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I. Introduction.

Axiomatization of (input) efficiency measurement was introduced by Färe and Lovell

[1978], who proposed three axioms: indication of efficient bundles (the efficiency index equals

one if and only if the input vector is Koopmans [1951] efficient); monotonicity (increasing input

quantities reduces the value of the index; and homogeneity (e.g., doubling all input quantities

cuts the index in half). Bol [1986] showed that there does not exist an efficiency index that

satisfies all three of these axioms for all technologies and suggested two approaches to axiom­

atization of technical efficiency measurement: (1) weakening the axioms and (2) restricting

the set of technologies to which the index is to be applied. Russell [1985, 1987] suggested

a weakening of monotonicity (increasing input quantities does not increase the value of the

index) and a modification of the indication condition (indication of weakly efficient input

vectors) and assessed several indexes in terms of the trade­offs among these axioms. The

three indexes are the Debreu [1951] ­ Farrell [1957] index, the Färe­Lovell [1978] index, and

the Zieschang [1984] index.

Dmitruk and Koshevoy [1991] is the only paper to take the alternative approach of re­

stricting the set of technologies. They provide a complete characterization of the set of tech­

nologies for which an index satisfying the Färe­Lovell axioms exists. Interestingly, the tech­

nologies integral to the standard mathematical­programming (DEA) method of measuring

technical efficiency belong to the class of technologies identified by the Dmitruk­Koshevoy

theorem. Even more interesting is the fact that the Dmitruk­Koshevoy proof is constructive,

suggesting a class of potentially programmable efficiency indexes that satisfy all three of the

Färe­Lovell axioms on the most commonly constructed technologies. We identify, however,

a fundamental flaw in the Dmitruk­Koshevoy index: unlike the indexes to which we have

alluded above, it is not independent of units of measurement. In particular, it does not satisfy

the commensurability axiom introduced by Russell [1987]. We believe this may be a more

fundamentally desirable property of an index than any of the Färe­Lovell conditions.

We go on to formulate a modification of the Dmitruk­Koshevoy efficiency index that sat­

isfies the commensurability axiom as well as the Färe­Lovell axioms on a well­defined subset

of the set of closed, convex, polyhedral technologies (a subset that excludes, e.g., Leontief

technologies). To extend this efficiency index to the entire space of such technologies, we

have to extend the notion of an efficiency index to map not just from input quantities and

input­requirement sets but also from a space of unit transformations themselves. The com­

mensurability axiom is then suitably reformulated in terms of this expanded notion of an

efficiency index, which requires more information than does the standard notion. We then

show that our modified Dmitruk­Koshevoy index satisfies the reformulated commensurabil­

ity condition as well as the Färe­Lovell axioms. Finally, we show that this efficiency index

has a nice interpretation in terms of shadow evaluations of inefficiencies.
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Section II describes convex polyhedral technologies. Section III summarizes known re­

sults of efficiency measurement on general technologies, while Section IV extends these

results to the restricted class of technologies introduced in Section II. Section V describes

the Dmitruk­Koshevoy index, and Section VI shows that it fails to satisfy commensurabil­

ity. Section VII develops our modified Dmitruk­Koshevoy index and shows that it satisfies

commensurability as well as the Färe­Lovell axioms. Section VIII concludes.

II. Convex Polyhedral Technologies.

The theoretical literature on technical efficiency measurement has focused on a general

class of technologies satisfying only very weak regularity conditions. In this section, we begin

by describing these general technologies. Then we turn to the focus of the paper: the class

of technologies that are represented by convex polyhedrons satisfying free disposability.

The input vector x ∈ Rn
+ is constrained to lie in the input­requirement set L (the set of

input vectors that can produce a stipulated vector of outputs.1 Let L be the collection of

non­empty, closed, input­requirement sets that exclude the origin of Rn
+ and satisfy the free­

disposal condition, L = L +Rn
+.
2 To simplify the language in the results that follow, we refer

to “all technologies” when we mean “all input­requirement sets in L.”

An input vector x ∈ L is efficient (in the sense of Koopmans [1951]) if x > x̄ implies x̄ /∈ L;

it is weakly efficient if x � x̄ implies x̄ /∈ L.3 Under our free­disposability assumption, the

set of weakly efficient input vectors is equivalent to the isoquant, defined by

Isoq(L) = { x ∈ L | λx /∈ L ∀ λ ∈ [0, 1) } . (2.1)

The set of efficient points of L, which we denote by Eff(L), is a subset of Isoq(L).

Input requirement sets generated by nonparametric, mathematical programming, or data

envelopment analysis (DEA) methods of measuring efficiency are convex polyhedral sets—

i.e., intersections of a finite number of closed half spaces. See, e.g., Färe, Lovell and Grosskopf

1 A complete characterization of the technology would be a correspondence mapping output vectors into

subsets of input space. Since, however (in the tradition of axiomatic analysis of efficiency measure), we consider

only input­based measures of efficiency for fixed output vectors, it is not necessary to formally incorporate

output into our analysis.
2 Nonemptiness, closedness, and exclusion of level sets containing the origin are necessary to guarantee that

our efficiency indexes are well defined, but the free disposability assumption could be dispensed with. The only

change that would be needed in what follows would be to redefine the Debreu­Farrell index on the free­disposal

hull of L rather than on L itself (as in Russell [1987]).
3 Vector notation: x̄ ≥ x if x̄i ≥ xi for all i; x̄ > x if x̄i ≥ xi for all i and x̄ 6= x; and x̄ � x if x̄i > xi for all i.
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[1995] for a thorough discussion of these methods.4 Again to simplify the exposition, we refer

below to “convex polyhedral technologies” when we mean “nonempty, closed, free­disposal,

convex, polyhedral input­requirement sets that do not contain the zero vector.”

III. Efficiency Indexes on General Technologies.

Let Γ be the subset of L × L satisfying x ∈ L. An (input) efficiency index is a mapping,

E : Γ → (0, 1], with the normalization that E(x, L) = 1 represents full efficiency.5 Three

well­known efficiency indexes are as follows:

• The Debreu [1951] ­ Farrell [1957] index, defined by

EDF (x, L) = min{ λ | λx ∈ L}. (3.1)

• The Färe­Lovell [1978] index, defined by

EFL(x, L) = min
κ

{

∑

i

κi
/

∑

i

δ(xi)
∣

∣

∣ Kx ∈ L ∧ κi ∈ [0, 1] ∀i

}

, (3.2)

where δ(xi) = 1 if xi > 0, δ(xi) = 0 if xi = 0, and K is the diagonal matrix with

〈κ1, . . . , κn〉 on the diagonal.

• The Zieschang [1984] index, defined by

EZ (x, L) = EDF (x, L) · EFL
(

EDF (x, L) · x, L). (3.3)

Thus, the Debreu­Farrell index measures the maximal radial contraction of the input

vector consistent with production feasibility, the Färe­Lovell index measures the maximal

average of coordinatewise contractions, and the Zieschang index is a combination of the

other two indexes, measuring the multiple of the maximal radial contraction to the isoquant

and the average of coordinatewise contractions along the isoquant.

The Färe­Lovell axioms (for a given L) are as follows:

Indication of Efficient Input Bundles (I): For all x ∈ L, E(x, L) = 1 ⇔ x ∈ (L).

4 Input requirement sets implicit in the free­disposal­hull approach to measuring efficiency, however, are not

convex polyhedral sets (see, e.g., Tulkens [1993]).
5 Instead of restricting the domain of E, one could set E(x,L) = ∞ when x /∈ L, but this is an unnecessary

complication, especially since standard empirical methods of calculating effiency indexes guarantee that the

input vector and the reference technology match up, so that x ∈ L is satisfied.
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Monotonicity (M): For all 〈x, x̄〉 ∈ L × L, x > x̄ ⇒ E(x, L) < E(x̄, L).

Homogeneity (H): For all x ∈ L, E(κx, L) = κ−1E(x, L) ∀ κ > 0.

The search for an efficiency index satisfying these conditions on all technologies was

brought to a halt by an impossibility result:

Fact 1 (Bol [1986]): There does not exist an efficiency index satisfying (H), (M), and (I) for

all technologies.6

As Bol pointed out, there exist two approaches to resolving this problem: (1) weakening

the axioms and (2) restricting the set of technologies to which the index is to be applied.

Russell [1985, 1987] suggested the following two axioms, the first a weakening of (M) and the

second an alternative to (I):

Weak Monotonicity (WM): For all 〈x, x̄〉 ∈ L× L, x ≥ x̄ ⇒ E(x, L) ≤ E(x̄, L).

Indication of Weakly Efficient Input Bundles (IW): For all x ∈ L, E(x, L) = 1 if and only if

x ∈ Isoq(L) (i.e., x is “weakly efficient.”)

The known results on the compatibility of the above indexes with all these axioms are

encapsulated in the following:

Fact 2 (Färe and Lovell [1978], Färe, Lovell, and Zieschang [1983], Zieschang [1984], and

Russell [1985, 1987]):

• EDF satisfies (IW), (H), and (WM) and fails to satisfy (M) and (I) on all technologies.

• EFL satisfies (I) and (WM) and fails to satisfy (M) and (H) on all technologies.

• EZ satisfies (I) and (H) and fails to satisfy (WM) on all technologies.

These results underscore the trade­offs among the three efficiency indexes. The choice

between EDF and EFL reflects the trade­off between homogeneity and the strong­efficiency

6 Bol’s three­dimensional example purporting to show that convexity is not relevant contains a minor error:

his input­requirement set,

L =

{

〈x1, x2, x3〉 | x1 = 1 ∧ x2 = 2 ∧ x3 = e(−x1−1)(x2−1)
}

, (3.4)

is not convex. A minor change to

L =

{

〈x1, x2, x3〉 | x1 = 1 ∧ x2 = 2 ∧ x3 = e(−x1−1)1/2(x2−1)1/2
}

, (3.5)

however, results in an input­requirement set that establishes his point.
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form of the indication condition. The choice between EDF and EZ reflects the trade­off be­

tween weak monotonicity and the strong­efficiency form of the indication condition. Choos­

ing between EFL and EZ reflects the trade­off between strong monotonicity and homogene­

ity.

IV. Efficiency Indexes on Convex Polyhedral Technologies.

In this section, we investigate the axioms for efficiency measures with technologies re­

stricted to be convex polyhedral input­requirement sets.

Our first theorem re­examines the trade­offs implicit in Fact 2 in the context of convex

polyhedral technologies.

Theorem 1: For all convex polyhedral technologies,

• EDF satisfies (IW), (H), and (WM) and fails to satisfy (M) and (I).

• EFL satisfies (I) and (WM) and fails to satisfy (M) and (H);

• EZ satisfies (I) and (H) and fails to satisfy (M).

Proof: As the claimed properties of each of the indexes are implied by Fact 2, the theorem

is established by providing counterexamples for each of the properties not satisfied by the

relevant index.

To show that all three indexes fail to satisfy (M), consider an input­requirement set L in

which, for some i, κxi ∈ Isoq(L) for all κ ≥ 0. A two­dimensional example is shown in

Figure 1. Consider two vectors, x and x′, with xj = x̂j for all j 6= i and x̂i > xi > 0. It is

easy to see that EFL(x, L) = (n − 1)/n = EFL(x̂, L), EZ (x, L) = (n − 1)/n = EZ (x̂, L), and

EDF (x, L) = 1 = EDF (x̂, L). This last equality also shows that EDF violates (I).

Consider now the two­dimensional, closed, convex, polyhedral input­requirement set in

Figure 2. Clearly,

EFL(λx̄, L) < λ−1 = λ−1EFL(x̄, L) (4.1)

if 1 < λ < 2, a violation of (H). The counterexample is extended to n dimensions by any

closed, convex, polyhedral extension of L to Rn
+.

Note that this theorem is silent on the question of whether the Zieschang index satisfies

(WM) on convex polyhedral technologies. Our conjecture is that it does, but we have not

been able to prove this; nor have we been able to construct a counterexample. If our conjec­

ture is correct, an interesting implication would be the apparent domination by the Zieschang

efficiency index of the other two indexes when the technologies are restricted to the convex

polyhedral input­requirement sets generated by standard DEA algorithms. In any event, the

Zieschang index certainly does violate monotonicity, and the question that arises is whether
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x1

x2

L

x x̂

Figure 1.

there exists an alternative efficiency index that satisfies all three of the Färe­Lovell axioms.

The answer, provided by Dmitruk and Koshevoy [1991], is “yes,” and we turn to that now.

V. The Dmitruk­Koshevoy Efficiency Index.

Dmitruk and Koshevoy introduced the idea of measuring inefficiency relative to reference

sets that may differ in specific ways from the input requirement set. The existence of the

reference set provides the restriction on technologies needed for the Färe­Lovell axioms to

hold.

Dmitruk and Koshevoy show that there exists an index satisfying the Färe­Lovell axioms

for a technology L ∈ L if and only if there exists a set Q satisfying the following conditions:

(Q1) Q is closed.

(Q2) Q + Rn
+ ⊆ Q.

(Q3) Isoq(Q) = Eff(Q).

(Q4) L ⊆ Q.

(Q5) Eff(L) ⊆ Eff(Q).
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x1

x2

L
x̄

λx̄

Figure 2.

Let L̄ ⊂ L denote the technologies for which there exists a reference setQ satisfying these

properties. Let Q denote the set of reference technologies for L ∈ L̄ and define a function

Γ : L̄ → Q that associates a reference technology Q ∈ Q with any technology L ∈ L̄. The

Dmitruk­Koshevoy efficiency index is defined as the Debreu­Farrell efficiency measure on

the reference set Q = Γ(L):

EDK (x, L) = EDF (x,Γ(L)) (5.1)

for x ∈ L and L ∈ L̄.

Dmitruk and Koshevoy establish the following result:

Fact 3 (Dmitruk and Koshevoy [1991]): EDK satisfies (I), (M), and (H) on L̄.

As noted in the introduction, the Dmitruk­Koshevoy sufficiency proof of their main theo­

rem explicitly constructs the reference set Q when one exists. We sketch the procedure here

for convex polyhedral technologies (which facilitates simplification of their more general

construction).

First, let K(θ) be the closed (symmetric, convex) cone generated by the n vectors ei +θ1,

where 1 is the n­dimensional unit vector; for each i, ei is the (basis) vector satisfying xi = −1

and xj = 0 for all j 6= i; and θ ∈ [0, 1/n]. For convex polyhedral technologies, the set, A =
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(Eff(L) − Rn
+) ∩ Rn

+, is closed. For all a ∈ A, define Za = a +K(θa), where

θa = max { θ ∈ [0, 1/n] | L ∩ int(Za) = ∅ } . (5.2)

Let Qa = Rn
+\int(Za) and Q =

⋂

a∈AQa. Dmitruk and Koshevoy then show that the Q,

constructed in this way, satisfies (Q1)–Q(5). This construction of Q is a bit complicated, but

essentially it is the intersection of the complements (relative to Rn) of all symmetric, convex,

polyhedral cones that “support” the efficient subset. The D­K efficiency index is then defined

by

EDK (x, L) = EDF (x,Q). (5.3)

The immediate implication of the foregoing, along with Fact 3, is the following:

Fact 4 (Dmitruk and Koshevoy [1991]): EDK satisfies (I), (M), and (H) on all convex polyhe­

dral technologies.

Figure 3 illustrates the construction ofQ for a particular two­dimensional, convex polyhe­

dral input­requirement set L. In the diagram, EDK (x, L) = ‖x̄‖/‖x‖. This two­dimensional

construction illustrates plainly the satisfaction of (I), (M), and (H) by the D­K index.

x1

x2

L

Q

x

x̄

Figure 3.
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VI. Commensurability

A fundamental criterion for an efficiency index is invariance to changes in the units of

measurement. One would not want the efficiency of an input vector to depend on whether

inputs were measured in pounds or kilograms. Russell [1987] introduced the following axiom

to require this invariance.

Commensurability (C): For all x ∈ L, if x′ = Ωx, where Ω is a positive diagonal matrix, and

L′ =
{

x′ | Ω−1x′ ∈ L
}

, then E(x, L) = E(x′, L′). Commensurability is satisfied by the

most commonly used efficiency measures.

Fact 5 (Russell [1987]): EDF , EFL, and EZ satisfy (C) on all technologies.

The following theorem demonstrates an important weakness of the EDK index.

Theorem 2: EDK fails to satisfy (C) on convex polyhedral technologies.

Proof: In Figure 4, consider a change in the units in which input 1 is measured, so that,

in the new units, x′1 = ω x1 (and, of course, x′2 = x2). In addition, the level set in the

transformed units of input 1 is L′. After the change in units, the value of the efficiency index

is EDK (x′, L′) = ‖x̄′‖/‖x′‖ 6= EDK (x, L). The reference vectors, relative to Q and Q′, x̄ and

x̄′, would have to lie on a horizontal line (i.e., satisfy x̄2 = x̄′2) in order for the index to be

unaffected by a change in the units of input 1. As is demonstrated in the graph, x̄2 6= x̄′2 so

that EDK (x, L) 6= EDK (x′, L′).7

This outcome raises questions about the primacy of the D­K index, as compared to the

more commonly employed indexes.

The violation of (C) by the D­K index should not have been surprising, given the following

result:

Fact 6 (Russell [1987]): There does not exist an efficiency index satisfying (M) and (C) on all

technologies.

As the counterexample establishing Fact 6 entails a convex polyhedral technology, the

impossibility goes through for this restricted class of technologies as well. The counterexam­

ple is given by Figure 1, when x′ is reinterpreted as 〈ωx1, x2〉, where ω is the unit change.

Commensurability requires E(x, L) = E(x′, L) but monotonicity requires E(x, L) > E(x′, L).

For this example, L = L′ and the efficiency index cannot tell the difference between a unit

transformation for input 1 and an increase in the quantity of input 1.

7 The unit changes in Figure 4 have actually been programmed, thus establishing the unit dependence numer­

ically. Note that adjustment of the horizontal axis to the change in units would result in x̄ and x̄′ on the same

horizontal line, but the slope of the efficient facet would change, resulting in a change in the value of the D­K

index.
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x1

x2

L L′

Q Q′

x x′

x̄
x̄′

Figure 4.

The example suggests that we may want to weaken the commensurability axiom by ex­

tending the definition of an efficiency index to incorporate unit­of­measurement informa­

tion.8 To this end, define the extended efficiency index Ẽ as the mapping, Ẽ : Γ×W → (0, 1],

where W is the space of positive n × n diagonal matrices, with image

Ẽ(x, L,Ω) := E
(

x′(x,Ω), L′(L,Ω)
)

, (6.1)

where

x′(x,Ω) = Ωx (6.2)

and

L′(L,Ω) =
{

x′ | Ω−1x′ ∈ L
}

. (6.3)

The commensurability axiom (C) can be similarly extended as follows:

Weak Commensurability (WC): For all x ∈ L, if x′ = Ωx and L′ =
{

x′ | Ω−1x′ ∈ L
}

, where

Ω is a positive diagonal matrix, then Ẽ(x, L,Ω) = Ẽ(x′, L′, I).

8 After all, unit­of­measurement transformations are known to the investigator, and often such transformations

are required to avoid serious rounding errors in calculation algorithms.
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VII. An Efficiency Index Satisfying Commensurability and the Färe­Lovell Axioms on

Convex Polyhedral Technologies.

In this section, we formulate a modified D­K efficiency index that satisfies (C), as well as

the Färe­Lovell axioms, on a robust subset of convex polyhedral technologies. We show,

further, that this index satisfies the slightly weaker commensurability condition (WC) on the

full set of convex polyhedral technologies.

Any non­empty, closed, convex, free­disposal, polyhedral input requirement set can be

written as

L =
{

x | ρj · x ≥ αj ∀ j ∈ J
}

, (7.1)

where ρj ∈ Rn
+, αj ∈ R+, and J is a (finite) set of indexes representing the hyperplanes sup­

porting the facets of L. Denote by L+ the subset of non­empty, closed, convex, free­disposal,

polyhedral input­requirement sets containing at least one facet for which the supporting hy­

perplane has a positive normal. This restriction rules out Leontief input requirement sets in

two­space, Leontief technologies and technologies with the efficient subset spanned by R2

(i.e., an “edge” of the input requirement set parallel to one of the axes) in three­space, and so

forth for higher dimensions.

For input­requirement sets in L+, define the modified D­K reference level set,

Q =
{

x | ρj · x ≥ αj ∀ j ∈ J+
}

, (7.2)

where J+ is the set of indexes representing supporting hyperplanes with strictly positive

normals. This modified Q set is illustrated in Figure 5 for the same input­requirement set

that was used in Figure 4 to illustrate the failure of EDK to satisfy (C). The modified D­K

index, EM , restricted to L+, is given by

EM(x, L) = min { λ | λx ∈ Q } . (7.3)

Theorem 3: EM satisfies (C), (I), (M), and (H) on all input­requirement sets in L+.

Proof: We first show that Q satisfies the D­K conditions. As the intersection of closed sets,

Q is closed. (Q2) is similarly immediate, since ρj · x ≥ αj for all j ∈ J+ and x̄ > x implies

ρj · x̄ > αj for all j ∈ J+. To establish the Isoq(Q) ⊆ Eff(Q) part of (Q3), it suffices to note

that, for all x ∈ Isoq(Q), the vector of marginal products is colinear with the positive normal

ρj of the supporting hyperplane(s) at x; hence, x is efficient. Conversely, any x /∈ Isoq(Q)

is clearly inefficient. (Q4) follows immediately from a comparison of (7.1) and (7.2). Finally,

x ∈ Eff(L) only if at x there exists a hyperplane with positive normal supporting L at x, which

implies that x ∈ Q.
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x1

x2

L

Q

x

x̄

Figure 5.

It remains to show that the efficiency score,

EM (x, L) = min
{

λ | ρj · (λx) ≥ αj ∀ j ∈ J+
}

(7.4)

satisfies (C). Consider a change in units: x′ = Ωx, with the commensurate level set,

L′
=

{

x′ | ρj ·Ω−1x′ ≥ αj ∀ j ∈ J+

}

=
{

x′ | ρ̂j · x′ ≥ αj ∀ j ∈ J+
}

,
(7.5)

where ρ̂j
= Ω

−1ρj for all j ∈ J+.

The new reference level set is

Q′
=
{

x | ρ̂j · x′ ≥ αj ∀ j ∈ J+
}

(7.6)

and the new efficiency score is

EM (x′, L′) = min
{

λ | ρ̂j · (x′/λ) ≥ αj ∀ j ∈ J+
}

= min
{

λ | Ω−1ρj · (Ωλx) ≥ αj ∀ j ∈ J+

}

= min
{

λ | ρj · (λx) ≥ αj ∀ j ∈ J+
}

= EM (x, L).

(7.7)
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The satisfaction of the commensurability condition is illustrated in Figure 6. Again, x′1 =

ω x1, x
′
2 = x2, and L′ is the input­requirement set after the transformation of the units of

input 1. In this case, as contrasted to Figure 4, the reference point on the reference set

Q′ corresponding to L′ is on the horizontal line through x̄, the reference point on Q, and

EM (x, L) = EM (x′, L′).

x1

x2

L

L′

Q Q′

x x′

x̄ x̄′

x̄

ρ

ρ·x̄

ρ1

ρ·x

ρ1

Figure 6.

The construction of the modified DM efficiency index in (7.3) fails when the technology

does not contain at least one facet for which the supporting hyperplane has a positive normal.

In this case, there exists a collection of hyperplanes supporting the efficient subset (a Leontief

cusp or, more generally, a subset spanned by a lower­dimensioned subspace), and a halfspace

defined by an arbitrary selection from this collection intersected with Rn
+ constitutes a Q set

that would work. To preserve invariance with respect to units of measurement, however, the

normal of the supporting hyperplane would have to be adjusted. The proof of the Lemma

and Figure 4 illustrate the way in which the construction of the Q set automatically adjusts

the slope of the reference hyperplane to accommodate the commensurability condition (C)

when units are changed. In particular, the unit transformation Ω leads to a change in the

normal of the supporting hyperplane given by the transformation Ω−1. This transformation
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suggests the following formulation of the Q set when the set of facets with strictly positive

normals of supporting hyperplanes is empty:

Q(Ω) = {x′ ∈ Rn
+ | Ω−1b · x′ ≥ Ω

−1b · x̄′}, (7.8)

where bi = ρi if ρi > 0, bi = 1 (arbitrarily) if ρ = 0, x′ = Ωx, and x̄′ = Ωx̄. The (arbitrary)

base Q is given by Q(I), where I is the identity matrix.

The set Q is thus defined as follows:

Q(Ω) =

{

{

x′ ∈ Rn
+ | ρj ·Ω−1x′ ≥ αj ∀j ∈ J+

}

if J+ 6= ∅
{

x′ ∈ Rn
+ | Ω−1b · x′ ≥ Ω−1b · x̄′

}

if J+ = ∅.
(7.9)

The efficiency scores are then given by

ẼM (x, L,Ω) := EM (x′(x,Ω), L′(L,Ω)) = min
{

λ
∣

∣ λx ∈ Q(Ω)
}

, (7.10)

For the base case,

ẼM (x, L, I) = EM (x, L) = min
{

λ
∣

∣ λx ∈ Q(I)
}

. (7.11)

Theorem 4: ẼM satisfies (WC), (I), (M), and (H) on all convex polynomial technologies.

Proof: The case where J+ 6= ∅ is proved in the Lemma. When J+ = ∅, it is clear that Q(Ω)

satisfies (Q1)­(Q5), implying that EM satisfies (I), (M), and (H) on all convex polyhedral

technologies. At the base set of units,

Ẽ(x, L, I) = min { λ | 1 · λx ≥ 1 · x̄ } . (7.12)

After the unit change given by x′ = Ωx, the efficiency measure becomes

Ẽ(x′, L′,Ω) = min
{

λ | Ω−11 · x′/λ ≥ Ω
−11 · x̄′

}

= min
{

λ | Ω−11 ·Ωλx ≥ Ω
−11 ·Ωx̄

}

= min { λ | 1 · λx ≥ 1 · x̄ }

= EM (x, L, I).

(7.13)
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VIII. Conclusion.

We conclude with two observations.

First, the extended D­K efficiency index is not only potentially, but indeed pragmatically,

programmable. There exist algorithms for identifying the facets of a polyhedral set and

the normals of the hyperplanes supporting those facets. We are currently exploring these

possibilities.

Second, we believe the reference sets, Q, at least for technologies in L+, are not com­

pletely arbitrary constructions that yield an index satisfying the requisite axioms. Rather, the

normals of the supporting hyperplanes that bound the Q set are shadow prices evaluated,

for example, at the point on the isoquant where an input just becomes redundant. Thus,

the modified D­K efficiency index in (7.4) reflects the cost of redundancy of some inputs,

evaluated at the appropriate shadow prices ρj . In Figure 6, the shadow price vector has the

direction ρ, and the relative shadow value of the redundancy of input vector x is ρ · x/ρ · x̄.9

In the case of a Leontief technology, these prices are undefined or arbitrary, depending on

one’s interpretation. It is this arbitrariness that leads to the need for the extension of the

efficiency index to incorporate information about units of measurement.

9 Of course, only relative shadow prices are determined by the normal of the efficient facet.
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