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Abstract

I present a dynamic network formation model that aims to explain why some em-

pirical degree distributions exhibit the increasing hazard rate property (IHRP). In my

model, a sequentially arriving node forms a link with one existing node through a bilat-

eral agreement. A newborn node prefers a highly linked node; however, the more links

an existing node has, the more the marginal return from an additional link diminishes.

I prove that the IHRP emerges if and only if the latter effect prevails over the former.

I present two implications of the IHRP for strategic interactions in networks. First,

when there is uncertainty about neighboring agents’ connectivity, the IHRP guarantees

that a unique Bayesian equilibrium exists in a network game with strategic complemen-

tarities. Second, the IHRP characterizes a monotone revenue-maximizing mechanism

with allocative externalities.
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1 Introduction

1.1 Overview

People are linked together through social relationships, and these relationships influence

their economic decisions. The growing literature on network games analyzes various economic

settings such as contagion behavior, criminal activity, political alliances, pricing of network

goods, public good provision, and so forth. In many contexts, researchers analyze games in

large networks, i.e., networks consisting of a large number of agents and their relationships.

Since equilibrium outcomes depend on certain properties of the underlying network, it is

important to identify key properties of large networks and understand how the social network

formation process generates those properties.

A fundamental characteristic that represents connectivity of a large network is its degree

distribution. The value of a degree distribution at integer d is the proportion of nodes having

d links (notated as degree d). In this paper, I highlight one crucial property of the degree

distribution of large networks that has been overlooked: whether the degree distribution

satisfies the increasing hazard rate property (henceforth, IHRP). The value of the hazard

rate function of a degree distribution at d is the conditional probability that a randomly

selected node has exactly d links given that it has at least d links. The IHRP indicates that

the hazard rate function is increasing in d.

The literature on dynamic network formation, in which newborn nodes form links with

existing nodes, offers possible explanations for various properties observed in real large net-

works.1 Most of the models in this literature tend to generate only the degree distributions

that have decreasing hazard rates. For instance, the preferential attachment (PA) model

by Barabási and Albert (1999) and the network-based search model by Jackson and Rogers

(2007a) produce strictly decreasing hazard rate functions regardless of the model parameters.

1For example, the small-world property with high clustering and short-average path lengths (Jackson
and Rogers, 2007a), nestedness (König et al., 2014), and the scale-free property (Barabási and Albert, 1999)
are supported by this literature.
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However, empirical degree distributions exhibit both increasing and decreasing patterns

of hazard rates. For example, Figure 1 plots the empirical hazard rate functions for four

network datasets:2 (a) one social network of a rural Indian village,3 (b) a collaboration

network of jazz musicians, (c) an online friendship network of Facebook users, and (d) the

network of the webpages at Notre Dame University.4 The hazard rate functions exhibit

increasing patterns for (a) and (b), but decreasing patterns for (c) and (d).5
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Figure 1: Different patterns of hazard rate functions

To understand the logic behind different patterns of the hazard rate function, I consider

a dynamic network formation model formed by bilateral and costly link formations. Nodes

arrive sequentially. Upon arrival, a new node randomly finds a single existing node with a

probability that is proportional to the degree of the existing node. Once an existing node is

2In a network dataset, one can identify the hazard rate at integer d as the number of nodes with d links
divided by the number of nodes having at least d links. By its definition, the degree hazard rate at the
largest degree is always one for any finite network dataset. This constraint makes the hazard rate function
tend to increase around the largest degree. Thus, in Figure 1, I plot the hazard rate function only for degrees
that account for the degrees of 95% of nodes.

3Source: http://web.stanford.edu/~jacksonm/Data.html. The whole dataset consists of the social net-
works of 75 rural Indian villages, and the hazard function in Figure 1 corresponds to the 58th village as
an illustrating example. For the 75 villages as a whole dataset, I observe that increasing hazard rates are
observed at more than 75% of all points. The 75 social networks are generated as follows. For each village,
to obtain relevant social relationships, the authors construct 12 individual-level adjacency matrices. The
adjacency matrices are based on questions such as “Name 4 non-relatives to whom you speak to the most,”
and “In your free time, whose house do you visit?” Then, they create a unified adjacency matrix by taking
the union of the 12 adjacency matrices. That is, in the unified social network, nodes i and j are connected
by a link if either i or j identified the other’s name at least once in the questions. Finally, the authors reduce
the adjacency matrix to a household-level matrix and delete the self-loops. Therefore, the unified adjacency
matrix is symmetric with each entry in {0, 1}.

4Sources: http://deim.urv.cat/~alexandre.arenas/data/welcome.htm is for the collaboration network
of jazz musicians; https://snap.stanford.edu/data/egonets-Facebook.html is for the friendship network of
Facebook users; and https://www.aeaweb.org/articles.php?doi=10.1257/aer.97.3.890 is for the network of
webpages. Detailed description about these datasets are available in the online appendix.

5More empirical implications from these datasets are provided in the online appendix.
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identified, it decides whether to form a link with the new node. Since the marginal benefit

from one additional link is decreasing but link formation is costly, the identified node is less

likely to agree to form a link as its degree increases. As such, the probability that an existing

node forms one additional link is determined by the combination of the new node’s desire

to form a link with a highly connected node, and the existing node’s decreasing marginal

utility from one additional link. When the diminishing marginal utility from additional links

is substantial, a node will be less likely to form additional links as its degree increases.

I prove that the IHRP emerges if and only if a node is less likely to form additional links

as its degree increases (Proposition 2). This characterization directly explains why previous

models are not able to produce degree distributions having the IHRP. The previous models

mostly consider unilateral link formations: existing nodes never reject any link formation

offers by newly joining nodes. Since newborn nodes are more willing to form links with

the existing nodes having more links, a node is more likely to form additional links as its

degree increases. This is exactly the condition for the decreasing hazard rate property of the

resulting degree distribution.

There are many theoretical implications of the IHRP for modeling network games. I con-

sider an incomplete information setting in which agents are not aware of the exact structure

of the underlying network, but know its degree distribution. I employ the degree indepen-

dence assumption as a way to simplify uncertainty about neighboring agents’ connectivity

(e.g., Fainmesser and Galeotti, 2015; Feri and Pin, 2015; Galeotti et al., 2010; Ghiglino,

2012; Jackson and Yariv, 2007; Shin, 2015). Specifically, under this assumption, agents be-

lieve that their shared links are independently and randomly chosen from the underlying

network. Because of independence, the only private information that remains for the agents

is their degree. Therefore, the type distribution of the agents is the degree distribution.

I explore two particular theoretical implications of the IHRP. First, I consider a network

game in which agents interact with neighboring agents. There are strategic complementarities

between linked agents: an agent’s incentive to perform an action increases in her neighboring
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agents’ actions. For example, the individual cost of engaging in criminal activity becomes

lower as more criminal friends engage in the same criminal activity; or the value of using

a computer software becomes higher as more acquaintances use the same software. I show

that as long as the second moment of the degree distribution is finite, a Bayesian equilibrium

exists even when the action space is unbounded (Proposition 5).

The IHRP guarantees that all moments of the degree distribution are finite (Proposi-

tion 4), thereby an equilibrium exists. However, degree distributions generated by prominent

dynamic network formation models have an infinite second moment, and so no equilibrium

exists. To see why, note first that taking a high action is always desirable for the agents

who have an enormous number of links because of strategic complementarities. The IHRP

implies that the probability that an agent is linked to such highly linked agents is very small.

As such, although agents’ actions feed back into one another, their best response dynam-

ics converges even if the action space is unbounded. However, for many prominent degree

distributions, the probability that an agent is linked to very highly linked agents will be

substantial, and so agent’s best response dynamics diverges.

Second, I study a revenue-maximizing Bayesian incentive compatible mechanism design

problem. I consider an environment in which there is a single seller who produces divisible ob-

jects at zero production cost. There are allocative externalities between linked buyers: each

buyer’s valuation of her allocation depends on allocations of neighboring buyers. This envi-

ronment is relevant for many settings such as a monopolistic telecommunications company

that provides data plan services. The better data plans friends have, the higher valuation

a customer obtains. Therefore, the company has to investigate how its sales to individual

customers generate positive network externalities to their neighbors. For a given mechanism

(a pair of allocation rule and price scheme), the induced network game with the IHRP pro-

vides a tractable framework where the seller can take into account the amount of network

externalities generated by the equilibrium behavior of buyers.

I characterize a revenue-maximizing mechanism, assuming the IHRP of the degree distri-
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bution (Proposition 6). The allocation rule of an optimal mechanism maximizes the virtual

value, which is a multiplication of the usual (individual) virtual value and the social value.

The social value calculates the amount of network externalities in the equilibrium of the

game induced by the optimal mechanism. Thus, different from a canonical mechanism de-

sign problem (Myerson, 1981), the allocation rule that maximizes the individual value is not

necessarily optimal. By increasing allocations to every customer, the seller can increase the

social value. Since increase of the social value raises the virtual value of the consumers, the

seller can charge a higher price to every buyer, and it ultimately returns a higher revenue

to the seller. Although a closed-form solution of the optimal mechanism is not generally

obtainable, I fully characterize the optimal mechanism in a restricted environment where

the seller cannot price discriminate (Proposition 7).

1.2 Related Literature

There is a large and growing literature on dynamic network formation models. In these

models, new nodes are born over time and form links to existing nodes. The seminal model

is the PA model by Barabási and Albert (1999), which attempts to explain the scale-free

property of degree distributions.6 There has been a variety of extensions of the PA model

(e.g., Cooper and Frieze, 2003; Dorogovtsev and Mendes, 2001; Krapivsky et al., 2000).

Jackson (2010) and references therein explain network properties that emerge from those

models. To the best of my knowledge, my model is the first dynamic network formation

model that identifies a condition that produces an IHRP for the degree distribution.7

In terms of the modeling approach, the current paper takes the rate equation approach

introduced by Bollobás et al. (2001). They formalize the dynamic network formation pro-

cess generated by the PA model, and prove that the resulting degree distribution sequence

6A degree distribution is said to have the scale-free property if it has a functional form of f(d) = cd−γ

where c is a normalization factor.
7Some random network formation models can generate the IHRP. Examples are the Poisson random net-

work model by Erdős and Rényi (1959) and the small-world model by Watts and Strogatz (1998). Although
the resulting degree distributions by these two models always generate the IHRP, none of these models
explain why this property can emerge.
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converges. In the current paper, I prove the convergence of the degree distribution sequence

in a more general setting. I find a closed-form expression of the limiting degree distribution

that provides a condition under which the limiting degree distribution satisfies the IHRP.

Dynamic network formation models are largely mechanical in that there are few reasons

why links are formed according to their descriptions. My paper provides a micro-foundation

in which agents optimize their link formation decisions (e.g., Baetz, 2015; Currarini et al.,

2009; Ghiglino, 2012; Jackson and Rogers, 2007a; König et al., 2014). Ghiglino (2012) and

König et al. (2014) are two notable dynamic and strategic network formation models using

linear utility functions. They assume that the largest eigenvalue of the relevant network

is bounded regardless of the network size. However, my model finds that as the network

size becomes large, the largest eigenvalue of an undirected network diverges almost surely to

infinity if the condition for the IHRP is not satisfied.8

There have been many related papers on strategic interaction in networks that adopt

the incomplete information setting introduced by Galeotti et al. (2010). Shin (2015) is a

very closely related paper. In that paper, I study optimal dynamic pricing of a subscription

network good sold by a monopolist. Each consumer’s value of the good increases as more of

her friends use the good, and consumers need to pay a subscription price in each period. By

assuming the IHRP of the degree distribution, I characterize a unique equilibrium in which

the monopolist does not change the subscription price. In the current paper, I examine a

similar problem in a static setting where the monopolist can price discriminate consumers

according to their number of friends.

The current paper is also related to the literature on network games with strategic com-

plementarities. Galeotti et al. (2010) study a more general framework than my model in that

they allow correlations in the degrees of agents’ neighbors. In the current paper, by assuming

degree independence, I obtain a clear characterization of a unique Bayesian equilibrium, and

find its relation to the IHRP of the degree distribution. Belhaj et al. (2014) examine network

8Since the number of nodes is fixed in König et al. (2014), the authors identify an upper bound of the
largest eigenvalue in a footnote. Ghiglino (2012) avoids this problem by considering a directed network.
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games with strategic complementarities when agents have complete information about the

underlying network. However, the current paper and Galeotti et al. (2010) analyze network

games of incomplete information.

One important application of the IHRP is on the mechanism design theory. Myerson

(1981) considers a problem where an auctioneer wants to sell a single object to one of many

buyers. The types of buyers are their valuations of the object. Assuming the IHRP of

the type distribution, he characterizes the seller’s optimal mechanism. Jehiel et al. (1996)

study a mechanism design problem with allocative externalities as in the current paper. In

particular, they consider a two-dimensional type space: each buyer’s type is a pair of her

value of the object and the externalities that she generates to the other agents. I examine

an environment in which buyers’ types are their degrees, and a buyer’s valuation of her

allocation is endogenously determined by her neighboring buyers’ allocations. Because of

the endogenously determined externalities, my characterization of an optimal mechanism is

different from a canonical solution in Myerson (1981).

2 Dynamic Network Formation

In this section, I introduce terminology and establish a model of dynamic network forma-

tion. Then, I derive the rate equations, which are essential to analyze the resulting degree

distribution sequence in the next section.

2.1 Setup

Terminology. A network is represented by G = 〈N,A〉, where N = {1, . . . , n} is a set of

nodes, and A is the adjacency matrix, an n× n symmetric matrix with each entry in {0, 1}.

Aij = 1 indicates that nodes i and j are connected by a link. For a given network G, Ni(G) :=

{j ∈ N |Aij = 1} is the set of neighbors of node i. di(G) := |Ni(G)| is called the degree of

node i. The degree distribution is a function f(·,G) : N → [0, 1] with
∑∞

d=0 f(d,G) = 1, in

which f(d,G) represents the fraction of nodes with degree d. F (·,G) is the corresponding
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cumulative degree distribution defined as F (d,G) :=
∑

d′≤d f(d′,G). Last, F (·,G) denotes

the complementary cumulative degree distribution defined as F (d,G) :=
∑

d′≥d f(d′,G).

Dynamic network formation. I build a model of dynamic network formation process

by recursively defining a random sequence of networks denoted by (Gt)t≥1. Nodes arrive

sequentially, and only one node joins the existing network in each period t. N t = {1, . . . , t}

represents the set of nodes that have emerged by period t. As such, t also denotes the size

of the network in period t.

To make the process well-defined, I focus on formation of random networks after t ≥ 2

with the initial conditions

A1 =
[
0
]

and A2 =

[
0 1

1 0

]
,

where A1 represents a network of one node without any link, and A2 expresses a network

of two nodes sharing one link.9 As will be explained in the following sections, results of the

current paper are independent of these initial conditions.

For a given network Gt, a network Gt+1 is randomly formed by adding one new node

t + 1 together with one link between node t + 1 and node i ∈ N t. Upon arrival, node

t+ 1 randomly identifies a single existing node with a probability that is proportional to the

degree of the existing node. I call this step preferential search. Formally, node t + 1 finds

node i with probability

di(G
t)∑t

j=1 dj(G
t)
.

Once node i is identified by the new node t+ 1, node i probabilistically agrees to form a link

with node t+1. The probability of forming a link decreases as its degree increases. I call this

step constrained match. Formally, node i agrees to form a link with probability Φ(di(G
t))

where Φ : N → (0, 1] is a decreasing function. If node i rejects node t + 1’s link formation

offer, node t + 1 independently and randomly repeats the two steps until it forms one link

9The dynamic network formation process is well-defined with these initial conditions in the sense that
for every period t ≥ 2, each node has at least one link, so that every node has a positive probability of being
found by new nodes after their arrival.
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with an existing node successfully.10 Since trials are independent, the probability that node

t+ 1 forms a link with node i is

di(G
t)Φ(di(G

t))∑t
j=1 dj(G

t)Φ(dj(Gt))
.

One interpretation of the above two-step process is as follows. Consider the evolution of

a collaboration network in which nodes represent researchers, and links denote experiences of

collaborations between them. Establishing a new collaborative relationship is clearly bilateral

and costly. A researcher’s productivity increases as she has more collaborators because she

exchanges new ideas, receives more comments about her ongoing projects, obtains other

indirect benefits from her collaborators’ colleagues, etc. When a junior researcher tries to

build a new collaborative relationship, he is more likely to find distinguished researchers who

have many existing collaborators. Thus, more collaborations will make a researcher more

likely to attract junior researchers. However, for a senior researcher, the marginal utility

from having one additional relationship is decreasing due to constraints such as limited time

and energy as she has more existing collaborators. Therefore, more collaborations will make

a researcher reject collaboration offers more frequently.

A degree-dependent utility function provides a micro-foundation for the current model.

Suppose that new nodes find existing nodes according to the preferential search step. Con-

sider myopic link formation decisions in which existing nodes look at only the marginal utility

from one additional link. Let the marginal utility of a node with degree d be

w(d)− c− η,

where w(d) is the marginal value of forming one additional link, c > 0 is the marginal

cost of forming one additional link, and η is a random factor distributed over the real

numbers with full support. Assuming a decreasing marginal return of additional links is

10By repeating the two-step process, node t + 1 forms one link within a finite number of trials almost
surely. To see this, one can consider node t + 1’s trials as a Bernoulli process (X1, . . . ,Xs), where each
entry represents a Bernoulli trial, and s represents the first time that a success is achieved. Since trials are
independent and identical, the variables are independently and identically distributed with a strictly positive
probability of success. Hence, the process ends in a finite length almost surely.
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tantamount to w(d) decreasing in d. Hence, the probability of accepting a link formation

offer is Φ(d) = P[η ≤ w(d)− c], and it is clearly decreasing in d.

2.2 The Rate Equation

Following a standard approach in the literature (e.g., Bollobás et al., 2001; Dorogovtsev

et al., 2000; Ghiglino, 2012), I derive the rate equation for each degree d, which describes

the dynamics of the expected number of nodes with degree d.

I write G t for the probability space of undirected networks in which a random network Gt

has its distribution. Let
(
F t
)
t≥1

be the σ-field generated by the dynamic network formation

process. For a given network Gt, I define two random variables N(d, t) and M(t) as

N(d, t) :=
t∑

j=1

1{dj(Gt) = d},

M(t) :=
t∑

d=1

dΦ(d)N(d, t).

N(d, t) is the number of nodes with degree d, and M(t) is a weighted sum of
(
N(d, t)

)
d≥1

.

With the above notation, for a given network Gt, I express changes in the conditional

expectations of N(d, t) from t to t+ 1 by

E
[
N(d, t+ 1)−N(d, t)|Gt

]
= 1{d = 1}︸ ︷︷ ︸

(a)

− dΦ(d)

M(t)
N(d, t)︸ ︷︷ ︸

(b)

+
(d− 1)Φ(d− 1)

M(t)
N(d− 1, t)1{d ≥ 2}︸ ︷︷ ︸

(c)

. (2.1)

Each term in equation (2.1) represents the following:

(a) The degree of a new node is always 1. Thus, one additional node with degree 1 emerges.

(b) If the new node in period t + 1 attaches to a node with degree d, its degree becomes

d+ 1. Consequently, the number of nodes of degree d decreases by 1, but the number

of nodes of degree d+ 1 increases by 1. The probability of this event is

dΦ(d)N(d, t)∑t
d=1 dΦ(d)N(d, t)

=
dΦ(d)

M(t)
N(d, t).
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(c) If the new node in period t+ 1 attaches to a node with degree d− 1, its degree turns

into d. Consequently, the number of nodes of degree d increases by 1, but the number

of nodes of degree d− 1 decreases by 1. The probability of this event is

(d− 1)Φ(d− 1)N(d− 1, t)∑t
d=1 dΦ(d)N(d, t)

=
(d− 1)Φ(d− 1)

M(t)
N(d− 1, t).

Equation (2.1) is not linear with respect to N(d, t) and N(d−1, t) because M(t) appears

in the denominators of the second and third terms. This is an obstacle for characterizing

the asymptotic degree distribution by using the rate equation approach.

To make my analysis tractable, I introduce a technical assumption that enables me to

consider linear rate equations. Before introducing the assumption, note that M(t) can

be written as m(t)t by setting m(t) :=
∑t

d=1 dΦ(d)N(d,t)
t
∈ [Φ(1)

2
, 2]. I assume that m(t)

converges in probability to a constant:11

Assumption 1 m(t) converges in probability to µ ∈ [Φ(1)
2
, 2].

Assumption 1 enables me to consider linear rate equations with correction terms as

For d = 1: E [N(1, t+ 1)] = 1 +

(
1− Φ(1)

µt

)
E [N(1, t)] + ε(1, t), (2.2)

For d ≥ 2: E [N(d, t+ 1)] =

(
1− dΦ(d)

µt

)
E [N(d, t)] +

(d− 1)Φ(d− 1)

µt
E [N(d− 1, t)]

+ ε(d, t), (2.3)

where the correction term ε(d, t) converges to zero as the network size t becomes large.12

Moreover, as shown in the proof of Proposition 1, I can ignore the correction terms regardless

of their convergence rates.

The previous dynamic network formation models using the rate equation approach make

Assumption 1 implicitly (e.g., Bollobás et al., 2001; Dorogovtsev et al., 2000). For instance,

in the PA model with Φ(d) = 1, M(t) only counts the number of links in the network at the

11When dΦ(d) is bounded, it suffices to assume that the expectation of m(t) converges to µ. A proof is
available upon request.

12See Appendix B for a proof.
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end of period t. m(t) is a deterministic sequence as m(t) = 2 − 1/t, and Assumption 1 is

trivially satisfied.
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Figure 2: Simulation results for parametric examples of Φ(·)

To evaluate the validity of Assumption 1, I present numerical simulation results in Fig-

ure 2. In each figure, the horizontal axis is in logarithmic scale. For Φ(d) = d−1/2, Figure 2(a)

illustrates that m(t) converges in probability to a constant. The average path of m(t) (the

solid black line) is generated from 1000 repetitions, and it converges to a constant as the

network size t increases. The size of the 100% interval (the dotted red lines) clearly shrinks

to zero as the network size t increases. These observations indicate that m(t) converges

in probability. In Figure 2(b), the same observations follow for another functional form

Φ(d) = d−3/2. These simulations illustrate that Assumption 1 reasonably holds for these

parametric examples of Φ(·).13

3 Results

In this section, I define the asymptotic degree distribution and find its closed-form expres-

sion. Then, I characterize a sufficient and necessary condition for the IHRP of the resulting

asymptotic degree distribution.

13As will be shown in the next section, when Φ(d) = d−α with α ≥ 0, the hazard rate function is strictly
increasing if α > 1, strictly decreasing if α < 1, and constant if α = 1.
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3.1 Characterization of the Asymptotic Degree Distribution

I define f(·, t) : N→ [0, 1] the degree distribution at the end of period t by

f(·, t) :=

(
N(1, t)

t
, . . . ,

N(d, t)

t
, . . .

)
.

f(d, t) represents a probability that one randomly selected node at the end of period t has

d links.
(
f(·, t)

)
t≥1

is the sequence of degree distributions. I define the asymptotic degree

distribution f(·) : N→ [0, 1] as the pointwise limit of (f(·, t))t≥1: for a fixed ε > 0,

lim
t→∞

P

(
|f(d, t)− f(d)| > ε

)
= 0 for all d ∈ N.

I define the asymptotic degree distribution as the pointwise limit because it ensures

that the degree distribution sequence converges in distribution to the asymptotic degree

distribution. To see this, I first clarify the notion of convergence in distribution in the

current setup. Convergence in distribution means that f(·, t) and f(·) are approximately

the same when the network size t is large. Since the degree of a randomly selected node

is an integer, it is natural to consider a probability density function f(·) : N → [0, 1] as a

limit of the degree distribution sequence. Thus, both f(·) and
(
f(·, t)

)
t≥1

are defined over

the set of integers, and it implies that as the network size t becomes infinitely large, the

degree distribution sequence converges in distribution to f(·) if and only if f(d, t) converges

in probability to f(d) for all d.14 Therefore, the asymptotic degree distribution is equivalently

identified as a pointwise limit of the sequence of degree distributions.

The following presents a closed-form expression of the asymptotic degree distribution:

Proposition 1 As the network size becomes infinitely large, the degree distribution sequence

converges in distribution to f(·), which is defined recursively as

f(1) =
µ

µ+ Φ(1)
and f(d) =

(d− 1)Φ(d− 1)

µ+ dΦ(d)
f(d− 1) for d ≥ 2.

Since the rate equation approach is relatively new in the economics literature, I explain

details of the proof of Proposition 1. The proof consists of two parts.15 First, by using

14See Appendix B for a proof.
15Stationarity of the asymptotic degree distribution defined in Proposition 1 is obvious because it is a
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rate equations (2.2) and (2.3), I prove that the expected proportion of nodes with degree

d converges to f(d) as the network size increases to infinity. Second, for each d, I show

that the difference between the random proportion of nodes with degree d and its expecta-

tion converges in probability to zero. These two observations will provide that the degree

distribution sequence converges in probability to the asymptotic degree distribution. For

expositional simplicity, I consider the linear rate equations, ignoring correction terms.

For d = 1, the iterations of rate equation (2.2) provides that

E [N(1, t+ 1)] = 1 +

(
1− Φ(1)

µt

)
+

(
1− Φ(1)

µt

)(
1− Φ(1)

µ(t− 1)

)
E [N(1, t− 1)]

=
t∑

s=1

t∏
r=s+1

(
1− Φ(1)

µr

)
+

{
t∏

r=1

(
1− Φ(1)

µr

)}
E [N(1, 1)] .

For large t, the expected number of nodes with degree 1 in period t+ 1 is approximated as16

E [N(1, t+ 1)] ≈ 1

tΦ(1)/µ

∫ t

0

sΦ(1)/µ ds =
µt

µ+ Φ(1)
.

By dividing E [N(1, t+ 1)] by t + 1, I find the limit of the expected fraction of nodes with

degree 1 as f(1) = µ
µ+Φ(1)

.

Second, for d ≥ 2, the expected number of nodes with degree d in period t + 1 relies on

E [N(d− 1, t)] as well as E [N(d, t)]:

E [N(d, t+ 1)] =

(
1− dΦ(d)

µt

)
E [N(d, t)] +

(d− 1)Φ(d− 1)

µt
E [N(d− 1, t)] .

Assumption 1 enables me to replace E [N(d− 1, t)] by tf(d−1) for sufficiently large t. Hence,

by following a similar procedure for d = 1, I identify the limit of the expected fraction of

unique solution of the following stationarity equations:

For d = 1: f(d) = 1− dΦ(d)

µ
f(d),

For d ≥ 2: f(d) = −dΦ(d)

µ
f(d) +

(d− 1)Φ(d− 1)

µ
f(d− 1).

16I here use the following approximation:

t∏
r=s+1

(
1− Φ(1)

µr

)
≈ e−

Φ(1)
µ

∑t
r=s+1

1
r ≈

(s
t

)Φ(1)
µ

.

Since this product converges to zero as t becomes large, the second term in the previous equation is ignored.
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nodes with degree d as it appears in Proposition 1.

The remaining step is to show that as a random variable, the proportion of nodes with

degree d is very close to its expectation when the network size is large. This step is proven

by applying the Azuma-Hoeffding inequality (Azuma, 1967; Hoeffding, 1963). The Azuma-

Hoeffiding inequality states that the number of nodes with degree d is located around its

expectation within a bounded range. That is, for a fixed d, there exists a constant Md > 0

such that for any εd > 0,

P

(
|N(d, t)−E [N(d, t)] | ≥ εd

)
≤ 2e

− ε2d
2M2

d
t .

By choosing εd = 2Md

√
t log t, it follows that the probability that the proportion of nodes

with degree d is different from its expectation becomes arbitrarily small as the network size

t becomes infinitely large:

P

(∣∣∣∣N(d, t)

t
−E

[
N(d, t)

t

]∣∣∣∣ ≥ 2Md

√
t log t

t

)
≤ o(1).

In order to finalize that the random proportion of nodes with degree d converges in

probability to f(d), I still need to show that E
[
N(d,t)
t

]
is quite close to f(d) for large t. In

fact, Assumption 1 provides that for a given ε > 0,
∣∣E [N(d,t)

t

]
− f(d)

∣∣ < ε
3

whenever the

network size t is larger than some constant Tε. Thus, t ≥ Tε implies that

P

(∣∣∣∣N(d, t)

t
− f(d)

∣∣∣∣ ≥ ε

)
≤ P

(∣∣∣∣N(d, t)

t
−E

[
N(d, t)

t

]∣∣∣∣+

∣∣∣∣E [N(d, t)

t

]
− f(d)

∣∣∣∣ ≥ ε

)
≤ P

(∣∣∣∣N(d, t)

t
−E

[
N(d, t)

t

]∣∣∣∣ ≥ 2

3
ε

)
.

Therefore, since the last term converges to zero as the network size becomes infinitely large,

the random proportion of nodes with degree d converges in probability to f(d).

Finally, I state that there exists a unique choice of µ for Assumption 1. Due to the

convergence of the degree distribution sequence, µ satisfies µ = lim
t→∞E [

∑∞
d=1 dΦ(d)f(d, t)].

This observation in turn implies that

1 =
1

µ
lim
t→∞

E

[
∞∑
d=1

dΦ(d)f(d, t)

]
=

1

µ
E

[
∞∑
d=1

dΦ(d)f(d)

]
=
∞∑
d=1

d∏
k=1

(
1 +

µ

kΦ(k)

)−1

.
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The last expression is continuous and strictly decreasing in µ.17 Moreover, it diverges to

infinity as µ → 0, but it converges to zero as µ → ∞. Therefore, the choice of µ satisfying

the above equation is unique.

3.2 The Hazard Rate Function

I characterize a condition under which the hazard rate function of the asymptotic degree

distribution is increasing. Recall that the hazard rate function is defined as h(d) := f(d)

F (d)
, in

which F (d) is the complementary cumulative degree distribution. This definition suggests

an interpretation that the value of the hazard rate function at d is a conditional probability:

h(d) is the probability that a randomly selected node has exactly d links, given that it has

at least d links. To characterize a condition for h(d) to increase in d, I first relate the

expression of the complementary cumulative degree distribution to the hazard rate function.

The hazard rate at d can be written as h(d) = 1− F (d+1)

F (d)
, and it implies that

F (d) =
F (d)

F (d− 1)

F (d− 1)

F (d− 2)
· · · F (3)

F (2)

F (2)

F (1)
=

d−1∏
k=1

(
1− h(k)

)
.

Since f(d) = F (d)− F (d+ 1), it follows that

f(d) = h(d)
d−1∏
k=1

(
1− h(k)

)
.

Recall that the asymptotic degree distribution has the following recursive formula:

f(d) =
µ

µ+ dΦ(d)

d−1∏
k=1

kΦ(k)

µ+ kΦ(k)
.

Since the hazard rate function is uniquely defined for the asymptotic degree distribution, it

directly follows that the hazard rate function is simply expressed as

h(d) =
µ

µ+ dΦ(d)
.

Therefore, I characterize the increase of the hazard rates from d to d+ 1 as follows.18

17See Appendix B for a proof of continuity.
18The value of the hazard rate function at d is sometimes defined as h(d) := f(d)

(1−F (d)) for a discrete

probability distribution. The characterization of the IHRP by Proposition 2 is still valid for this alternative
definition as h(d) = µ

dΦ(d) .
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Proposition 2 h(d) ≤ h(d+ 1) if and only if dΦ(d) ≥ (d+ 1)Φ(d+ 1).

Proposition 2 provides a natural interpretation of the IHRP in terms of the dynamic

network formation process. Let di(t) be the degree of node i at the end of period t. By

Assumption 1, the logarithm of the probability that node i forms a link with the new node

entering in period t+ 1 is approximated by

log
(
di(G

t)Φ(di(G
t))/M(t)

)
≈ log

(
di(G

t)Φ(di(G
t))
)
− log

(
µt
)
.

The first term on the right-hand side explains how the probability of forming one additional

link depends on node i’s degree. Therefore, Proposition 2 provides a dynamic interpretation

that the IHRP emerges if and only if a node is less likely to form additional links with newly

entering nodes as its degree increases.

The IHRP is difficult to observe in network datasets where link formation decisions are

unilateral. In many contexts of growing networks such as collaborations between scholars

and links between webpages, new nodes are more willing to link to the more popular nodes.

Hence, if the link formation decision is unilateral, more links will cause a node to form more

new links. For example, in the PA model, a link formation decision is clearly unilateral

because a webpage freely creates a link from itself to an existing webpage. As a result, nodes

are always more likely to form additional links as their degree increases, and so the degree

distribution generated by the PA model satisfies the decreasing hazard rate property.

In my model, however, link formation decisions are bilateral. This feature separates the

new node’s desire to form a link with a node having many links (preferential search) and the

limitation of existing nodes to form additional links with newly entering nodes (constrained

match). The constrained match step may cause links to make a node form fewer new links.

The hazard rate function is increasing if this limitation is so strict that it nullifies the new

nodes’ desire in the preferential search step. Therefore, one can expect the IHRP in a network

dataset where maintaining links is very costly and link formations are bilateral.

A parametric example considered in the previous section illustrates the above discussion.
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Let Φ(d) = d−α be the probability that an existing node agrees to form a link when it is

identified by a new node. α ≥ 0 is the parameter that measures the cost of forming links.

The hazard rate function is strictly increasing in d if and only if α > 1. The knife-edge case

of this parametric example is α = 1, which corresponds to the random attachment model in

which link formation does not depend on the degree of nodes.

4 Relations to Other Properties of Large Networks

In this section, I compare the IHRP to other properties of a large network: (i) the size

of its largest eigenvalue and (ii) heavy-tailedness of its degree distribution. I first introduce

these characteristics and explain why they have received much attention in the literature.

Then, I identify relations between these two properties and the IHRP under the assumption

that the hazard rate function is monotonically either increasing or decreasing.

4.1 Definitions

The largest eigenvalue. The largest eigenvalue of network G = 〈N,A〉 is defined as the

largest eigenvalue of its adjacency matrix A, denoted by λmax(G). Since I focus on undirected

networks, and therefore on symmetric A, λmax(G) is a positive real number.19

The largest eigenvalue of a network has many implications for strategic interactions in

a network. In particular, equilibrium conditions of network games often depend on the size

of the largest eigenvalue (e.g., Ballester et al., 2006; Bramoullé et al., 2014). For example,

consider the network game in Ballester et al. (2006), where each node i takes a positive

action xi ∈ R+ and obtains the payoff

ui(xi,x−i) = xi −
1

2
x2
i + δ

n∑
j=1

Aijxixj.

Suppose that δ is strictly positive, which means that actions are strategic complements. As

Ballester et al. (2006) show, a Nash equilibrium exists if and only if δλmax(G) < 1.

19By the Perron-Frobenius theorem, all eigenvalues of a symmetric adjacency matrix are real numbers.
Since all the diagonal entries are zero, the trace of the adjacency matrix is zero. The trace equals the sum
of all eigenvalues, and it follows that largest eigenvalue of the adjacency matrix is strictly positive.
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To see why this condition is necessary, note that node i’s best response with respect to

other nodes’ action profile x−i is linear as

xBi (x−i) = 1 + δ

n∑
j=1

Aijxj.

Let x′ be an eigenvector corresponding to the largest eigenvalue. The vector of nodes’ myopic

best responses to x′ is

xB(x′) = 1 + δAx′ = 1 + δλmax(G)x′.

The myopic best reply dynamics constructed by repeating the above steps converges if and

only if the summation of externalities,
∑∞

s=0

(
δλmax(G)x′

)s
, converges (Ballester et al., 2006).

Obviously, the summation converges if and only if δλmax(G) < 1, which means that the

maximum marginal influence of nodes’ actions on other nodes is bounded.

The above restriction on the size of the largest eigenvalue is also required for some

strategic dynamic network formation models (e.g., Ghiglino, 2012; König et al., 2014). For

example, Ghiglino (2012) tries to explain the scale-free property of the productivity distri-

bution. He assumes that the productivity of an idea (node) depends on its parental and

offspring ideas.20 Only one idea is newly created in each period. Since a new idea inherits

its parental idea’s productivity, it attempts to form a link to an old idea with many offspring

ideas. Specifically, the productivity of idea i when used in knowledge creation in period t is

xti = θ + δ
∑
j∈Ni

θAtijx
t
j,

where δ > 0, and θ ∼ N(1, σθ) with σθ � 1.21 Let xt be the t × 1 vectors with entries xti.

Then, xt satisfies

xt =
(
I − δθAt

)−1
θ1t×1 =

∞∑
s=0

(
δθAt

)s
θ1t×1. (4.1)

A new idea strategically forms a link to an old idea with the highest productivity. This

network formation process requires the productivity of ideas to be finite for all periods;

20Node i is called a parental (offspring) node of node j if there is a link from j to i (from i to j).
21I here simplify the notation in Ghiglino (2012). In addition, note that the adjacency matrix At is not

necessarily symmetric because the author considers a directed network.
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otherwise, the productivity of an idea will be infinite after some period, and only this idea

will have offsprings beyond that time. Therefore, xt in equation (4.1) has to be finite with

probability one for all period t. This condition is satisfied if and only if δλmax(Gt) < 1 with

probability one for all t ≥ 1 because σθ � 1.22

Heavy-tailed degree distribution. In the Poisson random network model by Erdős and

Rényi (1959), a link between two nodes is formed independently of other pairs of nodes

with a fixed probability. The resulting degree distribution is approximated by the Poisson

distribution if the network size is infinitely large.23 The Poisson distribution with parameter

λ has the form of f(d;λ) = λde−λ

d!
, and its tail decreases at an exponential rate.

One important observation in real large networks is that their degree distributions are

heavy-tailed : there tend to be more nodes with very large degrees than the Poisson dis-

tribution of any parameter.24 Thus, researchers have been interested in building dynamic

network formation models that generate heavy-tailed degree distributions (e.g., Barabási and

Albert, 1999; Ghiglino, 2012; Jackson and Rogers, 2007a; König et al., 2014). The following

definition formalizes the heavy-tailedness of a degree distribution:

Definition 1 A degree distribution f(·) is said to be heavy-tailed if for all ε > 0,

lim sup
d→∞

F (d)

e−εd
=∞.

4.2 Relations and Implication

I find the relations between three properties of an infinitely large network: (i) finiteness

of the largest eigenvalue, (ii) heavy-tailedness of its degree distribution, and (iii) the IHRP

of its degree distribution.

22König et al. (2014) consider a dynamic network formation model with a finite number of agents. For
any network between n agents, its largest eigenvalue has an upper bound of

√
2m(n− 1)/n where m =(

n
2

)
(Cvetković and Rowlinson, 1990). Thus, they explicitly assume that the parameter representing the

magnitude of positive externalities between linked agents is strictly smaller than 1/
√

2m(n− 1)/n.
23The Poisson random network is represented by G(n, p(n)) such that there are n nodes, and each pair

of nodes forms a link independently at random with probability p(n). The resulting degree distribution
is a binomial distribution, and it converges to the Poisson distribution with parameter np(n) as n → ∞,
assuming that np(n) is a constant.

24See Chapter 3 in Jackson (2010) for examples and discussions.
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I first present lower and upper bounds of the largest eigenvalue of a network that will

be useful for illustrating the relationships between the three properties under consideration.

For any finite network G, its largest eigenvalue λmax(G) satisfies√
dmax(G) ≤ λmax(G) ≤ dmax(G),

where dmax(G) is the largest degree of the network (Cvetković and Rowlinson, 1990).25 This

observation suggests that the limiting behavior of the largest eigenvalue is closely related to

the limiting behavior of the maximum degree.

I now find a relation between the finiteness of the largest eigenvalue and the IHRP. In the

current model, the hazard rate function of the asymptotic degree distribution is decreasing

if and only if a node is more likely to form additional links as its degree increases. Suppose

this, and consider the evolution of node i’s degree. Given a network Gt, the probability that

node i forms one additional link with the new node entering in period t+ 1 is at least Φ(1)
2t

:

P

({
node i forms a link with node t+ 1

})
=

di(G
t)Φ(di(G

t))∑t
j=1 dj(G

t)Φ(dj(Gt))
≥ Φ(1)

2t
.

Thus, the growth of node i’s degree is faster than its growth when new nodes independently

and randomly form a link with probability Φ(1)
2t

. When this is the case, the probability that

node i forms infinitely many links becomes one by the second Borel-Cantelli lemma (Durrett,

2005).26 Therefore, the degree of node i becomes infinitely large as the network size increases

under the condition of decreasing hazard rates.

Proposition 3 If the hazard rate function is decreasing, then the largest eigenvalue diverges

almost surely to infinity as the network size becomes infinitely large.

I now identify a relation between the heavy-tailedness of the asymptotic degree distri-

bution and its IHRP. From the definition of the hazard rate function, I can express the

25A proof is provided in Appendix B.
26The second Borel-Cantelli lemma states that for a given set of independent events, say {En}∞n=1, if∑∞
n=1P

(
En
)

=∞, then

P

(
En i.o.

)
= 1.

A proof is provided in Appendix B.
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complementary degree distribution as

F (d) =
d−1∏
k=1

(
1− h(k)

)
=

d−1∏
k=1

(
kΦ(k)

µ+ kΦ(k)

)
.

Suppose the IHRP, and so dΦ(d)
µ+dΦ(d)

is decreasing in d. Then, since Φ(d)
µ+Φ(d)

≤ Φ(1)
µ+Φ(1)

for all d,

the value of the complementary degree distribution F (d) decreases at least at a geometric

rate of Φ(1)
µ+Φ(1)

< 1. Therefore, the asymptotic degree distribution is not heavy-tailed if the

hazard rate function is increasing.

The asymptotic degree distribution can be heavy-tailed even when its hazard rate function

strictly decreases. In particular, the asymptotic degree distribution is heavy-tailed only if its

hazard rate function not only decreases, but also converges to zero. In the current model,

the hazard rate function converges to zero whenever dΦ(d) diverges to infinity without any

bound as d becomes infinitely large.

In many models, however, the strictly decreasing hazard rate property of the asymptotic

degree distribution coincides with its heavy-tailedness. For example, consider the parametric

example of Φ(d) = d−α in the current model. dΦ(d) becomes infinitely large as the network

size increases whenever α < 1, which is the condition for the strictly decreasing hazard

rate function. Thus, the asymptotic degree distribution is heavy-tailed if and only if the

hazard rate function is strictly decreasing. Indeed, in other network formation models such

as Barabási and Albert (1999) and Jackson and Rogers (2007a), the resulting asymptotic

degree distributions are heavy-tailed and satisfy the strictly decreasing hazard rate property

simultaneously. The following proposition summarizes this point.

Proposition 4 If the hazard rate function is increasing, then the asymptotic degree distribu-

tion is not heavy-tailed. If the hazard rate function is strictly decreasing and converges to zero

as the degree becomes infinitely large, then the asymptotic degree distribution is heavy-tailed.

Negative implication. By Proposition 3 and Proposition 4, it follows that if a dynamic

network formation model generates a heavy-tailed degree distribution, then the largest eigen-

value of the network becomes infinitely large as the network size increases.
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Corollary 1 If the asymptotic degree distribution is heavy-tailed, then

lim
t→∞

P

(
λmax(Gt) <∞

)
= 0.

Corollary 1 proves that by using a standard utility function in the literature, it is im-

possible to build a bilateral dynamic network formation model that generates a heavy-tailed

degree distribution. In a bilateral dynamic network formation model, the resulting asymp-

totic degree distribution is heavy-tailed only if a node is more likely to form new links as

its degree increases. Corollary 1 shows that this condition implies that largest eigenvalue

becomes arbitrarily large as the network size becomes large. Thus, the value of forming

a link to a particular node becomes arbitrarily large beyond a certain period. As such, if

nodes can strategically choose a node to link, all nodes entering after that period will choose

a particular node. Therefore, when it comes to bilateral link formations, the strategic link

formation and a heavy-tailed degree distribution are incompatible.

5 Application I: Network Games

In this section, I present how the IHRP helps to characterize equilibria in network games.

I adopt the incomplete information setting introduced by Galeotti et al. (2010), in which

agents are not aware of the exact structure of the underlying network, but know its degree

distribution. I characterize a unique Bayesian equilibrium, and explain how it is related to

the IHRP.

5.1 Network Games with Incomplete Information

Network and utilities. There is a countable set of agents, N = {1, . . . , n}. Connections

between agents are represented by a network G = 〈N,A〉, in which A is a symmetric matrix

of size n with each entry in {0, 1}. For notational simplicity, let Ni be the set of agent

i’s neighbors. f(·) is the degree distribution of the underlying network, which is common

knowledge amongst the agents.

Each agent i simultaneously takes an action xi ∈ R+. I denote by x = (xi,x−i) ∈ Rn+ the
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action profile of the agents, where x−i is the action profile of all agents except agent i. For

an action profile x, the utility of agent i with degree di is given by

ui(xi,x−i, di) = xi −
1

2
x2
i︸ ︷︷ ︸

idiosyncratic utility

+ δxi
∑
j∈Ni

xj︸ ︷︷ ︸
network externality

,

where δ > 0 represents positive network externalities between agents’ actions. This utility

function satisfies a property in which adding a link to an agent taking action 0 generates no

additional value to agent i’s utility. Note that the utility function is independent of agent

i’s identity in the network in the sense that agents i and j obtain the same utility if their

degrees are identical and their neighbors’ actions coincide. Thus, I represent agent i’s utility

by u(xi,xNi , di) where xNi ∈ R
di
+ is the action profile of agent i’s neighbors.

Information. Before deciding on her action, the information available to agent i is her

degree di and the degree distribution f(·). Thus, each agent can update her beliefs about the

degrees of her neighbors based on her private information. To simplify this belief updating

process, I employ the assumption of degree independence, which is quite common in the

literature (e.g., Fainmesser and Galeotti, 2015; Feri and Pin, 2015; Galeotti et al., 2010;

Ghiglino, 2012; Shin, 2015). The degree independence assumption states that agent i believes

that the link between herself and each of her neighboring agents is an i.i.d. draw from a given

degree distribution. Under this assumption, I denote by f̃(·) : N → [0, 1] the probability

density function of a neighboring agent’s degree, which is calculated as

f̃(d) =
df(d)

〈d〉
,

where 〈d〉 =
∑∞

d=1 df(d) is the average degree.27 I call f̃(·) the conditional degree distribution.

The conditional degree distribution f̃(·) captures the idea that a highly connected agent is

27To understand this calculation, suppose that each agent’s degree is either one or two. Let f(1) and f(2)
be the fraction of agents with degree one and two, respectively. Divide the set of links into two categories:
(i) set L1 containing links attached to an agent with degree one, and (ii) set L2 containing links attached
to an agent with degree two. Then, the fraction of links in set L1 is proportional to f(1) and the fraction
of links in set L2 is proportional to 2f(2). Due to degree independence, the probability that the degree of a
randomly selected neighbor is d is equal to the probability that a randomly selected link is chosen from set
Ld. Thus, after normalization, f̃(·) is the probability density function of a neighbor’s degree.
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more likely to be an agent’s neighbor: f̃(d) > f(d) for all d > 〈d〉. F̃ (·) and h̃(·) are the

corresponding cumulative distribution function and the hazard rate function, respectively.

The degree independence assumption is plausible for large networks because the degrees

of two neighboring agents are approximately independently distributed. Indeed, the con-

figuration model confirms that for each agent i, knowing only agent i’s degree provides no

additional information about the degrees of her neighbors, as the number of agents becomes

large (Bender and Canfield, 1978). Therefore, a neighboring agent’s degree is considered as

an i.i.d. draw from the degree distribution, and its probability density function is f̃(·).28

The following lemma states that the conditional degree distribution satisfies the IHRP.

Lemma 1 If f(·) satisfies the increasing hazard rate property, then f̃(·) satisfies the strictly

increasing hazard rate property.

Partial order on degree distributions. To compare equilibria where the underlying

network changes in density, I consider a family of degree distributions
{
fθ(·)

}
θ∈Θ

indexed

by an ordered set Θ in which all members have the common support N. I use the likelihood

ratio order (Karlin and Rubin, 1956) as a partial order on
{
fθ(·)

}
θ∈Θ

.

Definition 2 Degree distribution fθ(·) is said to stochastically dominate fθ′(·) according to

the likelihood ratio order if for all d, d′ ∈ N with d > d′,

fθ(d)

fθ′(d)
>
fθ(d

′)

fθ′(d′)
.

I denote this stochastic dominance order by >LR and assume that fθ(·) >LR fθ′(·) if

θ > θ′.29 For each degree distribution fθ(·), let f̃θ(·) be the corresponding conditional degree

distribution. Similarly, I denote by hθ(·) and h̃θ(·) the corresponding hazard rate functions.

The likelihood ratio order has the following three useful properties:

28However, many dynamic network formation models generate correlations between neighboring nodes.
In fact, real network datasets often exhibit positive or negative neighbor affiliations (Newman, 2003).

29The likelihood ratio order is not a complete ordering of an arbitrary family of degree distributions.
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� The likelihood ratio order between two degree distributions is preserved for the corre-

sponding conditional degree distributions:30

fθ(·) >LR fθ′(·) implies f̃θ(·) >LR f̃θ′(·).

� The likelihood ratio order >LR induces the first-order stochastic dominance order, de-

noted by >FOSD for the degree distributions and the conditional degree distributions:31

fθ(·) >LR fθ′(·) implies fθ(·) >FOSD fθ′(·) and f̃θ(·) >FOSD f̃θ′(·).

� The likelihood ratio order >LR provides the monotone hazard rate order for the hazard

rate functions of the degree distributions and the conditional degree distributions:

fθ(·) >LR fθ′(·) implies hθ(d) > hθ′(d) and h̃θ(d) > h̃θ′(d) for all d.

As will be presented in later sections, the above properties are useful to analyze comparative

statics of network game outcomes.

Strategy and equilibria. A strategy for agent i is a map σi : N → 4(R+) where 4(R+)

is the set of probability distributions over R+. I consider symmetric Bayesian equilibria

(henceforth, equilibria). Thus, an equilibrium is represented by a strategy σ(·), and so each

agent’s equilibrium strategy depends only on her degree.

Given agent i with degree di, let Ψ(xNi , σ, di) be the probability distribution over Rdi+

induced by the conditional degree distribution f̃(·) and strategy σ(·). When she chooses

action xi, the expected utility of agent i with degree di is

U(xi, σ, di) =

∫
xNi∈R

di
+

u(xi,xNi , di) dΨ(xNi , σ, di)

30The proof is as follows: for all d > d′,

f̃θ(d)

f̃θ′(d)
=

dfθ(d)/〈d〉θ
dfθ′(d)/〈d〉θ′

>
d′fθ(d

′)/〈d〉θ
d′fθ′(d′)/〈d〉θ′

=
f̃θ(d

′)

f̃θ′(d′)
,

where 〈d〉θ =
∑∞
d=1 dfθ(d) and 〈d〉θ′ =

∑∞
d=1 dfθ′(d).

31The first-order stochastic dominance order between the degree distributions does not induce the first-
order stochastic dominance order between the conditional degree distributions. To see this, consider two
degree distributions, f1(1) = 0.30, f1(2) = 0.45, and f1(3) = 0.25; f2(1) = 0.45, f2(2) = 0.30 and f2(3) =

0.25. Then, fθ(·) >FOSD fθ′(·), but f̃θ(·) ≯FOSD f̃θ′(·) because F̃θ(1) = 0.25 > F̃θ′(1) = 0.15 but F̃θ(2) =

0.58 < F̃θ′(1) = 0.62.
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= xi −
1

2
x2
i + δdiẼ [σ]xi,

where Ẽ [σ] :=
∑∞

d=1 σ(d)f̃(d) is the expected action of a neighboring agent. A strategy σ(·)

establishes an equilibrium if σ(di) is a best response for any agent with degree di.

Definition 3 A strategy σ(·) is an equilibrium if for any agent i with degree di,

U(xi, σ, di) ≥ U(x′i, σ, di) for all x′i ∈ R+ and xi ∈ supp(σ(di)).

5.2 Properties of Equilibria

The expected utility of agent i with degree di is U(xi, σ, di) = xi − 1
2
x2
i + δdiẼ [σ]xi for

given strategy σ(·). Maximizing the expected utility U(xi, σ, di) with respect to xi yields a

linear best reply function:

xB(σ, di) = 1 + δdiẼ [σ] . (5.1)

In any equilibrium, the corresponding equilibrium strategy σ∗(·) is a best reply with

respect to σ∗(·): xB(σ∗, ·) = σ∗(·). In any equilibrium, agents’ beliefs must be consistent: by

taking expectations of both sides in equation (5.1), it must hold that

Ẽ [σ∗] = 1 + δ〈d̃〉E [σ∗] =
1

1− δ〈d̃〉
,

where 〈d̃〉 =
∑∞

d=1 df̃(d) is the expectation of a neighboring agent’s degree. Thus, an equi-

librium exists if and only if δ〈d̃〉 < 1. This equilibrium condition can be further simplified

as the ratio of the first and second moments of degree distribution f(·) as:

〈d̃〉 =
∞∑
d=1

df̃(d) =
∞∑
d=1

d

(
df(d)

〈d〉

)
=
〈d2〉
〈d〉

.

Therefore, the sufficient and necessary condition for existence of equilibria is δ 〈d
2〉
〈d〉 < 1.

To understand the intuition behind the above equilibrium condition, consider a myopic

best reply dynamics such that σ1(·) := 1, and recursively define σn(·) := xB(σn−1, ·) for

n ≥ 2. The initial strategy σ1(·) corresponds to a strategy in which individuals take the

minimum action. When agent i myopically best responds to σ1(·), she assumes that her

neighboring agents take action Ẽ[σ1] = 1. Thus, when her degree is di, her best response is
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σ2(di) = 1+δdi. Now, for the next best reply, agents optimize their actions by assuming that

the other agents play strategy σ2(·). Each agent i finds the expectation of her neighboring

agent’s action as Ẽ[σ2] = 1 + δ 〈d
2〉
〈d〉 . Hence, when her degree is di, agent i’s myopic best reply

is σ3(di) = 1+δdi+δ2 〈d2〉
〈d〉 di. This myopic best reply dynamics continues until it converges.32

To establish that this dynamics converges, it must hold that the influence of the neighboring

agent’s expected actions converges as δ 〈d
2〉
〈d〉 < 1.

In the above dynamics, the agents with very high degrees serve as conduits for accelerating

actions of other agents with low degrees. When the degree distribution is heavy-tailed, there

is a sufficient number of agents with enormously many neighbors. Since the action space

is unbounded, the presence of such agents will significantly increase other agents’ actions.

Thus, the above myopic best reply dynamic will diverge. For example, consider a network

having a scale-free degree distribution. Since a scale-free degree distribution has a functional

form of f(d) = cd−γ where c is a normalization factor, its second moment is infinite if and

only if γ ≤ 3. The scale parameter is frequently estimated to take values within the (2, 3)

interval.33 Therefore, the empirical scale-free degree distributions predict that the myopic

best reply dynamics diverges.

However, the degree distribution of a network is not heavy-tailed if it satisfies the IHRP.

Specifically, the IHRP provides a finite second moment, and so the myopic best reply dynam-

ics converges as long as δ is not too large. Moreover, since the best reply function is linear,

the equilibrium is uniquely exists. The following proposition summarizes these points.

Proposition 5 If the degree distribution satisfies the increasing hazard rate property, then

there exists an equilibrium if and only if δ 〈d
2〉
〈d〉 < 1. The equilibrium is unique if it exists.

32This myopic best reply dynamics is called the mean-field dynamics and frequently used in diffusion
models (e.g., Jackson and Rogers, 2007b; López-Pintado, 2008; Shin, 2015). These dynamic models implicitly
assume that (i) in each period, agents consider a new strategic interaction in a network, and (ii) the stochastic
dynamics is represented by a deterministic dynamics. These two assumptions remarkably simplify the models,
and allow researchers to compare diffusion outcomes in terms of the network structure that underlies.

33For example, Barabási and Albert (1999) measure the scale-free parameter for the social network be-
tween movie actors. Two actors share a link if they have appeared in at least one movie together. The
authors identify the scale parameter 2.3 for the degree distribution. See Chapter 1 in Durrett (2010) for
more examples of the estimated scale parameters.
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I finally remark on two theoretical features of the equilibrium in the current incomplete

information setting, comparing to the equilibria in a complete information setting. First, the

current equilibrium condition is less restrictive in that it is independent of the network size

that underlies. In the network games with complete information, Nash equilibria exist if and

only if δλmax(G) < 1. However, in prominent dynamic network formation models, the largest

eigenvalue diverges to infinity as the size of the network increases. For example, in the PA

model, it grows at the rate of
√
n where n is the size of the network (e.g., Chung et al., 2003;

Flaxman et al., 2005). Moreover, as shown in the previous section, the largest eigenvalue

can be very large even when the IHRP is satisfied. Thus, the equilibrium condition under

complete information is more restrictive.

Second, the equilibrium under incomplete information is easier to calculate. In the net-

work game with complete information, the equilibrium action profile is a function of the

eigenvalues of the adjacency matrix (Ballester et al., 2006), which are more expensive to

calculate than finding the second moment of the degree distribution. Specifically, for a given

n × n adjacency matrix, the time complexity of finding the second moment is O(n2).34 On

the other hand, the time complexity of an algorithm that finds all eigenvalues is roughly tied

to the complexity of matrix multiplications, which require at least O(n2.3) time.35

6 Application II: Mechanism Design

I study a revenue-maximizing Bayesian incentive compatible mechanism. I consider a

monopolistic seller who determines allocations to buyers. Buyers are connected to one an-

other, and a buyer’s valuation of her allocation depends on her neighbors’ allocations as well.

The buyers know their degree but have incomplete information about the degrees of their

neighboring buyers. Thus, the degree distribution is a type distribution of the buyers. By

34The computation of a degree distribution can be done in O(n2) time. For example, the näıve algorithm,
which simply iterates through each element of the adjacency matrix to count the number of neighbors each
node has, achieves the bound of O(n2) to find the degree distribution. Given a degree distribution, one can
easily calculate the second moment in O(n) time.

35For instance, Coppersmith and Winograd (1990) suggest an algorithm that achieves the bound of
O(n2.376). There is no known algorithm that achieves O(n2).
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assuming its IHRP, I characterize an optimal mechanism.

6.1 The Model

Consider the following mechanism design problem. There are n buyers indexed by i, and

N = {1, . . . , n} is the set of buyers. There is a single seller who owns an infinite number of

an object. The object is divisible and has no value for the seller. I assume that each buyer

has a unit demand for the object. The buyers and seller know the degree distribution of the

underlying network between the buyers.

Agent i’s type is her degree di ∈ D = {0, . . . , dmax}, and Dn is the set of all type

profiles. By the assumption of degree independence, buyer i’s type is drawn from the degree

distribution f(·), and is independent of other buyers’ types. I assume that each buyer’s

degree is her private information. The joint type distribution, except buyer i’s type, is

f−i(d−i) =
∏

j 6=i f(dj) where d−i ∈ Dn−1 is the type profile of all buyers except buyer

i’s type. Although realizations of types are independent, buyer i’s utility has allocative

externalities. Let x = (xi,x−i) ∈ [0, 1]n be an allocation vector of the buyers, where x−i

represents the allocation vector except buyer i’s allocation. Buyer i’s value of allocation

vector x is vi(xi,x−i) = xi
∑

j∈Ni xj. I consider buyers with a quasi-linear utility function:

when buyer i pays pi to the seller, her utility is vi(xi,x−i)− pi.

By the revelation principle, I focus on direct revelation mechanisms (henceforth, mech-

anisms): buyers directly report their types, and an allocation vector and a payment vector

are determined according to a pre-determined rule.36 Formally, let X = [0, 1]n be the set

of allocation vectors. The seller specifies a direct revelation mechanism (x,p), where x

is an allocation rule, and p is a payment scheme. The allocation rule is represented by

x = (x1, . . . , xn) where xi(·) : Dn → [0, 1] is an allocation rule for buyer i. Similarly, the

payment scheme is denoted by p = (p1, . . . , pn) where pi(·) : Dn → R+ is a payment scheme

for buyer i. Therefore, when the reported profile is d = (d1, . . . , dn), buyer i obtains xi(d)

36The revelation principle states that an equilibrium outcome of any mechanism can be replicated by a
truthful equilibrium of a direct mechanism.
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unit of the object and pays pi(d) to the seller.

Given a mechanism (x,p), I define for each buyer i the conditional expected allocation

function ξi(·) : D → [0, 1] and the conditional expected payment function πi(·) : D → R+ as

ξi(di) :=
∑

d−i∈Dn−1

xi(di,d−i)f−i(d−i),

πi(di) :=
∑

d−i∈Dn−1

pi(di,d−i)f−i(d−i).

Suppose buyer i believes that other buyers report their types truthfully. When her type

is di, buyer i’s expected valuation by reporting type d′i is

Vi(d
′
i, di) = ξi(d

′
i)
∑
j∈Ni

Ẽ [ξj(dj)] ,

where Ẽ [ξj(dj)] :=
∑

d∈D f̃(dj)ξj(dj) is the expectation of neighbor j’s allocation.

I restrict my attention to anonymous mechanisms: if di = dj, then ξi(di) = ξj(dj) and

πi(di) = πj(dj) for all i, j ∈ N . With this restriction, since the expected valuation is

represented by the expected allocations and payments, a mechanism is simply expressed by

a pair of two functions (ξ, π): if buyer i reports type di, she receives ξ(di) unit of the object

and pays π(di). The seller’s problem is to maximize his expected revenue from one buyer.

Buyer i’s expected valuation does not depend on her identity by anonymity of the mech-

anism. Let V (d′i, di) be her expected value if she reports d′i when her type is di:

V (d′i, di) = ξ(d′i)
∑
j∈Ni

Ẽ [ξ(dj)] .

Given this, a mechanism (ξ, π) is called incentive compatible if

V (di, di)− π(di) ≥ V (d′i, di)− π(d′i) for all d′i, di ∈ D.

It is called (interim) individually rational if for all i ∈ N ,

V (di, di)− π(di) ≥ 0 for all di ∈ D.

Since the seller’s per-capita expected revenue is
∑

d∈D f(d)π(d), his mechanism design

problem is formulated as
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maximize
(ξ,π)

∑
d∈D

f(d)π(d)

subject to V (d, d)− π(d) ≥ V (d′, d)− π(d′) for all d′, d ∈ D,

V (d, d)− π(d) ≥ 0 for all d ∈ D,

ξ(d) ∈ [0, 1] for all d ∈ D.

(6.1)

One interpretation of the above mechanism design problem is as follows. There is a

telecommunications company that provides data plan services at zero production cost. There

are n consumers each with demand for the service of up to one unit. A consumer’s valuation

of her data plan depends on her friends’ plans as well: the better data plans her friends

have, the higher value she obtains. Given this environment, the company wants to construct

a list of data plans that incentivizes consumers to truthfully report their number of friends

and maximizes the company’s revenue. Hence, when a consumer tries to join the service,

a service manager will ask how many friends the consumer has. Depending on her answer,

the manager recommends a specific data plan from the list of available data plans, and the

consumer will take the recommended service because the mechanism is incentive compatible.

6.2 Revenue-Maximizing Mechanism

Any mechanism for a strictly positive revenue to the seller provides Ẽ [ξ(d)] > 0. Thus, for

any mechanism with positive revenue, the expected valuation V (·, ·) is strictly supermodular:

for all d > d′ and k > k′,

V (d, k)− V (d′, k) > V (d, k′)− V (d′, k′).

For this strict supermodularity, a mechanism (ξ, π) is incentive compatible if and only if the

allocation rule ξ(·) is monotone: ξ(d) ≥ ξ(d′) for all d ≥ d′. The monotonicity simplifies the

incentive compatibility constraints by the adjacent incentive compatibility constraints:

V (d, d)− π(d) ≥ V (d+ 1, d)− π(d+ 1) for all d = 0, . . . , dmax − 1 (6.2)

V (d, d)− π(d) ≥ V (d− 1, d)− π(d− 1) for all d = 1, . . . , dmax. (6.3)
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Needless to say, all the downward incentive compatibility constraints (6.3) must be binding

if a mechanism (ξ, π) maximizes the seller’s revenue. Since any isolated buyer with zero

degrees takes no value from his allocation, I set π(0) = 0 without loss of generality. Since

the downward incentive compatibility constraints are binding, the payment scheme satisfies

π(d) = π(d− 1) +
(
V (d, d)− V (d− 1, d)

)
= ξ̃

d∑
k=1

(
ξ(k)k − ξ(k − 1)k

)
for all d ≥ 1, where ξ̃ =

∑dmax

d=1 ξ(d)f̃(d) is the expected allocation of a neighboring buyer.

It follows that if ξ(·) is monotone, the above payment scheme provides that all the upward

incentive compatibility constraints (6.2) are satisfied. Thus, the seller’s problem becomes

maximize
ξ:D→[0,1]

{
dmax∑
d′=1

f̃(d′)ξ(d′)

}[
dmax∑
d=1

f(d)

(
ξ(d)

(
d− 1− F (d)

f(d)

))]

subject to 0 ≤ ξ(0) ≤ ξ(1) ≤ · · · ≤ ξ(dmax) ≤ 1.

(6.4)

The seller’s objective function can be rewritten as

dmax∑
d=1

f(d)

(
ξ̃ξ(d)

(
d− 1− F (d)

f(d)

))
,

where ξ̃ =
∑dmax

d=1 ξ(d)f̃(d) is the expected allocation of a neighboring buyer. The term

presents in the summation, ξ̃ξ(d)
(
d− 1−F (d)

f(d)

)
, is the virtual value of a buyer of type d. Due

to the allocative externalities between linked buyers, the virtual value has two components:

ξ(d)
(
d− 1−F (d)

f(d)

)
and ξ̃. Since the first component does not depend on other buyers’ allo-

cations, I call it the individual value. Note that
(
d− 1−F (d)

f(d)

)
is the analogue of Myerson’s

virtual type (Myerson, 1981), which is ubiquitous in mechanism design problems when types

are realized independently (e.g., Jehiel et al., 1996, 1999). The second component ξ̃ newly

appears in the current model, and I call this the social value. Since the social value depends

on allocation rule ξ(·), the seller takes it into account his revenue maximization problem.

If the seller fully knows the buyers’ types, he can choose the efficient allocation rule where

ξ(d) = 1 and the payment rule π(d) = d for all d. Since every buyer knows that the other

neighboring buyers obtain one unit of the object, this allocation rule maximizes the social

value ξ as one. However, when the seller has incomplete information, he has to incentivize
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the buyers to truthfully report their types.

Note that if allocative externalities do not exist, and the IHRP is satisfied, the seller

can incentivize the buyers by solving the following pointwise maximization problem of the

individual values:

maximize
ξ:D→[0,1]

dmax∑
d=1

f(d)

(
ξ(d)

(
d− 1− F (d)

f(d)

))
subject to 0 ≤ ξ(0) ≤ ξ(1) ≤ · · · ≤ ξ(dmax) ≤ 1.

(6.5)

The solution of the above problem maximizes ξ(d)
(
d − 1−F (d)

f(d)

)
for each d (Myerson, 1981).

Note that the virtual type
(
d− 1−F (d)

f(d)

)
undercuts the buyers’ true types, and so the resulting

social value is strictly less than one. Since the seller’s true objective function contains the

social value, the solution of alternative problem (6.5) may not maximize the seller’s true

per-capita revenue in (6.4). This suggests that the seller has to balance the maximization of

the social value and the maximization of the individual value. By using the example in the

following section, I will clearly illustrate the tension between these two maximizations.

Comparative statics. Although it is impossible to obtain a closed-form solution of the

optimal mechanism, it follows that the seller’s per-capita revenue monotone increases as the

density of the underlying network increases. By using the notion of likelihood ratio order, let

fθ(·) and fθ′(·) be the degree distributions of two networks with fθ(·) >LR fθ′(·). As shown

in the previous section, fθ(d)
1−Fθ(d)

<
fθ′ (d)

1−Fθ′ (d)
for all d, and f̃θ(·) >FOSD f̃θ′(·).

Suppose that the seller chooses the same allocation rule ξ(·) for both networks. Then, as

the degree distribution changes from fθ′(·) to fθ(·), the individual value strictly increases as

d− 1− Fθ(d)

fθ(d)
> d− 1− Fθ′(d)

fθ′(d)

for all d. In addition, the first-order stochastic dominance, f̃θ(·) >FOSD f̃θ′(·), implies that

the social value strictly increases as
dmax∑
d=1

ξ(d)f̃θ(d) >
dmax∑
d=1

ξ(d)f̃θ′(d).

These two observations imply that for any given allocation rule, the seller’s objective function
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in (6.4) is strictly increasing as the underlying network changes its density in terms of

the likelihood ratio order. Therefore, the seller’s revenue strictly increases. The following

proposition summarizes this idea.

Proposition 6 If the degree distribution satisfies the increasing hazard rate property, then

there exists a monotone revenue-maximizing mechanism. The seller’s revenue strictly in-

creases as the degree distribution increases in terms of likelihood ratio order.

6.3 Example: Uniform Pricing

I here analyze the seller’s optimal mechanism problem when he cannot price discriminate

the buyers. The seller chooses only one price π ≥ 0. Since the valuation of the object is

strictly increasing in degree, any buyer with a degree higher than a threshold degree will be

willing to pay the posted price π and obtain one unit of the object. Hence, in any equilibrium

of the game with incomplete information among the buyers, the buyers with the threshold

degree must obtain zero utility.

The above observation provides that it suffices to consider a binary allocation rule ξ(·)

characterized by a threshold degree d as ξ(d) = 1 if d ≥ d, and ξ(d) = 0 otherwise. By the

incentive compatibility constraint for d, the expected utility of the buyers with the threshold

degree d must be zero. Thus, the price π satisfies π = V (d, d) = d
(
1 − F̃ (d − 1)

)
, and the

seller’s revenue function for a given threshold degree d is

Ψ(d) = d
(

1− F̃ (d− 1)
)

︸ ︷︷ ︸
posted price

(
1− F (d− 1)

)
︸ ︷︷ ︸

demand

.

I now characterize the seller’s optimal choice of the threshold degree. I note that the

seller’s revenue function is single-peaked if the degree distribution satisfies the IHRP. To

explain why, I define the seller’s marginal revenue by increasing the threshold degree d to

d+ 1 as 4Ψ(d) := Ψ(d+ 1)−Ψ(d). The marginal revenue satisfies (i) 4Ψ(0) > 0, and (ii)

a single-crossing property that 4Ψ(d) ≤ 0 implies 4Ψ(d′) < 0 for all d′ > d. In words, (i)

represents that the seller excludes the buyers who have no neighboring buyers: otherwise,
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the seller has to make the price zero to sell the object to those buyers. The single-crossing

property (ii) establishes that the seller’s revenue function has a unique maximizer.

Indeed, the single-crossing property follows from the fact that both the degree distribution

and the conditional degree distribution simultaneously satisfy the IHRP. To demonstrate, I

write the marginal revenue as

4Ψ(d) =
1(

1− F̃ (d− 1)
)(

1− F (d− 1)
) {1 +

(
d+ 1

)(
h̃(d)h(d)− h̃(d)− h(d)

)}
.

Since h̃(d)h(d)−
(
h̃(d)+h(d)

)
is strictly decreasing by Lemma 1, the marginal revenue satisfies

the single-crossing property. The seller’s revenue is maximized at d∗ = inf{d|4Ψ(d) ≤ 0}.

By ignoring the integer-value problem, the optimal choice of threshold degree d∗ is easily

characterized by setting 4Φ(d∗) = 0:

1

d∗ + 1
= h(d∗) + h̃(d∗)− h̃(d∗)h(d∗). (6.6)

This characterization directly shows the existence and uniqueness of a threshold degree: the

left-hand side strictly decreases in d, but the right-hand side strictly increases in d.

The above characterization equation has the following economic interpretation. Suppose

that the social value is fixed as ξ̃, and that the seller proposes a take-it-or-leave-it offer to

a buyer at price π. Since the buyer obtains a zero utility if she has degree d = π/ξ̃, the

probability that this buyer accepts the offer is 1−F (d−1). Thus, the seller’s revenue function

in terms of threshold degree d is ξ̃d
(
1−F (d−1)

)
. The seller’s revenue is uniquely maximized

at d′ satisfying 1
d′+1

= h(d′), and it is independent of the social value ξ̃. Therefore, the first

term in equation (6.6) explains the optimal choice of threshold degree when he does not

take into account the change of the social value by his mechanism. However, the seller has

to consider the social value to maximize his revenue as explained for the general model. In

equation (6.6), the latter term
(
h̃(d)− h̃(d)h(d)

)
captures this factor. Since h̃(d)− h̃(d)h(d)

is strictly positive, the threshold degree d∗ solving equation (6.6) is strictly smaller than d′.

The optimal choice of threshold degree d∗ as strictly smaller than d′ has the following

meaning. Let π∗ = d∗
(
1− F̃ (d∗−1)

)
and π′ = d′

(
1− F̃ (d′−1)

)
be the corresponding prices.
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Since the degree distribution f(·) satisfies the strictly IHRP, it follows that π∗ < π′.37

Therefore, by setting a lower price π∗, the seller increases the demand. In turn, the lower

price provides a higher return to the seller than a price that only maximizes the individual

value. The following proposition summarizes the observations.

Proposition 7 If the degree distribution satisfies the increasing hazard rate property, then

there exists a unique threshold degree d∗ that maximizes the seller’s revenue.

7 Concluding Remarks

Researchers are interested in analyzing strategic interaction in large networks. In the

modeling perspective, they often consider an incomplete information setting in which agents

know their own connections, but have uncertainty about connectivity of their neighboring

agents. In this setting, the IHRP of the degree distribution plays a key role in characterizing

equilibrium outcomes. In addition to the theoretical implications of the IHRP, the current

paper presents a dynamic network formation model that explains why empirical hazard

rates exhibit different patterns. This network formation model with empirical observations

justifies the use of the IHRP as an assumption of network games.

My model has many empirical implications, and I discuss these in more detail in the

online appendix. My model outperforms other network formation models in terms of data-

fitting performance. In the appendix, I compare my model to three prominent models:

(i) the Poisson model by Erdős and Rényi (1959), (ii) the network-based search model by

Jackson and Rogers (2007a) (JR model), and (iii) the PA model by Barabási and Albert

(1999). In Figure 3, I present results only for three network datasets: (a) one social network

of a rural Indian village, (b) a collaboration network between jazz musicians, (c) a friendship

network of Facebook users. As illustrated in the figure, my model fits the empirical degree

distributions better than the other models.

37To see this, let d′′ be the degree that maximizes d
(
1− F̃ (d− 1)

)
. Since f̃(·) satisfies the strictly IHRP,

such d′ is unique. It follows that d′ < d′′ by h(d) > h̃(d) for all d. Note also that d
(
1− F̃ (d− 1)

)
is strictly

increasing in d for d ≤ d′′. Therefore, π∗ < π′ because d∗ < d′ < d′′.
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(c) Facebook users

Figure 3: In each plot, the horizontal axis represents degrees, and the vertical axis represents
the empirical (the red dots) and estimated (the black line) cumulative degree distributions.

One important factor should be taken into account in future research. It has been recently

shown that networks having the same degree distribution may have very different network

structures. Specifically, Bubeck et al. (2015) show that the initial network has a great impact

on the limiting graph generated by the PA model. This is a surprising result because the

degree distribution generated by the PA model converges almost surely to a scale-free distri-

bution regardless of the initial network. Beyond just finding a limiting degree distribution,

the dynamic network formation literature is evolving in a direction of identifying the limiting

distribution of networks.
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Therefore, in line with the literature on strategic network formation, it is definitely worth

building a strategic dynamic network formation model that incorporates how agents form

beliefs about the future networks for a given network, and how it affects their decision on

link formation. I conjecture that this approach will generate a probability distribution over

a set of multiple networks, and so it will enrich the limiting equilibrium network structure

comparing to what the previous strategic network formation models predict.
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A Proofs of Results

Proof of Proposition 1

Proof. The proof consists of two parts. In Part I, by defining N(d, t) := E [N(d, t)] for

each d, I show that N(d, t)/t converges to f(d). In Part II, I prove that for each d, N(d, t)/t

converges in probability to f(d).

Part I. I first show that the expected fraction of nodes with degree d converges.

Proposition A.1 For each d ∈ N, N(d, t)/t converges to f(d) as t→∞.

Proof. I start from the following rate equations:

(i) For d = 1:

N(1, t+ 1) = 1 +

(
1− Φ(1)

µt

)
N(1, t) + ε(1, t). (A.1)

(ii) For d ≥ 2:

N(d, t+ 1) =
(d− 1)Φ(d− 1)

µt
N(d− 1, t) +

(
1− dΦ(d)

µt

)
N(d, t) + ε(d, t). (A.2)

I solve the rate equations inductively. By letting a(1) = Φ(1)/µ, equation (A.1) becomes

N(1, t+ 1) = 1 +

(
1− a(1)

t

)
N(1, t) + ε(1, t).

By iteration, I have

N(1, t+ 1)

= 1 +

(
1− a(1)

t

)
+

(
1− a(1)

t

)(
1− a(1)

t− 1

)
N(1, t− 1) + ε(1, t) +

(
1− a(1)

t

)
ε(1, t− 1)

=
t∑

s=1

[
t∏

r=s+1

(
1− a(1)

r

)]
︸ ︷︷ ︸

(i)

+ N(1, 1)
t∏

r=1

(
1− a(1)

r

)
︸ ︷︷ ︸

(ii)

+
t∑

s=1

[
t∏

r=s+1

(
1− a(1)

r

)
ε(1, r − 1)

]
︸ ︷︷ ︸

(iii)

.

For a large t, the product is approximated by

t∏
r=s+1

(
1− a(1)

r

)
≈ e−

∑t
r=s+1 a(1)/r ≈ e−a(1)(log t−log s) =

(s
t

)a(1)

. (A.3)
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By the above approximation, I find approximations for (i) - (iii) as

(i)
t∑

s=1

t∏
r=s+1

(
1− a(1)

r

)
≈ 1

ta(1)

∫ t

0

sa(1) ds =
1

ta(1)

1

1 + a(1)
ta(1)+1 =

t

1 + a(1)
,

(ii) N(1, 1)
t∏

r=1

(
1− a(1)

r

)
≈ N(1, 1)

(s
t

)a(1)

,

(iii)
t∑

s=1

t∏
r=s+1

(
1− a(1)

r

)
ε(1, r − 1) ≈ ε(1, t− 1)

t

1 + a(1)
.

By dividing by t and taking the limit, both (ii) and (iii) become zero. Hence, it follows that

lim
t→∞

N(1, t)

t
=

1

1 + a(1)
=

µ

µ+ Φ(1)
= f(1).

Suppose that f(d− 1) is given. Define a(d) and b(d− 1, t) as

a(d) :=
dΦ(d)

µ
and b(d− 1, t) :=

(d− 1)Φ(d− 1)

µ

N(d− 1, t)

t
.

I observe that

lim
t→∞

b(d− 1, t) =
(d− 1)Φ(d− 1)

µ
lim
t→∞

N(d− 1, t)

t
=

(d− 1)Φ(d− 1)

µ
f(d− 1).

Then, by using the approximation technique for d = 1, I rewrite equation (A.2) as

N(d, t+ 1) =

(
1− a(d)

t

)
N(d, t) + b(d− 1, t) + ε(d, t)

= b(d− 1, t) +

(
1− a(d)

t

)
b(d, t− 1) +

(
1− a(d)

t

)(
1− a(d)

t− 1

)
N(d, t− 1)

+ ε(d, t) +

(
1− a(d)

t

)
ε(d, t− 1)

≈
t∑

s=1

b(d− 1, s)
t∏

r=s+1

(
1− a(d)

r

)
+ N(d, 1)

t∏
r=1

(
1− a(d)

r

)

+
t∑

s=1

t∏
r=s+1

(
1− a(d)

r

)
ε(d, r − 1).

By dividing t and taking the limit, the latter two terms become zero. In addition, since

lim
t→∞ b(d− 1, t) = (d−1)Φ(d−1)

µ
f(d− 1), it follows that

lim
t→∞

N(d, t)

t
=

lim
t→∞ b(d− 1, t)

1 + a(d)
=

(d− 1)Φ(d− 1)

µ+ dΦ(d)
f(d− 1) = f(d). �

Part II. For notational simplicity, I let zd = dΦ(d) for each d. I find the following result:
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Proposition A.2 For each d ∈ N, there exists
(
ν(d, t)

)
t≥1

such that

|N(d, t)− f(d)t| ≤ ν(d, t)t,

and ν(d, t)→ 0 as t→∞.

Proof. I prove the statement inductively. For d = 1, I observe that

N(1, t+ 1) = 1 +

(
1− z1

µt

)
N(1, t) + ε(1, t),

(t+ 1)f(1) = 1 +

(
1− z1

µt

)
tf(1).

Let δ(1, t) := |N(1, t)− tf(1)|. Then, by setting ν(1, t) = ε(1, t) + 1/t, it follows that∣∣∣∣N(1, t+ 1)− (t+ 1)f(1)

∣∣∣∣ ≤ ∣∣∣∣(N(1, t)− tf(1)
)
− z1

µt

(
N(1, t)− tf(1)

)∣∣∣∣+ ε(1, t)

=

(
1− z1

µt

)
δ(1, t) + ε(1, t)

≤ δ(1, 1)
t∏

k=1

(
1− z1

µk

)
︸ ︷︷ ︸

→0 as t→ 0

+
t∑

s=1

t∏
r=s+1

(
1− z1

µr

)
ε(d, r)︸ ︷︷ ︸

≤ε(1,t)t

≤ ν(1, t)t.

Suppose now that the statement holds for d− 1. I observe that

N(d, t+ 1) = N(d, t) +
zd−1

µt
N(d− 1, t)− zd

µt
N(d, t) + ε(d, t),

(t+ 1)f(d) = tf(d) +
zd−1

µt
tf(d− 1)− zd

µt
tf(d).

Let δ(d, t) := |N(d, t)− tf(d)|. By setting ν(d, t) = zd−1

µ
ν(d− 1, t) + ε(d, t) + 1/t, I have∣∣∣∣N(d, t+ 1)− (t+ 1)f(d)

∣∣∣∣
≤
∣∣∣∣(N(d, t)− tf(d)

)(
1− zd

µt

)
+
zd−1

µt

(
N(d− 1, t)− tf(d− 1)

)∣∣∣∣+ ε(d, t)

≤
(

1− zd
µt

)
δ(d, t) +

zd−1

µ
ν(d− 1, t) + ε(d, t)

≤
(

1− zd
µt

)(
1− zd

µ(t− 1)

)
δ(d, t− 1) +

(
1− zd

µt

)
zd−1

µ
ν(d− 1, t− 1) +

zd−1

µ
ν(d− 1, t)

+

(
1− zd

µt

)
ε(d, t− 1) + ε(d, t)
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≤ δ(d, 1)
t∏

k=1

(
1− zd

µk

)
︸ ︷︷ ︸

→0 as t→ 0

+
t∑

s=1

{[
zd−1

µ
ν(d− 1, s) + ε(d, s)

] t∏
r=1

(
1− zd

µr

)}
︸ ︷︷ ︸

≤
(
zd−1
µ

ν(d−1,s)+ε(d,s)
)
t

≤ ν(d, t)t. �

I now show concentration of the degrees as follows.

Proposition A.3 Let d ∈ N be fixed. Then, there exists a constant Kd > 0 such that

P

(∣∣∣∣N(d, t)−N(d, t)

∣∣∣∣ ≥ Kd

√
t log t

)
≤ o(1).

Proof. I find that (M(d, s))ts=1 where M(d, s) := E [N(d, t)|F s] is a Doob Martingale:

Lemma A.1 For each d ∈ N,
(
M(d, s)

)t
s=1

is a Doob Martingale with respect to
(
F s
)t
s=0

.

Moreover, M(d, 0) = N(d, t) and M(d, t) = N(d, t).

Proof. The first part follows as:

E [|M(d, s)|] = E [E [N(d, t)|F s]] = E [N(d, t)] ≤ t <∞,

E
[
M(d, s)|F s−1

]
= E

[
E [N(d, t)|F s] |F s−1

]
= E

[
N(d, t)|F s−1

]
= M(d, s− 1).

The second part follows as:

M(d, 0) = E
[
N(d, t)|F0

]
= E [N(d, t)] ,

M(d, t) = E
[
N(d, t)|F t

]
= N(d, t). �

(M(d, s))ts=1 has the following uniformly bounded difference property:

Lemma A.2 For each d ∈ N, there exists Md > 0 such that for all 1 ≤ s ≤ t,

|M(d, s)−M(d, s− 1)| ≤Md.

Proof. I prove the lemma only for d ≥ 2 because one can easily repeat similar steps for

d = 1. For any given d ≥ 2, I set Md = 2
z1

max{1, zd, zd−1}, and show the statement by using

mathematical induction in the difference k = t− s ≥ 0. First, when k = 0, I have

|M(d, t)−M(d, t− 1)|
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=

∣∣∣∣E [N(d, t)|F t
]
−E

[
N(d, t)|F t−1

]∣∣∣∣
=

∣∣∣∣N(d, t)−E
[
N(d, t)|F t−1

]∣∣∣∣
≤
∣∣∣∣N(d, t)−N(d, t− 1)

∣∣∣∣+
zd

z1
2

(t− 1)
N(1, t− 1) +

zd−1
z1
2

(t− 1)
N(1, t− 1)

≤ 1 +
max{zd−1, zd}

z1
2

(t− 1)

(
N(d− 1, t) + N(d, t− 1)

)
≤Md.

Second, suppose the statement holds for all k′ ≤ k. For k ≥ 1, I have

|M(d, s)−M(d, s− 1)| =
∣∣∣∣E [N(d, t)|F s]−E

[
N(d, t)|F s−1

]∣∣∣∣
≤ 1 +

max{zd−1, zd}
z1
2

(s− 1)

(
E [N(d, t)|F s] +E

[
N(d, t)|F s−1

] )
≤Md. �

With the above two lemmas, the Azuma-Hoeffiding inequality states that for any εd > 0,

P

(
|N(d, t)−N(d, t)| ≥ εd

)
≤ 2e

− ε2d
2M2

d
t .

By choosing εd = 2Md

√
t log t, it follows that

P

(
|N(d, t)−N(d, t)| ≥ 2Md

√
t log t

)
≤ o(1). �

I finally prove that for each d, N(d,t)
t

converges in probability to f(d) as follows:

Proposition A.4 Let d ∈ N be fixed. For any given ε > 0,

lim
t→∞

P

(∣∣∣∣N(d, t)

t
− f(d)

∣∣∣∣ ≥ ε

)
= 0.

Proof. By Proposition A.2, there exists T1 such that |N(d,t)
t
− f(d)| < ε/3 whenever t ≥ T1.

Then, for all t ≥ T1,

P

(∣∣∣∣N(d, t)

t
− f(d)

∣∣∣∣ ≥ ε

)
≤ P

(∣∣∣∣N(d, t)

t
− N(d, t)

t

∣∣∣∣+

∣∣∣∣N(d, t)

t
− f(d)

∣∣∣∣ ≥ ε

)
≤ P

(∣∣∣∣N(d, t)

t
− N(d, t)

t

∣∣∣∣ ≥ 2

3
ε

)
.
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By Proposition A.3, it follows that

lim
t→∞

P

(∣∣∣∣N(d, t)

t
− N(d, t)

t

∣∣∣∣ ≥ 2

3
ε

)
= 0. �

I finally prove the unique choice of µ. For this, I state and prove the following lemma.

Lemma A.3 Let Γ(·) : R+ → R+ be a function defined by

Γ(µ) :=
∞∑
d=1

dΦ(d)f(d) =
∞∑
d=1

dΦ(d)

[
µ

dΦ(d)

d∏
k=1

(
kΦ(k)

µ+ kΦ(k)

)]
.

Then, Γ(·) is continuous in µ.

Proof. Define a function γd(·) : R+ → R+ as

γd(µ) = dΦ(d)f(d) = dΦ(d)

[
µ

dΦ(d)

d∏
k=1

(
kΦ(k)

µ+ kΦ(k)

)]
.

Note that 0 ≤ γd(µ) ≤ df(d) and
∑∞

d=1 df(d) = 2. Define a function Γn(·) : R+ → R+ as

Γn(µ) =
∑n

d=1 γd(µ). Then, Γn(·) is continuous in µ, and it converges uniformly to Γ(·) by

the Weierstrass M test (Marsden and Hoffman, 1993). Therefore, Γ(·) is continuous. �

Therefore, the theorem is proven. �

Proof of Proposition 2

Proof. The proposition is fully proven in the main text. �

Proof of Proposition 3

Proof. I observe the following lower bound of λmax(Gt):√
dmax(Gt) ≤ λmax(Gt),

where dmax(G) is the maximum degree of network Gt. Thus, it suffices to show that if dΦ(d)

is increasing in d, then d1(Gt)→∞ almost surely as t→∞.

Define a sequence of independent Bernoulli random variables
(
It
)
t≥1

such that

P(It = 1) :=
Φ(1)

2t
.
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If the hazard rate function is not increasing, then it follows that

P
(
d1(Gt)− d1(Gt−1) = 1|Gt−1

)
=

d1(Gt−1)Φ(d1(Gt−1))∑t−1
s=1 ds(G

s)Φ(ds(Gt−1))
≥ Φ(1)

2t
= P(It = 1).

Thus, d1(Gt) ≥
∑t

s=1 Is. Note that
∑∞

t=1P
(
It = 1

)
= ∞. Since

(
It
)
t≥1

is a sequence of

independent random variables, the second Borel-Cantelli lemma shows that

P

(
It = 1 i.o.

)
= 1.

Thus, P
(∑∞

t=1 It =∞
)

= 1, and it implies that d1(Gt)→∞ almost surely as t→∞. �

Proof of Proposition 4

Proof. Suppose that the hazard rate function is increasing, which implies that zd ≤ z1 for

all d ≥ 1. Choose ε = log
(

1 + Φ(1)
4z1

)
. Then, it follows that

lim
d→∞

log
F (d)

e−εd
= lim

k→∞

d−1∑
s=1

log

(
zs

µ+ zs

)
+ εd

= lim
d→∞

d−1∑
s=1

(
log

(
zs

µ+ zs

)
+ log

(
1 +

Φ(1)

4z1

))
+ ε

≤ lim
d→∞

d−1∑
s=1

(
log

(
z1

µ+ z1

)
+ log

(
1 +

Φ(1)

4z1

))
+ ε

= lim
d→∞

d−1∑
s=1

log

(
Φ(1)/4 + z1

µ+ z1

)
+ ε

< ε.

Hence, the asymptotic degree distribution is not heavy-tailed.

I now show that if the hazard rate function monotonically decreases to zero, then the

asymptotic degree distribution is heavy-tailed. By the assumption, it follows that zd → ∞

as d→∞. For a fixed ε > 0, there exists δ > 0 such that ε = log(1 + δ). Then, I have

lim
d→∞

log
F (d)

e−εd
= lim

k→∞

d−1∑
s=1

log

(
zs

µ+ zs

)
+ εd

= lim
d→∞

d−1∑
s=1

(
log

(
zs

µ+ zs

)
+ log

(
1 + δ

))
+ ε
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= lim
d→∞

d−1∑
s=1

log

(
δzs + zs
µ+ zs

)
+ ε

=∞. �

Proof of Corollary 1

Proof. The statement directly follows by and Proposition 3 and Proposition 4. �

Proof of Lemma 1

Proof. I define a sequence
(
a(d)

)
d≥1

as

F (d) = 1−

(
d−1∑
k=1

f(k)

)
=

d∏
k=1

a(k).

By its construction, I have

f(d) =
(

1− a(d+ 1)
) d∏
k=1

a(k),

h(d) = 1− a(d+ 1).

Thus, h(d) is increasing in d if and only if a(d) is decreasing in d for all d ≥ 2.

By the summation by parts, I find that

∞∑
k=d

kf(k) = d
d∏
s=1

a(s) +
∞∑

k=d+1

k∏
s′=1

a(s′).

Hence, the inverse hazard rate function of f̃(·) is

1

h̃(d)
=

∑∞
k=d kf(k)

df(d)

=
d
∏d

s′=1 a(s′)

d
(
1− a(d+ 1)

)∏d
r′=1 a(r′)

+

∑∞
k=d+1

∏k
s=1 a(s)

d
(
1− a(d+ 1)

)∏d
r=1 a(r)

=
1

h(d)
+

1

dh(d)

(
∞∑

k=d+1

k∏
s=d+1

a(s)

)
.

Thus, it suffices to show that the inverse hazard rate function is decreasing in d.
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Since a(d) is decreasing in d,

∞∑
k=d+1

k∏
s=d+1

a(s)−
∞∑

k′=d+2

k′∏
s′=d+2

a(s′)

=
(
a(d+ 1) + a(d+ 1)a(d+ 2) + · · ·

)
−
(
a(d+ 2) + a(d+ 2)a(d+ 3) + · · ·

)
=
(
a(d+ 1)− a(d+ 2)

)
+
(
a(d+ 1)a(d+ 2)− a(d+ 2)a(d+ 3)

)
+ · · ·

=
(
a(d+ 1)− a(d+ 2)

)
+

∞∑
k=d+2

(
k∏

s=d+1

a(s)−
k∏

s′=d+2

a(s′)

)

> 0.

Note here that terms in the summations are rearrangeable because each summation is abso-

lutely convergent. With this observation, it follows that the inverse hazard rate function of

f̃(·) is strictly decreasing in d. Therefore, the proposition follows. �

Proof of Proposition 5

Proof. The proof directly follows by the equilibrium characterization. �

Proof of Proposition 6

Proof. Fix a mechanism (ξ, π). The social value ξ̃ = Ẽ [ξ(d)] is strictly positive if a

mechanism returns a strictly positive revenue to the seller. Thus, for any mechanism with a

positive revenue, the expected valuation V (·, ·) is strictly supermodular as

V (d′, d1)− V (d, d1) = ξ̃d1 (ξ(d′)− ξ(d)) > ξ̃d2 (ξ(d′)− ξ(d)) = V (d′, d2)− V (d, d2).

Then, the following lemmas follow:

Lemma A.4 If V (·, ·) is strictly supermodular, then the incentive compatibility has the fol-

lowing properties:

� ξ(·) is incentive compatible if and only if ξ(·) is monotone.

� ξ(·) is incentive compatible if the following inequalities hold:

V (d, d)− π(d) ≥ V (d− 1, d)− π(d− 1) for all d = 1, . . . , dmax,

V (d, d)− π(d) ≥ V (d+ 1, d)− π(d+ 1) for all d = 0, . . . , dmax − 1.
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Proof. See Chapter 6 in Vohra (2011) for proofs. �

Lemma A.5 For any monotone allocation ξ(·), there exists an expected payment schedule

π(·) such that all the incentive comparability constraints are satisfied.

Proof. Since any buyer with degree zero obtains zero utility, I set ξ(0) = 0 without loss of

generality. Define a payment schedule π(·) : D → R+ such that π(0) := 0 and

π(d) :=
d∑

k=1

(
V (d, d)− V (d− 1, d)

)
for all d ≥ 1. Then, by the previous lemma, it suffices to show that all downward and upward

incentive compatibility constraints are satisfied as:

π(d)− π(d− 1) = V (d, d)− V (d− 1, d) for all d ≥ 1,

π(d+ 1)− π(d) > V (d+ 1, d)− V (d, d) for all d ≥ 0.

Therefore, the lemma is proven. �

The previous lemmas imply that to solve the seller’s problem (6.1), it suffices to con-

sider monotone allocation rules and a payment schedule satisfying the adjacent incentive

compatibility constraints. Moreover, for any monotone allocation rule, there is a payment

schedule satisfying the adjacent constraints. In particular, the payment schedule satisfies all

downward incentive compatibility constraints.

Note that for any optimal mechanism (ξ, π), the downward incentive compatibility

constraints must be binding in the seller’s problem (6.1). Thus, given that ξ(0) = 0

and π(0) = 0 without loss of generality, I can fix the payment schedule defined as

π(d) := ξ̃
∑d

k=1

(
ξ(k)k − ξ(k − 1)k

)
. This implies that the seller’s problem is

maximize
ξ:D→[0,1]

{
dmax∑
d=1

f̃(d)ξ(d)

}[
dmax∑
d=1

f(d)

(
ξ(d)

(
d− 1− F (d)

f(d)

))]

subject to 0 = ξ(0) ≤ ξ(1) ≤ · · · ≤ ξ(dmax) ≤ 1.

Consider two degree distributions f(·) and f ′(·) with f(·) >LR f ′(·). Assuming the in-

creasing hazard rate property for both degree distributions, it follows that 1−F (d)
f(d)

> 1−F ′(d)
f ′(d)

.
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Since f̃(·) >FOSD f̃ ′(·), it also follows that
∑dmax

d=1 f̃(d)ξ(d) ≥
∑dmax

d=1 f̃
′(d)ξ(d) for any allo-

cation rule ξ(·). Therefore, the seller’s revenue strictly increases as the degree distribution

increases in terms of the likelihood ratio order. �

Proof of Proposition 7

Proof. The proposition follows by the discussions in the main text. �
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B Additional Proofs

I here provide additional proofs and results in probability theory.

Approximation

Claim. Let X(t) and Y(t) be random variables such that X(t) ∈ [0, K] and Y(t) ∈ [δ, L]

with δ > 0. If
(
Y(t)

)
t≥1

converges in probability to a constant y ∈ [δ, 1], then as t→∞,∣∣∣∣E [X(t)

Y(t)

]
−E

[
X(t)

y

]∣∣∣∣→ 0.

Proof. For a given ε > 0, let Ω(t) := {ω : |Y(t) − y| < εδ2

12K
}. By the assumption, there

exists T such that P
(
Ω(t)c

)
< εδ2

12KL
whenever t ≥ T . Therefore, t ≥ T implies that∣∣∣∣E [X(t)

Y(t)

]
−E

[
X(t)

y

]∣∣∣∣ ≤ ∣∣∣∣∫
Ω(t)

X(t)y −X(t)Y(t)

yY(t)
dF

∣∣∣∣+

∣∣∣∣∫
Ω(t)c

X(t)y −X(t)Y(t)

yY(t)
dF

∣∣∣∣
≤ 1

δ2

(∫
Ω(t)

∣∣∣∣X(t)y −X(t)Y(t)

∣∣∣∣ dF +

∫
Ω(t)c

∣∣∣∣X(t)y −X(t)Y(t)

∣∣∣∣ dF)
<

1

δ2

(
εδ2

12K

∫
Ω(t)

|X(t)| dF + 2L

∫
Ω(t)c
|X(t)| dF

)
<

1

δ2

(
εδ2

12
P
(
Ω(t)

)
+
(
2KL

)
P
(
Ω(t)c

))
< ε. �

Convergence of Random Variables in N∞

Claim. Let
(
Xn

)
n≥1

be a sequence of random variables. Let X∞ be a random variable

distributed over N∞. Then, Xn converges in distribution to X∞ as n→∞ if and only if for

all x ∈ R,

lim
n→∞

P
(
Xn = x

)
= P

(
X∞ = x

)
.

Proof. Suppose that Xn converges to X∞ in distribution as n → ∞. Let (a, b) ⊂ R such

that (a, b) ∩ N = ∅. Then, it follows that

P

(
X∞ ∈ (a, b)

)
≤ lim inf

n→∞
P

(
Xn ∈ (a, b)

)
= 0.

This part is shown in Theorem 29.1 in Billingsley (1995). Therefore, for any x /∈ N, there
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exists (a, b) such that x ∈ (a, b), (a, b) ∩ N = ∅, and P
(
X∞ = x

)
= 0 = limn→∞P

(
Xn = x

)
.

Now fix x ∈ N. By choosing ε = 1/2, I find that

P

(
X∞ = x

)
= P

(
X∞ ∈ (x− ε, x+ ε)

)
≤ lim inf

n→∞
P

(
Xn ∈ (x− ε, x+ ε)

)
≤ lim sup

n→∞
P

(
Xn ∈ (x− ε, x+ ε)

)
≤ lim sup

n→∞
P

(
X∞ ∈ (x− ε, x+ ε)

)
= P

(
X∞ = x

)
,

where the second and the last inequalities are by Theorem 29.1 in Billingsley (1995). There-

fore, it follows that lim
n→∞P

(
Xn = x

)
= P

(
X∞ = x

)
.

To show the converse, fix z ∈ R, and assume that F∞(·) is continuous at z. Since

F∞(z) = P
(
X∞ ≤ bzc

)
, it follows that

F∞(z) =
∑
k≤bzc

P
(
X∞ = k

)
=
∑
k≤bzc

lim
n→∞

P
(
Xn = bzc

)
= lim

n→∞
Fn(bzc) = lim

n→∞
Fn(z).

Note that the above argument does not hold if the support of X∞ is not N.38 �

Bounds of the Largest Eigenvalue

Claim. Let G = 〈N,A〉 be a network with size n. Its largest eigenvalue satisfies√
dmax(G) ≤ λmax(G) ≤ dmax(G).

Proof. Throughout the proof, let node 1’s degree be the maximum degree dmax.

To prove the lower bound, note that λmax(G) satisfies

λmax(G) ≥ q′Aq

q′q

for all q ∈ Rn. Without loss of generality, suppose that nodes 2, . . . , k have, respectively, a

38A simple counter example is a sequence of integer-valued random variables
(
Xn

)
n≥1

such that P
(
Xn =

k
)

= 1/n if and only if 1 ≤ k ≤ n. Then, lim
n→∞P

(
Xn = x

)
= 0 for all x ∈ R. Let X∞ ∼ N(0, 1). Then,

P
(
X∞ = x

)
= 0, but Xn does not converges in distribution to X∞ as n→∞.
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link to node 1, but nodes k + 1, . . . , n do not. Choose a vector q such that

q = (
√
dmax(G),11×(k−1),01×(n−k−1))

′,

where 11×k−1 is a 1× (k − 1) vector with entries of one, and 01×(n−k−1) is a 1× (n− k − 1)

vector with entries of zero. Then, q′q = 2dmax(G) and

q′Aq =
(
dmax(G)

)3/2
+
√
dmax(G)

(
d2(G) + · · ·+ dk(G)

)
= 2
(
dmax(G)

)3/2
.

Thus, λmax(G) ≥
√
dmax(G).

To prove the upper bound, let xmax be an eigenvector corresponding to the maximum

eigenvalue λmax(G). By its definition, Ax = λmax(G)x, and it follows that

λmax(G)x1 =
∑
j∈N1

xj,

where xi is the vector that has only one non-zero entry at the i-th entry. Hence,

|λmax(G)||x1| ≤
∑
j∈N1

|xj| ≤ dmax(G)|x1|. �

The Second Borel-Cantelli Lemma

Claim. Let
(
En
)∞
n=1

be a sequence of independent events. If
∑∞

n=1P
(
En
)

=∞, then

P

(
En i.o.

)
= 1.

Proof. Independence and 1− x ≤ e−x imply that

P

(
∩∞k=n E

c
k

)
=
∞∏
k=n

(
1−P

(
Ek
))
≤
∞∏
k=n

exp
(
−P

(
Ek
))

= exp
(
−
∞∑
k=n

P
(
Ek
))

= 0.

Thus, P
(
∪∞k=n En

)
= 1 for all n. Since ∪∞k=nEn decreases monotonically to lim supnEn as

n→∞, it follows that

P

(
En i.o.

)
= 1.
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Erdős and Rényi, A. (1959). On random graphs I. Publications Mathematicae Debrecen,

6:290–297.

Fainmesser, I. P. and Galeotti, A. (2015). Pricing network effects. Review of Economic

Studies (Forthcoming).

Feri, F. and Pin, P. (2015). The effect of externalities aggregation on network games out-

comes. Working Paper.

56



Flaxman, A., Frieze, A., and Fenner, T. (2005). High degree vertices and eigenvalue in the

preferential attachment graph. Internet Mathematics, 2(1):1–19.

Galeotti, A., Goyal, S., Jackson, M. O., Vega-Redondo, F., and Yariv, L. (2010). Network

games. Review of Economic Studies, 77:218–244.

Ghiglino, C. (2012). Random walk to innovation: Why productivity follows a power law.

Journal of Economic Theory, 147(2):713–737.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal

of the American Statistical Association, 58(301):13–30.

Jackson, M. O. (2010). Social and economic networks. Princeton University Press.

Jackson, M. O. and Rogers, B. W. (2007a). Meeting strangers and friends of friends: how

random are social networks? American Economic Review, 97(3):890–915.

Jackson, M. O. and Rogers, B. W. (2007b). Relating network structure to diffusion properties

through stochastic dominance. The B.E. Journal of Theoretical Economics, 7(1).

Jackson, M. O. and Yariv, L. (2007). Diffusion of behavior and equilibrium properties in

network games. American Economic Review, 97(2):92–98.

Jehiel, P., Moldovanu, B., and Stacchetti, E. (1996). How (not) to sell nuclear weapons.

American Economic Review, 86(4):814–829.

Jehiel, P., Moldovanu, B., and Stacchetti, E. (1999). Multidimensional mechanism design

for auction with externalities. Journal of Economic Theory, 85:258–293.

Karlin, S. and Rubin, H. (1956). The theory of decision procedures for distributions with

monotne likelihood ratio. Annals of Mathematical Statistics, XXVII:272–299.

König, M. D., Tessone, C. J., and Zenou, Y. (2014). Nestedness in networks: a theoretical

model and some applications. Theoretical Economics, 9:695–752.

57



Krapivsky, P. L., Redner, S., and Leyvraz, F. (2000). Connetivity of growing random net-

works. Physical Review Letters, 85(21).
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Abstract

In this online appendix, I present a continuous time approach to my model with a

parametric form Φ(d) = dα. The resulting degree distribution is the Weibull distribu-

tion (Weibull, 1951). I fit my model to four empirical degree distributions by using the

method of maximum likelihood estimation. I compare the goodness-of-fit of my model

with other three prominent degree distributions generated by Erdős and Rényi (1959),

Barabási et al. (1999), and Jackson and Rogers (2007). I use the Kolmogorov-Smirnov

statistic as a way to find the best fitting distribution.

1 Models and Degree Distributions

1.1 Continuous Time Approach

To obtain a tractable form of the resulting degree distribution, I apply a continuous time

approach to my model.1 In this approach, a node’s degree changes deterministically at a

rate proportional to its expected change. Specifically, the degree of node i changes according

to the following ordinary differential equation:

ddi(t)

dt
=
di(t)

µt

1

di(t)α
, (1.1)

where di(t) is the degree of node i at time t, µ > 0 is the parameter that represents the

rate of new nodes entering the network, and α > 0 is the parameter that captures the cost

1See Chapter 5 in Jackson (2010) and references therein for examples and discussions about this approach.
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of forming new links. The first term shows that higher degree nodes have a greater chance

of being identified by newborn nodes, and the second term shows that higher degree nodes

are more selective with additional links. When the parameter α is one, the probability that

node i forms additional links is independent of its degree. However, when parameter α is

larger than one, node i is less likely to form additional links as its degree increases.

I solve the differential equation (1.1) and find that

di(t)
α − di(i)α =

α

µ
log

(
t

i

)
.

To find an expression for the complementary cumulative degree distribution, I identify the

proportion of nodes with degrees that exceed a given degree d at time t. For this, it suffices

to find the node having exactly degree d at time t because all nodes born before time t have

larger degrees. Let it(d) be the node that has degree d at time t: dit(d)(t) = d. In addition,

let d0 be node it(d)’s initial degree: dit(d)(it(d)) = d0. Then, I have

it(d)

t
= e−((λd)

α−(λd0)α),

where λ =
(
µ
α

)−α
. Finally, by setting d0 = 0, the complementary cumulative degree distribu-

tion takes a form of a Weibull distribution as F (d;λ, α) = e−(λd)
α
. The hazard rate function

of the Weibull distribution is increasing if and only if the parameter α is larger than one.

The following proposition summarizes the results.

Proposition 1 The resulting complementary cumulative degree distribution has a form of

F (d;λ, α) = e−(λd)
α

,

where λ =
(
µ
α

)−α
. The hazard rate function is strictly increasing if and only if α > 1.

1.2 Other Models and Degree Distributions

Poisson model. The uniform random network formation model by Erdős and Rényi (1959)

generates the Poisson distribution as the resulting degree distribution. In their model, a link

between two nodes is formed independently of other pairs of nodes with a fixed probability.

The resulting degree distribution is approximated by the Poisson distribution when the

2



network size is sufficiently large. Specifically, the Poisson distribution with parameter ρ > 0

has the form of

f(d; ρ) =
e−ρρd

d!
.

The hazard rate of the Poisson distribution is strictly increasing for any value of ρ.

Preferential attachment model. The scale-free distribution is another prominent degree

distribution generated by the preferential attachment (PA) model (Barabási et al., 1999).

In the PA model, a newborn node forms links with existing nodes probabilistically, and the

probability of selecting a particular existing node is proportional to its degree. The resulting

degree distribution is the scale-free distribution, which has the form of

f(d; γ) = cd−γ,

where γ > 0 is the scale parameter, and c > 0 is the normalization factor that is calculated

as c =
∑∞

d=dmin
d−γ when dmin is the minimum degree of a network.2 Assuming that the

minimum degree is one, the complementary cumulative degree distribution has the form of

F (d; γ) =
ζ(γ, d)

ζ(γ)
,

where ζ(γ) =
∑∞

k=1 k
−γ is the Riemann zeta function, and ζ(γ, d) =

∑∞
k=0(k + d)−γ for

d ≥ 1. Note that the Riemann zeta function is well-defined if and only if γ > 1.

Network-based search model. The network-based search model by Jackson and Rogers

(2007) (henceforth, the JR model) produces another prominent degree distribution. In the

JR model, nodes form links in two ways: (i) uniformly and randomly, and (ii) by searching

locally through the given structure of the network. There are two parameters m > 0 and

r > 0. m is the expected number of links that a new node forms, and r is the ratio of the

number of links that are formed uniformly at random comparing to network-based meetings.

2Its name originates from the fact that for any two degrees of a fixed ratio, their probability ratios are
independent of the scale of degrees: f(d)/f(d′) = f(sd)/f(sd′) for all d, d′ ∈ N and s ∈ R+. A scale-
free distribution can be defined either over continuous real numbers or discrete positive integers. Although
a continuous distribution intuitively explains its various properties, an estimation by using it generates
systematic errors (Clauset et al., 2009).
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Notice that r can be infinity, which means that the network formation is purely random.

When r <∞, the resulting complementary cumulative degree distribution has the form of

F (d; r,m) = 1−
(
d0 + rm

d+ rm

)1+r

,

where d0 is the parameter that calculates the number of links that each node forms upon its

birth. Following Jackson and Rogers (2007), I set d0 = 0 for the later parameter estimation.

2 Fitting Models to Datasets

2.1 Datasets

I consider the following four real network datasets: (a) the 75 social networks of rural

Indian villages, (b) a collaboration network of jazz musicians, (c) an online friendship network

of Facebook users, and (d) the network among webpages at Notre Dame University.3 Figure 1

plots their empirical hazard rate functions. I present the hazard rate function of village #58

as an illustrating example. One can observe that the empirical hazard rates exhibit increasing

patterns for datasets (a) and (b), but decreasing patterns for datasets (c) and (d).
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Figure 1: Different patterns of the hazard rate function across datasets

2.2 Estimation Strategy and Comparison

Estimation strategies. I fit the four theoretical degree distributions generated by network

formation models to the empirical degree distributions of the above four network datasets. I

3I obtain dataset (a) from Banerjee et al. (2013), dataset (b) from Gleiser and Danon (2003), dataset
(c) from McAuley and Leskovec (2012), and dataset (d) from Jackson and Rogers (2007). All datasets are
publicly available from their corresponding author’s webpage.
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explain how to estimate model parameters. First, I estimate parameters of the Weibull dis-

tribution by using the method of maximum likelihood estimation, which is well-documented

in the statistics literature (e.g., Rinne, 2008). Specifically, for a given dataset {d1, . . . , dn}

where di is the degree of node i ∈ {1, . . . , n}, the maximum likelihood estimator of α is

identified as a solution of

1

α
=

∑n
i=1 d

α
i log di∑n

i=1 d
α
i

− 1

n

n∑
i=1

log di.

One can find a solution of the above equation by using a standard iterative procedure (e.g.,

the Newton-Raphson method). The solution is unique because the left-hand side is strictly

decreasing in α, but the right-hand side is strictly increasing in α.

Second, I estimate the parameter ρ > 0 for the Poission distribution by using the method

of maximum likelihood estimation. In particular, for a given dataset {d1, . . . , dn}, the max-

imum likelihood estimator ρ̂ is the average degree from a dataset as

ρ̂ =
1

n

n∑
i=1

di.

Third, I estimate the scale parameter γ by using the method of maximum likelihood

estimation (Clauset et al., 2009), which solves the following equation:

ζ ′(γ)

ζ(γ)
= − 1

n

n∑
i=1

log di.

A solution of the above equation always exists and is unique because the left-hand side is

strictly decreasing in γ, but the right-hand side is constant.

Finally, for the JR model, I estimate two parameters m and r according to the iteration

method suggested by Jackson and Rogers (2007). To begin with, estimate m as the average

degree from a dataset. To estimate r, note first that

logF (d; r,m) = (1 + r) log
(
rm
)
− (1 + r) log

(
d+ rm

)
.

I use a method of iterative least squares as follows. Start with an initial value of r, say r0,

and plug in this value to obtain log
(
d+ r0m

)
. Estimate −(1 + r) by using the method of

least squares to obtain r1. Repeat the same procedure until a fixed point r̂ is achieved. If

5



the procedure converges, a fixed point is unique regardless of the initial value r0; otherwise,

set r̂ =∞. When r̂ =∞, use the exponential distribution as the limit degree distribution.

Goodness-of-fit. As a way to compare the models in terms of data fitting performance, I

use the Kolmogorov-Smirnov (KS) statistic (Smirnov, 1944).4 The KS statistic is calculated

as follows. Let {d1, . . . , dn} be a given dataset. Then, I find the empirical cumulative degree

distribution F n(·) as

Fn(d) =
1

n

n∑
i=1

1 {dmin ≤ di ≤ d} .

For each model, let F (·; θ̂) be the estimated cumulative degree distribution from the esti-

mated parameter θ̂. The KS statistic is defined as

sup
d
|Fn(d)− F (d; θ̂)|.

By the Glivenko-Cantelli theorem, the KS statistic converges almost surely to zero as the

dataset size n becomes large if the dataset is generated according to the given model (Mood

et al., 1974). Thus, the smaller value of the KS statistic means the better data fitting

performance of the model. Notice that this convergence is independent of the increasing

hazard rate property of the true underlying degree distribution.

2.3 Results

I first introduce the key parameters of the models. In my model, α > 0 is the key

parameter that distinguishes my model from other models; the other parameter λ > 0

provides no additional information but the average degree of the network, which is available

information from other three models. Recall that α indicates the behavior of the hazard

rate function. In the Poisson model, there is only one parameter ρ > 0. There is also a

single parameter γ > 0 in the PA model. In the JR model, the key parameter is r ∈ (0,∞]

that represents the ratio of network-based meetings; the other parameter m calculates the

average degree of the network. When the estimate for r is infinity, I report the KS statistic

4See Chapter 11 in Mood et al. (1974) for details of this test.
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by using an exponential distribution as the limit distribution.5

In Table 1, I report the estimates for the above four parameters and the KS statistics

across datasets. The first and second lowest KS statistics are marked by ♦♦ and ♦, respec-

tively.6 Since there are 75 networks in the Indian villages dataset, I present the minimum

and the maximum values of the estimates and the KS statistics. Figure 2 illustrates the

goodness-of-fit of the models across the datasets.

My model Poisson model PA model JR model

Dataset α > 0 ρ > 0 γ > 0 r > 0
KS statistic KS statistic KS statistic KS statistic

Indian villages
[1.41, 2.39] [3.80, 7.40] [1.49, 2.39] [2.38,∞]

[0.051,0.159]♦ [0.035,0.151]♦♦ [0.300, 0.443] [0.098, 0.456]

Jazz musicians
1.57 27.70 1.28 ∞

0.042♦♦ 0.308♦ 0.391 0.380

Facebook users
0.96 43.125 1.27 2.54

0.053♦ 0.538 0.343 0.033♦♦

Websites
0.74 4.20 1.98 0.57
0.248 0.530 0.016♦♦ 0.203♦

Table 1: Parameter estimates and the goodness-of-fit of the models across datasets

First of all, I find that all the estimates for the parameter α are consistent with simple

eyeball tests by using Figure 1. Specifically, estimates for the networks of Indian villages

and jazz musicians are all strictly greater than one, which confirm that hazard rates are

increasing. Since the KS statistics of my model are very low for these networks, the inference

about the increasing hazard rates is significant. On the contrary, for the networks of Facebook

users and websites, the estimates are all strictly smaller than one.

For the 75 social networks of Indian villages, my model and the Poisson model fit the

datasets better. Although the lowest KS statistic of the JR model is 0.098, the second

lowest KS statistic is 0.171, which is strictly greater than the largest KS statistic of my

5The exponential distribution is a special case of the Weibull distribution with λ = m/2 and α = 1.
6The estimate of the network of websites using the PA model is different from the values reported by

Barabási and Albert (1999). This result occurs because they use the usual least square estimates assuming a
continuous scale-free distribution, but I use the method of maximum likelihood estimation assuming discrete
scale-free distribution.
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(a) Indian village #58
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(b) Jazz musicians
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(c) Facebook users
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(d) Webpages

Figure 2: An illustration of the goodness-of-fit across datasets and models: In each plot,
the horizontal axis represents degrees, and the vertical axis represents the empirical (the red
circles) and estimated (the black line) cumulative degree distributions. For each model, the
KS statistic measures the maximum difference between the two distributions.
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model. Moreover, it turns out that for 71 social networks, the estimates for r are infinity.7

This implies that the JR model loses its explanatory power because r = ∞ corresponds to

the random attachment model.

The difference between my model and the Poisson model becomes clearer when I compare

their KS statistics for the networks of jazz musicians and Facebook users. My model still fits

both datasets well (the KS statistics are about 0.05) but the Poisson model returns very large

KS statistics that are greater than 0.3. This difference becomes clearer when observing the

shape of the fitted cumulative distributions in Figure 2-(b) and -(c). The fitted distributions

when using the Poisson model are S-shaped, but the empirical distributions show different

patterns. In contrast, the shape of the fitted distributions by my model is flexible and

performs well for the networks of jazz musicians and Facebook users.

The main force driving the flexibility of my model is that it contains two parameters, λ

and α, that determine the size and shape of the distribution. For example, the size of the

jazz musician network is large in that its average degree is about 27. In my model, the scale

parameter λ explains the average degree, and the shape parameter α explains the shape of

the empirical distribution. However, there is only one parameter ρ in the Poisson model,

which indicates only the scale of the distribution. Thus, when the network is large, my model

outperforms the Poisson distribution even when the empirical hazard rate function exhibits

increasing patterns.

Finally, for the network of webpages, the PA model performs significantly better than

any other models. The KS statistic is very small (0.016), which is the lowest value among

all the KS statistics across datasets and models. In comparison to my model, this dominant

performance of the PA model is not surprising: my model tries to explain networks with

bilateral and costly link formation, but the network of webpages is based on unilateral

and costless link formations. Therefore, I conclude that my model fits empirical degree

distributions very well whenever link formations are bilateral and costly.

7Only villages #13, #19, #30, and #36 return finite estimates for r.
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