=i

Z Z
�ij (xs)�ij (xt)Kh (xt � xs) f (xt) f (xs) dxtdxs

=
k�1X
i=1

kX
j=i

Z
�2ij (x) f

2 (x) dx+ o (1) : (A.14)

Note that '1 (xt) is a measurable function of xt and inherits the �-mixing property of the latter. By

Assumption A1, '1 (xt) is a strictly stationary �-mixing process with mixing coe¢ cient � (j) ! 0

as j !1: By Proposition 3.44 of White (2001), &t is also ergodic. Furthermore, it is easy to verify
that E j'1 (xt)j <1: It follows from the Ergodic theorem (e.g., White, Theorem 3.34) that

H
(1)
T

p! 0: (A.15)

Now, H(2)
T is a standard second order degenerate U-statistic with a symmetric kernel ' (:;: ) :

' (xt;xs) = ' (xs;xt) and E' (x1;a) = 0 for any a 2 Rq: Noting that

max
1<t�T

max

�
E j' (x1;xt)j2(1+�) ;

Z
j' (x1;xt)j2(1+�) dF (x1) dF (xt)

�
= O

�
(h!)

�(1+2�)
�

where F (:) is the distribution function of xt; it follows from Lemma C.2 of Gao and King (2003)

that

E
h
H
(2)
T

i2
� C

�
2

T (T � 1)

�2
T 2 (h!)

� 1+2�
1+� = O

�
T�2 (h!)

� 1+2�
1+�

�
= o (1) :

Hence by the Chebyshev inequality

H
(2)
T = oP (1) : (A.16)

Combining (A.12)-(A.16) yields C1T;b
p!
Pk�1

i=1

Pk
j=i

R
�2ij (x) f

2 (x) dx � �0:
Now, write C1T;c = C1T;c1 + C1T;c2; where C1T;c1 = 2T�3=2 (h!)

1=4Pk�1
i=1

Pk
j=i

PT
1�t<s�T �ijs

�ij (xt)Kh (xt � xs) and C1T;c2 = 2T�3=2 (h!)
1=4Pk�1

i=1

Pk
j=i

PT
1�s<t�T �ijs�ij (xt)Kh (xt � xs) :

By construction E (�ijsjFs�1) = 0: It follows that E (C1T;c1) = 0 by the law of iterated expectations
and the hypothesis that (xt;xs) 2 Fs�1 for t < s. By the Davydov�s inequality (e.g., Bosq, 1996,

p.19), we have

E (C1T;c2) = 2T�3=2 (h!)
1=4

k�1X
i=1

kX
j=i

TX
1�s<t�T

E
�
�ijs�ij (xt)Kh (xt � xs)

�
= 2T�3=2 (h!)

1=4
k�1X
i=1

kX
j=i

TX
1�s<t�T

Z
E [�ijsKh (xs � x)�ij (xt)Kh (xt � x)] dx

� CT�1=2 (h!)
1=4
(h!)

� 2(1+�)
2+�

T�1X
j=1

[� (i)]
�=(2+�)

= o (1) for su¢ ciently small � > 0:
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Similarly, we can show that E
�
C21T;c1

�
= o (1) and E

�
C21T;c2

�
= o (1) : Then C1T;c = oP (1) by the

Chebyshev inequality.

Consequently, P ( bT � z�jH1(T�1=2 (h!)�1=4))! 1� �(z� ��0=�0):�
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