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Abstract

We analyze the coordination problem of agents deciding to join a group that

uses membership revenues to provide a discrete public good and excludable ben-

efits. The public good and the benefits are jointly produced, so that benefits are

valued only if the group succeeds in providing the public good. With asymmetric

information about the cost of provision, the membership game admits a unique

equilibrium and we characterize the optimal membership fee. In a static context,

we show that heterogeneity in agents’ valuations for the excludable benefits is al-

ways detrimental to the group. We also consider a dynamic version of the model

where heterogeneity arises endogenously: returning members receive additional

seniority benefits at the expense of new members. The dynamic game has a

unique equilibrium in the space of monotone strategies, and we characterize the

ex-ante optimal dynamic contract. In this context, we show that offering se-

niority benefits is beneficial for the group despite the heterogeneity in valuations

created, and we prove that the optimal level of seniority benefits increases when

asymmetries in information among agents become small.
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1 Introduction

The National Association Study shows that the mean and median membership size

of US voluntary associations are 27,575 and 750, respectively. These numbers suggest

that, although not many, very large associations exist. Examples are environmental-

ist groups like the National Wildlife Federation (NWF), or the World Wildlife Fund

(WWF), professional and business groups like the American Farm Bureau Federation,

citizens’ groups like the American Association of Retired People, and trade unions.1

The main activity of these associations is lobbying for public policy, and their finan-

cial resources mostly derive from due-paying members.2 Since the benefits of lobbying

(environmental legislation, farm subsidies, tax reliefs, minimum wage laws) are clearly

non-excludable to non-members, it follows that all these groups were able to overcome

a potentially severe free-rider problem.

In “The Logic of Collective Action,” Olson [25] suggests that the existence of large

voluntary associations can be explained if the group is able to provide selective in-

centives: goods and services excludable to non-members. These benefits can provide

utility directly - e.g., publications, information services, insurance policies, legal ad-

vice, advocacy - or they can acquire value through social interaction, as in the case of

reputation or peer pressure.3 Interestingly, the value that prospective members attach

to these excludable incentives is often correlated with the success of the association

in providing a collective good. For example, as in the case of discounts, the value of

1The WWF and the NWF have more than a million members each. The American Association

of Retired People (AARP) is the largest nonprofit association in the US with 23 million members.

The American Farm Bureau Federation (AFBF) has 6 million members. The largest union in the

AFL-CIO is the American Federation of State, County and Municipal Employees (AFSCME), with

more than a million members. The data for the National Association Study are reported in Knoke

[20].
2See, e.g., Knoke [21], and Walker [28].
3Indeed, a majority of voluntary associations that have been successful in providing a collective

good offer selective incentives for their members. See, e.g., Walker [28].
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selective benefits may be directly related to the size of the association: a larger group

is able to negotiate better terms with various vendors. At the same time, membership

size is a critical factor in determining a group’s success in its lobbying efforts for public

policy. Moreover, the success in accomplishing some environmental protection projects

(a public good) may enhance the quality of organized hiking and animal watching ac-

tivities by members (a selective incentive).4 As a result, strategic complementarities

in joining decisions may arise, i.e., the more people join the association, the higher the

value of being a member.5 However, models with strategic complementarities are often

associated with multiple “extreme” equilibria (i.e., either nobody joins or everybody

joins) which are not particularly interesting, not responsive to fundamentals, and not

suited to analyze questions of optimal design of a membership contract.6

To solve the multiplicity problem, in this paper we present a natural application

of the global game approach pioneered by Carlsson and Van Damme [4] and Morris

and Shin [23] to a membership game with strategic complementarities. In particular,

we study the decision of agents to join a group that uses membership revenues to

provide a discrete public good and excludable benefits, in the presence of asymmetric

information about the cost of providing the public good. Following Cornes and Sandler

[5], [6], [7], we assume that the public good and the selective incentives are jointly

produced, so that excludable benefits acquire value only if the group is successful in

securing enough revenue to cover the provision cost of the public good. This approach

captures a fundamental characteristic of the incentives packages we observe in reality,

and uncovers the coordination problem agents face, since their payoff of joining displays

strategic complementarities.

The membership game admits a unique equilibrium. Moreover, despite the pres-

4See King and Walker [19].
5This observation is well known, see , e.g., the trade union membership model of Booth [3].
6One possibility is to focus on asymmetric (or mixed-strategy) equilibria that yield an “interior”

membership. However, as we show in Section 2, these equilibria typically deliver counterintuitive

comparative statics properties.
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ence of positive externalities in membership and asymmetric information, finding the

optimal membership fee reduces to solving a simple monopoly pricing problem. The

model is indeed rather tractable and delivers very intuitive comparative statics, espe-

cially in comparison with the properties of the mixed-strategy equilibrium of the model

without asymmetric information. In contrast to the latter, for example, in our model

collective action is more successful when the net benefit from joining increases. We

then interpret the comparative statics in light of some empirical regularities singled

out in the political-science literature on membership in large voluntary groups. In

particular, we first consider the observation that membership tends to be larger when

groups face threats to rights they already enjoy. We then show how our model can

be straightforwardly applied to analyze the effects of challenges to the not-for-profit

status of associations, a common practice of antagonistic politicians.7

Our first contribution is to show that in a static context an increase in heterogene-

ity among prospective members is always detrimental for the group. To show this,

we first characterize the unique equilibrium of the membership game when there are

two categories of agents: those with a high valuation for selective incentives, and those

with a low valuation. We then consider a mean-preserving spread of valuations, and

show that such an increase in heterogeneity decreases the equilibrium size, the optimal

membership fee, and ultimately the probability of success of the group. This result ob-

tains because low-valuation agents respond in larger numbers to the perturbation than

high-valuation agents, thus reducing the group’s total revenue. Indeed, even before the

perturbation, low-valuation agents face a greater strategic uncertainty. They must rely

on a larger proportion of agents joining and they must believe the group more likely

to succeed than high-valuation agents do, to be willing to pay the same cost of mem-

bership. Therefore, because benefits are valued only in case of success, low-valuation

members are more affected by the mean preserving spread than high-valuation mem-

bers, coeteris paribus. The negative externality imposed by low-valuation agents lowers

7See Walker [28], [29], and Hansen [15].
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the incentive to join for all other potential members. Our results are consistent with

the empirical evidence in Alesina and La Ferrara [1], where they show that, after con-

trolling for individual characteristics, participation in social activities is significantly

lower in more heterogeneous localities.8

Our second contribution is to show that in a dynamic context some form of hetero-

geneity may in fact be beneficial for the group. Dynamic considerations are relevant

for many membership decisions. Indeed, if attracting new members is very important

for many organizations, retaining existing members is regarded with the same if not

larger concern.9 In this respect, a common practice is the preferential assignment of

resources to returning members in the form of seniority benefits.10 This practice is

particularly interesting because it is a choice of the organization’s management that

endogenously creates heterogeneity among potential members. It appears surprising

and potentially counterproductive in light of our previous result and of the received

wisdom on the disadvantages of heterogeneity.

To investigate the effects of seniority benefits, we analyze a simple two-period ver-

sion of the model. The first-period game is our initial membership game with homoge-

nous agents. In the second-period game, heterogeneity among agents arises endoge-

nously: returning members receive additional “seniority” benefits at the expense of new

members. This implies that the extra-benefit received by senior members decreases in

8For a survey of the empirical literature on the effect of community heterogeneity on social capital,

see, e.g., Costa and Kahn [8].
9Quoting Rothenberg [27]: “Organizational maintenance is a fact of life all group leaders confront.

For the majority of interest group entrepreneurs, who depend on constituent dues as a prime funding

source, maintenance dictates the need to keep members contributing [...]. Even seemingly small drops

in numbers [...] are viewed with great alarm; and the loss of long-time contributors is perceived as a

threat to the entity’s survival.”
10A typical seniority benefit is the practice of reserving office positions to returning members (see,

e.g., Moe [22]). Interestingly enough, in the case of citizens’ groups like Common Cause, where about

a third of the members report that they have politicial aspirations (see, e.g., Rothenberg [27]), the

value of seniority benefits is clearly related to the success of the group in its lobbying effort.
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first-period membership and, as a result, payoffs are not monotonic in membership.

In this context, we prove existence and uniqueness of the equilibrium in the space of

monotone strategies. In other words, we show that a unique equilibrium exists if more

favorable information implies that each agent is more likely to join. More importantly,

when the group maximizes a weighted sum of the probabilities of success in the first and

second period, we characterize the ex-ante optimal membership contract, we show that

offering seniority is always optimal, and we prove that the optimal level of seniority

benefits increases when asymmetries in information among agents become small.

The sharp difference in the effects of heterogeneity between the static and the

dynamic model obtains because in the dynamic model the role played by seniority

benefits is twofold. On the one hand, seniority benefits affect the value of member-

ship in the first period. On the other hand, they introduce heterogeneity between

second-period prospective members. Offering seniority benefits is always optimal for

the group because, when the level of seniority benefits is zero, the negative marginal

effect on second-period membership is only of second-order magnitude as compared

to the positive marginal direct effect on first-period membership. In fact, when no

seniority benefits are offered, agents are homogeneous in the second period. All po-

tential members face the same strategic uncertainty, since there are no high or low-

valuation agents. Therefore, the overall marginal effect of increasing heterogeneity on

second-period membership is zero. On the contrary, the first-period marginal effect of

introducing seniority benefits remains always strictly positive.

1.1 Related Literature

Three strands of literature are related to our work. The first deals with impure pub-

lic goods, the second with dynamic global games, and the third more directly with

heterogeneity in membership.

Cornes and Sandler [5], [6], [7] analyze an impure public good model in which the

purchase of any quantity of an intermediate good makes available, through a joint
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production function, fixed proportions of public good and private characteristic. With

sufficiently strong complementarities between the private characteristic and the public

good, individual demand for the intermediate good may be increasing in the quantity

demanded by others, thus alleviating the free rider problem. However, they do not

address directly the issue of coordination among agents.

As for dynamic applications of global games, relevant papers include Dasgupta [9],

Heidhues and Melissas [16], Giannitsaru and Toxvaerd [12], and Goldstein and Pauzner

[13]. Heidhues and Melissas [16] focus on cohort effects, while Dasgupta [9] focuses on

social learning. In both papers, contrary to our paper, the decision to contribute is once

and for all, therefore there is no heterogeneity among all agents that can take an action

in any one period. Giannitsaru and Toxvaerd [12] prove uniqueness of an equilibrium in

a general class of dynamic global games under the assumption of strict supermodularity

of the payoff of taking an action at time t + 1 with respect to the number of agents

that took the action in t. Since in our model this assumption is violated, their results

do not apply.11 The closest work is Goldstein and Pauzner [13]. Indeed, their proof of

uniqueness of an equilibrium with heterogeneous agents applies in our model as well.

Their goal is to explain contagion of financial crises across countries. Therefore, they

investigate a “first-order” perturbation where, following an earlier crisis in one country,

one set of agents becomes poorer and more risk-averse, and hence more likely to run

in a second country. On the contrary, in our analysis of heterogeneity we investigate

a “second-order” perturbation, where the rewards to the risky action increases for one

set of agents, and decreases for the others. Moreover, our perturbation changes the

utility of joining directly, not its argument. One may effectively consider agents to be

risk-neutral in our analysis of heterogeneity.12

Finally, regarding the effect of heterogeneity on membership decisions, the closest

paper is Alesina and La Ferrara [1]. In a static model, they show that homogeneity

within a community leads to higher participation in social activities. In their model

11A violation of supermodularity appears in Goldstein and Pauzner [14] as well.
12A formal definition of the perturbation we analyze appears in Section 2.
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membership is costless, group size has no effect on individual utility, and individuals

have an exogenous preference for homogeneity within a social group.

The remainder of the paper is organized as follows. Section 2 presents the basic

structure of the static model and contains our results on the effect of heterogeneity on

the equilibrium group size. Section 3 contains a dynamic version of the model in which

heterogeneity emerges endogenously. Technical proofs can be found in the appendix.

2 The Model

Consider a continuum of agents of size 1. They decide independently and simulta-

neously whether or not to join a group. Let k > 0 be the cost of membership and

e ∈ [0, 1] be the proportion of agents joining the group.13 The group’s total revenues
ke are used as an input in a binary production function f (ke, θ). If total revenues are

above a threshold θ, the production function jointly generates an amount G of a pure

public good, and an amount x of a non-rival club good that agents enjoy only if they

are members. Henceforth, we say that the group is successful when ke ≥ θ. Otherwise,

G = x = 0. Formally,

f (ke, θ) =

⎧⎨⎩ (x,G) if ke ≥ θ

(0, 0) otherwise.

Let ui (x,G) denote agent i’s value for the club good and the public good. We

assume that ui (x,G) is increasing in both arguments, and we adopt the normalization

ui (0, 0) = 0. Finally, we assume that money enters linearly in agents’ utility functions.

Payoffs can then be represented in the following table:

join not join

ke ≥ θ ui (x,G)− k ui (0, G)

ke < θ −k 0

13In assuming a continuum of agents we follow the literature, and ignore the technical issues dis-

cussed in Judd [17] and Feldman and Gilles [10].
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What determines agent i’s decision to join is the expected net utility from joining:

bi Pr (ke ≥ θ)− k,

where bi denote the difference between the utility of joining the group and the utility

of not joining conditional on the public good being provided. Namely

bi = ui (x,G)− ui (0, G) .

Following Olson [25], we assume that the success in providing a public good is a by-

product of the operation of selective incentives: it is not the reason for joining but it is

a consequence of members joining. Although one criticism to this argument is that a

competing firm, not burdened by the cost of producing the public good, can offer just

the private benefit at a lower price, we believe that establishing a brand name through

success in providing the public good gives the association some monopoly power over

the private good.14 Moreover, notice that for our purposes, excludability of selective

benefits does not need to be absolute, just partial.15 Our specification of f (ke, θ)

above is a convenient way to formalize the idea that the value of selective benefits that

are offered by citizens’ associations is often tied to the success of the association in

providing the public good, through the standard notion of joint-production.16

Consider first the case where all agents are homogeneous, that is bi = b, and assume

b > k to rule out the uninteresting case where joining the group is a dominated strategy.
14An interesting example is the case of groups that offer free advertising space on the group’s

magazine to its own members as a selective incentive, see Moe [22]. Moreover, a survey in Walker [28]

shows that virtually every group in a sample of 206 citizen associations offers some kind of publication

which is considered one of the most important benefit by members. Other instances in which the

provision of a collective good gives a cost advantage in the production of the selective benefits include

discounts on postal rates, preferred tax treatments or free interns.
15Indeed, some benefits appear at first easily obtainable by non-members: it is of course possible to

borrow a newsletter or the detailed program of a conference from a friend. However, the lender may

enjoy a timing and convenience advantage over the borrower, may earn reciprocation of the favor, or

may have the chance of handing out a sly comment to her leeching friend.
16Another relevant specification for the success of a groups is simply group size. For example,

lobbying activity may be carried out not just by using the groups’ revenue to hire professional lobbyist,
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The value of the threshold θ is not observable, it is drawn from a uniform distribution

on
£
θ, θ
¤
, and each agent i receives a signal θi of the realization of θ.17 In particular,

we assume that θi = θ + εi, where εi is a noise drawn from a uniform distribution

on [−ε, ε] independent across agents, and independent of θ.18 We also assume that ε
is “small” with respect to the support of θ, namely θ < −2ε, and θ > b + 2ε. The

but through the coordinated grassroot efforts of members. Our model can easily encompass such

situation by fixing k equal to 1. In this case, success solely depends on membership, and b can be

reinterpreted as a normalized benefit to cost ratio of becoming a member. Our results on heterogeneity

are qualitatively unaffected.
17Without asymmetric information, our game shares with other games of strategic complementari-

ties the feature of multiplicity of (non-interesting) equilibria. For example, if θ is perfectly observable

and smaller than k, the simultaneous-move game has two pure strategy equilibria: one in which no-

body joins the group, and one in which everybody joins. If instead θ is not observable, it is drawn

from a uniform distribution on
£
θ, θ
¤
, and no private information is received by the agents, under

some conditions (i.e., 0 <
¡
θ − θ

¢
/b + θ/k < 1) the equilibrium outcomes of the simultaneous-move

game are e =
©
0,
¡
θ − θ

¢
/b+ θ/k, 1

ª
. The unattractive feature of the extreme equilibria is not mul-

tiplicity per-se, but non-responsiveness to fundamentals. As Goldstein and Pauzner [14] point out,

such equilibria are not suited to analyze questions of optimal design. As for the interior equilibrium

outcome e =
¡
θ − θ

¢
/b+θ/k, its comparative statics properties are very unattractive, as we will later

explicitly analyze. Moreover, (in)stability is an issue.
18The assumption that θ is drawn from a uniform distribution allows us to derive closed form

solutions but is not essential for our results as long as the prior probability distribution satisfies

the conditions in Morris and Shin [23]. Closed form solutions can be obtained also if θ is normally

distributed as it is shown in an earlier version of this paper [2].
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unconditional distributions of θ and θi are depicted in Figure 1.
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Figure 1

The expected net utility from joining, conditional on having received signal θi is

bPr (ke ≥ θ|θi)− k, (1)

where now e represents individual i’s belief about the proportion of agents joining the

group, conditional on θi. This game admits a unique equilibrium in which players

follow a cutoff strategy around θb, i.e., they join the group if θi < θb and stay out

otherwise. The uniqueness result derives from iterated deletion of strictly dominated

strategies, it follows [23], [24] and [13], and therefore we omit a proof. Note that for

the first round of deletion we need regions of the signal space where, for sufficiently

unfavorable (favorable) signals, staying out (joining) is a strictly dominant strategy.

Indeed, when e = 1, i.e. under the most optimistic belief about the group, (1) is strictly

negative for any θi ≥ θ − ε > b + ε > k. Likewise, under the most pessimistic belief

about the group, i.e., for e = 0, (1) is strictly positive for any θi ≤ θ + ε < −ε < 0.

In order to characterize the equilibrium cutoff θb, we first define the critical state θ∗ as

the highest value of the threshold cost θ for which the group is successful, or

kPr
¡
θi ≤ θb|θ = θ∗

¢
= θ∗, (2)
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and equation (2) further implies that θ∗ is the total revenue for the group conditional on

state θ∗ (k times membership conditional on θ∗). Using equation (1) and the definition

of θ∗, since in equilibrium type θb must be indifferent between joining and staying out,

the equilibrium values of θ∗ and θb must satisfy (2) and

bPr
¡
θ ≤ θ∗|θi = θb

¢
= k, (3)

where Pr
¡
θ ≤ θ∗|θi = θb

¢
is the probability of success perceived by the indifferent type.

The dominance regions described above imply that θb must lie inside the interval¡
θ + ε, θ − ε

¢
and therefore, conditional on θi = θb, the distribution of θ is uniform on£

θb − ε, θb + ε
¤
. In turn, θ∗ ∈ £θb − ε, θb + ε

¤
, for (3) to admit a solution. Therefore,

Pr
¡
θi ≤ θb|θ = θ∗

¢
=

θb − θ∗

2ε
+
1

2
, (4)

and

Pr
¡
θ ≤ θ∗|θi = θb

¢
=
1

2
− θb − θ∗

2ε
. (5)

Adding (4) and (5) yields

Pr
¡
θi ≤ θb|θ = θ∗

¢
= 1− Pr ¡θ ≤ θ∗|θi = θb

¢
, (6)

and in equilibrium, using (3), we obtain

Pr
¡
θi ≤ θb|θ = θ∗

¢
= 1− k

b
. (7)

Substituting (7) in (2) yields

θ∗ = k

µ
1− k

b

¶
, (8)

and further substitution in (3) results in

θb = θ∗ + ε

µ
1− 2k

b

¶
. (9)

In equilibrium, the value of θb−θ∗ is determined by the last term of equation (9), it
may be positive or negative, and it captures the fact that joiners pay the membership
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fee k for sure, and receive the benefit b only with some probability. The relationship

between θb−θ∗ and k is rather intuitive. When joining is relatively inexpensive (k → 0),

an agent needs a relatively small probability of success and expected benefit of joining

to be indifferent between actions. In fact, (9) implies that when k is small, θb is larger

than θ∗ and, since the posterior probability distribution of θ conditional on θi = θb is

centered around θb, the probability of success for θb is smaller than 1/2, from (5). The

opposite occurs when joining is relatively expensive (k → b). In light of this, we can

interpret the difference between θ∗ and θb as a measure of the strategic uncertainty

agents are willing to bear in equilibrium.

Since our global game framework is a clear departure from the standard provision

of a public good literature, it is interesting to analyze the simple comparative statics

properties of our model, and compare our predictions with those resulting from an

interior equilibrium of the game without asymmetric information. For example, the

existing political science literature on group membership emphasizes the fact that col-

lective action tends to be more successful if individuals face a threat to their status-quo

level enjoyment of a public good.19 Various theories have been advanced to explain

such “loss-averse” behavior, and a full analysis from basic principles is outside the

scope of this paper.20 However, a reasonable reduced-form conjecture to account for

this phenomenon in our framework is to assume that the net benefit b is perceived by

agents as being larger when the group is trying to avoid a loss rather than obtain a

19See, e.g., Walker [29]: “When persons face a threat [...] to rights they already enjoy, they are

more likely to engage in collective action to protect these gains despite the problems posed by the

public goods dilemma.” See also Hansen [15].
20See, e.g., Kahneman and Tversky [18] among many others.
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gain in the level of public good provided.21 We then see straightforwardly from (9)

that membership is larger when the group is trying to avoid a loss. On the contrary,

at the interior equilibrium of the game without asymmetric information, we have the

opposite result because membership is always, counterintuitively, decreasing in the net

benefit b.22

So far we have assumed that the membership fee k is exogenous. Before proceeding

further in our comparative statics, we analyze the problem of finding the optimal mem-

bership fee. Typically, in standard global games, the threshold for success depends only

on the measure of agents taking the risky action. In our model, θ∗ depends on the total

amount of financial resources raised by the group. When k goes to zero, θ∗ converges

to zero because per-capita payments are zero. When k goes to b, θ∗ converges to zero

because agents find it very risky to join, and equilibrium membership conditional on

θ = θ∗ in (7) approaches zero. The maximum θ∗ obtains for a level of k that balances

out the positive effect on per-capita payment and the negative effect on membership.

A graphical illustration, similar to the textbook analysis of a one-price monopoly with

zero marginal cost, is presented in Figure 2. The interpretation is that equation (7)

describes a linear demand curve D, where the fee k is the price, and expected mem-

bership conditional on θ∗ represents the quantity.

21More specifically, by denoting the status-quo provision of public good as GSQ, the net utility from

joining the association is then

b = u (x,G+GSQ)− u (0, G+GSQ) ,

and, if the cross derivative u12 is negative, we have that b is larger when avoiding a loss, that is G = 0,

rather then when obtaining a gain, that is for G > 0. The assumption of u12 < 0 implies that the

utility of the selective benefit is decreasing in the status quo level of public good provision. It can be

justified if we consider selective benefits like representation before government.
22Recall that the interior equilibrium outcome of the game without asymmetric information is

e =
¡
θ − θ

¢
/b + θ/k. Moreover, as it will become clear in the next paragraph, a similar argument

holds if insted of assuming that the membership fee k is fixed we consider the case in which k is

optimally chosen by the group.
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Equation (2) implies that θ∗ (k) is the area of the shaded rectangle. Conditional

total revenue, which equals θ∗ (k), is maximized at the midpoint of the demand curve,

i.e., for k∗ = b/2, where conditional membership is equal to 1/2. In equilibrium, the

ex-ante expected probability that the group is successful is

W ≡ θ∗ (k)− θ

θ − θ
,

and k∗ = b/2 maximizes the probability of success.

Consider now the ex-ante expected probability of success evaluated at the optimal

k∗, which is

W (k∗) ≡
b
4
− θ

θ − θ
=
1

2

b
4
− θ

θ+θ
2
− θ

.

Note that W (k∗) is increasing in b, and it is decreasing in the mean of the cost θ

holding its variance constant (i.e., when the support of θ shifts to the right). It is also
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worth noting that such intuitive comparative statics cannot be generated by an interior

equilibrium of the game without asymmetric information. By letting S (k) denote the

ex-ante expected size of the group, we have

S (k) ≡ θb (k)− θ

θ − θ
, (10)

and it is easy to show that k∗∗ = k∗ − ε is the optimal interior membership fee that

maximizes S (k).

To see why k∗∗ must be smaller than k∗, note that, using (9), S (k) can be expressed

as a linear increasing function of equilibrium conditional total revenue θ∗ (k), and

equilibrium conditional membership 1−k/b. Maximizing S (k) can then be interpreted
as having a monopoly that maximizes a weighted average of revenue and membership.

Therefore, the optimal k will be lower than the one that maximizes revenue alone.

Finally, note that S (k∗∗), that is the ex-ante expected size of the group evaluated at

the optimal k∗∗, displays analogous comparative statics properties to those for W (k∗)

analyzed above.

As an illustration of the comparative statics properties of our model when k adjusts

optimally, we consider another empirical regularity pointed out inWalker [28] regarding

the attempts to frustrate antagonist associations by politicians through different means

like challenges to their not-for-profit status, or by raising postal rates. We examine

explicitly the case of a raise in postal rates. For simplicity, we focus only on the increase

in the cost of the pre-paid response envelope, and we model it as an additional expense

for the group equal to t ∈ (0, k) per member. The condition that characterize the
equilibrium become

θ∗ = (k − t) (1− k/b) and θb = θ∗ + ε (1− 2k/b) ,

so that the fee that maximizes the probability of success and the fee that maximizes

membership increases respectively to

k∗ (t) = (b+ t) /2 and k∗∗ (t) = k∗ (t)− ε.
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At these optimal fees, we have that

W (k∗) ≡
1
b

¡
b−t
2

¢2 − θ

θ − θ
and S (k∗∗) ≡

1
b

³¡
b−t
2

¢2
+ ε (ε− t)

´
− θ

θ − θ
.

Hence, since t < k < b, an increase in postal rate decreases the expected probability of

providing the public good and the expected size of the group. In the case of an interior

equilibrium of the game without asymmetric information we obtain, once again, the

opposite results.

2.1 Heterogeneous Agents

Consider now the case in which the population is heterogeneous with respect to the

benefit they derive from joining. We assume that the population is divided into two

classes: for a fraction p ∈ (0, 1) of the population, the difference between the value of
joining the group and the value of not joining conditional on the public good being

provided is equal to n, while for the remaining (1− p) it is equal to s. Moreover,

assume that s ≥ b ≥ n > k and, to save notation, let α ≡ ps + (1− p)n. Our simple

form of heterogeneity describes a situation where an exogenous proportion of agents

receives more value from the selective benefit given the same level of public good.23

Our objective is to explore the effect of increasing heterogeneity in the population on

the equilibrium probability of providing the public good, the equilibrium size of the

group, and the optimal fee.

Similarly to the homogeneous benefit case, we can show that a unique equilibrium

exists. Players with benefit n (s) follow a cutoff strategy around θn (θs), i.e., they join

the group if θi < θn (θi < θs) and stay out otherwise. Proposition 1 characterizes the

equilibrium cutoffs.

Proposition 1 An equilibrium of the membership game exists and it is unique. In

23A sufficient condition on the utility functions is that the partial derivative of ui with respect to x

for some agents is larger than the one for the rest of the population.
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equilibrium

θ∗ = k
³
1− k

α

ns

´
, (11)

θn = θ∗ − 2ε
µ
k

n
− 1
2

¶
,

θs = θ∗ − 2ε
µ
k

s
− 1
2

¶
.

Proof of Proposition 1. Existence and uniqueness follow by Proposition 1 in

Goldstein [13]. The characterization is similar to the homogenous case. In particular,

the critical state θ∗ is again determined as conditional revenue, or k times average

conditional membership:

θ∗ = k (pPr (θi ≤ θn|θ = θ∗) + (1− p) Pr (θi ≤ θs|θ = θ∗)) . (12)

Moreover, in such a cutoff equilibrium, the indifferent type in class s, θs, will satisfy

sPr (θ ≤ θ∗|θi = θs) = k, (13)

and the indifferent type θn will satisfy

nPr (θ ≤ θ∗|θi = θn) = k. (14)

The existence of strict dominance regions can be established following exactly the

same steps as for the homogenous population case. It is useful not only to establish

uniqueness of an equilibrium, but it simplifies the characterization as well. Indeed,

since the expected payoff from joining is strictly negative for any θi ≥ θ − ε, while

it is strictly positive for any θi ≤ θ + ε, it follows that θs and θn must belong to the

interval
¡
θ + ε, θ − ε

¢
and, therefore, conditional on θi = θs (θi = θn), θ is uniformly

distributed in [θs − ε, θs + ε] ([θn − ε, θn + ε]) . This implies that θ∗ ∈ [θs − ε, θs + ε],

otherwise (13) does not admit a solution, and that θ∗ ∈ [θn − ε, θn + ε], otherwise (14)

does not admit a solution. Therefore, a condition similar to (6) holds for each class of

agents:

Pr (θi ≤ θv|θ = θ∗) = 1− Pr (θ ≤ θ∗|θi = θv) , for v ∈ {s, n} , (15)
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and equilibrium average membership conditional on θ∗ will be

pPr (θi ≤ θn|θ = θ∗) + (1− p) Pr (θi ≤ θs|θ = θ∗) = 1− kα/(ns), (16)

where we used (15), and the indifference conditions (13) and (14). The expression for

θ∗, θn and θs in (11) then follow from (12) and recursive substitutions in (13) and (14).

The analysis of the optimal k is analogous to the homogenous population case:

the level of k that maximizes the probability of success of the group is k∗het = ns/2α,

while the level of k that maximizes the size of the group is k∗∗het = k∗het − ε.24 The

comparative statics property of these optimal fees are intuitive, and similar to those

for the homogenous population case.

We now investigate the equilibrium effects of increasing heterogeneity among agents

when k is set at the value that maximizes the probability of success of the group.25

In particular, we increase the net payoff of the 1 − p agents in class s by ∆ and we

decrease it for the remaining p agents by ∆ (1− p) /p. This spread holds constant the

population mean net payoff. We obtain the following result:

Proposition 2 Increased heterogeneity in the form of a mean preserving spread in net

payoffs decreases the equilibrium probability of success, the ex-ante size of the group,

and the optimal fee charged.

We leave the complete proof to the appendix and outline the argument here. Figure

3 provides an illustration of the intuition behind this result using the same monopoly

analogy as before. In Figure 3 we depict the demand curve in the homogenous case,

D, derived from equation (7), and the demand curve in the heterogenous case, Dhet,

derived from equation (16). To provide meaningful comparisons between the results of

24With the provision that parameter values are such that the resulting optimal k is indeed smaller

than n, so that the group caters to both kind of agents. A sufficient condition is n > s/2, as the Proof

of Proposition 2 establishes.
25The results are similar if we instead consider the fee that maximizes the size of the group.

19



homogenous and heterogenous cases, we are assuming s = b+∆ and n = b−∆(1−p)/p,
to maintain the population mean net payoff constant at b.

Figure 3

The important observation is that Dhet turns out to be smaller than D for the

relevant range k < n, and, as we will show momentarily, the larger ∆, the smaller Dhet.

Since monopoly revenue is maximized at the fee that makes conditional membership

equal to 1/2, the optimal fee k∗het is lower than k∗. Moreover, the conditional revenue

and the level of θ∗ (see Figure 2) are smaller on Dhet, and so is the ex-ante expected

membership. To complete the proof of this proposition, we show that Dhet is indeed

smaller than D. We proceed by demonstrating that, for s > n > k, membership

conditional on θ∗, that is demand in Figure 3, is smaller after the mean preserving

spread. The difference between Dhet and D then simply results from aggregation of

mean preserving spreads, for any k fixed smaller than n. To further help our graphical
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exposition, consider p = 1/2, so that s increases to s +∆, and n decreases to n−∆.

Intuitively, two opposing externalities come into play. Class s (n) agents’ net payoff

in case of success increases (decreases), so they should join more (less) often, and by

strategic complementarities, all other agents’ should enter more (less) often. There-

fore, the overall result depends on the relative strength of such externalities. Since

we are interested in membership conditional on θ∗ in (12), what drives the result are

the changes in θn − θ∗ and θs − θ∗. The key observation is that, compared to class-s

agents, low-valuation agents face a larger strategic uncertainty: to be willing to pay

the same fee, they must believe the group more likely to succeed. Figure 4 illustrates

this observation using equations (13) and (14). These two equations imply that the

area of the regions ABCD in the top and bottom halves of Figure 4 must be equal to

each other (and to 2εk). Hence, since s > n, we must have θ∗− (θn−ε) > θ∗− (θs−ε).
Therefore, since benefits have value only in case of success, the change in interim ex-

pected payoff for the (formerly) indifferent type θn is larger than for θs, i.e., the area

of the region EFBC depicted in the top half of Figure 4 is strictly larger than the area

of the region EFBC depicted in the bottom half. It then follows that class-n agents

react more to the mean preserving spread than class-s agents, that is θn − θ∗ changes

more than θs − θ∗ in order to restore (13) and (14), so that Dhet decreases.
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We conclude this section by noticing that the result of Proposition 3 is in line

with the existing literature showing that exogenous heterogeneity typically hampers

participation to social activities.26 In the next section we will show that this conclusion

can be reversed when heterogeneity arises endogenously in a dynamic setting.

26See, among others, Alesina and La Ferrara [1], and Costa and Kahn [8].
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3 The Dynamic Model

We consider a two-period dynamic extension of our model to explore the effect of

seniority benefits on membership and retention decisions. In each period t = {1, 2}
a threshold level θt is drawn, agents observe a noisy signal of the true threshold and

decide whether to pay a membership fee kt to join the group or not. The first period is

similar to the homogeneous case in Section 2: all members receive b when the group is

successful. The second period is similar to the heterogenous case in Section 2: in case

of success returning members receive s while new members receive n, with s ≥ b ≥ n.

For simplicity, we model seniority benefits as an endogenous mean-preserving spread,

that is we assume

s (p;∆) = b+ p∆

n (p;∆) = b− (1− p)∆,

where (1− p) is the endogenous fraction of agents who joins in the first period. The

difference s (p;∆) − n (p;∆) = ∆ ≥ 0 represents the total utility value of seniority

benefits, and we assume that it is distributed among new and senior members so that

the average utility of selective incentives is unchanged:

(1− p) s (p;∆) + pn (p;∆) = b.

This assumption facilitates the comparison with our results on the exogenous hetero-

geneity case.27

We assume that k1 and ∆ are chosen optimally by the group at the beginning of

the game, in order to maximize a weighted sum of the probabilities of providing the

public good in the first and second period. Further, we assume that, at the beginning

of the second period, the membership fee k2 is chosen to maximize the probability of

27Note that the extra-benefit senior members receive with respect to the first period, that is s (p;∆)−
b = p∆, is decreasing in first-period membership. This is one way to capture the notion of preferential

assignment of limited resources to returning members.
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success for any realized (1− p). While all our results are qualitatively unaffected under

reasonable alternative extensive forms, a critical assumption regards the credibility of

committing to the ∆ chosen at the beginning of the game. It is immediate from our

previous results that with no commitment power, that is when the association can revise

∆ in the second period at no cost, the only credible ∆ is zero. Clearly, some degree of

commitment seems both plausible and realistic. Here, for simplicity, we assume perfect

commitment. With such assumption, one rationale for the use of seniority benefits is

to effectively bundle admission for the two periods. Indeed, it is possible to choose ∆

so large that, at the same time, agents do not join in the first period on the merits of

its fundamentals but just not to be excluded in the second period, and the association

does not try to obtain new members in the second period but only caters to returning

members. To avoid such a radical departure from our earlier framework, along with

perfect commitment we confine our analysis to cases where:

A1) b > k1 > ∆, so that first-period fundamentals are the deciding factor in first-

period membership decisions, and

A2) ∆ ≤ b/2, so that the associations optimally caters to both new and returning

members in the second period.

Let θ1i = θ1 + εi1, and θ2i = θ2 + εi2 be the signals in the first and second period,

respectively, where θ1 and θ2 are uniformly distributed on
£
θ, θ
¤
, while εi1 and εi2

are uniformly distributed on [−ε, ε]. All these random variables are assumed to be

mutually independent.28 Finally, we assume that at the beginning of the second period

agents observe the proportion of those who joined in the first period (1− p).

Note that seniority benefits directly increase the value of retaining membership

status conditional on reaching the production threshold. However, given the result

28If the distributions of the first and second-period states are not independent, the fraction of agents

who joins in the first period may convey information about the realization of the second period state.

This information contagion has been investigated in a number of different papers; here, for clarity and

simplicity, we consider the new state independently drawn. For a model considering the information

contagion effect see, e.g., Dasgupta [9].
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of Proposition 2, heterogeneity among agents reduces the probability of reaching this

threshold in the second period. Since these opposite effects spill over to the first period,

payoffs may be non-monotonic in the signal, hence we cannot apply existing results to

show existence and uniqueness of an equilibrium.29 In the next proposition we fix ∆

and k1 and we show that an equilibrium exists and is unique in the space of monotone

strategies, that is when more favorable information implies that each agent is more

likely to join in equilibrium.

Proposition 3 Under assumptions A1 and A2, in any subgame following a choice of

k1 > 0 and ∆, if agents use monotone strategies a unique equilibrium of the dynamic

membership game exists. In equilibrium players follow a switching strategy around

θb1 (k1;∆) in the first period, the group sets k2 optimally to k
∗
2het (p;∆) < n (p;∆) and,

in the second period, players follow a switching strategy around θs2 (p;∆) if they joined

in the first period, and around θn2 (p;∆) otherwise.

The proof is in the appendix. The logic of the proof is simple and proceeds by

backwards induction. Proposition 1 ensures existence and uniqueness of an equilibrium

in the second period, for any p. The group then chooses the optimal k2 in order to

serve both groups of potential members, because ∆ ≤ b/2. Moving back to the first

period, payoffs to joining have then two components. One is related to first-period

fundamentals, and is identical to the one in the static homogenous case. The second is

related to the expected difference in equilibrium payoffs between entering as a senior

or a new members in the second period. The non-monotonicity in p of this second

component precludes convergence to a unique equilibrium of the standard iterated

deletion of strictly dominated strategies process. However, if we restrict attention to

29A paper that tackles a similar problem is Giannitsaru and Toxvaerd [12], where uniqueness of

an equilibrium is proven in a general class of dynamic global games. However, our problem does not

satisfy one assumption for their results, namely strict supermodularity of the payoff to joining in the

second period with respect to the number of agents that joined in the first. In our case, we have an

inverse relation for senior members.
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monotone strategies, the marginal effect of p on the first component of payoffs is always

the dominant one, so existence and uniqueness of equilibrium (in cutoff strategies) is

preserved.

At this point, a natural question to ask is whether offering seniority benefits is ever

an optimal strategy and, if this is the case, what determines the optimal level of ∆.

We let w1 and w2 denote the weights that the group attaches to the probability of

providing the public good in the first and second period, respectively. Therefore, the

objective function of the group is

W (k1;∆) ≡ w1 Pr (θ1 < θ∗1 (k1;∆)) + w2Eθ1 (Pr (θ2 < θ∗2 (p,∆))) , (17)

where θ∗1 (k1;∆) is the threshold below which the group is successful in the first period

and θ∗2 (p,∆) is the threshold below which the group is successful in the second period.
30

The number of potential new members in the second period, p, is itself a function of

the cutoff value θb1 (k1;∆) and of the actual first-period state θ1. Our first result is to

establish that not offering seniority benefits is never optimal for the group. Indeed,

denoting the problem facing the association as

maxk1,∆ W (k1;∆)

s.t.
∆ ≤ b/2

∆ < k1 < b

(M)

we have the following:

Proposition 4 There exists a unique solution (k∗1,∆∗) to problem (M). Moreover,

∆∗ > 0 and k∗1 > b/2.

Existence and uniqueness follow from continuity and convexity arguments. The

proof that ∆∗ > 0 in the appendix relies on the following intuition. The role of

30Clearly, the value of θ∗2 is a function of k2 as well. We suppress this argument because the optimal

k2 is itself a function of p and ∆.
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seniority benefits is twofold: they directly increase the value of membership in the

first period, and they introduce heterogeneity between prospective members. When

∆ = 0, the marginal effect of seniority benefits on second-period equilibrium values

is zero. Indeed, without seniority benefits, there is no agent that receives a smaller

utility of membership in the second period, i.e., all agents are facing the same strategic

uncertainty. Therefore, at ∆ = 0, the endogenous mean-preserving spread generated

by offering some seniority benefits produces marginal effects on senior and returning

members that exactly counterbalance. On the contrary, the marginal effect of ∆ on

first-period equilibrium values remains positive at ∆ = 0. Seniority benefits add an

extra-term to the payoff of joining in the first period in (1): the expected value of

re-entering as a senior member and receiving s, versus joining as a new member and

receiving n in the second-period. The difference s − n = ∆ is zero at ∆ = 0, but

its derivative remains strictly positive.31 Therefore, at ∆ = 0 the marginal positive

effect of ∆ on first-period equilibrium values dominates the marginal negative effect on

the second-period ones. As for the optimal fee k∗1, quite intuitively we have that the

association charges more than in the static case of Section 2, that is more than b/2, since

membership is more valuable because of seniority benefits. It is worth noting that the

optimal ∆∗ is non-negative even when membership fees are exogenously fixed. Hence,

the result that offering seniority benefits is optimal obtains as well for the interpretation

of our model where success is determined only by the size of the association.

Proposition 4 leaves open the possibility of a corner solution at ∆∗ = b/2. The

following quite intuitive lemma establishes that when the weight on the second period

is sufficiently large ∆∗ is interior.

Lemma 1 For any w1 > 0 and any ε > 0, there exists w > w1 such that, for

31Clearly, the difference (s− n) is received only with some probability. In the proof we show that the

extra-term to be added to equation (1) is the expected value of ∆Pr (θ2 < θ∗2 (p;∆) (1− ε/α)), where

θ∗2 is the critical second-period state (see equation (21) in the appendix). The important observation

here is that this probability is always strictly positive because of the existence of lower dominance

regions, so that the marginal effect of ∆ is always positive.
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w2 > w, we have ∆∗ < b/2.

When Lemma 1 holds, it is straightforward to establish that ∆∗ is increasing in b.

Moreover, the group reacts to a smaller asymmetry in information among agents by

increasing the level of seniority benefits, as the next proposition shows.

Proposition 5 If w2 > w, the optimal level of seniority benefits ∆∗ is decreasing in ε.

The intuition relies again on the twofold role of seniority benefits. Consider first

the negative effects in the second period. When ε decreases, it is more likely that

agents receive similar signals, therefore it is more likely that they choose the same

action. Indeed, in our model, for all realizations of θ1 not in an ε-neighborhood of the

cutoff θb1, all agents either join the group or stay out.
32 Therefore, since ∆ is chosen at

the beginning of the first period, the group’s ex-ante expectation about the degree of

heterogeneity induced by any ∆ in the second period decreases with ε. Therefore, the

smaller ε, the smaller the negative marginal effect of seniority benefits on the second

period. On the contrary, the positive effect of seniority benefits in the first period

increases when ε becomes smaller. When ε decreases, it is more likely that agents

choose the correct action, that is entering only when the group is successful. This

increases the expected payoff of both senior and junior agents in the second-period,

but more so for senior members, because they receive an extra (s− n) = ∆, which is

unaffected by ε.33

32Indeed, it is a well-known property of global games that when the noise in agents’ information

tends to zero, almost all agents take the same action.
33This is the reason why the extra-term seniority benefits add to the expected first-period payoff

of joining in equation (1) is decreasing in ε, (cf. footnote [30]). As a technical remark, it is worth

noting that first-period membership 1 − p is constant at 1/2 in the proof of Proposition 5. This is

because in our cutoff-strategy equilibrium, the only types swayed by a marginal change in ε are those

near the cutoff θb1 (k1, θ), and it is enough for the association to consider how this cutoff changes with

ε to determine changes in first-period membership. Since signals are conditionally independent, the

cutoff type θb1 (k1, θ) believes other agents’ signals to be higher or lower than θb1 (k1, θ) with equal

probability for any ε > 0. As a result, by definition of the cutoff type, the relevant belief about

first-period membership for the group to consider is 1/2 for any ε.
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In conclusion, and contrary to the one-shot game in Section 2, the precision of

agents’ signals does affect the optimal dynamic membership contract, even when the

group is only maximizing the probability of success. In a model where the precision of

information is an endogenous variable, our result in Proposition 5 provides an incentive

for groups to publicize their efforts. This and other extensions of our work are subjects

of current research.
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Appendix
Proof of Proposition 2.

We first consider the effect of increased heterogeneity in the form of a mean preserv-

ing spread on the ex-ante expected probability that the group is successful in providing

the public good. If p > (s− 2n) /2 (s− n), the optimal k, i.e., the level of the fee that

maximizes the probability of success, is interior, that is smaller than n, and it is equal

to k∗het = ns/2α. Since p > 0, an immediate sufficient condition for the group to

cater to both classes of agents is 2n > s. When k = k∗, taking the total differential

of (θ∗ − θ) /
¡
θ − θ

¢
, and substituting dn = −ds (1− p) /p and ds = 1, yields, using

Proposition 1,

d

µ
θ∗ − θ

θ − θ

¶
=

dθ∗

θ − θ
=

dk∗

2
¡
θ − θ

¢ = d
³ns
4α

´
= −(1− p) (s2 − n2)

4α2
< 0.

As for the effect of increased heterogeneity on the expected size of the group, when

k = k∗, using Proposition 1, we have

pθn + (1− p) θs = θ∗,

and the result follows as above. The analysis of exogenous heterogeneity when the

group caters only to class-s agents is not interesting. However, the endogenous het-

erogeneity case is analyzed in Proposition 3. Finally, all qualitative predictions are

trivially maintained for a group that maximizes expected membership, that is a group

that sets k to k∗∗het = k∗het − ε.

Proof of Proposition 3.

We start with the group’s optimal choice of k2 in the second period. Given any

proportion 1 − p of agents joining in the first period, the association may decide

not to seek new members by setting k2 > n (p;∆). In this case, the analysis is

similar to the homogenous case in Section 2: the resulting probability of success is

Pr (θ2 < (1− p) s (p;∆) /4). Alternatively, the association may decide to cater to both

new and returning members by setting k2 ≤ n (p;∆). In this case we know from
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Proposition 1 that, in equilibrium, senior (new) members enter if their signal is be-

low θs2 (p;∆) (θ
n
2 (p;∆)), and the critical state below which the group is successful is

θ∗2 (p;∆). The group will then set k2 to its optimal level

k∗2het =
n (p;∆) s (p;∆)

2α (p;∆)
=
1

2

(b− (1− p)∆) (b+ p∆)

p (b+ p∆) + (1− p) (b− (1− p)∆)
.

Note that k∗2het, θ
∗
2 (p;∆), θ

n
2 (p;∆) and θ

s
2 (p;∆) are all functions of the proportion

of agents joining in the first period and of the utility value of seniority benefits (∆)

through s (p;∆) and n (p;∆) (and therefore α (p;∆) = ps (p;∆) + (1− p)n (p;∆)).

Keeping this in mind, we henceforth suppress the argument (p;∆) to save notation.

Using Proposition 1, we then have⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ∗2 = k∗2het

¡
1− k∗2het

¡
p
n
+ 1−p

s

¢¢
= ns

4α

θn2 = θ∗2 − 2ε
³
k∗2het
n
− 1

2

´
= θ∗2 − ε s

α
+ ε

θs2 = θ∗2 − 2ε
³
k∗2het
s
− 1

2

´
= θ∗2 − εn

α
+ ε.

(18)

Simple algebra shows that the condition ∆ ≤ b/2 implies that, for any realized p, we

have k∗2het ≤ n and ns/4α ≥ (1− p) s/4. Therefore the optimal choice of the association

is indeed to serve both classes of potential members, and set k2 = k∗2het. To bridge first

and second periods, we now define Q (p,∆) as the expected difference in equilibrium

payoffs between senior and new members in the second period, before θi2 is realized,

that isZ θs2

θ−ε
(sPr (θ2 < θ∗2|θ2i)− k∗2het) dF (θ2i)−

Z θn2

θ−ε
(nPr (θ2 < θ∗2|θ2i)− k∗2het) dF (θ2i) .

(19)

Using (18), and

Pr (θ2 < θ∗2|θ2i) =

⎧⎪⎪⎨⎪⎪⎩
0 if θ∗2 < θ2i − ε
θ∗2−(θ2i−ε)

2ε
if θ2i − ε < θ∗2 < θ2i + ε

1 if θ∗2 > θ2i + ε,

(20)

Q (p,∆) simplifies as

Q (p,∆) =
∆

θ − θ

³
θ∗2
³
1− ε

α

´
− θ
´
. (21)
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Indeed, Q (p,∆) in (19) can be written, using (20), as

∆

Ã
F (θ2i = θ∗2 − ε) +

Z θn2

θ∗2−ε

θ∗2 − (θ2i − ε)

2ε
dF (θ2i)

!
+

+s

Z θs2

θn2

µ
θ∗2 − (θ2i − ε)

2ε
− k∗2het

s

¶
dF (θ2i) ,

so that, since
R x2
x1

³
θ∗2−(θ2i−ε)

2ε

´
dθ2i =

1
2ε

¡
θ∗2 + ε− x2+x1

2

¢
(x2 − x1) , and calculating the

terms (x2 + x1) and (x2 − x1) according to (18), we have

¡
θ − θ

¢
Q (p,∆) = ∆

Ã
(θ∗2 − ε− θ) + ε

Ã
1−

µ
1

2

s

α

¶2!!
+s

ε

4

s2 − n2

α2
−k∗2hetε

µ
s− n

α

¶
.

Using s − n = ∆, k∗2het = ns/2α and θ∗2 = k∗2het/2, we obtain the expression in (21).

Using (18), one may verify that Q (p,∆) in (21) is non-monotonic in p so, moving back

to the first period, the standard iterated deletion of strictly dominated strategies does

not yield a unique equilibrium. However, it is possible to show that dominance regions

still exist. To see this, let π (θ1i, e) denote the net benefit from joining in the first

period for agent i conditional on receiving signal θ1i, for any strategy followed by all

other agents that induces a proportion e of agents joining in the first period, that is

π (θ1i, e) = E (bPr (k1e > θ1)− k1 +Q (1− e,∆) |θ1i) .

Using (21), we have Q (p,∆) ∈ [0,∆], and since∆ < k1 < b, the existence of dominance

regions for θ1i follows as in Section 2. Indeed, if θ1i < θ + ε,

π (θ1i, e) > bPr (k1 · 0 > θ1|θ1i)− k1 + 0 > b− k1 > 0,

and if θ1i > θ − ε,

π (θ1i, e) < bPr (k1 · 1 > θ1|θ1i)− k1 +∆ < −k1 +∆ < 0.

The existence of dominance regions is very useful in establishing existence and unique-

ness of an equilibrium in monotone (cutoff) strategies. Suppose that all agents follow a
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cutoff strategy around θb1. Let θ
∗
1 be the value of θ1 below which the group is successful

in providing benefits in the first period, which is determined by

k1 Pr
¡
θ1i ≤ θb1|θ1 = θ∗1

¢
= θ∗1. (22)

The net benefit from joining in the first period for agent i conditional on receiving

signal θ1i is

π
¡
θ1i, θ

b
1

¢
= bPr (θ1 < θ∗1|θ1i)− k1 +Q

ÃZ θ+ε

θb1

f (θ1i0|θ1i) dθ1i0 ,∆
!
, (23)

where the first argument of Q is the proportion of agents that did not join in the first

period from the point of view of an agent with private signal θ1i, which is non-stochastic

because of the continuum of agents assumption. The existence of dominance regions

implies that π
¡
θb1, θ

b
1

¢
> 0 for θb1 < θ + ε, and that π

¡
θb1, θ

b
1

¢
< 0 for θb1 > θ − ε. Since

π
¡
θb1, θ

b
1

¢
is continuous in θb1, a solution to π

¡
θb1, θ

b
1

¢
= 0 exists, with θb1 ∈

¡
θ + ε, θ − ε

¢
.

Uniqueness of a solution to π
¡
θb1, θ

b
1

¢
= 0 follows because dπ

¡
θb1, θ

b
1

¢
/dθb1 < 0. To see

this, note that given θb1 ∈
¡
θ + ε, θ − ε

¢
the distribution of θ1 conditional on θ1i = θb1

is uniform in
£
θb1 − ε, θb1 + ε

¤
, and the distribution of θ1i0 conditional on θ1i = θb1 is

a symmetric triangular distribution centered on θb1, with support
£
θb1 − 2ε, θb1 + 2ε

¤
.

Hence,
R θ+ε
θb1

f
¡
θ1i0|θ1i = θb1

¢
dθ1i0 = 1/2 for any θ

b
1 ∈

¡
θ + ε, θ − ε

¢
, so that the expected

proportion of agents that does not join in the first period from the point of view of

type θb1 is constant and equal to 1/2. Therefore,

π
¡
θb1, θ

b
1

¢
= bPr

¡
θ1 < θ∗1|θb1

¢− k1 +Q

µ
1

2
,∆

¶
,

so that
dπ
¡
θb1, θ

b
1

¢
dθb1

=

⎧⎨⎩ b
2ε

³
dθ∗1
dθb1
− 1
´
if
¯̄
θ∗1 − θb1

¯̄
< ε

0 otherwise.

However, if
¯̄
θ∗1 − θb1

¯̄ ≥ ε, we have that either

π
¡
θb1, θ

b
1

¢
= (b− k1) +Q

µ
1

2
,∆

¶
> b− k1 > 0,
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or

π
¡
θb1, θ

b
1

¢
= (0− k1) +Q

µ
1

2
,∆

¶
< −k1 +∆ < 0,

contradicting the fact that π
¡
θb1, θ

b
1

¢
= 0. Therefore, it must be

¯̄
θ∗1 − θb1

¯̄
< ε, implying

dπ
¡
θb1, θ

b
1

¢
dθb1

=
b

2ε

µ
dθ∗1
dθb1
− 1
¶
=

b

2ε

µ
k1

k1 + 2ε
− 1
¶
< 0,

where dθ∗1/dθ
b
1 is calculated using (22).

The proof is completed by showing that a cutoff strategy around θb1 is a best response

to cutoff strategies around θb1, i.e., by showing that

dπ
¡
θ1i, θ

b
1

¢
dθ1i

¯̄̄̄
¯
θ1i=θ1c

< 0, (24)

where θ1c is any value of the signal θ1i for which π
¡
θ1c, θ

b
1

¢
= 0. Note first that, by the

definition of θ1c, it must be the case that |θ∗1 − θ1c| < ε, and that θ1c ∈
¡
θ + ε, θ − ε

¢
.

Therefore,

π
¡
θ1i = θ1c, θ

b
1

¢
=

µ
b
θ∗1 − θ1c + ε

2ε
− k1

¶
+Q

ÃZ θ+ε

θb1

f (θ1i0|θ1i = θ1c) dθ1i0 ,∆

!
,

so that

dπ
¡
θ1i, θ

b
1

¢
dθ1i

¯̄̄̄
¯
θ1i=θ1c

= − b

2ε
+

dQ (p,∆)

dp

d
³R θ+ε

θb1
f (θ1i0|θ1i) dθ1i0

´
dθ1i

¯̄̄̄
¯̄
θ1i=θ1c

.

Since
d
³R θ+ε

θb1
f (θ1i0|θ1i) dθ1i0

´
dθ1i

≤ 1

2ε
,

and
∂Q (p,∆)

∂p
< b,

as we will show momentarily, we have

dπ
¡
θ1i, θ

b
1

¢
dθ1i

¯̄̄̄
¯
θ1i=θ1c

< − b

2ε
+

b

2ε
< 0.

34



The proof that the derivative of Q (p,∆) with respect to p is always smaller than b

follows because, from (21), we have

∂Q (p,∆)

∂p
=

∆

θ − θ

µ
∂θ∗2
∂p

³
1− ε

α

´
+ ε

θ∗2
α2

∂α

∂p

¶
, (25)

so that, using ∂α
∂p
= 2∆ and ∂θ∗2

∂p
= ∆α(n+s)−2ns

4α2
, we obtain

∂Q (p,∆)

∂p
=

∆2

4α
¡
θ − θ

¢ µ∆ps− (1− p)n

α
+ ε

2bs− (b+∆)

α2

¶
,

yielding
∂Q(p,∆)

∂p

< ∆2

4α(θ−θ)
¡
∆+ ε2bs

α2

¢
using α = ps+ (1− p)n

< ∆2

4α(θ−θ)
¡
∆+ 2ε s

α

¢
since b < s, and s/α > 1

< ∆2

4α(θ−θ)
¡
∆+ 2ε b

b−∆
¢

using s/α decreasing in p

< ∆2

4(b−∆)(θ−θ)
¡
∆+ 2ε b

b−∆
¢
since α is increasing in p

< ∆2

4(b−∆)(b+4ε)
¡
∆+ 2ε b

b−∆
¢
using

¡
θ − θ

¢
> b+ 4ε,

so that, using ∆ < b/2, we have b/(b−∆) < 2 and eventually

∂Q (p,∆)

∂p
<

∆2

4 (b−∆)
≤ b

8
< b.

A similar argument can be used to rule out asymmetric equilibria in cutoff strategies,

since the above bound continues to hold.

Proof of Proposition 4.

We proceed ignoring the strict inequality constraint ∆ < k1 < b, and then verify it

is satisfied. Usual continuity arguments ensure existence of a solution to this relaxed

maximization problem. After eliminating constants, maximizing (17) is equivalent to

maximizing

θ∗1 + ŵ2

Z θ

θ

θ∗2 (p,∆) dθ1, (26)
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subject to the equilibrium constraints for the first-period cutoff strategy, namely

bPr
¡
θ1 ≤ θ∗1|θ1i = θb1

¢
+Q

µ
1

2
,∆

¶
= k1 (27)

θ∗1 = k1 Pr
¡
θ1i ≤ θb1|θ1 = θ∗1

¢
,

and where, from (18),

θ∗2 (p,∆) =
1

4

n (p,∆) s (p,∆)

α (p,∆)
. (28)

The function p in the maximand and in (28) describes the agents that do not join in

the first period. As a function of the realized state θ1 and equilibrium cutoff θb1, p is

p =

⎧⎪⎪⎨⎪⎪⎩
0 for θ1 ∈

¡
θ, θb1 − ε

¢
1− θb1−θ1+ε

2ε
for θ1 ∈

¡
θb1 − ε, θb1 + ε

¢
1 for θ1 ∈

¡
θb1 + ε, θ

¢
.

(29)

Remember that Q (p,∆) is the expected value of seniority benefits. In (27) it is calcu-

lated at p = 1/2 because the indifferent agent θb1 always believes that the measure of

agents joining is 1/2. Using (21),

Q

µ
1

2
,∆

¶
=

∆

θ − θ

µ
(b− ε) (4b2 −∆2)

16b2
− θ

¶
.

Finally, ŵ2 > 0 in (26) is just a rescaling of w2 by w1, and
¡
θ − θ

¢
. The restrictions in

(27) uniquely define θ∗1 and θ
b
1 as functions of k1 and ∆. The derivative of the objective

function for k1 then is

∂θ∗1 (∆, k1)

∂k1
+ ŵ2

Z θ

θ

∂θ∗2 (p,∆)
∂p

∂p

∂θb1

∂θb1
∂k1

dθ1.

Using (29) to change the variable of integration from θ1 to p

∂θ∗1 (∆, k1)

∂k1
+ ŵ2 (2ε)

Z 1

0

∂θ∗2 (p,∆)
∂p

µ
∂p

∂θb1

∂θb1
∂k1

¶
dp,

and, noting that ∂p

∂θb1
and ∂θb1

∂k1
do not depend on p, we have

∂θ∗1 (∆, k1)

∂k1
+ ŵ2 (2ε)

µ
∂p

∂θb1

∂θb1
∂k1

¶Z 1

0

∂θ∗2 (p,∆)
∂p

dp.
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Since θ∗2 (1,∆) = θ∗2 (0,∆) = b/4 from (28), the optimal k1 then solves

∂θ∗1 (∆, k1)

∂k1
= 0,

or, using (27),

k∗1 =
b+Q

¡
1
2
,∆
¢

2
. (30)

Note how this level of k1 will be strictly larger than b/2 as soon as ∆∗ > 0. Moreover,

k∗1 is strictly smaller than b, since Q
¡
1
2
,∆
¢ ≤ ∆/4, because θ > b, and ∆ ≤ b/2.

Therefore, the constraint ∆ < k1 < b is always satisfied, since, as we show below,

∆∗ > 0. With a similar procedure, the first derivative of (26) with respect to ∆ yields

∂θ∗1 (∆, k1)

∂∆
+ ŵ2

Z θ

θ

µ
∂θ∗2 (p,∆)

∂p

∂p

∂θb1

∂θb1
∂k1

+
∂θ∗2 (p,∆)

∂∆

¶
dθ1 =

=
∂θ∗1 (∆, k1)

∂∆
+ ŵ22ε

Z 1

0

∂θ∗2 (p,∆)
∂∆

dp,

and using (27) and (28), we obtain

k1
b

∂Q
¡
1
2
,∆
¢

∂∆
+ ŵ22ε

Z 1

0

µ
−∆
4
p (1− p)

b+ (ps+ (1− p)n)

(ps+ (1− p)n)2

¶
dp =

=
k1

b
¡
θ − θ

¢ µ(b− ε)
4b2 − 3∆2

16b2
− θ

¶
− ŵ2ε

(b2 +∆2) log
¡
b+∆
b−∆

¢− 2∆b

(4∆)2
.

Substituting the optimal level of k1 in (30), we have that the first derivative of the

objective function (26) with respect to ∆ is

Φall (∆; ε) ≡ Φone (∆; ε) · Φtwo (∆; ε)− ŵ2ε · Φthree (∆; ε) , (31)

where

Φone (∆; ε) ≡ 1

2b
¡
θ − θ

¢ Ãb+ ∆¡
θ − θ

¢ µ(b− ε) (4b2 −∆2)

16b2
− θ

¶!
≥ 0, (32)

Φtwo (∆; ε) ≡ (b− ε)
4b2 − 3∆2

16b2
− θ ≥ 0,

Φthree (∆; ε) ≡ (b
2 +∆2) log

¡
b+∆
b−∆

¢− 2∆b

(4∆)2
≥ 0.
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Note how

lim
∆→0

Φone (∆; ε) · Φtwo (∆; ε) =
1

2
¡
θ − θ

¢ µb− ε

4
− θ

¶
> 0,

since θ + ε < 0. As for Φthree (∆; ε), we have, using de l’Hopital’s rule

lim
∆→0

Φthree (∆; ε) = lim
∆→0

2∆
¡
log
¡
b+∆
b−∆

¢
+ 2b∆

b2−∆2

¢
32∆

=

=
1

16
lim
∆→0

µ
log

µ
b+∆

b−∆

¶
+

2b∆

b2 −∆2

¶
= 0.

Therefore, for ∆ close to zero, the objective function (26) is strictly increasing in ∆,

so ∆∗ > 0. Finally, note that to show uniqueness of ∆∗, it is enough to show that at

any ∆̂ such that Φall
³
∆̂; ε

´
= 0, we have

∂Φall (∆; ε)

∂∆

¯̄̄̄
∆=∆̂

< 0.

Indeed, note that

∂Φone (∆; ε)

∂∆
=
1

∆

Ã
Φone (∆; ε)− 1

2
¡
θ − θ

¢!− 1

2b
¡
θ − θ

¢ 2∆2 (b− ε)¡
θ − θ

¢
16b2

<
Φone (∆; ε)

∆
,

∂Φtwo (∆; ε)

∂∆
= −(b− ε) 6∆

16b2
< 0,

and
∂Φthree (∆; ε)

∂∆
=
1

∆

2b2

b2 −∆2

2∆b− (b2 −∆2) log
¡
b+∆
b−∆

¢
(4∆)2

.

Since

∂Φthree (∆; ε) /∂∆

Φthree (∆; ε) /∆
=

2

1− x2
2x− (1− x2) (log (1 + x)− log(1− x))

2x− (1 + x2) (log (1 + x)− log(1− x))
,

which can be shown to be larger than one for x = ∆/b ∈ [0, 1/2], we have
∂Φthree (∆; ε)

∂∆
>

Φthree (∆; ε)

∆
.

Therefore,

∂Φall (∆; ε)

∂∆
=

∂Φone (∆; ε)

∂∆
Φtwo (∆; ε) + Φone (∆; ε)

∂Φtwo (∆; ε)

∂∆
− ŵ2ε

∂Φthree (∆; ε)

∂∆
<

<
Φone (∆; ε)

∆
Φtwo (∆; ε)− ∂Φthree (∆; ε)

∂∆
ŵ2ε,
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which, when evaluated at a ∆̂ that makes Φall
³
∆̂; ε

´
= 0, yields

∂Φall (∆; ε)

∂∆

¯̄̄̄
∆=∆̂

<
ŵ2ε

∆̂

µ
Φthree

³
∆̂; ε

´
− ∂Φthree (∆; ε)

∂∆

¶
<

<
ŵ2ε

∆̂

³
Φthree

³
∆̂; ε

´
− Φthree

³
∆̂; ε

´´
= 0,

and therefore the optimal ∆∗ is unique.

Proof of Lemma 1.

The claim follows from

Φthree (∆ = b/2; ε) =
1

4

µ
5

4
log 3− 1

¶
> 0,

using (32), so that, for ŵ2 large enough, the derivative of the group’s objective function

with respect to ∆, that is Φall (∆; ε) in (31), is negative at ∆ = b/2.

Proof of Proposition 5.

The result follows by applying the implicit function theorem to (31), and noting

that ∂Φall(∆;ε)
∂ε

< 0 since ∂Φone(∆;ε)
∂ε

and ∂Φtwo(∆;ε)
∂ε

are negative, while ∂Φthree(∆;ε)
∂ε

= 0 and

Φthree (∆∗; ε) > 0.
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