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Abstract

A principal privately monitors an agent’s hidden efforts. The agent’s contract
depends on the principal’s unverifiable reports of her private information. How
does the quality of the principal’s private monitoring affect the optimal contract
and agent productivity? When monitoring generates information that is at
once imprecise (weak statistical power) but sensitive to effort (strong incentive
power) the principal is unable to commit not to be too tough on the agent.
Improving a well-functioning monitoring system by adding new information
that is weak in statistical power but strong in incentive power can cause the
optimal dynamic contract to collapse and induce zero effort.
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1 Introduction

In principal-agent relationships with moral hazard, the provision of incentives relies
on information generated by monitoring. Because of this dependence, there is a
common assumption that better monitoring must mean better productivity. In this
paper, I describe a channel through which better monitoring can sometimes lead to
lower agent productivity and, ultimately, a worse outcome for the principal.

My better monitoring/worse outcome result is quite general. The main thing it
relies on is monitoring being private, or at least having a private component: This
means as the agent repeatedly exerts hidden effort, the principal privately observes
information about those efforts. Over time, the principal makes unverifiable reports
of her private information that then affect the agent’s payoff through an optimal
dynamic contract specifying pay and termination all as a function of those reports.

In this setting how can better monitoring lead to a worse outcome? Since moni-
toring is private, the link between information and incentives is filtered through the
principal’s strategic reports. And now what can happen is there are types of in-
formation that, if added to the monitoring system, would allow the principal to be
“too tough” on the agent ex-interim – that is, induce a lot of effort but at great cost
to efficiency. Because being too tough is inefficient, the principal ex-ante wants to
commit not to be too tough in the future. But this is tantamount to committing
to a particular way to make unverifiable reports which is not credible. The lack of
credibility causes the contracting parties to preemptively agree to an optimal contract
that curtails the principal’s ability to punish the agent, hindering incentive provision.
Consequently, effort drops and the principal ends up worse off than before.

What improvements to monitoring are counterproductive? Adding new informa-
tion with weak statistical power but strong incentive power is counterproductive.

I will define statistical and incentive power later. For now, here is an intuitive way
to think about those concepts. Imagine the following toy setting: An agent has two
hidden effort choices e ∈ {0, 1} labelled by their costs to the agent. Effort affects the
distribution of a binary signal – g or b – where qe is the probability of b given e and
q0 > q1. There are no monetary transfers but the principal can inflict a punishment
p on the agent (representing the amount of agent utility that is destroyed) whenever
b is realized. In this setting, one question that could be asked is how much expected
punishment does the principal need to inflict on the agent in order to induce effort?
The answer measures the statistical power of information. The smaller the expected
punishment, the more statistically powerful is the information. Another question one
could ask is how large does the punishment need to be in order to induce effort? The
smaller is the punishment the more incentive power is contained by the information.
An easy computation shows that ordering information based on q0

q1
respects statistical

power while ordering information based on q0 − q1 respects incentive power.
A perfectly informative signal has the strongest possible statistical power and in-

centive power. A completely uninformative signal has the weakest possible statistical
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power and incentive power. Because statistical and incentive power coincide at the
extremes, it is easy to confound the two concepts, mistakenly assuming that a weak
(strong) signal must mean weak (strong) incentives. But it is apparent that many
types of information differ greatly along these two measures of information power and
my paper demonstrates that such information can play a pivotal role in determining
welfare. In particular, I will show that under private monitoring adding new informa-
tion that is sufficiently weak in statistical power but sufficiently strong in incentive
power to a well-functioning monitoring system will cause the optimal dynamic con-
tract to completely collapse into a trivial arrangement that induces zero effort from
the agent at all times.

1.1 Related Literature

Conceptually, optimal contracting papers can be seen as proceeding in two steps. In
the first step, the monitoring technology that will generate contract-relevant infor-
mation is determined. Then, in the second step, the optimal contract written based
on that information is determined. Much of the literature focuses on the second step.

For example, papers have asked how should contracts split cash flow, leading to
a theory of capital structure and security design (e.g. Townsend, 1979); or how do
contracts react to incompleteness, shedding light on the allocation of control rights
(e.g. Aghion and Bolton, 1992); or how should contracts set pay-to-performance
sensitivity, leading naturally to a theory of executive compensation. See, for example,
Sannikov (2008), Edmans et al (2012), or Zhu (2013, 2018a).

In contrast, for the first step, the monitoring technology is usually exogenously
fixed. This approach may be fine in situations where contracts are narrowly defined
only over objectively measurable performance measures like stock price. However, in
many real-life contractual relationships the monitoring technology itself is, at least
partially, a choice variable, and the optimal contracting problem should include a
discussion of monitoring design. Questions regarding the frequency of performance
evaluations, organizational transparency, and the use of monitoring software are all
issues of monitoring design and are relevant to how the principal optimally contracts
with the agent. In this paper I take a step toward developing a theory of monitor-
ing design by highlighting why distinguishing between the statistical and incentive
power of information is important to understanding how the information content of
monitoring is determined.

Two other recent papers – Georgiadis and Szentes (2018) and Li and Yang (2018)
– also explore monitoring design in a principal-agent model, albeit from a different
perspective emphasizing information costs. In those papers, better monitoring al-
ways leads to a weakly better outcome and the information content of monitoring is
determined by balancing the benefits of information against the costs of acquiring it.

Another way to position my better monitoring/worse outcome result, which is
established under private monitoring, is to look at related results in the public mon-
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itoring sphere. In an optimal contracting model with public monitoring, Holmstrom
(1979) shows that adding new information that makes monitoring more informative
of effort generically improves the optimal contract. In a repeated games setting with
public monitoring, Kandori (1992) shows that making monitoring more informative
in the sense of Blackwell (1950) causes the pure-strategy sequential equilibrium payoff
set to expand in the sense of set inclusion. Both of these results are better monitor-
ing/better outcome type results.

My paper explores how giving the principal too much information can be coun-
terproductive. Various related literatures, including those on intrinsic motivation,
mediation, and career concerns have also explored from different angles how giving
the principal and/or the agent(s) too much information can be counterproductive.
See, for example, Cremer (1995), Aghion and Tirole (1997), Burkart, Gromb and
Panunzi (1997), Holmstrom (1999), Benabou and Tirole (2003), and Prat (2005).
See also Hirshleifer (1971). My contribution to this literature is to highlight the role
played by information that is weak in statistical power but strong in incentive power.

My work is also part of the literature looking at optimal contracting under pri-
vate monitoring. See, for example, Levin (2003), MacLeod (2003), and Fuchs (2007).
In those papers better monitoring always leads to a weakly better outcome. The
technical reason why better monitoring/worse outcome does not appear in those pa-
pers is because in those papers incentive-compatibility means sequential equilibrium
whereas in my paper I use a refinement of sequential equilibrium to define incentive-
compatibility. In a companion paper, Zhu (2018b), I argue that in the private moni-
toring setting many sequential equilibria allow for a type of commitment behavior on
the part of the principal that is implausible. I then develop the refinement used in the
current paper that removes those implausible sequential equilibria. The refinement
is similar in spirit to the one in Dewatripont (1987) that selects perfect equilibria in
sequential models of spatial competition.

2 Model and Optimal Contract

This section introduces the model and characterizes the optimal contract holding the
monitoring structure fixed. In subsequent sections I then explore how changes to the
information content of monitoring affects productivity and firm value.

I consider a dynamic contracting model between a principal P (she) and an agent
A (he). The horizon is infinite and dates are of length ∆ > 0, denoted by t =
0,∆, 2∆, . . .. The discount factor is e−r∆ for some r > 0.

At the beginning of each date t, P pays A some amount wt ∈ R. Next, A
chooses effort at ∈ [0, 1). at costs h(at)∆ with h(0) = h′(0) = 0, h′′ > 0, and
limat→1 h(at) =∞. After A exerts effort, P monitors A: First, P observes a private
signal Xt taking finitely many values. at determines the distribution of Xt. I assume
effort has a monotone effect on Xt: Im(Xt) can be divided into disjoint subsets Good
and Bad such that P(Xt = x | at) is strictly increasing (decreasing) in at if and only
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if x ∈ Good (x ∈ Bad). Given Xt, P ’s utility is u(Xt). I assume Eatu(Xt) is a strictly
increasing, weakly concave function of effort and E0u(Xt) > 0.2 Next, P reports a
public message mt selected from a contractually pre-specified finite set of messages
M; then, a public randomizing device is realized; finally, A is randomly terminated
at the beginning of date t + ∆. If A is terminated A and P exercise outside options
worth 0 at date t+ ∆ and P makes a final payment wt+∆ to A.

A contract game (M, w, τ) specifies a finite message space M, a payment plan
w, and a termination clause τ . Let ht denote the public history of messages and
public randomizing devices up to the end of date t. w consists of an ht−∆-measurable
payment wt to the agent for each t. τ is a stopping time where τ = t+∆ is measurable
with respect to ht.

Given (M, w, τ), an assessment (a,m) consists of an effort strategy a for A, a
report strategy m for P , and a system of beliefs. a consists of an effort choice at
for each t depending on ht−∆ and A’s private history HA

t−1 of prior effort choices. m
consists of a message choice mt for each t depending on ht−∆ and P ’s private history
HP
t of observations {Xs}s≤t. The system of beliefs consists of a belief about HP

t−∆ at
each decision node (HA

t−1, ht−∆) of A, and a belief about HA
t at each decision node

(HP
t , ht−∆) of P .
A contract (M, w, τ, a,m) is a contract game plus an assessment. Given a con-

tract, the date t continuation payoffs of A and P at the beginning of date t are

Wt(H
A
t−∆, ht−∆) = EA

t

[ ∑
t≤s<τ

e−r(s−t)(ws − h(as)∆) + e−r(τ−t)wτ

]
,

Vt(H
P
t−∆, ht−∆) = EP

t

[ ∑
t≤s<τ

e−r(s−t)(−ws + u(Xs))− e−r(τ−t)wτ

]
.

2.1 The Optimal Contract

The optimal contracting problem is to find an incentive-compatible contract that
maximizes V0 subject to the agent’s ex-ante participation constraint W0 ≥ 0 and
an interim-participation constraint Wt + Vt ≥ 0 for all t. Intuitively, if the interim
participation constraint were violated then both parties could be made strictly better
off by separating under some severance pay.3

Incentive compatibility typically means that the principal’s report strategy and
the agent’s effort strategy comprise some sort of equilibrium behavior. A detailed
discussion of what is the right equilibrium concept is the subject of a companion paper
Zhu (2018b) and is somewhat tangential to understanding better monitoring/worse

2In the next section when I look at how changes to Xt affect outcomes it will be assumed that
the function Eat

u(Xt) remains unchanged.
3It will be shown that for incentive-compatible contracts Wt and Vt are both public, so violations

of the interim participation constraint are common knowledge.
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outcome. To avoid breaking the flow of the paper, I now go directly to describing
the optimal contract. Since I have not yet defined what it means for a contract to
be incentive compatible, I can only highlight ways in which the optimal contract’s
strategy profile “seems reasonable” given its contract game. The formal definition of
incentive compatibility, taken from Zhu (2018b), is developed in Appendix A.

The optimal contract is a simple efficiency wage contract in the spirit of Shapiro
and Stiglitz (1984) that induces effort through the threat of termination.

Theorem 1. The optimal contract has the following structure:

• M = {pass, fail}.

• mt = fail iff Xt ∈ Bad.

• w consists of a pair of constants wsalary, wseverance.

• If mt = pass then A is retained for date t+ ∆ and paid wsalary.

• If mt = fail then A is terminated at date t+ ∆ with probability p∗.

– If A is not terminated then it is as if P reported pass.

– If A is terminated then he is paid wseverance.

Notice, the optimal contract is a wage contract. At each date t, conditional on
still being employed, the agent is paid the same amount regardless of performance
history. There is a good reason for this. Suppose instead there was an additional
message that leads to A receiving a big bonus which P is supposed to report if she
observes some really positive information about agent performance. The problem
with this altered contract is that its strategy profile would not satisfy any reasonable
notion of incentive-compatibility: Because monitoring is private, P can always claim
she didn’t see the really positive information even if she did and thereby avoid having
to pay A the big bonus. By the same argument, P must be indifferent between
reporting pass and fail at all times,

Vt+∆(pass) = Vt+∆(fail).

Otherwise, P would always want to report the message that led to the higher Vt+∆.
By definition, Vt+∆(fail) = −p∗wseverance + (1 − p∗)Vt+∆(pass). Let S∗ denote the
Pareto-optimal surplus. By self-similarity and the fact that A’s ex-ante participation
constraint binds, Vt+∆(pass) = V0 = S∗. Thus,

wseverance = −S∗.

Negative severance pay is just an artifact of how I normalized outside options.
Next, consider A’s effort incentives. Since the optimal contract is a wage contract,

one might wonder where are the effort incentives coming from? The answer is through
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the threat of termination. In my model, termination destroys surplus – by assumption,
even zero effort generates positive surplus. Since P is completely insured against any
surplus destruction, this means it is A who bears the cost of inefficient termination,

Wt+∆(pass)−Wt+∆(fail) = p∗S∗.

Consequently, A is willing to put in effort to reduce the chances of getting failed and
terminated. The first-order condition that pins down A’s effort level each date is,

h′(a∗)∆ = −dP(Bad)

da
|a=a∗p

∗S∗.

p∗ and S∗ are simultaneously determined by the following system of equations,

p∗ = arg max
p∈[0,1]

Ea∗(pS∗)u(X)− h(a∗(pS∗))∆ + e−r∆(1−P(Bad | a∗(pS∗))p∗)S∗

S∗ = Ea∗(p∗S∗)u(X)− h(a∗(p∗S∗))∆ + e−r∆(1−P(Bad | a∗(pS∗))p∗)S∗.

The solution can be recursively computed by setting S∗0 = Eat=0u(Xt) on the RHS
of the two equations and then computing p∗1 and S∗1 and so on and so forth. S∗i is
strictly increasing in i = 0, 1, 2 . . . and S∗ = S∗∞. Finally, wsalary is determined by A’s
binding ex-ante participation constraint W0 = 0,

wsalary = h(a∗(p∗S∗))∆ + e−r∆P(Bad | a∗(pS∗))p∗S∗.

The tractability of the optimal contract is due in part to P ’s simple report strategy:
P fails A at date t if and only if she sees something bad at date t. To see why P
always reports this way, let us pick an arbitrary date t and examine P ’s date t payoff,

Vt = Eat|mtu(Xt) + e−r∆Vt+∆. (1)

Vt is the sum of two components – her expected date t utility as a function of A’s
date t effort and her discounted date t+∆ continuation payoff. By design, the second
component does not depend on mt. Thus, the only thing mt affects is A’s date t effort.
Looking at the first component, it is clear the higher is at the higher is Vt. Thus,

Remark 1. At date t, P will report in a way that maximizes date t effort incentives.

This key property of P ’s report strategy will be deduced in the appendix as
a consequence of my formal definition of incentive compatibility. What kind of mt

maximizes date t effort incentives? Intuitively, mt should depend only on Xt instead of
the entire history of information {Xs}s≤t generated by monitoring: Older information
is not informative of effort today and conditioning today’s report on older information
will only dilute effort incentives today. Of course, there are still many ways for mt

to depend only on Xt. However, if the goal is to maximize effort incentives, it is
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clear P should reward A whenever something good happens and punish A whenever
something bad happens, which is precisely what P does in the optimal contract.

3 Better Monitoring/Worse Outcome

With the optimal contract characterized, I am now ready to perform the main compar-
ative statics exercise of the paper: How do S∗ (P ’s payoff) and a∗ (A’s productivity)
change as I change the monitoring technology {Xt}t≥0?

Theorem 1 hints at how better monitoring might lead to a worse outcome. Recall,
P fails A today if and only if she observes a Bad signal today. This is a simple
consequence of P always wanting to maximize effort incentives. The question is
is this the efficient thing to do? Put another way, if P were a benevolent social
planner instead of a utility maximizer would she still report in this way or something
close given the contract game? The answer is it depends. If the monitoring system
generates Bad signals that are mostly strong – that is, if the likelihood of occurring
rapidly declines as A increases effort – then intuitively the answer is yes. Where this
strategy becomes inefficient is when the monitoring system generates Bad signals that
are mostly weak. In this case, one would like to see P be a little more discriminating
and fail A only if she sees a strong Bad signal, or at least wait until she has seen
multiple weak Bad signals across many dates before failing A. But P is unable to
be discriminating: Sure, at the time of contracting, P would like to commit to be
discriminating in the future. The problem is, once the contract is written, P can’t
help but change her report strategy to an indiscriminate one that maximizes effort
incentives. Since changing a report strategy amounts to changing a function over
private, unverifiable information, it is not something that can be contracted away.

Now at the time of contracting P and A understand that in the future, if the
monitoring system will generate lots of weak Bad signals, P will likely over-fail A. To
counteract this, the contracting parties then preemptively write an optimal contract
that reduces the pain of failure. That means setting p∗ to be a low value. And in
some cases when the typical Bad signal is really weak, it might even be optimal to
lower p∗ all the way to zero. Of course, once p∗ hits zero failing becomes equivalent
to passing and A will exert zero effort.

To recap, I have argued that Theorem 1 suggests that when monitoring generates
mostly weak Bad signals then one should expect effort to drop (possibly all the way
to zero) and P to be worse off relative to when monitoring generates mostly strong
Bad signals.

Is it possible to take a monitoring system that generates mostly strong Bad signals
and improve it to the point where it generates mostly weak Bad signals? Because if
it is possible, then better monitoring/worse outcome is implied.

In the next section I show that it is generically possible to take a well-functioning
monitoring system and improve it in a way so that Bad signals become diluted,
the optimal contract collapses, and P becomes worse off. Moreover, I show that
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it is the same basic strategy every time: Introduce new information that is weak
in statistical power but, relative to the old information, strong in incentive power.
Before establishing this result in general, let us first work through an explicit example
that demonstrates the basic idea.

3.1 An Example

In this example I will begin with a bad news Poisson monitoring system. “Bad news”
means that the Poisson event is indicative of lower effort rather than higher effort.
I show that the bad news Poisson monitoring system generates a Bad signal that is
strong in some formal sense and consequently the optimal contract induces positive
effort. I then improve the monitoring system by adding a conditionally independent
Brownian signal where the drift of the Brownian motion is controlled by A’s effort.
I explain that Brownian motion has weak statistical power but very strong incentive
power. I then show that in the improved monitoring system that generates both
bad news Poisson information and Brownian information, the typical Bad signal
suddenly becomes extremely weak. Consequently, the optimal contract collapses and
P becomes worse off.

In a bad news Poisson monitoring system, each date the incremental information
Xt is

Xt =

{
no event with probability 1− (1− at)λ∆

event with probability (1− at)λ∆

Here, ∆ is understood to be small and it is evident that the Poisson event itself is the
Bad signal whereas no event is the Good signal. How strong is the bad news Poisson
Bad signal? The formal measure is the negative effort elasticity of P(Bad):

−d log P(Bad)

da
. (2)

This measure corresponds to the intuitive measure of statistical power discussed in
the introduction and so from now on the statistical power of information means the
strength of the Bad signal.4 A simple computation shows that the negative effort-

4In my private monitoring setting, the question analogous to the one posed in the introduction
concerning statistical power is: How little additional expected surplus destruction does there need
to be in order to induce an additional increment of effort? The answer is captured by (i.e. a
monotonic function of) (2). This measure of statistical power is effort-dependent. However, when
compared to the Brownian information that will be introduced shortly, the statistical power of bad
news Poisson information is greater no matter the effort level. Thus, I can talk about bad news
Poisson information being more statistically powerful than Brownian information without reference
to effort level. Similarly, Brownian information has stronger incentive power than bad news Poisson
information irrespective of effort level. In the general analysis, I will continue to restrict attention
to a family of signals that can be ranked by statistical power and incentive power without reference
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elasticity of P(Bad) is

1

1− at
.

What matters about this quantity is that it remains bounded away from zero as ∆
becomes small no matter the effort level. This means that the Bad signal of bad
news Poisson monitoring is a strong one and it is not too inefficient to let P punish
A nontrivially whenever she sees it. Consequently, the optimal contract under bad
news Poisson monitoring can induce positive effort. Later I generalize this result by
showing that for a broad class of monitoring systems if the negative effort elasticity
of P(Bad) is not “too small,” then there exist parameterizations of the rest of the
model such that the optimal contract induces positive effort.

Let us now see what happens when the bad news Poisson monitoring system is
improved by including a conditionally independent Brownian signal Yt where effort
controls the drift:

Yt =

{√
∆ with probability 1

2
+ at

√
∆

2

−
√

∆ with probability 1
2
− at

√
∆

2

Each date the Brownian signal is a single step of an extremely fine random walk.
Whenever the random walk goes up it is a Good signal, whenever it goes down it is
a Bad signal. For Brownian information, the negative effort elasticity of P(Bad) is

√
∆

1− at
√

∆
.

Unlike before, it is clear that this elasticity goes to zero as ∆ goes to zero no matter
the effort level. This means the Brownian Bad signal is a weak Bad signal, and
because it is a weak Bad signal, it is important that P be discriminating when using
Brownian information. This basically means that P needs to commit to be patient
and wait until she has seen many Brownian Bad signals before deciding to fail A based
on Brownian information. But as I explained earlier being patient is not something
that is compatible with maximizing effort incentives at all times.

But if P is unwilling to be patient when using Brownian information, then she
should not be using it at all. In other words, under the improved monitoring system
(Xt, Yt) that generates both bad news Poisson information and Brownian information,
it will be best if P simply ignores Yt.

Will P ignore Yt? Not if Yt has sufficiently strong incentive power. Recall, ulti-
mately what P cares about is maximizing effort incentives and so if a new piece of
information has strong incentive power – at least relative to the information already

to effort level.
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in place – then it doesn’t matter how noisy it is, P will not ignore it.
Is it possible for a piece of information to simultaneously have weak statistical

power and strong incentive power? As we shall see shortly, the answer is yes, and
a canonical example of such information is Brownian information. We already know
that Brownian information has weak statistical power. The formal measure of incen-
tive power, which matches the one in the introduction, is the negative derivative of
P(Bad) with respect to effort:

−dP(Bad)

da
.

While the measure for incentive power looks like the measure for statistical power,
they are not the same, and it is very easy to come up with information such that the
first derivative is very small but the second one is very large.

Now to show that P will not ignore Yt let us compute the incentive power of both
Xt and Yt. The incentive power of Xt is

λ∆.

The incentive power of Yt is

√
∆

2
� λ∆.

Thus, when a bad news Poisson monitoring system is improved by adding a Brownian
component, there is no way P will ignore the Brownian component.5

In fact, an easy application of the product rule shows that, whereas before the
improvement, P would fail A whenever a bad news Poisson event occurred, after the
improvement, P now fails A whenever the bad news Poisson event occurs or whenever
the Brownian random walk goes down. In particular, even if the bad news Poisson
event doesn’t occur but the Brownian random walk goes down A is still failed. This
is noteworthy, because the combination of the bad news Poisson event not occurring
and the Brownian random walk going down is a combination of a Good Poisson
signal and a Bad Brownian signal. A priori, it may not be clear how to interpret
such a combination – one could make the argument that seeing one good signal and
one bad signal should constitute a neutral signal overall. But that is not the case
here: The combination of the Good Poisson signal and the Bad Brownian signal is
unambiguously a Bad signal overall because its likelihood of occurring unambiguously
decreases as effort increases – not by much – but it does decrease. And the main reason
for this decrease is due to the very strong incentive power of Brownian information.

5In general, the new information does not need to have stronger incentive power than the old
information in order for P not to ignore it. As I will show in the general analysis, the new informa-
tion’s incentive power just needs to be above a certain threshold that is increasing in the incentive
power of the old information.
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But now we have a problem: This combined Bad signal is quite common – occur-
ring about half the time no matter what effort A puts in. Consequently, punishing A
whenever this very common, very weak Bad signal occurs is extremely inefficient and
should be avoided at all costs. But as I’ve said before – there is nothing one can do
to avoid this inefficiency. Monitoring is private. When P fails A the whole point is
one cannot tell if it is because P saw the bad news Poisson event occur, in which case
A “deserves” to get punished, or if the only thing P saw was the Brownian random
walk go down. The only way to imperfectly counteract P ’s inevitable over-failing of
A is to make failing painless. That means setting p∗ = 0.

Thus, when bad news Poisson monitoring is improved by adding a Brownian
component, the optimal contract collapses into a trivial arrangement that always
pays A a flat wage wsalary and never terminates A. A best responds by putting in
zero effort, and P despite her better monitoring becomes worse off.

3.2 A More General Analysis

What aspects of Brownian information made introducing it into a Poisson monitoring
system so counterproductive?

One important property of Brownian information that emerged in the analysis is
that the Brownian Bad signal is weak:

1. New information has weak statistical power.

Intuitively, the weak Bad signal of the new information can help cause the improved
monitoring system to generate mostly weak Bad signals which, recall in the intuition
sketched out in the beginning of this section, is a precondition for the optimal contract
to collapse.

Another important property that emerged from the analysis is that Brownian
information has strong incentive power:

2. New information has strong incentive power.

Here, the idea is even if the new information has extremely weak Bad signals, if P
ignores the new information, then introducing it makes no difference. To ensure P
doesn’t ignore the new information, it must have sufficiently strong incentive power.

Finally, recall the Brownian Bad signal is quite common, occurring about half the
time no matter A’s effort:

3. New information has sufficiently common Bad signals.

Intuitively, even if a new Bad signal is very weak and even if P fails A based off of
it, if the signal is extremely rare then the inefficiency remains small and P can afford
to continue to punish A non-trivially, in which case the optimal contract does not
collapse.
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I now show in a formal sense that it is these three and only these three conditions
that matter for better monitoring/worse outcome.

In the general analysis I consider the set of all binary-valued monitoring technolo-
gies in the continuous-time limit satisfying the following regularity conditions: For
all at,

lim
∆→0

Eatu(Xt) = Θ(∆)

lim
∆→0
− d

dat
P(Xt = Bad | at) = Θ(∆α) for some α ≥ 0

lim
∆→0

P(Xt = Bad | at) = Θ(∆γb) for some γb ≥ 0

lim
∆→0

P(Xt = Good | at > 0) = Θ(∆γg) for some γg ≥ 0.

Obviously, α ≥ max{γb, γg}, and γg or γb is equal to zero. αmeasures the incentive
power of information – the lower is α the more effort that can be induced. α − γb
is the exponent associated with the negative effort elasticity of P(Bad). It measures
the strength of a typical Bad signal. The smaller is α − γb, the more statistically
powerful is the information. Information with “large” α−γb but “small” α (i.e. weak
statistical power but strong incentive power) will play a central role in the better
monitoring/worse outcome result.

This class of monitoring technologies includes the familiar cases where effort affects
the drift of a Brownian motion:

Xt =

{√
∆ with probability 1

2
+ at

√
∆

2

−
√

∆ with probability 1
2
− at

√
∆

2

the intensity of a good news Poisson process:

Xt =

{
g with probability atλ∆

b with probability 1− atλ∆

and the intensity of a bad news Poisson process:

Xt =

{
g with probability 1− (1− at)λ∆

b with probability (1− at)λ∆

Definition. Xt is Brownian if (α, γb, γg) = (.5, 0, 0), good news Poisson if (α, γb, γg) =
(1, 0, 1), bad news Poisson if (α, γb, γg) = (1, 1, 0).

Theorem 2. If α − γb = 0 and γb ≤ 1 then the model can be parameterized so that
the optimal contract induces non-zero effort. Otherwise the optimal contract induces
zero effort.

12



Proof. See appendix.

Given that α − γb measures the strength of a typical Bad signal, Theorem 2
formalizes an intuition sketched out at the beginning of this section: When a typical
Bad signal is strong (and not too rare) the optimal contract can induce positive effort;
when a typical Bad signal is weak (or too rare), the optimal contract collapses and
induces zero effort.

Corollary 1. If Xt is Brownian or good news Poisson, the optimal contract induces
zero effort. If Xt is bad news Poisson, there are parameterizations of the model under
which the optimal contract induces nonzero effort.

This corollary matches classic results from the literature on repeated games with
public monitoring. For example, Abreu, Milgrom, and Pearce (1991) shows that in
a continuous-time repeated prisoner’s dilemma game with public monitoring cooper-
ation can be supported as an equilibrium if monitoring is bad news Poisson but not
good news Poisson. Sannikov and Skrzypacz (2007) shows that in a continuous-time
repeated Cournot oligopoly game with public monitoring collusion cannot be sup-
ported if monitoring is Brownian. This common baseline allows me to better high-
light how my work, with its emphasis on the distinction between statistical power
and incentive power, is different from most work in the repeated games literature
which emphasizes only statistical power. In particular, whereas better monitoring
can lead to a worse outcome in my setting, in most repeated games models improve-
ments to the information content of monitoring always weakly improve the scope for
cooperation.

Armed with Theorem 2 I can now investigate how improvements to the moni-
toring system affect optimality. I begin with a binary valued monitoring technology
X1t ∈ {b1, g1} with associated exponents (α1, γ

b
1, γ

g
1). I then improve it by adding a

conditionally independent binary valued monitoring technology X2t ∈ {b2, g2} with
associated exponents (α2, γ

b
2, γ

g
2). I show that it is generically the case that effort

has a monotone effect on the vector valued information (X1t, X2t) generated by the
improved monitoring system. Thus, (X1t, X2t) also has some associated exponents
(α, γb, γg). I derive the formulas for α, γb, and γg as a function of (α1, γ

b
1, γ

g
1) and

(α2, γ
b
2, γ

g
2). Then, by inverting the formulas and using Theorem 2, I can show, given

(α1, γ
b
1, γ

g
1), what kinds of improvements (α2, γ

b
2, γ

g
2) cause the optimal contract to

collapse.
The vector valued (X1t, X2t) can take one of four values: (g1, g2), (g1, b2), (b1, g2)

and (b1, b2). Holding ∆ fixed, P((X1t, X2t) = (g1, g2) | at,∆) is strictly increasing
in at and P((X1t, X2t) = (b1, b2) | at,∆) is strictly decreasing in at. The probability
that (X1t, X2t) = (g1, b2) is P(X1t = g1 | at,∆) ·P(X2t = b2 | at,∆). By the product
rule, as ∆ → 0, the derivative of P((X1t, X2t) = (g1, b2) | at,∆) with respect to at
is A(∆) − B(∆) where A(∆) = Θ(∆α1+γb2) and B(∆) = Θ(∆γg1 +α2). A sufficient
condition for P((X1t, X2t) = (g1, b2) | at,∆) to be a monotonic function of at in

13



the continuous-time limit is α1 + γb2 6= γg1 + α2. Similarly, a sufficient condition for
P((X1t, X2t) = (b1, g2) | at,∆) to be a monotonic function of at in the continuous-time
limit is α1 + γg2 6= γb1 + α2. Thus,

Lemma 1. If α1 − α2 6= γg1 − γb2 or γb1 − γg2 then effort has a monotone effect on
(X1t, X2t) as ∆→ 0.

Proposition 1. Given X1t and X2t with associated exponents (α1, γ
b
1, γ

g
1) and (α2, γ

b
2, γ

g
2),

if α1 ≥ α2 then the associated exponents of the vector-valued (X1t, X2t) are

(α = α2, γ
b = min{γb1, γb2}, γg = γg2) if γg1 − γb2 < α1 − α2 < γb1 − γ

g
2

(α = α2, γ
b = γb2, γ

g = min{γg1 , γ
g
2}) if γb1 − γ

g
2 < α1 − α2 < γg1 − γb2

(α = α2, γ
b = γb2, γ

g = γg2) if γg1 − γb2, γb1 − γ
g
2 < α1 − α2

Proposition 1 only considers the case where α1 ≥ α2. The other case, α2 ≥ α1, is
implied by symmetry.

Proof. See appendix.

Proposition 1 yields an explicit characterization of counterproductive improve-
ments to the monitoring system.

Corollary 2. Suppose α1 − γb1 = 0. If α2 − γb2 > 0, α2 < α1 + γb2, and γb2 < γb1, then
α− γb > 0. If any of the three inequalities is reversed then α− γb = 0.

Corollary 2 formalizes how introducing new information that is weak in statistical
power but strong in incentive power is counterproductive. It implies the earlier ex-
ample showing that improving bad news Poisson monitoring by adding a Brownian
component causes the optimal contract to induce zero effort.

Given a monitoring system X1t under which the optimal contract induces positive
effort, Corollary 2 lists three inequalities that, if satisfied by the new information X2t

being added, leads to the worst outcome in which the optimal contract induces zero
effort. These three inequalities correspond to the three intuitive conditions for better
monitoring/worse outcome listed in the beginning of this subsection. Given Theorem
2 the first inequality says that the new information has a weak Bad signal, which
is condition 1 from before. The second inequality, which is an upper bound on α2,
says that the new information has sufficiently strong incentive power relative to the
original information which is condition 2 from before. Finally, the third inequality,
which is an upper bound on γb, says that the Bad signal of the new information is
sufficiently common which is condition 3 from before.

It is worth emphasizing that for the second inequality the upper bound on α2

is α1 + γb2, not α1: For better monitoring/worse outcome to appear, the new infor-
mation has to have sufficiently strong incentive power but it does not necessarily
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have to have stronger incentive power than the information generated by the original
monitoring system. The reason I mention this is because Proposition 1 implies that
α = min{α1, α2} which gives the incorrect impression that the principal just picks
the Xit with the strongest incentive power and reports solely based off of that. If that
were the case then improving monitoring by adding an X2t with strictly weaker incen-
tive power (α2 > α1) could never cause the optimal contract to collapse, contradicting
Corollary 2.

4 Dynamic Monitoring Design

I now use my better monitoring/worse outcome result to shed some light on optimal
monitoring design.

The better monitoring/worse outcome result suggests that there is value to lim-
iting the information observed by P . Theorem 2 shows that in the continuous-time
limit the optimal contract induces zero effort under a wide range of monitoring tech-
nologies such as Brownian monitoring. Given this negative result, how might positive
effort be restored by limiting information? The repeated games literature has empha-
sized the idea of infrequent monitoring so that, say, every 10 units of time, P observes
the information generated from the past 10 units of time all at once.

Does infrequent monitoring help in my setting? Even though my model, as it is
currently defined, does not allow the contract to control when the principal sees Xt,
my analysis has already indirectly provided an answer to this question.

Releasing information in batches as suggested by infrequent monitoring is equiva-
lent to releasing information as it is generated but restricting the players to respond
to new information only every once in a while. Unlike the repeated games litera-
ture where the game is taken for granted, P and A in my model are doing optimal
contracting and can choose the structure of the contract game. In particular, they
can choose to use a contract game that only allows P to react to new information
every once in a while: For example, the contract game could be structured so that
pay and termination do not depend on any report made between t1 and t2 − ∆. In
this case, the contract game does not allow P to react to new information between t1
and t2−∆ and it is equivalent to batching the information generated between t1 and
t2 and releasing it all at once at date t2. Since Theorem 2 is a result about optimal
contracting, contract games that allow P to react to new information only every once
in a while are already folded into the analysis. Thus, my optimality result indirectly
implies that infrequent monitoring cannot make P better off.

In fact, choosing a contract game that allows P to react to new information only
every once in a while is not only not helpful, it is usually hurtful. Suppose the contract
game does not allow P to react to new information between t1 and t2 −∆. On date
t2 when P finally has the opportunity to affect A’s continuation payoff through her
reports, all of A’s efforts before date t2 have been sunk. Thus, P ’s desire to maximize
date t2 effort incentives will lead her to report in a way so that A’s date t2 + ∆
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continuation payoff depends only on Xt2 . Anticipating this, A exerts zero effort from
t1 to t2 − ∆. More generally, on any date t where P ’s date t report has no payoff
impact, A’s date t effort is zero.

This discussion of infrequent monitoring as well as the better monitoring/worse
outcome result shows how the relationship between the information content of mon-
itoring and firm value is fundamentally different in my model compared to most
repeated games models. In most of the repeated games literature, the only thing that
matters is the statistical power of information. Consequently, the following two im-
portant comparative statics results concerning the information content of monitoring
emerge:

• Holding the frequency of monitoring fixed, increasing information content never
hurts.

• Holding the information content of monitoring fixed, decreasing frequency often
helps.

In contrast, in my setting, it is the interplay between statistical power and incentive
power that matters, and the above two comparative statics get almost completely
reversed:

• Holding the frequency of monitoring fixed, increasing information content often
hurts.

• Holding the information content of monitoring fixed, decreasing frequency never
helps.

Despite the ineffectiveness of the type of infrequent monitoring typically consid-
ered in the repeated games literature, there is another, arguably more natural, way
to infrequently monitor that can help improve outcomes in my model: In many situa-
tions, the relevant stochastic information process tracks some notion of “cumulative”
productivity and monitoring is sampling that process. Under this definition of moni-
toring, when P infrequently monitors/samples, not only is the release of information
being delayed as in the repeated games literature, but also the quantity of information
generated declines unlike in the repeated games literature. To distinguish this type
of infrequent monitoring/sampling from the type that is typically referred to in the
repeated games literature, I will refer to this type of infrequent monitoring/sampling
simply as infrequent sampling.

To explore the costs and benefits of infrequent sampling, I now consider a canonical
setting where the stochastic information process is Brownian motion with the drift
being controlled by effort. In this new model, the timing of events at each date t is
the same as in my original model except P may or may not monitor A. If P does
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monitor A, the private informative signal she observes is no longer Xt where

Xt =

{√
∆ with probability 1

2
+ at

√
∆

2

−
√

∆ with probability 1
2
− at

√
∆

2

but, rather, Yt =
∑

s≤tXs.
In this new model, a contract game, in addition to specifying M, w, and τ ,

also specifies a monitoring design e, consisting of a predictable sequence of random
monitoring times e1 < e2 < . . .. Predictable means that ei+1 is measurable with
respect to hei . An assessment is defined similarly to before except P ’s decision nodes
only occur on monitoring dates. Nevertheless, for each date t, Wt and Vt can be
defined similar to before. Throughout the analysis I will assume an infinitesimal ∆.

Notice, in this new model, if one restricts attention to contracts that have P
monitor every date, then the optimal contracting problem becomes identical to the
original one and Theorem 2 implies that A exerts zero effort. However, it turns out,
monitoring every date is in general sub-optimal:

Theorem 3. There exist ∆∗ > 0, ρ∗, and p∗ such that the optimal contract has the
following structure:

• P monitors A every ∆∗ units of time: e = {∆∗, 2∆∗, 3∆∗ . . .}

• M = {pass, fail}.

• For each k ∈ Z+, mk∆∗ = fail iff Yk∆∗ − Y(k−1)∆∗ ≤ ρ∗.

• w consists of a pair of constants wsalary, wseverance.

• For each k ∈ Z+, if mk∆∗ = pass then A is retained for the monitoring period
(k∆∗, (k + 1)∆∗] and is paid a stream wsalarydt.

• For each k ∈ Z+, if mk∆∗ = fail then A is terminated with probability p∗.

– If A is not terminated then it is as if P reported pass.

– If A is terminated then he is paid a lump sum wseverance.

Notice this optimal contract is virtually identical to the original optimal contract
– the main difference being that in the original model the length of a monitoring
period was exogenously fixed to be ∆ whereas in the new model it is endogenously
determined.

The magnitude ∆∗ of this endogenously determined monitoring period length is
pinned down by an intuitive tradeoff: The set of signal realizations Yk∆∗ −Y(k−1)∆∗ ≤
ρ∗ is similar in spirit to the Bad set of signal realizations for Xt in the original model.
As ∆∗ shrinks, this set of “Bad” signals becomes increasingly weak and consequently,
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insisting on failing A whenever these “Bad” signals occur becomes increasingly ineffi-
cient. As we now understand, this type of over-failing of A is counterproductive and
will cause the optimal contract to collapse. On the other hand, as ∆∗ becomes large,
statistical power goes up but now discounting begins eroding the incentive power
of information: In the beginning of a monitoring period, the threat of termination
in the distant future when the monitoring period concludes has little effect on the
continuation payoff of A today. The optimal ∆∗ balances these two opposing forces:
The desire for greater statistical power on the one hand versus the desire for greater
incentive power on the other.

5 Conclusion

This paper studied how changes to the information content of private monitoring in
a moral hazard setting impacts productivity and surplus. I showed that improving
the information content of monitoring by introducing new information that is weak
in statistical power but strong in incentive power can backfire, leading to a decline
in productivity and surplus. In some cases, improvements to monitoring can cause
the optimal contract to collapse into a trivial contract that induces zero effort. De-
laying the monitor’s ability to react to the information generated by monitoring only
makes things worse. On the other hand, in settings where monitoring is sampling
the current value of a fixed stochastic process tracking cumulative productivity, in-
frequent sampling can be beneficial. Optimal sampling is periodic with the period
length determined by an intuitive tradeoff between more statistical power versus more
incentive power.

6 Appendix

Proof of Theorem 2. Let a∗t (∆) denote the effort induced by the optimal contract
at date t. Suppose lim∆→0 a

∗
t (∆) > 0. Since A is exerting an interior effort, the

first-order condition equating marginal cost, h′(a∗t (∆))∆ to marginal benefit,(
− d

da
P(Xt ∈ Bad | a∗t (∆),∆)

)
· p∗(∆) · e−r∆S∗(∆),

must hold. Since marginal cost = Θ(∆), therefore marginal benefit = Θ(∆). Since
e−r∆S∗(∆) = Θ(∆0) and, by assumption, − d

da
P(Xt ∈ Bad | a∗t (∆),∆) = Θ(∆α),

therefore p∗(∆) = Θ(∆1−α).
The contribution to surplus of a∗t (∆) relative to zero effort is = Θ(∆). The cost to

surplus of p∗(∆) relative to zero probability of termination is P(Xt ∈ Bad | a∗t (∆),∆)·
p∗(∆) = Θ(∆γb+(1−α)). For the contributions to exceed the costs it must be that
γb + 1− α ≥ 1⇒ α− γb = 0. Feasibility of p∗(∆) = Θ(∆1−α) implies α ≤ 1.
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Proof of Proposition 1. Case 1a: γg1 − γb2 < α1 − α2 = 0 < γb1 − γ
g
2 .

It is easy to show γg1 = γg2 = 0. By the product rule, as ∆ → 0, the deriva-
tive of P(Xt = (g1, b2) | at,∆) with respect to at is A(∆) − B(∆) where A(∆) =
Θ(∆α1+γb2) and B(∆) = Θ(∆γg1 +α2). Since α1 + γb2 > γg1 + α2, B(∆) � A(∆)
and therefore (g1, b2) ∈ Bad. By the product rule, as ∆ → 0, the derivative of
P(Xt = (b1, g2) | at,∆) with respect to at is −A(∆)+B(∆) where A(∆) = Θ(∆α1+γg2 )
and B(∆) = Θ(∆γb1+α2). Since α1 + γg2 < γb1 + α2, A(∆) � B(∆) and therefore
(b1, g2) ∈ Bad.

Given the results above, γb = min{γb1 + γb2, γ
g
1 + γb2, γ

b
1 + γg2} = min{γb1, γb2}.

γg = γg1 + γg1 = 0. α = min{α1 + γg2 , γ
g
1 + α2} = α1 = α2.

Case 1b: γg1 − γb2 ≤ 0 < α1 − α2 < γb1 − γ
g
2 .

γg1 = 0, γb1 > 0. (g1, b2) ∈ Bad, (b1, g2) ∈ Bad. γb = min{γb1+γb2, γ
g
1 +γb2, γ

b
1+γg2} =

min{γb1 + γg2 , γ
b
2} = min{γb1, γb2}. γg = γg2 . α = min{α1 + γg2 , γ

g
1 + α2} = α2.

Case 2: γb1 − γ
g
2 ≤ 0 < α1 − α2 < γg1 − γb2.

γb1 = 0, γg1 > 0. (g1, b2) ∈ Good, (b1, g2) ∈ Good. γb = γb2. γg = min{γg1 + γg2 , γ
g
1 +

γb2, γ
b
1 + γg2} = min{γg1 + γb2, γ

g
2} = min{γg1 , γ

g
2}. α = min{α1 + γb2, γ

b
1 + α2} = α2.

Case 3a: γg1 − γb2 ≤ 0 ≤ γb1 − γ
g
2 < α1 − α2.

γg1 = 0 or γg2 = γb1 = 0. (g1, b2) ∈ Bad, (b1, g2) ∈ Good. γb = min{γb1 + γb2, γ
g
1 +

γb2} = γb2. γg = min{γg1 + γg2 , γ
b
1 + γg2} = γg2 . α = min{α1 + γb2, γ

b
1 + α2, γ

g
1 + α2} = α2.

Case 3b: γb1 − γ
g
2 ≤ 0 ≤ γg1 − γb2 < α1 − α2.

γb1 = 0 or γg1 = γb2 = 0. (g1, b2) ∈ Bad, (b1, g2) ∈ Good. γb = min{γb1+γb2, γ
g
1+γb2} =

γb2. γg = min{γg1 + γg2 , γ
b
1 + γg2} = γg2 . α = min{α1 + γb2, γ

b
1 + α2, γ

g
1 + α2} = α2.

A Incentive Compatibility

The section generalizes the first half of Zhu (2018b). I begin with a generalization of
the class of monitoring systems considered:

Assumption 1. Let R be any non-empty, finite set of real numbers. Let ξ be any full-
support finite-valued random variable whose distribution does not depend on at. There
exists a unique function fR(Xt) taking values in R with the following two properties:

• The set arg maxat Eatf
R(Xt)− h(at)∆ contains a single element aR.

• For any function g(Xt, ξ) taking values in R, if it is not true that g(Xt, ξ) =
fR(Xt) for all Xt and ξ, then aR is strictly larger than any element of arg maxat Eat,ξg(Xt, ξ)−
h(at)∆.

One can think of R as a set of possible rewards for A, g as a performance-sensitive
reward function designed to induce effort from A, and ξ as noise. When Assumption
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1 is used in the analysis below, R will correspond to the set of possible discounted
date t+ ∆ continuation payoffs for A, g will be P ’s date t report strategy, and ξ will
be P ’s private history leading up to date t. Assumption 1 says to maximize effort A’s
performance-sensitive reward cannot depend on noise.

Assumption 1 holds under many natural models of how effort affects the distri-
bution of Xt, including the special case where effort has a monotone effect on Xt. In
this case, fR takes at most two values, the maximal and minimal values of R, with
fR taking the minimal value of R if and only if Xt ∈ Bad.

I am now ready to discuss incentive-compatibility in settings where the monitoring
system satisfies Assumption 1. I assume that the model has a terminal date T <∞
unlike in the body of the paper. Once I define incentive-compatibility and characterize
the optimal contract, I will then show that as T →∞ the optimal contract converges
to the one in Theorem 1.

In most contracting models, incentive-compatibility means the assessment is a
sequential equilibrium. However, in my setting, many sequential equilibria feature
implausible behavior by P : Looking at (1), the sequential equilibrium concept allows
P to commit to a report strategy mt that does not maximize at |mt. My strategy
for refining sequential equilibrium is to be conservative about using the idea of P
wanting to maximize effort incentives to remove equilibria. This way when I do
remove an equilibrium, it is hard to object. Then I show that given a contract game,
the set of equilibria that survive my conservative refinement process all generate
the same continuation payoff process. This means no matter how my “minimal”
refinement is strengthened, as long as the strengthening does not remove all equilibria
from a contract game then Pareto-optimal contracts are unchanged. This “squeeze”
argument implies that my refinement and the resulting optimal contract are robust.

To operationalize my conservative approach to removing equilibria, I begin by
defining some restrictive conditions on assessments that will need to be satisfied for
there to be an opportunity for P to maximize effort incentives.

Definition. Wt(H
A+
t−∆, ht−∆) is belief-free if it does not depend on A’s beliefs at all

succeeding (HA
t , ht−∆). Wt is public given ht−∆ if Wt(H

A+
t−∆, ht−∆) is constant across

all HA+
t−∆, in which case I simplify Wt(H

A+
t−∆, ht−∆) to Wt(ht−∆). Define belief-free and

public for Vt similarly.
(a,m) is belief-free given ht if at every succeeding decision node the corresponding

player’s set of best-response continuation strategies does not depend on that player’s
belief.

See Ely, Hörner and Olszewski (2005) for a discussion of belief-free equilibria in
repeated games of private monitoring. To define when a sequential equilibrium is
removed, I suppose the set of all sequential equilibria has already been whittled down
to some subset E . I then provide restrictive conditions as a function of E under which
certain additional sequential equilibria can be removed.
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Definition. Fix a set sequential equilibria E. P is said to have an opportunity to
maximize effort incentives at the beginning of date t given E and conditional on ht−∆

if for every succeeding ht, all (a,m) ∈ E are belief-free given ht and share the same
belief-free, public continuation payoff process (Ws+∆(hs), Vs+∆(hs))s≥t.

When P has an opportunity, her set of best response messages is

M∗(ht−∆) := arg max
m′∈M

E[e−r∆Vt+∆(ht) | ht−∆m
′].

Notice P has an opportunity to maximize effort incentives at date t only when
the equilibrium property of all (a,m) ∈ E starting from date t+ ∆ do not depend on
what happens before date t + ∆ and the continuation payoff processes of A and P
starting from date t+∆ are uniquely determined and do not depend on what happens
before date t+ ∆. Thus, when P has an opportunity at date t one can think of date
t as the terminal date with the players receiving lump sum payments

(E[e−r∆Wt+∆(ht) | ht−∆mt],E[e−r∆Vt+∆(ht) | ht−∆mt])

at the end of date t after P makes her final report mt.

Definition. Suppose P has an opportunity to maximize incentive power given E and
conditional on ht−∆. A commitment m̂t(ht−∆) is a choice of a message ∈ M∗(ht−∆)
for each (HP

t , ht−∆) that depends on HP
t only up to Xt.

Given a commitment, A’s best response effort does not depend on A’s belief about
P ’s private history and is, therefore, public. Consequently, P ’s date t continuation
payoff from making a commitment does not depend on P ’s belief about A’s private
history and is, therefore, belief-free and public:

Define at|m̂t(ht−∆) to be the largest element of

arg max
a′

Ea′,m̂t(ht−∆)

[
−h(a′)∆ + e−r∆Wt+∆(ht)

]
where the expectation is computed using the distribution over the set of ht compatible
with ht−∆ generated by a date t effort a′ and m̂t(ht−∆). Define

Vt(ht−∆)|m̂t(ht−∆) := Eat|m̂t(ht−∆),m̂t(ht−∆)

[
u(Xt) + e−r∆Vt+∆(ht)

]
.

I now implicitly define when an equilibrium can be removed by defining when a
set of equilibria can no longer be further refined:

Definition. A set E of sequential equilibria maximizes effort incentives if whenever
P has an opportunity to maximize incentive power conditional on ht−∆, there does not
exist an (a,m) ∈ E, HP

t−∆, and a commitment m̂t(ht−∆) such that Vt(ht−∆)|m̂t(ht−∆) >
Vt(H

P
t−∆, ht−∆).
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The order in which equilibria are removed under my conservative approach does
not matter:

Lemma 2. If E1 and E2 are sets of sequential equilibria that maximizes effort incen-
tives, then so is E1∪E2. Thus, there is a unique maximal set E∗ of sequential equilibria
that maximizes effort incentives.

Proof. Suppose E1∪E2 does not maximize effort incentives. Then there exists an ht−∆,
(a,m) ∈ E1 ∪E2, HP

t−∆, and a commitment m̂t(ht−∆) such that P has an opportunity
conditional on ht−∆ and Vt(ht−∆)|m̂t(ht−∆) > Vt(H

P
t−∆, ht−∆).

Without loss of generality, assume (a,m) ∈ E1. Then P has an opportunity given
E1 and conditional on ht−∆. Given E1, m̂t(ht−∆) continues to be a commitment.
Moreover, the payoffs Vt(ht−∆)|m̂t(ht−∆) and Vt(H

P
t−∆, ht−∆) are the same given E1

and E1 ∪E2. This contradicts the assumption that E1 maximizes incentive power.

Definition. A sequential equilibrium maximizes effort incentives if it is an element
of E∗.

Proposition 2. Fix a contract game. All (a,m) ∈ E∗ are belief-free and generate the
same belief-free, public continuation payoff process that can be computed recursively:

When τ = t, all (a,m) ∈ E∗ generate the same belief-free, public continuation
payoff (Wt(ht−∆), Vt(ht−∆)) = (wt(ht−∆),−wt(ht−∆)). If τ > t, then by induction
suppose all (a,m) ∈ E∗ generate the same belief-free, public continuation payoff
(Wt+∆(ht), Vt+∆(ht)) for all ht. Define

R(ht−∆) := {E[e−r∆Wt+∆(ht) | ht−∆m
′] | m′ ∈M∗(ht−∆)}.

Then mt(H
P
t , ht−∆) = fR(ht−∆)(Xt), at(ht−∆) = aR(ht−∆), and

Wt(ht−∆) = wt(ht−∆)− h
(
aR(ht−∆)

)
∆ + e−r∆E

aR(ht−∆), fR(ht−∆)(Xt)
Wt+∆(ht),

Vt(ht−∆) = −wt(ht−∆) + E
aR(ht−∆), fR(ht−∆)(Xt)

[
u(Xt) + e−r∆Vt+∆(ht)

]
.

Proof. Begin with the set ET of all sequential equilibria. It is easy to verify that P
has an opportunity given ET and conditional on any public history of the form hT−2∆

satisfying τ(hT−2∆) > T−∆. Now, define a new set ET−∆ ⊂ ET of sequential equilibria
as follows: (a,m) ∈ ET−∆ if and only if for each hT−2∆ satisfying τ(hT−2∆) > T −∆
there is a fR(hT−2∆)(XT−∆) such that mT−∆(HP

T−∆, hT−2∆) = fR(hT−2∆)(XT−∆) for all
HP
T−∆ and aT−∆(HA

T−∆, hT−2∆) = aR(hT−2∆)) for all HA
T−∆. By construction, E∗ ⊂

ET−∆.
Now it is easy to verify that P has an opportunity given ET−∆ and conditional

on any public history of the form hT−3∆ satisfying τ(hT−3∆) > T − 2∆. Similar to
before, I can now define an ET−2∆ that contains E∗. Proceeding inductively, I can
define a nested sequence of sets of sequential equilibria E∗ ⊂ E0 ⊂ . . . ⊂ ET−∆ ⊂ ET .
All equilibria in the set E0 are belief-free and generate the same belief-free, public
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continuation payoff process that is described in the proposition. It is easy to show E0

maximizes incentive power, which implies E∗ = E0.

Despite my conservative approach to removing sequential equilibria, Proposition
2 implies that all the “complex” sequential equilibria involving P trying to keep A in
the dark about his own continuation payoff are removed.

Proposition 2 says that P ’s report strategy at date t is characterized by the func-
tion fR(ht−∆). Given the definition of fR in Assumption 1 and given that R(ht−∆) is
defined to be all the possible expected discounted date t+ ∆ continuation payoffs for
A as a function of P ’s date t report, Proposition 2 basically formalizes Remark 1.

Definition. A contract is incentive-compatible if the assessment is a sequential equi-
librium that maximizes effort incentives and Wt(ht−∆) + Vt(ht−∆) ≥ 0 for all ht−∆.

The second part of the definition is an interim participation constraint. If it is
violated both players are strictly better off terminating at the beginning of date t
under some severance pay ŵt.

The Optimal Contracting Problem: For each point on the Pareto-frontier, find
an incentive-compatible contract that achieves it.

Theorem 4. Every payoff on the Pareto-frontier can be achieved by a contract with
the following structure:

• M = Im(Xt) and mt(H
P
t , ht−∆) = Xt.

• For each t < T there is a pair of constants wsalaryt , wseverancet+∆ such that A is paid

wsalaryt at date t for working and is paid a severance wseverancet+∆ at date t + ∆
if he is terminated at the beginning of date t + ∆. Termination at date t + ∆
occurs with some probability p∗t (Xt).

Proof of Theorem 4. Proposition 2 implies there is an obvious correspondence be-
tween the portion of a contract after a history ht−∆ – call it the date t continuation
contract given ht−∆ – and a contract in the version of the model with timeframe
[0, T − t].

The proof is by induction on the length of the model timeframe. Fix a Pareto-
optimal contract. There is at least some realization of X0 such that for all h0 succeed-
ing m0(X0), the date ∆ continuation contract given h0 is a Pareto-optimal contract
in the model with timeframe [0, T − ∆]. Without loss of generality, it is the same
Pareto-optimal contract C ∆. Now for any realization of X0 change the contract so
that after P reports m0(X0) the contract randomizes between C ∆ and termination
using the date 0 public randomizing device. This can be done in a way so that
E[W∆(h0) | m0(X0)] and E[V∆(h0) | m0(X0)] remain the same. By construction, the
altered contract remains incentive-compatible. Relabelling m0(X0) as X0 (if two re-
alizations of X0 lead to the same m0(X0) then just create two separate messages –
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it won’t affect anything), the contract now has the structure described in Theorem
1 at date 0. By induction, it has the structure described in Theorem 1 at all other
dates.

Corollary 3. When at has a monotone effect on Xt for all t, then the optimal contract
converges to the one characterized in Theorem 1 as T →∞.

B Incentive Compatibility under Infrequent Sam-

pling

Because the infrequent sampling model is a generalization of the original model, the
original refined equilibrium concept also needs to be generalized. The same conser-
vative approach as before can be used to develop the notion of maximizing effort
incentives in the infrequent sampling model. In the special case when the contract
game has P monitor each date, the current model’s refined equilibria will reduce to
the original model’s refined equilibria.

I begin by proving that the current model’s monitoring system satisfies something
akin to Assumption 1.

Lemma 3. Let R be any non-empty, finite set of real numbers. Let ξ be any full-
support finite valued random variable whose distribution does not depend on the se-
quence of efforts a(s,t] from date s+ ∆ through date t. There exists a unique function
fR, t−s(Yt − Ys) taking values in R with the following two properties:

• The set arg maxa(s,t]
e−r(t−s)Ea(s,t]

fR, t−s(Yt−Ys)−
∑t

t′=s+∆ e
−r(t′−s)h(a(s,t](t

′))∆

contains a maximal element/effort sequence aR, t−s.

• For any function g(Yt − Ys, ξ) taking values in R, if it is not true that g(Yt −
Ys, ξ) = fR, t−s(Yt−Ys) for all Yt−Ys and ξ, then aR, t−s is strictly larger than
any element of arg maxa(s,t]

e−r(t−s)Ea(s,t],ξg(Yt−Ys, ξ)−
∑t

t′=s+∆ e
−r(t′−s)h(a(s,t](t

′))∆.

fR, t−s(Yt − Ys) is characterized by a threshold ρR, t−s such that

fR, t−s(Xt −Xs) =

{
maxw∈R w if Yt − Ys > ρR, t−s

minw∈R w if Yt − Ys ≤ ρR, t−s

Moreover, arg maxa(s,t]
e−r(t−s)Ea(s,t]

fR, t−s(Yt − Ys) −
∑t

t′=s+∆ e
−r(t′−s)h(a(s,t](t

′))∆
generically has a single element. When the set does not have a single element, de-
creasing minw∈R w infinitesimally will cause the set to have a single element that is
infinitesimally close to aR, t−s.
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Proof. Without loss of generality, assume the minimum and maximum values of R
are 0 and 1, and assume s = −∆. Let F denote the set of all function f of the form

f(Xt) =

{
1 if Yt − Ys > ρ

0 if Yt − Ys ≤ ρ

for some ρ.
Let g(Yt, ξ) be any function taking values in R that is not completely independent

of ξ. Let f(Yt) be the unique function ∈ F such that

1− Ft

(
ρ−

t∑
t′=0

ag[0,t](t
′)∆

)
= Eag

[0,t]
,ξg(Yt, ξ).

Here Ft is the cdf of a normal random variable with mean zero and variance t. Let
af[0,t] be the largest effort sequence induced by f . Then af[0,t] > ag[0,t].

I now prove there exists a unique f ∗ ∈ F such that the largest effort sequence
induced by f ∗ is strictly larger than any effort sequence induced by any other f ∈ F .
The first part of the proof then implies that f ∗ = fR, t−s.

The proof is as follows: Suppose there are two functions f ∗ and f ∈ F such the
largest effort sequence induced by f ∗ equals the largest effort sequence induced by
f . I now show that there must be another function f̂ ∈ F such that largest effort
sequence induced by f̂ is strictly larger than the largest effort sequence induced by
f ∗ and f :

Let ρ∗ and ρ be the thresholds of f ∗ and f , and let af[0,t] be their common largest

induced effort sequence. Define a :=
∑t

t′=0 a
f
[0,t](t

′)∆. If a ≥ ρ∗ and ≥ ρ, then ρ∗ = ρ,
which is a contradiction. So, without loss of generality, assume a < ρ. Then the
function f̂ with threshold ρ̂ = a induces a unique effort sequence that is strictly
larger than af[0,t].

Lemma 3 speaks of higher and lower effort sequences. This is well-defined since
first-order conditions imply that given two best response effort sequences a(s,t], a

′
(s,t],

if a(s,t](t
′) > a′(s,t](t

′) for some t′ ∈ (s, t] then a(s,t](t
′) > a′(s,t](t

′) for all t′ ∈ (s, t].
I will use Lemma 3 to show that at the end of a monitoring period running from

s+ ∆ to t the principal’s report strategy is characterized by a function fR, t−s. This
mirrors what I did in the original model except I did not have to worry about the
agent having multiple best response efforts. I will use the second half of Lemma 3 to
justify assuming that if the agent has multiple best response effort sequences, he will
choose the maximal effort sequence aR, t−s which is most preferred by the principal.
This is because the second half of Lemma 3 implies that the principal can ensure
something close to aR, t−s is the unique best response of the agent by reducing the
agent’s outside option by ε.

The definitions of belief-free continuation payoff, public continuation payoff, and
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belief-free (a,m) are all unchanged.

Definition. Fix a set of sequential equilibria E and a public history hs such that P
monitored at date s given hs and t is the next monitoring date. P is said to have an
opportunity to maximize effort incentives at the beginning of date s+ ∆ given E and
conditional on hs if, for every ht compatible with hs, all (a,m) ∈ E are belief-free given
ht and share the same belief-free, public continuation payoff (Wt+∆(ht), Vt+∆(ht)) on
date t+ ∆ and all subsequent dates that start a monitoring period.

When P has an opportunity, her set of best response messages is

M∗(hs) := arg max
m′∈M

E[e−r∆Vt+∆(ht) | hsm′].

This definition of an opportunity to maximize effort incentives generalizes the
original definition to the current model. As part of my conservative approach, I only
give P an opportunity to maximize effort incentives at the beginning of a monitoring
period, which is defined to be the time period between consecutive monitoring dates,
and only if at the end of the period all elements of E are basically the same and don’t
depend on what happens before conditional on the public history. In the special case
when the monitoring period is a single date, the current definition of an opportunity
reduces to the previous definition. The definition of M∗ is unchanged except it is
written as M∗(hs) instead of M∗(ht−∆) since nothing public occurs during the time
interval (s, t).

The definition of a commitment m̂t(hs) is the natural generalization of the original
definition – the choice of message at date t depends on HP

t only up to Yt−Ys instead of
Xt like before. Again, in the special case when the monitoring period is a single date
this definition of a commitment reduces to the original definition. Define a(s,t]|m̂t(hs)
as the largest best-response effort sequence from date s + ∆ through date t given
m̂t(hs). It is the analogue of at|m̂t(ht−∆) from before. Define

Vs+∆(hs)|m̂t(hs) = Ea(s,t]|m̂t(hs),m̂t(hs)

[ ∑
s<t′≤t

e−r(t
′−s)(Yt′ − wt′(hs)) + e−r(t−s)Vt+∆(ht)

]
.

Vs+∆(hs)|m̂t(hs) is the analogue of Vt(ht−∆)|m̂t(ht−∆) from before.
The condition for when a set E of sequential equilibria maximizes effort incentives

is basically the same as before. Lemma 2 continues to hold. The definition of an
equilibrium that maximizes effort incentives is unchanged.

Proposition 3. Fix a contract game. All (a,m) ∈ E∗ are belief-free and generate the
same public continuation payoff process that is belief-free on each date that begins a
monitoring period. The continuation payoff process can be computed recursively:

(Wt(ht−∆), Vt(ht−∆)) = (wt(ht−∆),−wt(ht−∆)) if the contract game terminates
given ht−∆. Fix a date s+ ∆ that begins a monitoring period ending on date t. Given
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(Wt+∆(ht), Vt+∆(ht)) for all ht succeeding hs, define

R(hs) := {E[e−r∆Wt+∆(ht) | hsm′] | m′ ∈M∗(hs)}.

Then mt(H
P
t , hs) = fR(hs), t−s(Yt−Ys), a(s,t](hs) = aR(hs), t−s, and (Ws+∆(hs), Vs+∆(hs)) =( ∑

s<t′≤t

e−r(t
′−s) [wt′(hs)− h (aR(hs), t−s(t′ − s)

)
∆
]

+ e−r(t−s)EfR(hs), t−s(Yt−Ys)Wt+∆(ht),∑
s<t′≤t

e−r(t
′−s) [−wt′(hs) + EaR(hs), t−sYt] + e−r(t−s)EfR(hs), t−s(Yt−Ys)Vt+∆(ht)

)
.

The proof mirrors that of Proposition 2. Proposition 3 generalizes Proposition
2 and, in particular, implies that any stronger refinement that doesn’t remove all
equilibria from a contract game cannot lower the Pareto-frontier.

Most of the work in proving Theorem 3 has already been done. Given that Propo-
sition 3 implies the refined equilibrium concept of the original model admits a natural
generalization to the current model, all but the first part of the theorem follow nat-
urally from Theorem 1. The only thing worth remarking on is the first part which
says that in the optimal contract (and more generally all Pareto-optimal contracts),
monitoring occurs on non-random dates that are evenly spaced. Suppose after some
monitoring date ei, the next monitoring date ei+1 is random. For each realization of
ei+1, there is associated to it a continuation surplus starting from date ei + ∆. Pick
the realization of ei+1 that generates the largest continuation surplus and change the
Pareto-optimal contract so that after ei, the next monitoring date is always that re-
alization of ei+1. This increases the expected continuation surplus at date ei + ∆
which can only help increase ex-ante surplus. The evenly spaced aspect of optimal
monitoring is a consequence of the infinite time horizon.

B.1 Time Consistency

In generalizing the refined equilibrium concept of the original model to the infrequent
sampling model I have so far glossed over an important issue. When a monitoring
period lasts more than one date, a commitment should be time consistent. Suppose
P makes a commitment at the beginning of the monitoring period and A takes it
seriously and begins enacting his best response effort sequence. The fear is that at
some point in the middle of the period, P is better off changing her strategy for how
to select among her best response reports at the end of the period. If this were the
case, P would not be able to commit not to change her commitment which means
the commitment isn’t really a commitment. Allowing P to make non time consistent
commitments and using such commitments to remove sequential equilibria would not
be consistent with my conservative approach to removing equilibria. This of course
was not an issue previously when a monitoring period was a single date.
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Below I develop a stringent condition for a commitment to be considered time-
consistent (being as stringent as possible is logically consistent with my conservative
approach to removing equilibria) and show that even if P is only allowed to make
time-consistent commitments, the same set of equilibria survives. The key is to show
that the report strategy characterized by fR, t−s is time-consistent.

To define the notion of a time consistent commitment m̂t(hs), begin by defining,
for any t′ ∈ (s, t), Vt′+∆(hs)|m̂t(hs). It is the natural extension of Vs+∆(hs)|m̂t(hs) to
date t′ + ∆. For any t′ ∈ (s, t), define a(s,t′]|m̂t(hs) to be the portion of a(s,t]|m̂t(hs)
ranging from date s+ ∆ through date t′. Let m̂′t(hs) be another commitment. Define
a(t′,t]|{m̂′t(hs), a(s,t′]|m̂t(hs)} to be the largest best-response effort sequence from date
t′+ ∆ through date t given m̂′t(hs) and given that A previously chose a(s,t′]|m̂t(hs) in
the current monitoring period. Define Vt′+∆(hs)|{m̂′t(hs), a(s,t′]|m̂t(hs)} to be P ’s date
t′ + ∆ continuation payoff under commitment m̂′t(hs) assuming A previously chose
a(s,t′]|m̂t(hs) in the current monitoring period.

Definition. A commitment m̂t(hs) is time-consistent if there does not exist a date t′ ∈
(s, t) and commitment m̂′t(hs) such that Vt′+∆(hs)|{m̂′t(hs), a(s,t′]|m̂t(hs)} > Vt′+∆(hs)|m̂t(hs)

One can now define a time-consistent version of the refined equilibrium concept by
using the original definition except replace commitments with time-consistent com-
mitments.

Lemma 4. Given a contract game the time-consistent equilibria that maximize effort
incentives coincide with the equilibria that maximize effort incentives.

Proof. Fix a set E of sequential equilibria and suppose P has an opportunity condi-
tional on some hs. It suffices to show that the commitment characterized by fR(hs), t−s

is time-consistent.
Without loss of generality, assume s = −∆ and the minimum and maximum

values of R(hs) are 0 and 1. Since hs is empty, I drop all mention of hs below.
Suppose not. Then there exists a date t∗ < t and commitment m∗t such that

Vt∗+∆|{m∗t , a[s,t∗]|mt} > Vt∗+∆|mt. The proof of Lemma 3 implies without loss of
generality, m∗t viewed as a function of Yt is an element of F with some threshold ρ∗.

I now show that there is a commitment that induces a higher effort sequence than
mt which is a contradiction. Let a∗[0,t] be the largest effort sequence induced by m∗t .
Define Ft to be the cdf of a normal random variable with mean zero and variance t.
Create the equation

η(x) := 1− Ft

(
ρ∗ −

t∑
t′=0

a∗[0,t](t
′)∆− x

)

η is an increasing logistic-shaped function with a convex lower half and a concave
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upper half. Since a∗[0,t] is a best-response to ρ∗, it must be that

η′(0) = er(t−t
′)h′(a∗[0,t](t

′)) ∀t′ ∈ [0, t] (3)

The proof of Lemma 3 implies it is without loss of generality to assume 0 is in the
domain of the concave upper half of η(x).

The first-order conditions for effort imply that either a[0,t] ≤ a∗[0,t] or a[0,t] > a∗[0,t].
First suppose a[0,t] > a∗[0,t]. Now consider the scenario where the worker chooses to
follow a up to date t∗ but then switches to a∗[0,t] starting from date t∗+∆. At date t∗+

∆, the marginal benefit of the date t′ effort at level a∗[0,t] is e−r(t−t
∗)η′(

∑t∗

k=0(a[0,t](k)−
a∗[0,t](k))∆)∆ for any t′ ∈ [t∗ + ∆, t]. The marginal cost is e−r(t

′−t∗)h′(a∗[0,t](t
′))∆.

Since
∑t∗

k=0(a[0,t](k) − a∗[0,t](k))∆ > 0 and η(0) is in the concave upper half, it

must be that η′(
∑t∗

k=0(a[0,t](k)− a∗[0,t](k))∆) < η′(0). Combining this with (3) implies
that under the proposed scenario, starting at date t∗, the marginal benefit of effort
going forward is less than the marginal cost. This means that a[t∗+∆,t]|{m∗t , a[0,t∗]|mt}
must be smaller than a∗[0,t] on the interval [t∗+∆, t]. By assumption, this implies that

a[t∗+∆,t]|{m∗t , a[0,t∗]|mt} < a∗[0,t] < a[0,t] on the interval [t∗ + ∆, t]. Contradiction. So
a∗[0,t] ≥ a[0,t]. But a∗[0,t] 6= a[0,t], so a∗[0,t] > a[0,t].
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