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1 Introduction

Stock characteristics, such as the firm’s market capitalization, book-to-market ratio, or

lagged return, are related to the stock’s expected return, variance, and covariance with

other stocks.1 However, exploiting this fact in portfolio management has been, up to now,

extremely difficult. The traditional mean-variance approach of Markowitz (1952) requires

modeling the expected returns, variances, and covariances of all stocks as functions of their

characteristics. This is not only a formidable econometric problem given the large number

of moments involved and the need to ensure the positive definiteness of the covariance

matrix, but the results of the procedure are also notoriously noisy and unstable (e.g.,

Michaud, 1989). In practice, the Markowitz approach is therefore implemented along with

a number of different fixes, including shrinkage of the estimates, imposing a factor structure

on the covariance matrix, estimation of expected returns from an asset pricing model, or

constraining the portfolio weights.2 While these fixes generally improve the properties of

the optimized portfolio, they require substantial resources such as the tools developed by

BARRA, Northfield, and other companies. As a result, formal portfolio optimization based

on firm characteristics is seldom implemented by asset managers (with the notable exception

of quant managers which are a small part of the profession), even though it has the potential

to provide large benefits to the investors.3

We propose a simple new approach to equity portfolio optimization based on firm

characteristics. We parameterize the portfolio weight of each stock as a function of the

firm’s characteristics and estimate the coefficients of the portfolio policy by maximizing the

utility that would have been obtained by implementing the policy over the sample period.

Our approach has a number of conceptual advantages. First, we avoid completely

the auxiliary, yet very difficult, step of modeling the joint distribution of returns and

characteristics and instead focus directly on the object of interest — the portfolio

weights. Second, parameterizing the portfolio policy leads to a tremendous reduction in

dimensionality. For a problem with N stocks, the traditional Markowitz approach requires

1Fama and French (1996) find that these three characteristics robustly describe the cross-section of
expected returns. Chan, Karceski, and Lakonishok (1998) show that these characteristics are also related to
the variances and covariances of returns out-of-sample.

2See Black and Litterman (1992), Chan, Karceski, and Lakonishok (1999), Frost and Savarino (1986,
1988), Jagannathan and Ma (2002), Jobson and Korkie (1980, 1981), Jorion (1986), Ledoit and Wolf (2003a,
2003b), Pastor (2000), and Pastor and Stambaugh (2000, 2002). Brandt (2004) surveys the literature.

3See for instance Chan, Karceski, and Lakonishok (1999) and Jagannathan and Ma (2002).
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modeling N first and (N2 + N)/2 second moments of returns. With preferences other than

the simplistic quadratic utility, the traditional approach involves a practically unmanageable

number of higher moments for even a relatively small number of stocks (e.g., 100 stocks

have over 300,000 third moments). In contrast, our approach involves modeling only N

portfolio weights regardless of the investor’s preferences and the joint distribution of asset

returns. Because of this reduction in dimensionality, our approach escapes the common

statistical problems of imprecise coefficient estimates and overfitting, while allowing us to

solve very large-scale problems with arbitrary preferences. Third, but related, our approach

captures implicitly the relation between the characteristics and expected returns, variances,

covariances, and even higher order moments of returns, since they affect the distribution

of the optimized portfolio’s returns and therefore the investor’s expected utility. Fourth,

by framing the portfolio optimization as a statistical estimation problem with an expected

utility objective function (a “maximum expected utility” estimator as opposed to the usual

least-squares or maximum likelihood estimators), we can easily test individual and joint

hypotheses about the optimal portfolio weights.

From a practical perspective, our approach is simple to implement and produces

robust results in and out of sample. It is also easily modified and extended. We discuss

a number of possible extensions, including the use of different objective functions, the use

of different parameterizations of the portfolio policy to accommodate short-sale constraints,

accounting for interactions between the firm characteristics, conditioning the portfolio policy

on macroeconomic predictors, and multi-period investment horizons.

Our paper is related to a recent literature on drawing inferences about optimal

portfolio weights without explicitly modeling the underlying return distribution. Brandt

(1999) and Ait-Sahalia and Brandt (2002) model the optimal allocations to stocks, bonds,

and cash as nonparametric functions of variables that predict returns. Nigmatullin (2003)

extends their nonparametric approach to incorporate parameter and model uncertainty in a

Bayesian setting. More closely related to our paper is Brandt and Santa-Clara (2004), who

study a market-timing problem involving stocks, bonds, and cash by modeling the optimal

portfolio weights as functions of the predictors. Specifically, they model the weight in each

asset class as a separate function (with coefficients that are specific to the asset class) of a

common set of macroeconomic variables. Their approach is relevant for problems involving a

few assets that have fundamentally different characteristics, such as the allocation of capital

across different asset classes. In contrast, our paper models the weight invested in each
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asset as the same function (with common coefficients) of asset-specific variables. This is the

relevant problem when choosing among a large number of essentially similar assets, such as

the universe of stocks.

Our approach also has a positive use for testing the portfolio implications of

equilibrium in asset markets. More concretely, we specify the optimal portfolio weight in

each stock as the sum of its market capitalization weight and an optimal deviation from that

market cap weight that depends parametrically on the characteristics of the firms. A test

of whether the optimal deviations from the market cap weights are jointly zero therefore

addresses the hypothesis of whether a representative investor with the given preferences

optimally holds the market portfolio. Failure to reject this hypothesis identifies the investor’s

preferences as consistent with equilibrium in asset markets.

We use our approach to optimize a portfolio of all the stocks in the CRSP/Compustat

dataset from 1964 through 2002, using as characteristics the market capitalization, book-

to-market ratio, and lagged one-year return of each firm. The investor is assumed to have

constant relative risk aversion (CRRA) preferences. Our empirical results document the

importance of the firm characteristics for explaining deviations of the optimal portfolio

weights from observed market capitalization weights. Relative to market cap weights, the

optimal portfolio with and without short-sale constraints allocates considerably more wealth

to stocks of small firms, firms with high book-to-market ratios (value firms), and firms

with high lagged returns (winners). With a relative risk-aversion of five, the certainty

equivalent gain from investing in the optimal portfolio relative to holding the market is

an annualized 10% without short-sale constraints and 3% with short-sale constraints. In the

case without short-sale constraints, the benefits are even greater when we take into account

interactions between the characteristics, especially interactions between lagged returns and

book-to-market ratios, and when we allow the coefficients of the portfolio policy to depend

on the slope of the yield curve (certainty equivalent gains of 18% and 12%, respectively).

In contrast, with short-sale constraints, these two extensions yield smaller economic benefits

relative to the base case. We use an out-of-sample experiment to show that the gains in

expected utility are not the result of in-sample overfitting.

The remainder of the paper proceeds as follows. We describe the basic idea and

various extensions of our approach in Section 2. The empirical application is presented in

Section 3. We conclude in Section 4.
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2 Methodology

2.1 Basic Idea

Suppose that at each date t there is a large number, Nt, of stocks in the investable universe.4

Each stock i has a return of ri,t+1 from date t to t + 1 and is associated with a vector of

firm characteristics xi,t observed at date t. For example, the characteristics could be the

market capitalization of the stock, the book-to-market ratio of the stock, and the lagged

twelve-month return on the stock. The investor’s problem is to choose the portfolio weights

wi,t to maximize the conditional expected utility of the portfolio’s return rp,t+1:

max
{wi,t}

Nt
i=1

Et

[
u(rp,t+1)

]
= Et

[
u

(
Nt∑

i=1

wi,tri,t+1

)]
. (1)

We parameterize the optimal portfolio weights as a function of the stocks’ characteristics:

wi,t = f(xi,t; θ). (2)

In most of the paper, we concentrate on the following simple linear specification for the

portfolio weight function:

wi,t = w̄i,t +
1

Nt

θ>x̂i,t (3)

where w̄i,t is the weight of stock i at date t in a benchmark portfolio such as the value-weighted

market portfolio, θ is a vector of coefficients to be estimated, and x̂i,t are the characteristics

of stock i, standardized cross-sectionally to have zero mean and unit standard deviation

across all stocks at date t. Note that, rather than estimating one weight for each stock, we

estimate weights as a single function of characteristics that applies to all stocks.

This particular parameterization captures the idea of active portfolio management

relative to a performance benchmark. The intercept is the weight of the stock in the

benchmark portfolio and the term θ>x̂i,t represents the deviations of the optimal portfolio

weight from this benchmark. The characteristics are standardized for two reasons. First,

the cross-sectional distribution of the standardized x̂i,t is stationary through time, while that

of the raw xi,t may be non-stationary. Second, the standardization implies that the cross-

4Our method automatically accommodates the realistic case of a varying number of stocks through time.
This is not trivially done in the traditional approach as discussed by Stambaugh (1997).
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sectional average of θ>x̂i,t is zero, which means that the deviations of the optimal portfolio

weights from the benchmark weights sum to zero, and therefore that the optimal portfolio

weights always sum to one. Finally, the term 1/Nt is a normalization that allows the portfolio

weight function to be applied to an arbitrary and time-varying number of stocks. Without

this normalization, doubling the number of stocks without otherwise changing the cross-

sectional distribution of the characteristics results in twice as aggressive allocations, even

though the investment opportunities are fundamentally unchanged.

The most important aspect of our parameterization is that the coefficients θ are

constant across assets and through time. Constant coefficients across assets implies that the

portfolio weight in each stock depends only on the stock’s characteristics and not on the

stock’s historic returns. Two stocks that are close to each other in characteristics associated

with expected returns and risk should have similar weights in the portfolio even if their

sample returns are very different. The implicit assumption is that the characteristics fully

capture all aspects of the joint distribution of returns that are relevant for forming optimal

portfolios. Constant coefficients through time means that the coefficients that maximize the

investor’s conditional expected utility at a given date are the same for all dates and therefore

also maximize the investor’s unconditional expected utility.

These two facts imply that we can rewrite the conditional optimization with respect

to the portfolio weights wi,t in equation (1) as the following unconditional optimization with

respect to the coefficients θ:

max
θ

E
[
u(rp,t+1)

]
= E

[
u

(
Nt∑

i=1

(
w̄i,t +

1

Nt

θ>x̂i,t

)
ri,t+1

)]
. (4)

We can then estimate the coefficients θ by maximizing the corresponding sample analogue:

max
θ

1

T

T−1∑

t=0

u(rp,t+1) =
1

T

T−1∑

t=0

u

(
Nt∑

i=1

wi,tri,t+1

)

=
1

T

T−1∑

t=0

u

(
Nt∑

i=1

(
w̄i,t +

1

Nt

θ>x̂i,t

)
ri,t+1

)
,

(5)

for some pre-specified utility function (e.g., quadratic or CRRA utility).

Three observations about our approach are worth making at this point. First,

optimizing a portfolio of a very large number of stocks is extremely simple. Given the
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relatively low dimensionality of the parameter vector, it is computationally trivial to optimize

the portfolio with nonlinear optimization methods.5 The computational burden of our

approach only grows with the number of characteristics entering the portfolio policy, not

with the number of assets in the portfolio. Second, the formulation is numerically robust.

We optimize the entire portfolio by choosing only a few parameters θ. This parsimony

reduces the risk of in-sample overfitting since the coefficients will only deviate from zero if

the respective characteristics offer an interesting combination of return and risk consistently

across stocks and through time. For the same reason, the optimized portfolio weights tend not

to take extreme values. Third, the optimization takes into account the relation between the

characteristics and expected returns, variances, covariances, and even higher order moments

of returns, to the extent that they affect the distribution of the optimized portfolio’s returns

and therefore the investor’s expected utility. In the optimization, the degree of cross-sectional

predictability of each component of the joint return distribution is intuitively weighted by

its impact on the overall expected utility of the investor.

To better understand this third point, we can approximate the expected utility of the

investor with a Taylor series expansion around the portfolio’s expected return E[rp,t+1]:

E
[
u(rp,t+1)

]
≈ u(E[rp,t+1]) +

1

2
u′′(E[rp,t+1])E

[
(rp,t+1 − E[rp,t+1])

2
]

+
1

6
u′′′(E[rp,t+1])E

[
(rp,t+1 − E[rp,t+1])

3
]
+ ...

(6)

This expansion shows that, in general, the investor cares about all the moments of the

distribution of the portfolio return. Since the portfolio return is given by:

rp,t+1 =
Nt∑

i=1

(
w̄i,t +

1

Nt

θ>x̂i,t

)
ri,t+1 (7)

the moments of its distribution depend implicitly on the joint distribution of the returns and

characteristics of all firms. The coefficients θ affect the distribution of the portfolio’s return

by changing the weights given to the returns of the individual firms in the overall portfolio.

To perform a comparable portfolio optimization using the traditional Markowitz

approach requires modeling the means, variances, and covariances of all the stocks as

functions of their characteristics. This entails estimating for each date t a large number of Nt

5Especially because, for utility functions commonly used and given the linearity of the portfolio policy in
the coefficients θ, it is easy to derive analytically the gradient and the Hessian of the optimization problem.
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conditional expected returns and (N2
t +Nt)/2 conditional variances and covariances. Besides

the fact that the number of these moments grows quickly with the number of stocks, making

robust estimation a real problem, it is extremely challenging to estimate the covariance

matrix as a function of stock characteristics in a way that guarantees its positive definiteness.

Furthermore, extending the traditional approach beyond first and second moments, when

the investor’s utility function is not quadratic, is practically impossible because it requires

modeling not only the conditional skewness and kurtosis of each stock but also the numerous

high-order cross-moments.

Finally, when the benchmark is the value-weighted market, m, the return of the

portfolio can be written as:

rp,t+1 =

Nt∑

i=1

w̄i,t ri,t+1 +

Nt∑

i=1

(
1

Nt
θ>x̂i,t

)
ri,t+1 = rm,t+1 + rh,t+1 (8)

where h is a long-short hedge fund with weights θ>x̂i,t/Nt that add up to zero. Therefore

problem (6) can be reinterpreted as the problem of a hedge fund that optimizes its portfolio

to maximize the utility of investors who already hold the market.

2.2 Statistical Inference

By formulating the portfolio problem as a statistical estimation problem, we can easily obtain

standard errors for the coefficients of the weight function. The “maximum expected utility”

estimator θ̂, defined by the optimization problem (5), satisfies the first-order conditions:

1

T

T−1∑

t=0

h(rt+1, xt; θ) ≡
1

T

T−1∑

t=0

u′(rp,t+1)(x
>
t rt+1) = 0 (9)

and can therefore be interpreted as a method of moments estimator. From Hansen (1982),

the asymptotic covariance matrix of this estimator is:

Σθ ≡ AsyVar[θ̂] =
1

T
[G>V −1G]−1, (10)

where

G ≡ 1

T

T−1∑

t=0

∂h(rt+1, xt; θ)

∂θ
=

1

T

T−1∑

t=0

u′′(rp,t+1)(x
>
t rt+1)(x

>
t rt+1)

> (11)
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and V is a consistent estimator of the covariance matrix of h(r, x; θ).

Assuming marginal utilities are uncorrelated, which is true by construction when

the portfolio policy is correctly specified and the optimization is unconstrained, we can

consistently estimate V by:

1

T

T−1∑

t=0

h(rt+1, xt; θ̂)h(rt+1, xt; θ̂)
>. (12)

If we want to allow for the possibility of a misspecified portfolio policy (e.g., for the purpose

of specification testing discussed further below) or if constraints are imposed, we may instead

use an autocorrelation-adjusted estimator of V (e.g., Newey and West, 1987).

Alternatively, the covariance matrix of coefficients Σ̂θ can be estimated by bootstrap.

For that, we simply generate a large number of samples of returns and characteristics by

randomly drawing monthly observations from the original data set (with replacement).6 For

each of these bootstrapped samples, we estimate the coefficients of the optimal portfolio

policy and compute the covariance matrix of the coefficients across all the bootstrapped

samples. This approach has the advantage of not relying on asymptotic results and takes

into account potentially non-normal features of the data. The bootstrapped standard errors

are particularly appropriate in the multi-period investment horizon setup discussed below.

The resulting estimate of the covariance matrix of the coefficients Σ̂θ can be used

to test individual and joint hypotheses about the elements of θ. These tests address the

economic question of whether a given characteristic is related to the moments of returns in

such a way that the investor finds it optimal to deviate from the benchmark portfolio weights

according to the realization of the characteristic for each stock. It is important to recognize

that this is not equivalent to testing whether a characteristic is cross-sectionally related to

the conditional moments of stock returns for at least two reasons. First, the benchmark

portfolio weights may already reflect an exposure to the characteristics and it may not be

optimal to change that exposure. Second, a given characteristic may be correlated with

first and second moments in an offsetting way, such that the conditionally optimal portfolio

weights are independent of the characteristic.

The interpretation of our approach as a method of moments estimator suggests a way

6We also experimented with block bootstrapping techniques that maintain the time-series dependence of
the data (e.g., Politis and Romano (1994)). The resulting inferences are qualitatively the same.
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of testing the functional specification of the portfolio policy. In going from equation (1) to

equation (4) we assume that the functional form of the portfolio policy is correct, to replace

wi,t with a function of xi,t, and that the coefficients are constant through time, to condition

down the conditional expectation. If either assumption is incorrect, the marginal utilities

in equation (9) will be correlated with variables in the investor’s information set at date t,

which may include missing characteristics or variables that are correlated with the variation

in the coefficients. We can therefore perform specification tests for the portfolio policy using

the standard overidentifying-restrictions test of Hansen (1982).

Finally, note that the method of moments interpretation does not necessarily render

our approach frequentist and therefore unable to accommodate finite-sample uncertainty

about the parameters and model specification. Nigmatullin (2003) shows how to interpret

first-order conditions similar to equation (9) from a Bayesian perspective using the idea

of an empirical likelihood function and explains how to incorporate parameter and model

uncertainty. While his application deals with the nonparametric approach of Ait-Sahalia

and Brandt (2001), the general idea applies directly to our approach.

2.3 Refinements and Extensions

Besides its effectiveness and simplicity, an important strength of our approach is that the

basic idea is easily refined and extended to suit specific applications. We now discuss some

of the possible refinements and extensions to illustrate the flexibility of our approach.

2.3.1 Objective Functions

The most important ingredient of any portfolio choice problem is the investor’s objective

function. In contrast to the traditional Markowitz approach, our specification of the

portfolio choice problem can accommodate any choice of objective function. The only

implicit assumption is that the conditional expected utility maximization problem (1) be

well specified with a unique solution. Besides the standard HARA preferences (which nest

constant relative risk aversion, constant absolute risk aversion, log, and quadratic utility), our

approach can also be applied to behaviorally motivated utility functions, such as loss aversion,

ambiguity aversion, or disappointment aversion, as well as practitioner-oriented objective

functions, including maximizing the Sharpe or information ratios, beating or tracking a
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benchmark, controlling draw-downs, or maintaining a certain value-at-risk (VaR).7

In the empirical application we use standard constant relative risk aversion (CRRA)

preferences over wealth:

u(rp,t+1) =
(1 + rp,t+1)

1−γ

1 − γ
. (13)

The advantage of CRRA utility is that it incorporates preferences toward higher-order

moments without introducing additional preference parameters. In addition, the utility

function is twice continuously differentiable, which allows us to use more efficient numerical

optimization algorithms that make use of the analytic gradient and Hessian of the objective

function. We also offer results for the minimum variance and maximum Sharpe ratio

portfolios.

2.3.2 Portfolio Weight Constraints

By far the most common departure from the basic portfolio choice problem (1) in practice

are constraints on the optimal portfolio weights. In our approach, these constraints have

to be imposed through the parameterization of the portfolio policy. For example, consider

the case of the no-short-sale constraint in long-only equity portfolios. The simplest way to

impose this constraint through the portfolio policy is to truncate the portfolio weights in

equation (3) at zero. Unfortunately, in doing so the optimal portfolio weights no longer sum

to one (setting the negative weights to zero results in an sum of weights greater than one).

We therefore need to renormalize the portfolio weights as follows:

w+
i,t =

max[0, wi,t]∑Nt

j=1 max[0, wj,t]
. (14)

Besides guaranteeing positivity of the portfolio weights, this specification is also an example

of a nonlinear parameterization of the portfolio weight function (2).

One computational problem with this specification of the portfolio policy function is

its non-differentiability at wi,t = 0. In order to compute the standard errors of the estimated

θ from first-order conditions analogous to equation (9), we require first-order derivatives. One

7Benartzi and Thaler (1995), Ait-Sahalia and Brandt (2001), Ang, Bekaert, and Liu (2003), Gomes
(2003), among other, examine the role of behaviorally motivated preference in portfolio choice. Practitioner
oriented objective functions are considered, for example, by Roy (1952), Grossman and Vila (1989), Browne
(1999), Tepla (2001), Basak and Shapiro (2001), and Alexander and Baptista (2002).
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way to overcome this problem in practice is to approximate the function max[0, y] between

two close points y = 0 and y = α > 0 with either a third or a fifth-order polynomial with

smooth first- or first- and second-order derivatives at the end points, respectively.

2.3.3 Nonlinearities and Interactions

Although we explicitly specified the portfolio policy as a linear function of the characteristics,

the linearity assumption is actually innocuous because the characteristics xi,t can always

contain nonlinear transformations of a more basic set of characteristics yi,t. This means that

the linear portfolio weights can be interpreted as a more general portfolio policy function

wi,t = w̄i,t + g(yi,t; θ) for any g(·; ·) that can be spanned by a polynomial expansion in the

more basic state variables yi,t. Our approach therefore accommodates very general departure

of the optimal portfolio weights from the benchmark weights.

Cross-products of the characteristics are a particularly interesting form of non-

linearity because they have the potential to capture interactions between the characteristics.

For instance, there is considerable evidence in the literature that the momentum effect is

concentrated in the group of growth (low book-to-market) firms (e.g., Daniel and Titman,

1999). Our approach can capture this empirical regularity by including the product of the

book-to-market ratio and the one-year lagged return as an additional characteristic.

In practice, we need to choose a finite set of characteristics as well as possible nonlinear

transformations and interactions of these characteristics to include in the portfolio policy

specification. This variable selection for modeling portfolio weights is no different from

variable selection for modeling expected returns with regressions. The characteristics and

their transformations can be chosen on the basis of individual t tests and joint F tests

computed using the covariance matrix of the coefficient estimates, or on the basis of out-of-

sample performance.

2.3.4 Time-Varying Coefficients

The critical assumption required for conditioning down the expectation to rewrite the

conditional problem (1) as the unconditional problem (4), is that the coefficients of the

portfolio policy are constant through time. While this is a convenient assumption, there

is no obvious economic reason for the relation between firm characteristics and the joint
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distribution of returns to be time-invariant. In fact, there is substantial evidence that

economic variables related to the business cycle forecast aggregate stock and bond returns.8

Moreover, the cross-section of expected returns appears to be time-varying as a function of

the same predictors (e.g., Cooper, Gulen, and Vassalou, 2000).

To accommodate possible time-variation in the coefficients of the portfolio policy, we

can explicitly model the coefficients as functions of the business cycle variables. Given a

vector of predictors observable at date t, denoted by zt, we specify the portfolio policy has:

wi,t = w̄i,t +
1

Nt
θ> (zt ⊗ xi,t) (15)

where ⊗ denotes the Kronecker product of two vectors. In this form, the impact of the

characteristics on the portfolio weight varies with the realization of the predictors zt.

2.3.5 Multi-Period Horizon

The discussion thus far assumed a myopic single-period horizon. However, our approach

can be extended to a multi-period horizon problem as follows. Consider an investor who

maximizes the utility of a K-period return:

rp,t+1→t+K =
K−1∏

k=0

(1 + rp,t+k+1) − 1, (16)

where each period’s return is given as before by:

rp,t+k+1 =

Nt+k∑

i=1

wi,t+kri,t+k+1

=

Nt+k∑

i=1

(
w̄i,t+k +

1

Nt+k
θ>k xi,t+k

)
ri,t+k+1

(17)

with period-specific portfolio policy coefficients θk. Following the same steps as in the

single-period problem, the investor’s conditional expected utility optimization with respect

to the portfolio weights {{wi,t+k}Nt+k

i=1 }K−1
k=0 can be alternatively expressed as an unconditional

8For example, Campbell (1991), Campbell and Shiller (1988), Fama (1990), Fama and French (1988,1989),
Hodrick (1992), and Keim and Stambaugh (1986) report evidence that the stock market returns can be
forecasted by the dividend-price ratio, the short-term interest rate, the term spread, and the credit spread.
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expected utility optimization with respect to the portfolio policy coefficients {θk}K−1
k=0 . The

sample analogue of this unconditional problem is:

max
{θ}K−1

k=0

1

T

T−1∑

t=0

u

(
K∏

k=0

rp,t+1→t+K

)
. (18)

Expressing the investor’s portfolio choice problem in terms of optimizing over portfolio

policies, as opposed to over conditional portfolio weights, has the same conceptual benefits in

the multi-period problem as we discussed in the single-period context (e.g., it avoids modeling

the joint distribution of returns and characteristics). In addition, however, it allows for the

universe of investable securities to change over the investor’s horizon, meaning that Nt+k can

be a random variable for k > 0. Incorporating this realistic feature of the portfolio problem

in the traditional approach is difficult, if not practically impossible, because it would require

an explicit model of exchange listings and delistings.

Although theoretically sound, there are at least two practical complications

introduced by having a multi-period horizon. First, the number of coefficients increases

with the number of periods, raising the risk of in-sample overfitting. This problem can be

overcome by imposing a parametric structure on the coefficients of the portfolio policy across

periods, such as the restriction that the coefficients are constant or that the coefficients for

each period are scaled by some function of the number of periods to the end of the horizon.

The second complication is that if the average utility in equation (18) is computed with

overlapping observations, the time-dependence that is induced by the overlap can severely

distort the statistical inferences based on the iid covariance matrix estimator (12). While

it is possible to correct the covariance matrix estimator for the persistence introduced by

the overlapping observations, the resulting inferences are still questionable (e.g., Valkanov

(2003)). The best way to avoid this problem is to use only T/K non-overlapping observations

in constructing the sample analogue of the unconditional optimization problem. Doing

so unfortunately limits the length of the investment horizon we can realistically consider

with our approach given the finite size of the sample. In the empirical application, we use

overlapping observations with investment horizons up to five years and compute the standard

errors using bootstrap in order to obtain correctly-sized, albeit conservative, tests.
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2.4 Testing Asset Pricing Models

Portfolio choice problems are by nature normative, prescribing what the investor should

do to maximize expected utility. An interesting feature of our approach is that it also

has a positive application, helping economists understand better how markets function.

Specifically, the cross-sectional relation of expected returns in an equilibrium asset pricing

model is typically derived by combining the first-order conditions of the portfolio choice

problem of a representative agent with the market clearing condition that this agent has to

hold each asset in proportion to its market capitalization weight.

Reversing this argument, a given preference schedule for the representative agent is

only consistent with market equilibrium if the agent’s optimal portfolio weights equal the

observed market cap weights. Our approach is ideally suited for testing this implication,

since we model explicitly the deviations of the investor’s optimal portfolio weights from the

observed market cap weights. A rejection of the hypothesis θ = 0 implies that the preferences

do not correspond to those of the representative agent.

To be more specific, any equilibrium asset pricing model (CAPM, equilibrium APT,

or CCAPM), requires that the representative investor hold all the assets in the economy in

the proportions they exist in the market. Our proposed test makes an assumption about the

utility function of the representative investor (e.g., CRRA) and about the functional form

of the portfolio policy but does not require that we model the expected returns and risk of

stocks (e.g., measuring risk as covariance with the market or covariance with consumption).

We just need to find the agent’s optimal portfolio and compare it to the market portfolio.9

Consumption-based asset pricing models can be tested within our approach by

positing a representative investor with utility for consumption over time. The investor’s

consumption policy can be parameterized along the same lines and in addition to the

parameterized portfolio policy. The coefficients of both policy functions can be estimated by

maximizing utility in sample. We can then compare the utility obtained by the investor that

follows these optimal rules with the utility obtained from the observed consumption flow.

This is similar to the approach of Brandt (1999).

Furthermore, our tests can easily accommodate recent developments in the asset

pricing literature that justify the existence of equilibrium priced risk factors in the stock

9Actually, to the extent that the weight function is misspecified, that makes the test conservative.
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market. In addition to investment risks, the investor may face background risks related to

human capital (Jagannathan and Wang, 1996) or private equity (Heaton and Lucas, 2000).

The correlation of risk factors other than the market with such background risks explains

why the investor chooses to hold the market in equilibrium and does not tilt the portfolio

towards the risk factors. Background risks can be easily included as additional arguments

in the utility function.

Merton (1973) showed that time variation in consumption or investment opportunities

may induce portfolio hedging demands. This may explain the risk premia offered by assets

that are correlated with the changes in the opportunity set. Campbell and Vuolteenaho

(2004), Brennan and Xia (2004), and Bansal, Dittmar, and Lundblad (2004) justify the

premium of value stocks relative to growth stocks by their poor performance at times when

the market premium is low. According to such explanations, long-lived investors do not

want to deviate from the market portfolio towards the high-return stocks because they find

them riskier in this intertemporal sense. These explanations can be tested by estimating the

optimal portfolio of a multi-period horizon investor as explained in section 2.3.5, possibly

using portfolio policies that depend on macro state variables as in section 2.3.4.

3 Empirical Application

To illustrate the simplicity, the flexibility, and, most importantly, the effectiveness of our

approach, we present an empirical application involving the universe of all listed stocks in

the U.S. from January of 1964 through December of 2002. We first describe the data and

then present results for the base case, various extensions, and an out-of-sample experiment.

Unless otherwise stated, we assume an investor with CRRA preference and a relative risk

aversion of five. In the application, the investor is restricted to only invest in stocks. We

do not include the risk-free asset in the investment opportunity set. The reason is that the

first-order effect of allowing investments in the risk-free asset is to vary the leverage of the

portfolio, which only corresponds to a change in the scale of the stock portfolio weights.
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3.1 Data

We use monthly firm-level returns from CRSP as well as firm-level characteristics, obtained

from the CRSP-Compustat merged dataset, from January of 1964 through December of

2002. For each firm in the CRSP-Compustat dataset, we construct the following variables at

the end of each fiscal year: the log of the firm’s market equity (me), defined as the log of the

price per share times the number of shares outstanding, and the firm’s log book-to-market

ratio (btm), defined as the log of one plus book equity (total assets minus liabilities, plus

balance-sheet deferred taxes and investment tax credits, minus preferred stock value) divided

by market equity.10 We use the standard timing convention of leaving at least a six-month

lag between the fiscal year-end characteristics and the monthly returns, to ensure that the

information from the annual reports would have been publicly available at the time of the

investment decision. From the CRSP database, we record for each firm the lagged one-year

return (mom) defined as the compounded return between months t − 13 and t − 2. Similar

definitions of the three characteristics are commonly used in the literature (e.g., Fama and

French, 1996). The Appendix provides further details about the firm-level data, including

the exact definitions of the components of each variable. We use size, book-to-market, and

momentum as conditioning characteristics in the portfolio optimization since we want to

compare our results with previous studies and these characterists are the most widely used

in the literature.

The number of firms in our sample is generally trending upward, with an average

annual growth rate of 4.2%. The average number of firms throughout our sample is 3,680,

with the fewest firms in February of 1964 (1,033 firms) and the most firms in November of

1997 (6,356 firms).

Figure 1 describes the three firm characteristics. The first column plots the cross-

sectional means of the (non-standardized) characteristics at each month in our sample. The

second column shows the corresponding cross-sectional standard deviations. Recall that the

characteristics enter the portfolio policy function in standardized form. The plots in Figure 1

can be used to translate given values of the standardized characteristics at a particular date

in the sample into the original characteristics at the same date.

We use the one-month Treasury bill rate as the riskfree rate. In an extension of our

10Taking logs makes the cross-section distribution of me and btm more symmetric and reduces the effect
of outliers.
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basic approach, we model the coefficients of the portfolio policy as functions of the term

spread (tsp), defined as the difference in the yields to maturity of the 10-year Treasury note

and the one-year Treasury bill. Monthly interest rate data is obtained from the DRI database

for the same sample period as the stock data.

3.2 Base Case

Table 1 presents the results for the base case, in which the over- or under-weighting of

each stock, relative to the value-weighted market portfolio, depends on the firm’s market

capitalization, book-to-market ratio, and lagged one-year return, using the policy function

in equation (3). The table is divided into four sections describing separately the (i) parameter

estimates and standard errors, (ii) distribution of the portfolio weights, (iii) properties of the

optimized portfolio returns, and (iv) average characteristics of the portfolio. This format is

the same for all tables in the paper. In addition to the results for the universe of all CRSP

stocks, we also present results for a restricted set of the 500 largest firms. We first focus on

the results for all stocks and then point out where the results for the top 500 stocks differ.

The first few rows in Table 1 present the estimated coefficients of the portfolio policy

along with their standard errors estimated from 1,000 bootstrapped samples.11 For the

universe of all stocks, in the second column, the deviations of the optimal weights from the

benchmark weights decrease with the firms’s market capitalization (size) and increase with

both the firm’s book-to-market ratio (value) and its lagged one-year return (momentum).

The signs of the estimates are consistent with the literature. The investor over-weights small

firms, value firms, and past winners and under-weights large firms, growth firms, and past

losers. Since the characteristics are standardized cross-sectionally, the magnitudes of the

coefficients can be compared to each other. Quantitatively, a high book-to-market ratio

leads to the largest over-weighting of a stock. All three coefficients are highly significant.

We also test whether all three coefficients are jointly equal to zero using a Wald test, and

the bootstrapped p-value of this test is reported in the row labeled “Wald p-value.”12

The next few rows describe the weights of the optimized portfolio (in the second

column) and compare them to the weights of the market portfolio (in the first column). The

11We use bootstrapped standard errors since they produce slightly more conservative tests (larger standard
errors) than using estimates of the asymptotic covariance matrix in equation (10).

12When the bootstrapped p-value from the Wald test is less than 0.001, we report it as 0.000.
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average absolute weight of the optimal portfolio is about three times that of the market

(0.12% versus 0.04%). Not surprisingly, the active portfolio takes larger positions. However,

these positions are not extreme. The average (over time) maximum and minimum weight of

the optimal portfolio are 4.36% and -0.32%, respectively, while the corresponding extremes

for the market portfolio are 4.63% and 0.00%. The average sum of negative weights in the

optimal portfolio is -124%, which implies that the sum of long positions is on average 224%.

Finally, the average fraction of negative weights (shorted stocks) in the optimal portfolio is

0.468. Overall, the optimal portfolio does not reflect unreasonably extreme bets on individual

stocks and could well be implemented by a combination of an index fund that reflects the

market and a long-short equity hedge fund.

The following rows characterize the performance of the optimal portfolio relative to

the market portfolio. For ease of interpretation, all measures are annualized. The optimal

portfolio has a volatility slightly larger than that of the market portfolio, 19% versus 16%,

but has a much higher average return of 24.4% as opposed to 12.0% for the market. This

translates into a Sharpe ratio that is three times the market’s and a certainty equivalent

gain of 10%. We can use a regression of the excess returns of the active portfolio on the

excess return of the market to evaluate the active portfolio’s alpha, market beta, and residual

risk, and then use these statistics to compute the portfolio’s information ratio. The alpha

of the portfolio is over 15%, with a low market beta of only 0.440. Dividing the alpha by

the residual volatility of 17.7% produces an information ratio of 0.890. We should point

out that it is not surprising that the optimal portfolio outperforms the market, because we

have chosen characteristics that are known to be associated with substantial risk-adjusted

returns.

We can decompose of the optimal portfolio returns into the market return and the

return on a long-short equity hedge fund along the lines of equation (8). The average return

of this hedge fund is found to be 12.46% (not shown in the table). We can further decompose

the hedge fund return as rh = q(r+
h − r−h ) where r+

h is the return on the long part of the

hedge fund and r−h is the return on the short part, both normalized such that the sum of

their weights is one. In this way, q captures the leverage of the long-short portfolio. The

average r+
h is 19.00% and the average r−h is 11.84%, so that the return of the hedge fund

without leverage, i.e., with one dollar long and one dollar short positions, is 7.16%. These

returns compares with the market’s return of 11.96% over the same period. We therefore see

that the long side of the hedge outperforms the market whereas the short side has roughly
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the same performance as the market. In fact, the short side could be replaced with a short

position in the market portfolio without hurting performance. This is important since it

is obviously easier to short the market using futures than it is to hold a short portfolio of

stocks. The average return of the entire hedge fund of 12.46% and the returns of the scaled

long and short parts imply a leverage q of the long and short positions of the order of 170%.

To describe the composition of the optimized portfolio, we compute for every month

the weighted characteristics of the portfolio as Nt

∑Nt

i=1 wi,tx̂i,t. The last three rows of the

table compare the average (through time) weighted characteristics of the optimized portfolio

to those of the market portfolio. The market portfolio has a bias toward very large firms

(due to value weighting) and firms with below-average book-to-market ratios (growth), while

it is neutral with respect to momentum. In contrast, the optimized portfolio has a slight

bias toward small firms and much stronger biases toward high book-to-market ratio (value)

firms and past winners. Specifically, the portfolio’s book-to-market ratio is more than three

standard deviations above the average stock, and the portfolio’s momentum is close to two

standard deviations above the mean.13

Figure 2 plots the time series of the three portfolio characteristics. The characteristics

vary over time, but their variability is relatively small and they appear stationary. Moreover,

the book-to-market characteristic is always larger than the momentum characteristic, which

in turn is larger than the size characteristic, indicating that the optimized portfolio reflects

consistent bets through time. While this ordering is also clearly captured in the averages

reported in the table, it is comforting to note that the results are systematic and not the

product of a few outliers. Finally, one might suspect that maintaining such stable portfolio

characteristics requires unreasonably large trading activity. Fortunately, this is not the case.

The average turnover of the optimized portfolio is only 50% per year, as compared to a

average turnover of 12% per year for the market portfolio (due to new listings, delistings,

equity issues, etc). This further shows that the optimal portfolio is eminently implementable

and that the returns are unlikely to be affected much by trading costs.

The results are similar for the 500 largest stocks, which are an interesting subset of

firms because they are certainly liquid enough to implement an active portfolio strategy in

large scale. The most notable difference in the results is that the book-to-market coefficient,

13In a long-short portfolio, this does not necessarily mean that the typical stock has characteristic values
of this order of magnitude. For instance, a portfolio that is long 200% in stocks with a characteristic value
of 2 and is short 100% of stocks with a characteristic value of 1 has an average characteristic value of 3.
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while still positive and significant, is about half as large as in the case of all stocks. The

optimal allocation is achieved with a lower average number of stocks shorted, 35.8%, and

the total short position of the optimal portfolio is only -51.8%. The average return of the

optimal portfolio is 20%, or more than 7% larger than the return of the market portfolio.

Its standard deviation, at 17.6%, is only slightly larger than that of the benchmark. These

combine into a Sharpe ratio that is more than twice the market’s. The alpha of the optimal

portfolio is 10% with a market beta of 0.704, residual volatility of 13.6% and a information

ratio of 0.734. The average characteristics of the optimized portfolio are again tilted toward

smaller, value, and winner stocks.

Finally, we can test equilibrium in the stock market for a representative investor with

these preferences. The Wald test of the joint significance of the portfolio policy coefficients

has a p-value of less than 1% for both the entire universe of stocks and the subset of the largest

500 stocks. This evidence goes against Fama and French (1993, 1996) who argue that the

association between firm characteristics and stock returns arises because the characteristics

proxy for exposure to factor risk. If indeed the premia associated with the characteristics

were only fair compensation for their risk, the investor would choose to hold the market

instead of tilting the portfolio policy towards the characteristics. We strongly reject that

hypothesis. In contrast, our findings support Daniel and Titman (1997), who argue that

the characteristics do explain expected returns but are not associated with a corresponding

exposure to systematic risk.

3.3 Extensions

3.3.1 Portfolio Weight Constraints

A large majority of equity portfolio managers face short-sale constraints. In Table 2, we

present the results from estimating the long-only portfolio policy specified in equation (14).

As in the unconstrained case, the deviation of the optimal weight from the market portfolio

weight decreases with the firm’s size, increases with its book-to-market ratio, and increases

with its one-year lagged return. Focusing on the portfolio involving the entire universe

of stocks, a high book-to-market ratio and large positive one-year lagged return are less

desirable characteristics for a long-only investor. The coefficients associated with both of

these characteristics are lower in magnitude than in the unrestricted case and are only
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marginally significant, whereas the coefficient associated with the market capitalization of

the firm is not significant. Overall, the significance of the θ coefficients is substantially

diminished compared to the unconstrained base case.

The optimal portfolio still does not involve extreme weights. In fact, the average

maximum weight of the optimal portfolio is only 2.5%, which is actually lower than that of

the market portfolio. On average, the optimal portfolio invests in only 56% of the stocks.

The resulting mean and standard deviation of the portfolio return are 17.3% and 10.0%,

respectively, translating into a certainly equivalent gain of 3.3% relative to holding the

market portfolio. The alpha, beta, and information ratio of the portfolio are 5.4%, 0.977,

and 0.620, respectively. These statistics are quite remarkable, given the long-only constraint.

The average size of the firms in the optimal portfolio is greater than the size of the average

firm but significantly lower than that of the value-weighted market portfolio. The book-to-

market ratio and momentum characteristics are less than one standard deviation above those

of the average stock and are also significantly different from those of the market portfolio.

The results for the optimal long-only portfolio in the universe of the top 500 stocks are

qualitatively similar.

The most interesting comparison is between the long-only portfolio in Table 2 and the

unconstrained base case in Table 1. Qualitatively, the results in the two tables are similar, but

the long-only constraint results in a lower average portfolio return, slightly higher volatility,

and consequently a lower certainty equivalent gain relative to holding the market portfolio.

The difference in performance is due to two related factors. First, the unconstrained portfolio

can exploit both positive and negative forecasts, while the constrained portfolio can only

exploit the positive forecasts. Consistent with this argument, the fraction of short positions

in Table 1 is roughly the same as the fraction of stocks not held by the long-portfolio in

Table 2. Second, the unconstrained portfolio benefits from using the short positions as

leverage to increase the exposure to the long positions.

Interestingly, the tests for joint significance of all three parameters have a p-value

slightly above 10%. We therefore cannot reject that the coefficients are jointly zero and that

the investor is equally well off holding the market as holding the optimal portfolio. This

rejection is consistent with the increase in the standard errors on the coefficients and the

smaller gain in certainty equivalent of the restricted optimal portfolio relative to the market.

However, we should note that part of this rejection is due to the conservative nature of the

Wald test, which strongly penalizes the insignificance of the coefficient on market equity even
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though the t-tests found the coefficients on book to market and momentum to be individually

significant. Despite this caveat, taking the test at face value has the interesting implication

that we no longer reject equilibrium in the stock market. Now, our tests side with Fama and

French (1993, 1996) and contradict Daniel and Titman (1997). We conclude that short sales

constraints go a long way towards explaining the size, value, and momentum anomalies.

3.3.2 Interactions

Table 3 includes interactions between the three characteristics in both the constrained and

unconstrained portfolio policies. Specifically, we include the levels and the cross-products of

the firms’ market capitalization, book-to-market ratio, and one-year lagged return, resulting

in a total of six characteristics. The interactions do not substantially change the essence of

the previous results. Both portfolios are still tilted toward smaller firms, value firms, and

past winners.

Examining more closely the estimated coefficients for the interacted characteristics,

all three coefficients are statistically significant in the unconstrained case. Relative to the

base case, the optimal portfolio policy tilts the weights positively towards large-growth

and small-value stocks, large-winner and small-loser stocks, and value-winner and growth-

loser stocks. The policy tilts the weights negatively towards the opposite combinations of

characteristics. It is important to notice that the coefficients can only be interpreted as

marginal contributions to the weights (evaluated at the average level of characteristics),

much like the coefficients of multivariate regressions cannot be interpreted in isolation. To

understand the result of the optimal policy, it is best to examine the resulting average

characteristics in the portfolio. The average characteristics are comparable to the base case

in Table 1. However, a substantial portion of the book-to-market exposure is now obtained

in smaller firms and past winners. In the constrained case, the coefficients on the interaction

terms are generally smaller and less significant. The size-momentum interaction does not

play a significant role in the constrained portfolio, whereas the value-momentum interaction

is still important.

The interactions do not lead to dramatic changes in the distribution of the optimal

portfolio weights, but the effect on the distribution of the portfolio return is substantial.

Both the unconstrained and constrained portfolios exhibit higher average returns (42.8%

and 20.0%), higher Sharpe ratios (1.318 and 0.746) and certainly equivalents (23.1% and
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10.6%), higher alphas (32.4% and 8.1%), and higher information ratios (1.283 and 0.795).

Comparing these numbers to the corresponding results without interactions, in Tables 1

and 2, the performance improvement is much greater for the unconstrained portfolio. The

certainty equivalent increases by 7.8% in the unconstrained case and by only 1.4% in the

constrained case.

Taking interactions between the characteristics into account leads to a sound rejection

of stock market equilibrium with this representative agent. The p-values of the Wald test are

now indistinguishable from zero both for the long-short and the long-only optimal portfolios.

Besides illustrating the potential for interactions between characteristics to improve

the performance of the optimized portfolio, especially in the unconstrained case, this

extension also emphasizes the ability of our method to accommodate a larger number of

characteristics. Given analytical expressions for the gradient and Hessian of the objective

function, the estimation with six characteristics takes only marginally longer than in the

base case with three characteristics.

3.3.3 Time-Varying Coefficients

In Table 4 we allow the coefficients of the portfolio policy to depend on the slope of the yield

curve. We estimate a separate set of coefficients for months when the yield curve at the

beginning of the month is positively sloped (normal) and negatively sloped (inverted). Since

inverted yield curves tend to be associated with recessions, letting the portfolio coefficients

vary with the yield-curve slope allows the effect of the characteristics on the joint distribution

of returns to be different during expansionary and contractionary periods.

The table presents results for unconstrained and constrained portfolios. In both cases,

the most dramatic effect of conditioning on the slope of the yield curve is on the role of the

firm’s size. When the yield curve is upward sloping, the optimal portfolio is tilted toward

smaller firms, just as in the base case. When the yield curve is downward sloping, in contrast,

the tilt is exactly the opposite, with a positive coefficient (although not statistically different

from zero in the unconstrained case). This is consistent with the common notion that small

firms are more affected by economic downturns than larger and more diversified firms. For

book-to-market and momentum, the coefficients are generally larger in magnitude when the

yield curve slopes down.
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Conditioning on the slope of the yield curve does not significantly alter the

distribution of the optimal portfolio weights. However, the performance of the portfolio

is improved. Both portfolios have higher average returns, certainly equivalents, alphas, and

information ratios than without conditioning. The certainty equivalent improvement relative

to the base case is again greater for the unconstrained portfolio, with a gain of 1.8% versus

0.2% for the constrained portfolio.

The average characteristics of the optimal portfolios are the most interesting to

analyze. Consider first the unconstrained case. As suggested by the coefficient estimates, the

optimal portfolio is tilted toward small stocks when the yield curve is upward sloping. When

the yield curve is downward sloping, the portfolio is tilted toward larger stocks and resembles

closely the composition of the market portfolio. The average book-to-market and momentum

characteristics are both positive and larger when the yield slope is positive. Turning to the

constrained results, notice that the optimal portfolio is not significantly tilted into value

and winner firms when the yield curve is inverted, suggesting that during those times the

profitability of value and momentum comes primarily from short positions.

When we condition the portfolio policy on the slope of the yield curve, the Wald

test rejects at the 1% level the hypothesis that the market is the optimal portfolio, both

for the unconstrained and the positive-only portfolios. Since the slope of the yield curve

is associated with the business cycle, our results do not support explanations of the value

premium based on macroeconomic risk stories. We find that the investor actually chooses

to invest more in value stocks during recessions.

3.3.4 Objective Functions

The optimal portfolio policy depends critically on the investor’s preferences. The results thus

far were obtained assuming CRRA utility with relative risk aversion γ = 5. To get a better

sense for the role of this utility assumption, we present in Table 5 results for different levels

of risk aversion. In addition to γ = 5, which we report in the table for comparison, we also

estimate the optimal portfolio for γ = 1, corresponding to the popular case of log-utility, and

γ = 100, which is extremely high and makes the investor very sensitive to extreme losses.

The table presents results for both constrained and unconstrained portfolios, but the

discussion is focused on the unconstrained case and only mentions the constrained case when

there are meaningful differences. For small values of γ, the estimates of the coefficients on
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the firm’s size, book-to-market ratio, and one-year lagged return are all large in absolute

value and statistically significant. As the investor becomes more risk averse, the coefficients

on size and momentum approach zero. This suggests that these characteristics are associated

with both mean returns and risk. As risk aversion increases, the investor weighs more the

contribution of these characteristics to risk and loads less heavily on them. In contrast, the

exposure to book-to-market does not change qualitatively as risk aversion increases. This

indicates that this characteristic is more associated with expected return than risk.

The average firm characteristics exhibit the same patterns. For γ = 1, the portfolio is

severely tilted toward firms that are small, value, and winners. As the level of risk aversion

increases, the tilting towards small caps and winners decreases. Actually, for γ = 100, the

portfolio holds companies that are one standard deviation larger than the mean. However,

the tilt towards value firms is maintained.

The distribution of the optimal portfolio weights also changes with the level of risk

aversion. In particular, an investor with γ = 1 takes on more and larger negative positions,

compared to an investor with γ = 5. The fraction of shorted stocks is only increased by

5% but the sum of negative weights is three times larger, which implies that the less risk

averse investor takes similar bets but with more leverage. Interestingly, the γ = 100 investor

actually uses higher leverage than the investor with γ = 5. Intuitively, the short positions

help by partially hedging the worst performing stocks in the market’s lowest return months.

Not surprisingly, the differences in the optimal portfolio weights translate into equally

striking differences in the distribution of the optimized portfolio returns. The average return

and volatility are highest for γ = 1 and decrease with the investor’s level of risk aversion.

Most importantly, the portfolio’s minimum return (not shown in the table) decreases from

-67.20% for γ = 1, to -19.77% for γ = 5, and to -13.19% for γ = 100 (for comparison,

the market’s minimum return is -21.50%). For high levels of γ, the curvature of the utility

function is such that the average utility across all months is dominated by the utility obtained

in the worst month. In this sense, the γ = 100 preferences correspond closely to a max-min

criterion. The table also presents certainty equivalents for the different levels of risk aversion

but they cannot be compared with each other. The certainty equivalent for the γ = 100 case

is actually negative, -0.976, but the investor dislikes the market even more, with a certainty

equivalent of -1.976.14

14The certainty equivalents can take values less than -1 because we are taking the monthly certainty
equivalents and multiplying them by 12 to express them in annual terms. Of course, the monthly certainty
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The Wald tests reject equilibrium in the stock market for all the unrestricted portfolios

and also for the restricted portfolio when the investor has log utility. Although increasing

risk aversion helps in explaining the size and momentum anomalies it does not explain the

value anomaly.

As another example of how the objective function affects the optimal portfolio policy,

Table 6 presents results for an investor who wants to minimize the variance or maximize the

Sharpe ratio of the portfolio. This application is particularly interesting in that the resulting

two portfolios span the mean-variance frontier.

We find that the minimum variance portfolio only loads significantly on the book-

to-market characteristic. This result further deepens the value anomaly. Even when the

investor does not care about expected returns but only about risk, the portfolio still loads

on stocks with high book-to-market. In the long-only case, the coefficient are generally

insignificant, resulting in average characteristics that approximate the market’s.

On average, short positions constitute 52.0% of the portfolio, substantially less than

in the base case. The minimum variance portfolio therefore makes relatively little use of

leverage. The standard deviation achieved by this portfolio is 13.7%. This is substantially

higher than the minimum variance of 6.85% per year obtained by Chan, Karceski, and

Lakonishok (1999) using the realized covariance matrix of returns to find the minimum

variance portfolio. The difference highlights the relatively poor performance of the size,

book-to-market, and momentum characteristics in capturing the risk of equity portfolios.

The maximum Sharpe ratio portfolio loads significantly on the three characteristics in

the long-short case and on book-to-market and momentum in the long-only case. This results

in high average book-to-market and momentum for the unconstrained portfolio whereas, for

the long portfolio, only momentum is more than one standard deviation higher than the

mean. Interestingly, the exposures of the maximum Sharpe ratio portfolio closely resemble

the optimal portfolio for the γ = 5 CRRA investor (Tables 1 and 2). In other words, the

optimal investment policy of an investor who maximizes the Sharpe ratio is similar to that

of a CRRA investor with γ = 5. The maximized Sharpe ratio is almost three times the

market’s in the unconstrained case and two times the market’s in the long-only case.

equivalents cannot be less that -1 no matter the degree of risk aversion.
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3.3.5 Multi-Period Horizon

Finally, we present an application of our approach to a multi-period problem. Table 7 shows

the optimal portfolio policy of an investor with a multi-period horizon of one or five years (the

one-month results are reproduced for comparison) with monthly rebalancing. The portfolio

policies are estimated from the maximization problem (18) using overlapping returns and

the standard errors are obtained via bootstrap.

The optimal portfolio policy changes little when the investment horizon goes from

one month to one year. However, for a five-year horizon, the loading on momentum almost

doubles. As a consequence, the leverage of the optimal portfolio also increases substantially.

Note that the Sharpe ratios of the portfolios are quite similar. However, the (annualized)

certainty equivalent of the five-year horizon investor is two times higher than for the shorter-

horizon portfolios. This happens because the five-year returns are actually less risky than

the standard deviation (computed from monthly returns) indicates. In fact, the average

portfolio return in the sample is so high that there is no negative realization in any five-year

period. However, this only happens for the long-short portfolio. The certainty equivalent of

the long-only investor does not change substantially with the increasing horizon.

It is striking that the multi-period investor still finds it optimal (in fact, even more

so) to tilt the portfolio toward value and momentum as the horizon increases. This contrasts

with Brennan and Xia (2004), Campbell and Vuolteenaho (2004), and Bansal, Dittmar,

and Lundblad (2004), who argue that the value premium can be explained as an ICAPM

risk premium. Their argument is that value stocks offer bad returns when investment

opportunities are poor. Value stocks would therefore be required to offer a higher expected

return to an investor with a long horizon who cares about reinvestment risk. However, we

find the opposite result. A five-year horizon investor actually wants to take a larger bet on

value stocks. Admitedly, five years is not a very long horizon and, in particular, is quite short

if time is measured in business cycles. On the other hand, Barberis (2000) and Brandt (1999)

show that an increase in horizon from five to, say, ten years would typically have little impact

on portfolio choices. Moreover, our tests are quite conservative in that the portfolio policy

forces the investor to hold the same portfolio weights through time. This is restrictive since,

in general, the optimal policy would be dependent on the time to horizon. The fact that,

even in this suboptimal case, the investor deviates significantly from the market makes the

tests even more powerful. Similar to value, the exposure to momentum also increases with
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the horizon, suggesting that the momentum premium cannot be justified as compensation

for intertemporal risk. Finally, we again find that, with short-sale constraints, we cannot

reject the optimality of the market portfolio.

3.4 Out-of-Sample Performance

While the stellar performance of our approach is unlikely to be due to over-fitting since we

optimize a portfolio with a large number of stocks over a small number of parameters, the

most convincing way to establish its robustness is through an out-of-sample experiment. We

split our sample into two equal sub-samples from January of 1964 through June of 1983, and

from July of 1983 through December of 2002, labeled Sample 1 and Sample 2, respectively.

For each sub-sample, we estimate the optimal portfolio policy as in the base case and then

use the estimated coefficients to form a portfolio in the other sub-sample. More specifically,

for each month in Sample 2, we form a portfolio using the firm characteristics observed at the

beginning of that month and the policy coefficients estimated from Sample 1. The returns

generated by these portfolios in Sample 2 represent the out-of-sample results for Sample 1.

We conduct an analogous out-of-sample experiment for Sample 2, flipping the estimation

and evaluation samples from the previous case.

Panel A of Table 8 presents the unconstrained results. Before discussing the out-

of-sample performance of our approach, we briefly comment on the sub-sample results.

The coefficient estimates are generally consistent across sub-samples. The size coefficient

is negative and the book-to-market and momentum coefficients are positive in both sub-

samples. The coefficients are individually and jointly significant even with the smaller

sample sizes, which implies that our tests are quite powerful. The distributions of the

weights and returns of the optimized portfolio are also similar across sub-samples. The

certainty equivalent is 15.1% in the first and 17.7% in the second sub-sample. Finally, in

both sub-samples, the portfolios are tilted substantially toward value and momentum, with

momentum playing a larger role in the first sub-sample and book-to-market playing a larger

role in the second sub-sample.

Turning to the out-of-sample results, the “Out-of-Sample Fcst.” column of Sample 2

summarizes the results from using the coefficients estimated in the first sub-sample to form

portfolios in the second sub-sample. The in- and out-of-sample portfolios are remarkably

similar in terms of the distribution of the portfolio weights. More importantly, the return
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statistics are also very similar. For instance, the average return and volatility are 24.5% and

16.3% when using the optimal coefficients (in-sample) versus 26.5% and 22.4% when using

the coefficients estimated from Sample 1 (out-of-sample). The resulting certainty equivalents

are 17.7% in-sample and 12.1% out-of-sample. It is astonishing that using portfolio policy

coefficients estimated with a delay as long as 20 years results in less than a 6% reduction

in certainty equivalent, compared to the (in practice unattainable) in-sample optimum.

Moreover, the average characteristics of the in- and out-of-sample portfolios are similar,

both with a tilt toward firms that are small, have high book-to-market ratios, and had large

returns in the previous year. Notice that, although the sign of the average size is different

for the two portfolios, both are considerably smaller than the average size of the market

portfolio, and therefore both portfolios reflect a bias toward small firms.

The “Out-of-Sample Fcst.” column of Sample 1 summarizes the results from using

in the first sub-sample the coefficients estimated from the second sub-sample. The results

are qualitatively the same as above. The in- and out-of-sample portfolios are remarkably

similar, in terms of their weights, average characteristics, and return performance. The loss

in certainty equivalent from not optimizing in-sample is only 3.8% in this case.

We conclude from these results that our approach is likely to perform as well out-of-

sample as our in-sample analysis suggests. The same conclusion can be drawn from Panel B

of Table 8, which reports the results for the portfolio subject to short-sale constraints. Since

the constrained portfolios take less aggressive size, value, and momentum bets, the margin for

error is smaller still. As a result, the certainty equivalent loss from not optimizing in-sample

is a mere 1.2% for the first sub-sample and 1.7% for the second sub-sample.

4 Conclusion

We proposed a novel approach to optimizing large-scale equity portfolios. The portfolio

weight in each stock is modeled as a function of the firm’s characteristics, such as its market

capitalization, book-to-market ratio, and lagged return. The coefficients of this function

are found by optimizing the investor’s average utility of the portfolio’s return over a given

sample period. We argued that our approach is computationally simple, easily modified

and extended, produces sensible portfolio weights, and offers robust performance in- and

out-of-sample.
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We illustrated the many features of our approach through an empirical application to

the universe of stocks in the CRSP-Compustat dataset. Our empirical results document

the importance of the firm’s market capitalization, book-to-market ratio, and one-year

lagged return for explaining deviations of the optimal portfolio for a CRRA investor from

the market. Relative to market capitalization weights, the optimal portfolio (with and

without short-sale constraints) allocates considerably more wealth to stocks of small firms,

firms with high book-to-market ratios (value firms), and firms with large positive lagged

returns (past winners). With a relative risk aversion of five, the certainty equivalent gain

from incorporating the firm characteristics, relative to holding the market portfolio, is an

annualized 10% without short-sale constraints and 3% with short-sale constraints. Without

short-sale constraints, the benefits are even greater when we allow for interactions between

characteristics (certainty equivalent gain of 18%), especially interactions between lagged

returns and book-to-market ratios, or when we allow for the coefficients of the portfolio

policy to depend on the slope of the yield curve (certainty equivalent gain of 12%). With

short-sale constraints, these extensions yield relatively little economic benefit compared to

the base case. We used an out-of-sample experiment to show that these gains in expected

utility are not the result of in-sample overfitting.

We compared the utility derived from the optimal portfolio with the utility obtained

from holding the market. This comparison provides a test of equilibrium in the stock

market with a representative investor who has the given utility function. In general, we

rejected the hypothesis of equilibrium pricing, especially if the investor is allowed to take

into account interactions between characteristics or to condition the portfolio policy on macro

variables. However, if the representative investor is restricted to hold only long positions, we

cannot reject the optimality of the market portfolio. Short-sale constraints therefore offer a

justification for the size, value, and momentum anomalies. We also found that increasing the

level of risk aversion eliminates the exposure of the optimal portfolio to size and momentum,

suggesting that the premium of these stocks may indeed bear some relation to risk, but

does not change the exposure to book to market. Finally, long-horizon investors still want

to be exposed to value and momentum, contrary to claims that these premia represent

compensation for intertemporal risks.

Our idea can easily be applied to other asset classes. For instance, we could use

a similar approach to form bond portfolios based on the characteristics of the bond (e.g.,

duration, convexity, coupon rate, credit rating, leverage, etc) or to form currency portfolios
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based on the characteristics of each country pair (e.g., interest rate and inflation differentials,

trade balance, etc).
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Appendix: Data

For each firm in the CRSP-Compustat dataset, we construct several variables at the end

of fiscal years 1964 to 2002. The first full year of data, 1963, is used to construct lagged

values. The exact fiscal year end dates are from CRSP. We use the following quantities

in the definition of the variables (Compustat data item numbers are in parenthesis): total

assets (6); liabilities (181); preferred stock value (10, 56, or 130, in that order, or, otherwise,

zero); balance sheet deferred taxes and investment tax credits (35, otherwise zero); price per

share (199, otherwise taken from CRSP); and shares outstanding (25, otherwise taken from

CRSP). If total assets, liabilities, price, and shares outstanding are missing, the observation

is not included in the dataset. Then, we define book equity (BE) as equal to total assets

minus liabilities plus balance sheet deferred taxes and investment tax credits minus preferred

stock value; market equity (ME) as equal to price per share times shares outstanding; book-

to-market (btm) as equal to the log of one plus book equity divided by market equity. We

omit firms with negative book-to-market ratio. Log market equity (me) is computed as the

log of market equity.

The monthly firm returns are obtained from CRSP. We allow a minimum of six month

lag between the fiscal year end of the above accounting variables and the returns to ensure

that the information from the firms’ annual reports would have been publicly available at the

time of portfolio formation. From CRSP, we also compute the trailing twelve-month return

(mom), defined as the monthly compounded return between months t− 13 and t− 2. After

all variables have been created, we eliminate the smallest 20 percent of firms (i.e., firms in

the lowest 20 percentile of me).



Table 1: Base Case

This table shows estimates of the portfolio policy with three characteristics: size (me), book-to-market ratio
(btm), and momentum (mom), specified in equation (3). In panel “All Stocks,” we use all stocks in the
merged CRSP-Compustat database from January 1964 through December 2002. Panel “Top 500 Stocks”
includes only the largest 500 companies in each month. The columns labeled “Val.Weighted” and “Opt.”
display statistics of the market-capitalization weighted portfolio and the optimal portfolio, respectively. The
first set of rows shows the estimated coefficients of the portfolio policy with bootstrapped standard errors
in parentheses. The bootstrapped p-value of the Wald test under the null hypothesis that the parameter
estimates are jointly equal to zero is also displayed. The second set of rows shows statistics of the portfolio
weights, averaged across time. These statistics include the average absolute portfolio weight (|wi|), the
average minimum and maximum portfolio weights (max wi and min wi), the average sum of negative
weights in the portfolio (

∑
wiI(wi < 0)), and the average fraction of negative weights in the portfolio

(
∑

I(wi ≤ 0)/N). The third set of rows displays average portfolio return statistics: average return, standard
deviation, and Sharpe ratio of returns (r̄, σ(r), and SR), the certainty equivalent return, the alpha, beta,
and volatility of idiosyncratic shocks of a market model regression, and the information ratio. The final set
of rows displays the average normalized characteristics of the portfolio. The average risk-free rate in the
sample is 0.061 (annualized).

All Stocks Top 500 Stocks
Variable Val.Weighted Opt. Val.Weighted Opt.

θme — -1.220 — -1.389
— (0.547) — (1.145)

θbtm — 3.466 — 1.557
— (0.922) — (0.725)

θmom — 2.000 — 1.709
— (0.742) — (0.561)

Wald p-value — 0.000 — 0.004

|wi| × 100 0.035 0.121 0.200 0.407
max wi × 100 4.625 4.363 5.343 4.226
min wi × 100 0.000 -0.323 0.037 -1.126∑

wiI(wi < 0) 0.000 -1.238 0.000 -0.518∑
I(wi ≤ 0)/N 0.000 0.468 0.000 0.358

r̄ 0.120 0.244 0.117 0.200
σ(r) 0.161 0.190 0.158 0.176
SR 0.362 0.964 0.349 0.790
CE(r) 0.052 0.153 0.052 0.115
α — 0.157 — 0.100
β — 0.440 — 0.704
σ(ε) — 0.177 — 0.136
IR — 0.890 — 0.734

me 2.095 -0.118 1.527 -0.136
btm -0.451 3.296 -0.240 1.430
mom 0.012 1.839 -0.026 1.622



Table 2: Short-Sale Constraint

This table shows estimates of the portfolio policy with three characteristics: size (me), book-to-market ratio
(btm), and momentum (mom). The portfolio weights, specified in equation (14), are restricted to be non-
negative (long-only positions). In panel “All Stocks,” we use all stocks in the merged CRSP-Compustat
database from January 1964 through December 2002. Panel “Top 500 Stocks” includes only the largest
500 companies in each month. The columns labeled “Val.Weighted” and “Opt.” display statistics of the
market-capitalization weighted portfolio and the optimal portfolio, respectively. The first set of rows shows
the estimated coefficients of the portfolio policy with bootstrapped standard errors in parentheses. The
bootstrapped p-value of the Wald test under the null hypothesis that the parameter estimates are jointly
equal to zero is also displayed. The second, third, and fourth set of rows show the statistic of the portfolio
weights, returns, and normalized characteristics, respectively, which are described in detail in Table 1.

All Stocks Top 500 Stocks
Variable Val.Weighted Pos.Opt. Val.Weighted Pos.Opt.

θme — -0.182 — -0.871
— (1.037) — (1.045)

θbtm — 2.043 — 1.445
— (1.113) — (1.114)

θmom — 2.358 — 2.359
— (1.199) — (1.411)

Wald p-value — 0.114 — 0.109

|wi| × 100 0.035 0.035 0.200 0.200
max wi × 100 4.625 2.455 5.343 2.988
min wi × 100 0.000 0.000 0.037 0.000∑

wiI(wi < 0) 0.000 0.000 0.000 0.000∑
I(wi ≤ 0)/N 0.000 0.439 0.000 0.375

r̄ 0.120 0.173 0.117 0.169
σ(r) 0.161 0.180 0.158 0.170
SR 0.362 0.620 0.349 0.632
CE(r) 0.052 0.085 0.052 0.091
α — 0.054 — 0.054
β — 0.977 — 0.971
σ(ε) — 0.088 — 0.073
IR — 0.620 — 0.740

me 2.095 0.632 1.527 0.228
btm -0.451 0.451 -0.240 0.433
mom 0.012 0.886 -0.026 0.998



Table 3: Interactions

This table shows estimates of the portfolio policy with six characteristics: size (me), book-to-market ratio
(btm), momentum (mom), and the cross product of the characteristics me×btm, me×mom, and btm×mom.
In the estimation, we use all stocks in the merged CRSP-Compustat database from January 1964 through
December 2002. The column labeled “Val.Weighted” displays the statistics of the market-capitalization
weighted portfolio, as a benchmark. The next two columns, “Opt.” and “Pos.Opt.” characterize the
optimal and positive optimal (long-only) portfolios, respectively. The first set of rows shows the estimated
coefficients of the portfolio policies (3) and (14) with bootstrapped standard errors in parentheses. The
bootstrapped p-value of the Wald test under the null hypothesis that the parameter estimates are jointly
equal to zero is also displayed. The second, third, and fourth set of rows show the statistic of the portfolio
weights, returns, and normalized characteristics, respectively, which are described in detail in Table 1.

All Stocks
Variable Val.Weighted Opt. Pos.Opt.

θme — -0.744 -0.836
— (0.680) (1.377)

θbtm — 4.444 5.596
— (1.062) (1.194)

θmom — 4.631 4.565
— (1.565) (1.353)

θme×btm — -1.727 3.325
— (0.894) (1.178)

θme×mom — 4.718 5.346
— (1.679) (1.849)

θbtm×mom — 4.249 4.000
— (1.837) (1.384)

Wald p-value — 0.000 0.000

|wi| × 100 0.035 0.186 0.035
max wi × 100 4.625 4.926 1.684
min wi × 100 0.000 -2.420 0.000∑

wiI(wi < 0) 0.000 -1.939 0.000∑
I(wi ≤ 0)/N 0.000 0.503 0.511

r̄ 0.120 0.428 0.200
σ(r) 0.161 0.278 0.186
SR 0.362 1.318 0.746
CE(r) 0.052 0.231 0.106
α — 0.324 0.083
β — 0.742 0.962
σ(ε) — 0.252 0.104
IR — 1.283 0.795

me 2.095 -0.003 0.369
btm -0.451 4.714 0.684
mom 0.012 1.446 0.620
me × btm -1.142 -5.398 -0.254
me × mom 0.017 1.864 0.181
btm × mom -0.014 3.281 0.718



Table 4: Conditioning on the Slope of the Yield Curve

This table shows estimates of the portfolio policy with the product of three characteristics, size (me), book-
to-market ratio (btm), and momentum (mom), and an indicator function of the sign of the slope of the yield
curve, I(tsp ≥ 0) or I(tsp < 0). In the estimation, we use all stocks in the merged CRSP-Compustat database
from January 1964 through December 2002. The column labeled “Val.Weighted” displays the statistics of the
market-capitalization weighted portfolio, as a benchmark. The next two columns, “Opt.” and “Pos.Opt.”
characterize the optimal and positive optimal (long-only) portfolios, respectively. The first set of rows shows
the estimated coefficients of the portfolio policies with bootstrapped standard errors in parentheses. The
bootstrapped p-value of the Wald test under the null hypothesis that the parameter estimates are jointly
equal to zero is also displayed. The second, third, and fourth set of rows show the statistic of the portfolio
weights, returns, and normalized characteristics, respectively, which are described in detail in Table 1.

All Stocks
Variable Val.Weighted Opt. Pos.Opt.

θme×I(tsp>0) — -1.918 -1.316
— (0.707) (1.120)

θme×I(tsp≤0) — 0.952 2.879
— (1.197) (2.044)

θbtm×I(tsp>0) — 3.270 2.292
— (1.101) (1.124)

θbtm×I(tsp≤0) — 4.965 3.773
— (2.064) (1.724)

θmom×I(tsp>0) — 2.128 3.101
— (0.911) (1.710)

θmom×I(tsp≤0) — 3.499 2.343
— (1.613) (1.874)

Wald p-value — 0.000 0.007

|wi| × 100 0.035 0.136 0.035
max wi × 100 4.625 4.370 2.033
min wi × 100 0.000 -0.389 0.000∑

wiI(wi < 0) 0.000 -1.411 0.000∑
I(wi ≤ 0)/N 0.000 0.475 0.464

r̄ 0.120 0.273 0.181
σ(r) 0.161 0.203 0.182
SR 0.362 1.042 0.658
CE(r) 0.052 0.171 0.093
α — 0.191 0.064
β — 0.357 0.947
σ(ε) — 0.196 0.100
IR — 0.977 0.644

me × I(tsp>0) 1.616 -0.556 0.120
me × I(tsp ≤ 0) 0.479 0.340 0.242
btm × I(tsp>0) -0.346 2.565 0.459
btm × I(tsp ≤ 0) -0.105 0.909 0.095
mom × I(tsp>0) 0.027 1.534 0.818
mom × I(tsp ≤ 0) -0.015 0.693 0.098



Table 5: Risk Aversion

This table shows estimates of the portfolio policy with three characteristics, size (me), book-to-market ratio
(btm), and momentum (mom) using different utility functions. In additions to the γ = 5 case, reported as
a benchmark, we display the results for γ = 1, γ = 100, as well as the value-weighted case, as a reference.
In the estimation, we use all stocks in the merged CRSP-Compustat database from January 1964 through
December 2002. The columns labeled “Optimal” and “Positive Optimal” characterize the optimal and
positive optimal (long-only) portfolios, respectively. The first set of rows shows the estimated coefficients
of the portfolio policies with bootstrapped standard errors in parentheses. The bootstrapped p-value of the
Wald test under the null hypothesis that the parameter estimates are jointly equal to zero is also displayed.
The second, third, and fourth set of rows show the statistic of the portfolio weights, returns, and normalized
characteristics, respectively, which are described in detail in Table 1. The certainty equivalent returns of the
market portfolio for γ=1, γ=5 and γ = 100 are 0.107, 0.052 and -1.976 (annualized), respectively.

Val.Weighted Optimal Positive Optimal
γ=1 γ=5 γ=100 γ=1 γ=5 γ=100

θme — -6.109 -1.220 0.146 -3.539 -0.182 -0.032
— (2.881) (0.547) (0.227) (2.582) (1.037) (0.128)

θbtm — 6.970 3.466 5.025 0.132 2.043 0.114
— (3.548) (0.922) (0.946) (3.097) (1.113) (0.162)

θmom — 7.380 2.000 0.483 13.368 2.358 -0.048
— (2.915) (0.742) (0.195) (3.604) (1.199) (0.087)

Wald p-value — 0.000 0.000 0.000 0.000 0.114 0.067

|wi| × 100 0.035 0.320 0.121 0.146 0.035 0.035 0.035
max wi × 100 4.625 4.433 4.363 4.497 1.397 2.455 4.574
min wi × 100 0.000 -0.960 -0.323 -0.350 0.000 0.000 0.000∑

wiI(wi < 0) 0.000 -4.026 -1.238 -1.594 0.000 0.000 0.000∑
I(wi ≤ 0)/N 0.000 0.520 0.468 0.477 0.564 0.439 0.136

r̄ 0.120 0.546 0.244 0.190 0.210 0.173 0.121
σ(r) 0.161 0.598 0.190 0.187 0.241 0.180 0.159
SR 0.362 0.811 0.964 0.690 0.617 0.620 0.375
CE(r) — 0.363 0.153 -0.976 0.181 0.085 -1.965
α — 0.507 0.157 0.109 0.084 0.054 0.002
β — -0.375 0.440 0.345 1.108 0.977 0.989
σ(ε) — 0.595 0.177 0.179 0.163 0.088 0.007
IR — 0.851 0.890 0.609 0.517 0.620 0.309

me 2.095 -5.932 -0.118 0.744 -0.178 0.632 2.001
btm -0.451 8.043 3.296 4.508 -0.086 0.451 -0.333
mom 0.012 6.958 1.839 0.290 2.082 0.886 -0.020



Table 6: Minimum Variance and Maxiumum Sharpe Ratio

This table shows estimates of the portfolio policy with three characteristics, size (me), book-to-market ratio
(btm), and momentum (mom) used to minimize the variance (“Var”) and to maximize the Sharpe ratio
(“SR”). In the estimation, we use all stocks in the merged CRSP-Compustat database from January 1964
through December 2002. The columns labeled “Optimal” and “Positive Optimal” characterize the optimal
and positive optimal (long-only) portfolios, respectively. The first set of rows shows the estimated coefficients
of the portfolio policies with bootstrapped standard errors in parentheses. The bootstrapped p-value of the
Wald test under the null hypothesis that the parameter estimates are jointly equal to zero is also displayed.
The second, third, and fourth set of rows show the statistic of the portfolio weights, returns, and normalized
characteristics, respectively, which are described in detail in Table 1.

Variable Val.Weighted Optimal Positive Optimal
Var SR Var SR

θme — 0.006 -1.117 -0.089 0.883
— (0.196) (0.587) (0.152) (5.544)

θbtm — 1.887 3.303 0.461 7.462
— (0.311) (1.092) (0.131) (3.535)

θmom — 0.455 2.415 0.111 11.209
— (0.297) (1.037) (0.138) (5.557)

Wald p-value — 0.000 0.004 0.001 0.057

|wi| × 100 0.035 0.070 0.121 0.035 0.035
max wi × 100 4.625 4.568 4.382 4.280 1.134
min wi × 100 0.000 -0.142 -0.336 0.000 0.000∑

wiI(wi < 0) 0.000 -0.523 -1.242 0.000 0.000∑
I(wi ≤ 0)/N 0.000 0.418 0.466 0.284 0.501

r̄ 0.120 0.155 0.251 0.131 0.198
σ(r) 0.161 0.137 0.195 0.156 0.209
SR 0.362 0.680 0.973 0.444 0.651
CE(r) — — — — —
α — 0.050 0.164 0.013 0.077
β — 0.742 0.447 0.963 1.021
σ(ε) — 0.069 0.182 0.023 0.130
IR — 0.731 0.900 0.584 0.589

me 2.095 1.545 0.043 1.705 0.021
btm -0.451 1.414 3.085 -0.053 0.617
mom 0.012 0.388 2.263 0.063 1.484



Table 7: Long-Horizon Portfolio Policy

This table shows estimates of a long-horizon portfolio policy with three characteristics, size (me), book-to-
market ratio (btm), and momentum (mom) over horizons of K periods, where K is equal to 1, 12, and 60
months. For each horizon, the estimates are obtained by maximizing average utility over the cumulative,
non-overlapping K-period portfolio returns. The results for the “Val.Weighted” and the K = 1 case are
identical to those presented in the above tables and are shown here for reference. Panels A and B display
the results from the unrestricted and positive (long-only) weights. In the estimation, we use all stocks in
the merged CRSP-Compustat database from January 1964 through December 2002. The first set of rows
shows the estimated coefficients of the portfolio policy with bootstrapped standard errors in parentheses.
The bootstrapped p-value of the Wald test under the null hypothesis that the parameter estimates are jointly
equal to zero is also displayed. The second, third, and fourth set of rows show the statistic of the portfolio
weights, returns, and normalized characteristics, respectively, which are described in detail in Table 1.

Panel A: Unrestricted Optimal Portfolio
Val.Weighted K=1 K=12 K=60

θme — -1.220 -0.843 -1.494
— (0.547) (0.841) (1.523)

θbtm — 3.466 3.281 3.857
— (0.922) (1.221) (1.847)

θmom — 2.000 2.472 4.371
— (0.742) (1.338) (1.478)

Wald p-value — 0.000 0.010 0.015

|wi| × 100 0.035 0.121 0.120 0.135
max wi × 100 4.625 4.363 4.417 3.959
min wi × 100 0.000 -0.323 -0.337 -0.414∑

wiI(wi < 0) 0.000 -1.238 -1.229 -1.800∑
I(wi ≤ 0)/N 0.000 0.468 0.463 0.482

r̄ 0.120 0.244 0.246 0.312
σ(r) 0.161 0.190 0.191 0.280
SR 0.362 0.964 0.969 0.896
CE(r) 0.052 0.153 0.160 0.329
α — 0.157 0.158 0.234
β — 0.440 0.457 0.241
σ(ε) — 0.177 0.177 0.277
IR — 0.890 0.895 0.845

me 2.095 -0.118 0.325 -0.370
btm -0.451 3.296 2.979 3.694
mom 0.012 1.839 2.327 4.202

Table continued on next page ...



Panel B: Long-Only Optimal Portfolio
Val.Weighted K=1 K=12 K=60

θme — -0.182 2.924 1.168
— (1.037) (1.866) (0.669)

θbtm — 2.043 4.343 1.455
— (1.113) (3.913) (1.147)

θmom — 2.358 5.106 3.168
— (1.199) (2.290) (1.105)

Wald p-value — 0.114 0.121 0.130

|wi| × 100 0.035 0.035 0.035 0.029
max wi × 100 4.625 2.455 1.495 1.998
min wi × 100 0.000 0.000 0.000 0.000∑

wiI(wi < 0) 0.000 0.000 0.000 0.000∑
I(wi ≤ 0)/N 0.000 0.439 0.471 0.467

r̄ 0.120 0.173 0.174 0.162
σ(r) 0.161 0.180 0.181 0.184
SR 0.362 0.620 0.624 0.549
CE(r) 0.052 0.085 0.096 0.134
α — 0.054 0.055 0.041
β — 0.977 0.997 1.012
σ(ε) — 0.085 0.095 0.074
IR — 0.620 0.645 0.550

me 2.095 0.632 0.749 1.055
btm -0.451 0.451 0.385 0.010
mom 0.012 0.886 1.000 1.053

Table continued from previous page.



Table 8: Out-of-Sample Performance

This table shows the out-of-sample performance of the portfolio policy with three characteristics, size (me),
book to market ratio (btm), and momentum (mom). Panels A and B display the results from the unrestricted
and positive (long-only) weights. The original data of all stocks in the merged CRSP-Compustat database
is divided into two equal sub-samples, Sample 1 (January 1964 through June 1983) and Sample 2 (July
1983 through December 2002). In each sub-sample, we display in-sample and out-of-sample statistics. For
the in-sample results, the column labeled “Val.Weighted” displays the statistics of the market-capitalization
weighted portfolio, whereas the column “Opt.” characterizes the optimal portfolio. The out-of-sample
forecasts in Sample 1 are obtained using the in-sample estimates of the optimal investment policy function
from Sample 2 in forming the optimal portfolio. Similarly, the out-of-sample forecasts in Sample 2 are
obtained from the in-sample estimates in Sample 1. The optimal portfolio parameters are not re-estimated in
the forecasts. The first set of rows shows the estimated coefficients of the portfolio policies with bootstrapped
standard errors in parentheses. (Cont’d on next page.)

Panel A: Unrestricted Optimal Portfolio
Sample 1 Sample 2

In-Sample Out-of-Sample In-Sample Out-of-Sample
Val.Weighted Opt. Fcst. Val.Weighted Opt. Fcst.

θme — -1.707 -0.702 — -0.702 -1.707
— (0.891) — — (0.822) —

θbtm — 2.891 4.166 — 4.166 2.891
— (1.442) — — (1.194) —

θmom — 3.111 1.346 — 1.346 3.111
— (1.149) — — (0.931) —

Wald p-value — 0.003 — — 0.001 —

|wi| × 100 0.049 0.176 0.180 0.021 0.079 0.075
max wi × 100 6.119 5.661 5.802 3.130 3.019 2.990
min wi × 100 0.000 -0.516 -0.472 0.000 -0.181 -0.205∑

wiI(wi < 0) 0.000 -1.307 -1.359 0.000 -1.363 -1.289∑
I(wi ≤ 0)/N 0.000 0.470 0.464 0.000 0.480 0.478

r̄ 0.103 0.293 0.201 0.136 0.245 0.265
σ(r) 0.155 0.233 0.194 0.166 0.163 0.224
SR 0.239 0.965 0.689 0.417 1.160 0.936
CE(r) 0.043 0.151 0.113 0.061 0.177 0.121
α — 0.197 0.141 — 0.177 0.197
β — 0.795 0.709 — 0.154 0.153
σ(ε) — 0.198 0.194 — 0.162 0.223
IR — 0.994 0.728 — 1.095 0.884

me 2.078 -0.586 0.026 2.111 0.322 -0.228
btm -0.528 2.732 3.784 -0.375 3.952 2.913
mom -0.070 2.890 1.044 0.094 1.293 3.034

Table continued on next page ...



(Cont’d from previous page.) The bootstrapped p-value of the Wald test under the null hypothesis that the
parameter estimates are jointly equal to zero is also displayed. For the out-of-sample results, we display the
coefficients that were used in producing the forecasts. The second, third, and fourth set of rows show the
statistic of the portfolio weights, returns, and normalized characteristics, respectively, which are described
in detail in Table 1.

Panel B: Long-Only Optimal Portfolio
Sample 1 Sample 2

In-Sample Out-of-Sample In-Sample Out-of-Sample
Val.Weighted Opt. Fcst. Val.Weighted Opt. Fcst.

θme — -0.746 0.036 — 0.036 -0.746
— (1.875) — — (1.191) —

θbtm — 3.198 1.887 — 1.887 3.198
— (2.029) — — (1.283) —

θmom — 4.767 1.243 — 1.243 4.767
— (2.500) — — (1.119) —

Wald p-value — 0.073 — — 0.492 —

|wi| × 100 0.049 0.049 0.049 0.021 0.021 0.021
max wi × 100 6.119 2.186 3.804 3.130 1.882 1.185
min wi × 100 0.000 0.000 0.000 0.000 0.000 0.000∑

wiI(wi < 0) 0.000 0.000 0.000 0.000 0.000 0.000∑
I(wi ≤ 0)/N 0.000 0.479 0.408 0.000 0.431 0.479

r̄ 0.103 0.215 0.167 0.136 0.150 0.164
σ(r) 0.155 0.211 0.178 0.166 0.157 0.188
SR 0.239 0.701 0.557 0.417 0.606 0.582
CE(r) 0.043 0.099 0.087 0.061 0.080 0.063
α — 0.107 0.104 — 0.025 0.039
β — 1.156 1.074 — 0.862 0.869
σ(ε) — 0.111 0.179 — 0.065 0.121
IR — 0.966 0.583 — 0.388 0.322

me 2.078 0.099 0.848 2.111 0.913 0.200
btm -0.528 0.503 0.442 -0.375 0.541 0.613
mom -0.070 1.220 0.437 0.094 0.541 1.313

Table continued from previous page.



Figure 1: Summary Statistics of Characteristics

The figure displays cross-sectional means and standard deviations of the firm characteristics me, btm, and
mom in every month from January 1964 to December 2002. For each month and firm, the characteristics are
me, defined as the log of market equity, btm, defined as the log of one plus the ratio of book equity divided
by market equity, and mom, defined as the lagged 12 month return. The reported means and standard
deviations are computed across firms at each point in time.
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Figure 2: Portfolio Characteristics over Time

The figure displays the portfolio characteristics of policy function (3) using size, book-to-market and
momentum as firm-specific characteristics. The estimates of θ are obtained using all available CRSP-
Compustat stocks from January 1964 to December 2002. The utility function is specified with γ = 5.
The average values of these characteristics are reported in the last three lines of Table 1.
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