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Abstract

We propose a nonparametric simulated maximum likelihood estimation
(NPSMLE) with built-in nonlinear �ltering. By recursively approximating the
unknown conditional densities, our method enables a maximum likelihood estima-
tion of general dynamic models with latent variables� including time-inhomogeneous
and non-stationary processes. We establish the asymptotic properties of the NPSM-
LEs for hidden Markov models, and then demonstrate the usefulness of our proposed
method with Monte Carlo studies.
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1 Introduction

We propose a general method to estimate dynamic models with latent variables by max-

imum likelihood. This method incorporates nonlinear �ltering into the nonparametric

simulated maximum likelihood estimation (NPSMLE) of Kristensen and Shin (2006).

The estimator is highly general in the sense that it can be implemented for basically any

dynamic model from which one can simulate.

The procedure is a recursion of two steps: The �rst step is to estimate the unknown

conditional densities from simulated observations by kernel methods. The second is to

simulate the next set of arti�cial observations from the estimated densities. The condi-

tional density will converge to the true density as the number of arti�cial observations

(N) goes to in�nity, so we can approximate the density arbitrarily well by choosing

a su¢ ciently large N . Given this simulated density, we obtain a simulated maximum

likelihood estimator of the model parameters.

We give su¢ cient conditions for the simulated MLE to be consistent and have the

same asymptotic distribution as the infeasible MLE. The latter result appears to be the

�rst of its kind for dynamic latent variable models. Previous studies on simulated MLE

of latent dynamic models have at most shown consistency.

Our method is related to simulated methods of moments (SMM) (Du¢ e and Single-

ton, 1993) and indirect inference (Gallant and Tauchen, 1996; Gouriéroux et al., 1993;

Smith, 1993), but, unlike these approaches, is not subject to the arbitrariness involved in

the selection of target moments or auxiliary models. Furthermore, under weak regularity

conditions, maximum likelihood estimators enjoy higher e¢ ciency than these estimators,

and the SMLEs will inherit these properties.

Related nonparametric simulation-based methods are considered in Fermanian and

Salanié (2004) and Altissimo and Mele (2005). The former however only considers the

case of fully observable stationary processes, while the latter restricts itself to cross-

sectional models where latent variables easily can be dealt with. In comparison, our

method allows for potentially non-stationary processes, including time-inhomogeneous

dynamics, and utilizes �ltering procedures to deal with latent variables. In this re-

gard, our method is closely related to particle �ltering (Fernández-Villaverde and Rubio-

Ramírez, 2004; Kim et al., 1998; Pitt and Shephard, 1999).

Our method however has several advantages compared to the particle �ltering ap-

proach: One advantage is that the our simulated likelihood function is smooth in its

parameters, which helps us characterize asymptotic properties of the estimators. Fur-
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thermore, smoothness is desirable in numerical maximizations since most optimization

routines depend on this property. Another is the simplicity of the proposed estimation

method, which facilitates the implementation of it; no advanced programming skills are

required to apply the method.

On the other hand, one disadvantage of our proposed method is the bias incurred by

using kernel methods to estimate the density for a �nite number of simulations. However,

one can simulate one�s way out of this problem by drawing a su¢ ciently large number

of data points� that is, by letting N !1.
The paper is organized as follows. In the next section, we set up our framework and

present the approximate density and the associated NPSMLE for hidden Markov models.

In Section 3, we derive the asymptotics of the NPSMLE under regularity condition.

Section 4 presents a speci�c example where NPSMLE can be used with advantage.

2 NPSMLE for hidden Markov models

Consider a Markov process wt = (yt; zt) 2 Rd where yt 2 Rd1 and zt 2 Rd2 such that
d = d1 + d2. The process belongs to a parametric family given by fpt (vjw; �) : � 2 �g
where � � Rk. That is, there exists a true, but unknown, value �0 2 � such that

P (wt 2 Ajwt�1 = w) =
Z
A
pt (vjw; �0) dv:

We are interested in estimating the parameter �0. However, only the component yt is

observed such that zt is a latent variable, and we therefore have to base our estimation

method on the observations fyt : t = 1; :::; Tg.
A natural choice of estimator is the MLE. Suppose that z0 2 Rd2 is known, although

zt for t � 1 is unobservable. The (conditional) likelihood can then be written as

LT (�) = log pT (yT ; yT�1; : : : ; y1jy0; z0; �) =
TX
t=1

log pt(ytjxt�1; �)

where xt = (yt; :::; y0; z0), and the 2nd equality follows by the standard conditioning

argument. The actual MLE is then de�ned as

~� = arg sup
�2�

LT (�):

Unfortunately, the conditional density for the observables is in most cases not avail-

able on closed form; pt(ytjxt�1; �) is unknown. Instead, we here propose to combine
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simulations with nonparametric kernel methods to construct a simulated version of the

likelihood. This can then be used to obtain a simulated MLE. Below, we propose three

alternative methods to do this, all based on the kernel density method. The two �rst

su¤er from certain disadvantages which will lead us to focus on the third one in the

following sections.

In the �rst method, we simulate N trajectories recursively,
�
Y �;x0t;i ; Z�;x0t;i

�
�

pt

�
�; �jY �;x0t�1;i; Z

�;x0
t�1;i; �

�
, t = 1; :::; T , i = 1; :::; N , with (Y �;x00;i ; Z�;x00;i ) = x0.This can

be done such that the trajectories are mutually independent. Since by construc-

tion,
�
Y �;x0T;i ; ::::; Y

�;x0
1;i

�
� pT (yT ; yT�1; : : : ; y1jx0; �), we can use these to calculate a

nonparametric kernel density estimator of pT :

p̂T (yT ; : : : ; y1jx0; �) =
1

N

NX
i=1

TY
t=1

Kh

�
Y �;x0t;i � yt

�
; (1)

where K : Rd1 7! R is a kernel and h > 0 a bandwidth; see ? for an introduction to

these. Observe however that this will su¤er from a severe curse of dimensionality: Under

regularity conditions,

p̂T (yT ; : : : ; y1jx0; �)� pT (yT ; : : : ; y1jx0; �) = OP (1=
p
Nhd1T ) +OP

�
h2
�
;

where the �rst component is the variance term and the second the bias term. Note that

the variance term grows exponentially with the number of observations T and as such p̂T
will be a not very precise version of the actual density. So a large number of simulations

have to be performed to obtain a su¢ cient degree of accuracy. The deterioration in the

convergence rate mirrors the fact that at time t the simulations are performed conditional

only on the information available at time 0, x0, not utilizing the information contained

in (yt�1; :::; y1).

Instead of using the likelihood for estimation, an alternative could be to use the

criterion function given by

QT (�) =
TX
t=1

log pt(ytjx(q)t�1; �); x
(q)
t�1 = (yt�1; :::; yt�q) ;

for some �xed q � 1, and then estimate �0 by the maximizer of this. The density

pt(ytjx(q)t�1; �) could be approximated by simulating N i.i.d. samples of length T as in

(1), and then calculate

p̂t (yjx; �) =

PN
i=1Kh

�
Y �t;i � y

�
Kh

�
Xq;�
t�1;i � x

�
PN
i=1Kh

�
Xq;�
t�1;i � x

� ; (2)
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where Xq;�
t�1;i =

�
Y �t�1;i; :::; Y

�
t�q;i

�
. Now the variance component of the simulation er-

ror is OP (1=
p
Nhd1(1+q)), and as such �xed as T ! 1. But the identi�cation of �

is not clear since we only condition on a subset of the information available at time

t � 1, and the estimator will not in general achieve MLE e¢ ciency. Note that for this
estimator, instead of simulating N i.i.d. trajectories, one could simulate one long trajec-

tory,
n�
Y �t ; Z

�
t

�
: t = 1; :::; ~N

o
with

�
Y �t ; Z

�
t

�
� pt

�
�; �jY �t�1; Z�t�1

�
, and then use this to

calculate

~p (yjx; �) =

P ~N
t=1Kh

�
Y �t � y

�
Kh

�
Xq;�
t�1;i � x

�
P ~N
t=1Kh

�
Xq;�
t�1;i � x

� : (3)

This however requires the process to be stationary, and the resulting density estimator

will most likely be less precise; see Kristensen and Shin (2006) for further discussion of

this issue.

Given the drawbacks of the two methods outlined above, we now propose a recursive

method to construct a simulated version of the likelihood, L̂T (�), which does not su¤er

from the dimension problem as in the estimator in (1). This is done by iteratively

calculating kernel-based estimates of pt (ytjxt�1; �), t = 1; : : : ; T . In the following, we

suppress the dependence on � 2 � since it is kept �xed. The procedure works as follows:

1. Given x0 = (y0; z0) and �, we can simulate Z
x0
1;i and Y

x0
1;i for i = 1; : : : ; N . From

these simulated values, we can estimate p1(y1jx0) and p1(z1jy1; x0) by

p̂1(y1jx0) =
1

N

NX
i=1

Kh(Y
x0
1;i � y1);

and

p̂1(z1jy1; x0) =
PN
i=1Kh(Z

x0
1;i � z1)Kh(Y

x0
1;i � y1)PN

i=1Kh(Y
x0
1;i � y1)

:

2. We draw Zx11;i for i = 1; : : : ; N from p̂1(z1jx1) = p̂1(z1jy1; x0). Given the Markov
property, for each i, generate Y x12;i and Z

x1
2;i from p2(�; �jy1; Zx11;i). Kernel estimation

gives us:

p̂2(y2jx1) =
1

N

NX
i=1

Kh(Y
x1
2;i � y2);

p̂2(z2jx2) =

PN
i=1Kh(Z

x1
2;i � z2)Kh(Y

x1
2;i � y2)PN

i=1Kh(Y
x1
2;i � y2)

:
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3. We draw Zx22;i for i = 1; : : : ; N from p̂2(z2jx2). Given the Markov property, for each
i, generate Y x23;i and Z

x2
3;i from p3(�; �jy2; Zx22;i). Kernel estimation gives us:

p̂3(y3jx2) =
1

N

NX
i=1

Kh(Y
x2
3;i � y3);

p̂3(z3jx3) =

PN
i=1Kh(Z

x2
3;i � z3)Kh(Y

x2
3;i � y3)PN

i=1Kh(Y
x2
3;i � y3)

:

Once we have obtained the simulated densities, these can be used to calculate a

simulated version of the likelihood and then de�ne the NPSMLE as

�̂ = arg sup
�2�

L̂T (�);

L̂T (�) =
TX
t=1

log p̂t(ytjxt�1; �):

The key component in our iterative scheme is that the simulations at time t are

done conditional on all (observed) information at time t� 1, xt�1. That is, we simulate�
Y
xt�1
t ; Z

xt�1
t

�
. This is in contrast to the alternative methods in (1) and (2). In the case

of (1), at time t, the draw (Y x0t ; Zx0t ) is done conditional on the much smaller information

set x0; the iterative scheme thereby increases the precision in our simulations and we

can reduce the number of simulations used in each step. For the estimator in (2) only

a subset, x(q)t�1 = (yt�1; :::; yt�q), of the full information is utilized; the iterative scheme

utilizes the full set of information and thereby increases the e¢ ciency of the estimator.

On the other hand, in the iterative scheme, each step involves an additional error

since we use p̂t(ztjxt) instead of (the unknown) pt(ztjxt) to draw Zxtt . So in addition to
the estimation error incurred by the kernel method, we also face a simulation error. This

error will accumulate as T !1, but the cumulative approximation error will only grow
linearly in T in contrast to the estimator in (1) where the simulation error increases at

an exponential rate.

Many latent variables models take the form

yt = g (yt�1; zt; "t) ;

zt = h (zt�1; �t) ;

where f("t; �t)g are i.i.d. and mutually independent, and the density pt (ytjzt; xt�1) =
pt (ytjzt; yt�1) is known. In this case, an alternative, more precise, estimate of pt (ztjxt)
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can be obtained by Bayes�Rule,

p̂t(ztjxt) =
pt(ytjzt; yt�1)p̂t(ztjxt�1)

p̂t(ytjxt�1)
;

where

p̂t(ztjxt�1) =
NX
i=1

Kh(Z
xt�1
t;i � yt); p̂t(ytjxt�1) =

NX
i=1

Kh(Y
xt�1
t;i � yt):

Finally, we note that discrete components, found for example in Markov switching

models, can be accommodated for here by modifying the kernel; see Kristensen and Shin

(2006) for more details.

3 Asymptotic Properties of the NPSMLE

In this section we show that under regularity conditions on the parametric model, the

NPSMLE �̂ will have the same asymptotic properties as the infeasible estimator ~� for a

suitably chosen sequence N = N (T ) and h = h (N).

Our proof proceeds in two steps: We �rst show that p̂t(ytjxt�1; �) !P pt(ytjxt�1; �)
in a suitable sense as N !1 and h! 0. Given this result, we are able to demonstrate

that the NPSMLE �̂ has the same (�rst order) asymptotic properties as the infeasible

estimator ~� for a suitably chosen sequence N = N (T ) and h = h (N). The second step

is shown by applying the set of general results regarding simulated estimators found in

Kristensen and Shin (2006).

In order to show the two above steps, we have to modify the recursive simulation

strategy and the simulated version of the likelihood slightly.. In particular, we introduce

a trimming device allowing us to control the tail behaviour of the density estimator. Let

�a(�) be a continuously di¤erentiable trimming function satisfying �a(x) = 1 if jxj > a,
and 0 if jxj < a=2, and a = a(N) ! 0 be a trimming sequence. By letting a ! 0

su¢ ciently fast, the trimming will have no e¤ect asymptotically.

We �rst need to modify our simulation scheme: At step t � 1, we draw Zxtt;i from the

following trimmed version of p̂t (ztjxt) instead of p̂t (ztjxt) itself,

~pt (ztjxt; �) =
p̂t (ztjxt) �a fp̂t (yt; ztjxt�1)gR
p̂t (zjxt) �a fp̂t (yt; ztjxt�1)g dz

(4)

=
p̂t (yt; ztjxt�1) �a fp̂t (yt; ztjxt�1)gR
p̂t (yt; zjxt�1) �a fp̂t (yt; zjxt�1)g dz

:

7



This corresponds to �rst drawing from p̂t (ztjxt), and then discarding all simulated values
outside a compact (but growing) set de�ned in terms of the trimming function. Except

for this alteration, the recursive scheme outlined in the previous section remains the

same. Second, we also trim the simulated log-likelihood function. So we rede�ne L̂T (�)

as

L̂T (�) =
TX
t=1

�a (p̂(ytjxt�1; �)) log p̂(ytjxt�1; �);

where � is the same trimming function.

In Kristensen and Shin (2006), a trimming device is also used, but only in the

calculation of the simulated likelihood. Here, we employ trimming both in the likelihood

evaluation and in the simulation. The latter is due to the fact that we here, in contrast

to the fully observed case, cannot simulate Zxtt;i perfectly, and instead draw from an

estimated density. The trimming of the simulated values enables us to control the

additional error arising from the imperfect simulation.

LetWw;�
t denote a random variable drawn from the transition density of wt, pt (�jw; �).

We then impose the following regularity conditions on the model.

A.1 There exist a �t with E�2t < 1 and �1 � 0 such that kWw;�
t � Ww0;�0

t k �
�t
�
kw � w0k�1 + k� � �0k�1

�
for all �; �0 2 � and w;w0 2 Rl.

A.2 � 7! Y x;� is di¤erentiable with its derivative, _Y x;�, satisfying

k _Y x;�t � _Y x
0;�0

t k � �t
h
kx� x0k�1 + k� � �0k�1

i
; k _Y x;�t k2 � �tkxk�2 ;

for all �; �0 2 � and x; x0 2 Rl, where �2 � 0.

A.3 The density pt (vjw; �) is r � 2 times continuously di¤erentiable w.r.t. v with

bounded derivatives such that

max
t�1

sup
�2�

sup
(v;w)2R2d

X
j�j=r

���D�vpt (vjw; �)��� <1:
A.4 The density pt (vjw; �) is continuous w.r.t. �.

A.5 The density pt (vjw; �) is thrice continuously di¤erentiable w.r.t. �.

Uniform convergence of p̂ over x and � are established under (A.1)-(A.3) using higher-

order kernels as de�ned below. The remaining two assumptions give us a smooth likeli-

hood function which in turn enables us to use standard Taylor expansion arguments.

We impose the following conditions on the actual MLE to obtain consistency of �̂:
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C.1 � � Rd is compact.

C.2 ~� P! �0.

C.3 There exists a sequence �LT > 0 such that:

1. LT (�) =�LT is stochastically equicontinuous.

2. sup�2�
PT
t=1 jlog pt (ytjxt�1; �)j

1+� =�LT = OP (1) , for some � > 0.

3.
PT
t=1 kytk

1+� =�LT = OP (1) and
PT
t=1 Ek�tk=�LT = OP (1), for some � > 0.

The condition (C.3) is used to obtain uniform convergence of the simulated likelihood

over �. In the stationary case, �LT can be chosen as �LT = T in which case (C.3.1)-(C.3.3)

will follow by the LLN under suitable moment conditions.

In order to show that �̂ has the same asymptotic distribution as ~�, additional assump-

tions are needed. They basically require that the actual MLE in fact has an asymptotic

distribution:

N.1 �0 2 int�.

N.2 I�1T = I�1T (�0)! 0.

N.3 Wj;T (�) = OP (1) uniformly in a neighborhood of �0 for j = 1; :::; d.

N.4 (UT (�0); VT (�0))
d! (U0; V0) for some random variables (U0; V0) with V0 being non-

singular almost surely.

Under these conditions, I1=2T (~� � �0)
d! V �10 U0. Regularity conditions under which

(C.1)�(C.3) and (N.1)�(N.4) hold can be found in Bickel and Ritov (1996), Bickel et al.

(1998), Douc and Matias (2001), Jensen and Petersen (1999) and Leroux (1992).

The kernel K is assumed to belong to the following class of so-called higher-order or

bias-reducing kernels:

K.1 The kernel K satis�es
R
Rd1 K(z)dz = 1;

R
Rd1 z

�K(z)dz = 0, for 1 � j�j � r � 1;R
Rd1 kzk

rjK(z)jdx <1; supz [jK(z)jmax(kzk; 1)] <1 ; K is absolutely integrable

with a Fourier transform 	 satisfying
R
Rd1

�
(1 + kzk) supb�1 j	(bz)j

	
dz <1.

Finally, we restrict the class of permissible bandwidths and the number of simulations

as follows:
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B.L.1 a�T
p
log (N)N�1=2h�d1�1 ! 0, hra�T ! 0, and N�2
 log (a)h�d1 ! 0 for some


 > 0.

B.L.2 �LTh
�d1�1a�T

p
log (N) =N ! 0, �LThra�T ! 0, �LTN�2
 log (a)h�d1 ! 0,

�LT log (a)
�1 ! 0, �LTN�
 ! 0 for some 
 > 0.

Theorem 1 Assume that (A.1)�(A.4), (K.1), (C.1)�(C.3) hold. Then �̂ P! �0 for any

sequences N !1, h! 0 satisfying (B.L.1).

If furthermore (A.5) and (N.1)�(N.4) hold, then I1=2T (�̂ � �0)
d! V �10 U0 for any

sequences N !1, h! 0 satisfying (B.L.2).

Comparing with the results obtained in Kristensen and Shin (2006), we here require

the number of simulations to increase with a higher rate as T !1. This is a consequence
of the additional error term arising from the imperfect simulation scheme. This additional

error seems unavoidable in dynamic models; particle �ltering methods su¤ers from the

same drawback. In contrast, this issue is avoided in cross-sectional models due to the

independence assumption, c.f. Fermanian and Salanié (2004)

4 Application: stochastic volatility

One of the merits of our approach is generality. In this section, however, we apply

NPSMLE to a simple, well-known model for expositional purposes: the discrete-time

stochastic volatility model considered in Andersen et al. (1999).

As in Andersen et al. (1999), we consider the following log-normal stochastic autore-

gressive volatility model for the return series yt with t = 1; : : : ; T :

yt = �t"t (5)

ln�2t = �+ � ln�2t�1 + �uut; (6)

where � = (�; �; �u) is the parameters of interest and f"t; utg follows i.i.d. standard
normal. It is assumed that �1 � � � 1 and �u � 0. f�tgTt=0 is the unobserved
conditional volatility process. For expositional purposes, we further assume that �0 is

known. In general, we can treat �0 as an unknown parameter to be estimated.

Observe that this model is a hidden Markov model with zt = ln�2t+1. Thus, L̂T (�) can

constructed as described in Section 2, the only di¤erence being that it is not necessary

here to approximate p(ytjzt�1; xt�1) since one can �nd its analytical form,

p(ytjzt�1; xt�1) = p(ytjzt�1) = �
�
yt
�t

�
=�t;
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where � is the density of the standard normal distribution. Finally, we maximize L̂T (�)

over the relevant parameter space. The mean and root mean squared error of the para-

meter estimates from 512 Monte Carlo exercises are shown in Table 1, where T = 1000.

EMM refers to Gallant and Tauchen�s e¢ cient method of moments with an auxiliary

model of GARCH(1,1) (4 moments). For NPSMLE, N = 1000, h = 0:01 and h� = 0:006.

True value EMM NPSMLE
� -0.736 -0.9050 (0.5998) -0.8705 (0.5332)
� 0.90 0.8808 (0.0792) 0.8817 (0.0602)
�u 0.363 0.3786 (0.1782) 0.3732 (0.0895)

Table 1: Estimated parameters of stochastic volatility model

5 Conclusion

We have incorporated an importance sampler into the nonparametric simulated maxi-

mum likelihood estimation as proposed by Kristensen and Shin (2006) to explicitly deal

with latent variables. Theoretical conditions in terms of the number of simulations and

the bandwidth are given ensuring that the NPSMLE inherits the asymptotic properties

of the actual MLE. A simulation study demonstrates that the method works well in

practice.

A Proof

Proof of Theorem 1 We consider

L̂T (�) =
1
�LT

TX
t=1

�a;t log p̂t (ytjxt�1; �) ; ~LT (�) =
1
�LT

TX
t=1

log �pt (ytjxt�1; �) ;

LT (�) =
1
�LT

TX
t=1

log pt (ytjxt�1; �) ;

where �LT is given in (C.3), and �pt (ytjxt�1; �) is given in Lemma 2. We show that (i)
sup�2� jL̂T (�) � ~LT (�) j = oP (1), and (ii) sup�2� j~LT (�) � LT (�) j = oP (1). To show
(i), we split up L̂T (�)� ~LT (�) into the following four terms,

L̂T (�)� ~LT (�) =
1
�LT

TX
t=1

[�a (p̂t (ytjxt�1; �))� ~�a;t] log p̂t (ytjxt�1; �)
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+
1
�LT

TX
t=1

~�a;t [log p̂t (ytjxt�1; �)� log �pt (ytjxt�1; �)]

+
1
�LT

TX
t=1

[~�a;t log �pt (ytjxt�1; �)� log �pt (ytjxt�1; �)]

+
1
�LT

TX
t=1

[log �pt (ytjxt�1; �)� log pt (ytjxt�1; �)]

:= B1 (�) +B2 (�) +B3 (�) +B4 (�) :

Using the same arguments as in the proof of Theorem 2 in Kristensen and Shin (2006),

jB1 (�)j � jlog (a)j
�LT

TX
t=1

� fkxt�1k > N
g

� jlog (a)jT� fkxT k > N
g
�LT

�
PT

t=1 kytk
1+�

�LT

jlog (a)jT
N
(1+�)

;

jB2 (�)j �
TX
t=1

�At(1=4) jlog p̂t (ytjxt�1; �)� log �pt (ytjxt�1; �)j

� T
�LTa

sup
�2�

sup
yt2Rp

sup
kxt�1k�N


jp̂t (ytjxt�1; �)� �pt (ytjxt�1; �)j ;

and

jB3 (�)j � 1
�LT

TX
t=1

� fp (ytjxt�1; �) < 4ag jlog p (ytjxt�1; �)j

+
1
�LT

TX
t=1

� fp (yt�1jxt�2; �) < 4ag jlog p (ytjxt�1; �)j

+
1
�LT

TX
t=1

� fkxt�1k > N
g jlog p (ytjxt�1; �)j

:= B3;1 (�) +B3;2 (�) +B3;3 (�) ;

where

jB3;i (�)j �
jlog (4a)j��

�LT

TX
t=1

jlog p (ytjxt�1; �)j1+� ; i = 1; 2;

and

jB3;3 (�)j �
(PT

t=1 kytk
1+�

�LT

T

N
(1+�)

)�=(1+�)(
1
�LT

TX
t=1

jlog p (ytjxt�1; �)j1+�
)1=�

:
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All the above bounds are oP (1) under (C.1)�(C.3) and (B.L.1) together with Lemma

2. This shows (i)

Next, to show (ii), �rst observe that

�p (yt; ztjxt�1; �)� p (yt; ztjxt�1; �)

=

Z
p (yt; ztjyt�1; zt�1; �)

�
�p (yt�1; zt�1jxt�2; �)� p (yt�1; zt�1jxt�2; �)

�p (yt�1jxt�2; �)

�
dzt�1

+ f�p (yt�1jxt�2; �)� p (yt�1jxt�2; �)g
Z
p (yt; ztjyt�1; zt�1; �) �p (yt�1; zt�1jxt�2; �)

p (yt�1jxt�2; �) �p (yt�1jxt�2; �)
dzt�1;

......[INCOMPLETE]. The consistency result now follows from Theorem 10 of Kris-

tensen and Shin (2006).

The asymptotic distribution result follows by Theorem 12 of Kristensen and Shin

(2006) under (N.1)�(N.4) and (B.L.2) since, under these conditions, the above bounds

are oP
�
�L�1T

�
. <1.5em

B Properties of the Simulated Density

Lemma 2 Assume that (A.1)�(A.5) and (K.1) hold. Then for any t � 1, p̂ (yt; ztjxt�1)
given in (??) satis�es

sup
(yt;zt)2Rk+l

sup
kxt�1k1�N


sup
�2�

jp̂ (yt; ztjxt�1; �)� �p (yt; ztjxt�1; �) j =
t�1X
i=0

a�iRt�i;

for any 
 > 0 and any a > 0, where

�p (yt; ztjxt�1; �) =

Z
p (yt; ztjyt�1; zt�1; �) �p (zt�1jxt�1; �) dzt�1;

�p (zt�1jxt�1; �) =
p (yt�1; zt�1jxt�2; �) �a fp̂ (yt�1; zt�1jxt�2; �)gR
p (yt�1; zjxt�2; �) �a fp̂ (yt�1; zjxt�2; �)g dz

;

and

Rt = C0;1
��
1 + a�1

�
E
�
�2t
�
;K
�
OP

�p
log (N)N�1=2h�d�1

�
+C0;2 (K;D

r
wpt)h

r; (7)

and C0;i, i = 1; 2, are given in Lemma 7 of Kristensen and Shin (2006).

Proof We show this recursively. Conditional on all draws prior to time t, we claim that

sup
(yt;zt)2Rk+l

sup
kxt�1k1�N


sup
�2�

����p̂ (yt; ztjxt�1; �)� Z p (yt; ztjyt�1; zt�1; �) ~p (zt�1jxt�1; �) dzt�1
���� = Rt;
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where Rt is given in the lemma. We show this by verifying the conditions in

Lemma 7 of Kristensen and Shin (2006) with Yi (�) =
�
Y
xt�1;�
t;i ; Z

xt�1;�
t;i

�
, � =

(xt�1; �) and A = Rtd � �. First, observe that the target density (yt; zt) 7!R
p (yt; ztjyt�1; zt�1; �) ~p (zt�1jxt�1; �) dzt�1, where ~p is given in (4), is r times con-

tinuously di¤erentiable since p (yt; ztjyt�1; zt�1; �) is so. Second, (A.1) combined with�
Y
xt�1;�
t;i ; Z

xt�1;�
t;i

�
� p

�
yt; ztjyt�1; Zxt�1;�t�1 ; �

�
; (8)

Z
xt�1;�
t�1 = ~F�1zt�1jxt�1 ("2;tjxt�1; �) ;

where

~Fzt�1jxt�1 (zjxt�1; �) =
Z z1

�1
� � �
Z zd2

�1
~p (zt�1jxt�1; �) dzt�1;

yields 


�Y xt�1;�t ; Z
xt�1;�
t

�
�
�
Y
x0t�1;�0
t ; Z

x0t�1;�
0

t

�



� �t

�

yt�1 � y0t�1

�1 + 


Zxt�1;�t�1 � Zx
0
t�1;�

0

t�1




�1 + 

� � �0

�1�
�

�
1 + a�1

�
�t

n

yt�1 � y0t�1

�1 + kxt�1 � xt�1k�1 + 

� � �0

�1o ;
since, by (8),




Zxt�1;�t�1 � Zx
0
t�1;�

0

t�1




 �





@ ~F

�1
zt�1jxt�1

�
"3tj�xt�1; ��

�
@xt�1








xt�1 � x0t�1


+






@ ~F
�1
zt�1jxt�1

�
"3tj�xt�1; ��

�
@�








� � �0


� 2

a

�

xt�1 � x0t�1

+ 

� � �0

	 ;
where the last inequality is a consequence of the following calculations:

@ ~F�1zt�1jxt�1 ("3tjxt�1; �)
@�

= �
"
@ ~Fzt�1jxt�1 (zt�1jxt�1; �)

@zt�1
j
zt�1=Z

xt�1;�
t

#�1 @ ~Fzt�1jxt�1 �Zxt�1;�t jxt�1; �
�

@�

=
1

~p
�
Z
xt�1;�
t jxt�1; �

� Z z1

�1
� � �
Z zd1

�1

@~p (zt�1jxt�1; �)
@�

dzt�1jz=Z�xt�1;�
t

;

and

@~p (zt�1jxt�1; �)
@�

=
1R

p̂ (yt�1; zjxt�2; �) �a fp̂ (yt�1; zjxt�2; �)g dz
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�
�
@p̂ (yt�1; zt�1jxt�2; �)

@�
�a fp̂ (yt�1; zt�1jxt�2; �)g

+ p̂ (yt�1; zt�1jxt�2; �)
@�a fp̂ (yt�1; zt�1jxt�2; �)g

@�

�
+~p (zt�1jxt�1; �)

1R
p̂ (yt�1; zjxt�2; �) �a fp̂ (yt�1; zjxt�1; �)g dz

�
�Z

@p̂ (yt�1; zjxt�2; �)
@�

�a fp̂ (yt�1; zjxt�1; �)g dz

+

Z
p̂ (yt�1; zjxt�2; �)

@�a fp̂ (yt�1; zjxt�1; �)g
@�

dz

�
:

Thus, with zt�1 = Z
xt�1;�
t ,




@ ~F

�1
zt�1jxt�1 ("3tjxt�1; �)

@�






 � 1

a

�



@p̂ (yt�1; zt�1jxt�2; �)@�





+ jp̂ (yt�1; zt�1jxt�2; �)j�
+
jp (zt�1jxt�1; �)j

a

Z 



@p̂ (yt�1; zjxt�2; �)@�





+ jp̂ (yt�1; zjxt�2; �)j dz
� 1

a

�



@p (yt�1; zt�1jxt�2; �)@�





+ jp (yt�1; zt�1jxt�2; �)j+ oP (1)�
+
p (zt�1jxt�1; �)

a

Z 



@p (yt�1; zjxt�2; �)@�





+ p (yt�1; zjxt�2; �) dz + oP (1)
� C

a

uniformly in (yt�1; zt�1; xt�2; �) 2 Rd � � � fkxt�2k � N
g, since p̂ (yt�1; zt�1jxt�2; �)
and @p̂ (yt�1; zt�1jxt�2; �) =@� converge uniformly on this set. By the same arguments,
one can show that @ ~F�1zt�1jxt�1=@xt�1 is uniformly bounded by C=a.

Next,Z
p (yt; ztjyt�1; zt�1; �) f~p (zt�1jxt�1; �)� �p (zt�1jxt�1; �)g dzt�1

=

Z
p (yt; ztjyt�1; zt�1; �)

�
~p (yt�1; zt�1jxt�2; �)� �p (yt�1; zt�1jxt�2; �)

�p (yt�1jxt�2; �)

�
dzt�1

+ f~p (yt�1jxt�2; �)� �p (yt�1jxt�2; �)g
Z
p (yt; ztjyt�1; zt�1; �) �p (yt�1; zt�1jxt�2; �)

~p (yt�1jxt�2; �) �p (yt�1jxt�2; �)
dzt�1

� C

a
sup

zt�12Rd1
j~p (yt�1; zt�1jxt�2; �)� �p (yt�1; zt�1jxt�2; �)j

+
C

a
j~p (yt�1jxt�2; �)� �p (yt�1jxt�2; �)j :

We conclude

sup
(yt;zt)2Rd

sup
kxt�1k�N


sup
�2�

j~p (yt; ztjxt�1; �)� �p (yt; ztjxt�1; �)j
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= Rt + a
�1 sup

(yt�1;zt�1)2Rd
sup

kxt�2k�N


sup
�2�

jp̂ (yt�1; zt�1jxt�2; �)� �p (yt�1; zt�1jxt�2; �)j

...

=
t�1X
i=0

a�iRt�i:
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