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1 Introduction

A popular and increasingly common way for local, state, and federal governments to raise

revenue is through taxation of addictive goods, including cigarettes, alcohol, and gambling.

What is the optimal excise tax for addictive goods, when the government must raise revenue

to finance a stream of exogenous government expenditures? The goal of this paper is to

determine the optimal tax on addictive goods and characterize and analyze the conditions

under which taxation of addictive goods might differ from taxes on labor and non-addictive

consumption goods (hereafter ordinary goods).

We extend classic results of optimal commodity taxation (e.g. Atkinson and Stiglitz

(1972)) to the case of addictive goods for common cases such as homothetic and separable

utility. For example, if utility is homothetic in ordinary and addictive consumption, then

the classical result of uniform commodity taxation holds only for special cases. Intuitively,

homotheticity implies that ordinary consumption goods taxation yields marginal tax rev-

enue equal to the marginal tax revenue of addictive consumption in the current period.

However, some of the marginal tax revenue of addictive consumption is realized in the next

period, when elasticities may be different. Suppose for example that addictive consump-

tion is becoming more income inelastic over time. By homotheticity, taxation of ordinary

consumption results in a distortion equal to the distortion caused by addictive consumption

at current elasticities. However, if addictive consumption is taxed at a higher rate than

ordinary consumption today, then households will be less addicted in the future. This is

attractive because, since the income elasticity is falling, the government will still be able to

tax addictive consumption without too much distortion in the next period. The increase in

income elasticity caused by a lower addiction level is at least partially offset by the falling

income elasticity.

In other words, optimal addictive goods taxation deviates from ordinary consumption

taxation so as to smooth intertemporal distortions caused by taxation for revenue raising.

In this sense, our results are related to those on capital taxation (Chamley 1986, Chari

and Kehoe 1998). Nonetheless, our results differ because addictive consumption acts like

both a finished good (current addictive consumption) and as an intermediate good (current
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addictive consumption affects future addictive consumption). For example, optimal steady

state tax rates on addictive goods equal tax rates on ordinary consumption in some cases

where optimal capital tax rates are zero, because addictive consumption acts like a finished

good.

As noted by Becker and Murphy (1988), addictive goods are characterized by tolerance

(also known as harmful addiction): past consumption lowers current utility. We show that

tolerance makes taxing addictive goods less attractive from a revenue raising perspective.

Suppose, for example, that consumption in excess of that required to sustain the addiction

(hereafter effective consumption) is complementary with leisure. Standard public finance

theory suggests that the tax rate on addictive goods should be relatively high, since reduced

consumption of addictive goods will increase labor supply, thus raising labor income tax

revenues. However, if the good is addictive, then reduced current consumption of addictive

goods raises future effective consumption. But then future labor supply falls, and future

labor income tax revenues fall, offsetting some of the revenue gains in the current period.

This type of dynamic effect is not captured by standard static models that compute optimal

tax rates on addictive goods. Thus ignoring the dynamic nature of addiction when designing

optimal fiscal policy may result in lower welfare.

The literature typically models effective consumption in one of two ways: the subtractive

specification (e.g. Campbell and Cochrane 1999) and the multiplicative specification (e.g.

Abel 1990). As pointed out by Bossi and Gomis-Porqueras (2008), the two models differ in

terms of their homogeneity properties.1 In this paper, we show that the optimal tax policy

depends crucially on the degree of homogeneity of the addiction function. In particular,

we show that the income elasticity of the addictive good is decreasing in the degree of

homogeneity, given separable or homothetic utility with constant relative risk aversion. Thus,

taxation of addictive goods is more attractive if the addiction model is homogeneous of degree

1A good is habit forming if the marginal utility of the good is increasing in past consumption. We use
the standard definition of addiction, which is when current consumption is increasing in past consumption,
holding fixed the marginal utility of wealth and prices. Habit formation is often used in the macro literature,
whereas addiction was introduced by Becker and Murphy (1988). It is straightforward to show that the
subtractive model of habit formation implies the good is addictive, and the multiplicative model of habit
formation implies the good is addictive with an additional restriction.
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one, as in the subtractive case, than if the addiction model is homogeneous of degree less

than one, as in the multiplicative case, since it is optimal to tax necessities at a higher rate.

Further, strong tolerance in the multiplicative model decreases the degree of homogeneity,

making addictive goods more income elastic, which therefore lowers the optimal tax rate on

addictive goods.

In the next section we describe the three main motives for taxing addictive goods found

in the literature. We then develop a dynamic, rational addiction model in order to determine

the conditions under which optimal tax rates for addictive goods exceed tax rates for non-

addictive consumption goods.

2 Taxing Addictive Goods

Three classical motivations exist in the literature for taxing addictive goods differently than

ordinary goods. The first is to lower the external costs often associated with consumption

of addictive goods. The second is because some consumers fail to take into account some

private costs and thus over-consume. The third motivation is to raise revenue.

2.1 Addictive Goods and Externalities

The standard economic rationale for taxation of addictive goods is that their consumption is

often associated with external costs, such as second-hand smoke, drunk driving, and crime.

However, it is well known (Kenkel 1996, Pogue and Sgontz 1989) that taxing an addictive

good (e.g. alcohol) whose consumption is imperfectly correlated with an externality is a

second-best solution. Taxing the actual behavior causing the externality (e.g. make the

punishment for drunk driving more severe) is more efficient. Indeed, Parry, Laxminarayan

and West (2006) show that welfare gains from increasing drunk driving penalties exceed

those from raising taxes on alcohol, even when implementation costs and dead-weight losses

associated with incarceration are included.

The literature tends to find that most addictive goods are taxed at a rate less than the

rate which is second best in the sense that the government cannot discriminate between
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consumers who generate external costs and responsible consumers.2 This literature differs

from our paper in that the focus is on Pigouvian concerns, rather than revenue raising.

2.2 Addictive Goods and Non-market Internal Costs

Another source of non-market costs occurs if addiction is modeled as non-fully rational excess

consumption. Suppose consumers fail to take into account the self-adverse health effects

caused by consumption of addictive goods, either because they are unaware that addictive

goods consumption has adverse health effects (e.g. Kenkel 1996) or because some consumers

are exogenously assumed to be unable to take into account the health gains from reducing

addictive goods consumption (e.g. Pogue and Sgontz 1989). When some consumers are

exogenously assumed not to consider some private costs, they over-consume. The resulting

“internality” causes the optimal second best (again, in the sense that the government cannot

distinguish between naive and rational consumers) tax rate to rise considerably.3

A related, subsequent literature makes excess consumption endogenous and rational by

defining “sin goods” as goods for which preferences are time inconsistent (Gruber and Koszegi

2001, Gruber and Koszegi 2004, O’Donoghue and Rabin 2003, O’Donoghue and Rabin 2006).

In this approach, consumers optimally choose to consume more now and less in the future.

However, next period consumers also optimally choose to consume more now and less in the

future. Hence consumers are rational, but over-consume in the sense that consumer welfare

increases with a tax that reduces consumption to a level which consumers would choose if

they could pre-commit to consume less in the future.4

Internalities are a dynamic feature of addiction. Results in this literature find that

2For example Gruber and Koszegi (2001) estimate external costs of smoking at $0.94 to $1.75 per pack,
versus an average excise tax of about $0.65. Kenkel (1996) finds that a tax rate on alcohol of about 42% is
optimal for the drunk driving externality, while the actual average tax rate ranges from over 50% in 1954
to 20% in the 1980s. Moreover, Grinols and Mustard (2006) estimate external costs of casino gambling are
47% of revenues, thus the optimal tax would be higher than 47% if demand for casino gambling is inelastic,
or less than 47% if a significant fraction of casino gamblers do not impose external costs. Anderson (2005)
reports that casinos pay 16% of gross revenues in taxes.

3 Kenkel (1996) finds the optimal tax rate on alcohol rises to about 106% while Pogue and Sgontz (1989)
find the optimal tax rate on alcohol rises to 306%.

4 O’Donoghue and Rabin (2006) compute numerical examples where the optimal tax on unhealthy foods
ranges from 1-72%. Gruber and Koszegi (2001) show that the optimal tax on cigarettes rises to at least $1
per pack when the time inconsistency problem is included.

5



optimal tax rates are generally greater than tax rates observed in the data. In this paper, we

focus on another dynamic aspect of addiction: tolerance. In particular, we study the dynamic

revenue raising properties of addictive goods taxation in a rational addiction framework.

2.3 Addictive Goods and Fiscal Concerns

A final motivation for taxing of addictive goods is revenue raising. Taxation of many addic-

tive goods, such as lotteries, have an obvious revenue raising component. Taxes on many

other addictive goods have at least a stated goal of raising revenue. For example, Parry et al.

(2006) note that the last two increases in federal alcohol taxes were part of deficit reduction

packages.5

A few papers consider the revenue raising motivation by treating addictive goods in a

static way as simply goods with external costs and which are possibly complementary with

leisure. If so, one can apply the ideas from the “double dividend” literature (e.g. Bovenberg

and Goulder 1996). Taxing a good with external costs raises revenues which can be used

to reduce taxes on labor income (the “revenue recycling effect”). If taxing addictive goods

results in lower dead-weight losses than taxing labor (say if demand for addictive goods was

very inelastic), then the revenue recycling effect is positive and it is optimal to tax addictive

goods at a relatively high rate. Moreover, a good with external costs may also be taxed

above its Pigouvian rate for revenue raising if it is complementary with leisure, since the

tax therefore increases labor supply and labor income tax revenues (the “tax interaction

effect”).6 This literature models addiction in a static way as simply a good with external

costs; the dynamic nature of addiction is ignored. It remains unclear how dynamic addictive

properties such as tolerance affect optimal revenue raising.

5For lotteries, external costs are presumably small, but the nationwide average lottery tax ranges from
40% in 1989 (Clotfelter and Cook 1990) to 31% in 2003 (Hansen 2004), accounting for 2% of state tax
revenues. States spent about $272 million on lottery advertising in 1989, which is at least a strong indication
that states are motivated by revenue concerns, rather than the external costs of lotteries and other forms of
gambling.

6Sgontz (1993) finds the revenue recycling effect to be positive, and Parry et al. (2006) finds both the
revenue recycling effect and the tax interaction effect to be positive: alcohol is complementary to leisure and
also reduces labor productivity. Therefore, they find it is optimal to tax alcohol above it’s Pigouvian rate
as part of the optimal revenue raising package.
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This paper tries to fill this gap in the literature by considering a dynamic model of ratio-

nal addiction while explicitly considering a revenue raising motive. Throughout the rest of

the paper we model addiction using the rational addiction framework of Becker and Murphy

(1988) and others. In this approach, consumption of the addictive good is specifically related

to past consumption. Although not conclusive, some evidence for rational addiction exists in

that current consumption of cigarettes,7 alcohol,8, and caffeine (Olekalns and Bardsley 1996)

respond to announced future price changes, as predicted by the rational addiction model.

Gruber and Koszegi (2001), however, show that evidence of rational addiction does not pre-

clude time inconsistent preferences.9 The main alternative, modeling addiction as either

rational or irrational excess consumption, has intuitive appeal but also some practical diffi-

culties. First, it is difficult to determine the degree of excess consumption, especially since

it must be heterogeneous across the population. The optimal tax is sensitive to both the

degree of excess consumption and the fraction of the population that suffers from excess

consumption. Furthermore, computational difficulties of time inconsistent preferences re-

quire separability in addictive and ordinary goods, no savings, and often quadratic utility

functions. All of these assumptions affect the optimal tax rates, especially if the government

has a revenue raising requirement.

The Becker and Murphy framework has no internality motivation for taxation of ad-

dictive goods, but a fiscal motivation can still exist. Thus we examine the revenue-raising

motivation, using the long standing tradition of the Ramsey approach (see for example Chari

and Kehoe 1998). Unlike static models, in our dynamic framework changes in tax rates on

addictive goods affects future revenues, by changing future elasticities.

7See for example Gruber and Koszegi (2001), Becker, Grossman and Murphy (1994), Chaloupka (1991)
and Sung, Hu and Keeler (1994).

8See for example, Grossman, Chaloupka and Sirtalan (1998) Baltagi and Griffin (2002), Bentzen, Eriksson
and Smith (1999), Baltagi and Geishecker (2006), and Waters and Sloan (1995).

9Although laboratory evidence of time-inconsistent preferences are strong, little formal econometric evi-
dence exists for or against time inconsistent preferences in actual markets.
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3 Model

We consider an infinite horizon closed economy in discrete time. The economy is populated

by a continuum of identical households of measure one who maximize the discounted sum

of instantaneous utilities. A large number of identical firms produce both addictive and

ordinary goods using a constant return to scale technology. Finally, there is a government

that needs to finance a constant stream of government expenditures through fiscal policy.

3.1 Firms

A large number of identical firms at time t rent capital kt and labor ht from households to

produce a composite good using a technology F (kt, ht). We assume throughout the paper

that:

Assumption 1 F (., .) is constant returns to scale and increasing, concave, and satisfies

Inada conditions in each input.

Let wt denote the wage rate and rt the rental rate of capital, then the objective of the firm

is to maximize profits, which equal:

max
kt,ht
{F (kt, ht)− rtkt − wtht} . (1)

Let subscripts on functions denote corresponding partial derivatives. The equilibrium rental

rate and wage rate are:

rt = Fk (kt, ht) , (2)

wt = Fh (kt, ht) . (3)
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For simplicity we assume that the composite good can be used for either addictive or non-

addictive goods consumption or investment.10

3.2 Households

A representative household derives utility from consumption of an ordinary (non-addictive)

good, ct, the fraction of time allocated to leisure, 1 − ht ≡ lt ∈ [0, 1], and consumption of

an addictive good, dt. Let st = s (dt, dt−1) denote effective consumption, i.e. consumption

in excess of that required to sustain the addiction. The per period utility depends on con-

sumption of ordinary goods, effective consumption, and leisure through the utility function

u (ct, st, lt).
11 We assume throughout the paper that:

Assumption 2 u (., ., .) is strictly increasing, concave, and satisfies the Inada conditions in

each argument.

Lifetime utility is:

U =
∞∑
t=0

βtu (ct, st, lt) ; (4)

where β is the discount factor with rate of time preference ρ=1−β
β

.

For effective consumption, we assume throughout the paper that:

Assumption 3 s (., .) is homogeneous of degree α in [dt, dt−1] (HD-α) and satisfies s1 > 0,

s2 < 0, s11 ≤ 0.

The first inequality states that households get positive utility from consumption of the

addictive good. The second inequality states that the addictive good has the tolerance

property, meaning past consumption lowers current utility, which is also known a harmful

addiction. The third inequality is a sufficient condition which ensures that the household

10Note that it is possible (but cumbersome) to extend the analysis to allow the production technology to
differ by consumption goods.

11This specification is clearly equivalent to Becker et al. (1994), who assume a utility function of the form
u (ct, dt, dt−1), except they assume no preferences for leisure. Our assumption below that s is homogeneous
is the main restriction we impose on their utility specification.
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return is globally concave in the choice set [ct, lt, dt] if the return function is concave when

st = dt (i.e. the standard problem with no addiction is concave), which we also assume

throughout. The role of homogeneity will be discussed below.

3.2.1 Habits versus Addiction

The term habit formation is often used in the macro literature, whereas addiction was

introduced by Becker and Murphy (1988). These two notions are equivalent under certain

conditions, which are spelled out below.

Gruber and Koszegi (2004) and others define habit formation as past consumption in-

creasing the taste for current consumption.12 Therefore, a good is habit forming if and only

if:

∂2u

∂dt∂dt−1

> 0. (5)

From the assumptions on s, a good is habit forming if and only if:

σs (ct, st, lt) ≡
−uss (ct, st, lt) st
us (ct, st, lt)

>
sts12 (dt, dt−1)

s1 (dt, dt−1) s2 (dt, dt−1)
. (6)

Becker and Murphy (1988) and others define addiction as when past consumption in-

creases current consumption, holding fixed prices and the marginal utility of ordinary con-

sumption. Let ct = yt − ptdt, where yt represents income in period t and pt is the price of d

in period t, then d is addictive if and only if:

∂dt
∂dt−1

=

∂2U
∂dt∂dt−1

−∂2U
∂d2t

> 0, (7)

12Becker and Murphy (1988) define reinforcement as when past consumption increases the taste for current
consumption.
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holding fixed the marginal utility of consumption. Using the concavity assumptions, equation

(7) simplifies to:

∂2U

∂dt∂dt−1

=
∂2u

∂dt∂dt−1

> 0. (8)

Thus d is addictive if and only if d is habit forming given our one-lag specification of effective

consumption, and our concavity assumptions.13

The two most commonly used specifications of effective consumption, s, in the literature

are the subtractive model (see for example Campbell and Cochrane 1999), where effective

consumption is:

st = dt − γdt−1, (9)

and the multiplicative model (see for example Abel 1990), which specifies effective consump-

tion as:

st =
dt
dγt−1

. (10)

In both models γ ≥ 0 denotes the strength of tolerance. If γ = 0, then past consumption

has no weight at all, in which case the model reduces to the standard time separable model,

and utility is fully determined by absolute consumption levels and not by the changes in

consumption.

Both specifications satisfy our assumptions on s, but two key differences exist. In the

subtractive model, effective consumption is HD-1. In the multiplicative model, effective con-

sumption is HD-(1− γ), and the degree of homogeneity depends on the degree of tolerance.

Moreover, equation (6) implies that if s is subtractive, then d is addictive for all γ > 0.

Furthermore, if s is multiplicative, then d is addictive if and only if σs (ct, st, lt) > 1 for all

[ct, st, lt].

13In general, if s has more than one lag, addiction is more restrictive than habit formation. Thus, for
example, habit formation and addiction are not equivalent in Becker and Murphy (1988), but are equivalent
in Becker et al. (1994).
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3.2.2 Household Resources and Optimal Decisions

The household budget constraint sets after tax wage and rental income and government

bond redemptions (equal to Rb
tbt, where bt are bonds issued in t − 1 and redeemed in t)

equal to after tax expenditures on government bond issues and consumption of addictive,

ordinary, and investment goods given by it=kt+1 − (1− δ) kt, where δ is the depreciation

rate. Since consumption of ordinary, addictive, and investment goods all have the same

production technology, they have the same pre-tax price, which is normalized to one. Let τc

and τd be the tax rates on consumption of ordinary and addictive goods, respectively and

let τh be the tax rate on labor income. The household budget constraint is then:

Rb
tbt + rtkt + (1− τh,t)wtht = (1 + τc,t) ct + (1 + τd,t) dt + it + bt+1. (11)

Let λt denote the Lagrange multiplier on the budget constraint. The resulting household

first order conditions are:

(1 + τc,t)λt = βtuc (ct, st, lt) , (12)

(1− τh,t)wtλt = βtul (ct, st, lt) , (13)

(1 + τd,t)λt = βtus (ct, st, lt) s1 (dt, dt−1) + βt+1us (ct+1, st+1, lt+1) s2 (dt+1, dt) , (14)

λtRt = λt−1 , t ≥ 1, (15)

λtR
b
t = λt−1 , t ≥ 1, (16)

Rt = rt + 1− δ. (17)
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Equations (12)-(16), the budget constraint (11), initial conditions k0 and d−1, and the ap-

propriate transversality conditions characterize the optimal household decisions kt, bt, ht,

ct, dt, λt. In equation (14), the household increases effective consumption by increasing dt

(first term on the right hand side), but also increases tolerance and therefore reduces future

effective consumption (second term on the right hand side). From equations (12) and (14)

we have a dynamic Ramsey rule:

1 + τd,t
1 + τc,t

=
us (ct, st, lt) s1 (dt, dt−1) + βus (ct+1, st+1, lt+1) s2 (dt+1, dt)

uc (ct, st, lt)
≡ MUd,t
MUc,t

; (18)

where MUi,t represents the marginal utility of good i at time t.

Any difference in tax rates drives a wedge between the marginal utilities of the consump-

tion of ordinary and addictive goods. Thus the optimal tax rate of addictive goods exceeds

the tax rate of ordinary consumption goods (τd,t>τc,t) if and only if MUd,t>MUc,t. The goal

of this paper is to find conditions under which the marginal utility of addictive goods differs

from that of ordinary goods.

3.3 Government

The government finances an exogenous sequence of expenditures, gt, with bond issues and

consumption and labor income tax revenues. The government budget constraint is:

gt = τh,twtht + τc,tct + τd,tdt + bt+1 −Rb
tbt. (19)

As will be clear below, three wedges exist in our model: one between the marginal

rate of substitution between addictive and ordinary consumption, a second between the

marginal utilities of leisure and working (the after tax wage times the marginal utility of

consumption), and a third between the intertemporal marginal rate of substitution and the

rate of interest. Thus we need only three tax instruments for a complete tax system. We

therefore set interest taxes equal to zero, noting that the government can affect all three

margins by setting a time-varying consumption tax (to alter the intertemporal marginal rate
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of substitution), a wage tax, and an addictive goods tax.14 The government optimally uses

bonds to smooth tax burdens over time. In the absence of bonds, the government may favor

the tax with better smoothing properties.15 Changes in current addictive goods tax rates

affects both current and future tax revenue. The existence of government bonds enables us

to conveniently summarize the effect of a change in current addictive tax rates on all periods

as the effect on the infinite horizon version of the government’s budget constraint.

Let π =
[
(τc,t)

∞
t=0 , (τd,t)

∞
t=0 , (τh,t)

∞
t=0 , (gt)

∞
t=0

]
denote an infinite sequence of government

policies. As is standard in the literature (e.g. Gruber and Koszegi 2001) we assume the

existence of a commitment technology, so that the government commits to all future policies

at time zero.16

4 Equilibrium and Ramsey Problem

Equations (2), (3), (11), (12) - (15), and (19) form a system of nine non-linear equations

that characterize the competitive equilibrium. Hence:

Definition 1 Given initial values k0 and d−1, a competitive equilibrium is a set of allocations

{ct, dt, ht, λt, kt}, prices {wt, rt, Rb
t} and a sequence of policies π that satisfy the household

budget constraint (11), firm profit maximization (1), the government budget constraint (19),

and household maximization of (4) for all t.

In order to determine optimal taxation we use the primal approach (see for example

Chari and Kehoe 1998). The primal approach uses household and firm first order conditions

eliminate prices and policies from the equations that define the competitive equilibrium. The

planner then chooses allocations which maximize welfare subject to the remaining equations

14We also do not allow a tax on effective consumption, since informational asymmetries rule out taxes on
effective consumption in practice.

15However, addictive taxes are common at the state and local level, which frequently have constitutional
borrowing restrictions. We leave this interesting case to future research.

16In principle the government could promise low future taxes on addictive goods, and then find it optimal
to renege on the promise once households become addicted. For example, Bossi and Petkov (2007) show
that time inconsistency may occur in the regulation of monopolies which sell addictive goods and examine
time consistent policies.
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from the competitive equilibrium. These equations are the resource constraint:

F (kt, ht) = ct + dt + kt+1 − (1− δ) kt + gt, (20)

and the implementability constraint (IMC):

uc(c0,s0,l0)R0(k0+b0)
1+τc,0

=
∑∞

t=0 β
t {uc (ct, st, lt) ct + [us (ct, st, lt) s1 (dt, dt−1) + (21)

βus (ct+1, st+1, lt+1) s2 (dt+1, dt)] dt − ul (ct, st, lt)ht} .

The IMC uses the household first order conditions to substitute out for all prices and policies

in the budget constraint and then recursively eliminates λt. Thus, the IMC is the infinite

horizon version of the household budget constraint where all prices and policies have been

written in terms of their corresponding marginal utilities. It is immediate from Walras Law

and the resource constraint that the IMC can also be thought of as the infinite horizon version

of the government budget constraint. The Ramsey approach is therefore very convenient in

that the planner can, through the IMC, determine the effect of a change in dt on government

revenues over the infinite horizon.

The first proposition gives the relationship between the competitive equilibrium and the

IMC and resource constraint.

Proposition 2 Let assumptions (1)-(3) hold. Given k0, d−1, τh,0, and τc,0, the allocations

of a competitive equilibrium satisfy (20) and (22). In addition, given k0, d−1, τh,0, and τc,0,

and allocations which satisfy (20) and (22), prices and polices exist which, together with the

allocations, are a competitive equilibrium.

All proofs are in the appendix.
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The Ramsey Problem (RAM) determines the optimal tax package that maximizes welfare

subject to the IMC and resource constraint:

RAM = max
ct,dt,ht,kt

{
∞∑
t=0

βt (u (ct, st, 1− ht) + µ [uc (ct, st, 1− ht) ct+

(us (ct, st, 1− ht) s1 (dt, dt−1) + βus (ct+1, st+1, lt+1) s2 (dt+1, dt)) dt−

ul (ct, st, 1− ht)ht])− µ
uc (c0, s0, l0)R0 (k0 + b0)

1 + τc,0
+

φt [F (kt, ht)− ct − dt − kt+1 + (1− δ) kt − gt]} . (22)

The term multiplied by βt in problem (22) is the social welfare in period t consisting of

private welfare u (ct, st, 1− ht) plus public welfare which is discounted tax revenue (expressed

as marginal utilities) multiplied by the marginal value of public funds µ.

The first order conditions that characterize optimal taxation are:

φt
βt

= MUc,t + µ
∂IMC

∂ct
, (23)

φt
βt

= MUd,t + µ
∂IMC

∂dt
, (24)

φtFh (kt, ht)

βt
= ul (ct, st, 1− ht)− µ

∂IMC

∂ht
, (25)

φt (Fk (kt, ht) + 1− δ) = φt−1. (26)

First order conditions (23)-(25) equate the marginal social welfare of c, d, and l with the

marginal resource cost φ. Equation (26) equates the return on capital with the intertemporal

marginal rate of substitution.

From equations (23) and (24):

MUc,t −MUd,t = µ

(
∂IMC

∂dt
− ∂IMC

∂ct

)
. (27)

16



Hence using equation (18), we find that addictive goods are taxed at a higher rate than

ordinary goods if and only if the derivative of the IMC with respect to dt is smaller than the

derivative with respect to ct:

τd,t > τc,t iff
∂IMC

∂dt
<
∂IMC

∂ct
. (28)

Since the marginal rate of transformation between c and d is one, the marginal rate of

substitution is the tax wedge. The Ramsey problem computes the optimal wedges between

the marginal utilities as:

Wedge =
MUd,t
MUc,t

= 1 +
µ

MUc,t

(
∂IMC

∂ct
− ∂IMC

∂dt

)
. (29)

From equation (29), if MUd,t>MUc,t, reallocating a marginal resource from ordinary to

addictive consumption raises private welfare by MUd,t-MUc,t. Thus, tax revenue must fall

by ∂IMC
∂ct
− ∂IMC

∂dt
, resulting in a loss of public welfare of µ times the loss of tax revenue.

Hence addictive goods are taxed at a higher rate than ordinary goods if and only if moving a

resource unit from addictive to ordinary consumption raises revenue, that is, if the marginal

tax revenue of ordinary goods exceeds that of addictive goods.17

In turn, the marginal tax revenue of ordinary consumption depends on how a small change

in ordinary consumption affects ordinary consumption tax revenue, addictive tax revenue,

and labor income tax revenue:

∂IMC

∂ct
= uc,t + ucc,tct + αucs,tst − ucl,tht. (30)

An increase in ct directly increases ordinary consumption tax revenue (first term), but de-

creases the marginal utility of consumption and thus requires the planner to lower the or-

dinary consumption tax rate in order to maintain equilibrium, which lowers tax revenues

(second term). The third term contains two offsetting effects. Suppose for example that

17Note that µ can also be interpreted as the marginal welfare cost of the distorted margins. Thus, addictive
goods are taxed at a higher rate if and only if the welfare distortion induced by addictive taxation is less
than that of ordinary taxation.
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ucs>0. Then an increase in ct raises MUd,t, so the planner must raise the tax on dt to

maintain equilibrium, which increases addictive tax revenues. In addition, an increase in ct

lowers MUd,t−1: consuming dt−1 is less attractive because it causes effective consumption

to fall in t (tolerance), which lowers utility since ucs>0. Thus, the planner must also lower

τd,t−1, reducing revenues. Thus an increase in ct has offsetting addictive tax revenue effects,

but both work through the ucs term. Given the homogeneity assumption, these two effects

can be combined into a single effect, as if a smaller tax on st, rather than dt, existed. Finally,

the fourth term implies an increase in ct increases preferences for leisure, and thus causes the

planner to decrease the labor income tax rate to maintain equilibrium, if and only if ucl>0.

The marginal tax revenue of addictive goods depends on how a change in addictive

consumption affects ordinary consumption tax revenue, addictive consumption tax revenue,

and labor income tax revenue:

∂IMC

∂dt
= α (MUd,t + uss,ts1,tst + βuss,t+1s2,t+1st+1) +

ucs,ts1,tct + βucs,t+1s2,t+1ct+1 − usl,ts1,tht − βusl,t+1s2,t+1ht+1 (31)

A small increase in dt directly increases addictive goods tax revenue, but reduces the marginal

utility of effective consumption, which requires the planner to decrease τd,t. An increase in

dt increases the marginal utility of ordinary consumption and thus increases τc,t if and only

if ucs > 0. An increase in dt increases the marginal utility of leisure and thus decreases τh,t

if and only if usl>0. An increase in dt also increases tolerance in period t+ 1, thus reducing

st+1. Thus an increase in dt affects all three types of tax revenue in period t+ 1 as well but

in the opposite direction.

In summary then, simple static results and intuition might indicate that taxing addictive

goods is a good revenue raiser because addictive goods tend to be income inelastic and

complementary to leisure. However, the dynamic results are likely to be more moderate.

For example, if leisure and effective consumption are highly complementary, then a decrease

in dt raises labor income tax revenues in period t, but increases st+1, reducing labor income

tax revenues in period t + 1. In addition, the stronger the tolerance, the stronger is the
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dynamic effect. To obtain further results requires more specific preference assumptions.

These assumptions shed further light on the optimal tax rates on addictive goods in a

dynamic setting.

5 An Analytical Example: The Quadratic Case

In this section, we consider a linear-quadratic utility function. The linear-quadratic utility

assumption allows for an analytic solution, which in turn allows us to derive how optimal

taxation changes the dynamics of addictive consumption and to derive an exact relationship

between tolerance and addictive taxation. On the other hand, the linear-quadratic utility

function has only trivial income effects and no labor supply effects.18

Suppose the subtractive specification for effective consumption and that the utility and

production function are:

u (ct, st, lt) = ct + νst −
s2
t

2
+ elt −

l2t
2
, e < 1, ν >

1

1− βγ
, (32)

F (kt, ht) = kθt h
1−θ
t . (33)

Inspection of equations (23) and (24), given the utility function (32), reveals that the

marginal utility of dt is constant in the optimal second best allocation. In particular:

(1 + µ) = (1 + 2µ)MUd,t − µν (1− βγ) . (34)

Hence:

MUd,t =
1 + µ (1 + ν (1− βγ))

1 + 2µ
. (35)

Since the marginal utility of ct is unity, the marginal utility of dt equals the tax ratio

18In the next section we will consider utility functions with non-trivial labor supply and income effects.
Nonetheless, the linear-quadratic utility is a common specification in the literature on intertemporally non-
separable preferences (Becker et al. 1994, Gruber and Koszegi 2001).
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given by equation (18). Hence the tax ratio is constant over time. Furthermore, inspection

of equations (12), (15), (23), and (26) indicates that τc is constant over time. Therefore, τd

and τh are also constant over time. Thus the implicit interest tax rate is zero for all t.

Given the assumptions on ν (necessary for consumption of dt to be positive at the steady

state), equation (35) implies MUd,t > 1 and thus τd,t > τc,t for all t. Hence we have shown:

Proposition 3 Let u(., ., .) and F (., .) be given by equations (32) and (33) and let effective

consumption be given by the subtractive model. Then τd,t > τc,t for all t and the ratio of tax

rates
1+τd,t
1+τc,t

is constant over time.

In the static version of the model without addiction, dt = st has an income elasticity equal

to zero whereas the income elasticity of ct is positive. Since no cross price or labor supply

effects exist and since ct is everywhere more income elastic than dt, it is optimal to tax dt at

a higher rate regardless of kt or dt−1, because dt is a necessity.

It is also clear from equation (35) that the second best optimal dt is the solution to a

linear second order difference equation and that the second best optimal st is the solution

to a linear first order difference equation. However, before computing the solution to dt, we

must verify that a solution exists for µ. As the next proposition shows, a unique, positive

solution exists if government spending is not so large as to exhaust the maximum feasible

revenue in the economy, and not so small that given initial tax rates are sufficient to pay for

all current and future government expenditures.

Proposition 4 Let u(., ., .) and F (., .) be given by equations (32) and (33) and let effective

consumption be given by the subtractive model. Let gt be a stationary sequence with limiting

value ḡ. Then there exists an interval [ζl, ζh], with 0 < ζl < ζh < ∞ such that if G ≡∑∞
t=0 β

tgt ∈ [ζl, ζh], then a unique positive solution for µ exists.

Given a unique solution for µ, dt is the solution to the second order difference character-

ized by equation (35).

Proposition 5 Let the conditions for Proposition 4 hold. Then the explicit solution for dt
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is:

dt =
ν (1− βγ)− 1

(1− γ) (1− βγ)

(
1 + µ

1 + 2µ

)(
1− γt+1

)
+ d−1γ

t+1. (36)

The solution for dt, given by equation (36), allows us to derive some interesting properties of

the second best solution, both over time and as compared to the first best solution (µ = 0).

First, optimal consumption of dt increases over time, assuming d−1 is less than the steady

state. The planner decreases dt relative to the first best solution and the growth rate of dt

through the tax. However, dt in the second best optimum is at at least one third of the

first best level in the steady state, and greater fraction of the first best solution along the

transition.

We can also explore how the strength of tolerance affects second best addictive consump-

tion. Since the solution for µ is unique, we can use the implicit function theorem to derive

comparative statics using equation (35). Our intuition is that strong tolerance should mod-

erate the optimal tax ratio, as gains in current tax revenue from taxation of addictive goods

are offset by losses in future tax revenues. If d−1 is sufficiently large, it is indeed true that

the optimal tax ratio is inversely related to the degree of tolerance. In particular, we have:

d−1 ≥
β

(1− βγ) (1− β)
⇒

∂ 1+τd
1+τc

∂γ
< 0. (37)

Condition (37) is a sufficient condition calculated assuming µ =∞. In practice, for µ small,

the optimal tax ratio is decreasing in the degree of tolerance under much less restrictive

conditions.

Table 1 gives parameter values for a simple numerical example. Table 1 indicates that

the optimal tax ratio is decreasing in the degree of tolerance, even though condition 37 is

violated, since the parameter G, set to 30% of GDP for all t, generates at most a value of

only µ = 4.74. The planner relies increasingly on labor taxes and less on addictive taxes as

the degree of tolerance increases. For γ = 0.55, taxation is nearly uniform. Figure 1 shows

the time path of the first and second best levels of d for various values of γ. Increasing the

level of tolerance severely reduces addictive consumption since the future costs of current
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consumption are higher. As expected, the difference between first and second best addictive

consumption is widest at the steady state.

6 Results for Specific Preferences

As in the literature on optimal commodity taxation, characteristics of the utility function

play an important role in determining any deviations from uniform taxation. Two well-

known cases are homothetic and separable utility functions. In the next sections we explore

these two cases as well as the possible interaction between consumption of addictive goods

and leisure.

6.1 Homothetic Utility

In this section we assume utility takes the form:

u (ct, st, lt) = q (v (ct, st) , lt) , (38)

where v(.) is homothetic and q(.) is an increasing function.

To determine whether or not addictive goods should be taxed at a higher rate than

ordinary goods, we combine equations (28), (30), and (31), assuming (38). Let us define the

following elasticities:

σcs,t ≡
ucs (ct, st, lt) ct
us (ct, st, lt)

, σsc,t ≡
ucs (ct, st, lt) st
uc (ct, st, lt)

, σhs,t ≡
usl (ct, st, lt)ht
us (ct, st, lt)

, (39)

and let σhc,t be defined analogously. Then we have the following result.

Proposition 6 Let assumptions (1)-(3) hold. In addition, let u(.) be of the form given in

equation (38). Then τd,t>τc,t if and only if:

(1− α) (1− σs,t − σsc,t) > −
βus,t+1s2,t+1

MUd,t

 α (σs,t+1 − σs,t)− (σcs,t+1 − σcs,t)

+ (σhs,t+1 − σhs,t)

 (40)
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Homotheticity in c and s does not generally imply uniform taxation of c and d for two

reasons: tolerance and because d is taxed but homotheticity is in c and s. Even if no tolerance

exists (s2 = 0), homotheticity in c and s does not imply homotheticity of c and d unless s is

HD-1 in d only. To see this, suppose without loss of generality that s is HD-η in d only and

rewrite equation (40) as:

(1− η) + (η − α) (1− σs,t − σsc,t) > −s2,t+1J, (41)

where J is the right hand side equation (40), excluding the term −s2,t+1. Now let s2 → 0,

so no tolerance exists. The right hand of equation (41) approaches zero, and under our

maintained assumptions s2 → 0 implies α → η. The remaining term thus represents the

difference between homotheticity of c and s versus c and d. Clearly this term is zero if

η = 1, since η = 1 if and only if homotheticity of c and s is equivalent to homotheticity

of c and d. Thus s2 = 0 and homotheticity in c and d implies uniform taxation. If η 6= 1,

then homotheticity in c and s implies d is a necessity (luxury) if σs + σsc < (>) 1 implying

d (c) should be taxed at a higher rate. This is the classical result that it is optimal to tax

necessities at a higher rate than luxuries.19

To see the effect of tolerance, assume now that η = 1 or that homotheticity of c and s

is equivalent to homotheticity of c and d. Then all terms in equation (40) arise because of

tolerance. Consider the labor supply terms only, and suppose both c and d are becoming

more complementary with leisure over time (σ′hs < σhs). Considering only the labor supply

terms of equation (40) and rewriting results in:

us,ts1,tσhs,t + βus,t+1s2,t+1σhs,t+1 > σhs,t (us,ts1,t + βus,t+1s2,t+1) . (42)

If taxes were equal, then the right hand side of equation (42), or the increase in labor income

tax revenues resulting from taxing c, would be identical to the increase in labor income tax

19Let M denote non-labor income and M + h = pcc+ pdd be the budget constraint for a static version of
the model. Then equation (41) when s2 = 0 is positive if and only if d has a lower elasticity with respect
to non-labor income than c in the static version of the model. Note that the simple partial equilibrium
intuition that goods that are more price inelastic should be taxed at a greater rate does not hold in general
equilibrium, unless utility is separable and no income effects exist (see for example Chari and Kehoe 1998).
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revenues resulting from taxing d. But all of the change in labor income tax revenue occurs

in the current period for c, whereas some of the change in labor income tax revenues from

taxing d come in the next period for d, when the complementarity of addictive consumption

and leisure is higher (the left hand side of equation 42). Taxing d at a higher rate means

the loss of revenues resulting from households being less addicted in the future will be offset

to some extent by the increase in future labor income tax revenues because leisure and

addictive consumption are more complementary. Thus taxing d more than c today better

smooths distortions over time.

A similar intuition holds for the other elasticities. Tolerance by itself only implies taxation

at rates which exceed ordinary goods if the distortions caused by revenue raising are falling

over time, so that addictive taxation smooths distortions, because taxing addictive goods now

makes taxing addictive goods more distortionary later. As shown in the following corollaries,

however, some common specifications for v and s induce constant elasticities which imply

uniform taxation.

Corollary 7 Let the conditions of Proposition 6 hold, and let q(.) = z (l) +
(cδs1−δ)

1−σ
−1

1−σ ,

and z(.) be concave, then τd= τc for all t.

Although we have assumed here that v(.) is constant relative risk aversion (CRR), this

corollary is considerably more realistic than the existing literature which assumes a static

utility function and/or separable quadratic utility for tractability. Hence, ignoring labor

supply effects and making utility CRR in c and s, we find that it is optimal not to tax

addictive goods at a higher rate than ordinary goods. However, if labor supply effects are

present then the results could shift in favor of taxing addictive goods at a higher rate.

Let x̄ denote the steady state value of any variable x, then we have the following result.

Corollary 8 Let the conditions of Proposition 6 hold. Then τ̄d > τ̄c if and only if:

(1− α) (1− σ̄s − σ̄sc) > 0. (43)

Equation (43) holds if and only if the steady state income elasticity of d is less than the

steady state income elasticity of c. For HD-1 addiction functions, including the subtractive
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model, Corollary 8 indicates that the steady state tax rates are uniform. An increase in d̄

increases s̄ by the same percentage, preserving homotheticity. For the multiplicative case,

the degree of homogeneity is decreasing in the strength of tolerance. Since σs > 1 is required

for addiction in the multiplicative case, strong tolerance tends to reduce the tax rate on the

addictive good, unless addictive and ordinary consumption are sufficiently strong substitutes

(that is, unless −σsc > σs − 1), because stronger tolerance implies strong offsetting future

revenue effects from current addictive taxation. When the degree of homogeneity is less than

one, as is the case for the multiplicative model, then equation (43) reduces to:

σ̄s − 1 < −σ̄sc (44)

Since with multiplicative habits addiction and reinforcement occur if and only if σ̄s>1, it is

optimal to tax addictive goods at a higher rate only if addictive and ordinary consumption

goods are sufficiently strong substitutes. Finally, Corollary 7 and Proposition 6 indicate

that the choice of addiction function is not innocuous when designing optimal tax policies.

In particular, given condition (44), the subtractive model implies a higher tax rate on the

addictive good than the multiplicative model, since α = 1 in the subtractive model.

6.2 Additively Separable Utility

n this section we consider the case in which utility is additively separable. Following a similar

procedure as with Proposition 6, we have:

Proposition 9 Let assumptions (1)-(3) hold. In addition, let u(.) be additively separable in

c, s, and l. Then τd,t>τc,t if and only if:

ασs,t + 1− α− σc,t > −
βαus,t+1s2,t+1

MUd,t
(σs,t+1 − σs,t) . (45)

In a static model, separable utility removes all labor supply and cross price revenue effects,

so we have two effects: c and d have potentially different income elasticities in a static sense

and the effect of tolerance.
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To see the static income elasticity terms, suppose without loss of generality that s is

HD-η in d only and rewrite equation (45) as:

(ησs,t + 1− η)− σc,t + (α− η) (σs,t − 1) > −s2,t+1J, (46)

where J is the right hand side equation (40), excluding the term −s2,t+1. Now let s2 → 0,

so no tolerance exists. The right hand of equation (46) approaches zero, and under our

maintained assumptions s2 → 0 implies α→ η. The remaining term is:

ησs,t + 1− η > σc,t, (47)

ησs,t + 1− η
σc,t

> 1. (48)

The left hand side equals the income elasticity of c divided by the income elasticity of d in

the static version of the model. Condition (48) says to tax the more income inelastic (the

necessity) good at a higher rate. If η = 1 then s = d and the income elasticity ratio is

σs,t/σc,t. If η < 1, then η affects the concavity of u in d and thus the income elasticity.

To see the effect of tolerance, rewrite equation (45) as:

(ασs,t + 1− α)us,ts1,t + (ασs,t+1 + 1− α) βus,t+1s2,t+1 >

σc,t (us,ts1,t + βus,t+1s2,t+1) . (49)

Suppose further that d is becoming more income inelastic relative to c over time (σs,t+1 >

σs,t). If tax rates were equal, then the right hand side of equation (49), or the increase

in tax revenues resulting from taxing c, would be identical to the increase in tax revenues

resulting from taxing d. But all of the change in tax revenues comes in the current period

for c, whereas some of the change in tax revenues from taxing d come in the next period

for d, when d is more income inelastic (the left hand side of equation 49). Taxing d at a

higher rate today means d will become more income elastic in the future, offsetting to some
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degree the decrease in income elasticity resulting from σs,t+1 > σs,t. Thus, as in Proposition

6, the existence of tolerance implies it is optimal to use the tax on d to smooth intertemporal

distortions.

As shown in the following corollary, however, the common CRR specification has constant

elasticities which implies tolerance affects optimal taxation only through it’s effect on the

income elasticity.

Corollary 10 Let the conditions of Proposition 9 hold, and let u(.) = v1 (c) +v2 (s) +v3 (l),

with v1 and v2(.) CRR. Then τd,t>τc,t for all t if and only if:

ασs + 1− α > σc. (50)

Condition (50) holds if and only if d has a lower income elasticity than c. In turn, tolerance

only affects the ratio of income elasticities if it affects the homogeneity of s. For s functions

such that α is independent of tolerance, such as the subtractive model, addiction has no effect

on the optimal tax rates. With constant elasticities, no distortion smoothing motivation

exists. However, for s functions such that α depends on tolerance, such as the multiplicative

model, stronger tolerance reduces the income elasticity and thus moderates the optimal tax

rate on addictive goods, since σs > 1. In particular, if d is a necessity in period t, then

taxing d at a high rate raises revenue with less distortions in period t, but will nonetheless

reduce future addiction and thus dt+1 and revenue in t + 1. Since the income elasticity is

constant, the revenue effects tend to cancel. That is, the stronger the revenue effect in period

t, in general the stronger the offsetting revenue effect in period t+ 1. Thus strong tolerance

makes taxing addictive consumption less attractive. Finally, the subtractive model implies

a higher tax rate on the addictive good than the multiplicative model, since α = 1 in the

subtractive model.

In general, the optimal tax on addictive goods depends on the degree of tolerance and the

relative income elasticities. The relative tax rate on the addictive good rises as the income

elasticity of the addictive good falls, irrespective of the degree of addiction. Tolerance al-

lows the planner to smooth intertemporal distortions by increasing the tax rate on addictive
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consumption if the income elasticity is falling (if σs is rising). Taxation of addictive goods

reduces future tolerance and thus makes addictive consumption more income elastic, offset-

ting the fall in income elasticity. However, since σs is constant for CRR utility functions and

at the steady state, no distortion smoothing motivation exists. However, strong tolerance

still tends to moderate the optimal tax on addictive goods, since taxing d reduces future tax

revenues.

7 Labor Supply Effects

The homothetic and separable cases examined above assume that changes in c and s have

identical effects on labor supply. However, some addictive goods are highly complementary

with leisure. For example, alcohol is complementary with leisure and reduces productivity

(Parry et al. 2006).20 In this section we consider the possibility that ordinary and addictive

goods differ in their static labor supply effects. Addiction, as defined here, is related to

reinforcement and tolerance, neither of which depends on complementarity with leisure.

Thus we should expect to see extra terms which reflect how addictive goods consumption

affects labor income tax revenues in addition to the relative income elasticity and degree of

tolerance.

To see this in a concise way, let us consider the following class of utility functions:

u (st, dt, lt) = q (ct) + v (st, lt) . (51)

Given the specification (51), addictive consumption is potentially more complementary

with leisure than ordinary consumption. For this specification, we find:

Proposition 11 Let assumptions (1)-(3) hold. In addition, let u(.) be of the form given by

(51). Then τd,t>τc,t if and only if:

1− α + ασs,t + σhs,t > σc,t −
βus,t+1s2,t+1

MUd,t
(σhs,t+1 − σhs,t + α (σs,t+1 − σs,t)) . (52)

20On the other hand, goods like lotteries do not seem to exhibit strong labor supply effects.
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The left hand side of equation (52) indicates that, ignoring the dynamic effect caused by tol-

erance, strong complementarity between addictive consumption and leisure tends to increase

the relative tax on addictive goods.

However, tolerance may change this effect. To see how, note that equation (52) can be

rewritten as:

us,ts1,t (1− α + ασs,t + σhs,t) + βus,t+1s2,t+1 (1− α + ασs,t+1 + σhs,t+1)

MUd,t
> σc,t. (53)

Since utility is separable in c, the right hand side of equation (53) incorporates only two

effects: an increase in c directly raises revenue but requires the planner to lower the tax

rate on c to maintain equilibrium. Conversely, the tax on d raises labor supply if σhs > 0,

which raises labor income tax revenues. However, taxing d is not as attractive as taxing s,

since taxing d creates an offsetting effect on next period’s labor income tax revenue, since

s2 < 0. Further, the stronger the effect on today’s labor income tax revenues, the stronger

the offsetting effect on future labor income tax revenues. Ignoring the dynamic effect on

future labor income tax revenues results in a tax rate on addictive goods that exceeds the

optimal rate.

Equation (52) simplifies in the steady state or for CRR preferences.

Corollary 12 Let the conditions of Proposition 11 hold, and let v(.) =
(sδl1−δ)

1−σ
−1

1−σ , with

σ ≥ 1. Then τd,t < τc,t for all t.

Corollary 12 is an example with complementarity between leisure and consumption of ad-

dictive goods, which nonetheless has a lower tax rate on dt than ct.

Corollary 13 Let the conditions of Proposition 11 hold. Then τ̄d > τ̄c if and only if:

α (σ̄s − 1) + σ̄hs > σ̄c − 1. (54)

In this case only the revenue effects matter.
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8 Conclusions

This paper is the first attempt in the literature to characterize and analyze the conditions

under which taxation of addictive goods might differ from taxes on labor and ordinary con-

sumption goods in a dynamic, rational addiction setting. In particular, we derive conditions

under which tax rates for addictive goods exceeds tax rates for non-addictive goods in an

environment where exogenous government spending cannot be financed with lump sum taxes.

We find that if taxing addictive goods has strong positive revenue effects today, then a

strong offsetting effect on future tax revenues also exists. This dynamic property of addictive

goods might explain why static models, which do not model addiction, but incorporate

revenue raising and externalities motives, tend to derive tax rates in excess of that observed

in the data.

For the homothetic and separable cases that we consider, the dynamic nature of tolerance

justifies tax rates in excess of ordinary consumption goods for the purpose of smoothing

intertemporal distortions. For example, if the income elasticity of addictive consumption is

falling over time, then a higher tax rate on the addictive good today reduces future addiction

and thus tends to offset some of the decrease in the income elasticity. It is also possible that

the offsetting revenue effects of addictive taxation makes addictive goods more income elastic,

thus decreasing the optimal tax rate on addictive goods.

Finally, we also consider features of addictive goods such as complementarity to leisure

that, while unrelated to addiction itself, are nonetheless common among some addictive

goods. In general, such effects are weaker in our dynamic setting.

Consideration of other intertemporal goods, such as durable goods or storable goods,

while outside the scope of this paper, is a natural extension. Some properties of the s

function would likely change with these intertemporal goods, but our basic methodology

would still apply.

Our results come with several caveats. First, one common feature of addictive goods, the

presence of externalities, has not been considered in this paper. Still, the “double dividend”

literature (e.g. Bovenberg and Goulder 1996) indicates external effects alone is not a reason

to tax such goods above the first best level which corrects the externality. Thus, the optimal
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tax may rise in a model that includes externalities, but our qualitative conclusions would

likely be similar, if interpreted as relative to the first best tax rate. We leave this case for

future research.

Second, we consider only the optimal tax package, not the optimal addictive goods tax

taking as given other taxes. Certain features of the tax code including balanced budget

rules and positive capital tax rates, if taken as given, may change our results. Third, we

have no heterogeneity in addictive consumption or wealth. However, if we assume that the

poor are more likely to consume addictive goods, then our results would likely strengthen,

because consumers of addictive goods would have a higher marginal utility of income. Finally,

following the Ramsey approach, we allow for distortionary linear taxes only. Our results

might change if we allowed nonlinear tax rates within a Mirrles framework. However, the

capital and income taxes studied by Mirrles are nonlinear in the data, whereas addictive

taxes are typically linear. We leave these issues to further research as well.

31



References

Abel, A., “Asset Prices Under Habit Formation and Catching up with the Joneses,” Amer-

ican Economic Review, 1990, 80, 38–42.

Anderson, J., “Casino Taxation in the United States,” National Tax Journal, 2005, 58,

303–24.

Atkinson, A. B. and J. E. Stiglitz, “The structure of indirect taxation and economic effi-

ciency,” Journal of Public Economics, April 1972, 1 (1), 97–119.

Baltagi, B. and I. Geishecker, “Rational Alcohol Addiction: Evidence from the Russian

Longitudinal Monitoring Survey,” Health Economics, 2006, 15, 893–914.

and J. Griffin, “Rational Addiction to Alcohol: Panel Data Analysis of Liquor Con-

sumption,” Health Economics, 2002, 11, 485–91.

Becker, G. and K. Murphy, “A Theory of Rational Addiction,” Journal of Political Economy,

1988, 96, 675–700.

, M. Grossman, and K. Murphy, “An Empirical Analysis of Cigarette Addiction,”

American Economic Review, 1994, 84, 396–418.

Bentzen, J., T. Eriksson, and V. Smith, “Rational Addiction and Alcohol Consumption:

Evidence from Nordic Countries,” Journal of Consumer Policy, 1999, 22, 257–79.

Bossi, L. and P. Gomis-Porqueras, “Consequences of Modeling Habit Persistence,” Macroe-

conomic Dynamics, forthcoming, 2008.

and V. Petkov, “Habits, Market Power, and Policy Selection,” 2007. University of

Miami Working Paper.

Bovenberg, A. and Lawrence H. Goulder, “Optimal Environmental Taxation in the Presence

of Other Taxes: General-Equilibrium Analyses,” American Economic Review, 1996, 86

(4), 985–1000.

32



Campbell, J. and J. Cochrane, “By Force of Habit: a Consumption Based Explanation of

Aggregate Stock Market Behavior,” Journal of Political Economy, 1999, 107, 205–51.

Chaloupka, F., “Rational Addictive Behavior and Cigarette Smoking,” Journal of Political

Economy, 1991, 99, 722–42.

Chamley, Christophe, “Optimal Taxation of Capital Income in General Equilibrium with

Infinite Lives,” Econometrica, 1986, 54, 607–622.

Chari, V. V. and Patrick J. Kehoe, “Optimal Fiscal and Monetary Policy,” Technical Report

251, Federal Reserve Bank of Minneapolis Research Department Staff Report 1998.

Clotfelter, C. and P. Cook, “On the Economics of State Lotteries,” Journal of Economic

Perspectives, 1990, 4, 105–119.

Grinols, E. and D. Mustard, “Casinos, Crime, and Community Costs,” Review of Economics

and Statistics, 2006, 88, 28–45.

Grossman, M., F. Chaloupka, and I. Sirtalan, “An Empirical Analysis of Alcohol Addiction:

Results From Monitoring the Future Panels,” Economic Inquiry, 1998, 36, 39–48.

Gruber, J. and B. Koszegi, “Is addiction rational? Theory and Evidence,” Quarterly Journal

of Economics, 2001, 116, 1261–1303.

and , “Tax Incidence When Individuals are Time Inconsistent: The Case of

Cigarette Excise Taxes,” Journal of Public Economics, 2004, 88, 1959–88.

Hansen, A., “Lotteries and State Fiscal Policy,” Technical Report 46, The Tax Foundation

Background Paper 2004.

Kenkel, D., “New Estimates of the Optimal Tax on Alcohol,” Economic Inquiry, 1996, 34,

296–319.

O’Donoghue, T. and M. Rabin, “Studying Optimal Paternalism, Illustrated by a Model of

Sin Taxes,” American Economic Review, 2003, 83, 186–191.

33



and , “Optimal Sin Taxes,” Journal of Public Economics, 2006. forthoming.

Olekalns, N. and P. Bardsley, “Rational Addiction to Caffeine: An Analysis of Coffee

Consumption,” Journal of Political Economy, 1996, 104, 1100–04.

Parry, I., R. Laxminarayan, and S. West, “Fiscal and Externality Rationales for Alcohol

Taxes,” Technical Report 06-51, Resources For the Future Discussion Paper 2006.

Pogue, T. and L. Sgontz, “Taxing to Control Social Costs: The Case of Alcohol,” American

Economic Review, 1989, 79, 235–43.

Sgontz, L., “Optimal Taxation: The Mix of Alcohol and Other Taxes,” Public Finance

Quarterly, 1993, 21, 260–75.

Sung, H., T. Hu, and T. Keeler, “Cigarette Taxation and Demand: An Empirical Model,”

Contemporary Economic Policy, 1994, 12, 91–100.

Waters, T. and F. Sloan, “Why Do People Drink? Tests of the Rational Addiction Model,”

Applied Economics, 1995, 27, 727–36.

34



9 Appendix: Proofs

9.1 Proof of Proposition 2

To see that a competitive equilibrium satisfies the IMC and resource constraint, we substitute

the factor prices (2) and (3) into the budget constraint (11). Using constant returns to scale,

we then have:

Rb
tbt + F (kt, ht)− τh,tFh (kt, ht)ht = (1 + τc,t) ct+

(1 + τd,t) dt + it + bt+1. (55)

Combining the above equation with the government budget constraint (19) gives the resource

constraint (20).

To derive the IMC from the budget constraint, we substitute the household first order

conditions (12)-(14) into the budget constraint (11), eliminating the tax rates, so that:

λtRtkt + λtR
b
tbt − λtkt+1 − λtbt+1 = βt (uc (ct, st, lt) ct+

MUd,tdt + ul (ct, st, lt)ht) . (56)

Next using the first order conditions (15) and (16), we have:

λtRt (kt + bt)− λt+1Rt+1 (kt+1 + bt+1) =

βt (uc (ct, st, lt) ct +MUd,tdt + ul (ct, st, lt)ht) . (57)

The above equation characterizes a sequence of budget constraints that can be used to

recursively eliminate λtRt (kt + bt), yielding:

λ0R0 (k0 + b0)− lim
t→∞

λt+1Rt+1 (kt+1 + bt+1) =

∞∑
t=0

βt (uc (ct, st, lt) ct +MUd,tdt − ul (ct, st, lt)ht) . (58)
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The transversality conditions imply the second term on the left hand side equals zero. Again

using the household first order conditions at period zero gives:

uc,0 (k0 + b0)

1 + τc,0
(Fk,0 + 1− δ) =

∞∑
t=0

βt (uc (ct, st, lt) ct +MUd,tdt − ul (ct, st, lt)ht) , (59)

which is the IMC.

We next show that, given allocations which satisfy the IMC and resource constraint,

prices and policies exist which, along with the allocations, are a competitive equilibrium.

Let {ct, kt, ht, dt} be a sequence which satisfies the IMC and resource constraint. Then rt

and wt are defined using equations (2) and (3). Since τc,0 is given, we can define λ0 using

equation (12). Then λt can be defined recursively using equation (15). Then Rb
t is defined

using equation (16). Next, we define the government policies:

(1 + τc,t) =
βtuc (ct, st, lt)

λt
, (60)

(1− τh,t) =
βtul (ct, st, lt)

λtFh (kt, ht)
, (61)

(1 + τd,t) =
βtMUd,t

λt
, (62)

gt = τh,twtht + τc,tct + τd,tdt (63)

Given the above prices and policies, all equations which define a competitive equilibrium

are satisfied except the household and government budget constraints. We use bt to satisfy

the household budget constraint:

bt =
1

Rb
t

(−rtkt − (1− τh,t)wtht + (1 + τc,t) ct+

(1 + τd,t) dt + it + bt+1) . (64)
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We can multiply the above equation by λt and recursively eliminate bt+1 from the above

equation. After eliminating prices and policies using the household first order conditions

(12)-(14), bt is a function of the allocations:

bt =

(
t−1∏
i=0

(Fk (Ki, Hi) + 1− δ)

)
1 + τc,0
τc,0

∞∑
i=t

βi (uc,ici +MUd,idi − ul,ihi)− kt (65)

The above equation is the debt allocation which implies the household budget constraint is

satisfied.

Since the budget constraint is satisfied, we simply substitute the resource constraint into

the budget constraint to see that the government budget constraint is satisfied. Finally, by

substituting the prices and policies into the IMC and reversing the derivation of the IMC,

we see that the transversality conditions are satisfied.

9.2 Proof of Propositions 3-5

Proposition 3 was proved in the text. For Proposition 4, we derive the solution for µ as

follows. First, for the quadratic case, the first order conditions for the Ramsey problem

(23)-(26) are now:

φt
βt

= 1 + µ, (66)

φt
βt

= ν (1− βγ) (1 + µ)− (1 + 2µ) (st − βγst+1) , (67)

φt (1− θ)
(
kt
ht

)θ
βt

= (e− 1) (1 + µ) + (1 + 2µ)ht, (68)

φt

(
θ

(
kt
ht

)θ−1

+ 1− δ

)
= φt−1. (69)
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Using equation (66) to eliminate φt gives:

1 + µ = (ν (1 + µ)− µ) (st − βγst+1) , (70)

(1 + µ) (1− θ)
(
kt
ht

)θ
= (e− 1) (1 + µ) + (1 + 2µ)ht, (71)

β

(
θ

(
kt
ht

)θ−1

+ 1− δ

)
= 1. (72)

For the subtractive model equations (66) and (70) imply:

1 + µ = ν (1− βγ) (1 + µ)− (1 + 2µ) (dt − γdt−1 − βγ (dt+1 − γdt)) , (73)

− βγdt+1 +
(
1 + βγ2

)
dt − γdt−1 =

1 + µ

1 + 2µ
(ν (1− βγ)− 1) , (74)

which has general solution given by (36). Proposition (5) thus holds if a non-zero and finite

solution for µ exists, which we now show.

Equation (72) implies the capital to labor ratio, denoted by A, is a constant equal to:

A ≡
(

θ

ρ+ δ

) 1
1−θ

. (75)

Thus, equation (71) implies

ht =
1 + µ

1 + 2µ
ĥ , ĥ ≡ 1− e+ (1− θ)Aθ, (76)

is constant. Thus, kt = Aht is constant and equation (36) implies st and thus MUd,t is

constant as well. Since elasticity of substitution of consumption over time is infinite, the

planner absorbs all changes in gt by varying ct. Combining these results with resource
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constraint (20) yields a solution for ct:

ct =
1 + µ

1 + 2µ

(
ĥ
(
Aθ − δA

)
− d̂

(
1− γt+1

))
− γt+1d−1 − gt, (77)

d̂ ≡ ν (1− βγ)− 1

(1− γ) (1− βγ)
. (78)

Now since h0 enters into the left hand side of the IMC (22) and k0 is given, the solutions

for h0, k0 and therefore c0 generally differ from the solutions for t ≥ 1. Therefore, we let

x ≡ 1+µ
1+2µ

and insert the solutions for ct, dt, and ht into the IMC (22) for t ≥ 1, so that:

R0 (k0 + b0)

1 + τc,0
=

∞∑
t=1

βt
[
x
(
ĥ
(
Aθ − δA

)
− d̂

(
1− γt+1

))
− γt+1d−1+

(1− βγ)
(
ν − (1− γ) d̂x

)(
d̂x (1− γt+1) + γt+1d−1

)
−
(
e− 1 + ĥx

)
ĥx
]

+

c0 +MUd,0d0 − ul,0h0 + g0 −G. (79)

Next, recall from Proposition 2 that τc,0 and τh,0 are given. It follows from equations (12)

and (13) that the planner cannot choose h0 in this example, and instead takes the solution for

h0 from the competitive model as given. Further, the terms inside the summation depend

on time only through γt+1 and βt, and the equation is quadratic in x. Therefore, after

evaluating the summation we can write the equation as:

− ζ2x2 + ζ1x+ ζ0 = 0, (80)

ζ2 ≡ ĥ2 +
(1− γ)2

β
d̂2, (81)

ζ1 ≡ ζ2 −
(

1− β
β

)
(1− γ) γd̂d−1, (82)
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ζ0 ≡ ζ2 − ζ1 + ζ3, (83)

ζ3 ≡
1− β
β

(
τc,0 (1− δ) k0 −R0b0

1 + τc,0
+

1 + τc,0 − θ
1 + τc,0

kθ0h
1−θ
0 − ul,0h0 −G

)
. (84)

A solution such that µ > 0 is a solution in the range 1
2
< x < 1. Note that equation (80)

can be written as:

(ζ2x+ ζ2 − ζ1) (1− x) = −ζ3. (85)

Hence it is immediate that ζ3 < 0 is necessary for x < 1. From equation (84), ζ3 < 0 if and

only if:

G > ζl ≡
τc,0 (1− δ) k0 −R0b0

1 + τc,0
+

1 + τc,0 − θ
1 + τc,0

kθ0h
1−θ
0 − ul,0h0. (86)

This is the lower bound for G.

Condition (86) implies that ζ3 < 0 which implies both roots are less than one. It remains

to show that the roots are real and that one root is greater than one half. The roots are real

if and only if:

ζ2
1 + 4ζ2 (ζ2 − ζ1 + ζ3) > 0, (87)

(2ζ2 − ζ1)2 > −4ζ2ζ3, (88)

− ζ3 <
(2ζ2 − ζ1)2

4ζ2
, (89)

G < ζl +
β

1− β

(
(2ζ2 − ζ1)2

4ζ2

)
. (90)
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Finally, the roots are greater than one half if and only if:

ζ1
2ζ2
±

√
(2ζ2 − ζ1)2 + 4ζ2ζ3

2ζ2
>

1

2
, (91)

±
√

(2ζ2 − ζ1)2 + 4ζ2ζ3 > ζ2 − ζ1. (92)

The right hand side is positive, so the smaller root cannot be bigger than one half. The

larger root is bigger than one half if and only if:

(2ζ2 − ζ1)2 + 4ζ2ζ3 > (ζ2 − ζ1)2 , (93)

− ζ3 <
3ζ2 − 2ζ1

4
, (94)

G < ζl +
β

1− β

(
3ζ2 − 2ζ1

4

)
. (95)

The final bound for a unique solution is thus the intersection of conditions (86), (90), and

(95):

ζl < G < ζl +
β

1− β
3ζ2 − 2ζ1

4
. (96)

Defining ζh as the right hand side of equation (96) completes the proof.

For Proposition 5, we solve the second order difference equation (35), using equation

(18):

(ν − st)− βγ (ν − st+1) =
1 + µ (1 + ν (1− βγ))

1 + 2µ
, (97)
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ν (1− βγ)− dt + γdt−1 + βγ (dt+1 − γdt) =
1 + µ (1 + ν (1− βγ))

1 + 2µ
, (98)

dt+1 −
(

1 + βγ2

βγ

)
dt +

1

β
dt−1 = − 1 + µ

1 + 2µ

(
ν (1− βγ)− 1

βγ

)
. (99)

It is straightforward to show the general solution of the above difference equation is:

dt = Dp + A0γ
t + A1 (βγ)−t , (100)

Dp ≡
1 + µ

1 + 2µ

(
ν (1− βγ)− 1

(1− βγ) (1− γ)

)
. (101)

Following convention, we rule out the explosive, bubble solutions which requires A1 = 0.

Letting t = −1 implies A0 = γ (d−1 +Dp). Substituting for A0 and simplifying gives the

desired solution.

9.3 Proof of Proposition 6

First, we rewrite equations (30) and (31), using the σ definitions, so that:

∂IMC

∂ct
= uc,t (1− σc + ασsc,t − σhc,t) , (102)

∂IMC

∂dt
= MUd,t (α− ασs,t + σcs,t − σhs,t+

βus,t+1s2,t+1

MUd,t
(ασs,t − ασs,t+1 − σcs,t + σcs,t+1 + σhs,t − σhs,t+1)

)
. (103)

Now since v is homothetic, we know that:

vc (ψc, ψs)

vs (ψc, ψs)
≡ vc (ψc, ψs)

vs (ψc, ψs)
, (104)
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which implies:

vcc (c, s) c

vc (c, s)
+
vcs (c, s) s

vc (c, s)
=
vss (c, s) s

vs (c, s)
+
vcs (c, s) c

vs (c, s)
, (105)

which, using the definition of u(.) in equation (38), implies:

σsc − σc = σcs − σs. (106)

It is also immediate from the definition of u(.) that σhc = σhs. These facts and equations

(23), (24), (102), and (103) together imply:

MUd,t
uc,t

=
1 + µ (1− σs,t + σcs,t − (1− α)σsc,t − σhs,t)

1 + µ
(
α− ασs,t + σcs,t − σhs,t + βus,t+1s2,t+1

MUd,t
jt

) , (107)

where jt ≡ ασs,t−ασs,t+1− σcs,t + σcs,t+1 + σhs,t− σhs,t+1. Hence, τd,t > τc,t if and only if the

right hand side is greater than one, or:

1 − (1− α)σsc,t − σs,t >

α− ασs,t +
βus,t+1s2,t+1

MUd,t
(σs,t − σs,t+1 − σcs,t + σcs,t+1 + σhs,t − σhs,t+1) , (108)

which simplifies to the desired result.

9.4 Proof of Corollaries 7-8

For the CRR case, note that σsl = 0, σs = 1 − δ (1− σ), and σsc = (1− δ) (1− σ), which

implies the left hand side of condition (40) is zero. The right hand side of (40) is also zero

since σcs and σs are constant.

For the steady state case, σi,t = σi,t+1 for all i ∈ {s, sc, cs, hs}, so the result follows

immediately from condition (40).
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9.5 Proof of Proposition 9

If utility is separable, equations (102) and (103) become:

∂IMC

∂ct
= uc,t (1− σc) , (109)

∂IMC

∂dt
= MUd,t

(
α− ασs,t +

βus,t+1s2,t+1

MUd,t
(ασs,t − ασs,t+1)

)
. (110)

Equations (23), (24), (109), and (110) together imply:

MUd,t
uc,t

=
1 + µ (1− σc,t)

1 + µ
(
α (1− σs,t) + βαus,t+1s2,t+1

MUd,t
(σs,t − σs,t+1)

) . (111)

Hence, d is taxed at a higher rate if and only if the right hand side is greater than one,

or:

1− σc,t > α (1− σs,t) +
βαus,t+1s2,t+1

MUd,t
(σs,t − σs,t+1) , (112)

which simplifies to the desired result.

9.6 Proof of Corollary 10

For CRR preferences, σi,t = σi,t+1 for all i ∈ {s, c}, so the results follow immediately from

condition (45).

9.7 Proof of Proposition 11

If utility is given by equation (51), equations (102) and (103) become:

∂IMC

∂ct
= uc,t (1− σc,t) , (113)
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∂IMC

∂dt
= MUd,t (α− ασs,t − σhs,t+

βus,t+1s2,t+1

MUd,t
(α (σs,t − σs,t+1) + σhs,t − σhs,t+1)

)
. (114)

Equations (23), (24), (113), and (114) together imply:

MUd,t
uc,t

=
1 + µ (1− σc,t)

1 + µ
(
α (1− σs,t)− σhs,t + βus,t+1s2,t+1

MUd,t
(α (σs,t − σs,t+1) + σhs,t − σhs,t+1)

) . (115)

Hence, d is taxed at a higher rate if and only if the right hand side is greater than one,

or:

1− σc,t > α (1− σs,t)− σhs,t +
βus,t+1s2,t+1

MUd,t
(α (σs,t − σs,t+1)σhs,t − σhs,t+1) , (116)

which simplifies to the desired result.

9.8 Proof of Corollaries 12 and 13

For the CRR case, note that σs = 1− δ (1− σ), and σsl = (1− δ) (1− σ) h
1−h . Substituting

in these conditions into equation (52) gives:

δ (1− α) (1− σ)− σc,t > −
(1− δ) (1− σ)

MUd,t

(
us,ts1,t

lt
+
βus,t+1s2,t+1

lt+1

)
. (117)

For σ ≥ 1, the left hand side is negative. Further the right hand side is positive if:

us,ts1,t

lt
+
βus,t+1s2,t+1

lt+1

> 0, (118)

us,ts1,tlt+1 > −βus,t+1s2,t+1lt. (119)

If lt+1 ≥ lt, then the above inequality is satisfied since marginal utility is positive. But

stability analysis indicates lt is an increasing sequence along the transition path. Therefore,

the right hand side is indeed positive, and so the inequality (52) cannot be satisfied, and
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hence τc,t ≥ τd,t.

For the steady state case, σi,t = σi,t+1 for all i ∈ {s, hs}, so the result follows immediately

from condition (52).

10 Appendix: Tables and Figures

Results for Constant Variables
Parameter Value variable γ = 0.45 γ = 0.5 γ = 0.55
β 0.9 kt 1.66 1.58 1.54
ν 2 ht 0.57 0.55 0.53
θ 0.4 yt 0.88 0.83 0.81
gt 0.3 it 0.17 0.16 0.15
δ 0.1 µ 2.23 3.48 4.74
e 0.95 x 0.59 0.56 0.55
d−1 0.02 τc 0.07 0.07 0.07
τc,0 0.07 τd 0.15 0.12 0.075
b0 0 τh 0.39 0.42 0.44

Table 1: Parameter values and results for variables which are constant over time. The
parameters h0 and k0 are set equal to ht using equation (76) and kt = Aht, respectively. The
parameter gt is set equal to 30% of GDP for all t.
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Figure 1: Dynamics of first and second best addictive consumption for various values of γ.
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