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Evaluating Probability Forecasts: Calibration Isn’t Everything  
 

1. INTRODUCTION 

 

Forecasting rare business events such as recessions has long been a challenging issue in 

business and economics. As witnessed during past decades, the track record of large scale 

structural macro and VAR models, or real GDP forecasts that are obtained from 

professional surveys (e.g., Blue Chip, Survey of Professional Forecasters, OECD, etc.), in 

predicting or even timely recognizing postwar recessions has not been very impressive. 

Even for probability forecasts based on modern time series models, the improvement in 

forecast performance has been limited at best.1  

 

One of the main purposes of this paper is to argue that an evaluation of recorded 

probability forecasts by professional economists can suggest reasons for forecasting 

failures, and can help define limits to the current capability of macro economic forecasts. 

The traditional way of evaluating probability forecasts is the Mean Square Error (MSE) 

type of measure such as Brier’s Quadratic Probability Score (QPS), which evaluates the 

external correspondence between the probability forecasts and the realization of the 

event. This approach, however, can fail to identify the ability of a forecasting system to 

evaluate the odds of the occurrence of an event against its non-occurrence, which is a 

very important characteristic that the users of forecasts need to assess. Meanwhile, a high 

performance score can be achieved by totally unskilled forecasts without any information 

value. Thus, the traditional approach can be inadequate in evaluating the usefulness of 

probability forecasts, particularly for rare events.  

 

In this paper we will study the usefulness of the subjective probability forecasts that are 

obtained from the Survey of Professional Forecasters (SPF) as predictors of GDP 

downturns using several distinct evaluation methodologies. Even though these forecasts 

                                                 
1 Forecasting failures have been documented extensively in the literature, see, for instance, Filardo (1999, 
2004), Fildes and Stekler (2002), Fintzen and Stekler (1999), Juhn and Loungani (2002), Krane (2003), 
McNees (1991), and Zarnowitz and Moore (1991). For recent models generating probability forecasts, see 
Kling (1987), Neftci (1987), Hamilton (1989), Stock and Watson (1991, 1993) and Zellner et al. (1991). 
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are available since 1968, and have drawn media attention2, very little systematic analysis 

has been conducted to look into their usefulness as possible business cycle indicators.3  

We will try to pinpoint the importance of alternative evaluation approaches and 

emphasize the more important characteristics of a set of forecasts from the standpoint of 

end-users. Our study also has implications for the users of Logit, Probit and other 

probability models for relatively rare events. Often the conventional goodness-of-fit 

statistics in these models like the pseudo R-square, fraction correctly predicted, etc. fail to 

identify the type I and type II errors in predicting the event of interest.  

 

The plan of this paper is as follows: In section 2, we will introduce the data, and explain 

the set up. In section 3, we will evaluate the probability forecasts using the traditionally 

popular calibration approach with statistical tests. In section 4, we will explore the multi-

dimension nature of the probability forecasts using alternative methodologies. In section 

5, we will suggest some effective ways to evaluate the performance of the probability 

forecasts of rare business events in terms of ROC curve. Finally, concluding remarks will 

be summarized in section 6.  

 

2. SPF PROBABILITY FORECASTS OF REAL GDP DECLINE 

 

The Survey of Professional Forecasters (SPF) 4 has been collecting subjective probability 

forecasts of real GDP/GNP declines during the current and four subsequent quarters since 

its inception in 1968. At the end of the first month of each quarter, the individual 

forecasters in SPF form their forecasts. The survey collects probability assessments for a 

decline in real GDP in the current quarter, and in each of the next four quarters 

conditional on the growth in the current period. The number of respondents has varied 

between 15 and 60 over the quarters. In this study we use probabilities averaged over 

                                                 
2 The New York Times columnist David Leonhardt (September 1, 2002) calls the one-quarter-ahead GDP 
decline probability as the “Anxious Index”.  
3 Notable exceptions include Braun and Yaniv (1992), Graham (1996), and Stock and Watson (2003). 
However, these studies emphasized different aspects of the data. 
4 Formerly the surveys were carried out under the auspices of the American Statistical Association and the 
National Bureau of Economic Research (ASA-NBER). Since June 1990, the Federal Reserve Bank of 
Philadelphia has conducted the survey. See Croushore (1993) for an introduction to SPF.  
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individuals.5 Using the July revisions, during our sample period from 1968:4 to 2004:2 

there were 20 quarters of negative GDP growth -- those beginning 1969:4, 1973:4, 

1980:1, 1981:3, 1990:3 and 2001:1 -- which consist of six separate episodes of real GDP 

declines. The annualized real time real GDP growth issued every July is used as the 

forecasting target, against which the forecasting performance of the SPF forecasts will be 

evaluated.6 The SPF probabilities for real GDP declines during the current and next four 

quarters are depicted against the real time real GDP growth in Figures 1a -1e. The shaded 

bars represent the NBER defined recessions.  

 

From Figures 1a–1e, several notable patterns can be observed. First, the mean 

probabilities generated by the professional forecasters fluctuate over time, varying from 

as high as 80% to as low as less than 5%. Second, the fluctuations in the probabilities 

seem to be roughly coincident with those real GDP growth and the NBER defined peaks 

and troughs. Third, for different forecasting horizons, the probabilities either precede or 

follow the cyclical movement of the real GDP with different leads or lags. Finally, the 

high end of the mean probability tends to decrease as the forecasting horizon increases. 

As shown in the figures, the high-end probability decreases steadily from about 80% for 

the current quarter to only about 30% for three and four-quarter-ahead forecasts. All these 

observations suggest that the information content, hence the value, of the SPF probability 

forecasts may be horizon-dependent.  

 

3. CALIBRATION OF SPF PROBABILITY FORECASTS 

 

The traditional way of evaluating probability forecasts for the occurrence of a binary 

event is to assess the calibration of the forecasts against realizations, that is, to assess the 

external correspondence between the probability forecasts and the actual occurrence of 

the event.  

                                                 
5 In future we would like to consider the optimum combination of the individual probability forecasts.  
Based on nine selected forecasters, Graham (1996) found that pooling techniques that allow for correlation 
between forecasts performed better than the simple average of forecasts.  
6 We also conducted our analysis with the 30-day announcements as the real time data. Results were 
virtually unchanged.  All real time data were downloaded from the Federal Reserve Bank of Philadelphia 
web site.  
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3.1. Brier’s Quadratic Probability Score  

A measure-oriented approach simply compares the forecast probability with the 

realization of a binary event that is represented by a dummy variable taking value 1 or 0 

depending upon the occurrence of the event. A most commonly used measure is (half) 

Brier’s Quadratic Probability Score (QPS), a probability analog of mean squared error, 

i.e.: 

   2

1
)(/1 t

T

t
t xfTQPS −= ∑

=

       (1) 

 

where tf  is the forecast probability made at time t, tx  is the realization of the event at 

time t. T is the total number of the observations or forecasting quarters.  

 

The QPS ranges from 0 to 1 with a score of 0 corresponding to perfect accuracy, and is a 

function only of the difference between the assessed probabilities and realizations. The 

calculated QPS for each forecasting horizon from the current quarter (Q0) to the next four 

quarters (Q1, Q2, Q3, and Q4) are 0.077, 0.098, 0.103, 0.124, and 0.127, respectively. 

Thus, even though these scores deteriorate as the forecast horizon increases, all seem to 

suggest good calibration and are close to zero. It may be noted that QPS figures are 

seldom reported with their associated standard errors. In next section, we will show that 

these figures, indeed, are not significantly different from their respective expectations 

under the hypothesis of perfect forecast validity.   

 

3.2 Prequential Test for Calibration 

Dawid (1984) and Seillier-Moiseiwitsch and Dawid (1993) (henceforward SM-D) 

suggested a test for calibration. The SM-D test statistic is constructed by a weighted sum 

of the difference between the predictive probability and the realization of the event such 

as 

 

   jjjj werZ /)( −=         (2) 
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where je  and jr  are the predicted probability and realization for probability group j, 

respectively; jw is the weight determined by  

 

               )1( jjjj nw ππ −=                                                                                    (2a) 

 

where jπ  is the midpoint of the group j, and jn  is the number of quarters in group j. 

 

For any given set of sequential probability forecasts, its calibration or accuracy can be 

tested in each probability interval using the jZ  statistic.  If it lies too far out in the tail of 

the standard normal distribution, it might be regarded as evidence against forecast 

accuracy. Similarly, the overall performance of the forecast can be evaluated using 2χ  

test with j degree of freedom, which is constructed as∑ 2
jZ . Thus, using SM-D 

calibration test, the accuracy of probability forecasts can be assessed with explicitly 

expressed uncertainty as indicated by the confidence level.  

 

The results from the SM-D test to assess the SPF probability forecasts are reported in 

Table 1 where we find that the forecasts of all forecasting horizons appear to be well 

calibrated. The 2χ  values for each forecasting horizon fall into the acceptance area with 

confidence level of 90% and the appropriate degrees of freedom. While the values of 
2χ statistics vary from 3.49 to 12.68, surprisingly the lowest value of 2χ is obtained for 

the four-quarter-ahead forecasts (Q4).7  

 

Given 2

1
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, SM-D showed how their calibration test could be 

converted to a test of whether OPS is significantly different from its expected value 

T/1 )1(
1

t
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=

under the hypothesis of perfect forecast validity using a standard  

                                                 
7 Using a Bayesian posterior odds approach, it will be interesting to study the analytical power of the SM-D 
test against alternatives such as Q3 or Q4 forecasts. We should, however, emphasize that a more powerful 
calibration test will not minimize the importance of resolution in evaluating probability forecasts.  
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N (0,1) approximation for the distribution of  
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Then, the observed value of nY  can be obtained as: 
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The test results are reported in Table 1 as well. We find that, for all forecast horizons, 

none of the calculated statistics fall in the (one-sided) rejection region at the 5% 

significance level, which is consistent with the SM-D calibration test results that forecasts 

for all horizons satisfy the hypothesis of perfect forecast validity. 

 

4. FURTHER DIAGNOSTIC VERIFICATION OF PROBABILITY FORECASTS  

 

Some of the results from the calibration tests in the previous section may seem counter- 

intuitive. While the probability forecasts for the longer forecasting horizons, especially 

Q3 and Q4, never exceed 40% even when the event has already occurred, the SM-D test 

showed that they are well calibrated. This observation leads to a question of whether the 

calibration is an adequate measure of forecast validity, and why, if it is not. The issue 

may be analyzed using some alternative approaches. 

 

4.1. The Skill Score 

Skill Score (SS) measures the relative accuracy of a forecast compared to a benchmark. 

We calculated the bellwether skill measure 
 

                                )],(/),([1),( xMSExfMSExfSS xµ−=                                                 (5)  
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where MSE ( xµ ,x) is the accuracy associated with the constant base rate or the constant 

relative frequency forecast (CRFF) which is xµ = 0.14 in our sample. For each 

forecasting horizon we found the SS values to be 0.36, 0.19, 0.05, -0.002, -0.05, 

respectively. Note that the use of this historical average value as the base rate presumes 

substantial knowledge on part of the forecasters.8 While the skill score for the shorter run 

forecasts (Q0-Q1) indicate significant improvement of the SPF forecasts over the 

benchmark base rate forecast, the longer run forecasts (Q3 and Q4) do not show any 

clear-cut relative advantage. The SS value for Q2 forecasts is marginal. These results 

were not discernable using the calibration tests.  

 

Note that the skill score in (5) can be decomposed as (cf. Murphy (1988)):   

 

                               222 ]/)[()]/([),( xxfxffxfxxfSS σµµσσρρ −−−−=                    (6) 

 

where fxρ  is the correlation coefficient between forecast and the actual binary outcome,  

2
fσ  and 2

xσ  are their variances, and ),( xf µµ are the respective sample averages. The 

decomposition shows that SS is simply the square of the correlation between f and x 

adjusted for any miscalibration penalty (second term) and the normalized difference in 

the sample averages of the actual and the forecast (third term). This decomposition for 

Q0-Q4 are given in Table 2a where we find that the last two terms of the decomposition 

are close to zero, and thus, the skills for Q0-Q4 forecasts in effect reflect the correlations 

between the forecasts and the actual. For Q0, Q1, and Q2, these correlations are 0.393, 

0.220, and 0.077 respectively, and are found to be statistically significant using the 

simple t-test for no correlation.9 The correlations for Q3-Q4 are very small and 

statistically insignificant.  This decomposition again shows that the long-term probability 
                                                 
8 Alternatively, one can consider using the last realization as the forecast to form a binary time varying base 
rate. Thus, for current and next four quarters, the last quarter realization is used. The associated skill scores 
of SPF forecasts were significantly more than those with xµ = 0.14 implying that the latter base rate is 
considerably more informative than the use of the lagged actual. Other base rate alternatives, e.g., eternal 
optimist (f=0), eternal pessimist (f=1), or a coin flipper (f=0.5), are also considerably less informative than 
the alternative in (5); cf. Zellner et al. (1991).  
9 The t-values were obtained from a regression of ( fxρ /

2
xσ ) x on f.  
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forecasts have no skill compared to the benchmark forecast even though they are found to 

be well calibrated like the near term forecasts.  

 

4.2 The Murphy Decomposition 

In addition to calibration, there are several other features that also characterize good 

probability forecasts. Murphy (1972) decomposed the MSE or the half-Brier Score into 

three components: 

 
2

/
2

/
2 )()(),( xfxffxfx EfExfMSE µµµσ −−−+=     (7) 

 

The first term on the RHS of (7) is the variance of the observations, and can be 

interpreted as the MSE of constant forecasts equal to the base rate. It represents forecast 

difficulty. The second term on the RHS of (7) measures the calibration or reliability of 

the forecasts, which measures the difference between the conditional mean of the 

occurrence on the probability group and the forecast probability. The third term on the 

RHS of (7) is a measure of the resolution or discrimination that requires some subtleties 

in interpretation, cf. Yates (1994). In general, it is desirable for the relative frequency of 

occurrence of the event to be larger (smaller) than the unconditional relative frequency of 

occurrence when f is larger (smaller). Thus, resolution refers to the ability of a set of 

probability forecasts to sort individual outcomes into probability groups which differ 

from the long-run relative frequency. Calibration can be interpreted as a labeling skill that 

expresses uncertainty correctly. Even though calibration is a natural feature to have, it is 

resolution that makes the forecasts useful in practice.10 

 

Thus, the calibration and resolution refer to the two distinct attributes of a forecast. For 

perfectly calibrated forecasts, µx/f = f and µx = µf , and the resolution term equals the 

variance of the forecasts, σf
2. Resolution or discrimination (or sharpness) refers to the 

marginal or predictive distribution of the forecasts )( fp . A sample of probability 

forecasts is said to be completely resolved if the probability only takes values zero and 

one. Apparently, completely refined forecasts would be miscalibrated due to the inability 
                                                 
10 See Dawid (1986), and DeGroot and Fienberg (1983). 
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of the forecasters to predict the future with certainty. Conversely, well-calibrated 

probability forecasts generally exhibit only a moderate degree of refinement. Thus, 

possible trade-off between the calibration and resolution exists to minimize MSE. 

Forecasts possess positive absolute skill when the resolution reward exceeds the 

miscalibration penalty.  

 

The distributions of )/( fxp for Q0-Q4 are depicted in Figures 2a-2e. In these figures, 

fx /µ is plotted against f, and referred to as the attributes diagram. The calculations are 

explained in Tables 2b and 2c.  Figures 2a-2e plot the relationship between fx /µ and f for 

the relevant sample of forecasts and observations, and also contain several reference or 

benchmark lines. The straight 045 line for which ffx =/µ represents perfectly calibrated 

forecasts. The horizontal line represents completely unresolved forecasts, for which 

xfx µµ =/ . The dotted line equidistant between the 045 line and the horizontal dashed line 

represents forecasts of zero skill in terms of SS where the resolution award is equal to the 

miscalibration penalty. To the right (left) of the vertical auxiliary line at xf µ= , skill is 

positive above (below) the zero-skill line and negative below (above) it. This is because, 

when fx /µ is on the right (left) of the vertical line and above (below) the zero-skill line, 

the resolution award will be greater than the miscalibration penalty. Hence, the MSE of 

the SPF would be smaller than that of the base rate, leading to a positive SS. Thus, 

Figures 2a-2e permit qualitative evaluation of resolution and skill as well as calibration 

for individual forecasts, see Murphy and Winkler (1992).  

 

An examination of Figures 2a – 2e indicates that, similar to the previous findings, the 

SPF forecasts with shorter forecasting horizons (Q0-Q2) are generally well calibrated. 

Most points on the empirical curves fall in regions of positive skill. However, SPF 

forecasts with longer forecasting horizons (Q3-Q4) reveal less satisfactory performance 

with negative overall skill scores. In Figures 3a – 3e, the graph is split into two 

conditional likelihood distributions given x = 1 (GDP decline) and x = 0 (no GDP 

decline). For these two conditional distributions, the means were calculated to be (0.56, 
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0.38, 0.26, 0.19 and 0.18) for x = 1 and (0.14, 0.16, 0.17, 0.17 and 0.18) for x = 0, 

respectively. Good discriminatory forecasts will give two largely non-overlapping 

marginal distributions, and, in general, their vertical differences should be as large as 

possible. While the shorter run forecasts (Q0-Q2) display better discriminatory power, 

the longer run forecasts (Q3-Q4) display poor discrimination due to the over-use of low 

probabilities during both regimes (i.e., x = 0 and x = 1). So the two distributions overlap. 

In particular, the mean values for x = 1 (GDP decline) and x = 0 (no GDP decline) for the 

4-quarter ahead forecasts (Q4) are almost identical.11  Numerical values of the Murphy 

decomposition are given in Table 3 where we find that MSE improves by about 35%, 

16% and 6% for the current (Q0), one quarter- (Q1), and 2-quarter–ahead (Q2) forecasts, 

respectively, over the constant relative frequency forecast (CRFF). The 3-quarter-ahead 

(Q3) forecasts are even with CREF, and the MSE of the 4-quarter-ahead (Q4) forecasts 

are worse by nearly 4%.  

 

The major contributor for the improvement in MSE is resolution, which helps to reduce 

the baseline MSE (CRFF) by about 47%, 25%, 17%, 6%, and 8% for Q0 to Q4, 

respectively.  On the other hand, the miscalibration increases MSE of CRFF by 12%, 9%, 

11%, 5% and 13%, respectively – they are relatively small for all forecast horizons. The 

improvement due to resolution is greater than the deterioration due to miscalibration for 

the up to 2-quarter-ahead forecasts, and the situation is opposite for the 4-quarter-ahead 

forecasts. In the case of 3-quarter-ahead forecasts, the impact of the resolution and 

miscalibration pretty much cancel out each other. As indicated by attributes diagrams 

(Figs.2a – 2e) and the overlapping of the p(f/x=1) distribution with p(f/x=0) (Figs.3a – 

3e), the SPF forecasters are conservative in assigning high probability during quarters 

when recession occurs. This also suggests that distinguishing between occurrences and 

non-occurrences, and assigning higher probabilities in quarters when recession occurs, 

can improve the resolution of the forecasts. It may be noted that the assignment of low 

probability for rare events is not unusual, and is actually quite common in weather 

                                                 
11 Cramer (1999) suggested the use of this difference in the conditional means as a goodness-of-fit measure 
in binary choice models with unbalanced samples where one outcome dominates the sample. See also 
Greene (2003).  
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forecasting. When the diagnostic information or “cue” is not adequate to make informed 

forecasts, the tendency for the forecaster is to assign the average base rate probability.12 

 

4.3 The Yates Decomposition 

Yates (1982), and Yates and Curley (1985) showed that calibration and resolution 

components in the Murphy decomposition are algebraically confounded with each other, 

and suggested a covariance decomposition of MSE that is more basic and revealing than 

the Murphy decomposition, see also Björkman (1994).  The Yates decomposition is 

written as: 

 

        2
,

22
min,

2 2)()1(),( xfxfffxx uuuuxfMSE σσσ −−++∆+−=    (8) 

 

where )1()( 2
0/1/

2
min, xxxfxff uuuu −−= ==σ , and 2

min,
22

fff σσσ −=∆ . 

 

As noted before, the outcome index variance 2
xσ = )1( xx uu − provides a benchmark 

reference for the interpretation of MSE. The conditional minimum forecast 

variance 2
min,fσ  reflects the double role that the variance of the forecast plays in 

forecasting performance. On the one hand, minimized 2
fσ will help reduce the MSE. On 

the other hand, minimized forecast variance can be achieved only when the constant 

forecast is offered. The constant forecast would lead to zero covariance between the 

forecast and event, which will, in turn, increase the MSE. So the solution is to minimize 

the forecast variance given the covariance that demonstrates the fundamental forecast 

ability of the forecasters. The conditional minimum value of forecast variance is achieved 

when the forecaster has perfect foresight such that he or she can exhibit perfect 

discrimination of the instances in which the event does and does not occur. 

 
                                                 
12 Diebold and Rudebusch (1989, 1991) and Lahiri and Wang (1994) used QPS and its resolution and 
calibration components to study the value of recession forecasts generated from probability models of 
Neftci (1984) and Hamilton (1989), respectively. Bessler and Ruffley (2004) have studied probability 
forecasts from a 3-variable VAR model of stock returns by a bootstrap-type procedure under the normality 
assumption. They found forecasts to be well calibrated but have very low resolution to be useful.  
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Since 2
min,

22
fff σσσ −=∆ , the term may be considered as the excess variability in the 

forecasts. If the covariance indicates how responsive the forecaster is to information 

related to an event’s occurrence, 2
fσ∆ might reasonably be taken as a reflection of how 

responsive the forecaster is to information that is not related to the event’s occurrence. 

Note that 2
fσ∆  can be calculated as NNN xfxf /)( 2

0/0
2

1/1 == + σσ , where ( ,1,0, =iNi ) is the 

number of periods associated with the occurrence (i =1) and non-occurrence ( i = 0), 

NNN =+ 01 . So the term is the weighted mean of the conditional forecast variances. 

 

Using the SPF probability forecast, the components of equation (8) were computed and 

presented in Table 4.13 For the shorter forecasting horizons up to 2-quarters (Q0-Q2), the 

overall MSE values are less than the constant relative frequency forecast variance, which 

demonstrate the absolute skillfulness of the SPF probability forecasts. For the longer run 

forecasting horizons (Q3-Q4), the overall MSEs are slightly higher than those of the 

constant relative frequency forecast. The primary contributor of the performance is the 

covariance term that helps reduce the forecast variance by almost 84%, 44%, 18% and 

5% for up to 3-quarter-ahead forecasts, but makes no contribution for the 4-quarter-ahead 

forecasts. The covariance reflects the forecaster’s ability to make a distinction between 

individual occasions in which the event might or might not occur. It assesses the 

sensitivity of the forecaster to specific cues that are indicative of what will happen in the 

future. It also shows whether the responsiveness to the cue is oriented in the proper 

direction. This decomposition is another way of reaching some of the conclusions as the 

decomposition of skill score in Table 2a.   

 

The excess variability of the forecasts, 2
min,

22
fff σσσ −=∆ , for each horizon is found to be 

0.0330, 0.0212, 0.0113, 0.0046, and 0.0040, respectively. Compared to the overall forecast 

variances 0.0541, 0.0272, 0.0123, 0.0047, and 0.004, the excess variability’s of SPF 

probability forecasts are 61%, 77%, 91%, 97% and 100% for Q0-Q4 forecasts, 

                                                 
13 Note that the QPSs and the variances for Q0-Q4 in Tables 3 and 4 are slightly different because Yates 
decomposition could be done with ungrouped data whereas the Murphy decomposition was done with 
probabilities grouped as in Table 1.  
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respectively.  Thus, they are very high, and this means that the subjective probabilities are 

scattered unnecessarily around 1/ =xfµ  and 0/ =xfµ . Since the difference in conditional 

means, 0/1/ == − xfxf µµ , are very close to zero for Q3-Q4 forecasts, all of their variability is 

attributed to excess variability. Assigning low probabilities in periods when GDP actually 

fell seems to be the root cause of the excess variance.  In our sample real GDP fell 20 

times. However, in10 of these quarters, the assigned probabilities for Q0-Q2 forecasts 

never exceeded 0.5; for Q3-Q4 forecasts, the assigned probabilities were even below 0.2. In 

contrast, for Q0-Q2, in more than 90% of the quarters when GDP growth did not decline, 

the probabilities were assigned correctly below 50% (for Q3-Q4 the probabilities were 

below 30%). This explains why Var (f/x=1) is much larger than Var (f/x=0) when the 

forecasts have any discriminatory power (cf. Figs. 3a-3e).  

 

Overall, both the Murphy and Yates decompositions support the usefulness of shorter run 

SPF probabilities as predictors of negative real GDP growth, and suggest possible ways 

of improving the forecasts, particularly at the short run horizons. The longer-term 

forecasts have very little discriminatory power. While the overall accuracy or the 

calibration of the forecasts are pretty much similar for each forecasting horizon, the 

usefulness of the shorter run forecasts primarily comes from their better discriminatory 

power. These probabilities embody effective information related to the occurrence of the 

event, and the overall average forecast probabilities are close to the relative frequency of 

the occurrence of the event. However, improvement can be made by further 

distinguishing factors related to the occurrence of recessions, while keeping the 

sensitivity of the forecasts to information that are actually related to the occurrence of 

GDP declines. This would imply a reduction of unnecessary variance of forecasts 

particularly during GDP declines, thereby increasing resolution further.    

 

5. RELATIVE OPERATING CHNARACTERISTIC (ROC) ANALYSIS 

 

As the Murphy and Yates decompositions indicated, the traditional measure - the overall 

calibration or accuracy (or calibration at-large) - can be decomposed into two distinct 

components. The calibration by group (or calibration at-small), as assessed by SM-D 
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validity test, is only one of the characteristics that a forecast possesses. Resolution or 

discrimination is another, and actually a more important feature to a forecast end-user. 

However, one vital issue is that, when the resolution is high and the judgment is accurate, 

the overall calibration will be good or even perfect. But if the resolution is high and the 

judgment is not accurate, the increased resolution may, instead, cause poor calibration 

score. Given the inability of any forecaster to forecast perfectly accurately, the frequent 

trade-off between the calibration and resolution is unavoidable. In this case, if the 

performance is measured by the traditional calibration and the QPS is used as the metric, 

it will encourage hedging behavior as is evidenced by the preponderance of assigned 

probabilities close to the historical base rate. As a result, the end users may frequently 

receive forecasts with decent calibration scores, but the forecast actually contains no 

value to them at all.  

 

In contrast, the discrimination characteristic focuses on the fundamental value of a 

forecast: its ability to capture the occurrence of an event with an underlying high hit rate, 

while maintaining the false alarm rate to some acceptable level. The Murphy and Yates 

decompositions analyzed the structure of the total forecast error and the impact or the 

relative contribution of each component to the total error, but they could not provide a 

stand-alone single measure for the discrimination ability of a forecast. In evaluating rare 

event probabilities, it is crucial to minimize the impact of the predominant outcome on 

the outcome score.  More specifically, the impact of correctly identifying the frequent 

event, which is the primary source of the hedging, should be minimized. So a better 

approach to forecast performance should concentrate on the hit rate of the infrequent 

event, instead of the “percentage correctly predicted” that is the very nature of QPS, cf. 

Doswell et al (1990) and Murphy (1991). 

 

In addition, one important but often overlooked issue in the evaluation of the probability 

forecast is the impact of the selection of the threshold. The performance of an ensemble 

of probability forecasts in terms of discrimination ability is actually the result of the 

combination of the intrinsic discrimination ability of a forecasting system and the 

selection of the threshold. In these regards, Relative Operating Characteristic (ROC) is a 
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convenient approach to use, but unfortunately has drawn little attention in 

econometrics.14 

 

Using ROC approach, the weight of evidence in support of the occurrence of an event can 

be represented by a point (say, W) on a scale. Higher values of W correspond to a higher 

probability of occurrence. The decision to issue the occurrence forecast or non-

occurrence forecast is then made based on the predetermined threshold (say, w) on the 

weight of evidence scale. The occurrence forecast is announced if W > w, the non-

occurrence is announced otherwise. It is further assumed that W has a probability density 

)(0 wf before non-occurrences and )(1 wf  before occurrences.  

 

Following the signal detection model, the conditional probability of a hit (H) is then the 

probability that the weight of evidence exceeds the threshold w if the event occurs. That 

is dwwfH
w

)(1∫
∞

= . Similarly, the conditional false alarm rate (F) is the probability that the 

weight of evidence exceeds w when the event does not occur. That is dwwfF
w

)(0∫
∞

= . 

ROC can be represented by a graph of the hit rate against the false alarm rate as w varies, 

with the false alarm rate plotted as the X-axis and the hit rate as the Y-axis. The location 

of the entire curve in the unit square is determined by the intrinsic discrimination capacity 

of the forecasts, and the location of specific points on a curve is determined by the 

decision threshold w that is selected by the user. As the decision threshold w varies from 

low to high, or the ROC curve moves from right to left, H and F vary together to trace 

out the ROC curve. Low thresholds lead to both high H and F towards the upper right 

hand corner. Conversely, high thresholds make the ROC points move towards the lower 

left hand corner along the curve. Apparently, perfect discrimination is represented by an 

ROC that rises from (0,0) along the Y-axis to (0,1), then straight right to (1,1). The 

diagonal H = F represents zero skill, indicating that the forecasts are completely non-

discriminatory. ROC points below the diagonal represent the same level of skillful 

                                                 
14 See Jolliffe and Stephenson (2003), Stephenson (2000), and Swets and Pickett (1982) for additional 
analysis on the use of ROC. 
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performance as they would if reflected about the diagonal, but just mislabeled. Forecast 

of non-occurrence should be taken as occurrence. 

 

In Figures 4a-4e the ROC curves for the current quarter and the next four quarters are 

displayed. It can be seen that the ROC for the current quarter (Q0) is located maximally 

away from the diagonal towards the left upper corner demonstrating the highest 

discrimination ability of the SPF forecasts, followed by the one-quarter-ahead forecasts. 

For longer-term forecasts ROCs become rapidly flatter as the forecasting horizon 

increases. For the four-quarter-ahead forecasts, the ROC mildly snakes around the 

diagonal line, indicating forecasts have basically no skill or discrimination ability for any 

value of the threshold. Given the relative costs of type I and type II errors in a particular 

forecasting situation, an end-user can pick a suitable hit rate (or false alarm rate) of 

choice along the ROC curve to find the corresponding false alarm rate (or hit rate). This 

will also give an optimal threshold for making decisions.  

 

The hit rates and false alarm rates for each selected threshold are reported in Table 5, 

where one can find the mix of hit and false alarm rates that are expected to be associated 

with each horizon-specific forecast. For example, for achieving a hit rate of 90% with Q0 

forecasts, one should use 0.25 as the threshold, and the corresponding false alarm rate is 

expected to be 0.163. Table 5 also shows that at this threshold value, even though the 

false alarm rates are roughly around 0.15 for forecast of all horizons, the hit rate steadily 

declines from 90% for Q0 to only 21% for Q4 - clearly documenting the rapid speed of 

deterioration in forecast capability as the forecast horizon increases. Though not reported 

in Table 5, for the same hit rate of 90%, the false alarm rates for Q1 through Q4 forecasts 

are 0.189 (w=0.237), 0.636 (w=0.13), 0.808 (w=0.115) and 0.914 (w=0.10) respectively. 

Thus, for the same hit rate, the corresponding false alarm rates for Q2-Q4 forecasts are so 

large (64%, 80% and 91% respectively) that they can be considered useless for all 

practical purposes. Interestingly, the relative inferiority of the Q2 forecasts was not clear 

in our earlier analysis.  
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In contrast, Q0 and Q1 forecasts seem to have acceptable operating characteristics. Given 

the relative costs of two types of classification errors, the end-user can choose an 

appropriate threshold w to minimize the total expected cost of misclassification. This type 

of optimal decision rule cannot be obtained by the Murphy-Yates decompositions of 

QPS.15  Moreover, for forecasting relatively rare business events like recessions, ROC 

analysis is essential for the probability forecasts to have operational value. This is 

because, in ROC analysis, the success rate in predicting the predominant event is not part 

of the goodness of fit measure.  

 

6. CONCLUSION  

 

In this paper we have evaluated the subjective probability forecasts for real GDP declines 

during 1968-2004 using alternative methodologies developed in psychology and 

meteorology.  The Survey of Professional Forecasters record probability forecasts for 

real GDP declines during the current and next four quarters. We decomposed the 

traditional Brier’s QPS associated with these probability forecasts into calibration, 

resolution, and alternative variance decompositions. We found conclusive evidence that 

the shorter run forecasts (Q0-Q1) possess significant skill, and are well calibrated. The 

resolution or the discrimination ability is also reasonable. Q2 forecasts have borderline 

value. However, the variance of these forecasts, particularly during cyclical downturns, is 

significantly more than necessary, given their discriminatory power. The analysis of 

probability forecasts, thus, shows that forecasters respond also to cues that are not related 

to the occurrence of negative GDP growths. This leads to worse resolutions.  

 

                                                 
15 Swets and Pickett  (1982) suggest the use of area under ROC and the discrimination distance to find 
optimal values of the threshold. This, however, makes the choice of the threshold w independent of the 
relative costs of type I and type II errors in a specific forecasting context.  On the other hand, in a series of 
papers Zellner (1986) has formulated the problem of forecasting business cycle turning points in a Bayesian 
decision theoretic framework allowing for asymmetric costs of misclassification, see Garcia-Ferrer et al. 
(1987), Zeller and Hong (1991) and Zellner et al. (1991). In this framework, a low threshold value of 0.25 
would imply that the relative cost of a false signal is almost four times the cost of missing a downturn. With 
SPF data, we find that the optimal threshold gets smaller as the horizon gets larger. This is consistent with 
the supposition that the cost of a false signal is apt to be smaller for longer-horizon forecasts. However, an 
asymmetric loss structure is unlikely to be the sole explanation for the rapid deterioration of the forecasts 
over 5 quarterly horizons.  
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In contrast, longer run forecasts (Q3-Q4) exhibit poor performance as measured by 

negative skill scores, low resolutions, dismal ROC measures, and insignificant 

correlations with actual outcomes. Interestingly, the Seillier-Moiseiwitsch and Dawid 

(1993) test for perfect forecast validity failed to detect any problem with the longer-term 

forecasts. However, it is clear from our analysis that our professional forecasters do not 

have adequate information to forecast meaningfully at horizons beyond 2 quarters; they 

lack relevant discriminatory cues.  Since the SPF panel is composed of professional 

economists and business analysts who forecast on the basis of models and informed 

heuristics, their failure for the long-term forecasts may indicate that at the present time 

forecasting real GDP growth beyond two quarters may not be possible with reasonable 

type I and Type II errors. Since survey probabilities embody important additional 

information over point forecasts, an analysis of the probability forecasts provided us with 

a unique opportunity to understand the reasons for forecast failures. As Granger (1996) 

has pointed out, in some disciplines forecasting beyond certain horizons is known to be 

not possible; for instance, in weather forecasting the boundary seems to be four or five 

days. Our analysis of probability forecasts suggests that in macro GDP forecasts, two 

quarters appears to be the limit at the present time.   

 

We have also emphasized that for forecasting rare events, it is important to examine the 

ROC curves where the relative odds for the event can be studied at depth. The analysis 

also helps find an optimum probability threshold for transforming the probability 

forecasts to a binary decision rule. In many occasions the selection of the threshold is 

quite arbitrary. In this regard, ROC analysis provides a simple but an objective criterion, 

incorporating the end user’s loss function for missed signals and false alarms. The ROC 

analysis in our case revealed that for a pre-assigned hit rate of (say) 90%, the associated 

false alarm rates for the Q3-Q4 forecasts are so high that they can be considered useless 

for all practical purposes.   

 

Other interesting implications of this study are as follows: First, decomposition 

methodologies introduced in this paper have much broader implications for evaluating 

model fit in Logit, Probit and other limited dependent variable models. These models 
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generate probabilities of discrete events. Again, often in economics, we try to identify 

events that are relatively rare (e.g., loan defaults, hospital stays, road accidents, crack 

babies, etc.) in terms of observable predictors. Usually the model fit criteria look 

excellent, but the estimated model hardly identifies the small population of interest. 

Using the evaluation methodology of probability forecasts, one can study the true value 

of the estimated probability models for out-of-sample predictions.  

 

Second, given the multi-dimension nature of the forecasts and the possible trade-offs 

between the different characteristics of the forecasts such as calibration and resolution, 

discrimination ability should be taken as an important characteristic with high priority for 

the end users. As the ROC analysis revealed, a fundamental issue for forecasting a binary 

event is to distinguish the occurrence of an event from its non-occurrence. A forecast 

with higher discrimination ability should certainly be considered a better one over others. 

As revealed by our analysis, a decent external correspondence may not necessarily 

represent a truly useful forecast. Instead, it could be just the result of the “hedging” 

behavior on part of the forecasters. Most importantly, a higher accuracy score can be 

achieved at the expense of lowered discrimination ability.  

 

Third, considering the fact that the chronologies of the NBER recessions are usually 

determined long after the recession is over, negative GDP growth projections are 

probably a reasonable way of tracking business cycles in real time. We have found 

conclusive evidence that the SPF subjective probability forecasts for the near term are 

useful in this regard, even though these probability forecasts are characterized by excess 

variability. In principle, the quality of these forecasts can be improved by further 

distinguishing factors related to the event from those that are not, while keeping the 

sensitivity of the forecasts to correct information.  

 

One wonders if the SPF forecasters can be trained to do better. In the current situation, 

forecasting improvement may not be possible for various reasons. In most psychological 

and Bayesian learning experiments, the outcomes are readily available and are known 

with certainty; thus prompt feedback for the purpose of improvement is possible. In 
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contrast, the GDP figures are announced with considerable lag, and are then revised 

repeatedly.  Also, as we have mentioned before, correct and dependable cues for 

predicting recessions a few quarters ahead may not be available to economists. The 

excess variability of forecasts and the observed lack of discriminating ability may just be 

a reflection of that hard reality. It may be the same reason why model-based forecasts 

over business cycle frequencies have not succeeded in the past. Given the loss/cost 

structure facing the forecasters and lacking useful cues, issuing low probabilities for 

future recessions may be the optimal predictions for the forecasters under considerable 

uncertainty, particularly when the course of the cycle can be manipulated by government 

policies.  
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Fig. 1a: Probability of Decline in Real GDP in the Current Quarter
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Fig. 1b: Probability of Decline in Real GDP in the Following Quarter
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Fig. 1c: Probability of Decline in Real GDP in Second Following Quarter
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Fig. 1d: Probability of Decline in Real GDP in Third Following Quarter
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Fig. 1e: Probability of Decline in Real GDP in Fourth Following Quarter
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Figure 2a: Attributes Diagram (Q0)
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Figure 2b: Attributes Diagram (Q1)
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Figure 2c: Attributes Diagram (Q2)
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Figure 2d: Attributes Diagram (Q3)
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Figure 2e: Attributes Diagram (Q4)
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Fig. 3a: Likelihood Diagram (Q0)
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Fig. 3b: Likelihood Diagram (Q1)
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Fig. 3c: Likelihood Diagram (Q2)
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Fig. 3d: Likelihood Diagram (Q3)
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Fig. 3e: Likelihood Diagram (Q4)
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Figure 4a: ROC for Q0         Figure 4b: ROC for Q1     
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 Figure 4c: ROC for Q2        Figure 4d: ROC for Q3   
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 Figure 4e: ROC for Q4           
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   Table 1: Calibration Test   
      

Midpoint Zj (0) Zj (1) Zj (2) Zj (3) Zj (4) 
          

0.025 -1.04 -0.55 -0.23 -0.16 -0.16 
          

0.1 -2.38 -2.37 -1.45 -0.43 0.37 
          

0.2 1.00 -0.92 -1.00 -1.10 -0.93 
          

0.3 -0.22 1.01 1.41 0.28 -1.57 
          

0.4 0.94 0.15 -0.61 -1.63 0.00 
          

0.5 -0.82 0.00 -1.89 0.00 0.00 
          

0.6 -0.41 -0.94 0.82 0.00 0.00 
          

0.7 -1.39 -1.46 0.00 0.00 0.00 
          

0.8 1.12 0.00 0.00 0.00 0.00 
          

0.9 0.00 0.00 0.00 0.00 0.00 
          

0.95 0.00 0.00 0.00 0.00 0.00 
          

2χ  12.7 10.82 9.74 4.17 3.50 
            

QPS Test 
 (N (0,1)) -1.597 -1.481 -1.393 -1.137 -0.916 
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                          Table 2a:  Decomposition of Skill Score   
Lead 
Time SS (Skill Score)  =  Association   -  Calibration   -  Bias 
Q0 0.3644 0.3930 0.0017 0.0269 
Q1 0.1942 0.2202 0.0000 0.0260 
Q2 0.0594 0.0774 0.0015 0.0165 
Q3 -0.0019 0.0140 0.0059 0.0100 
Q4 -0.0454 0.0000 0.0323 0.0130 

 
 
 
 
 
 
 Table 2b:  Summary Measures of Marginal & Joint Distributions of Forecasts & Observations 

Lead 
Time                                Means                     Variances   Correlation Sample 

  µf µx Var (f) Var (x) Coefficient Size 
Q0 0.1969 0.1399 0.0541 0.1211 0.6269 143 
Q1 0.1971 0.1408 0.0272 0.1219 0.4693 142 
Q2 0.1868 0.1418 0.0123 0.1226 0.2781 141 
Q3 0.1780 0.1429 0.0047 0.1233 0.1184 140 
Q4 0.1806 0.1407 0.0040 0.1218 0.0017 135 

 
 
 
 
 
 
             Table 2c:  Summary Measures of Conditional Distribution Given Observations  

Lead 
Time Means                     Variances   Sample Sample 

  µf / x = 0 µf / x = 1 Var (f) / x = 0 Var (f) / x = 1 n (x = 0) n (x = 1) 
Q0 0.1383 0.5573 0.0284 0.0632 123 20 
Q1 0.1659 0.3875 0.0206 0.0258 122 20 
Q2 0.1743 0.2624 0.0110 0.0139 121 20 
Q3 0.1747 0.1978 0.0048 0.0039 120 20 
Q4 0.1806 0.1809 0.0042 0.0032 116 19 
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                Table 4:  Yates Decomposition   

Lead 
Time MSE = Var (x) + ∆ Var (f) + Min Var(f) + (µf - µx)2   - 2*Covar (f,x) 
Q0 0.0769 0.1203 0.0330 0.0211 0.0033 0.1008 
Q1 0.0977 0.1210 0.0212 0.0059 0.0032 0.0536 
Q2 0.1146 0.1217 0.0113 0.0009 0.0020 0.0214 
Q3 0.1227 0.1224 0.0046 0.0001 0.0012 0.0057 
Q4 0.1265 0.1209 0.0040 0.0000 0.0016 0.0001 

 
 
 

                            Table 3:  Murphy Decomposition   
Lead 
Time MSE (Accuracy)   =  Uncertainty   +  Reliability  -  Resolution 
Q0 0.0793 0.1211 0.0153 0.0572 
Q1 0.1018 0.1219 0.0108 0.0308 
Q2 0.1150 0.1226 0.0135 0.0210 
Q3 0.1226 0.1233 0.0062 0.0069 
Q4 0.1270 0.1218 0.0155 0.0103 
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           Table 5: Hit Rate / False Alarm Rate 
       
    Q0 Q1 Q2 Q3 Q4 
0.95 H 0.000 0.000 0.000 0.000 0.000 
  F 0.000 0.000 0.000 0.000 0.000 
            
0.85 H 0.250 0.000 0.000 0.000 0.000 
  F 0.000 0.000 0.000 0.000 0.000 
            
0.75 H 0.300 0.000 0.000 0.000 0.000 
  F 0.016 0.000 0.000 0.000 0.000 
            
0.65 H 0.400 0.100 0.000 0.000 0.000 
  F 0.033 0.025 0.000 0.000 0.000 
            
0.55 H 0.500 0.150 0.050 0.000 0.000 
  F 0.065 0.041 0.008 0.000 0.000 

            
0.45 H 0.600 0.300 0.100 0.000 0.000 
  F 0.073 0.074 0.050 0.000 0.000 
            
0.35 H 0.700 0.500 0.150 0.000 0.000 
  F 0.098 0.098 0.074 0.033 0.000 
            
0.25 H 0.900 0.800 0.500 0.250 0.211 
  F 0.163 0.180 0.149 0.117 0.155 
            
0.15 H 1.000 0.950 0.850 0.800 0.737 
  F 0.228 0.369 0.529 0.658 0.664 
            
0.05 H 1.000 1.000 1.000 1.000 1.000 
  F 0.683 0.943 0.992 1.000 1.000 
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