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Abstract:

In this talk, several semiparametric extension of the traditional parametric
finite mixture models are introduced. Mixture models are widely used when the
population congists of several homogeneous subgroups. Currently most of mixture
models considered are fully parametric. This talk will introduce three possible
semiparametric extensions of traditional parametric mixture models and discuss
their applications and estimation methods. The first extension considers the two
component mixture model when one component is known and the other component
is unknown. The second extension considers the mixture of linear regression model
when the mixture proportions depend on predictors nonparametrically. The third
extension considers a new class of mixture of single-index models, where the mixing
proportions, mean functions, and variances are unknown but smooth functions of
an index.
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Mixture of Regression Models With Varying Mixing
Proportions: A Semiparametric Approach

Mian HuANG and Weixin YAO

In this article, we study a class of semiparametric mixtures of regression models, in which the regression functions are linear functions of
the predictors, but the mixing proportions are smoothing functions of a covariate, We propose a one-step backfitting estimation procedure to
achieve the optimal convergence rates for both regression parameters and the nenparametric functions of mixing proportions. We derive the
asymptotic bias and vartance of the one-step estimate, and further establish its asymptotic normality, A medified expectation-maximization-
type (EM-type) estimation procedure is investigated, We show that the modified EM algorithms preserve the asymptotic asceat property.
Numerical simulations are conducted to examine the finite sample performance of the estimation procedures. The proposed methodology is

further iltustrated via an analysis of a real dataset.

KEY WORDS: EM algorithm; Kernel regression; Mixture of regression models; Nonparametric regression; Semiparametric model.

1. INTRODUCTION

Mixtures of regression models are well known as switch-
ing regression models in econometrics literatore, which were
introduced by Goldfeld and Quandt (1973). These models are
useful to study the relationship between some interested vari-
ables coming from several unknown latent components. The
model setting can be stated as follows. Let C be a latent class
variable with P(C=c |x)=n.forc =1, 2,..., C, where x
is a p-dimensional vector, Given C = ¢, suppose that the re-
sponse y depends on X in a linear way y = x” 8 + €., where
B. = (Boc, Bics -+ +» ﬁpc)T and €, ~ N{0, crf). Then the condi-
tional distribution of ¥ given x can be written as

C
Vg~ Y 7N ("B, a2).

e=1

(L.1)

Mixture models including model (1.1) are comprehensively
summarized in McLachlan and Peel (2000). Frihwirth-
Schnatter (2006) and Hurn, Justel, and Robert (2003) focused on
the Bayesian approaches for model (1.1), including the selection
of number of components C. Many applications can be found
in literature, that is, in econometrics (Wedel and DeSarbo 1993;
Frithwirth-Schnatter 2001), and in biology and epidemiology
(Wang et al. 1996; Green and Richardson 2002).

In this article, we stmdy a class of mixtures of regression
models by allowing the mixing proportions to depend on a co-
variate z nonparametrically, where z can be either from x or
not. Consider the analysis of a CO,-GDP (carbon dioxide-gross
domestic product) dataset published by the World Resource In-
stitute. As shown in Figure 3(a), the CO,-GDP dataset contains
two related variables of 171 countries in year 2005, The re-
sponse variable is the CO, emission per capita in year 2003,
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and the predictor is the GDP per capita in the same year, mea-
sured by the current U.S. dollars. From Figure 3(a), we can see
that likely there are two homogenous groups, and thus we may
consider fitting a two-compenent mixture of regression models
for the data. The purpose of the analysis is to identify the group
of countries through their development path as featured by the
relationship of GDP and CO, emission. However, we can also
observe that the data are more likely from the lower group when
the predictor is larger. Therefore, the mixing proportions for the
two components may depend on x, which violates the constant
proportion assumption of model (1.1).

The ideas that allow the proportions to depend on the covari-
ates in a mixture model can be found in literature, for example,
the hierarchical mixtures of experts model (Jordan and Jacobs
1994) in machine learning. Huang (2009) proposed a fully non-
parametric mixture of regression models by assuming that the
mixing proportions, the regression functions, and the variance
functions are nonparametric functions of a covariate. Young
and Hunter {2010) used kernel regression to model covariates-
dependent proportions for mixture of linear regression models.
In Young and Huater (2010), mixing proportions may depend
on a multivariate covariate z, however, there lacks of theoretical
results and such extension may not be very useful in practice
for the reason of “curse of dimensionality.”

In this article, we systematically study the mixture of regres-
sion models with varying proportions. Since the mixing pro-
portions are nonparametric, while the regression function and
variance of each component are parametric, the proposed model
indeed is a semiparametric model. Compared to the nonpara-
metric mixture of regression models of Huang (2009}, the new
semiparametric model offers more flexibility by combining both
pararnetric and nonparametric information together. However,
the new model poses more challenge for estimation since it con-
tains both global parameters and nonparametric functions. To
estimate the unknown smoothing function 77,(z), we introduce a
kernel regression technique and a local likelihood method (Fan
and Gijbels 1996). To achieve the optimal convergence rate
for the global parameters 8.’s and o2’s and the nonparametric
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functions m.(z)'s, we propose & one-step backfitting estimation
procedure, A fully iterative estimation procedure is also inves-
tigated. For the mixture of regression models with varying pro-
portions, this article makes the following major contributions to
the literature:

{a) We show that mixture of regression models with varying
mixing proportions are identifiable under certain condi-
tions.

- (b) We propose a new one-step backfitting estimation pro-
cedure for the proposed model. In addition, we prove
that the one-step estimators for the regression coefficients
and variance parameters are ./n consistent, and follow
an asymptotic normal distribution; the kernel estimates
for the proportion functions based upon the /n consis-
tent estimates of 8,’s and 62’s have the same first-order
asymiptotic bias and variance as the kernel estimates with
true values of g,’s and 62’s

(c) We develop a fast modified expectation-maximization
(EM) algorithm for the estimation procedure, and show
that the proposed algorithm preserves the ascent property
for local likelihoods and global likelihcod in an asymp-
totic sense.

The rest of this article is structured as follows, We present the
semiparametric mixture of regression model and the estimation
procedure in Section 2. In particular, we develop a one-step
backfitting estimation procedure for the proposed model using
modified EM algorithm and kernel regression. The asymptotic
properties for the resulting estimates and the ascent properties of
the proposed EM-type algorithms are investigated. Simulation
studies and a real data application are presented in Section 3. In
Section 4, we give some discussions. Technical conditions and
proofs are given in Section 3.

2. ESTIMATION PROCEDURE AND ASYMPTCOTIC
PROPERTIES

2.1 The Semiparametric Mixture of Regressions

Suppose that {(X;, ¥;, Z), i = 1,..., r} is a random sam-
ple from population (X, ¥, Z). Throughout this article, X is
p-dimensional and ¥ and Z are univariate. Let C be a la-
tent class variable, and assume that conditioning en x, Z = z,
C has a discrete distribution P{C = c|x, Z = z) = w.(z) for
c=1,2,...,C—1, Here,annbeapartofX.We assume
that 7,(z)'s are smooth functions of z fore = 1,2, ..., C, and
¢ m{z) = 1forallz. GivenC = ¢, x,and Z = 7, Y follows
a normal distribution with mean x” 8, and variance o2, In other
words, conditioning on x and Z = z, the response vanable Y
follows a finite mixture of normals

C
Ylez=: ~ »_ 7N (37 B,. 02), @1

e=1

where x = (1, x7)¥. When 7.(z)’s are constant, model (2.1} re-
duces to a finite mixtare of linear regression maodel (Goldfeld
and Quandt 1973). So model (2.1) can be regarded as a natural
extension of traditional finite mixture of linear regression mod-
els. In this article, we will mainly consider one-dimensicnal Z,
But the method and the results proposed in this article can be
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easily extended to multivariate Z. However, such extension is
less desirable due to the “curse of dimensionality.”

Identifiability is a major concern for most mixture models.
Section 3.1 of Titterington, Smith, and Makov (1985) provided
detailed accounts of the identifiability of finite mixture of dis-
tributions, In particular, mixture of univariate normals is iden-
tifiable up to relabeling. However, identifiability of mixture of
regression models does not directly follow the result of univari-
ate normal mixture, To achieve identifiability for finite mixture
of regression models, the variability of x cannot be too small; see
Hennig (2000) and Section 8.2.2 of Frithwirth-Schnatter (2006)
for details. For model (2.1), we have the followmg identifiability
result. Its proof is given in Section 5.

Theorem 1. Assume that 7r.(z) > 0 are continuous functions,
c=1,...,C,and (8, 02),c=1,..., C,are distinct pairs. In
addition, assume that the domain X’ of x contains an open set in
R”, and the domain Z of z has no isolated points. Then model
(2.1) is identifiable.

Denote by £4(x(-), 8, ¢%) the log-likelihood function of the
collected data {(X;, ¥;, Z;),i =1, ..., n}, Thatis,
Yiix{ B 0l)
(2.2)

n C
£@(). B0ty = log {Z m(Z) (

i=1 c=1

where 8 ={87,..., B}, 02 ={c}, ..., 02}, and (") =
() .., o1 (O}F. Since m(-) consists of nonparametric
functions, (2.2) is not yet ready for maximization. To estimate
this semiparametric model, we propose a one-step backfitting
procedure, Specifically, we first estimate 7 () locally by maxi-
mizing the following local likelihood function

ti(e, B, o )wzrog{Zm (YiIx] B.. c)} Ky(Zi—2),
i=1 e=1

(2.3)

where K,{t) = h 1K (¢t/h) and K(¢) is a kemel density func-
tion. For each local model at z, we may adapt the conventional
constraints and conditions imposed on the finite mixture of linear
regressions, so that the corresponding local likelihood functions
are bounded (see Hathaway 1985).

Let %, 8, and &2 be the solution of maximizing (2.3). Then
#(z) = s, B(2) = B, and &,(z) = &,. Since the global pa-
rameters § and o2 are estimated locally, they do not have /n
consistency. To improve the efficiency, the parameters # and o
can be estimated globally by maximizing the following likeli-
hood function (2.4), which replaces 7 (z) with its estimate 7,(z)
in (2.2),

n C
6(B,0%) = Ziog'Zﬁc(zoqb{m:c?" B0}t 24
i=1 c=1

Let B and 67 be the solution of maximizing (2.4). Their /%
consistency will be established in the next section under certam
regularity conditions. After getting the estimates B and &2, we
can further improve the estimate of m(z) by maximizing the
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following local likelihoed

Es(ﬂ)—ziog[zﬂcfﬁ (% 8.6 )}Kk(z ~2).
i=1 c=1 2.5

Let rrc(z) #, be the solution of (2.5). We refer to #,(z), B,
and 67 as the proposed one-step backfitting estimates.

In semiparametric modeling, one-step estimation procedure
provides convenience for deriving asymptotic properties and
achieves the optimal convergence rates for both global pa-
rameters and nonparametric regression functions. Given under-
smoothing conditions, we are able to estimate the parametric
part in the rate of n~1/2, In Section 2.2, we will show that the
one-step backfitting estimates achieve the optimal convergence
rates for the parameters, and the nonparametric functions can
be estimated as good as if the parameters were known.

2.2 Asymptotic Properties

In this section, we first study the sampling properties of the
proposed one-step backfitting estimators #,(z), B, and 62. We
will show that the one-step estimators B and & are /1 consis-
tent and follow an asymptotic normal distribution. In addition,
we will provide the asymptotic bias and variance of the esti-
mator 7 (), and show that it has smaller asymptotic covariance
compared to #(-).

Let & = (x7, (T, BT, 3 = {(®7, B7}7, and thus § =
(=T, 9107, Let

C
p(ylx, 0) =Y e (X' B,. 07)

e=1

£0,x, y) = log p(y[x, 8).
_o48.x, y)
Qr‘i{a,x, y} - 89 L
Blﬂ(ﬂ,x, ¥)
#.X, ¥} = —mt
ges{f. X, ¥} PYEYYs

Similarly, we can define gy, gop, Gnn, a0d gy, . Furthermore,
define

Ta(z) = —Elgse(6(2), X, Y}|Z = 2],
T,(2) = —Elgy[6(2), X, T}|Z = 2],
Te(2) = ~Elgza (0(2), X, Y}| Z = 2],
Ty (2) = —Elg {0(2), X, YHZ = 2],
and
A(HEZ) = E[Qw{e(z)s Xs Y}|Z = u] )
where 8(z) = ()7, ()7, B7)7. Let # be the one-step esti-

mate of 3. Denote by ¥(x, v, z) the vector that consists of the
first (C — 1) elements of I{;I(z)z%ﬂ(ﬂ(z), X, ¥).

Theorem 2, Suppose that nh* — 0, nh? log{1/ k) — oo, and

Conditions (A)—(H) in Section 5 hold, Then we have the asymp-
totic normality

Va(h — 5) = N{0,B TR},
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where B = E{Z,(Z)}, and
5 = var{ L (x(Zy, 9, X, )

an
Irm (DX v, z)

- C!)(X, Yv Z)} 1

where @(x, v,z) =

Define

K =fuIK(u)du and v;:fuIKZ(u)du.

Theorem 3. Assume that Conditions (A)—(H) in Section 5
hold. Then as n — oo, b — 0, nh — oo, we have the asymp-
totic normality results for 7 (z)

Vrh{R(Z) — 7(2) — By (2) + 0,(h2)
25 N{O, £ vl

where By (z) is a (C — 1) x 1 vector, with the elements taken
from [1th, ..., (C — 1)th] entries of B(z) where

f (f)A (ZIZ) + AH Iz)} K9_h2

i
Biz) =1 (z){ @) )

Based on the above theorem, we can see that estimating #
does not have first-order effect on #(z), which is obvious since
#{z) is the resalt of nonparametric estimation with a slower rate
than §. Therefore, #(z) is more efficient than £ (z), which needs
to account for the uncertainty of estimating 5.

2.3 Computing Algorithms and Their Properties

2.3.1 EM-TypeAlgorithmfor(2.3). - Wefirst propose amod-
ified EM algorithm to maximize (2.3) to obtain estimates & (Z,).
In the /th cycle of the EM algorithm iteration, we have ﬁ(c”(-),
a2D(), and 7@ (). In the E-step, we calculate expectation of
component identities

ey 7 (BT BP(Z), 020 (Z0))
oY aPzoe| vk 8Pz, o2z}

e=1,...,

C. (2.6)

Tet {u1, ..., uy} be a set of grid points at which the unknown
functions are evaluated, where & is the number of grid points.
In the M-step, we update forz € {u;, j =1,..., N},

n (l+1)Kh(Z _ Z)

a0+ (7) = 2;‘:1 5z -0 2.7
gz = (STWE.’“)S)—l STwi+Dy, (2.8)
o7 0(z) = Lis 1w“‘;;n{l w(1+1)T Al .29
=
where c¢=1,..., C,wl? = r*VEyZ; ~2), WD =
diaglwl Y, L WLy = (B, .oy X, and S = (1, o)

x:)7. Furthermore we update x<f+0(z Y B85V(Z,), and

o207y, i =1,..., n by linearly interpolating 7+ (u;),
ﬂ("“)(u D, and o2t V(uy), j=1,..., N, respectively. In
practice, if n is not very large, we may dJrectly set the observed
{X1, ..., X} to be the grid points. We also set grid points to be
{X1,..., X} when deriving the asymptotic ascent properties
for the proposed algorithm.,
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In (2.7}, for the simplicity of presentation and computation,
we use the same bandwidth for all 7.(z)’s. One might use diifer-
ent bandwidths for 7.(z)’s to improve the estimation accuracy
but with much more complexity of computation and bandwidth
selection. Note that in the M-step, the nonparametric functions
are estimated simultaneously at a set of grid points; thus, the
classification probabilities in the E-Step can be estimated glob-
ally to avoid the label switch problem (see, e.g., Celeux, Hurn,
and Robert 2000; Stephens 2000; Yao and Lindsay 2009). The
classical EM algorithm estimates the nonparametric functions
separately for a set of grid points, which makes it difficult to
assign the same component labels for these estimators across all
the grid points.

2.3.2 EM Algorithm for (2.4). Given the estimate 7 (z), we
maximize (2.4) by a regular EM algorithm to get the estimates 8
and &2, In the E-step, we calculate the expectation of component
identities

T, o2
w_ 7200 (TN BY, 020)

? - 1: 3 C'
ic Zc__ljrc(z )@(Y |XTﬁ(l), 3(1))
(2.10)
Then in the M-step, we update 8.’s and o’s
gUY = (STRUVS) T STRUHy, (2.11)
no_{+1) X7 +1y
O_CZ(I+1) E =1"4c ( B ) , (212)

a (I+1)
YiiTie

where ¢ = 1,..., C, RV = diagrZ P || 704D} The as-
cent property of the above algorithm follows the theory of ordi-
nary EM algorithm,

2.3.3 EM Algorithm for (2.5). Given 8 and &, we would
maximize (2.3) to obtain the estimate f(z). Since ﬁc and &,
are well labeled, we can use the regular EM algorithm without
worrying about the label switching problem. In the E-step of Ith
cycle, the expectation of component identities are given by

706 (Y B, 02)

1)
re Hz) = c=1,..., C.

’ Ym0 (xiIxT B, 82)

(2.13)
In the M-step, we update = (z) by
n i+
n,glJrl)(z) — Zz 175 (DK (Z; — Z)’ e=1,..., C.
Zi:iKk(Zi —z)

(2.14)

We may also use the idea of the modified EM algorithm for
(2.3) to estimate 7 (-) simultaneously in a set of grid points, and
to speed up the computation.

2.3.4 A Computational Accelerating Scheme. To avoid ex-
tensive computation, many researchers prefer using a one-step
estimate in semiparametric modeling, for example, a partially
linear model (Hunsberger 1994; Severini and Staniswalis 1994),
a generalized partially linear single-index model (Carroll et al.
1997), and a generalized varying-coefficient partially linear
madel (Li and Liang 2008). However, the fully iterated esti-
mation procedure is of great interest if extensive computation
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can be avoided. Next, we discuss one approach to approximate
the fully iterated estimation procedure with less computation.
In the E-step of /th cycle,
(i’+1} JT(I)(Z )b (Y }XT,BG) 2(1))
IC ZC . ?TCE)(Z )¢(Y |XTﬂU) 2@))

c=1,...,C.

(2.15)

In the M-step, we simultaneously update 8, o, and x(z) by

D (STR(HI)S)’I STRIHy, (2.16)
20+1) py 1”(1“)( Tﬂa))
O = PEESY) = 2.17)
Zz Fie
n (1+1)
Ki(Z;~z)
+1 — -
ﬂ”c (Z)_ vy 2 €Uy, _'1)"'JN!
SR AC s, g }
(2.18)
wherec =1,..., C, R{+D = diag[r?j”, oov, 7EDY, Further-

more, we update 70 T(Z), i =1,...
lating # V), j=1,..., N.

In the following theorem, we provide the ascending properties
for the EM algorithms proposed in this section. Iis proof is given
in Section 3.

, # by linearly interpo-

Theorem 4.

(a) For EM type algorithm of (2.6)—(2.9), supposing nh —
oo as i —> oo and 2 — 0, we have

liminf n~! [£,(0¢(2)) — £1{89@)] = 0
in probability, for any given point z, where £,(-) is defined
in (2.3). ‘

(b) Each iteration of the algorithm from (2.13) to (2.14) will
monotonically increase the local likelihood (2.5), that is,
L(mTV()) = 30w P(z)), for all 1, where £3() is given
in (2.5).

(¢) The iterations of (2.15)-(2.18) have the following
property:

Pt ~1fpey (41, {I+1) 2(14+-1)
timinf n= {700, O, 0%
~ £z 9(), 80, 6?0} 20 (2.19)
in probability, where £*(-) is defined in (2.2).

Theorem 4(a) implies that when the sample size # is large
enough, the algorithm of (2.6)-(2.9) possesses the ascent prop-
erty for £,{#(z)} at any given z, Theorem 4(c} implies that the
iterations of (2.15)-(2.18) possess similar asymptotic ascent
property for the global log-likelihood (2.2).

3. SIMULATION AND APPLICATION

Int this section, we conduct simulation studies to test the per-
formance of the proposed methodologies. The performance of
the estimates of the mixing proportion functions 7.(z)’s is mea-
sured by the square root of the average square errors (RASE),

c-1 N

RASEZ = N7' 3 ) N#o(uy) — molw),

o=l j=l1
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where {u;, 7 =1,..., N} are the grid points at which the
unknown functions 7 (-} are evaluated. In simulation, we set
N = 100. The same set of grid points are used for the algorithm
proposed in Section 2.3, For simplification, the grid points are
taken evenly on the range of the z-variable.

To apply our proposed methodologies, we need to first select
a proper bandwidth for estimating m(-). In practice, data driven
methods can be used for bandwidth selection, such as cross-
validation (CV). Denote by D the full dataset. We then partition
Dinto alraining set R ; and atestset 73, thatis, D = T; UR,; for
J=1,..., J. Weuse the training set R ; to obtain the estimates
{#:0), 62, ﬁ }. Then we can estimate m.(z) for the data points
belonging to the corresponding test set. For (x;, y;, z1) € 7},

Z[i 2Ry} r!L‘Kh(ZI - zl)
Z{z iZ,eR,) Fie

Based on the estimated #,(z;) of test set 7;, we consider a
likelihood version CV, which is given by

Z > log Zn'q(z;)rﬁ (nix7 B, 87)

j=1leT;

fe(z) =

(3.1)

In practice, we usually set the value of J to be 5 or 10, and ran-
domly partition the data. Since different random partitions may
lead to different selected bandwidth, we suggest repeating the
procedure 30 times, and taking the average of the selected band-
width as the optimal bandwidth, Note that the required under-
smoothing conditions for the proposed procedure are nh* — 0
and nk” log(1/ k) — oo to get the /7 consistency for the global
parameters. The optimal bandwidth £ selected by CV will be of
order n~1, which does not satisfy the under-smoothing con-
ditions. As suggested by Li and Liang (2008), a good adjusted
bandwidth is given by & = i x n~%15 = O(n~'/?). This band-
width satisfies the under-smoothing requirement. In our simu-
lation study, both cases of appropriate smoothing and under-
smoothing will be investigated.

‘When fitting a mixture of regression model Wlth varying pro-
portions, it is natural to ask whether the mixing proportions
actually depend on the covariates. This leads to the following
testing hypothesis problem:

H n.(z2)=rn,,c=1,...,C—-1.

Denote by £*(Hy) and £*(H) the log-likelihood functions com-
puted under null and alternative hypothesis, respectively. Then
we can construct a likelihood ratio test statistic

T =2{¢*(Hy) — £*(Ho)}.

This likelihood ratio is different from the parametric likelihood
ratio, since the alternative is a semiparametric model, and the
number of parameters under H; is undefined. One approach is
to study the asymptotic distribution of T. Alternatively, here
we consider the conditional bootstrap method (Cai, Fan, and
Li 2000) to construct the null distribution. Let {7, B, 62} be
the maximum likelihood estimator (MLE} under null hypoth-
esis. For given x;, we can generate ¥;* from the distribution
3¢ A NKFB,. 32). For each bootstrap sample, we calculate
the test statistics T, and then obtain its approximate distribution.
If the asymptotic null distribution is independent of the nui-
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sance parameters 7.,¢ = 1,..., C — 1, then the conditional
beotstrap method is valid. Although a solid theoretical research
is out of the scope in this article, we investigate the Wilk’s
phenomenen (Fan, Zhang, and Zhang 2001) via Monte Carlo
simulation. Our simulation results show that the Wilk’s type of
results continue to hold for the proposed model (2.1), Therefore,
the conditional bootstrap method is applicable. This provides a
convenient way to conduct the likelihood ratio test for the above
testing problem.

In addition, we use a bootstrap procedure to construct con-
fidence intervals (CIs) for the parameters and pointwise Cls
for the proportion functions, For given covariates, the re-
sponse variable ¥ can be generated from the distribution
¥, ﬁ’c(Z;')N(X?BC, &2). We apply the proposed estimation
procedure to each of the bootstrap samples, and further obtain
the ClIs. The bootstrap approach to construct Cls for nonpara-
metric regression has been studied by many authors, such as
Hirdle and Bowman (1988), Hirdle and Marron (1991), Eu-
bank and Speckman (1993), Neumann and Polzehl (1998), Xia
(1998), and Claeskens and Van Keilegom (2003). It is well
known that theoretically the traditional bootstrap fails for ker-
nel estimates when the bandwidth is chosen to be of order n~/3
(Davison and Hinkley 1997, p, 226). To account for bias, Hirdle
and Bowman (1988) proposed to adjust the constructed interval
using an estimated bias; Hédrdle and Marron (1991) proposed
to estimate the simulation model curve by over-smoothing and
then smooth the bootstrapped data using the appropriate smooth-
ing; Neumann and Polzehl (1998) proposed to use only one
under-smoothing bandwidth for the whole procedure, Our sim-
ulation studies will investigate the under-smoothing, appropriate
smoothing, and over-smoothing situations,

Example 1, In the following example, we conduct a simu-
lation for a two-component mixture of regression model with
varying mixing proportions:

7(x) =014+ 08sin{rx) and m(x) =1— m(X),
mX)=4—2x and m(X) = 3x,
6?2 =009 and of =0.16,

where m1(x) and m,(x) are the regression functions for the first
and second components, respectively. Therefore, in this exam-
ple, z=x, 8, = (4, -2), and 8, = (0, 3). The sample sizes
n = 200 and 400 were conducted with 500 replicates. The pre-
dictor x was generated from one-dimensional uniform distribu-
tionin [0, 1]. The Epanechnikov kernelis used in our simulation.
The selected bandwidth was obtained from the following strat-
egy: we first generate several simulation datasets for a given
sample size, and then apply the CV bandwidth selector to deter-
mine the optimal bandwidth for each dataset. The selected band-
width, denoted by %, was the average of these CV bandwidths
with rounding. In the simulation, we consider three different
bandwidths: A x n~%1%, i, and 2/, which correspond to the
under-smoothing, appropriate smoothing, and over-smoothing,
respectively. It was shown that the asymptotic distribution of the
nonparametric functional estimates does not have to account for
the variability due to the estimation of the parametric compo-
nents. We examine this via simulation studies in finite samples.
In the tables, the line marked with “M1” shows the results given
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Table 1. The averages of MSEs of parameters and RASE,; (the values
are 100 times)

Bandwidth (1 = 200) Bandwidth (n = 400)

MSE 004 ©0.08 016 PAR 003 007 014 PAR

fio 0568 0.554 0550 0.726
B 2290 2176 2.156  3.840
B 0.641 0.638 0.635 0.648
fu 2587 2,392 2382 4.237
a2 0.018 0.017 0.017 0.017
aZ 0.089 0,086 0.086 0.095
RASE,
Mi 1461 1071 9722 2593
M2 1414 1013 9143 -

0.274 0.267 0.266 0374
1151 1113 1122 2.396
0.295 0.293 0.297 0.320
1.114 1.026 1.079 3,156
0.010 0.011 0.010  0.010
0.040 0.040 0.040  0.048

12.32 8304 7.613 2573
11.83 7.841 7.034 -

by the proposed method, while “M2” gives the results assuming
that 5 were known.,

Table 1 displays the mean square error (MSE) of regres-
sion parameter estimates and the average of RASE, over 500
simulations (the values are 100 times). For comparison, we
also report the results based on the fully parametric mixture
of linear regression model (denoted by “PAR” in Table 1),
which assumes that the mixing proportions are constant. From
Table 1, we can see that the proposed procedure gives better
resulfs compared to mixture of linear regression models, for ex-
ample, RASE,., and the MSE of £; and £, are significantly
reduced. In addition, it can be seen that the proposed procedure
for estimating the nonparametric function #(-) works almost as
well as if the true value of # were known and works better if it
is not under-smoothing.

Table 2 summarizes the performance of the bootstrap method
for the standard errors of estimate of parameters. The standard
deviation of 500 estimates, denoted by SD, can be viewed as

Table 2. Standard errors and coverage probabilities

SD SE(STD) 95% 8D SE(STD) 95%

n =200, h = 0.04
fu 0074 0.069(0.008) 9400 0050 0.049(0.004) 9420
By 0154 0.142(0.019) 9200 0.103 0.100(0.010) 93.80
P 0079 0.078(0.010) 9460 0.060 0.055(0.005) 94.20
B 0151 0.153(0.024) 9460 0111 0.107(0.012) 93.80
o 0022 0021(0.002) 8760 0015 0.015(0.001) 93.20
@ 0037 0.036(0.004) 91.80 0027 0.026(0.002) 92.20

n =200, h =008 n = 400, k = 0.07
B 0074 0.069(0.008) 93.00 0.050 0.049 (0.004) 9420
Bu 0151 0.140(0.019) 92,60 0.100 ©0.099 (0.009) 93.80
B 0079 0079 (0.010) 95.00 0059 0.056(0.005 93.80
B 0148 0.153 (0.024) 9480 0.106 0.106(0.012) 94.60
o 0023 0.021(0.002) 8800 0015 0.015(0.001) 93.80
oy 0036 0.036(0.004) 9240 0027 0.0250.002) 91.60

7 =200, b = 0.16 n =400, h = 0.14
0.066 (0.007y 90.60 0.049 0.047 (0.004) 9240
0.131 (0.016) 90.80 0.099 0.094 (0.008) 91.80

B 0079 0.080(0.010) 9560 0.058 0.056(0.005) 93.60

B 0.143  0.156(0.025) 9540 0.100 0.108 (0.012) 94.00

o1 0022 0.021(0002) 9040 0015 0.015(0.001) 94.40

oy 0,036 0.036(0.004) 9220 0027 0.025(0.002) 9140

n =400,k =0.03

B 0.073
B 0.149

Journal of the American Statistical Association, June 2012

the true standard errors. To test the accuracy of the proposed
standard error estimate via bootstrap method, we calculated the
average and standard deviation of the 500 estimated standard
errors, denoted by SE and STD. The coverage probabilities for
all the parameters are obtained based on the estimated standard
errors, From the results, we find that the proposed bootstrap
procedure estimates the true standard deviation quite well, and
the coverage probabilities are close to the nominal level for most
of cases. However, with moderate », the coverage levels are a
bit low for oy and o3,

The bootstrap procedure also enables us to investigate the
pointwise coverage probabilities for the proportion functions.
For a set of grid points evenly distributed in the support of x,
Table 3 shows the results at the level of 95% for both “M1” and
“M2” For most points, the cases of under-smoothing and appro-
priate smoothing give better performance than over-smoothing
case, However, for n = 200 the coverage levels are a bit low for
point 0.5, but a bit high and thus conservative for points 0.7 and
0.8. In addition, based on Tables 2 and 3, we can see that the over-
smoothing does not provide very satisfactory coverage levels.

‘We next conduct a simulation to investigate whether the
Wilk’s type of phenomenon holds for the proposed model. Under
the null hypothesis Hp, the mixing proportion 7y is a constant.
For three different values of 7y € {0.25, 0.5, 0.75}, we com-
pute the unconditional null distribution with n = 200 via 500
Monte Carlo simulations. The resulting three densities were very
close, plotted as solid lines in Figure 1. This suggests that the
asymptotic distribution of T under the null hypothesis was not
sensitive to the true value of &, To validate the conditional boot-
strap method, we select three typical samples generated from the
three values of 7;’s. For each typical sample, we compute the
conditional null distribution based on its 500 bootstrap samples.
The resulting three densities were depicted as dotted curves in
the same figures, From Figure |, we can see that our conditional
bootstrap method worked reasonably well to approximate the
true null distribution.

The power of the proposed test is also of interest. We eval-
uate the power function under a sequence of local alternatives
indexed by A

Hy:m:(X)=m versus
Hy @ mi(x) = 0.1 + 0.8) sin(7wx)/+/ nh,

and m(x) = 1 — my(x), where A/+/nk € [0, 1]. In Figure 2, we
plot three power functions at three different significance lev-
els: 0.10, 0.05, and 0.01, based on 500 simulations for sample
sizes n = 200, 400, The results show that the powers increase
rapidly as A increases. When A = 0, the alternative collapses
into the null hypothesis and the powers at A = O for the three
significance levels are close to the nominal level. This shows
that the proposed bootstrap method approximately provides the
right levels of the test.

Example 2. CO,-GDP data application.

We illustrate the proposed methodology by an analysis of
the CO,-GDP data described in Section 1. This dataset was
published by the World Resource Institute. We know that GDP
is a measure of the size of a nation’s economy, and CO; is an
important greenhouse gas that causes the greenhouse effect and
may relate to global warming. Development with high GDP
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Table 3. The pointwise coverage probabilities
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

n =200,k =0.04

Ml 96.90 96.70 95.80 92,70 88.60 94,10 98.80 100.00 97.70

M2 96,80 96.40 97.20 92.40 87.20 93.00 98.40 100.60 97.60
n =200, h =0.08

Ml 97.40 97.10 97.40 96.20 95.80 96.60 97.80 99,30 97.70

M2 97.80 96.40 97.80 96.20 94,40 95.00 98.20 98.60 97.20
n=200,h=0.16

M1 91.00 96.40 95.50 95.00 91.30 9040 96.20 97.40 79.20

M2 92.40 96.20 97.60 95.00 91.80 93.40 96.00 96.80 85.20
n=400,A =003 .

MIL 96.60 97.20 96.20 94.80 91.80 95.60 98.80 100.00 96.40

M2 96.60 97.20 96,20 94.80 91.60 95.00 98.80 100.00 97.60
n =400, h = 0.07

Mt 97.60 96.60 97.20 98.00 95.60 97.40 99.20 99.20 96.80

M2 97.60 96,60 97.20 98.00 96.20 97.20 98.80 99.40 98.40
n=400,k =014

M1 90.80 95,10 96.20 92.20 87.70 84.90 92.80 97.90 75.40

M2 91.40 94.60 96.60 94.00 91.40 90.80 95.20 97.20 85.00

per capita and relative low CO, emission is a desired goal and
consensus for modern governments, It is of interest to study the
relationship between a country’s CO; emission from its indus-
trial activities and the economy size per capita. In the analysis,
we set CO, emission per capita (Y) to be the response variable,
and the GDP per capita (X) to be predictor. Note that both
variables have positive observed values. We divide ¥ by 10,000
and X by 10, so that they have comparable numerical scale.
For this dataset, we congsider a two-component mixture of
regression models with varying mixing proportions. An opti-
mal bandwidth is selected at 2.85 by CV procedure, and the
under-smoothing bandwidth and over-smoothing bandwidth are
selected at 1.44 and 5.70, respectively. For the optimal band-
width, we first test whether the mixing proportions vary by
using the proposed conditional bootstrap method. Based on 500
conditional hootstrap simulations, the resulting test statistics T
is 26,10, and the approximate p-value of the test is less than
0.001. In fact, the testing procedure rejects the constant pro-
portion hypothesis under a wide range of bandwidths, includ-
ing both the under-smoothing and over-smoothing bandwidths,

This suggests that it is appropriate to use a mixture of regression
models with varying proportions.

The resulting estimates of § along with its 95% CI are shown
in Table 4. Take the results of bandwidth 1.44 for illustration.
The lower component has an estimated slope £;; = 0.157. We
may conclude that for countries within this component, an in-
crease in GDP per capita for a thousand dollar may be on average
associated with increment of 0,157 ton CO; emission per capita,
and a 95% CI of such CO,-emission increment per capita is from
0.106 to 0.212 ton. Most developed countries are of this com-
ponent, and the representatives include the United States, the
United Kingdom, Canada, Australia, etc. The upper component
has an estimated slope B5; = 1.021. For countries within this
component, an increase in GDP per capita for a thousand dollar
may be on average associated with increment of 1.021 metric
ton CO, emission per capita, and a 95% CI is from 0.986 10
1.050 ton, Representative countries of this component include
Kuwait, Saudi Arabia, Qatar, etc. The functional estimate of the
mixing proportion function of the lower component together
with its 95% bootstrap pointwise CI are depicted in Figure 3(b).

Eslimaled density of T
0.8, T T T

[iRerd o

D.06F

0.03]
002

001

Estimatet donsily of T
T T

Eatimated denaity of T

Figare 1, The estimated density of unconditional nutl distributions of T (solid lines), and the estimated density of conditional null distributions
of T (dotted lines); the bandwidth is 0,04, 0.08, 0.16 in (a) ,(b), and (c), respectively. The online version of this figure is in color.
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Simulatad power functions, =200, h=0.04
T T T ¥ T

Simulated power funcllens, =200, h=0.08
T T ¢
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Simulaled power funclions, n=200, h=0.18
T T T " T T

8 4 48 5 85 0 0.8 1 16 2 25

Stnulaled power funcilons, n=400, h=0.03
1 T v T T T T T
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Simutaied powar functions, n=440, h=0.07
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Simulated pewer funallens, n=400, h=0.07
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L] (1333 1 15 2 28 4 38 4 45 5
lambda

()

. L " L L n s ) s : s L "
4 45 3 86 ¢ 1] 1 15 2 25 3 a5 4 45 5 B&5
lambe

{6

Figure 2. The power functions of the test against local alternatives; (a) n = 200, b = 0.04; (b) n = 200, A = 0.08; (c) n = 200, h = 0.16;
(d)y n == 400, h = 0.03; (e} n = 400, k = 0.07; (D n = 400, # = 0.14. The online version of this figure is in color.

The result shows that as GDP per capita increases, the propor-
tion of low-CQO,-emission countries increases, which indicates
that high GDP-per-capita countries tend to develop in a relative
low-CO»-emission path.

4. DISCUSSION

In this article, we assume that the number of components C is
known., However, in many cases, C' might be unknown and we
need to estimate both C and bandwidth /. One might first select
C and then select the bandwidth A after C is given., Choosing
the number of components in mixture model is an important
problem, which attracts many attentions in statistical research.
For parametric mixture models, many methods have been pro-
posed to deal with this selection issue. One popular and simple
approach is the information criteria, such as Akaike informa-
tion criterion (AIC) and Bayesian information criterion (BIC),
Leroux (1992) proved the weak consistency of the maximum
penalized likelihood estimators for the mixing distribution. For
other references, see McLachlan and Peel (2000); Chen, Chen,
and Kalbfleisch (2004); and Chen and Li (2049).

The choice of the number of components is related to degrees
of freedom. However, the degrees of freedom of the propesed
model is not clear. In practice, we may use the results of tradi-
tional parametric mixture models. Note that locally in covariate
z, the mixing proportions of model (2.1) can be considered as
constant. Therefore, one might apply the information criteria to
the partial data in a local area. We may take several typical local
areas, and determine C by comparing several selection results.
Since the variance of ¥ tends to increase when the separation
of mixture components increases, the local areas can be those
with relatively large variation of Y. More research are needed
on how to choose the number of components for model (2.1).

5. PROOFS

Lemma I. The finite mixture of normal distributions is iden-
tifiable. More precisely, if

8
D AN (e ZMN va, 75
=]

d=1
Table 4. Estimated parameters and confidence intetvals
Estimate Bootstrap 95% CI Estimate Bootstrap 95% CI Estimate Bootstrap 95% CI
h=144 h =285 h =370

Bio 0.421 (0.275, 0.584) 0.388 (0,258, 0.515) 0.353 (0.255, 0.452)
Bu 0.157 (0.106, 0.212} 0.167 (0.120,0.222) 0.177 (0.127, 0.236)
B —0.035 (—0.063, —0.011) -(.033 (—0.063, —0.009) —0.032 (—0.062, —0.005)
B 1.021 (0.986, 1.050% 1.022 (1.001, 1.053) 1.024 (1.004, 1.041)
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The 95% confidence intervat of proportion function
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Figure 3. (a) The CO,-GDP data, year 2003. y: CO; emission per capita; x: GDP per capita, (b} The estimated proportion function of the
lower component and confidence interval. The online version of this figure is in color.

where the parameters satisfy 7. > 0,c =1, ..., C,crf‘ L=
cré, and if 0'1.2 = crj?‘ and i < j, thenju; < iy, similarly, Ay >
0,d=1,....,D, ¢f < <7}, and if 7 =7} and i < j,

then vy < vy, Then C = D and (7, fte, 62) = (he, 1y, T2), € =
1,..., C (see Titterington, Smith, and Makov 1985, p. 38, ex-
ample 3.1.4).

Proofof Theorem 1. Suppose that model (2. 1) admits another
representation

D
Vg z=z ~ ZM(Z)N (774, 83),
a1

where Ag(z} > 0,d=1,..., D,and (34,82, d=1,..., D,
are distinet, O

For any two distinct pairs of parameters (8, o2) and (8, 02),
ifo? = of, then 8, # B,, therefore, the set {x e R? : x" 8, =
x78,} is either an empty set or a (p — 1)-dimensional hy-
perplane in R?, and thus has zero Lebesgue measure in R¥,
This timplies that there are at most a finite number of (p — 1)-
dimensional hyperplanes on which (x* 8,,, ¢2) = (x” B;, o2} for
some &, b. Hence the union of these finite number of hyperplanes
has zero Lebesgue measure in R?. The same thing is true for
the set Of parameters (4, 82),d = 1,..., D.

From Lemma 1, for any given (x, z) such that both sets

of parameters (x” 8., 62, ¢ =1,..., C, and (x"yp,, 63), d =
1, ..., D,ate distinct pairs, respectively, model (2. 1) condition-
ing on ¢ = (%, z) is identifiable, Therefore, C = D and there
exists a permutation w, = {w,(1), ..., & (C)}ofset{l,..., C}
depending on ¢, such that Ay (2) = 7e(@), Xy, =X B,
Si!(c = Cz’ c=1,...,C. Consider any permutation o =
{w(1), ..., o(C)} such that

XTyw(c) = XTﬂc! 32\(0) = 0'3, c=1,..., C (51)

for some x values. If ., # B, for some ¢, then the set {x €
R : ¥y 4 = %7 B} is contained in a {p — 1)-dimensional

hyperplane in R¥ and has a zero Lebesgue measure. Since
there are only a finite number (C!) of possible permutations
of {1,2,..., C} and the domain A of x contains an open set in
R®, there must exist a permutation w* = {w*(1), ..., ©*(C)},
such that (5.1) holds on a subset of X’ with nonzero Lebesgue
measure. Hence, ¥ = B, 33)*(@ = 03, c=1,.,,., C, Be-
cause that (8,02, c=1, ..., C are distinct and (y,, 82),
c=1, ..., C are distinct, it follows that @* is the unique per-
mutation such that (5.1) holds on a subset of X with nonzero
Lebesgue measure. If z is not from x, then A »(z) = 7.(2),
c=1,..., Cforany z € Z. If z is from x, Apr){2) = 7(2),
c=1,..., C,forall z € Z but points where some hyperplanes
intersect. Because m.(z) are continuous and the domain of z has
no isolated points, the values of 7m.(z) at those points where
some hyperplanes intersect are also uniquely determined, This
completes the proof.

‘We next outline the key steps of proofs for Theorems 2-4.
Note that § = (z7, (@7, ) is a (p +3)C — 1) x 1 vec-
tor. Whenever necessary, we rewrite # = (61, ..., 9(p+3)c_1)T
without changing the order of %, %, and 8.

5.1 Regularity Conditions

A. The sample {(X;,Y;,Z;), i =1,..., n} is indepen-
dent and identically distributed from the joint density
Flx, y, z) with finite sixth moments. The support for z,
denoted by Z, is closed and bounded of R!.

B. The joint density f(x, v, 2} has continuous first derivative
and is posifive in its support,

C. The third derivative [3°0(8,x, y,2)/80;00,09;| <
Mjua(x, v, 2), where E{M ;1 (X, ¥, Z)} is bounded for ail
Sk LandallXand Y.

D. The unknown functions m.(z),c=1,..., C — 1, have
continuous second derivative.

E. The kernel density function K{-} is symmetric, contini-
ous, and has a closed and bounded support.
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E Fore=1,...,
Z.

G. The second derivative matrix —E{3%6(6(z), x, y)/
30887 | Z = z} is positive definite, where 6(z) =
(@' @), (6D, BT

H E(Z¥) < coforsomee <1—r

C,02 > 0and m.(z) > Ohold forall z €

1 plp s oo,

All the above conditions are mild conditions and have been
vsed in the literature of local likelihood estimation and mixture
models, Let

C
£(8) = log {Z me (yIx" B, 0’3)} ,

e=1

where § = (z7, ()7, ﬁT)T and ¢ (leTﬁc, 2} is the normal
density of y with mean x” 8, and variance o2 Then

Jcht' (y|XTﬂm )(y —XT,GC)K/O'
3£(0)/3B, =
/B Z 17[};(].')(!)( ﬁc!
3248 ¢
28 B(ﬁ)T = HZJW (Y1 B.. "cz)} [mg? (yix7 B, 07)
e e c=1

% (y—x" B yxx" ot~ (yx B, 02) xx" o2}
26 (YT B 02) (3 — X B T /a‘*}

c 2
X {ZJ‘EC¢ (vIx" 8., crf)} .

=1

Note that ¢(y[x"B,,02) and ¢(y|x" 8., 1)y —
bounded for any ¢ and k > 0. Then we have

supE I:
z

E(lo€(6, X, Y, 2)/86,%) < co

x” B are

326(8(z), x, v)|”
0307

|Zﬂzil<oo,

and

if X have sixth finite moments,

The following lemma is taken from lemma A.1l of Fan and
Huang (2005) and will be used throughout the proofs of this
section. .

Lemma 2. Let {(X;, Y:),i = 1,..., n}beiid random vectors
from (X, ¥), where X is a random vector and ¥ is a scalar random
variable, Denote f* to be the joint density of (X, ¥), and fur-
ther assume that E|Y|" < oo and sup, [ [y}" f*(x, y)dy < co.
Let K(:) be a bounded positive function with bounded support,
satisfying a Lipschitz condition. Then

sup |n ! Z [Kn(Xi — x)Y; — B{EKW(X; — x)Y}}]
i=1

xeX

= O,{y,log*(1/h)},

given #* b — oo, for some g <1—r
(nh)y 172,

-1 where y, =

To establish asymptotic properties of §, we first study the
asymptotic behaviors of {#, #%, 8}, the maximum local likeli-
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hood estimator of (2.3). Denote
Be=~/nhiB, - ﬁ}
&2 = /nh{s — o’
—«/_{nc—rrc(z)},c=1,...,c—1

c—1
#i& = /nh{fic = mc(@)} = vk [1 =Dt - ﬂc(zﬁ],
c=1
Let B" = {(BD", ..., BLV, 6% =@, ..., 6297, and
75 = (#f, ..., #5_ 7. Define 8" = ()7, 27, (BT},
Lemma 3. Assume that Conditions (A)—(H} hold, in addition

with nht — 00 as » — oo, i — 0, then for all 7 in the support
of Z, we have

sup 6" — FH DI N 2)AL = O + yalog(1/ b)),

€2
where A, is defined in (5.4), and
92400, x, ¥) }
———1Z=1z].
Proof If {#, &2, B,} maximizes (2.3), then §" maximizes

7 =—-E
(@) [ 36207

20 =h Y _{4O@) + 18", X1, V1)
i=1
—£8(2), Xy, YDYKn(Z; — 2), (5.2)
where 8(z) = {(x(z})", (D7, (£)7}7 . By the Taylor expansion
and some calculation,
1
0%y = A8 + Ee*fr,,o* + 0,(1), (5.3)

where

An —\/72515(9(2) Xi, Y Ky(Z; — 2), (5.4)

r, = %;gagw(z), X WKu(Z = 2. (55)

By the strong law of large numbers and some calculations, it
follows that I', = — f(2)Zs(z) + 0,(1). Therefore,

1
£007) = A, 07 éf(Z)ﬂ*TIe(z)ﬂ* +0,(119*1H). (5.6)

Since each element in I', is sum of iid random variables, by
Lemma 2 and Condition (G), we can show that I', converge
to — f(z)Zs(z) uniformly for all z € Z. By (5.3} and Condition
(G), we know that £5(#") is a concave function of #* for large
#. Then by Condition (F), when # is large enough, —£%(8*) is
a convex function defined on a convex open set. Thus, by the
convexity lemma (Pollard 1991),

(A,,e* + %a*T'F,,e*)

- (An()* - %f (Z)G*T’Ia(z)ﬂ*)

sup
zeZ

Lo 6D

holds uniformly for all z € 2 and #* in any compact set 2. We
know that £~ (z)Z; 1(z)A,, is a unique maximizer of (5.6), and
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is continuous in z; 8" is a maximizer of (5.3). Then by lemma
A.1 of Carroll et al. (1997), we have

sup |8* — £ QT (D) A, - 0. (5.8)
zeZ

Then by the definition of §”,

3L(0%) "
= Xil K P =
2 gy = 17 29D Xe VK7~ 2)
i=1
(5.9)
By a expansion, we have
by, 32(19(9(21) + E)
A, + T 2
e S e h
X 9;9,*TK,,(zi -2)=0, (5.10)
where 8% is rewritten as 8* = (6], ..., 65, 30_,). & is a vec-

tor between 0 and y,6%. The last term of (5.10) is of order
05 Vsl E()* [|%). Again it can be deduced from Lemma 2, for each
element of T,

sup [T )~ BT (i, )] = Op{h* + v, log (17 B)}.
ZE

(5.11)
By (5.10), TWf™ + 0, (3al187|%) = — A, then

{Ty = B + O, 8117 = — A, + FOTa(DE
(5.12)

By (5.8), it is obvious that sup, . 8| = Op(1). Thus for the

left side of (5.12), we have

sup (T, — BT | + 0,p(y) = Op{k? + v, log (17 )}

Tt follows that the order also holds for the right side of (5.12),
that is,

sup | F(DTs (208" — Agl = O, {h% + yu log2(1/ ).
2€Z

The proof is completed by the conditions that f(z) and Zy(z)
are bounded and continuous functions in a closed set of Z,

Proof of Theorem 2. Denote §i* = /n(f§ — ), where y is the

true value, Further, define
LR (Z). 1. X0, 1)

c
= log {Z 7A(Z)¢ (Vi 1xf B, Gcz)] ’

e=1
LR(Z), §+ 0" //n, X, 1)
c
= log [ > #(ZD@{Vilx] (B + Bi/R), 62+ 02 /n }
o=1

Then #* maximizes

La(n*) = Y {UR(Z), n+ 0" //n, Xs, Vi)
i=1

— L(Z:), 0, Xy, Yi)} (5.13)

By a Taylor expansion and some calculation,

1
L = At + En*TBnn* + op(1), (5.14)
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where
_1/22 83(”(2) 1, Xza Y)
Z PLUR(Z), 9, X;, V)
dnan” '
For B, it can be shown that
B, = —E{Z,(X)} + 0,(1).
Then by (5.14), we have
1
La(n") = Ap” — ET!*TB 7"+ 0,(1). (5.15)

Next, we expand A, as

Be(u(Z; ),W,X“Y) 1
Z +

(f(Z)) — m(Z)} + Opldin)

n 2 . . g
XZ O Z)n, X, 1)

l_] dnonT
dx(Z), 9, Xi, 1)
Z 1 + To: + Op(din).
i=1 Bﬂ

172

where dy,, = n /2| — x||%,. By Lemma 2, we have

o 1
8(Z) — 8(Z;) = ;f‘l(zi)ra‘(zi)

>”: 3EO(Z:), X;, Y;)

20 Ky(Z; — Zi) + Op(dpa),

i=1

where dy = y,h* + y2/Tog(1/h). Let ¥(X;,¥;,7Z;) be a
(C —1) x 1 vector, in which the elements are taken from the
first C — 1 entries of I, (z;} x {84(6(Z;), X;,Y;)/86}.

By condition nh?/log(1/h) — oo, we have 0,(n'?d,y) =
op(l). Since m(Z;) — n(Z;) = O(Z; — Z;) and K(:) is sym-
metric about zero, we have

_ nmg/zzz 326(1{(2 ) 1, Xzs Y)

i ondnT
x fUZW(X;, Yy, Z;)Ka(Z; —
= Ty + O,(n' B2,

1t can be shown, by calculating the second moment, that

ZN+0,(n"*h)

Tro — Tus —> 0, (5.16)
where T3 = —n~ 12 Yo (X, ¥y, Zy), with
(), 0, X, 1)
W0(X;,Y;, Z;) = ——E{ - 1Z = z,-}

X W(st Yj5 Z})
=L (ZHw(X;, Y, Z5),

By condition nh* — 0, we know

71/22 {33(’3(2) X, Y

o(X;, ¥i, Zf)]+0p(1)-

‘By (5.15) and quadratic approximation lemma,

A" = B A, + 0, (1)
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Then we calculate the mean and variance of A,. It is obvious

that var(4,) = %, and
F(A,) = /7 E %;’XY) — (X, Y, Z)} .

We can show that the elements of BE(dé(n(Z), 9, X, Y)/0%) aré
equal to zero, and

E{o(X,Y, 2)} = E{Zp (2)¥(X, ¥, Z)},

where (X, Y, Z) are the [Ith,...,(C — 1)}th] elements of
IQI(Z) x {0£(8(Z), X, ¥)/88}. Further calculation shows that
E{o(X, ¥, Z)} = 0. Sowehave E(A,} = 0, By the central limit
theorem, we complete the proof of Theorem 2.

Proof of Theorem 3. Using similar arguments in the proof of
Lemma 3, we have

Vnh{#(z) -

where

7))} = F@) () A

_ \/EZ U@ 8 XX
n i om

It can be calculated that
- h z Bﬂ(n‘(z), i, Xi3 Yl)
A, =\/;§ = Ki(Z; ~ 20+ Dy + 0,(1),

where

& (@), 9, X, YD)
D"_\/;; dmon? @

Since 4/n(ff — ) = 0p(1), it can be shown that
= —VRIL () f(2) = 0,(1).

Ay +0p(1), (5.17)

—MEW(Z; - 2).

Hence

Vah{#(2) — 7D} = fF@ L () An 4 0,(1),

where
h - 33(15(2);??;)(:’,17:')
LY Ki(Z: — 2).
" B i=1 31’! h( Z)

‘We can show that

var(Ay) = T (2) f(Dvy
and

E(Ap} = @ {A"(zl2) f (2) + 20 (z12) [ (2} } 1al?,

where x; = [ w' K (u)du, and v; = [ u' K*(u) du. Then the re-
sult of Theorem 3 follows a standard argument,

Proof of Theorem 4. (a) We assume the unobserved data
(C;,i =1,..., r)are random samples from population C, and
the complete data {(X;, Y;, Z;, C;),i = 1,2,..., n}arerandom
samples from (X, Y, Z, C). The conditional distribution of C
given X, Y, and # is

mep (YIxT B, 02)
Yo med(YIXT B, 02)

glciX, ¥, 8} = (5.18)

Journal of the American Statistical Association, June 2012
For given 0#%(Z) = {x™(Z), g9Z;), aw)(z )} we

have g{c]Xz,Y,,ﬂ()(Z)} pD and YO A0V =g,
i=1,..., n.Then

n C
408y = log !Z med (Vi|x] B, 0] } (Z r(H-i))
= =1

x Kn(Zi —2)
,_ZHZk)g[Zm (%:1%7 B, o, )] (“”}
% Kh(cz, —2). (5.19)
By (5.18), we also have
log {im (v:1x" 8., gg)}
- 1log {7 (Y:|x] B.. 02)} — loglg{c|X;, ¥;, 8)].  (5.20)

Thus, we have

n o
zl(o)=2=21og{w (viix" B, o7)} “*“]K(z—z)
c=1

i=1

n C
- {Zlog{g{cm, Y:, 9}1&“} Ki(Zi - 2),
ol b

(3.21)
Based on the M-step of (2.7)~(2.9), we have

n {C
% 2. {Z log {xD(@)p (% [x" BEH0(z), XD () ”i(im}
i=1 Le=1

X Kp(Z; — 2)

,11 Z {Zlog 7’[(1)(2)‘}5 (Y |XTﬂ(I)(Z) 0.2(1)(2:))} (1+1)}
i=1
X Kp(Z; — z).

It suffices to show that

glel X, ¥, 6 V@ | ay
1 h
row 14 Z [Z { e (elX;, 1,60 |
(5.22)

X Kp(Z; —2) =0

in probability. Define

== g{c|X,, Yn 9(l+ )(Z)} {1+1)— ‘
) ZLZ { I ¥ 80y || AT

and
¢ = [gtel%: %, 60D y

1 e T glel - (2)} 4| g (7).
n i= =1 g{chh Yua (Z)} i

By Jensen’s inequality, L, < L;. Next we show that L; —
0 in probablhty For the simplicity of proof, we assume

glelX, Y, 6(Z)} = a > 0 for some small value . To this end,
we first calculate the expectation of L.

glelX, ¥, 6 D) o
E(Ln—E(log{;j X7 60y (e 0@ Kz -9 ).
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By a standard argument, we know

[
X, ¥, 690
AX, ¥ ERAR! M
oD (°g {1 ¢(elX, 7,090} ©

x Ky(Z —z)’X, Y) - 0.

{elX, Y, 09(2))

Noting that A,(X, Y) is bounded, we have
B(L;y =B(A(X,Y)) - 0,

‘We next calculate the variance of I 7, Note that the variance of
L ; is dominated by the following term

=\ glelX, ¥, 8D :
~E (log [Z %ng})}g{cix’ Y09}  KZ -] ,

e=1

which can be shown to have the order O, {(n4)™!}. Then we
have Ly = 0,(1) by Chebyshev inequality, This completes the
proof,

)
L5y s (P
4 N8 w0 (v |xT B, 87)
E Og[ ZC IHCI)¢(Y leac’ 4 h( Z)
=Zlo nPo(nixl B, 87)  nf0¢(viIx] B, 67)
i= c=] E 171-01)‘!6 Y ]XTBC’ &2) Jrcf)(;ﬁ(Y |XTnBc’ 02)
x K;,(Z - Z)

= ZlogZ{ (t+1)”( Do (YiIx] B., 67

7 (v:1xT B, 62

Based on the Jensen’s inequality, we have

el ) = bx()

{41} oy PN
= ZZrGJrl)l {ﬂc ¢'(Yl |X,' Bc! a. blg)

! 5 -
i=1 ¢=1 ﬂ£)¢(ylleﬁc,gcz)

Based on the M-step of (2.14), we have

by — b 2 0.

(¢) By fixing #() = z@(), £2@D(), 8,0?) is equal to
£,(B, a?). Then by the ascent property of the ordinary EM al-
gorithm, we have

g*{n(l)(_), ﬁ(1+1), 0,2(I+1)} > E*{R’U)('), ﬁ(l), 0,.2(1)}'

Therefore, we only need to show

hmmf [E*{;z(fﬂ)() gD 52041y

E*{J‘f([)() ﬁ(u’-i-l)’ 0_2(-’+1)}] =0,

Fix B=8%" and ¢*=0¢%*D, and take ze{Z;,j=
1,..., =}. By similar arguments of Theorem 4(a), we can show
that for any given z,

Iirr_n)inf n s {n "t D)) — L3 {x DD} = 0

] Kh(z,‘ - Z).
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in probability. Hence,

11m1nf — Z FEZ) a2 zZ)) - Gia®@Z))]

> liminf = thmf —f@Ezy™!

n—oo #

x [£3 {rr(’“)(Zj)}
> 0.

— &(x®(Z))]

Since Ky(Z; — Z;) = K3 (Z; — Z;), it can be shown that

1 n
= 2 FZy i 0z))
j=1

1 n n C
L3t S| Soatiepotiin Bt
=1 fa=1 c=1

x Kp(Zy — Z))

1 & i
:;Zl( Zf(Z) log |:2;;C(t)(zj)¢{¥,-[xfﬁc,&f}:|

c=1

Il

X Kh(ZJ‘"‘Zf))

_ _ZD(I)

where

DY = Zf(z )7 log[Zn(”(z (%1% B, & *2}]

e=1
X K},(Z] — Z,).

By treating (X;, ¥;, Z;) as fixed in D,g), we can further show
that

[
EDP(X,, Y, Z) = log [Z 72 {ViIx] B, 6] }}

c=1

x (14 0,(1)),

and VaI{E(Di(l) | X, ¥;, Z;)} is of order O, {(nh)~'}. It is easy to
see that

n
STEDPX, Y, Z) = erO0), 8970, 02N + 0,(1)),
i=1

n
ZE(D§I+1)|Xi, Yi, Z)) == f*{n(H“l)(_),ﬂ(l-i-l)’ C(2U+D}(1 +Op(1))
i=1
This completes the proof of Theorem 4(c),

[Received March 2011. Revised December 2011,]
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use simulation’ studies to illustrate the finite sample performance of the MPHD estimator and compdre it with

some other existing approaches The empirical studies demonstrate that the new method outperforms existing -

- ‘estimators when data are generated under contamination and works comparably to existing estimators when,
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1. INTRODUCTION

The two- -component mixture mode] cons1dered in ﬂns paper is deﬁned by

h(x) = mfo(x; £ + (1 —'«r}f(x W), xeR, M

where  fo(x; £) is a known probability density fuiiéﬁbn {pdf) with possibly unknown parametér
&, f is an unknown pdf with non- null locatlon parameter 4 € R and 7 is the unknown Imxmg
proportion. .

Bordes, Delmas, & Vandekerkhove (2006) smdled a special case when £ is assumed to be
known, that is, Lhe first component densuy is completely known and model ( 1) becomes

) =mfo() + (I —WfG— ), xeR. ' @)

Model (2) is motivated by mult1ple hypothes1s testmg to detect’ d]ﬂ"erentlally expressed genes
under two or more conditions in microarray data. For this purpose, we build a test statistic for
each gene. The test statistics can be considered as coming from a mixture of two distributions: the

* Author to whom correspondence may be addressed
E-mail: wxyao@ksu.edu

© 2014. Statistical Society of Canada / Société statistique du Canada
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known distribution fy under null hypothesis, and the other dlstnbuuon f ( - ,u) the unknown
distribution of the test statistics nnder the alternative hypothesis. Flease see Section 4 for such an
application on multiple hypothesis testing.

Song, Nicolae, & Song (2010) studied another special case of model (1),

h(x) = 7¢e(x) + (1 — 1) f(x), xeR, 3)

where ¢, is a normal density with mean (. and unknown stép'dard deviation ¢ and f{(x) is an
unknown density. Model (3) was motivated by a sequential clustering algorithm (Song & Nicolae,
2009), which works by finding a local centre of a cluster first, and then idenrjfying whether an
object belongs to that cluster or not. If we assume that the objects belonging to the. cluster come
from a normal distribution with known mean (such as zero) and unknown variance a2 and that
the objects not belonging to the cluster come from an unknown distribution £, then identifying |
the points in the cluster is equivalent to estimating the mixing proportion in model (3). - -
Bordes, Delmas, & Vandekerkhove (2006) proposed to estimate model (2) based on sym-
metrization of the unknown distribution f and proved the consistency of their estimator. How-
ever, the asymptotic distribution of their estimator has not been provided. Song, Nicolae, &
-Song (2018)-also proposed an EM-type estimator and a maximizing 7r-type estimator (inspired .
by the constraints imposed to achigve identifiability of the parameters and Swanepoel’s approach - -
* (Swanepoel, 1999)) to estimate model (3) without providing any asymptotic properties.: o
In this- arucle we propose a new estimation procedure for the unified model (1) based on mini- !
mum profile Hellinger distance (MPHD) (Wu, Schick, & Karunamuni, 2011). We wﬂlmvestlgate T
the theoretical properties of the proposed MPHD estimator for the semiparametric mixture model, =

- such as existence, consistency and asymptotic normahty A simple and effective algorithm is also
given to compute the proposed estimator. Using simulation studies, we illustrate the effective- -
ness of the MPHD estimator and compare it with the estimators suggested by Bordes, Delmas, - - .~

& Vandekerkhove (2006) and Song, Nicolae, & Song {2010) Compared to the existing methods -
(Bordes Delmas, & Vandekerkhove, 2006; Song, Nicolae, & Song, 2010), the new method can’ .
be applied to the more general model (1). In addition, the MPHD estimator works competitively
‘under semiparametric model assumpnons whﬂc 1t is more robust than the ex1stmg methods when
data are contaminated. N BT B

- Donoho & Liu (1988) have shown that the class of minimum chstance estimators has aatomatic
robustness properties over n¢1ghb0urhoods of the true model-based on the distance functional
defining the estimator. However, minimum distance estimators typically obtain this robustness -
at the expense of not being optimal at the true model. Beran (1977) has suggested the use of
the minimum Hellinger distance (MHD) estimator that has certain robustness properties and is
asymploucally efficient at the true model. For a comparison between MHD estimators, MLEs and
other minimum distance type estxmators and the baiance between robustness and efﬁcmncy of
estimators, see Lindsay (1994). :

There are other well-known robust approaches within the mixture model based cIustenng
literature. Garcia-Escudero, Gordaliza, & Matran (2003) proposed exploratory graphical tools
based on trimming for detecting main clusters in a given dataset, where the trimming is obtained
by resorting to irimmed k-means methodology. Garcta-Escudero et al. (2008) introduced a new
method for performing clustering with the aim of fitting clusters with different scatters and weights.
Garcia-Escudero et al, (2010) reviewed different robust clustering approaches in the literature,
emphasizing on methods based on trimming which try (o discard most outlying data when carrying
out the clustering process. A more recent work by Panzo & McNicholas (2013) introduced a family
of 14 parsimonious mixtures of contarninated Gaussian distributions models within the general
maodel-based classification framework.

The Canadian Jowrnal of Statistics/ La revue canadienne de statistique DOL: 10.1002/cjs




2014 MINIMUM PROFILE HELLINGER DISTANCE ES. 1 ATIONQl

The rest of the article is organized as fo]lows In Sechon 2, we mtroduce the proposed MPHD
estimator and discuss its asymptotic properties. Section 3 presents simulation results for comparing
the new estimation with some existing methods. Applications to tworeal data sets are also provided
in Section 4 to illustrate the effectiveness of the proposed methodology. A discussion section ends
the paper.

2. MPHD ESTIMATICN

2. Introduction of MPHD Estimator
In this section, we develop a MPHD estimator for model (1) Let

. {hg ;) =7folx; ) + A~ fx~p): 0 €O, f € F),

where -

={ﬁ:(3r?;‘,u,)'5r€(b i) teR, ueR},

—(f: =0, /f(x)dx—l}

. be the functlonai space for the senuparametnc model (. In practlce the parameter space of §
depends on ifs interpretation. For example; if & is the standard deviation of fj, then the parameter .
. space of £will be R*. For model (2), £ is known and lhus the paraineter space of «S 1s a singleton-

" and, as a result, 8 = (7, w).
~ Let ||| denote the Lz(v)—norm For a.ny gl,
IS defined as

Suppose asample X, Xg, ey X I8 from apopul on w1th densﬂy functlon h& 7 & 5 We propose
to estimate # and f by mmlmlzmg the Hellmger dlstarlce N

overall f ¢ @ and | € & wherc hy is an appropnate nonparamelnc densny estimator of ]13

Note that the above objective function (4) contains both the parametric component ¢ and the'

nonparametric component /. Here, we propose to use the profile idea fo implement the calculation.
For any density function g and t, define functlonal f@, g)as :

ft, g) =arg mm‘r‘:fﬁ4

-

and then define the profile Hellmger distance as 5

/2
. dem(t,g) = |1h,§(,g) g

Now the MPHD flmctlonal T(g) is defined as

. : 1/2
T(g) = argmin  gdpr(l, g} == argmin,.q | hf,{f(t,g) - gl/zH. {5)

Given the sample X, X, ..., X, one can construct an appropriate nonparametric density esti-
mator of kg ;. say hn, and then the proposed MPHD estimator of & is given by T(h,). In the
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examples of Sections 3 and 4, we use the kernel density estimator for /, and the bandwidth 7 is
chosen based on Botev, Grotowski, & Kroese (2010).

2.2. Algorithm

In this section, we propose the following two-step algorithm to calculate the MPHD estimator.
Suppose the initial estimates of # = (, £, p) and f are 0 = (7@ £© 0N apg f(ﬂ).

Step 1: Given z0, £® and ,u{" find f("‘"HJ whlch minimizes -
[:rrf’”fn( £9) 4 (1 — 2 70 ‘”)11/2 W()”

Similar to W, Schick, & Kar_unamnm (2011 }, we obtain that

S Jr("
'---';-,"f(k+l)(x . M(k)) —_ 1 (k)h (X) f()(?f, E ) ifxe M,
0, . ifx e MC,

______Where M= {x:ah nx) 2 n<“ fo(x gik))} and o = sup {x(’c) g Folx: g(k))dx +(1-
: ,0

'Jr(k)) > o f T (x)dx}.

Step 2: Given fixed F*+D, find z*F1, §(k+1) and g &+ which minimize

'“[#ﬁk*“fo(-;s<k+1>)+('1-":5?5’i+ DyfED( — pE 12— h‘ﬂ()ll- ®

Then go back to Step 1

Each of the above iwo  steps monotomca]ly decreases the obJectlve furiction (4) until conver-
gence. In Step 1, if £(-) is assumed to be_ symme_mc then we _can furthe_r symmetnze FEEDCy

fUH'D(x)—I— f(1+1)( x) .
) - :"-':f'

ey

" 'Note that there is no closed form for (6) in Step 2 and thus some numerical algorithms, such
as the Newton-Raphson algorithm, are needed to minimize (6). In our examples, we used the
“fminsearch” function in Matlab to find the minimizer numerically. “fminsearch” function uses
the Nelder—Mead simplex algomhm as descnbed in Laganas et al. (1998).

2.3 Asymptotlc Results

Note that # and f in the semiparametric mlxmre model (1) are not generally idenuﬁable without
any assumptions for f. Bordes, Delmas, & Vandekerkhove (2006) showed that model (2) is not
generally identifiable if we do not put any restrictions on the unknown density f, but identifia-
bility can be achieved under some sufficient conditions. One of these conditions is that f(-) is
symmetric about 0. Under these conditions, Bordes, Delmas, & Vandekerkhove (2006) proposed
an elegant estimation procedure based on the symmetry of f. Song, Nicolae, & Song (2010) also
addressed the non-identifiability problem and noticed that model (3) is not generally identifiable.
However, due to the additional unknown parameter o in the first component, Song, Nicolae, &
Song (2010) mentioned that it is hard to find the conditions to avoid unidentifiability of model
(3) and proposed using simulation studies to check the performance of the proposed estimators.
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Please refer to Bordes, Delmas, & Vandekerkhove (2006) and Song, Nicolae, & Song (2010) for
detailed discussions on the identifiability of model (1).

Next, we discuss some asymptotic properties of the proposed MPHD estimator. Here, for
simplicity of explanation, we will only consider model (2) for which Bordes, Delmas, & Vandek-
erkhove (2000) has proved identifiability. However, we conjecture that all the results presented
in this section also apply to the unified model (1) when it is identifiable. But this is beyond the
scope of the article and requires more rebea.rch 0 ﬁnd the 1den1.1ﬁable conditions for the general
model (1), : S L

The next theorem gives results on the exmtence and umqueness of the proposed estimator, and
the continuity of the functional defined in (5), which is in line with Theorem 1 of Beran (1977).

Theorem L With T defined by (5), if model {2) is identifiable, then we have .

1. For every hg € A there exists T(hg f) €0 Sans_)'jung (3);
2. T(hﬂ f) =48 umquelyfor any 8 € B; :

3. T {h Y— Thy f) Jor any sequences {hn}nEN .sm;h that I

172 1/2!
113

1 — O and s0p,cq

“hij(r ha) **hz fithg, )” — 0

'asn——>oo

Remark 1. Without the global identifiability of model (2), the local identifiability of model (2)
proved by Bordes, Delmas, & Vandekerkhove (2006 ) tells that there exists one solunon that has
the asymptotic properties presenied in Theorem Lo et

Define a kernel densr[y estimator based on X 1, X,, ey Xy @8

| ~x o =
by (x) = --ZK(’_‘ ) o o)

RCaSa i\ CnSu

where {c, } is a sequence .(ifcionsta_ntse (baﬁdwidfths) c.'oinvcr'ging _tb zero at an appropriate rate and ' 3
sy is a robust scale statistic. Under furtber conditions on the kernel density estimator defined in -~
(7), the consistency of the MPHD estimator is established in the next theorem. '
Theorem 2. Suppose that . .

1. The kernel function K(-) is absolutely contmuous and bounded w:th compact support.
2. hm,,_mocn =0, liMy_ oo 1172¢, = o0. Z
3 The model ( 2) is identifiable and hﬂ 7 is umfonnly continuous.

Then ||h‘f 1/2 o L Oasn— oo, and therefore TG 5 T(hy, ;) as n — oo.

Define the map & > sp g 38 SG p hﬂ f(ﬂ & and suppose that for § € © therc cmsts a2x1

vector g , with components in L, and a 2 x 2 matrix §g , with components in Ly such that for
every 2 x 1 real vector ¢ of unit Euclidean lcngth and for every scalar ¢ in a neighborhood of

50.+ae, g( X} = 5p.q (x) +me ig g(x) + ael U g(X), (8)
50400, s %) = 89 ,(X) - Sg (x)e + arvg g (2)e, : (9)

. where g g(x)is 2 X 1, vy g(x) is 2 x 2, and the components of 1, g and v, , tend to zero in Lo
as o — O
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The next theorem shows that the MPHD estimator has an asymptotic normal distribution.

Theorem 3. Suppose that

1. Model (2) is identifiable.

2. The conditions in Theorem 2 hold.

3. The map 0 > 50,5 satisfies (9) and (9) with continuous gradient vector 56 and continuous
Hessian matrix 50 in the sense that ]l59 En _sﬂ‘ g]i — Oand iE?B,,, e —5p gli -+ 0 whenever

8, —>9and|§g _—gl/zi|—>0asn—->oo

4. < 35p g . h 172 > is invertible.

6.5~
Then, with T defined in (3) for model (2) the. asymptotzc distribution of n'/ 2(T(h,.,) —T(hg f))
is N (0 2) with variance mamx h¥ deﬁned by

3.

-1

; 12
Y= 3 Sﬂh hﬂf > <sah0f’sahg > Sﬂ,hg’f’hﬂ,f >

3. SIMULATION STUDIES

_ In this section, we investigate the finite sample perfonnance of the proposed MPHD estimator and " _
. compare it to Maximizing-» type estimator {Song, Nicolae, & Song, 2010), EM—type estimator
(Song, Nicolae, & Song, 2010) and Symmetnzatlon estimator (Bordes, Delrmas, &Vandekerkhove -
2006) under both models (2) and (3). =7 s
' Model (3) that Song, Nicolae, & Song (2010) considered does nothave a Eocatlon parameterin.
the second component. However, we can equwalenﬂy replace f(x) with f(x — ), where o e R
is a location parameter Throughout this section; we will consider this eqmva]ent form of (3). 5 -
Under this model, aftet we have 7 and &, we can Slmply esnmale by i

o E?’:ﬁ'(l“zf) Lo e
' where 7 PR E
5 2gs(Xp)
| Rgs(X) +h(X)

We first compare the performance of de_ferent estimators under model (2). Suppose
(X1, o X ,,) are generated from one of the followmg five cases:

Case I: X ~ 0.3N(0, 1)+ 0.7N(1.5, 1) = (m, ;1) = (0.3, 1.5),
Case II: X ~03N(0, 1)+ 0.7TN(3, 1) = (. u) = (0.3, 3),
Case ITE: X ~ 0.3N(0, 1) + 0.7U(2, 4) = (z, ) = (0.3, 3),
Case IV: X ~ 0. 7N, )+ 0.3NG, D = (m, ) = (0.7,3),
Case V: X ~ 0.85N(0, 4) + 0.15N(3, 1) = (7, 1) = (0.85,3)."

Figure 1 shows the density plots of the five cases. Cases I, II and IIT are the models used by
Song, Nicolae, & Song (2010) to show the performance of their Maximizing-= type and EM-type
estimators. Case I represents the sitnation when two components are close, and Case H represents
the situation when two components are apart, Cases IV and V are suggested by Bordes, Delmas,
& Vandekerkhove (2006) to show the performance of their semiparametric EM algorithm. In
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addmon, we also consider the correspondmg contdmmated models by adding 2% outliers from y
0 (10 20)-to the above five models. ... ...
. Tables 1,2 and 3 report the bias aud MSE of the parameter estimates of (7, y,) for the four .
: methodswhcnn = 100, n = 250 and 7z = T, 000, respectively, based on 200 repetitions. Tables 4,
- 5 and 6 report the respective results for 7.= 100, n = 250 and n = 1, 000 when the data are under -
2% contamination from U(10, 20). The best values are highlighted in bold. From the six tables, '
- we can see that the MPHD estsmator has bettcr overall performance than the Maxnmzmg—:r type,

sampie is not contaminated by outliers, the MPHD estimator and the Symmetnzauon estimaltor: ... :
. are very compe‘ﬂtwe and perform better than «other estimators. When the samplc is contarninated <
by outliers, the MPHD' estimator performs much better- and therefore is more robust than the "7
~other three methods. Wc also observe that when the sample is contaminated by outliers, among :
" the Maximizing- type, lhe EM -type and the Symmemzatlon estimators, the EM-type estimator ﬁ_ £
' tends to give better mixin g propomon csnmates 1han the other two L

TABLE 1: Bias (MSE) of ] pomt estimates for_modei_ (2) over 200 repetiﬁons with » = 100.

MPHD

Case TRUE Maxmuzmg T-type EM-type . Symmetrization
B w03 —0.092(0.030) 0057’(0 011} 0.271(0.078) 0.063(0.069) _
S oprl5 0 —0113(0118) . . 0.196(0.070) 0.4650.239)  0.0200.026)
T w03 -0.0140.003) r:; '90 052(0.005) 0.027(0.003)  —0.002(0.003)

w:3 . —0.00000.021) —0.123(0.038) 0.0200.017)  —0.009(0.025)
M 7:03 ~Z00460.005)  —0108(0.014)  —0.045(0.005) - 0.001(0.003)
g3 -0.008(0.004)  -0341(0138) . —0212(0.058) = —0.002(0.006)
IV 7:07  —0.04400.015  —0.131(0.025) 0.086(0.010)  —0.089(0.028)
3 0173(0.247)  —0.697(0.659)  —0.053(0.177)  —0.326(0.465)
Vo 7:085 —009400.041)  —0J47(0.030)  0.039(0.003)  —0.106(0.024)
13 0.109(1.145)  —1375(2.298)  —0.697(1136)  —0.742(1.184)
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TABLE 2: Bias (MSE) of point estimates for model (2) over 200 repetmons wnh n= 250

Case TRIUE MPHD Maximizing 7-type EM-type Symmetrization

I 7103  —0.090(0.028) 0.028(0.005) 0.269(0.074)  —0.080¢0.021)
wilS  —0.110(0.084) 0.162(0.041) 0.472023)  —0.107(0.060)

T #:03  —0.0090.001) . ~0.058(0.005) 7~ 7 0.0340.002)  —0.001(0.001)
w3 . 0.607(0.007). - —0.118(0.027) =" 0.057(0.009)  —0.084(0.009)

W 7:03 - —00410003)  —0.0710.006)  —0.0160.001)  —0.601(0.001)
i3 —0.001(0.001) - ~—0388(0.043) -~ —0.082(0.010)  —0.001(0.002)

IV x:07 00090003 —0108(0.018) ©  01020012)  —0.017(0.009)
TR 0.131(0.067)  —0.618(0.50L) 0.063(0.069)  —0.095(0.159)
SV z:085  —0.04000.014)  —0.121(0.021) 0.052(0.003)  —0.041(0.011)
- —0.323(0.349)  —0.345(0.625)

m3

0.217(6.444)

—1L134(1.503)

o | Next, 'We also evaluate how the MPHD estimator perfohﬁg under model (3), wherethe i’ariance'.
2

a”
“Tables 1-6. . - NS
Tables 7, 8 and. 9 Teport the bias and MSE of the parameter estimates for 1 = 100 n=250:""

and n = 1, 000, respectively, when there are no contaminations. Based on these three tables,

is assumed to be urknown, and compare 1t Wlﬂ] other methods using the same ﬁve cases asin ;. ¢

we can see that when there are no contaminations, the MPHD estimator and the Symmetrization .
estimator perform better than the Maximizing- type estimator and the EM-type estimator. Tables . -

10, 11 and 12 report tt o
n =100, n = 250 and. n’% 1, 000, respecmely From these three tables, we can see that the S
MPHD estimator performs'much better again than. the other th,ree methods s

TABLE 3: Bias (MSE) of point estimates for mpd-ei_(Z) over 200' rep_etiﬁons with n = 1, 000,

esults when, models are under 2% contamination from U{10, 20} for :

- Case TRUE MPHD Maxmuzmg jr—type EM-type Symmetrization
I 7:03  —0.0090.005) . 0. 020(0 003) 0.263(0.069)  —0.024(0.005)
TeowiL5 0 0.003(0.016) - 0.083(0,017) 0.459(0.213)  —0.031(0.015)
I ®:03  —0.0060.001) & 0055(0.004) 0.039(0.002)  —0.003(0.001)
3 0.006(6.002)  ~.—0.083(0.016) 0.093(0.010)  —0.002(9.002)

Il 7:03  =00280.001)  —0061(0.005)  —0.004(0.001) ~ 0.000(0.001)
u:3 —0.003(0.001)  .-0153(0.029) . —0.044(0.002)  —0.002(0.001)

IV 7:07  —00080.001)  —01150.0200 01040011}  —0.007(0.001)
w3 0.045(0.013)  —0.554(0.400) 0.174(0.039)  —0.030(0.017)

Vo wr:085 -0.0070.001)  —0.101(0.016) 0.061(0.004)  —0.007(0.002)
i3 0.172(0.063)  —0.929(1.043) 0.019(0.067)  —0.066(0.104)
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TABLE 4: Bias (MSE) of point estimates for model (2), under 2% contamnination from U(10, 20), over 200
repetifions with n = 10,

Case TRUE MPHD Maximizing m-type EM-type Symmetrization
I 7103 —0.124(0.036) 0.060(0.010) 0.267(0.075)  —0.063(0.014)
w:l5S  —0163(0.128) 0.692(0.629)  1.079(1.348)  —0.031(0.015)
I 7:03  —0.029(0.005) = ——0.0550.006) ~ - 0.018(0.004) - . —0.3000.090)
3 0.0110.046) 0.252(0.136) 0.398(0.228) - —3.000(9.000)
M 7:03  —0.0340.003) __ —0I08(0.015)  —0.048(0.005)  —0.032(0.004)
i3 —0.011(0.004) - - —0.0340.080) - 01040.091)  —0.014(0.009),
S x:07  —0.054(0.020)  —0.133(0.027) 0.081(0.009)  —0.2000.083)
w3 0.152(0.389) 0.172(0.668) L141(2.123)  —0.582(0.867) ¢ :
V. 7:085  —0125007)  0.158(0.033) 0.024(0.002)  —0217(0.080) .

3 0.048(1.364) . - 170.007(1.314) 1373(4.337) —0.910(1.444)

in Tables 6 and 9. Figure 2 contains the MSE of point estimates of 1 that are presented in Table 9 _f 3
for model (3) (o unknown) and Figures 3-and 4 contain the MSEs of point estimates of y and 7,
respectively, that are presented in Table 6 for model (2) (a known), under 2% contamination from- =
U(10, 20). From the three plots, we can see that all fouf estimators perform wellm Cases IT and e
: I]I The EM~type cstimator performs poorty in Case I, and is the worst estimate of @ in Cases IV~
and V when data are contammated The Syimnetnzatlon estimator is sensitive to contamination, -
especially in Cases IV.and V, no matter o is known or nof. Comparatlvely, the Maximizing-z "
type estimator is more Tobust, but it does not perform well in Cases TV and V- when data are not:
under contamination. However the MPHD esumator performs wel] in all cases .

TABLE 5: Bias (M3E) of pomt estlmates for model (2) under 2% contarmndtton from U(10, 20), over 290__'
' - repetitions w1Ll1 no= 250.

"Case TRUE MPHD Maximizing x-type EM-type ' Symmetrization

T m:03 —0.090(0.026) 0.032(0.006) 0.2630.071)  —0.180(0.043)
pilS  —0102(0.085) - 0.613(0434) 1.043(L146) - 0.224(0.081)

I 7:03  —0.0190.001) - =0.065(0. 006) 0.027(0.002)  —0.044(0.003)
£:3 00090007 0213(0.076) 0.415(0.202)  —0.044(0.012) -

M 7:03° =00210.001)  —0.0730.007)  —0.015(0.001)  -0028(0,002)

£i3 Z0.0040.001) . O1I90.043) . . 0245(0.086)  —0.011(0.003)

IV 7:07  —0020(0005)  —01220.020)  0.086(0.009) —0.302(0.164)

w3 0.145(0.096) 0.162(0.296) 1149(1.594)  —0.746(1.137)

Vo 7:085 —00530.025  0.131(0.023) 0.034(0.002)  —0.311(0.140)

i3 0.220(0.513) 0.358(1.000) 1.859(4.597)  —1.093(1.785)
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TaBLE 6: Bias (MSE) of point estimates for model (2), under 2% contamination from U (10, 20) over 200
repetitions with » = 1, G00.

Case TRUE MPHD Maximizing z-type EM-type Symmetrization
I x:03  —0460(0.007)  —0.024(0.003) 0.255(0.065)  —0.240(0.059)
pil5 0 —0.056(0,019)  0509(0.284)  1.048(L119)  —0.313(0.103)

I 7:03 —0.014(0.001) - —0.057(0.004) '__0'.032(0.001);, —0.043(0.002)
137 0.001(0.002) 0.257(0.081) 0.444(0.204) - —0.034(0.005)

O #:03 —0.0190.001) .. .—0.066(0.005  —0.011(0.001)  —0.035(0.002)
TN —0.001(0.001) ' 0179(0.044) = 0.299(0.096)  —0.011(€.001)

IV #7:07 —6.0190.001) —0.128(0.023) 0.089(0.008)  —0.311(0.149)

:3 0.067(0.013) 0.203(0.257) 1.252(1.628)  —0.829(1.165) -

7:0.85 —0.0190.001) —0.112(0.018) 0.045(0.002)  —0.347(0.13%)

w3 0.574(0.836) - 2.275(5478)  -—1466(2.329) .

0.177(0.067) . .

4. REAL DATA APPLICATION

] Example 1 (Ir:s data). We illustrate the apphcahon of the new estimation procedure to the Sequen- i
tial clnstering algorithm using the Iris data, which are perhaps one of the best known data sets in .
ﬁpatlf:m recognition hterature Iris data were firs{ mtroduced by Fisher (1936) and are referenced

TasLE 7: Bias (MSE) of point cbtlmatcs for modci (3) over 200 repetltions w1th n=100.

' 'Symmetxization

Case TRUE : :Maximjzm,g::r-type:f:,; EM—type
I m:03  —00S80.021) © 0M00.021)  0302(0.097) . —0.047(0.015)
ol 0.052(0.045) 0.758(2.207) 0.143(0.042) = —0.047(0.071)
@15 —0.057(0.082) 0.098(0.095) 0463(0.242)  —0.055(0.061)
7:03  —0.008(0.004) 0.062(0.017) 0.082(0.014)  —0.006(0.004)
ol 0.095(0.041) 1.821{5.180) 0331(0252)  0.012(0.056)
13 —0.014(0.025) " —0.341(0.216) 0.081(0.031)  —0.032(0.030)
Ol . 7:03 —0.051(0.005) - - 0.0240.611)  —0.042(0.006)  —0.009(0.603)
'z ~0.101(0.030) - - 2.258(6.708)  —0.028(0.105)  —0.031(0.045)
w3 —0021(0.005) < —0436(0223)  —0.187(0.049)  —0.008(0.008)
IV 707 00400 -0.0600.012) 0.114(0.016) * * —0.054(0.018)
72 0.101(0.047) 04950161y 7 0120(0034)  0.039(0.065)
/o 0100(0.201) -0.537(0504) © T 0.019(0.175)  —0.320(0.511)
Vo r:085  —0.0280.009)  —0.076(0.014) 0.042(0.003)  —0.159(0.078)
o2 0.098(0.043) 0.179(0.100)  —0.006(0.021)  —0.118(0.247)
13 0.275(0.432)  —10BXL719)  —0.622(1.088)  —0.845(1.717)
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TaBLE 8: Bias (MSE) of point estimates for model (3) over 200 repetitions with n = 250.
Case TRUE MPHD Maximizing 7-type EM-type Symmetrization
I 7:03  —0.043(0.014) 0.064(0.006) 0.302(0.093)  —0.048(0.015)
sl 0.058(0.021)  —0.101(0.075) 0157(0.032)  0.020(0.033)
15 —0.0640.051)... . 0220(0.059) - - 0421(0.186)  —0.679(0.049)
O 7:03 -—0.0050.000) " —00280003)  0.003(0.011) = ~0.002(0.001)
o1 0.046(0.013) 0.330(0.912) 0.377(0.191) ~ "—0.001(0.021)
@30 —0.0050010)  —01200.054) . . 0121(0.022)  —0.017(0.011)
;03 —003700.002)° T ~0.0430.004) T 0.0050002)  0.002(0.001)
ol —0.061(0.013) 0.609¢1,741) 0.163(0.100)  0.013(0.022)
pi3 —0.006(0.001)  —0233(0.085)  —0.0690.009)  0.001(0.002)
7107  —0.0080.003)  —0.068(0.009) 0121{0.016)  —0.014(0.007) "
= o2 0.036(0.023)  _ 0.0230.035) ... 014200.028)  0.009(0.032) .
i3 0.108(0.054) - —0437(0.269) : - 0.153(0.067)  —0.070(0.140)
v 7:085 —0.014(0.003) O.076(0.010) 1 0.060(0.004) ~0.076(0.028)
@127 0.0930.027) 7 0.06%(0.035). < 0.046(0.011) 0.027(0.048)
1300 0115(0.205) —0.912(1024) - —0.222(0.266)

—0.573(0.981)

TABLE 9; Bias (MSE) of point estimates for mode] (3) over 200 repetitions wnh 'n'._;: 1, 000,

Case TRUE MPI-[D Maxmumng z-type EM-type :-'..::isyrﬁmettization
1 7:03  —0.009(0.005) 0.053(0.004) '”,'0.301(0.091)__f;._--—o.ozo(o.oos)
ol 0.040(0.008) -~ —0.147(0.028) 0.177(0.034) = 0.025(0.011)

wil5  -0.819(0.017) 0.236(0.059) 0.423(0.181)  —0.024(0.018)

7:03  —0.001(0.001) 4.037;(0‘002) 0.099(0.010)  0.000(0.001)

ol 0.017(0.003)  —0.044(0.007) 0.407(0.176)  —0.002(0.065)

TRUn 3 0.009(0.002). . - —0.042(0.005) 0.151(0.025) 0.003(6.002)
I x:03 —0.029(0.0{51)_3..' —_0.04_7:(0.0_03) 0.011(0.001) 0.001{0.001)
ol —0.051(0.005) . ~0.029(0.007) 0.177(0.044) 0.005(0.004)

wi3 o —0.003(0.001) - -—0.122(0.017) —0.031(0.002)  —0.001(0.001)

IV 7:07  —0.0080.00D)  —0.069(0.006) 0.125(0.016) - - ~0.004(0.001)
o 0.002(0.006) . =0.051(0.013) ~  0.172(0.032)  —0.001(0.006)

T 0.058(0.017) — + "—0.346(0.153).. 0.161(0.035)  —0.018(0.015)

A% 7:0.85 —0.003(0.00)  —0.067(0.006) 0.072(0.005)  —0.025(0.010)
a2 0.053(0.009)  —0.005(0.008) 0.087(0.010) 0.008(0.031)

w3 0.099(0.042)  —0.745(0.633) 0135(0.060)  —0.180(0.293)
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TasLE 10: Bias (MSE) of point estimates for model (3), under 2% contamination from U(10, 20) Oover 200
repetitions with n = 100.

Case TRUE MPHD Maximizing 7-type EM-type Symmetrization
I 7:03  —0.104(0.025) 0.102(0.018) 0.295(0.093)  —0.132(0.031)
a1 01320.090)  0680(1.919)  0.133(0.046)  —0.213(0.150)
pil5  —0148(0.088) - 0.591(0.560) 7 E L115(1.507)  —0.137(0.068)
1§ 203, . —0.022(0.005) 0.051(0.016) 0.067¢0.011) * - —0.062(0.010)
orlhF 0.081(0.039) 1.755(5.036) 0.301(0.235)  —0.244(0.121)
w3 —0.0250.036) "~ 0.053(0.180) =" 0.467(0.323)  —0.079(0.051)

M. 7:03 —00360.003)  00190.012)  —0.036(0.005 —0.045(0.006) .
el —0.061(0.019) 2.229(6.635) 0.025(0.102)  —0.201(0.076)
n:3 —0.022(0.004) —0.116(0.114) 0.144(0.085)  —0.034(0.009)
7107 —0.0330.017) ~0.066(0- 013)  0.0990.013)  —0.110(0.033)

S g2 0.0880.058) 0 0.1840.147) - 70.104(0.032)  —0.152(0.110)
S i3 0.103(0.262) .© 1 0.449(0.928) . 1.209(2.263)  —0.226(0.354)
Vw085 00450023  -0.0840.014) | 0.0240.002) —0.198(0.106)
o1 0.145(0.082)  0.222(0135) . —0.013(0.027)  —0.172(0.199)

w:3

© 0.379(2.637) 0.646(2.505).  1235(3.351)  —0.501(1.258)

ffequently to this d.ay'. These data contaiﬁ'.f.our a{tnbutes :_Sepal length (in bm) sepal width (in’ '

“cm), petal length (in cm) and petal width (in cm), and there are three classes of 50 instances each, .~ .

. “where each class refers to a type of Iris plant. One class’is’ ]mearly separable from the other two -

oL and the Jatter are not linearly separable from each other. :_E' _
"1 Assuming the class indicators are unknowrn, we want to recover ﬂle three clusters in the data, ;..
After applying the search algorithm for centres of clusters by Song, Nicolae, & Song (20107

- observation 8 is selected as the centre of the first cluster. We adjust all observations by subtracting -
observation 8 from each observation. As discussed by Song, Nicolae, & Song (2010}, the propor¥ :
tion of observations that belong to a cluster can be considered as the mixing proportion m the
two-component semiparametric mixture model (3).

Principal component analysis shows that the first principal component accounts for 92, 46% of
the total variability, so it would seem that the Iris data tend to fall within a 1-dimensional subspace
of the 4-dimensional sample space. Figure 5 is a histogram of the first principal component.
From the histogram, we can see that the ﬁrst cluster is separated from the rest of the data, with
observation 8 (first principal component score equals —2.63) being the centre of it. The first
principal component:loading vector is (0.36, —0.08, 0.86, 0.35), which implies that the petal
length contains most of the information, We apply each of the four estimation methods discussed
above to the first principal component. Note, however, that the leading principal components are
not necessary to have better clustering information than other components. Some cautious are
needed when nsing principal components in clustering applications.
Similar to Song, Nicolae, & Song (2010), in Table 13, we report the estimates of proportion

based on the first principal component. Noting that the true proportion is 1/3, we can see that the
MPHD and the Symmetrization estimators perform better than the other two estimators,
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TasLE 11: Bias (MSE) of point estimates for modcl (3), nndcr 2% contamination from o, 20), over 20[)

MINIMUM PROFILE HELLINGE DISTANCE ESTIMAT]ON‘Ql

repetitions with n = 2350,

Case TRUE MPHD Maximizing 7-type EM-type Symmetrization
1 (0.3 —0.108(0.024) 0.060(0.006) 0.292(0.087)  —0.164(0.038)
a:1 0103(0.056)  —0.015(0.184)  0.1550.031)  —0216(0.116)
Hil5  —0M50.070) . 1697(0.550) 1 TL085(1277) - 0.177(0.067)
1 7:0.3:77 —0.011(0.001)  —0.033(0.003) 0.087(0.009) " -, —0.049(0.005)
a: 0.056(0.014) 0.306(0.843) 0.400(0.204)  —0.195(0.062)
w3 —0.011(0.012) - 0245(0115){.{-?--'-:'- 0.525(0.316)  —0.047(0.016)
M w:03  —0.0250.001)  ~0073(0.008)  —0.723(0.002) -0.042(0.003) -,
o —0.057(0.012) 1.125(3.379) 0.081(0.055)  —0.203(0.056) =
0 w:3 —0.008(0.001)  —0.068(0.060) 0.207(0.073)  —0.029(0.004)
SV —0.024(0.004)  —0.089(0.012) 0102(0.011)  —0.077(0.013)
o a:i2 0.010(0.018) . 0.035(0. 0_41_)_ 0.138(0.028)  ~0.213(0.078)
o3 0.118(0.064) -0.406(0.435) 13392125 —0.032(0.084)
Vo x:085 —0.0270.006) - —0.098(0.014) 7 0.037(0.002)  —0.114(0.038)
o o 0.052(0.029) 0.069(0.034) = 0.041(0.010)  —0.193(0.099)
p:3 0.215(0.228) 0.715(1406)  1.963(4.889)  —0.130(0.460)

_ Example 2 (Breasr cancer data). Next, we ﬂlustrate l:he application 0 Ihe new estimation .;._'
_procedure to multiple hypothes1s testing using the breast cancer data from Hedenfalk et al. (2001),:
who examined gene expressions in breast cancer tissues from women who were carriers of the':
hereditary BRCA1 or BRCA?2 gene mutations, predisposing to breast cancer. The breast cancer... .
~ data were downloaded from “http://research.nhgri nih.gov/microarray/NEIM_Supplement/" and. .-

contains gene expression ratios derived from the fluorescent intensity (proportional to the gene™ -~

" expression level) from a tumour sample divided by the fluorescent intensity from a common
reference sample (MCF-10A cell line). The ratios were normalized (or calibrated) such that the
majonty of the gene expression ratios from a pre-selected internal control gene set was around
1.0, but no log-transformation was used. The data set consists of 3,226 genesonny =7 BRCA1
arrays and ny = 8 BRCA2 arrays. If any gene had one or more measurement exceeding 20, then
this gene was eliminated (Storey & Tibshirani, 2003). This left 3,170 genes. The p-values were
calculated based on permutation tests (Storey & Tibshirani, 2003). We then transformthe p-values
via the probit transformatlon to z-score, given by z; = @~ 1(1 —pi) (McLachIan & Wockner,
2010). Figure 6 dlqplays the fitted densities, and Table 14 lists the parameter. estimates of the four
methods discussed i lhc article. MPHD estimator shows that among the 3170 genes examined,
around 29% genes are dlfferentlally expressed between: those tumour types, which is close to
the 33% from Storey & Tibshirani (2003) and-32.5% from Langaas, Lindqvist, & Ferkingstad
(2005).

Let

F0(zi) = Ry (z)/ Rde(z) + (1 — #) Flzi — )]

DOE 10.1002/cjs The Canadian Journal of Statistics/ La revue canadienne de statistique
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TABLE 12: Bias (MSE) of point estimates for model (3), under 2% contamination from U/(10, 20), over 200
repetitions with n = 1, 000

Case TRUE MPHD Maximizing 7-type EM-type Symmetrization
I 7:03  —0.083(0.015) 0.049(0.003) 0.291(0.085)  —0.211(0.051)
11 0.099(0.026): =~ —0.128(0.022) © © " 0178(0.033)  —0.096(0.050)
wil5 011600039} 7 0.706(0.515) 7 " - LO68(L162) . —0.258(0.085)
o 7:03 - —0.012(0.001) —0.042(0.002) 0.092(0.009)  —0.05(0.003)
o: T 0.025(0.003) - —0,031€0.007) == . 0.422(0.189)  —0.199(0.045)
w3 —0.008(0.002) ©_~ 0.299(0.099) ©  0537(0297)  —0.047(0.005).
. 7:03 - 0.021(0.001) —0.053(0.003) 0.004(0.001)  —0.042(0.002)"
AR —0.040(0.004)  —0.033(0.006) 0.185(0.050)  —0.194(0.042) .-
w3 —0.004(0.001) 0.208(0.049) 0.302(0.099)  —0.02(0.001)
Vw07 =0.079(0.008) 2 0.110(0.012)  —0.059(0.004)
a2 ~0.045(0.013) 7 10178(0.034)  —0.187(0.042)"
Cpi3c < 0.493(0.324) =7 : 1.386(2.005) 0.024(0.012)
v 7:0.85 . —0.019(0.001) —0.081(0.008) - 0.053(0.003)  —0.070(0.008)
o2 0.013(0.004) —0.008(0.007) 0.083(0.009)  —0.167(0.034)
g3 e 0.193(0.064) 0.909(1.093):.  2.559(6.866)  0.038(0.068)
Fay
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FiGure 2: MSE of point estimates of p of model (3), over 200 repetitions with # == 1, 000,
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FIGURB 3 MSE of pomt estimates of W of model 2}, :mdcr 2% contamination from (10, 20) over 200 - '

be the ciasmﬁcatlon probablhty that the ith gene isnot dlfferenmlly expressed. Then we select al]i _
genes with To(z;) < ¢ tobe differentially expressed. The threshold ¢ can be selected by controlling: :,
.tbe false discovery rate (FDR, Benjamini & Hochberg, 1995). Based on McLachlan, Bean, & Jones .

FrGure 4: MSE of point estimates of x of model (2), under 2% contamination from /10, 20), over 200
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}'IGURE 5 Hi %togram of the ﬁrst prmmpa} component in the Iris data.

. (2006), the FDR can be estimated by

e I R 7 N :, " )
FDR = — Z Tolzi) o, q01 To(24),
T E

- .W.here Ny =37 T IO(Z,-_) is the total number of found dlfferentaally expr ssed genes and F4(x)

is the indicator function, whichis oneif x € A and is zero otherwise: Table: '15 reports the number -

. of selected differentially expresscd genes (N,) and the estimated false dlscovery rate (FDR) for
' deferent threshold ¢ values based on MPHD esumate _For comparison, we also include the results
of McLachlan & Wockner (2010), which assumes a. two -component: mlxture of heterogeneous .
‘normals (MLE) for z;s. S s

5.'D'IS'-CUSSION T -
In this paper, we proposed a MPHD estimator fot a class of semiparametric mixture mod_éik and
investigated its existence, consistency and asymptotic normality. Simulation study shows that the

© TABLE 13: Bstimates of first principal component in Iris data. N

Variable True value MPHD - - Maximizing }t—‘r:ype -~ EM-type.  Symmetrization

0.3000 0.3195 0.3986 0.2896 0.3266
o 0.2208 0.2457 4.6000 0.1629 0.2055
2 3.9469 3.9526 2.6240 3.6979 39077
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FiGURH & 'Br_éast cancer data; plntﬁir)f ﬁﬁgd two—corﬁponént mixture model with theoretical N(O, 1) nult
~:" ' and non-null component (weighted respectively by 7 and (1 — 7)) imposed on histogram of z-score.

. '7 MPHD estimator outperforms existing estimators when data are under contamination, while it; .
~ performs competitively to other estimators when there is no contamination. '
- ¢ Weindicated two fields of application of the model. The first is microarray data analysis, which

- 18 the initial motivation of introducing model (2) (see Bordes, Delmas, & Vandekerkhove, 2006). -

- The second is sequential clustering algorithm, which is the initial motivation of introducing model . -

;f (3} (see Song, Nicolae, & Song, 2010) Two real data apphcatlons are also provided to ﬂ]ustrate
- the effectiveness of the proposed methodology.

+ " Inthis article, we only considered the asymptotic results for model (2) since its identifiability .
_ property has been established by Bordes, Delmas, & Vandekerkhove (2006). When the first
“component of the general model (1) has normal distribution, empirical studies demonstrated the
success of proposed MPHD estimator. We conjecture that the asymptotic results of MPHD also
apply to the more general model (1) when it is identifiable. However, it requires further research to
find sufficient conditions for the identifiability of model (1). In addition, more work remains to be
done on the application of MPHD estxmauon m regressmn settings such as mixture of regresswn
models. : :

‘TABLE 14: Parameter estimates for the breast cancer data. :

Variable MPHD Maxmuzmg m-type. - EM-type Symmetrization

14 0.7109 0.6456 0.8365 0.5027
o 1.0272 i 11441 10773
H 1.8027 - L6756 L9366 10765
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TaBLE 15: Estimated FDR for varous levels of t_hc thrcshold c apphed to thc postenor probability of
nondifferentially expression for the breast cancer data.

MLE MPHD
c N, FDR N, FDR
0.1 43 - 0.06.7 =179 L0052
0.2 - 338 011 CB20 0.093
0.3 539 0.16 477 0.144
0.4 T M43 o 624 . 0193
05 o 976 - 027 780 L 0.244

APPENDIX :

The.proofs of Theorems 1, 2 and 3 are prcsented in this section.

Pmof of ; Theorem 1. The method of proof is snmlar to that of Theorem 2.1 of Beran {1977)

(1) Let d’(t)-— 1 i/fz(rha Yy~ 9 f” For any sequence {th th €Oty > tasn 5 oc}

|d2(t")_d2(t>'-='if s g ) "1/2("”2“"‘ [0y, - "2(x))2dx
- 2’] (h:"/’l}(r"’hﬂ )(x) rf(th& }(x))hl/z{x)d_x’

<2

= =
1/2 1/2 : l! _
krn,f(r kg T Prsiig )i

. Since f hfn,f(fn,hﬂ f)(x)dx Ef t,f(f,hg f}(x)dx;= _1_, we have

2 L 2
12"
= ] I:hfmf(fn hg 2~ ff(nhe‘f)(x)}

= f Ih:t,f(r,ha I = Ry fen g f)(x)} dx

Ly 2 1/2 _
kéhrmf(r,,,haf) - kr,f(r,ha_-f)

. ) . - ) +" .

= 2/ Eihbf{f;he‘f)(x) ha kr,,,f(t;;,.’wj)():)} dx.
Also, [A;, flehg f)(x) —hy, f (zxrrr;hé ;)(x)]‘k = Ay ruh P f)(x), and A, 7 n 0 f)(x) is continyous in ¢ for
every x. Thus, by the Dominated Convergence Theorem, likzln/,zf(r,,,h o) h,l,?(t= hg ) | > 0 as

n — 0o. So, d(#;) — d(t) as n — oc, that is, d is continuous on & and achieves a minimum for
e,
(i) By assumption, kg f is identifiable. Immediately, we have T'(hg f) =8 um'quely.g
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(i) Let dp 0 = [y 7,5, 3 — bl and d(r) = iik:?& o) hy® . By Minkowski’s inequal-

ity,

12 172
|dn(rJ—d(r}1:l[ f (hi?&,h,,)(x)—hi”(x))zdx} - [ f i g ) = hg, 200)2@]

172
s{ / [3?&,,,(1) hi/2) = hi?‘(rh'& )(x)—i-h]/z(x)} }

P 2 12
"{2 f [”rl,ffz(:,m?f") - hiﬁr;f_:‘g’-j;).@} Lx 2 f [0 = 1y (X)J }

Conseqqeﬂﬂy,

; 2
; 1/2 ’
af(r,__hn)(x)*hr.f(r,ha )(’”)} dx

sup |d, (1) — d()] < {2sup f [;;iﬂ
1@ | >

h 2/ [hlﬂ(x)—h”z(.x)} } , e (10)_

i and the right hand side of (10) goes to zero as e 00 by assumptions. Then Wlﬂl (90 = T(h 0, f) .
Cand 8, = T(h,,) we have d,(#o) — d(fo) and d(8;) — d(8,) — O asn — oo -

- If #, —+ Bp, then there exists a subsequence-{#,} C {6} such that 8, — ¢ # 8, implying

" that ¢ € © and’ d(0nm ) — d(#) by the continui d. From the above result, we have d,,(8,,) —
dyy(80) — d(8") — d(By). By the definition of 8, dm(8p) — du(fp) < 0, and therefore, d(#') —
d(#p) < 0. However, by the definition of #p and the mﬁ_iqueness of it, d(#') > d(fp). Thisisa . :

" coniradiction, and the1efore() — Bg ’ HETR e n

L Pr oof of Theorem 2. Let H, dcnole lhe erm

: aicdfole,Xg,_._.. X,,,wmch are assumed | |
. 11d w1thdens1tyhgfandcde Let L

o o) = Cosn™ [ KiCeasn) "= yHO).
Let E,, (x) = nV2[Hyy(x) — H(x)] then

: sapmn(x)—ﬁn(x)i=s‘ii?'f?;1f2<cn =t f KlGens)™ 6 — )B,0)|

<n- !(c,lsn)f_sup]Bn(x);/|K’(x)gdx—">o. : | (11)

Suppose [a, b] is a.n mterval that contains the support of K , then

.. 'n_t“)dt B hgsf(x)

sup |tz (x) — hg. f(x)| s:sﬁp:. / K_(t)h 0. f_(x

hﬂ,f(x cnsnj)]K(r)dt—hg f(x)

= sup , with & € [a, 5]
<sup sup |hg f(x —Cnspl) — hg f(x)| 20 (12)
x rela,bl
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From (11} and (12), we have
sup [/ (x) — hg (x)] £o.
X

A2 —n I/Z(x)uwa,o and

From an argument similar to the proof of Theorem 1, i
supjce I, s,y ~ e fieig i = O as n > 00. By Theorem 1, T(hy) > T(hg, ;) asn — oc.

Proof of ﬂ__zeo_reﬁ; 3. 'Let

and it follows that D(T(hg ;) hg ;) =0, D(T(ﬁ',,),ﬁ,,) = 0, and therefore

0= DTl ) = DXT (g ). g, f}"
LX), o) — D(T(hg f) Fai+ [D(T(he f) h,,)

D(T(hg, ), kﬂ f)l

that is continuous in #. Then,

DT Ghn, o) — DT g, ) = (L) — Ty DD g ), )+ 0p(Thn) — Tihg ).

- With 6 = T(hg ),

DIk g, F) — D(T(hg 7 ,,ha =< Sphylnl” > = < 01 gl >

f
_2<s,9h01 hl/z—hl/2>;i—<sah"-.s‘9h9 hlﬂ'_:i

: —h”

172
6f>+<50h h0f>_<h/’s0"3f

__ 2 < 33 ;,0 hlfz _ hé/z > +[< Se,fl,,’ h(),f>

. ',_ < h}T/’ . S‘G’hﬂ ; =]+ O(H.S‘aﬁn
— A2 1/2

e P 1/2 ~ 1/2
=2 <igpy = ha/ > +op(Ih)/* — kg 31)-

Applying the algebraic identity

b2 -0l = @ ~ a)/ad'?) ~ b — P 124" 2@ + & V),
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we have that

12 n1/2 172 1/2
n'/ <S9’]10f,h”/ —hy >—n//ghaf

hn ) — h&ﬁf(x)
Zh;{ i.(x)

h (x)
ni/? x)———dx + R
- / Ghof( )Zh”z(x) i

+ R,

e X;
W12 15:?“&(- )
24 I/Z(X)

—!—op(l) +Rn

S By @ ' o e
<nl? [ > [h (x) — ]16 f(x)}zd.x — 0. Since < 3g ” hé/ i, > is assumed to
. 1 '
B B,f
be invertible, then
n ) U E '; 1 " 3‘9 ffg (X;) in
Tha)—T kg, ) = - <oy, hy > ?Lopa)] =y W 0p(n='%)
S eyl S ,r—} X, :

and therefore the asymptotic dlslrlbutlon of nIﬁ(T (h,,) T(hg ) is N (0, E) w1t' variance f_
matrix T dcﬁned by

L V2 1 i B2 L1
P BTV LTy TR LT Vi
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USING e-ANNOTATION TOOLS FOR ELLECTRONIC PROOF CORRECTION

Required software to e-Annotate PDFs: Adobe Acrobat Professional or Adobe Reader {version 3.0 or
above). {Note that this document uses screenshots from Adgbe Reader X)
The latest version of Acrobat Reader can be downloaded for free at: http;/iget.adobe.comireader!

Once you have Acrobat Reader open on your computer, dick on the Cormment 1ab at the right of the taalbar:

~* Asnctations. .| T

This will open up a panel down the right side of the document. The majority of
toods you will use for annotating your proof will be in the Annctations section,
piciured opposite, We’ve picked out some of these tools below:

1. Replace {Ins} Tool -~ for replacing text. 2_ Strikethrough {Cel} Tool - for deleting text.
Strikes a line through text and opens up a text E":-% Strikes a red line through text that is to be
/ box where reptacement text can be entered. i deleted.
.‘ How to use it How to use it
« Highlight a word or sentence. = Highlight a word or sentence.
« Click on the Replaca {ins) icon in the Annotations »  Click on the Sirikethrough (Def} icon in the
section. Annotations section.
«  Type the repiacement text into the biue box that
appears.
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3, Add note to text Tool - for highlighting a section 4, Add sticky note Tool — for making notes at
to be changed to bold or itafic. specific points in the text.

ER T

\;/;;) i Marks a point in the proof where a comment
- needsto ba highlighted.

Highlights text in yellow and opens up atext
bax where comments can be entered.

How to use it How to use it
« Highlight the relevani section of lext. + Click onthe Add sticky note icon in the
»  Click on the Add note to text icon in the Annetations sectian.
Annotations seclion, + (lick at the point In the proof where the comment
» Type instruction on what should be changed should be inserted.
regarding the text inte the yellow box that +« Type the comment into the yeltiow box that
annears. appears.
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USING e-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION

5. Attach File Tool - for inseriing large amounts of 6. Add stamp Tool — for approving a proof if no
text or replacement figures. corrections are required.

Inserls an icon linking to the attached file in the Inserts a selected stamp onto an appropriate

apprqpriate pace in the text. place in the proof.
How to use it How to use it

+ Click on the Attack Fite icon in the Annotations +  Click on the Add stamp icon in the Annotations
section. seclion,

« Click on the proof to where you'd like the attached « Selectthe stamp you want to use, {The Approvad
file to be linked, stamp is usually available direclly in the menu that

» Select the file to be attached from your computer appears).
or netwark. « Click on the proof where you'd fike the stamp to

«  Select the eolour and type of icon that will appear appear, (Where a preof is fo be approved as it is,
in the proof. Click OK. this would normally be onh the first page).
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¥ Drawing Markups . . ..

7. Drawing Markups Tools — for drawing shapes, lines and freeform
annotations on proofs and commenting on these marks.

Allows shapes, lines and freeform annotations to be drawn on proofs and for
comment to be made on these marks..

Y N —— ] e
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AT Mark Up Ty | N Incorparations
How to use it 4 Pt -1 -
« Click on one of the shapes in the Drawing R - 1 ’

Markups section,

» Click on the preof at the relevant peint and
draw the selected shape with the cursor.

« Toadd a comment to the drawn shape,
move the cursor over the shape until an
amrowhead appears.

+ Double click on the shape and type any
text in the red box that appears.
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