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1 Introduction

Since the seminal work of Litterman (1986), vector autoregressions (VARs) have been widely

known to be useful for out-of-sample forecasting. In many applications, the forecasts of

interest are unconditional. Clark and McCracken (2013) review methods for evaluating

such forecasts.

VARs are also commonly used to construct conditional forecasts. In such applications,

the models are used to predict variables such as GDP growth and inflation conditional

on, e.g., an assumed path of monetary policy variables or an assumed path of oil prices.

Examples of VAR forecasts conditional on policy paths include Sims (1982), Doan, Litter-

man, and Sims (1984), and Meyer and Zaman (2013). Giannone, et al. (2014) use VARs

to construct forecasts of inflation conditional on paths for oil and other price indicators.

Baumeister and Kilian (2013) consider forecasts of oil prices conditioned on a range of

scenarios. Schorfheide and Song (2013) and Aastveit, et al. (2014) use VARs to produce

multi-step forecasts of growth, inflation, and other macroeconomic variables conditional on

current-quarter forecasts obtained from other, judgmental sources (the Federal Reserve’s

Greenbook for the former and Survey of Professional Forecasters for the latter).

In light of common need for conditional forecasts, the attention paid to them, and their

use in conveying the future stance of monetary policy, one would like to have a feel for their

quality. Accordingly, in this paper, we develop and apply methods for the evaluation of

conditional forecasts from VARs, using tests of bias, effi ciency, and the MSE accuracy of

conditional versus unconditional forecasts. More specifically, we provide analytical, Monte

Carlo, and empirical evidence on tests of predictive ability for conditional forecasts from

estimated models. In the empirical analysis, we consider forecasts of growth, unemployment,

and inflation from a VAR, based on conditions on the short-term interest rate.

Throughout, our intention is to provide usable metrics for evaluating conditional fore-

casts, in a general sense and in comparison to the accuracy of unconditional forecasts. To do

so, we focus on particular forms of conditional forecasts for which interpretation of various

null and alternative hypotheses is most straight-forward. In particular, in our analysis, we

consider forecasts conditioned on actual future information on some variables in the VAR

model. In practice, conditional forecasts are sometimes constructed with future informa-

tion (e.g., based on forward guidance from the central bank about policy rates), but not

always. In general, though, the effi cacy of conditional forecasts rests on having a properly
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specified model. Our testing based on future information provides a way of assessing proper

specification of the VAR. As we detail below, Herbst and Schorfheide (2012) use a similar

idea in a Bayesian evaluation framework.

To better understand our approach to inference, consider a very simple example of a

conditional forecast in which we forecast inflation (yt) conditioned on a path for the federal

funds rate (xt) over the next two periods t+ 1 and t+ 2. Suppose that the assumed data-

generating process for inflation and the funds rate is a zero-mean stationary VAR(1) taking

the form (
yt
xt

)
=

(
a b
0 c

)(
yt−1

xt−1

)
+

(
et
vt

)
,

with i.i.d. N(0,1) errors with contemporaneous correlation ρ. Following the approach taken

in Doan, Litterman, and Sims (1984), conditional on this path for the funds rate, the

minimum mean square error (MSE) one- and two-step ahead forecasts of yt are as follows:

ŷct,1 = ŷut,1 + ρ̂(x̂ct,1 − x̂ut,1)

ŷct,2 = ŷut,2 + (b̂+ ρ̂(â− ĉ))(x̂ct,1 − x̂ut,1) + ρ̂(x̂ct,2 − x̂ut,2),

where the superscripts c and u denote conditional and unconditional forecasts, respectively.

In both cases the conditional forecasts of y are comprised of the standard, unconditional

MSE-optimal forecast ŷut,j , j = 1, 2, plus additional terms that capture the impact of

conditioning on future values of the federal funds rate, x̂ct,1 and x̂
c
t,2.

After rearranging terms, the conditional forecast errors ε̂ct,2 = yt+2 − ŷct,2 and ε̂
c
t,1 =

yt+1 − ŷct,1 take the form

ε̂ct,1 = ε̂ut,2 − ρ̂(v̂ut,1 − v̂ct,1)

ε̂ct,2 = ε̂ut,2 − (b̂+ ρ̂(â− ĉ))(v̂ut,1 − v̂ct,1)− ρ̂(v̂ut,2 − v̂ct,2).

We immediately see that any “good”properties that the conditional forecast errors ε̂ct,1

and ε̂ct,2 have, such as unbiasedness or effi ciency, are jointly determined by: (i) the quality

of the unconditional forecast errors ε̂ut,2, ε̂
u
t,2, v̂

u
t,1, and v̂

u
t,2, as well as (ii) the behavior of the

conditioning as measured via v̂ct,1 and v̂
c
t,2. As such, any method of inference designed to

evaluate the quality of the conditional forecasts must somehow distinguish between prop-

erties determined by the quality of the model and properties determined by the quality of

the conditioning.

Since these properties seem impossible to separate in general, we consider a simpler

approach in which we condition on the ex-post realized values of the conditioning variables
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so that x̂ct,1 = xt+1 and x̂ct,2 = xt+2. Since both v̂ct,1 and v̂
c
t,2 are then numerically zero

we find that any properties associated with the conditional forecast errors ε̂ct,1 and ε̂
c
t,2 are

determined only by the quality of the VAR as measured though the unconditional forecast

errors, the regression parameters, and the residual variance parameters. Because we take

this approach to conditioning, our inferential procedures are designed to evaluate the ability

of the VAR to construct good conditional forecasts rather than evaluating a specific set of

conditional forecasts per se.

While we focus on forecasts from time series models, conditional forecasts are routine in

professional forecasting. The forecasts from the Federal Reserve’s Open Market Committee

that have been published since 1979 are produced conditional on “appropriate monetary

policy” as viewed by the respective individual members of the FOMC. In effect, the in-

dividual member of the FOMC is asked to produce a point forecast of, say, inflation over

the next year given that the federal funds rate takes values over the coming year that are

appropriate in the eyes of that individual FOMC member. Similarly, staff forecasts from the

Federal Reserve Board are typically conditional on a future path of the funds rate as well

as other variables.1 The Bank of England, Riksbank, Norges Bank, and ECB all produce

and release forecasts to the public that are conditional on a hypothetical future stance of

monetary policy in one way or another.

Despite being explicitly conditional, the forecasts released by the FOMC and policymak-

ers at other central banks seem to be regularly analyzed by the public and financial markets

without taking account of the conditional nature of the forecasts. The same can also be

said for academics. For example, Romer and Romer (2008) use standard MSE-based en-

compassing regressions to infer that Greenbook forecasts have an informational advantage

over the corresponding FOMC forecasts. Patton and Timmermann (2012) apply newly

developed tests of MSE-based forecast optimality to Greenbook forecasts and find evidence

against forecast rationality. Gavin (2003), Gavin and Mandel (2003), Gavin and Pande

(2008), Joutz and Stekler (2000), and Reifschneider and Tulip (2007) each evaluate the

quality of FOMC forecasts in the context of MSEs.

However, two previous studies have developed methods for the evaluation of some form

of conditional forecasts. Motivated by an interest in evaluating the effi ciency of Greenbook

forecasts, Faust and Wright (2008) develop a regression-based test of predictive ability

1These forecasts are often referenced as Greenbook forecasts.
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that accounts for the conditioning of the Greenbook forecasts on a pre-specified path of

the federal funds rate over the forecast horizon. For the purpose of evaluating forecasts

from DSGE models, Herbst and Schorfheide (2012) develop Bayesian methods to check the

accuracy of point and density forecasts. More specifically, Herbst and Schorfheide consider

the Bayesian tool of posterior predictive checks and forecasts of each variable conditioned

on the actual future path of another, selected variable. Our paper differs from these in that

we focus on conditional forecasts from VARs and emphasize frequentist inference.

The remainder of the paper proceeds as follows. Section 2 describes the two different

approaches to conditional forecasting that we consider. Section 3 provides our theoretical

results (proofs are provided in Appendix 1). Section 4 presents Monte Carlo evidence on the

finite-sample accuracy of our proposed methods for evaluating conditional forecasts from

VARs. Section 5 presents a practical application, to macroeconomic forecasts conditioned

on interest rate paths. Section 6 concludes.

2 Conditional Forecasting Approaches

In generating and evaluating conditional forecasts, we consider two approaches that seem

to be common in VAR and DSGE forecasting. All but one of our theoretical results apply

to both approaches.

The standard in VAR forecasting is based on the textbook problem of conditional pro-

jection, as could be handled with a state space formulation of the VAR and the Kalman

filter and smoother (see, e.g., Clarida and Coyle (1984) or Giannone, et al (2014)). The con-

ditions on the variables of interest are contained in the measurement vector and equation;

the data vector of the VAR is the state vector of the transition equation. The projection

problem is one of predicting the state vector given the measurements (conditions). Doan,

Litterman, and Sims (1984) developed an alternative approach to solving this formulation

of the conditional forecasting problem, which consists of solving a least squares problem to

pick the shocks needed to satisfy the conditions. In the context of conditioning on a policy

path, this approach to conditional forecasting can be seen as consisting of the following:

determining the set of shocks to the VAR that, by a least squares metric, best meet the

conditions on the policy rate. In practice, this approach may mean that, in a given episode,

an unchanged path of the policy rate could, for example, be due to shocks to output. Under

this approach, the conditional forecasts are not dependent on the identification of struc-
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tural shocks in the VAR. Note that under this approach, the forecast for each period can be

affected by the imposition of conditions at all periods. For example, if we impose conditions

for two periods, the forecast for period t+ 2 will generally be affected by the conditions on

both period t+ 1 and t+ 2.

In the interest of simplicity, in our implementation of minimum-MSE form forecast-

ing, we abstract from the enhancements developed in Waggoner and Zha (1999).2 In our

implementation, as is typical, we estimate VAR parameters without taking the forecast con-

ditions into account. Waggoner and Zha develop a Gibbs sampling algorithm that provides

the exact finite-sample distribution of the conditional forecasts, by taking the conditions

into account when sampling the VAR coeffi cients. Our reasons for abstracting from their

extension are primarily computational. With the size of the large model we use, their Gibbs

sampling algorithm would be extremely slow, due to computations of an extremely large

VAR coeffi cient variance-covariance matrix. Moreover, based on a check we performed with

a small BVAR model, their approach to conditional forecasting didn’t seem to affect the

conditional forecasts much.

In DSGE forecasting, the more standard approach for achieving conditions on the policy

path rests on feeding in structural shocks to monetary policy needed to hit the policy

path (see, e.g., Del Negro and Schorfheide (2013)). We use the following approach to

implementing such an approach with our VARs. Under this approach, the scheme for

identifying policy shocks does matter for the conditional forecasts. With our focus on

conditioning on the policy path, it is the identification of monetary policy that matters.

Accordingly, we refer to the forecasts we obtain under this approach as conditional-policy

shock forecasts. Following common precedent with models such as ours (including, e.g.,

Bernanke and Blinder (1992), Christiano, Eichenbaum, and Evans (1996), and Giannone,

Lenza, and Primiceri (2012)), we rely on identification of monetary policy via a recursive

ordering of model innovations. Conditional forecasting under this approach involves the

steps listed below. Note that, under this approach, as applied with a VAR, the forecast in

period t+ τ is not affected by conditions imposed on future periods t+ τ + 1, etc.

1. Using a model estimated with data through period t, form 1-step ahead forecasts for

period t+ 1.

2. Compute the structural shock to the federal funds rate needed to make the federal
2Jarocinski (2010) simplifies the formula of Waggoner and Zha (1999) and develops an extension.
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funds rate equal the conditioning rate, and store that value in a vector of (VAR)

innovations ε̃t, where ε̃t contains 0 in all positions except that associated with the

federal funds rate. Using S = the Choleski factor of the variance-covariance matrix

of structural shocks, compute the implied reduced-form shocks as Sε̃t. Re-compute

1-step ahead forecasts using this vector of shocks.

3. Move forward a step, and repeat steps 1-2 using the preceding period’s forecast as

data for the preceding period.

4. Continue through period t+ τ to obtain forecasts from t+ 1 through t+ τ .

3 Analytical results

We present our theoretical results in an environment in which OLS-estimated VARs are

used to construct τ -step ahead conditional forecasts sequentially across forecast origins

t = R, ..., T − τ = R+ P − τ . Specifically, suppose that the model takes the form

Yt = C +A(L)Yt−1 + εt,

where Y = (y1, y2, ..., yn)′, ε = (ε1, ε2, ..., εn)′, and A(L) =
∑l

j=1AjL
j for n× 1 and n× n

parameter matrices C and Aj , j = 1, ..., l, respectively. This is equivalent to

Yt = Λxt−1 + εt = (x′t−1 ⊗ In)β + εt

if we define xt = (1, Y ′t , ..., Y
′
t−l+1)′, β = vec(Λ), and Λ = (C,A1, ..., Al). If the model is

estimated using the recursive scheme we obtain the estimated regression parameters

β̂t = vec(Λ̂t) = vec((t−1
∑t−1

s=1
Ys+1x

′
s)(t
−1
∑t−1

s=1
xsx
′
s)
−1)

and corresponding residual variance matrix

Σ̂t = t−1
∑t−1

s=1
ε̂s+1ε̂

′
s+1.

If the model is estimated using a rolling window of R observations we obtain comparable

estimators but defined over the observations s = t−R+ 1, ..., t rather than s = 1, ..., t.

Both the regression and variance estimates β̂t and Σ̂t are used to construct iterated

multi-step unconditional and conditional forecasts of Yt+j , denoted Ŷ u
t,j and Ŷ

c
t,j , which in

turn imply forecast errors ε̂ut,j and ε̂
c
t,j . If we are interested in forecasting the ith element of

Yt+τ , define ŷi,t,τ = ι′iŶt,τ for the vector ιi with a 1 in the ith position and zeroes elsewhere.
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Define ε̂ci,t,j = ι′iε̂
c
t,j = yi,t+j − ŷci,t,j and ε̂ui,t,j = ι′iε̂

u
t,j = yi,t+j − ŷui,t,j , accordingly. To

simplify notation, and without loss of generality, we assume that the first element of Y is

the primary element of interest and hence most of our analysis emphasizes the properties

of the conditional forecast ŷc1,t,j and associated forecast error ε̂
c
1,t,j .

As discussed in Section 2, the conditional forecasts are assumed to be either minimum-

MSE or policy shock-based. In both cases it can be shown that the forecasts take the

form

ŷc1,t,τ = ŷu1,t,τ +
∑n

i=1

∑m

j=1
γ̂i,t,j(ŷ

u
i,t,j − ŷci,t,j)

for a collection of constants γ̂i,j that are non-stochastic functions of both β̂t and Σ̂t.3 Note

that this structure aligns with the simple example from the introduction. In addition, we

allow the maximum conditioning horizon m to be greater than or less than the forecast

horizon τ , and we allow for direct conditioning on some elements of the future path of y1

itself.

As mentioned earlier, we focus on evaluating the ability of the model to construct good

conditional forecasts rather than evaluating conditional forecasts per se. We do so by

examining the properties of the conditional forecast error when we condition on future

realized values of those variables in the hypothetical scenario of interest. Specifically, if we

set ŷci,t,j = yi,t+j we obtain

ε̂c1,t,τ = ε̂u1,t,τ −
∑n

i=1

∑m

j=1
γ̂i,t,j ε̂

u
i,t,j .

By taking this approach, the conditional forecast error has a representation as a linear

function of unconditional forecast errors across all variables in the scenario and across all

conditioning horizons.

Before proceeding to the tests we need to introduce some notation. Define φ̂t =

(β̂
′
t, vech(Σ̂t)

′)′, φ = (β′, vech(Σ)′)′, Bβ = ((Exsx
′
s)
−1⊗In), BΣ = In(n+1)/2, B = diag(Bβ, BΣ),

and hs+1 = (h′β,s+1, h
′
Σ,s+1)′ = (vec(εs+1x

′
s)
′, vech(εs+1ε

′
s+1 − Σ)′)′. For any parametric

function zt(·), let ẑt = zt(φ̂t) and zt = zt(φ). Finally, the asymptotics we use require both

the initial in-sample size R and number of forecasts P to diverge as the overall sample

increases. By taking this approach we find that the asymptotic distribution is influenced

by the ratio limP,R→∞ P/R = π. In particular, the asymptotic variances developed below

3As a practical matter, many of the γi,j will be zero depending on how many variables are conditioned
on and how long the maximal conditioning horizon is. In the assumptions, we impose the restriction that
γ1,τ is zero (and hence the value of ŷ

c
1,t,τ is not imposed directly) via rank conditions on certain variance

matrices.
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all depend on the weights λfh and λhh as described in the following table taken from West

and McCracken (1998).

λfh = λhh =
Recursive 1− π−1 ln(1 + π) 2(1− π−1 ln(1 + π))
Rolling, π ≤ 1 π/2 π − π2/3
Rolling, 1 < π <∞ 1− (2π)−1 1− (3π)−1

3.1 Regression based tests of bias and effi ciency

In this section we develop tests of zero bias and effi ciency in the context of conditional

forecasts from VARs when conditioning on future values of the variables in a hypothetical

scenario. To do so first note that each can be couched in the context of a test of the null

hypothesis that the coeffi cient α is zero in the regression

ε̂c1,t,τ = ĝ′tα+ error, t = R, ..., T − τ

for appropriate definitions of ĝt. Examples include a test of zero bias if we let ĝt = 1 and

a test of effi ciency if we let ĝt = (1, ŷu1,t,τ ) or perhaps ĝt = (1, ŷu1,t,τ , ŷ
u
i,t,j) for those variables

yi in the scenario conditioned at horizon j.4

In each case, P 1/2α̂ is asymptotically normal with zero mean and a variance that ac-

counts for estimation error in the estimated conditional forecast errors ε̂c1,t,τ and generated

regressors ĝt. These results follow directly from Lemmas 4.1 - 4.3 and Theorems 4.1 and

4.2 of West and McCracken (1998) if, under the null that α = 0, we maintain a correctly

specified VAR with errors εt that form a martingale difference sequence. Nevertheless it is

worth noting that the interpretation of the results is slightly different than that intended

in West and McCracken (1998). This arises because the conditional forecast errors depend

on φ̂t = (β̂
′
t, vech(Σ̂t)

′)′ rather than just β̂t. Nevertheless, φ̂t satisfies assumption A2 of

West and McCracken (1998) and the remainder of their assumptions are satisfied except for

A1 (c) and (d).5 These assumptions, however, do not affect the derivation of asymptotic

normality. They are only used in Theorem 5.1 of West and McCracken (1998), wherein

special cases are delineated under which estimation error is asymptotically irrelevant. For

clarity we restate the assumptions in the context of the current paper and then proceed to

the Theorem.
4Note that this last regression is not the standard Mincer-Zarnowitz form of the effi ciency regression.

We consider this separately in the next section.
5See section 3.4.3 of Lutkepohl (1991) for details.
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Assumption 1: (a) In some neighborhood N around φ, and with probability 1, εc1,t,τ (φ)

and gt(φ) are measurable and twice continuously differentiable; (b) E(εt|xt−j , εt−j all j ≥

1) = 0; (c) Egtg′t is full rank.

Assumption 2: The estimate φ̂t satisfies φ̂t − φ = B(t)H(t), with (a) B(t) →a.s. B =

diag[((Exsx
′
s)
−1 ⊗ In), In(n+1)/2] and B of full rank; (b) H(t) equals t−1

∑t−1
s=1 hs+1 and

t−1
∑t−1

s=t−R+1 hs+1 for the recursive and rolling schemes, respectively; (c) Ehs+1 = 0; (d)

In the neighborhood N of Assumption 1, hs+1 is measurable and continuously differentiable.

Assumption 3: In the neighborhood N of Assumption 1, there is a constant D <∞ such

that for all t, supφ∈N |∂2εc1,t,τ (φ)/∂φ∂φ′| < mt for a measurable mt for which Em4
t < D.

The same holds when εc1,t,τ (φ) is replaced by gt(φ).

Assumption 4: Let wt = (x′t, vec(∂gt/∂φ)′, ε′t, g
′
t, h
′
t)
′. (a) For some d > 1, suptE||wt||8d <

∞, where || · || denotes the Euclidean norm; (b) wt is strong mixing with coeffi cients of size

−3d/(d−1); (c) wt is fourth-order stationary; (d) Sff = limP,R→∞ V ar(P
−1/2

∑T−τ
t=R ε

c
1,t,τgt)

is positive definite.

Assumption 5: R,P → ∞ as T → ∞ with limT→∞
P
R = π. (a) 0 ≤ π ≤ ∞ for the

recursive scheme; (b) 0 ≤ π <∞ for the rolling scheme.

Theorem 1 Maintain assumptions A1-A5. P 1/2α̂→d N(0, V ) with V = (Egtg
′
t)
−1Ω(Egtg

′
t)
−1

and

Ω = Sff + λfh(FBSfh + S′fhB
′F ′) + λhhFBShhB

′F ′,

where Sff = limP,R→∞ V ar(P
−1/2

∑T−τ
t=R ε

c
1,t,τgt), Shh = limT→∞ V ar(T

−1/2
∑T−1

s=1 hs+1),

Sfh = limP,R→∞Cov(P−1/2
∑T−τ

t=R ε
c
1,t,τgt, P

−1/2
∑T−τ

t=R h
′
s+1), and F = E(∂εc1,t,τ (φ)gt(φ)/∂φ).

As in West and McCracken (1998), the asymptotic variance, especially through Ω, is

comprised of three components: Sff captures the variation that would exist even if φ

were known, FBShhB′F ′ captures the variation due purely to estimation error in φ̂t, and

FBSfh + S′fhB
′F ′ is the covariance between the two sources of variability.

The asymptotic variance is complicated but can be simplified for each of the tests

discussed above. First, note that since Eεc1,t,τ (∂gt(φ)/∂φ) = 0, F trivially reduces to

Egt(∂ε
c
1,t,τ (φ)/∂φ). In addition, it is straightforward to show that Egt(∂εc1,t,τ (φ)/∂vech(Σ)) =

0 and hence F = (Egt(∂ε
c
1,t,τ (φ)/∂β), 0). That, along with the fact that B is block diag-

onal, implies that in large samples there is no estimation error contributed by Σ̂t in either
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ĝt or ε̂c1,t,τ . Notationally, we can therefore simplify the formula for Ω to

Ω = Sff + λfh(FβBβSfh,1 + S′fh,1B
′
βF
′
β) + λhhFβBβShh,11B

′
βF
′
β,

where Fβ = Egt(∂ε
c
1,t,τ (φ)/∂β) and Sfh,1 and Shh,11 denote those elements of Sfh and Shh

associated only with the OLS moment conditions hβ,s+1.

With a bit more work, F can be explicitly derived using elements of section 3.5.2 of

Lutkepohl (1991). Specifically if we define the (nl + 1)× (nl + 1) matrix

W =

 1 0 ... 0
Λ

0 In(l−1) 0

 ,
the n × (nl + 1) selection matrix J1 = (0n×1, In, 0n×n(l−1)), Φi = J1W

iJ ′1, and Θi,t,j =

ι′i
∑j−1

q=0(x′t(W
′)j−1−q ⊗ Φq), we obtain

Fβ = Egt(−Θ1,t,τ +
∑n

i=1

∑m

j=1
γi,jΘi,t,j).

3.2 Mincer-Zarnowitz effi ciency test

In the previous section we delineated a regression-based test of effi ciency based on a re-

gression of ε̂c1,t,τ on (1, ŷu1,t+τ ). By taking this approach we were able to use the results

in West and McCracken (1998) to prove that the regression coeffi cients are asymptotically

normal under the null hypothesis that α = 0. While useful, this result deviates from a

more standard version of the Mincer and Zarnowitz (1969) test of effi ciency in which, for

conditional forecasts, we would regress ε̂c1,t,τ on (1, ŷc1,t,τ ).

The reason we didn’t consider the Mincer-Zarnowitz regression is that, by conditioning

on future values of the variables in the scenario, it is possible that Eε̂c1,t,τ ŷ
c
1,t+τ 6= 0 even

though ε̂c1,t,τ is orthogonal to all information in the time t information set. As it turns

out, whether or not that orthogonality restriction holds depends on whether minimum-

MSE or policy shock-based conditioning is used. Straightforward algebra show that, under

minimum-MSE, but not policy shock, conditioning, Eε̂c1,t,τ ŷ
c
1,t+τ = 0 and hence Theorem

1 is indeed applicable with ĝt = (1, ŷc1,t,τ )′. Even so, the previously discussed simplifica-

tions of the asymptotic variance Ω no longer hold. In particular, under minimum-MSE

conditioning, Σ̂t contributes estimation error even in the limit. We can see this directly in

the following derivation of the (2 × (dim vec(Λ) + dim vech(Σ))) matrix F = (F ′1, F
′
2)′ =

10



E(∂εc1,t,τ (φ)gt(φ)/∂φ):

F1 = (E(−Θ1,t,τ +
∑n

i=1

∑m

j=1
γi,jΘi,t,j), 0n(n+1)/2)

F2 = (E(yu1,t,τ )(−Θ1,t,τ +
∑n

i=1

∑m

j=1
γi,jΘi,t,j)− E(yc1,t,τ − yu1,t,τ )(

∑n

i=1

∑m

j=1
∇βγi,juui,t,j)

+E(uc1,t,τ )(
∑n

i=1

∑m

j=1
∇βγi,juui,t,j),−E(yc1,t,τ )(

∑n

i=1

∑m

j=1
∇Σγi,ju

u
i,t,j)

+E(uc1,t,τ )(
∑n

i=1

∑m

j=1
∇Σγi,ju

u
i,t,j)).

The first row of F is identical to that for the test of zero bias (as expected), concatenated

by zeros, since E∂εc1,t,τ (φ)/∂vech(Σ) = 0. In contrast, E∂εc1,t,τ (φ)yc1,t,τ (φ)/∂vech(Σ) 6= 0,

and hence the second row of F includes terms contributing to the asymptotic variance due

to estimation error in Σ̂t.

While useful under minimum-MSE conditioning, we are nevertheless left with the fact

that the Mincer-Zarnowitz regression is not applicable under policy shock-based condition-

ing. A related point is made by Faust and Wright (2008) in the context of testing the

effi ciency of the Greenbook forecasts constructed by the staff at the Federal Reserve Board

of Governors. To get around this problem they suggest an alternative formulation of the

Mincer-Zarnowitz regression designed to “soak up”the impact of conditioning on the values

of variables not in the time t information set. In the notation of our paper, as well as our

approach to conditioning, their regression takes the form

ε̂c1,t,τ = α0 + α1(ŷu1,t,τ − ŷc1,t,τ ) + α2ŷ
c
1,t,τ + error (1)

= ĝ′tα+ error,

where ĝt = (1, ŷu1,t,τ − ŷc1,t,τ , ŷc1,t,τ )′.

At first blush this regression looks like those discussed in the previous section. And yet

there is one major difference that precludes directly applying the results in West and Mc-

Cracken (1998): α1 need not be zero under the null of effi ciency which, here, is represented

by α2 = 0 (and perhaps α0 = 0 if a joint test of effi ciency and zero bias is desired). Since

the proofs in West and McCracken (1998) explicitly require that Eε̂c1,t,τ ĝt = 0, and hence

all elements of α are zero, their results are not applicable.

Regardless, asymptotic normality of the coeffi cients can be established using the more

general results in West (1996) along with the Delta method. To do so, first define the (8×1)

function ft,τ (φ̂t) = (vech−1(ĝtĝ
′
t)
′, ĝ′tε̂

c
1,t,τ )′, where the notation vech−1 denotes the vech

operator but omits the first element (that associated with the intercept). There then exists a

11



twice continuously differentiable function q(·):R8 → R3 satisfying α̂ = q(P−1
∑T−τ

t=R ft,τ (φ̂t))

such that α0 = ι′1q(Eft,τ ) = 0 and α2 = ι′3q(Eft,τ ) = 0 under the null hypothesis. Finally,

define ∇q(Eft,τ ) = ∂q(Eft,τ )/∂Eft,τ . The following Theorem provides the asymptotic

distribution of P 1/2(α̂− α).

Theorem 2 Maintain assumptions A1-A5. P 1/2(α̂−α)→d N(0, V ) with V = ∇q(Eft,τ )′Ω∇q(Eft,τ )

and

Ω = Sff + λfh(FBSfh + S′fhB
′F ′) + λhhFBShhB

′F ′,

where Sff = limP,R→∞ V ar(P
−1/2

∑T−τ
t=R ft,τ ), Sfh = limP,R→∞Cov(P−1/2

∑T−τ
t=R ft,τ , P

−1/2
∑T−τ

t=R h
′
s+1),

Shh = limT→∞ V ar(T
−1/2

∑T−1
s=1 hs+1), and F = E(∂ft,τ (φ)/∂φ).

Again we find that the regression coeffi cients are asymptotically normal. But in contrast

to the results in the previous section, only α0 and α2 are necessarily zero when the VAR is

correctly specified.

Also, in contrast to the previous results, there does not appear to be any way of simplify-

ing the formulation of the asymptotic variance V . Both Fβ and FΣ are non-zero and hence

estimation error from both β̂t and Σ̂t contribute to the asymptotic variance. In particular,

while tedious, the formulas for F = (F ′1, ..., F
′
8)′ (8 × (dim vec(Λ) + dim vech(Σ))) can be

derived explicitly and take the following form:

F1 = (E
∑n

i=1

∑m

j=1
γi,jΘi,t,j , 0n(n+1)/2)

F2 = (E(Θ1,t,τ −
∑n

i=1

∑m

j=1
γi,jΘi,t,j), 0n(n+1)/2)

F3 = (2E(yc1,t,τ − yu1,t,τ )(
∑n

i=1

∑m

j=1
∇βγi,juui,t,j), 2E(yc1,t,τ − yu1,t,τ )(

∑n

i=1

∑m

j=1
∇Σγi,ju

u
i,t,j))

F4 = (E(
∑n

i=1

∑m

j=1
γi,jy

u
1,t,τΘi,t,j)− 2E(yc1,t,τ − yu1,t,τ )(

∑n

i=1

∑m

j=1
∇βγi,juui,t,j),

−2E(yc1,t,τ − yu1,t,τ )(
∑n

i=1

∑m

j=1
∇Σγi,ju

u
i,t,j))

F5 = (2E(yc1,t,τ )(−Θ1,t,τ +
∑n

i=1

∑m

j=1
(−γi,jΘi,t,j +∇βγi,juui,t,j)), 2E(yc1,t,τ )(

∑n

i=1

∑m

j=1
∇Σγi,ju

u
i,t,j))

F6 = (E(−Θ1,t,τ +
∑n

i=1

∑m

j=1
γi,jΘi,t,j), 0n(n+1)/2)

F7 = (−E
∑n

i=1

∑m

j=1
∇βγi,juui,t,juc1,t,τ + E

∑n

i=1

∑m

j=1
∇βγi,juui,t,j(yc1,t,τ − yu1,t,τ ),

−E
∑n

i=1

∑m

j=1
∇Σγi,ju

u
i,t,ju

c
1,t,τ + E

∑n

i=1

∑m

j=1
∇Σγi,ju

u
i,t,j(y

c
1,t,τ − yu1,t,τ ))

F8 = (E(yu1,t,τ )(−Θ1,t,τ +
∑n

i=1

∑m

j=1
γi,jΘi,t,j)− E(yc1,t,τ − yu1,t,τ )(

∑n

i=1

∑m

j=1
∇βγi,juui,t,j)

+E(uc1,t,τ )(
∑n

i=1

∑m

j=1
∇βγi,juui,t,j),−E(yc1,t,τ )(

∑n

i=1

∑m

j=1
∇Σγi,ju

u
i,t,j)

+E(uc1,t,τ )(
∑n

i=1

∑m

j=1
∇Σγi,ju

u
i,t,j)).
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3.3 Equal accuracy test

In the previous two sections we described tests of predictive ability related to the properties

of the conditional forecast error ε̂c1,t,τ . In each case, the null hypothesis relates to a property

of the forecast error that suggests that the model is useful for constructing conditional

forecasts. Rejecting the null hypothesis is indicative of a flaw in the model that might cause

future conditional forecasts to be ill-behaved.

One property we have not discussed is the accuracy of the conditional forecast. In-

tuitively, one would expect that after conditioning on future values of those variables in

the hypothetical scenario, the conditional forecast would be more accurate than an un-

conditional forecast that does not utilize any future information. In other words, if our

conditional forecast is good we would expect E(εc1,t,τ )2 − E(εu1,t,τ )2 < 0. In fact, as also

noted in Herbst and Schorfheide (2012), when the forecasts are of the minimum-MSE variety

this should be the case.6

Unfortunately, this “good”property of the conditional forecast does not give us a work-

able null hypothesis under which to derive an asymptotic distribution and conduct inference.

In fact, given our methodological approach of conditioning on future observations of those

variables in a scenario, the null hypothesis E(εc1,t,τ )2 − E(εu1,t,τ )2 = 0 would require the

model to be misspecified. Because of this, one approach to inference would be to derive the

asymptotic distribution of the moment condition P−1/2
∑T−τ

t=R ((ε̂c1,t,τ )2− (ε̂u1,t,τ )2) assuming

a misspecified VAR and reject the null in the lower tail of this distribution. Unfortunately,

rejecting the null in the lower tail does not imply that the model is “good" in any sense

since the model could still be misspecified and yet E(εc1,t,τ )2 − E(εu1,t,τ )2 < 0.

We therefore take a different approach to inference, one that continues our strategy of

maintaining a correctly specified VAR under the null. Again, under minimum-MSE condi-

tioning, correct specification implies the existence of a non-negative constant k satisfying

E(εc1,t,τ )2 − E(εu1,t,τ )2 = k. This constant depends on the VAR regression parameters Aj

and residual variance Σ and can be derived explicitly as a function of φ. To do so, first

define ΨjΣ
1/2 as the matrix of orthogonalized impulse responses after j periods and let

D =


Σ1/2 0 0 0

Ψ1Σ1/2 Σ1/2 0 0

... Σ1/2 0

Ψmax(τ ,m)Σ
1/2 Ψmax(τ ,m)−1Σ1/2 Ψ1Σ1/2 Σ1/2

 .
6This need not hold under policy shock-based conditioning. As such, we do not consider this approach

within the section.

13



Now let D̃ denote the matrix formed by those rows in D associated with a conditioning

restriction.7 For example, if n = 2 and we condition on future values of the second element

of the VAR at both the first and second horizons (m = 2), D̃ consists of the (2× 4) matrix

formed by stacking the second and fourth rows of D. Straightforward algebra then implies

k(φ) = ι′1DD̃
′(D̃D̃′)−1D̃D′ι1.

With this constant k(φ) in hand we consider testing for “equal accuracy” (below, we

will just generally refer to this as testing MSE accuracy) using the appropriately re-centered

Diebold and Mariano (1996) and West (1996)-type test of predictive ability:

P 1/2α̂ = P−1/2
∑T−τ

t=R
((ε̂c1,t,τ )2 − (ε̂u1,t,τ )2 − k(φ̂T )).

Theorem 3 Maintain assumptions A1-A5. P 1/2α̂→d N(0,Ω) with

Ω = Sff + 2λfhFBSfh − 2
π

1 + π
KBSfh − 2

π

1 + π
FBShhB

′K ′

+λhhFBShhB
′F ′ +

π

1 + π
KBShhB

′K ′,

where Sfh = limP,R→∞Cov(P−1/2
∑T−τ

t=R ((εc1,t,τ )2− (εu1,t,τ )2− k), P−1/2
∑T−τ

t=R h
′
s+1), Sff =

limP,R→∞ V ar(P
−1/2

∑T−τ
t=R ((εc1,t,τ )2−(εu1,t,τ )2−k)), Shh = limT→∞ V ar(T

−1/2
∑T−1

s=1 hs+1),

F = E(∂((εc1,t,τ (φ))2 − (εu1,t,τ (φ))2)/∂φ), and K = ∂k(φ)/∂φ.

Theorem 3 implies that an appropriately centered DM/W test of equal predictive ability

is asymptotically normal. While this is precisely what is shown in DM/W, there is an

important distinction: estimation error affects the asymptotic distribution. This contrasts

with the results in West (1996). In that paper it is shown that when the forecasts associated

with two non-nested OLS estimated linear models are evaluated under quadratic loss, F = 0

(and for that matter, K = 0) and hence estimation error is asymptotically irrelevant.

Mathematically, the key feature driving this difference is the presence of the weights γi,j

as well as the centering constant k, and, in particular the fact that they are functions of

φ. Let ∇βγi,j = ∂γi,j(φ)/∂β and ∇Σγi,j = ∂γi,j(φ)/∂vech(Σ). Straightforward algebra

reveals that F = (Fβ, FΣ), where

Fβ = −
∑n

i=1

∑m

j=1
∇βγi,jEuu1,t,τuui,t,j+2E(

∑n

i=1

∑m

j=1
γi,ju

u
i,t,j)(

∑n

i=1

∑m

j=1
∇βγi,juui,t,j)

and

FΣ = −
∑n

i=1

∑m

j=1
∇Σγi,jEu

u
1,t,τu

u
i,t,j+2E(

∑n

i=1

∑m

j=1
γi,ju

u
i,t,j)(

∑n

i=1

∑m

j=1
∇Σγi,ju

u
i,t,j).

7This notation is taken directly from Jarocinski (2010) except we substitute D for R.
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Since Fβ and FΣ (as well as unreported Kβ and KΣ) are both non-zero, estimation error in

both β̂t and Σ̂t affect the asymptotic distribution through the asymptotic variance.

3.4 A bootstrap approach to inference

For each test of bias and effi ciency we are able to establish that P 1/2(α̂ − α) is asymp-

totically normal. We are also able to establish asymptotic normality of the test of MSE

accuracy. As such, one approach to inference is to construct a consistent estimate of the

asymptotic variance and then compare the standardized statistic P 1/2(α̂j−αj)/Ω̂1/2
j to stan-

dard normal critical values. As discussed in West (1996) as well as West and McCracken

(1998), many of the components of the asymptotic variance are easily estimated, while

other elements can be more complicated. Among the easiest components are π̂ = P/R,

B̂β = ((T−1
∑T−1

s=1 xsx
′
s)
−1 ⊗ In), and BΣ = In(n+1)/2. In addition, standard HAC

estimators can be used to construct estimates of Sff , Sfh, and Shh given ft,τ (φ̂t) and

ĥt+1 = (vec(ε̂t+1x
′
t)
′, vech(ε̂t+1ε̂

′
t+1 − Σ̂T )′)′, where ε̂t+1 denotes the residuals from the

OLS-estimated VAR.

Unfortunately, estimating F , ∇q(Eft,τ ), and K is significantly more diffi cult even when,

for example, formulas for F are provided as they are in the text. As a result, we suggest

and use in our applications a parametric bootstrap approach to inference. One might rely

on a bootstrap patterned on the approach first used in Kilian (1999) and applied in the uni-

variate forecast evaluation of such studies as Clark and McCracken (2001, 2005). Goncalves

and Kilian (2004) establish the general asymptotic validity of such a bootstrap for many

purposes. However, it is is not necessarily valid for our purposes, because the asymptotic

distributions of interest depend on the VAR’s error variance matrix, Σ, a dependency out-

side the scope of the Goncalves-Kilian results. We instead use a VAR-based, moving-block

residual based bootstrap developed in Bruggemann, Jentsch, and Trenkler (2014), which

is valid in the presence of dependency of asymptotic distributions on Σ (as well as condi-

tional heteroskedasticity of the VAR’s innovations). To implement their bootstrap in our

setting, we estimate the VAR of interest with the full sample of data and save the resid-

uals and coeffi cients. We then bootstrap the residuals using a moving block bootstrap of

40 observations.8 We use these residuals and the autoregressive structure of the VAR to

obtain an artificial time series y∗t .
9 In each bootstrap replication, the bootstrapped data are

8 In our Monte Carlo analysis, before settling on a block size of 40, we considered a grid of sizes up through
50, and found differences across block choices to be fairly small.

9The initial observations are selected by sampling from the actual data as in Stine (1987).
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used to estimate the VAR forecasting model at each forecast origin and generate artificial,

out-of-sample forecasts. These forecasts and associated forecast errors are used to produce

bias, effi ciency, and MSE accuracy test statistics. Critical values are simply computed as

percentiles of the bootstrapped test statistics.

3.5 Tests applied to conditional forecasts under Giacomini-White asymp-
totics

The theoretical results in West (1996) and West and McCracken (1998) focus on testing a

null hypothesis of the form H0 : Eft,τ (φ) = 0. In words, this hypothesis is designed to

evaluate the predictive ability of a model if the true parameter values φ of the model are

known. But one might prefer to evaluate the predictive content of the model accounting for

the fact that the model parameters must be estimated and will never be known. Doing so

changes the null hypothesis to something akin to H0: Eft,τ (φ̂t) = 0, where the estimation

error associated with the parameter estimates φ̂t is now captured under the null hypothesis.

Even though the null hypothesis H0: Eft,τ (φ̂t) = 0 is reasonably intuitive, the results

in West (1996) and West and McCracken (1998) do not apply under this null and hence

their theory cannot be used to infer the asymptotic distribution of P−1/2
∑T−τ

t=R ft,τ (φ̂t)

under this null. Instead, theoretical results in Giacomini and White (2006) can be used to

conduct inference. Giacomini and White show that so long as all parameter estimates are

estimated using a small rolling window of observations (small in the sense that R is finite

and P diverges to infinity), P−1/2
∑T−τ

t=R ft,τ (φ̂t)→d N(0, Sf̂ f̂ ) under the null hypothesis

lim
P→∞

P−1/2
∑T−τ

t=R
Eft,τ (φ̂t) = 0,

where Sf̂ f̂ = limP→∞ V ar(P
−1/2

∑T−τ
t=R ft,τ (φ̂t)).

The theoretical results in Giacomini and White (2006) can be used for a wide range

of applications, including tests of zero bias and forecast effi ciency applied to conditional

forecasts.10 So long as the statistic takes the form P−1/2
∑T−τ

t=R ft,τ (φ̂t), and all parameters

are estimated using a small rolling window of observations, normal critical values can be used

to conduct inference on the null hypothesis limP→∞ P
−1/2

∑T−τ
t=R Eft,τ (φ̂t) = 0, without

any additional correction of standard errors for the effects of estimation of the forecasting

model’s parameters. In practice, as much as it may be asymptotically valid (under a rolling

estimation scheme for the forecasting model) to compare bias and effi ciency tests against

10Because our test of equal MSE requires an estimated recentering term, and is estimated using the full
sample, the Giacomini and White (2006) results are not directly applicable.
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normal distributions without correction for parameter estimation error, HAC estimation

problems may still make a bootstrap like the one we described above preferable to standard

normal-based inference.

4 Monte Carlo Analysis

This section presents a Monte Carlo analysis of the finite-sample properties of tests for

bias, effi ciency, and MSE accuracy applied to unconditional and conditional forecasts from

VAR models. In all cases, consistent with the preceding analytics, we produce and evaluate

forecasts conditioned on a path for a pseudo-policy variable that is the actual future path.

Using the simulated data, we conduct forecast inference based on both normal distributions

with standard errors that abstract from parameter estimation error and bootstrapped test

distributions.

In these experiments, we use bivariate and trivariate VARs as data-generating processes

(DGPs). In the reported results, we form (iterated multi-step) forecasts using OLS esti-

mates of VARs. In results not reported in the interest of brevity, we obtained very similar

results for VARs estimated with Bayesian methods, under a Normal-inverted Wishart prior

and posterior. We focus on forecasts computed under a recursive (expanding window) es-

timation scheme, but we provide some results for a rolling window estimation scheme. For

the conditional forecasts, we concentrate on the minimum-MSE approach to conditional

forecasting; we provide a briefer set of results for the policy shock approach to conditional

forecasting.

In all simulations, based on 2000 Monte Carlo draws, we report the percentage of Monte

Carlo trials in which the null of no bias, effi ciency, or MSE accuracy is rejected – the

percentage of trials in which the sample test statistics fall outside (two-sided) critical values.

In the reported results, the tests are compared against 10% critical values. Using 5% critical

values yields similar findings.

We proceed by first detailing the data-generating processes and other aspects of exper-

iment design and then presenting the results.

4.1 Monte Carlo design

For each DGP, we generate data using draws of innovations and the autoregressive structure

of the DGP. The initial observations necessitated by the lag structure of each DGP are
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generated with draws from the unconditional normal distribution implied by the DGP.

With quarterly data in mind, we report results for forecast horizons of 1, 2, and in some

cases, 4 periods. We consider sample sizes of R,P = 50,100; 50,150; 100,50; and 100,100.

We use DGPs 1, 1G, and 2 to evaluate size properties and DGPs 3 and 4 to evaluate power.

DGP 1 is a bivariate VAR(1), with regression coeffi cients given in the first panel of Table

1 and an error variance-covariance matrix of:

var(εt) =

(
1.0
0.5 1.0

)
.

In order to assess test reliability with conditionally heteroskedastic forecast errors, we

also consider a version of DGP 1 with GARCH innovations, denoted DGP 1G. The VAR

has the same regression coeffi cients as given for DGP 1 in the first panel of Table 1. In the

GARCH structure, taken from an experiment design in Bruggemann, Jentsch, and Trenkler

(2014), let et denote a 2×1 innovation vector that is distributed N(0, I2). Let vi,t = σi,tei,t,

where σ2
i,t = 0.2+0.05v2

i,t−1+0.75σ2
i,t−1, such that v1,t and v2,t are independent GARCH(1,1)

processes. The VAR innovations are constructed as Svt, where S is

var(εt) =

(
1.0 0.0
0.5 0.866

)
.

With this formulation, the unconditional error variance matrix is the same as in the ho-

moskedastic version of DGP 1.

DGP 2 is a trivariate VAR(2), with regression coeffi cients given in the second panel of

Table 1 and an error variance-covariance matrix of:

var(εt) =

9.265
0.296 1.746
0.553 0.184 0.752

 .

We set the parameters of DGP 2 to equal OLS estimates of a VAR in GDP growth, inflation

less a survey-based measure of trend inflation (see, e.g., Clark and Doh (2014), Faust and

Wright (2013)), and the federal funds rate less a survey-based measure of trend, over a

sample of 1961-2007.

To evaluate power properties, DGPs 3 and 4 impose some parameter breaks on the

specification of the bivariate DGP 1. In DGP 3, the breaks consist of one-time shifts in the

intercept of the y1,t equation and the slope and intercept coeffi cients of the y2,t equation.

The pre- and post-break coeffi cients are given in the last panel of Table 1; the error variance-

covariance matrix is kept constant, at the setting used with DGP 1 (see above). The break
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is imposed to occur at period R + 1, the date of the first out-of-sample forecast. In DGP

4, the single break takes the form of a shift in the error correlation ρ, from 0.5 to -0.5, at

period R + 1. In this DGP, the other VAR parameters are stable over time, at the DGP 1

values given in Table 1.

In experiments with DGPs 1, 1G, 3, and 4, to keep the conditioning relatively simple

and speed the Monte Carlo replications, we report results for forecast horizons of 1 and 2

periods ahead. In these cases, we forecast the first variable of the VAR in periods t+ 1 and

t+ 2 (i.e., y1,t+1 and y1,t+2), conditional on the actual values of the second variable in those

periods (i.e., y2,t+1 and y2,t+2). In experiments with DGP 2, we extend the conditioning

horizon to 4 quarters ahead. In this case, we forecast variables y1,t+τ and y2,t+τ for τ =

1, . . . , 4 conditional on y3,t+τ equaling its actual values in periods t+1 through t+4 – that

is, conditional on ŷc3,t,τ = y3,t+τ , τ = 1, . . . , 4. For evaluating conditional forecasts produced

under the policy shock approach, because 1-step ahead conditional forecasts obtained via

the policy shock approach are exactly the same as the unconditional forecasts, we only

report results for the multi-step horizons covered with each DGP.11

4.2 Test implementation

For convenience, we list here the regressions and test statistics we use, referring to variable

1 of the VAR for convenience (in DGP 2, we consider forecasts of an additional variable):

ε̂i1,t,τ = α0 + et,τ , i = u, c, bias: α0 t-stat (2)

ε̂i1,t,τ = α0 + α1ŷ
i
1,t,τ + et,τ , i = u, c, M-Z: α1 t-stat (3)

ε̂c1,t,τ = α0 + α1(ŷu1,t,τ − ŷc1,t,τ ) + α2ŷ
c
1,t,τ + et,τ , F-W: α2 t-stat (4)

(ε̂c1,t,τ )2 − (ε̂u1,t,τ )2 = α0 + et,τ , MSE accuracy: α0 = k(φ̂T ) t-stat (5)

To test bias, we regress (equation (2)) forecast errors (either unconditional or condi-

tional) on a constant and form the t-statistic for the null of a coeffi cient of zero. To test

effi ciency, for all types of forecasts, we consider the Mincer-Zarnowitz effi ciency test of equa-

tion (3). For conditional forecasts, we also consider the t-statistic of the coeffi cient on the

conditional forecast in the Faust and Wright (2008) effi ciency regression (4). Finally, we

use the regression (5) to test whether the difference in MSEs for the unconditional and

11 In these DGPs, the equivalence of the 1-step conditional forecast obtained via the policy shock approach
to the unconditional forecast arises because the “policy”variable is ordered last in the VAR.
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conditional forecasts is different from the population level-value implied by the VAR’s pa-

rameters (where, as noted above, that population value is a function of the VAR’s slope

coeffi cients and error variance-covariance matrix).

In all cases, the forecast error for horizon τ should follow an MA(τ − 1) process. At the

1-step horizon, we form test statistics using the simple OLS estimate of the variance. At

longer horizons, we use a rectangular kernel, with τ − 1 lags.12

4.3 Results

Tables 2 through 5 provide size results from Monte Carlo experiments with DGPs 1, 1G,

and 2, in which the conditional forecasts are computed with the minimum-MSE approach.

These results indicate that comparing tests of bias, effi ciency, and MSE accuracy against

standard normal critical values will often be unreliable. More specifically:

• Under a recursive scheme, without correction for the effects of parameter estimation

error, tests of bias – both unconditional and conditional – range from being about

correctly sized (DGP 1) to modestly oversized (DGP 3). Oversizing is somewhat more

likely at longer forecast horizons, probably because of diffi culties with the finite-sample

precision of HAC variance estimates.

• Under a recursive scheme, tests of effi ciency range from being almost correctly sized

(DGP 1, 1-step horizon) to significantly oversized (DGP 3). Size is comparable for

the M-Z and F-W tests applied to conditional forecasts and the M-Z test applied to

unconditional forecasts. The size distortions generally rise as the forecast horizon

increases, likely reflecting imprecision in the HAC variance estimate. For example, for

forecasts of y2,t in experiments with DGP 2 and R,P = 100,100, the rejection rate for

the normal-based M-Z effi ciency test applied to conditional forecasts rises from 23.0

percent at the 1-step horizon to 29.0 percent at the 2-step horizon and 36.1 percent

at the 4-step horizon.

• With recursively produced forecasts, the MSE accuracy test often, although not al-

ways, leads to significant undersizing. For example, with DGP 2, R,P = 50,100,

and the 1-step forecast horizon, the rejection rate for the MSE test is 3.5 percent for

variable 1 and 14.3 percent for variable 2.

12 In the rare occasions in which the result variance estimator is not positive semi-definite, we instead use
the HAC estimator of Newey and West (1987), with 2(τ − 1) lags.
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• Under the rolling scheme, the failure to correct standard errors for the effects of

parameter estimation error associated with forecast model estimation can have large

consequences. In particular, rejection rates for bias tests are materially lower under

the rolling scheme than the recursive, such that bias tests applied to rolling forecasts

are often modestly or significantly undersized. In the experiments in which P/R >

1, rejection rates for effi ciency tests are higher under the rolling scheme than the

recursive, such that effi ciency tests applied to rolling forecasts are often significantly

oversized. Finally, tests of MSE accuracy in DGP 1 applied under the rolling scheme

range from significantly to slightly undersized.

• Under the recursive scheme, conditional heteroskedasticity in the data-generating

process does not materially affect the results described above. Broadly, size results

under DGP 1G (Table 5) are fairly similar to those under DGP 1 (Table 2). The

oversizing of effi ciency tests is a little greater in the GARCH results than in the

conditionally homoskedastic results, but otherwise results are fairly similar.

In comparison, conducting inference on the basis of our proposed bootstrap yields more

reliable tests of bias, effi ciency, and accuracy. More specifically:

• For both unconditional and conditional forecasts, the median rejection rate across all

bias tests in Tables 2-5 is about 11.4 percent, with a minimum of about 9 percent and

maximum of about 13-14 percent.

• For each type of effi ciency test, the median rejection rate across all experiments in

Tables 2-5 is a little less than 10 percent. In some settings, however, the tests can be

either slightly-to-modestly undersized or slightly-to-modestly oversized. For example,

applied to unconditional forecasts the M-Z test of effi ciency has a minimum of 4.6

percent and maximum of 14.1 percent across experiments. Applied to conditional

forecasts the M-Z test’s rejection rate ranges from 5.9 percent to 14.3 percent.

• Size performance is more variable for the MSE test (unconditional versus minimum-

MSE conditional) than the bias and effi ciency tests. On average, the bootstrap is

reasonably reliable: the median rejection rate across all MSE tests in Tables 2-5 is

8.9 percent. But the rejection rate ranges from 3.2 to 17.1 percent, depending on the

experiment, variable, horizon, etc.
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• With bootstrap inference, using a rolling scheme for estimation or a DGP with

GARCH yields results similar to those obtained for recursive estimation of a DGP

with conditionally homoskedastic innovations.

Tables 6 and 7 provide power results from Monte Carlo experiments with DGPs 3 and 4,

in which the conditional forecasts are computed with the minimum-MSE approach and the

forecasting scheme is recursive. We focus on power results obtained under bootstrap critical

values, because using normal critical values (without correction for parameter estimation

error) does not yield accurately sized tests. These experiments yield the following findings

for power.

• With a break in VAR coeffi cients (DGP 3), tests for bias have relatively good power.

For example, with R,P = 100,100, the 2-step ahead rejection rate is 85.0 percent

for the unconditional forecast and 74.8 percent for the conditional forecast. As this

example indicates, the bias test for unconditional forecasts has somewhat more power

than the bias test for conditional forecasts, likely because conditioning on the actual

future path of y2,t reduces shifts in y2,t as a potential source of instability in the

forecast of y1,t.

• In the same DGP, tests for effi ciency have at best modest power, with the M-Z test

applied to unconditional forecasts having a little more power than the M-Z or F-W

tests applied to conditional forecasts. In the same example (R,P = 100,100 and a

2-step forecast horizon), the rejection rate is 17.3, 7.9, and 7.1 percent for the M-Z

unconditional, M-Z conditional, and F-W conditional tests.

• Similarly, in the DGP with a break in VAR coeffi cients, the test of MSE accuracy has

at least a little power. In the same example, the power of the MSE accuracy test is

14.9 percent (Table 6).

• In the DGP with a break in error correlations (Σ) instead of the VAR’s slope coeffi -

cients, the power rankings of the tests are essentially reversed. In DGP 4, the MSE

accuracy test has the best power, ranging from about 40 percent (with R,P = 50,150)

to as much as 94.5 percent (R,P = 100,50, 1-step ahead forecast horizon). The M-Z

effi ciency test applied to conditional forecasts ranks second in power, yielding a re-

jection rate as high as 75.7 percent (R,P = 100,50, 2-step ahead forecast horizon),
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but also as low as 11.9 percent (with R,P = 50,150, 1-step ahead forecast horizon).

Neither the F-W test for the effi ciency of conditional forecasts nor the M-Z test for

the effi ciency of unconditional forecasts have much power. Bias tests also lack power

in the face of a shift in the error correlation (in Σ), likely due to the absence of any

mean shifts that would lead to bias in forecasts.

Finally, Table 8 provides some size and power results for two-step ahead conditional

forecasts produced under the policy shock approach.13 Broadly, these results are mostly,

although not entirely, similar to the results for minimum-MSE conditional forecasts.

• In size experiments with DGP 1, the performance of the bias test for policy shock-

based forecasts is about the same as for the unconditional and minimum-MSE con-

ditional forecasts (compare Tables 2 and 8). Against standard normal critical values,

the effi ciency test rejection rates are modestly higher for policy shock-based forecasts

than for the others. The oversizing of the M-Z effi ciency test may not be surprising in

light of the analytical results above that suggest that the M-Z effi ciency test should

reject with policy shock-conditioned forecasts. However, in these experiments, under

bootstrap critical values, the oversizing goes away.

• In power experiments with DGP 3, the test for bias has more power than the tests

for effi ciency. With policy shock conditioning, the bias test has power comparable

to the bias test applied to unconditional forecasts and above the power of the bias

test applied to minimum-MSE conditional forecasts (Tables 2 and 8). Similarly, the

effi ciency tests have slightly to modestly more power with policy shock-conditioned

forecasts than with the minimum-MSE forecasts.

• In power experiments with DGP 4, neither tests for bias nor tests for effi ciency have

much power. The primary difference with respect to the tests based on minimum-

MSE conditional forecasts is that the M-Z effi ciency test has little power, rather than

modest to decent power, with policy shock-conditioned forecasts.

In summary, the Monte Carlo results are generally consistent with the analytical findings

described above. With conditional forecasts, comparing tests of bias, effi ciency, and MSE

accuracy against standard normal critical values does not yield generally reliable results. A
13These results are based on exactly the same artificial data as the corresponding experiments in Tables

2, 6, and 7.
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likely reason is that, in many cases, the asymptotic distributions of the tests are affected by

parameter estimation error (from forecast model estimation). While the statistics of interest

are normally distributed, parameter estimation error affects the appropriate variance in a

way that is often very complicated. Our proposed (and easily implemented) bootstrap

procedure yields tests with reasonably reliable size properties. As to power, our results

show that shifts in error correlations will lead to rejections of MSE accuracy (unconditional

versus conditional) and the effi ciency of conditional forecasts, but not rejections of the

effi ciency of unconditional forecasts.

5 Empirical Application

In our empirical application, we examine forecasts of U.S. GDP growth, the unemployment

rate, and core PCE inflation obtained with a BVAR of 22 variables. The model is patterned

after a specification considered in Giannone, Lenza, and Primiceri (2012), using variables in

levels or log levels. A number of studies (e.g., Banbura, Giannone, and Reichlin 2010 and

Giannone, Lenza, and Primiceri 2012) have found that larger models often forecast more

accurately than smaller models.

This section proceeds by detailing the model and our implementation (some additional

details are included in Appendix 2), data and forecasting details, and results.

5.1 Model and implementation

The model we use is a BVAR(5) of the form:

Yt = C +A(L)Yt−1 + εt,

in which all variables enter in levels or log levels. The table below lists the 22 variables

included and their transformations.

The prior for the model takes the conjugate Normal-inverted Wishart form used in

studies such as Banbura, Giannone, and Reichlin (2010), which yields a Normal-inverted

Wishart posterior (Appendix 2 details the estimation steps). The priors on the VAR coef-

ficients A(L) include Minnesota-style unit root priors, sums of coeffi cient priors, and initial

observations priors, patterned after Sims and Zha (1998), for example.

More specifically, in the Minnesota-style component of the prior, we impose the prior
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Variables in large BVAR
variable transformation prior mean

on AR(1) coeffi cient
real GDP ln 1
real personal consumption expenditures (PCE) ln 1
real business fixed investment (BFI) ln 1
real residential investment (RESINV) ln 1
industrial production (IP) ln 1
capacity utilization in manufacturing (CU) ln 1
total hours worked in the nonfarm business sector (HOURS) ln 1
payroll employment (PAYROLLS) ln 1
unemployment rate level 1
consumer sentiment level 1
spot commodity price index ln 1
core PCE price index ln 1
price index for gross private domestic investment ln 1
GDP price index ln 1
real hourly compensation in the nonfarm business sector ln 1
federal funds rate level 1
M2 ln 1
total reserves ln 1
S&P 500 index of stock prices ln 1
1-year (constant maturity) Treasury bond yield level 1
5-year (constant maturity) Treasury bond yield level 1
real effective exchange rate for major currencies ln 1
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expectation and standard deviation of the coeffi cient matrices to be:

E[A
(ij)
k ] =

{
1 if i = j, k = 1
0 otherwise

, st. dev.[A(ij)
k ] =

λ1

k

σi
σj
, k = 1, ..., 5, (6)

where A(ij)
k denotes the element in position (i, j) in the matrix Ak. For each variable’s

intercept contained in C we assume an informative prior with mean 0 and standard deviation

λ0σi. The shrinkage parameter λ1 measures the overall tightness of the prior: when λ1 → 0

the prior is imposed exactly and the data do not influence the estimates, while as λ1 →∞ the

prior becomes loose and the prior information does not influence the estimates, which will

approach the standard OLS estimates. To set each scale parameter σi we follow common

practice (see e.g. Litterman (1986) and Sims and Zha (1998)) and set it equal to the

standard deviation of the residuals from a univariate autoregressive model.

Doan, et al. (1984) and Sims (1993) have proposed complementing standard Minnesota

priors with additional priors which favor unit roots and cointegration, and introduce cor-

relations in prior beliefs about the coeffi cients in a given equation. Accordingly, in our

benchmark specification, we also include the “sum of coeffi cients”and “dummy initial ob-

servation”priors proposed in Doan et al. (1984) and Sims (1993), respectively. Both these

priors can be implemented by augmenting the system with dummy observations. The de-

tails of our implementation of this priors (including the definition of hyperparameters λ3

and λ4) are contained in Appendix 2.

Reflecting common settings in the literature (e.g., Sims and Zha (1998)), we set the

hyperparameters that govern the tightness of the prior as follows:

λ0 = 1;λ1 = 0.2; λ3 = 1; λ4 = 1.

Studies such as Carriero, Clark, and Marcellino (2012) and Giannone, Lenza, and Primiceri

(2012) that have considered various methods for optimizing the tightness of the prior have

found that, in forecast accuracy, the typical hyperparameter settings offer gains in forecast

accuracy that are comparable to those obtained by optimized hyperparameter settings.

The prior specification is completed by choosing v0 and S0, the prior degrees of freedom

and scale matrix of the inverted Wishart prior for Σ, so that the prior expectation of Σ is

equal to a fixed diagonal residual variance E[Σ] = diag(σ2
1, ..., σ

2
n). In particular, following

Kadiyala and Karlsson (1997), we set the diagonal elements of S0 to s0ii = (v0 − n− 1)σ2
i

and v0 = n+ 2.
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To streamline computations, particularly with a bootstrap approach to inference, we

compute forecasts from the BVAR without simulation. We use the posterior mean of coef-

ficients and the error covariance matrix (Σ, which we use in forming conditional forecasts)

to compute point forecasts based on just the posterior mean coeffi cients, iterating forward

from 1-step ahead forecasts. Carriero, Clark, and Marcellino (2012) found point forecasts

obtained with this approach to be essentially the same as point forecasts obtained from

Monte Carlo simulation.

5.2 Data and sample

In generating and evaluating forecasts, we use data taken from the FAME database of the

Federal Reserve Board. The quarterly data on industrial production, capacity utilization,

payroll employment, the unemployment rate, consumer sentiment, commodity prices, in-

terest rates, M2, reserves, stock prices, and the exchange rate are constructed as simple

within-quarter averages of the source monthly data (in keeping with the practice of, e.g.,

Blue Chip and the Federal Reserve). All growth and inflation rates are measured as annu-

alized log changes (from t− 1 to t).

In keeping with common practice in recent VAR forecasting analyses (e.g., Giannone,

Lenza, and Primiceri 2012, Koop 2013) and with the FOMC’s forecast reporting practices,

we provide results for a subset of the variables included in our models: GDP growth, the

unemployment rate, and core PCE inflation. Unlike these studies, we do not report fore-

casts for the federal funds rate because we are interested in forecasts of the other variables

conditional on particular paths of the federal funds rate.

We generate and evaluate forecasts for a sample of 1991 through 2007, at horizons of

1, 2, 4, and 8 quarters. We start forecasting in 1991 and not sooner because, through

the 1980s, inflation was still trending down, presumably due to a deliberate disinflation

effort by the Federal Reserve. We stop our forecast evaluation in 2007:Q4 to avoid possible

complications of the zero lower bound constraints that became relevant in subsequent years.

In all cases, we estimate the model with a sample that starts in 1961:Q1. We begin

by estimating with data from 1961:Q1 through 1990:Q4 and forming forecasts for 1991:Q1

through 1992:Q4. We then proceed by moving to a forecast origin of 1991:Q2, estimating

the model with data from 1961:Q1 through 1991:Q1 and forming forecasts for 1991:Q2

through 1993:Q1. We proceed similarly through time, up through 2007:Q3, to obtain a

sample of forecasts from 1991 through 2007. At each point in time, we produce conditional
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forecasts based on the actual future path of the federal funds rate over the 8-step forecast

horizon. In the presented results, in the interest of brevity, we focus on conditional forecasts

produced with the minimum-MSE approach. Conditional forecasts based on policy shocks

yield similar findings.

5.3 Results

Tables 9 and 10 provide the results of bias, effi ciency, and MSE accuracy tests applied to

growth, unemployment, and inflation forecasts. In particular, Table 9 reports test statistics

(t-statistics) along with bootstrapped 10 percent critical values. Table 10 reports the MSEs

of the unconditional and conditional forecasts, along with the t-test for MSE accuracy and

its 10 percent critical values.

Overall, there is little evidence of bias in the growth, unemployment, or inflation fore-

casts, either unconditional or conditional. For GDP growth and unemployment, the forecast

biases and test statistics provided in Table 9 are relatively small. Although the statistics

are larger for inflation forecasts, they don’t necessarily represent much evidence of bias.

Whereas standard normal critical values would indicate the inflation forecasts – both un-

conditional and conditional – to be biased, the bootstrap critical values that our Monte

Carlo analysis show to be more reliable indicate the null of no bias should not be rejected.

Consider, for example, 4-quarter ahead unconditional forecasts of inflation. The t-statistic

for the null of 0 bias in the unconditional forecast is -2.326, which would imply rejection of

the null of no bias. However, the associated left tail bootstrap critical value (associated with

a 2-sided significance level of 10%), is -3.198; based on the bootstrap critical values, the

null of zero bias cannot be rejected. Therefore, over the 1991-2007 period, conditioning the

forecasts on path of the federal funds rate that matches the actual path does not introduce

any bias into the forecasts of inflation or the forecasts of GDP growth and unemployment.

There is considerably more evidence of ineffi ciency in the GDP growth and inflation

forecasts – both unconditional and conditional – but not unemployment forecasts. At

most horizons, all of the ineffi ciency tests reject the null of effi ciency for growth and in-

flation forecasts. For example, in 4-step forecasts of GDP growth and inflation, the M-Z

unconditional, M-Z conditional, and F-W conditional test statistics all fall outside the left

tail of the bootstrap distribution.

Finally, the results in Table 10 indicate that the differences in MSE accuracy between

the unconditional and minimum-MSE conditional forecasts are generally not significantly
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different from what full sample estimates of the BVAR imply should obtain. (One other

interesting finding in Table 10 is that, based on BVAR parameters, conditioning forecasts

on the future path of interest rates should generally be expected to have modest effects on

accuracy, except at the 8-step forecast horizon.) To be sure, there are differences in the

actual MSEs that are somewhat different from the MSEs implied by the VAR’s parame-

ters, but these differentials are not often statistically significant. Consider, for example,

4-quarter ahead forecasts of GDP growth. In the out-of-sample forecasts, the difference in

MSEs (unconditional less minimum-MSE conditional) is 0.835. The BVAR, with full-sample

parameter estimates, implies the difference is MSEs could be expected (in population) to

be 0.322. However, the t-statistic for the equality of the sample difference and population-

implied difference is just 1.085, well below the upper tail of the bootstrap distribution. The

same outcome occurs with the other variables and forecast horizons, with the exception of

a rejection of the null for inflation forecasts at the 8-step ahead horizon.

Overall, these results suggest some misspecification of the BVAR used to produce the

forecasts of GDP growth, unemployment, and core inflation – both unconditional forecasts

and forecasts conditioned on the actual path of the federal funds rate over a two year

horizon. Although that misspecification doesn’t lead to significant bias in the forecasts

or cause the difference in the accuracy of unconditional and conditional forecasts to be

significantly different than the VAR’s parameters imply, it leads to a number of rejections

of the effi ciency of both unconditional and conditional forecasts.

6 Conclusions

Motivated by the common use of conditional forecasting in both practical forecasting and re-

search, we develop and apply methods for the evaluation of conditional forecasts from VARs,

using tests of bias, effi ciency, and the MSE accuracy of conditional versus unconditional

forecasts. More specifically, we provide analytical, Monte Carlo, and empirical evidence on

tests of predictive ability for conditional forecasts from estimated models. Throughout, our

intention is to provide usable metrics for evaluating conditional forecasts, in a general sense

and in comparison to the accuracy of unconditional forecasts. To do so, we focus on partic-

ular forms of conditional forecasts for which interpretation of various null and alternative

hypotheses is most straight-forward. In particular, in our analysis, we consider forecasts

conditioned on actual future information on some variables in the VAR model.
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For these tests, we establish asymptotic normality in the context of VAR-based con-

ditional forecasts. Our results follow from an application of West (1996) and West and

McCracken (1998) and as such establish the role of estimation error on the asymptotic dis-

tribution. As a practical matter, the standard errors can be quite complex and as such we

suggest and consider a bootstrap approach to inference that is valid when even estimation

error contributes to the asymptotic variance of the test statistic. Monte Carlo evidence

suggests that the tests can be reasonably well sized in samples of the size often seen in

macroeconomic applications.

Building on these results, in our application, we evaluate unconditional and conditional

forecasts from a common macroeconomic Bayesian VAR. We produce unconditional and

conditional forecasts of GDP growth, unemployment, and inflation, in which the conditional

forecasts are based on the actual path of the short-term interest rate over an eight quarter

forecast horizon. Using bootstrap critical values, we find evidence of model misspecification

in the form of rejections of the effi ciency of unconditional and conditional forecasts of GDP

growth and inflation.
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7 Appendix 1: Theory Details

In this section we provide proofs of the Theorems described in the text. In addition to the

notation from Section 2, let zt+r = (x′t+r, ..., x
′
t)
′ where r = max(τ ,m). Throughout we

ignore the finite sample difference between P and P − τ + 1.

Proof of Theorem 1: Given A1 - A5, the proof follows from Theorems 4.1 and 4.2 of

West and McCracken (2008).

Proof of Theorem 2: Recall that ft,τ (φ̂t) = (vech−1(ĝtĝ
′
t)
′, ĝ′tε̂

c
1,t,τ )′. Given Theo-

rem 4.1 of West (1996), the result will follow if A1 - A5 are suffi cient for Assumptions 1-4

(W1-W4) in West (1996) when applied to ft,τ (φ̂) and hs. W2 and W4 follow immediately

from A2 and A5. For W1 and W3 it’s useful to recall that every element of ft,τ (φ̂t), hs(φ),

∂ft,τ (φ̂t)/∂φ, ∂hs(φ)/∂φ, ∂2ft,τ (φ̂t)/∂φ∂φ
′, and ∂2hs(φ)/∂φ∂φ′ are twice continuously dif-

ferentiable functions of polynomials of φ and are quadratics of zt+r. This follows from (i)

the fact that the unconditional forecasts are iterated multistep forecasts from a VAR, (ii)

the definition of minimum-MSE and policy shock-based conditioning, and (iii) the defini-

tion of ft,τ (φ̂t) and hs(φ). As such, A1 and A3 suffi ce for W1. Finally, since (i) fourth

order stationarity of wt implies covariance stationarity of ft,τ , ∂ft,τ/∂φ and hs, (ii) mixing

is preserved by finite dimensioned functions of mixing variables, and (iii) the existence of

8d moments for wt implies the existence of 4d moments for ft,τ , ∂ft,τ/∂φ and hs we find

that A1 and A4 suffi ce for W3 and the proof is complete.

Proof of Theorem 3: Define ft,τ (φ̂t) by rewriting the moment condition as (ε̂c1,t,τ )2−

(ε̂u1,t,τ )2 − k(φ̂T ) = ft,τ (φ̂t) − (k(φ̂T ) − k). We provide the proof separately for the case

when π = 0 and when π > 0.

(a) Let π = 0. Assumptions A2 and A4 imply T 1/2(φ̂T − φ)→d N(0, BShhB
′). Since

k(φ) is continuously differentiable in φ, the Delta method implies T 1/2(k(φ̂T ) − k) →d

N(0,KBShhB
′K ′). Since π = 0 implies T/P = o(1), P 1/2(k(φ̂T ) − k) = op(1) and hence

P−1/2
∑T−τ

t=R ((ε̂c1,t,τ )2 − (ε̂u1,t,τ )2 − k(φ̂T )) = P−1/2
∑T−τ

t=R ((ε̂c1,t,τ )2 − (ε̂u1,t,τ )2 − k) + op(1).

The result will follow if A1 - A5 are suffi cient for assumptions W1-W4 in West (1996)

when applied to ft,τ (φ̂) and hs. Since the arguments used in the proof of Theorem 2 are

applicable when ft,τ (φ̂t) = (ε̂c1,t,τ )2 − (ε̂u1,t,τ )2 − k, the result follows from Theorem 4.1 of

West (1996).

(b) Let π > 0. From the proof of (a) it’s clear that P 1/2(k(φ̂T )−k) = KB(P 1/2H(T ))+

op(1)→d N(0, π
1+πKBShhB

′K ′). In addition, Lemma 4.1 and Theorem 4.1 of West (1996)
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imply

P−1/2
T−τ∑
t=R

((ε̂c1,t,τ )2 − (ε̂u1,t,τ )2 − k) = P−1/2
T−τ∑
t=R

ft,τ + FB(P−1/2
T−τ∑
t=R

H(t)) + op(1)

→ dN(0, Sff + 2λfhFBS
′
fh + λhhFBShhB

′F ′).

Together these imply

P−1/2
T−τ∑
t=R

((ε̂c1,t,τ )2 − (ε̂u1,t,τ )2 − k(φ̂T )) = P−1/2
T−τ∑
t=R

ft,τ + FB(P−1/2
T−τ∑
t=R

H(t))

−KB(P 1/2H(T )) + op(1) → dN(0,Ω0)

for some asymptotic variance Ω0. The result will follow if we can establish that Ω0 = Ω

as described in the text. To do this note that we can rewrite P−1/2
∑T−τ

t=R ((ε̂c1,t,τ )2 −

(ε̂u1,t,τ )2 − k(φ̂T )) as

P−1/2
T−τ∑
t=R

((ε̂c1,t,τ )2 − (ε̂u1,t,τ )2 − k(φ̂T )) = [I, FB,−KB]

 P−1/2
∑T−τ

t=R ft,τ
P−1/2

∑T−τ
t=R H(t)

P 1/2H(T )

+ op(1)

and hence

Ω0 = [I, FB,−KB] lim
P,R→∞

V ar(P−1/2
T−τ∑
t=R

ft,τ , P
−1/2

T−τ∑
t=R

H(t)′, P 1/2H(T )′)[I, FB,−KB]′.

Straightforward algebra reveals that Ω0 = Ω if (i) limP,R→∞Cov(P−1/2
∑T−τ

t=R ft,τ , P
1/2H(T )′) =

π
1+πS

′
fh and (ii) limP,R→∞Cov(P−1/2

∑T−τ
t=R H(t), P 1/2H(T )′) = π

1+πShh. We establish

both of these below accounting for whether the rolling or recursive schemes are used.

(b-i) Note that P 1/2H(T ) = (PR)1/2

T (R−1/2
∑R−1

s=1 hs+1) + P
T (P−1/2

∑T−1
s=R hs+1). Given

A4, it is straightforward to show that limP,R→∞Cov(P−1/2
∑T−τ

t=R ft,τ , R
−1/2

∑R−1
s=1 h

′
s+1) =

0. In addition, since A5 implies (PR)1/2

T = O(1), we immediately find that

lim
P,R→∞

Cov(P−1/2
T−τ∑
t=R

ft,τ , P
1/2H(T )′) = lim

P,R→∞

P

T
Cov(P−1/2

T−τ∑
t=R

ft,τ , P
−1/2

T−1∑
s=R

h′s+1)

=
π

1 + π
S′fh

and we obtain the desired result. Note that this does not depend on whether the recursive

or rolling scheme is used.

(b-ii) We do the decomposition three distinct ways: once for the recursive, once for the

rolling with P < R, and once for the rolling with P ≥ R.

32



(b-ii-recursive) Let aR,s =
∑P−1

j=0 (R + s + j)−1and note that P−1/2
∑T−1

t=R H(t) equals

(R/P )1/2aR,0(R−1/2
∑R−1

s=1 hs+1) + P−1/2
∑T−1

s=R+1 aR,shs+1. And as above, P 1/2H(T ) =

(PR)1/2

T (R−1/2
∑R−1

s=1 hs+1) + P
T (P−1/2

∑T−1
s=R hs+1). Given A4, showing that limP,R→∞

Cov(R−1/2
∑R−1

s=1 hs+1, P
−1/2

∑T−1
s=R hs+1) and limP,R→∞Cov(R−1/2

∑R−1
s=1 hs+1, P

−1/2
∑T−1

s=R aR,shs+1) are

both zero is straightforward. In addition, since A5 implies aR,0 ∼ ln(1 + π) and (PR)1/2

T are

O(1) we find that

lim
P,R→∞

Cov(P−1/2
T−τ∑
t=R

H(t), P 1/2H(T )) = lim
P,R→∞

R

T
aR,0Cov(R−1/2

R−1∑
s=1

hs+1, R
−1/2

R−1∑
s=1

h′s+1)

+ lim
P,R→∞

P

T
Cov(P−1/2

T−1∑
s=R

aR,shs+1, P
−1/2

T−1∑
s=R

h′s+1).

Since limP,R→∞Cov(R−1/2
∑R−1

s=1 hs+1, R
−1/2

∑R−1
s=1 hs+1) = limP,R→∞ V ar(R

−1/2
∑R−1

s=1 hs+1)

we immediately find that the first right-hand side term equals (1 + π)−1 ln(1 + π). That

the second right-hand side term equals π
1+π (1− π−1 ln(1 + π)) is delineated in the proof of

Lemma A6 in West (1996). Adding the two pieces together provides the desired result.

(b-ii-rolling, P < R) Define
∑T−1

t=R H(t) = R−1
∑P−1

s=1 shs+
P
R

∑R
s=P hs+R

−1
∑T−1

s=R+1(P−

s − R)hs = A1 + A2 + A3 and H(T ) = T−1
∑P−1

s=1 hs + T−1
∑R

s=P hs + T−1
∑T−1

s=R+1 hs =

B1 +B2 +B3. Given A4, it is straightforward to show limP,R→∞Cov(Ai, B
′
j) = 0 all i 6= j

and hence limP,R→∞Cov(P−1/2
∑T−τ

t=R H(t), P 1/2H(T )′) =
∑3

j=1 limP,R→∞Cov(Aj , B
′
j).

For the second term14 it’s clear that limP,R→∞Cov(A2, B
′
2) = limP,R→∞

P (R−P )
RT Cov((R −

P )−1/2
∑R

s=P hs, (R− P )−1/2
∑R

s=P h
′
s) = π

1+π (1− π)Shh.

For the first and third terms a bit more detail is needed. For ease of presentation let hs

be a scalar and define γj = Ehshs−j , dj =
∑P−1−j

i=1 i, and cj =
∑P−1−j

i=1 (P−i). Direct mul-

tiplication and taking expectations implies limP,R→∞Cov(A1, B1) = (RT )−1[
∑P−2

j=1 γjdj +∑P−2
j=1 γjcj+γ0d0]. A5 and straightforward algebra imply (RT )−1d0 = P 2

RT (P−2
∑P−2

i=1 i)→
π2

2(1+π) . Since γ0 + 2
∑P−2

j=1 γj → Shh the result will follow if P−2|
∑P−2

j=1 γj(dj − d0)|

and P−2|
∑P−2

j=1 γj(cj − d0)| are both o(1). We show the former, the proof of the lat-

ter is very similar. To do so note that dj ≥
∫ P−1

1 (x − j)dx and d0 ≤
∫ P

0 xdx. In-

tegrating we obtain |dj − d0| ≤ |P + j(P − 3
2)| and hence P−2|

∑P−2
j=1 γj(dj − d0)| ≤

P−2
∑P−2

j=1 |γj ||P + j(P − 3
2)| ≤ P−1

∑P−2
j=1 |γj | + P−1

∑P−2
j=1 |γj ||j|. Since A4 implies∑P−2

j=1 |γj | and
∑P−2

j=1 |γj ||j| are O(1) it is clear that P−2|
∑P−2

j=1 γj(dj − d0)| = o(1) and we

14Here we treat the case in which |P −R| diverges as P,R→∞. When the difference is finite the second
term is trivially op(1). The distinction does not effect the ultimate formula for the asymptotic variance
since, if |P − R| diverges and π = 1, we still obtain the result that the second term is op(1) (because the
asymptotic variance of this term is zero).
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conclude that limP,R→∞Cov(A1, B1) = π2

2(1+π)Shh.

Moving to the third term, direct multiplication and taking expectations implies limP,R→∞

Cov(A3, B3) = (RT )−1[
∑P−2

j=1 γjdj +
∑P−2

j=1 γjcj +γ0d0] if we redefine cj =
∑P−j

i=2 i. Unsur-

prisingly, since this expansion is nearly identical to that for the first term, nearly identical

arguments imply limP,R→∞Cov(A3, B3) = π2

2(1+π)Shh.

Finally, if we add the three terms together we find that
∑3

j=1 limP,R→∞Cov(Aj , B
′
j) =

π2

2(1+π)Shh + π
1+π (1− π)Shh + π2

2(1+π)Shh = π
1+πShh and the proof is complete.

(b-ii-rolling, P ≥ R) Define
∑T−1

t=R H(t) = R−1
∑R

s=1 shs+
∑P

s=R+1 hs+R
−1
∑R−1

s=1 shT−s =

A1 + A2 + A3 and H(T ) = T−1
∑R

s=1 hs + T−1
∑P

s=R+1 hs + T−1
∑R−1

s=1 hT−s = B1 +

B2 + B3. Given A4, it is straightforward to show limP,R→∞Cov(Ai, B
′
j) = 0 all i 6= j

and hence limP,R→∞Cov(P−1/2
∑T−τ

t=R H(t), P 1/2H(T )′) =
∑3

j=1 limP,R→∞Cov(Aj , B
′
j).

For the second term15 it’s clear that limP,R→∞Cov(A2, B
′
2) = limP,R→∞

(P−R)
T Cov((P −

R)−1/2
∑P

s=R+1 hs, (P −R)−1/2
∑P

s=R+1 h
′
s) = π−1

1+πShh.

Once again, for the first and third terms a bit more detail is needed. For ease

of presentation let hs be a scalar and define γj = Ehshs−j , dj =
∑R−j

i=1 i, and cj =∑R
i=j+1 i. Direct multiplication and taking expectations implies limP,R→∞Cov(A1, B1) =

(RT )−1[
∑R−1

j=1 γjdj+
∑R−1

j=1 γjcj+γ0d0]. A5 and straightforward algebra imply (RT )−1d0 =

R2

RT (R−2
∑R−1

i=1 i)→ 1
2(1+π) . Since γ0+2

∑R−1
j=1 γj → Shh the result will follow ifR−2|

∑R−1
j=1 γj(dj−

d0)| and R−2|
∑R−1

j=1 γj(cj − d0)| are both o(1). We show the former, the proof of the

latter is very similar. To do so note that dj ≥
∫ R−1

1 (x − j)dx and d0 ≤
∫ R

0 xdx. In-

tegrating we obtain |dj − d0| ≤ |R + j(R − 2)| and hence R−2|
∑R−1

j=1 γj(dj − d0)| ≤

R−2
∑R−1

j=1 |γj ||R + j(R − 2)| ≤ R−1
∑R−1

j=1 |γj | + R−1
∑R−1

j=1 |γj ||j|. Since A4 implies∑R−1
j=1 |γj | and

∑R−1
j=1 |γj ||j| are O(1) it is clear that R−2|

∑R−1
j=1 γj(dj − d0)| = o(1) and

we conclude that limP,R→∞Cov(A1, B1) = 1
2(1+π)Shh.

Moving to the third term, we again find that limP,R→∞Cov(A3, B3) = (RT )−1[
∑R−2

j=1 γjdj+∑R−2
j=1 γjcj + γ0d0] if we redefine dj =

∑R−1−j
i=1 i and cj =

∑R−1
i=j+1 i. Unsurprisingly, since

this expansion is nearly identical to that for the first term, nearly identical arguments imply

limP,R→∞Cov(A3, B3) = 1
2(1+π)Shh.

Finally, if we add the three terms together we find that
∑3

j=1 limP,R→∞Cov(Aj , B
′
j) =

1
2(1+π)Shh + π−1

1+πShh + 1
2(1+π)Shh = π

1+πShh and the proof is complete.

15See the previous footnote.
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8 Appendix 2: BVAR Details

This appendix provides additional detail on the procedure for estimating the BVAR used

in the application and on the prior used in estimation.

8.1 Estimation procedure for BVAR

By grouping the coeffi cient matrices in the n× M matrix A
′

= [C A1 ... Al] and defining

xt = (1 y′t−1 ... y
′
t−l)

′ as a vector containing an intercept and l lags of yt, the VAR can be

written as:

yt = Λ′xt + εt. (7)

An even more compact notation is:

Y = XΛ + E, (8)

where Y = [y1, .., yT ]′, X = [x1, .., xT ]′, and E = [ε1, .., εT ]′ are, respectively, T × n, T ×

M and T × n matrices.

We use the conjugate Normal-inverted Wishart prior:

Λ|Σ ∼ N(Λ0,Σ⊗ Ω0), Σ ∼ IW (S0, v0). (9)

As the N-IW prior is conjugate, the conditional posterior distribution of this model is also

N-IW (Zellner 1971):

Λ|Σ, Y ∼ N(Λ̄,Σ⊗ Ω̄), Σ|Y ∼ IW (S̄, v̄). (10)

Defining Λ̂ and Ê as the OLS estimates, we have that Λ̄ = (Ω−1
0 +X ′X)−1(Ω−1

0 Λ0 +X ′Y ),

Ω̄ = (Ω−1
0 + X ′X)−1, v̄ = v0 + T , and S̄ = Λ0 + Ê′Ê + Λ̂′X ′XΛ̂ + Λ′0Ω−1

0 Λ0 − Λ̄′Ω̄−1Λ̄.

Sources such as Kadiyala and Karlsson (1997) and Banbura, Giannone, and Reichlin (2010)

provide additional detail on the N-IW prior and posterior.

8.2 Prior for the BVAR

The “sum of coeffi cients”prior expresses a belief that when the average of lagged values of

a variable is at some level ȳ0i, that same value ȳ0i is likely to be a good forecast of future

observations, and it is implemented by augmenting the system in (8) with the dummy

observations Yd1 and Xd1 with generic elements:

yd(i, j) =

{
ȳ0i/λ3 if i = j
0 otherwise

; xd(i, s) =

{
ȳ0i/λ3 if i = j, s < M
0 otherwise,

(11)
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where i and j go from 1 to n while s goes from 1 to M. When λ3 → 0 the model tends to

a form that can be expressed entirely in terms of differenced data, in which case there are

as many unit roots as variables and there is no cointegration.

The “dummy initial observation”prior introduces a single dummy observation such that

all values of all variables are set equal to the corresponding averages of initial conditions

up to a scaling factor (1/λ4). It is implemented by adding to the system in (8) the dummy

variables Yd2 and Xd2 with generic elements:

yd(j) = ȳ0j/λ4; xd(s) =

{
ȳ0j/λ4 for s < M
1/λ4 for s = M,

(12)

where j goes from 1 to n while s goes from 1 to M. As λ4 → 0 the model tends to a form

in which either all variables are stationary with means equal to the sample averages of the

initial conditions, or there are unit root components without drift terms, which is consistent

with cointegration.
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Table 1. Monte Carlo DGP coeffi cients
explanatory y1,t y2,t y3,t
variable equation equation equation

DGP 1 (size)
y1,t−1 0.50 0.00
y2,t−1 0.10 0.80
intercept 0.00 0.00

DGP 2 (size)
y1,t−1 0.234 0.029 0.059
y1,t−2 0.164 -0.039 0.031
y2,t−1 -0.134 0.575 0.038
y2,t−2 -0.150 0.138 0.019
y3,t−1 -0.057 0.200 1.006
y3,t−2 -0.165 -0.184 -0.087
intercept 2.425 0.054 -0.110

DGP 3 (power)
y1,t−1, pre-break 0.50 0.00
y1,t−1, post-break 0.50 0.25
y2,t−1, pre-break 0.10 0.80
y2,t−1, post-break 0.10 0.40
intercept, pre-break 0.00 0.00
intercept, post-break 0.50 0.40

Notes :
1. The table provides the coeffi cients of Monte Carlo DGPs 1-3. Other details of DGPs 1G and 4 are given in section 4.1.
2. The variance-covariance matrix of innovations and other aspects of the Monte Carlo design are described in section 4.1.
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Table 2: Monte Carlo Results on Size, Minimum-MSE Conditioning, DGP 1
(nominal size = 10%)

1-step horizon
source of R=50 R=50 R=100 R=100

test critical values P=100 P=150 P=50 P=100
bias, uncond. Normal 0.115 0.132 0.118 0.123
bias, condit. Normal 0.119 0.121 0.119 0.116
M-Z effi ciency, uncond. Normal 0.142 0.117 0.141 0.113
M-Z effi ciency, condit. Normal 0.170 0.132 0.146 0.114
F-W effi ciency, condit. Normal 0.147 0.102 0.126 0.101
equal MSE Normal 0.008 0.005 0.057 0.026
bias, uncond. bootstrap 0.118 0.122 0.128 0.114
bias, condit. bootstrap 0.116 0.114 0.129 0.105
M-Z effi ciency, uncond. bootstrap 0.128 0.103 0.130 0.104
M-Z effi ciency, condit. bootstrap 0.121 0.095 0.132 0.103
F-W effi ciency, condit. bootstrap 0.129 0.104 0.127 0.100
equal MSE bootstrap 0.107 0.100 0.135 0.098

2-step horizon
bias, uncond. Normal 0.116 0.126 0.130 0.121
bias, condit. Normal 0.118 0.117 0.131 0.117
M-Z effi ciency, uncond. Normal 0.257 0.227 0.264 0.182
M-Z effi ciency, condit. Normal 0.205 0.174 0.196 0.148
F-W effi ciency, condit. Normal 0.240 0.188 0.235 0.162
equal MSE Normal 0.022 0.006 0.086 0.043
bias, uncond. bootstrap 0.119 0.114 0.120 0.114
bias, condit. bootstrap 0.118 0.115 0.132 0.110
M-Z effi ciency, uncond. bootstrap 0.085 0.061 0.116 0.075
M-Z effi ciency, condit. bootstrap 0.114 0.089 0.117 0.090
F-W effi ciency, condit. bootstrap 0.085 0.064 0.110 0.074
equal MSE bootstrap 0.074 0.046 0.115 0.079

Notes :
1. The data generating process is a bivariate VAR(1), with coeffi cients given in Table 1 and error variance matrix given in
section 4.1.
2. For each artificial data set, forecasts of y1,t+1 and y1,t+2 are formed recursively using OLS estimates of a bivariate
VAR(1). We consider both unconditional forecasts and conditional forecasts obtained under the minimum-MSE approach.
The conditional forecasts of y1,t+1 and y1,t+2 are based on a condition of ŷ

c
2,t,τ = y2,t+τ , τ = 1, 2. These forecasts are then

used to form bias, effi ciency, and accuracy tests, detailed in sections 3 and 4.2.
3. R and P̃ refer to the number of in—sample observations and forecasts, respectively.
4. In each Monte Carlo replication, the simulated test statistics are compared against Gaussian critical values and critical
values obtained with the bootstrap of the VARs described in section 3.5.
5. The number of Monte Carlo simulations is 2000; the number of bootstrap draws is 499.
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Table 3: Monte Carlo Results on Size, Minimum-MSE Conditioning, DGP 2
(nominal size = 10%)

1-step horizon, variable 1 1-step horizon, variable 2
source of R=50 R=50 R=100 R=100 R=50 R=50 R=100 R=100

test critical values P=100 P=150 P=50 P=100 P=100 P=150 P=50 P=100
bias, uncond. Normal 0.145 0.129 0.130 0.132 0.139 0.133 0.136 0.134
bias, condit. Normal 0.132 0.132 0.122 0.124 0.150 0.143 0.144 0.134
M-Z effi ciency, uncond. Normal 0.414 0.427 0.215 0.248 0.251 0.256 0.199 0.189
M-Z effi ciency, condit. Normal 0.482 0.499 0.232 0.284 0.320 0.344 0.228 0.230
F-W effi ciency, condit. Normal 0.403 0.407 0.234 0.240 0.234 0.251 0.196 0.193
equal MSE Normal 0.035 0.018 0.066 0.038 0.143 0.155 0.111 0.103
bias, uncond. bootstrap 0.120 0.104 0.127 0.101 0.109 0.091 0.123 0.103
bias, condit. bootstrap 0.119 0.118 0.124 0.107 0.111 0.096 0.133 0.101
M-Z effi ciency, uncond. bootstrap 0.096 0.086 0.107 0.099 0.097 0.102 0.104 0.108
M-Z effi ciency, condit. bootstrap 0.085 0.066 0.100 0.089 0.094 0.105 0.100 0.103
F-W effi ciency, condit. bootstrap 0.087 0.080 0.099 0.096 0.097 0.102 0.093 0.110
equal MSE bootstrap 0.079 0.048 0.110 0.090 0.054 0.043 0.086 0.069

2-step horizon, variable 1 2-step horizon, variable 2
bias, uncond. Normal 0.141 0.131 0.143 0.125 0.142 0.133 0.150 0.135
bias, condit. Normal 0.124 0.127 0.141 0.131 0.142 0.133 0.154 0.128
M-Z effi ciency, uncond. Normal 0.312 0.292 0.211 0.206 0.315 0.310 0.294 0.242
M-Z effi ciency, condit. Normal 0.399 0.393 0.245 0.251 0.394 0.388 0.310 0.290
F-W effi ciency, condit. Normal 0.305 0.288 0.251 0.214 0.290 0.289 0.296 0.241
equal MSE Normal 0.060 0.037 0.093 0.059 0.073 0.066 0.093 0.079
bias, uncond. bootstrap 0.116 0.107 0.126 0.104 0.107 0.091 0.123 0.105
bias, condit. bootstrap 0.115 0.116 0.122 0.113 0.108 0.097 0.126 0.098
M-Z effi ciency, uncond. bootstrap 0.090 0.089 0.104 0.097 0.088 0.098 0.102 0.100
M-Z effi ciency, condit. bootstrap 0.081 0.077 0.102 0.091 0.091 0.092 0.101 0.102
F-W effi ciency, condit. bootstrap 0.082 0.084 0.103 0.090 0.087 0.097 0.102 0.110
equal MSE bootstrap 0.070 0.043 0.099 0.084 0.058 0.048 0.100 0.075

4-step horizon, variable 1 4-step horizon, variable 2
bias, uncond. Normal 0.138 0.129 0.169 0.142 0.141 0.126 0.171 0.136
bias, condit. Normal 0.132 0.131 0.168 0.144 0.147 0.118 0.177 0.136
M-Z effi ciency, uncond. Normal 0.313 0.274 0.285 0.217 0.561 0.554 0.462 0.418
M-Z effi ciency, condit. Normal 0.358 0.345 0.285 0.254 0.499 0.493 0.392 0.361
F-W effi ciency, condit. Normal 0.311 0.264 0.300 0.225 0.530 0.524 0.464 0.415
equal MSE Normal 0.097 0.088 0.154 0.105 0.056 0.042 0.116 0.062
bias, uncond. bootstrap 0.104 0.110 0.120 0.114 0.106 0.093 0.112 0.100
bias, condit. bootstrap 0.103 0.107 0.120 0.111 0.110 0.090 0.117 0.102
M-Z effi ciency, uncond. bootstrap 0.066 0.059 0.099 0.064 0.061 0.061 0.092 0.069
M-Z effi ciency, condit. bootstrap 0.077 0.080 0.105 0.086 0.072 0.081 0.094 0.082
F-W effi ciency, condit. bootstrap 0.057 0.061 0.100 0.062 0.065 0.062 0.081 0.084
equal MSE bootstrap 0.048 0.032 0.095 0.073 0.044 0.036 0.090 0.068

Notes :
1. The data generating process is a trivariate VAR(2), with coeffi cients given in Table 1 and error variance matrix given in
section 4.1.
2. For each artificial data set, forecasts of y1,t+τ and y2,t+τ are formed recursively using OLS estimates of a trivariate
VAR(2) and an iterative approach to computing multi-step forecasts. The conditional forecasts of y1,t+τ and y2,t+τ (for τ
= 1, 2, and 4) are based on a condition of ŷc3,t,τ = y3,t+τ , τ = 1, . . . , 4.
3. See the notes to Table 2.
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Table 4: Monte Carlo Results on Size, Minimum-MSE Conditioning,
DGP 1, rolling estimation

(nominal size = 10%)

1-step horizon
source of R=50 R=50 R=100 R=100

test critical values P=100 P=150 P=50 P=100
bias, uncond. Normal 0.018 0.009 0.099 0.057
bias, condit. Normal 0.022 0.013 0.100 0.065
M-Z effi ciency, uncond. Normal 0.192 0.233 0.142 0.087
M-Z effi ciency, condit. Normal 0.212 0.269 0.142 0.088
F-W effi ciency, condit. Normal 0.160 0.148 0.122 0.073
equal MSE Normal 0.026 0.013 0.059 0.037
bias, uncond. bootstrap 0.116 0.097 0.123 0.114
bias, condit. bootstrap 0.117 0.095 0.138 0.110
M-Z effi ciency, uncond. bootstrap 0.132 0.098 0.141 0.112
M-Z effi ciency, condit. bootstrap 0.122 0.076 0.143 0.106
F-W effi ciency, condit. bootstrap 0.128 0.076 0.132 0.103
equal MSE bootstrap 0.104 0.091 0.134 0.103

2-step horizon
bias, uncond. Normal 0.013 0.004 0.112 0.058
bias, condit. Normal 0.018 0.009 0.115 0.064
M-Z effi ciency, uncond. Normal 0.567 0.711 0.276 0.236
M-Z effi ciency, condit. Normal 0.324 0.417 0.200 0.136
F-W effi ciency, condit. Normal 0.435 0.508 0.245 0.195
equal MSE Normal 0.040 0.017 0.090 0.050
bias, uncond. bootstrap 0.118 0.101 0.126 0.117
bias, condit. bootstrap 0.116 0.088 0.132 0.112
M-Z effi ciency, uncond. bootstrap 0.079 0.046 0.115 0.066
M-Z effi ciency, condit. bootstrap 0.099 0.059 0.126 0.095
F-W effi ciency, condit. bootstrap 0.079 0.038 0.099 0.077
equal MSE bootstrap 0.088 0.061 0.113 0.088

Notes :
1. In these experiments, forecasts of y1,t+1 and y1,t+2 are formed recursively using OLS estimates of a bivariate VAR(1).
2. See the notes to Table 2.
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Table 5: Monte Carlo Results on Size, Minimum-MSE Conditioning, DGP 1G
(nominal size = 10%)

1-step horizon
source of R=50 R=50 R=100 R=100

test critical values P=100 P=150 P=50 P=100
bias, uncond. Normal 0.118 0.120 0.114 0.114
bias, condit. Normal 0.117 0.112 0.118 0.113
M-Z effi ciency, uncond. Normal 0.147 0.141 0.140 0.117
M-Z effi ciency, condit. Normal 0.192 0.173 0.155 0.147
F-W effi ciency, condit. Normal 0.134 0.130 0.134 0.122
equal MSE Normal 0.024 0.013 0.082 0.045
bias, uncond. bootstrap 0.109 0.124 0.129 0.108
bias, condit. bootstrap 0.120 0.114 0.127 0.101
M-Z effi ciency, uncond. bootstrap 0.110 0.114 0.135 0.103
M-Z effi ciency, condit. bootstrap 0.117 0.102 0.120 0.097
F-W effi ciency, condit. bootstrap 0.114 0.102 0.128 0.108
equal MSE bootstrap 0.114 0.099 0.122 0.114

2-step horizon
bias, uncond. Normal 0.118 0.111 0.126 0.116
bias, condit. Normal 0.113 0.105 0.130 0.110
M-Z effi ciency, uncond. Normal 0.267 0.246 0.237 0.205
M-Z effi ciency, condit. Normal 0.227 0.199 0.218 0.180
F-W effi ciency, condit. Normal 0.224 0.223 0.217 0.183
equal MSE Normal 0.028 0.021 0.095 0.061
bias, uncond. bootstrap 0.110 0.123 0.130 0.108
bias, condit. bootstrap 0.115 0.115 0.124 0.107
M-Z effi ciency, uncond. bootstrap 0.064 0.062 0.107 0.073
M-Z effi ciency, condit. bootstrap 0.107 0.092 0.123 0.095
F-W effi ciency, condit. bootstrap 0.074 0.068 0.106 0.076
equal MSE bootstrap 0.079 0.057 0.106 0.083

Notes :
1. The data generating process is a bivariate VAR(1) with GARCH, with coeffi cients given in Table 1 and and section 4.1.
2. See the notes to Table 2.
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Table 6: Monte Carlo Results on Power, Minimum-MSE Conditioning, DGP 3
(nominal size = 10%)

1-step horizon
source of R=50 R=50 R=100 R=100

test critical values P=100 P=150 P=50 P=100
bias, uncond. bootstrap 0.628 0.642 0.740 0.850
bias, condit. bootstrap 0.444 0.481 0.587 0.694
M-Z effi ciency, uncond. bootstrap 0.244 0.315 0.113 0.158
M-Z effi ciency, condit. bootstrap 0.134 0.126 0.120 0.100
F-W effi ciency, condit. bootstrap 0.136 0.159 0.089 0.085
equal MSE bootstrap 0.115 0.104 0.132 0.119

2-step horizon
bias, uncond. bootstrap 0.632 0.657 0.738 0.850
bias, condit. bootstrap 0.510 0.535 0.643 0.748
M-Z effi ciency, uncond. bootstrap 0.230 0.314 0.108 0.173
M-Z effi ciency, condit. bootstrap 0.104 0.113 0.099 0.079
F-W effi ciency, condit. bootstrap 0.115 0.127 0.079 0.071
equal MSE bootstrap 0.104 0.064 0.171 0.149

Notes :
1. The data generating process is a bivariate VAR(1), with coeffi cient breaks, using the coeffi cient values given in Table 1
and the error variance matrix given in section 4.1. In each experiment, the coeffi cient break occurs in period R+1.
2. See the notes to Table 2.
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Table 7: Monte Carlo Results on Power, Minimum-MSE Conditioning, DGP 4
(nominal size = 10%)

1-step horizon
source of R=50 R=50 R=100 R=100

test critical values P=100 P=150 P=50 P=100
bias, uncond. bootstrap 0.141 0.120 0.122 0.106
bias, condit. bootstrap 0.096 0.103 0.097 0.069
M-Z effi ciency, uncond. bootstrap 0.129 0.104 0.128 0.114
M-Z effi ciency, condit. bootstrap 0.199 0.119 0.609 0.466
F-W effi ciency, condit. bootstrap 0.147 0.103 0.169 0.178
equal MSE bootstrap 0.490 0.398 0.945 0.876

2-step horizon
bias, uncond. bootstrap 0.153 0.140 0.128 0.115
bias, condit. bootstrap 0.091 0.103 0.099 0.072
M-Z effi ciency, uncond. bootstrap 0.082 0.067 0.127 0.086
M-Z effi ciency, condit. bootstrap 0.335 0.198 0.757 0.723
F-W effi ciency, condit. bootstrap 0.112 0.081 0.147 0.130
equal MSE bootstrap 0.459 0.418 0.854 0.822

Notes :
1. The data generating process is a bivariate VAR(1), with a break in the error correlation described in section 4.1. In each
experiment, the coeffi cient break occurs in period R+1.
2. See the notes to Table 2.
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Table 8: Monte Carlo Results on Size and Power, Policy Shock Conditioning
(nominal size = 10%)

DGP 1, 2-step horizon
source of R=50 R=50 R=100 R=100

test critical values P=100 P=150 P=50 P=100
bias Normal 0.118 0.126 0.128 0.123
M-Z effi ciency Normal 0.176 0.147 0.207 0.133
F-W effi ciency Normal 0.256 0.229 0.251 0.173
bias bootstrap 0.118 0.116 0.126 0.112
M-Z effi ciency bootstrap 0.074 0.056 0.119 0.075
F-W effi ciency bootstrap 0.083 0.057 0.117 0.066

DGP 3, 2-step horizon
bias bootstrap 0.627 0.652 0.732 0.842
M-Z effi ciency bootstrap 0.179 0.243 0.098 0.141
F-W effi ciency bootstrap 0.189 0.238 0.093 0.130

DGP 4, 2-step horizon
bias bootstrap 0.142 0.123 0.131 0.106
M-Z effi ciency bootstrap 0.085 0.061 0.126 0.115
F-W effi ciency bootstrap 0.088 0.073 0.117 0.088

Notes :
1. In each experiment, the data generating process is a bivariate VAR(1), with coeffi cients given in Table 1 and error variance
matrix given in section 4.1.
2. For each artificial data set, forecasts of y1,t+1 and y1,t+2 are formed recursively using OLS estimates of a bivariate
VAR(1). We consider both unconditional forecasts and conditional forecasts obtained under the policy shock approach. The
conditional forecasts of y1,t+1 and y1,t+2 are based on a condition of ŷ

c
2,t,τ = y2,t+τ , τ = 1, 2. These forecasts are then used

to form bias, effi ciency, and accuracy tests, detailed in sections 3 and 4.2. Since the 1-step ahead forecasts are equivalent to
the unconditional forecast, we only report results for the 2-step ahead horizon.
3. See the notes to Table 2.
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Table 9. Tests of unconditional and conditional (min.-MSE) forecasts
from 22-variable BVAR, 1991-2007

(significant tests bolded; 10% bootstrap critical values in parentheses)

GDP growth τ=1 τ=2 τ=4 τ=8
bias, uncond. -1.279 -1.306 -0.910 -0.298

(-1.450, 0.585) (-1.654, 0.537) (-1.612, 0.761) (-2.242, 1.439)
bias, condit. -0.827 -0.731 -0.641 -0.439

(-1.261, 0.534) (-1.462, 0.737) (-1.609, 0.957) (-2.381, 1.192)
M-Z effi ciency, uncond. -2.774 -3.447 -4.241 -5.144

(-1.463, 1.727) (-2.416, 1.793) (-3.621, 1.216) (-5.107, 1.259)
M-Z effi ciency, condit. -3.714 -3.753 -2.878 -5.736

(-2.059, 1.510) (-2.785, 1.576) (-2.738, 2.354) (-5.690, 2.051)
F-W effi ciency, condit. -3.049 -3.961 -4.933 -5.460

(-1.674, 1.767) (-2.804, 1.862) (-3.615, 1.224) (-4.514, 1.583)
Unemployment rate τ=1 τ=2 τ=4 τ=8
bias, uncond. 0.545 0.634 0.618 0.435

(-1.071, 2.288) (-0.935, 2.130) (-0.960, 1.980) (-0.989, 1.949)
bias, condit. 0.069 0.158 0.307 0.323

(-0.837, 1.780) (-0.797, 1.710) (-0.849, 1.698) (-0.996, 1.767)
M-Z effi ciency, uncond. 0.987 0.635 0.156 -1.642

(-2.282, 1.024) (-2.502, 1.148) (-3.316, 1.055) (-6.429, 0.938)
M-Z effi ciency, condit. 1.638 1.197 0.758 -0.890

(-2.586, 1.064) (-2.643, 1.212) (-3.718, 1.357) (-6.993, 1.262)
F-W effi ciency, condit. 1.561 1.201 0.829 -1.074

(-2.693, 1.030) (-2.970, 1.287) (-4.272, 1.178) (-7.283, 0.840)
Core PCE inflation τ=1 τ=2 τ=4 τ=8
bias, uncond. -2.166 -2.139 -2.326 -2.630

(-2.820, 1.233) (-2.919, 1.192) (-3.198, 1.418) (-3.458, 1.911)
bias, condit. -1.962 -2.065 -1.885 -1.460

(-2.835, 1.417) (-2.847, 1.371) (-2.864, 1.523) (-3.164, 2.146)
M-Z effi ciency, uncond. -4.569 -4.140 -5.423 -8.316

(-3.688, 1.003) (-4.048, 0.616) (-5.006, 0.589) (-7.851, 1.007)
M-Z effi ciency, condit. -4.076 -4.044 -6.294 -18.110

(-3.805, 1.305) (-4.484, 0.707) (-5.362, 0.526) (-8.101, 0.661)
F-W effi ciency, condit. -3.945 -4.156 -5.612 -7.848

(-3.673, 1.093) (-4.374, 0.731) (-5.367, 0.715) (-7.677, 1.057)

Notes :
1. As described in section 5.1, forecasts of real GDP growth, the unemployment rate, and core PCE inflation (all
defined at annualized rates) are obtained from recursive estimates of a 22-variable BVAR. The forecasts included are
unconditional and minimum-MSE conditional. At each forecast origin t, the conditions imposed are that, over an
eight quarter forecast horizon from t+ 1 through t+ 8, the federal funds rate take its actual values over the period.
2. The bias, effi ciency, and MSE accuracy tests detailed in section 4.2 are compared against standard normal critical
values and critical values obtained with the bootstrap described in section 3.5. The number of bootstrap draws is
999.
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Table 10. Accuracy of unconditional and conditional (min.-MSE) forecasts
from 22-variable BVAR, 1991-2007

(significant tests bolded; 10% bootstrap critical values in parentheses)

GDP growth τ=1 τ=2 τ=4 τ=8
unconditional MSE (RMSE) 3.407 (1.846) 3.977 (1.994) 4.485 (2.118) 5.155 (2.270)
conditional MSE (RMSE) 3.546 (1.883) 3.953 (1.988) 3.650 (1.910) 5.869 (2.423)
MSEU −MSEC -0.139 0.024 0.835 -0.714
population estimate of MSEU −MSEC 0.019 0.088 0.322 0.808
MSE t-test -0.672 -0.206 1.085 -1.749
10% bootstrap crit. vals. (-0.846, 1.941) (-0.448, 2.603) ( 0.288, 4.102) (-3.095, 2.728)
Unemployment rate τ=1 τ=2 τ=4 τ=8
unconditional MSE (RMSE) 0.020 (0.142) 0.052 (0.228) 0.197 (0.444) 0.704 (0.839)
conditional MSE (RMSE) 0.018 (0.133) 0.041 (0.203) 0.137 (0.370) 0.455 (0.675)
MSEU −MSEC 0.002 0.011 0.060 0.249
population estimate of MSEU −MSEC 0.007 0.028 0.094 0.204
MSE t-test -2.046 -1.968 -0.796 0.356
10% bootstrap crit. vals. (-2.898, 1.718) (-2.046, 1.681) (-1.315, 1.982) (-1.127, 2.169)
Core PCE inflation τ=1 τ=2 τ=4 τ=8
unconditional MSE (RMSE) 0.316 (0.562) 0.435 (0.660) 0.500 (0.707) 0.930 (0.964)
conditional MSE (RMSE) 0.291 (0.539) 0.373 (0.611) 0.478 (0.691) 1.112 (1.054)
MSEU −MSEC 0.025 0.062 0.022 -0.182
population estimate of MSEU −MSEC 0.001 0.007 0.050 0.403
MSE t-test 1.615 1.310 -0.390 -4.287
10% bootstrap crit. vals. (-1.316, 2.178) (-1.156, 2.183) (-1.363, 2.037) (-3.764, 1.816)

Notes :
1. The table reports forecast MSEs (and RMSEs) for the 1991-2007 sample. It also includes estimates of the population
difference in MSEs (unconditional less conditional) based on the full sample VAR estimates, computed as described
in section 3.4.
2. See the notes to Table 9.
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