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Abstract

We note, an agent’s preferences over different strategies in an exploration prob-

lem can only identify the margins of her beliefs. However, classical notions of

consistency of beliefs, for example adherence to Bayesian updating, regard the

joint distribution. We develop the relevant environment and tools to solve this

issue: We introduce a necessary and sufficient condition on the margins of an

agent’s beliefs to be consistent with an exchangeable process. Such a consistent

process is typically not unique; contemporaneous correlation cannot be identified.

We conclude, contemporaneous correlations do not affect the optimal strategy in

classical bandit problems.
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1 Introduction

In exploration models an agent has to choose, every period, one project out of several in which to

invest.1 By observing the outcome of an investment, the agent learns both about the chosen project

and, in case the outcomes across different projects are correlated, about other projects as well. Each

decision is predicated on the fundamental tradeoff between the immediate value of the investment

and the future value of the information obtained by observing the outcome. Therefore, the agent’s

optimal investment strategy is a function of the history of observed outcomes, the projects that will

be feasible in the future, and her beliefs regarding the true process generating the outcomes of each

project.

While the generating process jointly determines all projects’ outcomes each period, when consid-

ering an investment strategy, an expected utility maximizing agent cares only about the outcome

of the chosen project. As such, the agent’s behavior in exploration problems can reveal only the

margins of her beliefs—her beliefs about each individual project conditional on the history.2 Deter-

mining whether these marginals are consistent—if the agent’s beliefs at different times are related

via Bayesian updating and information arrival—requires a richer understanding of the agent’s beliefs.

Classical statistical tools regard the full joint distribution over the projects’ outcomes. Hence, without

the analysis that follows, an analyst would not be able to determine if the agent in an exploration

problem is statistically sophisticated.

By considering the proper environment and developing the relevant tools we answer the follow-

ing three questions: (i) What restrictions on the marginal beliefs ensure they are consistent with an

exchangeable process jointly determining the projects’ outcomes? (ii) When the marginals are con-

sistent with an exchangeable process, is such a process unique? and (iii) Can we draw insights from

our identification on the theory of exploration problems?

Recall, an exchangeable process is one in which the belief does not depend on the order of infor-

mation arrival. Exchangeability has long been the cornerstone of the subjectivist, Bayesian paradigm

in the context of repeated experimentation,3 and our interest in exchangeability is tantamount to

an assumption that the agent places no special importance to the period in which an outcome was

observed. Note, however, that de Finetti’s exchangeability condition can not be directly tested in our

framework, since the agent does not observe the outcomes of different projects simultaneously. Thus,

to answer (i), we provide a condition termed Across-Marginal Exchangeability (AM-EXCH), which

dictates that the marginal beliefs are invariant to jointly permuting both the order in which projects

are chosen and the corresponding outcomes. Across-Marginal Exchangeability is clearly necessary for

the agent’s beliefs (i.e., the marginal beliefs assessable to the modeler) to coincide with the marginals

of an exchangeable process. We here show that it is also sufficient, generalizing de Finetti’s repre-

sentation result to frameworks (such as the exploration environment) in which only marginals can be

observed.

1The modern treatment of exploration models were introduced by Robbins (1952), building on earlier ideas of
Thompson (1933), and have since been extensively studied in the statistics literature (as bandit problems), and widely
incorporated in economic models (as search problems, stopping problems, research and development, experimentation,
portfolio design, etc). See Berry and Fristedt (1985) for an overview of classic results within the statistics literature.
For a survey of economic applications see Bergemann and Välimäki (2008).

2In the supplemental online appendix we provide a theoretical framework substantiating this observation.
3See for example de Finetti (1972); Diaconis (1977); Schervish (2012).
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The answer to (ii) is more subtle. In the subsequent Section 2, we show that in the finite horizon

case, where the agent chooses investment strategies over n-periods, her beliefs are sometimes (but

not always) uniquely identified. When considering the infinite horizon, the identification problem

is more severe despite the fact that the modeler has access to more data. This is because Across-

Marginal Exchangeability imparts more constraints as the horizon is longer, excluding the cases where

identification is possible. For infinite exploration problems, the consistent exchangeable model is never

completely identified. In particular, contemporaneous correlation (i.e., the likelihood of an outcome of

project a in a period given the outcome of project b in the same period) carries no economic content

in such exploration problems. Nevertheless, we can still point to a meaningful representative even

under the partial identification: within the class of exchangeable processes consistent with the agent’s

marginal beliefs there is a unique process for which outcomes are contemporaneously independent.

And so, to answer (iii), the optimal strategy in infinite horizon bandit problems do not depend on

contemporaneous correlations if the ex-ante description of the problem is exchangeable. While this

is a negative result from the modeler’s vantage—the general stochastic process governing beliefs can

only be partially identified—it is a boon to the agent: when solving an exploration problem, contem-

poraneous correlations can be ignored without changing the set of optimal strategies, simplifying her

decision problem.

2 Beliefs and the Value of Investment Strategies

Consider a standard exploration problem. There is a finite set of consumption outcomes X, over

which a utility function u : X Ñ R is defined, and a compact, metrizable set of actions A, where each

action a P A can yield any of the outcomes in Sa Ď X. Each period the agent has to choose one (and

only one) action, the outcomes of which she observes and derives utility from. A history of length

n P N is a sequence of n action-outcome pairs, h “ pa1, x1; a2, x2; ¨ ¨ ¨ ; an, xnq, where xi P Sai for every

i P n. The set of finite histories is denoted by H. Similarly, an infinite history is an infinite sequence

of action-outcome pairs, pa1, x1; a2, x2; ¨ ¨ ¨ ; ai, xi; ¨ ¨ ¨ q, where xi P Sai for every i P N. Future payoffs

are discounted by δ P p0, 1q, thus an infinite history ĥ “ pa1, x1; a2, x2; ¨ ¨ ¨ q is valued according to

discounted utility,

Upĥq “
ÿ

iPN
δi´1upxiq.

A strategy in this environment is a function, σ : H Ñ A, determining which action to take

following every possible finite history. Since the outcome of a given action is uncertain, the agent’s

beliefs determine which action she prefers to take following every history, and in sum, her optimal

strategy. Towards formalizing this, let SA ”
ś

aPA Sa, and S ”
ś

ně1 SA (when considering a finite

horizon problem, S refers to the n-fold product of SA). The set S represents the grand state-space; a

state determines the realization of each action in each period. The uncertainty over the state space,

that is the agent’s beliefs over what is the state generating the actions’ outcomes, is typically captured

in applications through a probability ζ P ∆pSq.
Given such a belief, ζ, every strategy, σ, induces a unique countably additive probability Pσ over

the set of infinite histories.4 The agent values a strategy according to its expected utility with respect

4Endowed with the Borel sigma-algebra generated by all finite histories. We identify each finite history with the set
of infinite histories that extend it.
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n “ 2

sa, sb sa, fb fa, sb fa, fb

n “ 1

sa, sb 0 0 0 1
2

sa, fb 0 0 0 0

fa, sb 0 0 0 0

fa, fb
1
2

0 0 0

(1A:J)

n “ 2

sa, sb sa, fb fa, sb fa, fb

n “ 1

sa, sb 0 0 0 1
4

sa, fb 0 0 1
4

0

fa, sb 0 1
4

0 0

fa, fb
1
4

0 0 0

(1B:J)

Figure 1: Figure 1A:J shows the joint distribution for Example 1.A and 1B:J shows the joint distri-
bution for Example 1.B.

to the probability it induces over infinite histories. That is,

V pσq “ Eσ

´

Upĥq
¯

, (1)

where Eσ denotes the expectation operator with respect to Pσ. The agent’s optimal strategy, if such

exists, is the one maximizing V p¨q.

Remark 1. Denote by µh,apxq the ζ-probability, that conditional on an n-period history h, action

a yields outcome x in period n ` 1. Given two agents pU, ζq and pU, ζ 1q such that tµh,auhPH,aPA “

tµ1h,auhPH,aPA then V “ V 1: the agents rank strategies identically.

In other words, while the probability ζ completely specifies the underlying uncertainty over the

joint realization of all actions following every history, the agent’s valuations are determined entirely

by the margins of this process: tµh,auhPH,aPA. To obtain Remark 1, notice that for a finite history,

h P H, and an action, a P A, Pσph; a, xq is defined by

Pσph; a, xq “ Pσphqµh,apxq (2)

if σphq “ a and x P Sa. Otherwise, the probability is 0. By standard arguments Pσ is uniquely

determined by its measure of finite histories. By examining (2) it is clear that Pσ, and therefore Eσ,

depends only on tµh,auhPH,aPA.

Remark 1 indicates that an analyst with access to data regarding choice or preference over strategies

in an exploration problem—no matter how detailed—can never identify more than the marginals of

the agent’s beliefs. The remainder of this paper explores the limits of inference that can be made

when the marginals, but nothing more, are identified. Of course, Remark 1 does not ensure that

tµh,auhPH,aPA are themselves identifiable from any type of observable data. This latter question is

formally answered in the affirmative in the supplemental appendix—we conduct a decision theoretic

exercise, construct the set of expoloration strategies, and provide the axioms allowing us to determine

whether the agent is indeed a discounted subjective expected utility maximizer, as in Eq. (1). We

uniquely identify the marginals, tµh,auhPH,aPA (and the utility parameters, u and δ).

Example 1.A. Consider a two-period problem where in each period the agent has to choose between
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two projects, a and b, each of which can either succeed or fail: Sa “ tsa, fau and Sb “ tsb, fbu. The

agent believes that each project will have exactly one success, equally likely to be in either period,

and, moreover, believes the two projects will succeed and fail jointly.5

The corresponding process ζ P ∆pSq is given by the table in Figure 1A:J; a row corresponds to

a joint outcome of the two projects in period n “ 1, and a column to a joint outcome of the two

projects in period n “ 2. By Remark 1, we assume the modeler cannot observe ζ itself but instead

the marginals,

µHphxq “
1

2
µpx,hxqpgyq “ 1 µpx,hxqphyq “ 0. (1A:M)

Where x, y P ta, bu and h, g P ts, fu with h ‰ g.

Assume further that the per-period utility associated with each outcome is upsaq “ 9, upfaq “ ´9,

upsbq “ 18, and upfbq “ ´18. The agent is an expected utility maximizer, and her total utility is the

sum across the two periods. Given these restrictions on preferences, (1A:M) determines the agent’s

valuation of investment strategies. Indeed, for x, y, z P ta, bu, let px, py, zqq denote the strategy in

which the agent takes action x in the first period, and y conditional on x’s success and z on x’s

failure. The agent’s valuations for strategies are given as follows: V px, py, zqq “ 0 if y “ z, and

V pa, pa, bqq “ V pb, pa, bqq “
9

2

V pa, pb, aqq “ V pb, pb, aqq “ ´
9

2
.

(1A:P)

The exchangeable belief, ζ as defined by (1A:J), is in fact uniquely determined by the marginal

beliefs. Although we do not assume that ζ is observed, it is identified by the agent’s preferences

over strategies. In particular, we can identify that the agent believes the two projects are perfectly

correlated.

Example 1.B. If, instead, the agent believed each project will have exactly one success, equally

likely to be in either period (as above), but unlike the previous example believed that the projects

were independent of each other, she would entertain the joint distribution given by Figure 1B:J, the

marginals of which are,

µHphxq “
1

2
µpx,hxqpgxq “ 1 µpx,hxqphxq “ 0

µpx,hxqpgyq “
1

2
µpx,hxqphyq “

1

2
.

(1B:M)

Where x, y P ta, bu with x ‰ y and h, g P ts, fu with h ‰ g. This of course has a corresponding change

5Examples 1.A and 1.B would have similar implications if we considered a somewhat less extreme point of view in
terms of the probabilities. For instance, the same conclusions would have been reached had we considered projects
yielding s or f in the first period with equal probability, while in the second period, a project that was a success in
the first period also yields s in the second period with probability 4

9
, and given a failure in the first period, a project

yields s in the second with probability 5
9

. Such negative auto-correlated processes are the typical representative of
exchangeability in finite horizon models, and have been used extensively in the finance literature (see for example
Poterba and Summers (1988); Berk and Green (2004) and references therein.)

5



n “ 2

sa, sb sa, fb fa, sb fa, fb

n “ 1

sa, sb
5
16

0 0 3
16

sa, fb 0 0 0 0

fa, sb 0 0 0 0

fa, fb
3
16

0 0 5
16

n “ 2

sa, sb sa, fb fa, sb fa, fb

n “ 1

sa, sb
41
256

15
256

15
256

9
256

sa, fb
15
256

9
256

9
256

15
256

fa, sb
15
256

9
256

9
256

15
256

fa, fb
9

256
15
256

15
256

41
256

Figure 2: Two alternative joint distributions discussed in Example 2.

in the agent’s valuations: V px, py, zqq “ 0 if y “ z, and

V pa, pa, bqq “ ´
9

2
V pb, pa, bqq “ 9

V pa, pb, aqq “
9

2
V pb, pb, aqq “ ´9.

(1B:P)

While the above example shows that the correlation between projects can potentially affect (or, be

recovered from) the agent’s preferences—or equivalently her marginal beliefs—it is not typical. The

inherent observability constraint in the standard framework of experimentation generally bears a cost;

the exchangeable process with which our observables are consistent is often non-unique.

Example 2. Let the actions and outcomes be the same as Example 1.A. The agent considers two

equally probable possibilities: in the first both projects have a 1
4 likelihood of succeeding in both

periods (i.e, i.i.d over time, with probability 1
4 ) and in the second the likelihood of success is 3

4 .

Consider the two joint distributions in Figure 2. The left panel is the joint distribution when the

agent believes the two projects intra-period successes and failures are perfectly correlated, whereas

the right is when they are perfectly independent.

Under the case of perfect correlation, the outcome of project a in period 0 perfectly identifies

what would have happened had project b been chosen instead. At first glance, this information seems

valuable for the agent’s exploration problem, however, both joint distributions impart the exact same

restrictions on marginal beliefs:

µHphxq “
1

2
µpx,hxqpgxq “

3

16
µpx,hxqphxq “

5

16
(2:M)

Where x, y P ta, bu and h, g P ts, fu with h ‰ g. Therefore, the agent’s valuation of all strategies, and

in particular her optimal strategy, is unaffected by the correlation between the two actions.

In Example 1 the agent’s preferences over strategies perfectly revealed her perceived contempora-

neous correlation between the two projects. In Example 2, we can infer nothing about how the agent

perceives the contemporaneous correlation. The latter proves to be the rule. In the sequel, we show

that in the infinite horizon problem, beliefs can never be fully identified. Fortunately, the obstruction

can be precisely delineated; contemporaneous correlations stand as the only obstacle thwarting the

identification of the agent’s joint beliefs.
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3 The Statistical Framework

In order for a modeler to understand the DM’s updating process, and whether it follows Bayes rule, we

need to construct her beliefs regarding not only each action individually but also her beliefs regarding

the possibly joint outcomes across all actions (in particular, the correlation between actions). As

we will see, in the generic case we have insufficient data to uniquely identify a (subjective) joint

distribution. We will still, however, be able to identify a representative with unique properties.

Observable Processes. Consider the family T of all sequences of individual experiments (i.e.,

individual actions), where different experiments can be taken in the different periods. Let T “

pT1, T2, ...q where Ti P tSa : a P Au for every i ě 1; so, each Ti corresponds to taking an action,

say a, and expecting one of its outcomes, Sa. (Like before Sa corresponds to the set of possible

outcomes.) T is then the collection of all such T’s. For each T “ pSa1 , Sa2 , ...q let ζT P ∆BpTq

be a process over T; a distribution over all possible outcomes when taking action a1, followed by

a2, followed by a3, etc.6 For a given history of action-outcomes pairs, h P pa1, x1 . . . an, xnq, we say

h P T “ pT1, ..., Tn, Tn`1, ...q whenever Sai “ Ti for 1 ď i ď n (and maintaining the above assumption

that xi P Sai). In a slight abuse of notation, we can identify each h “ pa1, x1 . . . an, xnq P T with the

event in T such that first n outcomes are px1 . . . xnq, so as to make sense of ζTphq and ζTp¨ | hq. Lastly,

for a sequence of experiments T “ pT1, ..., Tn, Tn`1, ...q and a permutation π : t1, ..., nu Ñ t1, ..., nu,

denote πT “ pTπp1q, ..., Tπpnq, Tn`1, ...q.

A Subjective Expected Experimentation (SEE) belief structure is a family of processes

tζTuTPT , such that for any T,T1 P T and h P H if h P T and h P T1, then ζTphq “ ζT1phq. This

condition imposes that the probability of outcomes today do not depend on which experiments are to

be conducted in the future.

Remark 1 in the previous section shows that the DM’s belief over S, ζ, is identified only up to

the marginal beliefs, tµh,auhPH,aPA (and this identification is tight, as shown in the supplemental

appendix). Each such family of marginals uniquely determines an SEE belief structure in the obvious

manner. Given tµh,auhPH,aPA and a sequence T “ pSa1 , Sa2 , ...q, ζT is the unique (countably additive)

process satisfying

ζTphq “ µH,a1px1q ¨ µpa1,x1q,a2px2q ¨ ¨ ¨µpa1,x1,...,an´1,xn´1q,anpxnq

for all h P H. In fact, SEE belief structures are exactly the set of processes that can be constructed

from a family of marginal beliefs, tµh,auhPH,aPA.

Exchangeable Processes and Consistency. Recall, SA ”
ś

aPA Sa, and S ”
ś

ně0 SA. S
represents the grand state-space; a state determines the realization of each action in each period.

Now, we say that an SEE belief structure tζTuTPT is consistent with ζ P ∆BpSq if ζ|T (that is,

the marginal of ζ to T) coincides with ζT, for every T P T . In such a case the processes ζ, which we

cannot observe, explains all our data.

6For any metric space M , denote ∆BpMq as the set of Borel probability distributions over M , endowed with the
weak*-topology.
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Because it forms the basis subjective Bayesianism and for the statistical literature on exploration

problems, we will pay particular attention to the class of exchangeable processes.

Definition. Let Ω be a probability space and Ω̂ “
ś

ně1 Ω. The process ζ P ∆BpΩ̂q is exchangeable

if for any finite permutation π : NÑ N and event E “
ś

nPNEn, we have

ζpEq “ ζp
ź

nPN
Eπpnqq. (3)

From the economic vantage, a DM who understands there to be an exchangeable process governing

the outcome of actions would be considered Bayesian. A DM with exchangeable beliefs (acts as if

she) entertains a prior on the data generating parameter and updates her beliefs following every

observation. This interpretation is due to the fundamental results of de Finetti (1931, 1937) and later

extensions of Hewitt and Savage (1955).

Remark 2 (de Finetti). The process ζ P ∆BpΩ̂q is exchangeable if and only if there exists a probability

measure θ over ∆BpΩq, such that

ζpEq “

ż

∆BpΩq

D̂pEqdθpDq, (4)

where for any D P ∆BpΩq, D̂ is the corresponding product measure over Ω̂. Moreover, θ is unique.

We would like to understand under what circumstances an SEE belief structure is a result of

Bayesian updating. If we could infer from preferences the beliefs over the joint realizations of all

actions, that is
ś

aPA Sa, then our questions would boil down to verifying whether this process satisfies

exchangeability. However, we can only infer the beliefs over each action separately, and thus, our task

remains. We need to find a condition on the family of ζT’s that determines whether it follows Bayes

rule.

Definition. An SEE belief structure tζTuTPT is Across-Marginal Exchangeability (AM-EXCH)

if

ζTphq “ ζπTpπhq

for every T P T , h P T and a finite permutation π : NÑ N.

Intuitively, AM-EXCH requires that if we consider a different order of experiments, then the

probability of outcomes (in the appropriate order) does not change. The next theorem states that

Across-Marginal Exchangeability is a necessary and sufficient condition for an SEE belief structure to

be consistent with Bayesian updating of some belief over the joint realizations of all actions.

Theorem 1. An SEE belief structure tζTuTPT satisfies AM-EXCH if and only if it is consistent with

an exchangeable process ζ P ∆BpSq.

Theorem 1 is stated without proof. Necessity is trivial and sufficiency will be a straightforward

application of Theorem 2. Although the theorem as stated concerns only infinite-horizon processes,

AM-EXCH is also a necessary and sufficient condition for an finite horizon process to be consistent

with some exchangeable process, provided there exists some consistent joint distribution.7

7The proof in the finite horizon case is quite intuitive. Let η be a consistent joint distribution. For each event E let
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4 Strong Exchangeability

In this section we introduce a strengthening of exchangeability, aptly called strong exchangeability,

that corresponds to the maximal preservation of symmetry implied by AM-EXCH. Strongly exchange-

able process are those under which each dimension can be permuted independently. It will turn out, in

the infinite horizon, strongly exchangeable processes can be characterized as those in which stochastic

independence is preserved both inter-temporally (as in vanilla exchangeability) and contemporane-

ously.8 Putting these results together: if a modeler can only observe the marginals of a DM’s beliefs,

and those marginals are consistent with any exchangeable process (i.e, satisfy AM-EXCH), then the

modeler identify nothing about the DM’s perceived correlation between projects.

Definition. A process ζ P ∆BpSq is strongly exchangeable if for any set of finite permutations

tπa : NÑ NuaPA and event E “
ś

nPN
ś

aPAEn,a, we have

ζpEq “ ζp
ź

nPN

ź

aPA
Eπapnq,aq. (5)

Setting πa “ πb for all a, b P A, delivers the definition of exchangeability. Following the intuition

above, it should come as no surprise that under AM-EXCH, strong exchangeability can never be

ruled out. In other words, there is no SEE belief structure—therefore no preference over exploration

problems—that distinguishes exchangeability from strong exchangeability. Strongly exchangeable

processes are especially relevant with respect to the current focus because they act as representative

members to the equivalence classes of exchangeable processes consistent with the same SEE belief

structure.

Theorem 2. An SEE belief structure tζTuTPT satisfies AM-EXCH if and only if it is consistent with

a strongly exchangeable process. Furthermore, such a strongly exchangeable process is unique.

Proof. In Section 6. �

While there are obvious conceptual similarities, Theorem 2 (and by proxy, Theorem 1) do not

straightforwardly follow from the extant results regarding exchangeability. Because only the marginals

of the DM’s beliefs are observable, the standard definitions of symmetry (or other characterizations of

exchangeability) cannot be directly applied. The proof of Theorem 2 explicitly constructs a consistent,

strongly exchangeable process.

Briefly: consider an event, E Ă S for which En “ SA for all sufficiently large n—E only places

restrictions on the observations for a finite number of periods. The set of all such events generate

the relevant σ-algebra over S, and so determining the value of a process on all such events uniquely

determines the process. For any such event, E, we can permute E in each dimension to construct

another event Ê, for which at most one action is restricted at any given time (that is ta P A |

Ên,a ‰ Sau has at most one element for each n). Since only one action is restricted per period, the

E‹ denote the union of πE for all n! permutations π : nÑ n, where n is the number of periods. Construct ζ as follows:

ζpEq “ ηpE‹q
n!

. The process ζ is well defined and it is clearly exchangeable. Moreover, tζTuTPT = tηTuTPT , since for
all E P T , ηpEq is equal to ηpπEq and therefore also to ζpEq.

8We feel reasonably certain that strong exchangeability must have been studied previously in the statistics literature.
However, we have found no references.
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probability of Ê can be identified by the SEE belief structure, and, under the assumption of strong

exchangeability, we know this also determines the probability of E. The proof shows this process is

well defined.

Just as infinite horizon exchangeable processes can be characterized as being a mixture of i.i.d.

distributions, infinite horizon strongly exchangeable are exactly mixtures of distributions that are both

inter-temporally i.i.d. and lack any correlation between different projects within the same period.

Theorem 3. The process ζ P ∆BpSq is strongly exchangeable if and only if there exists a probability

measure θ over ∆IN ”
ś

aPA ∆pSaq, such that

ζpEq “

ż

∆IN

D̂pEqdθpDq,

where for any D P ∆IN , D̂ is the corresponding product measure over S.

Proof. In Section 6. �

Under a strongly exchangeable process, the DM believes the outcomes of actions that occur at the

same time are independently resolved. Of course, this does not impose that there is no informational

cross contamination between actions. Information regarding the distribution of action a is informative

about the underlying parameter governing the exchangeable process, and therefore, also about the

distribution of action b.

5 A Comment on Bayesianism in Environments of Experimentation

The results in Section 4 have two related implications to Bayesianism in general models of experimen-

tation. First, it is well known that the beliefs of two Bayesians observing the same sequence of signals

will converge in the limit. Our results imply that in a setup of experimentation, different Bayesians

obtaining the same information, might still hold different views of the world in the limit. Their beliefs

over the uncertainty underlying each action will be identical, but they can hold different beliefs over

the joint distribution.

The second point has to do with the possible equivalence with non-Bayesian DMs. Theorem 2

states that AM-EXCH is necessary and sufficient for an SEE belief system to be consistent with some

exchangeable process—but it might also be consistent with a non-exchangeable process. Consider the

following example of a stochastic process. In every period two coins are flipped. In odd periods the

coins are perfectly correlated (with equal probability onHH and TT ), and in even periods the coins are

identical and independent (and both have equal probability on H and T ). The associated observable

processes satisfy AM-EXCH, but the process itself is clearly not exchangeable. Nevertheless, Theorem

2 guarantees that there is a (unique) strongly exchangeable process that is consistent with the SEE

belief structure.

6 Proofs

Proof of Theorem 2. Fix an SEE belief structure tζTuTPT . We first construct a pre-measure ζ̂

on the semi-algebra of cylinder sets. Fix any well-ordering over A. Set ζ̂pøq “ 0 and ζ̂pSq “ 1. Let

E ‰ S be an arbitrary cylinder, i.e., E “
ś

nPN
ś

aPAEn,a, such that for only finitely many pn, aq,
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is En,a ‰ Sa. Clearly, there are a finite number of a P A such that Ek,a ‰ Sa for any k. By the

ordering on A denote these a1 . . . an. For each ai let mi denote the number of components such that

Ek,ai ‰ Ssi , and for j “ 1 . . .mi, let ki,j denote the jth such component. Finally, for each ai, let

πai denote any permutation such that πaipki,jq “ j `
ř

i1ăimi1 . Consider Ê “
ś

nPN
ś

aPAEπapnq,a,

where πa “ πai if a P a1 . . . an and the identity otherwise. That is, for n P 1 . . .m1, Ên,a “ Sa for

all a except a1, for n P m1 ` 1 . . .m1 `m2, Ên,a “ Sa for all a except a2, etc. Let TpEq denote any

sequence such that Tn “ Sai for
ř

i1ăimi1 ă n ď
ř

i1ďimi1 . Again that is, for n P 1 . . .m1, Tn “ Sa1 ,

for n P m1 ` 1 . . .m1 `m2, T2 “ Sa2 , etc.

For the remainder of this proof, for any cylinder E, Ê denotes the corresponding cylinder generated

by the above process, in which at most a single action is restricted in each period. Let TpEq denote

any observable process which observes the sequence of restricted actions. Finally, for any cylinder,

E, which is restricted in most one action each period, and any T which observes each restricted set,

identify E the relevant event in T. So, set ζ̂pEq “ ζTpEqpÊq. This is well defined by the restriction of

SEE belief structures.

To apply the Carathéodory extension theorem for semi-algebras, we need to show that for any

sequence of disjoint cylinders tEkukPN such that E “
Ť

kPNE
k is a cylinder, ζ̂pEq “

ř

kPN ζ̂pE
kq.

Towards this, assume that E,E1 are disjoint cylinders such that EYE1 is a cylinder. Then it must be

that there exists a unique pn, aq such that En,aXE
1
n,a “ ø and for all other pm, bq, Em,b “ E1m,b. Indeed,

if this was not the case, then there exists some pm, bq and some x such that (WLOG) x P Em,bzE
1
m,b.

But then, for all s P E YE1, sm,b “ x ùñ sn,a P En,a ‰ pE YE
1qn,a a contradiction to E YE1 being

a cylinder. But this implies Ê and Ê1 induce the same sequence of restricted coordinates, differing on

the restriction of single coordinate, and therefore, TpEq “ TpE1q. This implies that Ê Y Ê1 Ď TpEq.

Since ζTpEq is finitely additive, so therefore ζ̂pE Y E1q “ ζTpEqpÊ Y Ê1q “ ζTpEqpÊq ` ζTpEqpÊ
1q “

ζ̂pEq ` ζ̂pE1q.

Since ζ̂ is finitely additive over cylinder sets, countable additivity follows if we show that for all

decreasing sequences of cylinders tEkukPN, such that infk ζ̂pE
kq “ ε ą 0, we have

Ş

kPNE
k ‰ ø. But

this follows immediately from the finiteness of Sa. Since Ek`1 Ď Ek, it must be that Ekn,a Ď Ekn,a.

But each Ekn,a is finite, hence compact, and nonempty, because ζpEkq ě ε. Therefore
Ş

kPNE
k
n,a ‰ ø.

The result follows by noting that the intersection of cylinder sets is the cylinder generated by the

intersection of the respective generating sets. Let ζ denote the unique extension of ζ̂ to the σ-algebra

on S.

That ζ is consistent with tζTuTPT is immediate. We need to show that ζ is strongly exchangeable.

Let E be a cylinder. Let π̄a denote a finite permutation for each a P A. Let F “
ś

nPN
ś

aPAEπ̄apnq,a.

Let πai denote the permutation given by the construction of F̂ . Then F̂ “
ś

nPN
ś

aPAEπapπ̄apnqq,a.

This implies there exists some permutation π˚ such that F̂ “
ś

nPN
ś

aPAEπ˚pnq,a. By AM-EXCH,

ζTpÊqpÊq “ ζπ˚TpÊqpπ
˚Êq “ ζTpF̂ qpF̂ q. Therefore, ζpEq “ ζpF q and so, ζ is strongly exchangeable.

Finally, the similar logic show that ζ is unique. Towards a contradiction, assume there was some

distinct, strongly exchangeable ζ 1, also consistent with tζTuTPT . Then, since the cylinder sets form

a π-system, there must be some cylinder such that ζpEq ‰ ζ 1pEq. But, by strong exchangeability,

ζpÊq “ ζpEq and ζ 1pÊq “ ζ 1pEq, so ζpÊq ‰ ζ 1pÊq –a contradiction to their joint consistency with

tζTuTPT . �
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Proof of Theorem 3. First we show that if a process ζ over S is both i.i.d (with marginal

D P ∆pSAq) and strongly exchangeable, then it must be that the marginals of D (on tSauaPA)

are independent, that is D P ∆IN . Indeed, consider two non-empty, disjoint collection of actions,

Â, Â1 Ă A. Let E,F P SÂ, E1, F 1 Ď SÂ1 , be measurable events. Identify En with the cylinder in S:

En “ ts P S|sn P Eu. Since ζ is strongly exchangeable we have that

ζ
`

En X E1n X Fn`1 X F 1n`1
˘

“ ζ
`

En X F 1n X Fn`1 X E1n`1
˘

. (2Sym)

We will refer to the latter weaker property as two symmetry. Now, since ζ is i.i.d generated by D, we

have that (abusing notation by identifying E with the cylinder it generates in SA)

DpE X E1q ¨DpF X F 1q “ DpE X F 1q ¨DpF X E1q.

Substituting via the rule of conditional probability:

DpE|E1q ¨DpE1q ¨DpF |F 1q ¨DpF 1q “ DpE|F 1q ¨DpF 1q ¨DpF |E1q ¨DpE1q.

This implies that

DpE|E1q

DpE|F 1q
“
DpF |E1q

DpF |F 1q
.

Since this is true for all events, we have that DpE|E1q “ DpE|F 1q for every E Ď SÂ and E1, F 1 Ď SÂ1 ,

implying Â and Â1 are independent.

We now move to show that strong exchangeability is sufficient for the representation specified in

the statement of the result. Since strong exchangeability implies exchangeability, we can apply a

version de Finetti’s theorem (Schervish (2012) Theorem 1.49) and represent the process ζ by

ζp¨q “

ż

∆pSAq

D̂p¨qdψpDq.

We need to show that ψ’s support lies in ∆IN .

For s P S and t P N let st be the projection of s into the first t periods. Now, let ζp¨|stq : SA Ñ r0, 1s

be the one period ahead predictive probability, given that the history of realizations in the first t pe-

riods is st. Since ζ is exchangeable, ζp¨|stq converges (as t Ñ 8) with ζ probability 1. Moreover,

the set of all limits is the support of ψ. Denote the limit for a particular s by Ds. Of course, the

exchangeability of ζ also guarantees that ζp¨, ¨|stq : SA ˆ SA Ñ r0, 1s, that is the two period ahead

predictive probability, converges to Ds ˆDs. Furthermore, ζ is strongly exchangeable; the limit itself

satisfies (2Sym), and the arguments above imply that Ds P ∆IN with ζ probability 1. �
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Poincaré, volume 7, pages 1–68, 1937.

Bruno de Finetti. Probability, Induction, and Statistics. New York: John Wiley, 1972.

Persi Diaconis. Finite forms of de finetti’s theorem on exchangeability. Synthese, 36(2):271–281, 1977.

Edwin Hewitt and Leonard J. Savage. Symmetric measures on Cartesian products. Transactions of
the American Mathematical Society, 80(2):470, 1955.

James M Poterba and Lawrence H Summers. Mean reversion in stock prices: Evidence and implica-
tions. Journal of financial economics, 22(1):27–59, 1988.

Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of the American
Mathematical Society, 58(5):527–536, 1952.

Mark J Schervish. Theory of statistics. Springer Science & Business Media, 2012.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

13


	Introduction
	Beliefs and the Value of Investment Strategies
	The Statistical Framework
	Strong Exchangeability
	A Comment on Bayesianism in Environments of Experimentation
	Proofs

