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Abstract

This paper studies a nonparametric hedonic equilibrium model in which certain prod-
uct characteristics are unobserved. Unlike most previously studied hedonic models, both
the observed and unobserved agent heterogeneities enter the structural functions non-
parametrically. Prices are endogenously determined in equilibrium. Using both within-
and cross-market price variation, I show that all the structural functions of the model
are nonparametrically identified up to normalization. In particular, the unobserved
product quality function is identified if the relative prices of the agent characteristics
differ in at least two markets. Following the constructive identification strategy, I pro-
vide easy-to-implement series minimum distance estimators of the structural functions
and derive their uniform rates of convergence. To illustrate the estimation procedure,
I estimate the unobserved efficiency of American full-time workers as a function of age
and unobserved ability.
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1 Introduction

Counterfactual distributions are indispensable components for the evaluation of distributional
effects of large-scale policy interventions or social changes; they can also be used to measure
the values of public good or natural resources. For example, labor economists might be
interested in constructing the counterfactual wage distribution in 1988 had there been no
de-unionization or decline in real minimum wage during the 1979-1988 period to evaluate
the effect of labor market institutions on inequality (see DiNardo, Fortin, and Lemieux, 1996
for details). Another application of interest would be to measure heterogenous willingness to
pay for clean air as exhibited in housing prices (e.g., Sieg, Smith, Banzhaf, and Walsh, 2004,
and Chay and Greenstone, 2005).

Three features should be acknowledged in the counterfactual distributional analysis. First,
large-scale interventions usually affect a substantial proportion of the agents (e.g., DiNardo,
Fortin, and Lemieux, 1996, and Chernozhukov, Fernández-Val, and Melly, 2013), hence the
importance of accounting for the equilibrium effects is of first order (e.g., Sieg, Smith,
Banzhaf, and Walsh, 2004). Second, some product characteristics might not be observed
by researchers and their importance in price determination is widely recognized (e.g., Berry,
Levinsohn, and Pakes, 1995), workers’ efficiency being an important example. Third, there is
considerable observed and unobserved heterogeneity among the agents. Ignoring any of them
(e.g., ignoring changes in return to college education as more college graduates entered the
labor force and other factors remained constant) is likely to result in biased counterfactual
predictions.

This paper is the first to provide an economic model and an econometric method that
admits all these features in a nonparametric setting. In this paper, I study a hedonic equi-
librium model with unobserved product quality. I show that the quality function, together
with all the other structural functions of the model, can be nonparametrically identified. I
also provide easy-to-implement estimators for the structural functions and an algorithm to
solve the counterfactual equilibrium. In contrast to widely used distributional decomposition
methods, the counterfactuals thus constructed account for equilibrium effects of large-scale
interventions.

I incorporate unobserved product quality captured by a structural quality function e(x, a)

into standard hedonic equilibrium models (e.g., Heckman, Matzkin, and Nesheim, 2010),
which have been used to analyze the market equilibria of differentiated products with het-
erogenous agents. Let zmi denote the effective amount of the product traded between seller-
buyer pair i in market m upon which the payment is determined, and assume that

zmi ≡ hmi · e(xmi , ami ), (1.1)
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where hmi represents observed quantity, vector xmi and scalar ami represent the seller’s ob-
served and unobserved heterogeneity, respectively. I relax the restriction in standard hedonic
equilibrium models that e(x, a) ≡ 1 by allowing the functional form of the quality function
(and hence, the values of e(xmi , ami ) and zmi ) to be unknown to researchers.

I demonstrate how to nonparametrically identify the structural quality function e(x, a),
along with the structural marginal (dis)utility functions of sellers and buyers.1 The identi-
fication strategy consists of three steps. First, I show that the reduced form (equilibrium
outcome) payment function Im(x, a) and quantity function hm(x, a) are nonparametrically
identified within each market m using the method developed in Matzkin (2003). Second,
I exploit within- and cross-market variation in the reduced form functions to identify the
unobserved quality function up to normalization. Specifically, equation (1.1) indicates that
quantity and quality are substitutes in determining the payment. As a result, variation
in quality is manifested inversely in the variation in quantity among sellers who receive
the same payment within the same market. Moreover, since quantity is optimally chosen
by sellers, it suffers from an endogeneity problem. The different distributions of observed
agent characteristics across markets serve as aggregate supply or demand shifters that induce
cross-market variation in the payment functions, which facilitates the full identification of
the quality function. The identification requirement boils down to a rank condition on the
payment functions, which requires that relative prices of the agent characteristics vary across
markets.2 Finally, the third step utilizes the agents’ first-order conditions to identify the
marginal utility functions, in the spirit of the second step of Rosen (1974)’s method.3

The constructive identification strategy suggests an easy-to-implement series estimation
procedure. I derive uniform rates of convergence of the estimators and demonstrate the
procedure by estimating the unobserved efficiency of American full-time workers using data
from the 2015 American Time Use Survey (ATUS).4

1This paper focuses on the supply side, since the identification and estimation of the demand side structural
functions is completely symmetric.

2To focus on the key identification problem that arises because of unobserved quality, I concentrate on
the scalar-valued quality function e(x, a) in the main text. It is, however, easy to extend the argument to a
vector-valued quality function e(x, a) captured by a single-index structure as in Epple and Sieg (1999) and
Sieg, Smith, Banzhaf, and Walsh (2004). I elaborate this extension in Appendix C. Recent work by Cher-
nozhukov, Galichon, and Henry (2014) and Nesheim (2015) discussed identification of hedonic equilibrium
models with vector-valued unobserved agent characteristics, while still assuming that all product characteris-
tics are observed. Extending the model in this paper to account for vector-valued unobserved product quality
that is more general than the single-index structure is an interesting topic for future research.

3Unlike Rosen (1974), the estimation procedure introduced in Section 4.1 does not require explicitly
estimating the price schedule functions.

4I also propose an algorithm to solve for the counterfactual equilibrium of the model in Appendix A. It
is based on the equilibrium condition and Chiappori, McCann, and Nesheim (2010)’s insight that hedonic
equilibrium models are mathematically equivalent to an optimal transportation problem. A simple simulation
experiment indicates that the numerical equilibrium solution is stable with regard to the estimation errors
in the structural functions.
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The literature on the identification and estimation of hedonic equilibrium models is vast.
In his seminal work, Rosen (1974) originated a two-step method, of which the first step
obtains the hedonic price function and its derivatives by fitting a parametric regression of
prices on product characteristics, and the second step combines the hedonic price function
and agents’ first-order conditions to recover the preference and production parameters. Eke-
land, Heckman, and Nesheim (2004) considered the identification of a nonparametric hedonic
equilibrium model with additive marginal utility and marginal production functions using
single market data. Heckman, Matzkin, and Nesheim (2010) formalized the argument in
Brown and Rosen (1982), Epple (1987) and Kahn and Lang (1988) that, in general, cross-
market variation in price functions is necessary to nonparametrically identify the structural
functions. They then focused on the sufficient restrictions for the identification using single
market data, and generalized Rosen (1974)’s two-step method to a nonparametric setting.
This paper builds on the work of Heckman, Matzkin, and Nesheim (2010) and advances the
literature in two ways. First, it allows product quality to be unobserved by researchers, which
captures a crucial feature of many applications. It extends Heckman, Matzkin, and Nesheim
(2010)’s method by adding one step at the beginning, which nonparametrically identifies the
unobserved quality function e(x, a). Second, this paper is the first to present a nonparametric
estimation procedure and to provide convergence rates for the structural functions in hedonic
equilibrium models using multiple market data.

The counterfactual analysis enabled by this model is closely related to an extensive liter-
ature on distributional decomposition methods (elegantly reviewed in Fortin, Lemieux, and
Firpo (2011)), which aims to evaluate the distributional effects of policy interventions or
historical changes. Several methods have been proposed, including the imputation method
(Juhn, Murphy, and Pierce, 1993), the reweighting method (DiNardo, Fortin, and Lemieux,
1996), the quantile regression-based method (Machado and Mata, 2005), the re-centered
influence function method (Firpo, Fortin, and Lemieux, 2009), among many others (e.g.,
Fessler, Kasy, and Lindner, 2013, and Fessler and Kasy, 2016). Moreover, Rothe (2010)
and Chernozhukov, Fernández-Val, and Melly (2013) considered inference in the context of
distributional decomposition. This literature is based on the “selection on observables” as-
sumption, which excludes general equilibrium effects. On the contrary, this paper establishes
an equilibrium model, which allows the prices of agent characteristics (e.g., the returns to
college education) to change in response to changes in the distribution of the characteristics
in the population (e.g., as more college graduates enter the labor force).

Characteristic-based demand models in industrial organization and marketing permit
unobserved product characteristic as well. This immense literature dates back at least to
Berry (1994) and Berry, Levinsohn, and Pakes (1995) and includes Rossi, McCulloch, and
Allenby (1996), Nevo (2001), Petrin (2002), Berry, Levinsohn, and Pakes (2004), Bajari
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and Benkard (2005), Berry and Pakes (2007), and many others.5 The econometric methods
used to analyze characteristic-based demand models are reviewed by Ackerberg, Benkard,
Berry, and Pakes (2007).6 Characteristic-based demand models often assume additively
separable utility functions and parametric distributions for the random error terms, which
facilitates the identification and estimation using market level data. In this paper, however,
the utility functions are nonparametrically identified and estimated, and the estimators are
of least-square type (and hence easy to implement). Moreover, this paper investigates how
individual level data can be used to predict individual level counterfactual outcomes, which
permits richer counterfactual analyses.

The rest of this paper is organized as follows. Section 2.1 sets up the model and describes
some important properties of the equilibrium; Section 2.2 discusses several applications to
which my model and method can be applied for counterfactual policy analysis. Section 3
explains the nonparametric identification of the structural functions of the model. The key
step is the identification of the unobserved quality function; the intuition and formal results
of this step are given in Section 3.2. Section 4.1 describes the series estimators, and Section
4.2 derives their uniform rates of convergence. An illustration of the estimation procedure
using the 2015 ATUS data is given in Section 5. Section 6 points out several directions
for future research and concludes the paper. The algorithm to solve for the counterfactual
equilibrium, a few complementary results and most of the proofs are collected in Appendices.

2 Model

The hedonic equilibrium model with unobserved quality studied in this paper extends the
model of Heckman, Matzkin, and Nesheim (2010) by allowing some product characteristics
to be unobserved by researchers. Section 2.1 introduces the model and discusses its prop-
erties that facilitate identifying the structural functions and solving for the counterfactual
equilibrium of the model.7 Section 2.2 describes two markets (labor and housing markets)
in which the model and the econometric method provided in this paper could be applied to
analyze the distributional effects of counterfactual interventions.

5The utility functions in Bajari and Benkard (2005) and Berry and Pakes (2007) are closer to those in
this paper, where only the characteristics of the products bear utility, but not the products per se. The
consumers’ utility functions in models of Berry, Levinsohn and Pakes (1995) type have independently and
identically distributed random error terms, which represent taste for products for reasons besides product
characteristics.

6The estimation of production functions, dynamic models and other issues are also reviewed.
7Parallel discussion for hedonic equilibrium models without unobserved quality can be found in Heckman,

Matzkin, and Nesheim (2010), Ekeland, Heckman, and Nesheim (2004) and Ekeland (2010).
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2.1 Model Setup and Properties of Equilibrium

The model analyzed in this paper pertains to competitive markets (indexed by m ∈M) of a
product (good or service), of which the quantity is observed by researchers but quality is not.
Each seller and buyer only trades once, and chooses the effective amount z, where z ∈ Z.
I assume that Z ⊂ R is compact. Let Pm(z) be a twice continuously differentiable price
schedule function defined on Z. Then the value of Pm(z) is the payment for an effective
amount z of the product in market m.

The following is the key assumption of this model, and distinguishes it from other hedonic
equilibrium models (e.g., Heckman, Matzkin, and Nesheim, 2010).

Assumption 1. Suppose that the unobserved effective amount z of the product is determined
by the unobserved quality e and observed quantity h in a multiplicative way, i.e., z = h · e.

Assumption 1 implies that quantity h and quality e are substitutes in production. Existing
hedonic equilibrium models (e.g., Heckman, Matzkin, and Nesheim, 2010) assume that e ≡ 1,
hence z is observed. But this paper allows quality e and z to be unknown to researchers.

Sellers and buyers both observe quality. As a result, there is no principal-agent problem
in this model.

Each seller’s quality e is exogenously determined by a quality function e(x, a), where
the dx × 1 vector x is the seller’s observed characteristics, and the scalar a is the seller’s
unobserved characteristic. Sellers have quasilinear utility Pm(z)−U(h, x, a), where U(h, x, a)

is the disutility that a seller with characteristics (x, a) endures by producing the product of
quantity h ∈ H (the set H ⊂ R is compact).8 The population of sellers in market m is
described by the density fmx,a, which is assumed to be differentiable and strictly positive
on the compact sets X × A ⊂ Rdx+1. Sellers may choose not to trade, then they obtain
reservation utility V0.

Each buyer has a utility functionR(z, y, b), where the dy×1 vector y is the buyer’s observed
characteristics and the scalar b is the buyer’s unobserved characteristic. The population of
buyers in market m is described by the density fmy,b, which is assumed to be differentiable and
strictly positive on the compact set Y × B ⊂ Rdy+1. If a buyer chooses not to participate,
she gets reservation utility S0.

For the structural functions e(x, a), U(h, x, a) and R(z, y, b), assume the following as-
sumptions hold.

8I concentrate on scalar-valued quantity h in the main text. But it is easy to extend the argument to
a vector-valued h captured by a single-index structure as those in Epple and Sieg (1999) and Sieg, Smith,
Banzhaf, and Walsh (2004). I elaborate the identification of the quality function e(x, a) under this extension
in Appendix C.
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Assumption 2. Suppose that buyers’ utility function R(z, y, b), sellers’ disutility function
U(h, x, a) and quality function e(x, a) are all twice continuously differentiable with respect to
all arguments on their respective supports. Also suppose that e(x, a) is bounded below away
from zero.

Assumption 3. Suppose that Uh > 0, Ua < 0, Uha < 0 and Uhh > 0 for all (h, x, a) ∈ H ×
X ×A, and suppose that Rz > 0, Rb > 0, Rzb > 0 and Rzz < 0 for all (z, y, b) ∈ Z ×Y ×B.

Assumption 4. Suppose ea > 0, that is, the quality function is strictly increasing in the
unobserved characteristic of the seller, for all (x, a) ∈ X ×A.

If reservation utilities V0 and S0 are sufficiently small, then sellers and buyers always
participate.9 In addition, similar to the discussion in Heckman, Matzkin, and Nesheim (2010)
and Chiappori, McCann, and Nesheim (2010), Assumptions 2-4 (Spence-Mirrlees type single-
crossing condition) are sufficient for each seller and buyer who participates to have a unique
interior optimum.

A seller with characteristics (x, a) in market m chooses h ∈ H, a quantity supplied, to
maximize

max
h∈H

Pm(h · e(x, a))− U(h, x, a).

Since quality e(x, a) is fixed for seller (x, a), choosing h ∈ H is equivalent to choosing z ∈ Z.
Under Assumptions 2-4, there exists an effective amount supply function zs ≡ sm(x, a) (hence
a quantity supply function hm(x, a) ≡ sm(x, a)/e(x, a)) that satisfies the seller’s first-order
condition (FOC)

Pm
z (sm(x, a)) · e(x, a)− Uh

(
sm(x, a)

e(x, a)
, x, a

)
= 0. (2.1)

Applying the Implicit Function Theorem (Hildebrandt and Graves, 1927) to equation (2.1)
gives rise to

∂zs

∂a
=

∂sm(x, a)

∂a
=
eUha − Pm

z eea − Uhhhmea
Pm
zze

2 − Uhh
, (2.2)

where the arguments of the functions on the right-hand side of equation (2.2) are suppressed
for simplicity. By Assumptions 2 and 3 and the FOC in equation (2.1), Pm

z > 0. Then
Assumptions 2-4 imply that sm(x, a) is strictly increasing in a.10 Then the inverse effective
amount supply function a = (sm)−1(x, z) exists and satisfies

∂(sm)−1(x, z)

∂zs
=

Pm
zze

2 − Uhh
eUha − Pm

z eea − Uhhhmea
.

9Allowing for binding reservation utilities serves as an important topic for future research.
10As discussed later, equations (2.6) and (2.7) imply that Pm

zze
2 − Uhh < 0.
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The payment received by seller (x, a) in market m is then determined by

Im(x, a) = Pm(sm(x, a)) = Pm(hm(x, a) · e(x, a)). (2.3)

Note that the payment function Im(x, a) is also strictly increasing in a. But since hm(x,

a) = sm(x, a)/e(x, a), the quantity function hm(x, a) is not necessarily monotonic in a.
Similar argument applies to the buyers. Each buyer chooses z ∈ Z to maximize

max
z∈Z

R(z, y, b)− Pm(z).

There exists an effective amount demand function zd ≡ dm(y, b) that satisfies the buyers’
FOC

Rz(d
m(y, b), y, b)− Pm(dm(y, b)) = 0, (2.4)

and an inverse effective amount demand function b = (dm)−1(y, z) that satisfies

∂(dm)−1(y, z)

∂zd
=

Rzb

Pm
zz −Rzz

.

Define the range of equilibrium effective amount supplied

Zs = {z ∈ Z: there exists a market m ∈M and some

(x, a) ∈ X ×A such that in equilibrium z = hm(x, a) · e(x, a)},

and the range of equilibrium effective amount demanded

Zd = {z ∈ Z: there exists a market m ∈M and some

(y, b) ∈ Y × B such that in equilibrium z = dm(y, b)}.

In a unique interior equilibrium, the density of effective amount supplied zs equals that of
effective amount demanded zd for all z ∈ Z. Using standard change-of-variables formula,
this requires Zs = Zd and

ˆ
X
fmx,a

(
x, (sm)−1(x, z)

) ∂(sm)−1(x, z)

∂zs
dx

=

ˆ
Y
fmy,b
(
y, (dm)−1(y, z)

) ∂(dm)−1(y, z)

∂zd
dy, (2.5)

for ∀z ∈ Zs ∩ Zd.
Figure 2.1 illustrates the market equilibrium. Under the price schedule function Pm, each

seller (x, a) (drawn from distribution fmx,a) chooses her optimal effective amount supplied zs.
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The distribution of zs is represented by the green line in the figure. Similarly, each buyer
(y, b) (drawn from distribution fmy,b) chooses her optimal effective amount demanded zd. The
distribution of zd is represented by the blue line in the figure. If the green density equals the
blue density for ∀z ∈ Z, then the market is in equilibrium.

On the contrary, Figure 2.1 illustrates a case where the market is not in equilibrium.
For example, sellers who are willing to supply the effective amount z1 outnumber the buyers
who demand z1, and more buyers than sellers are willing to trade effective amount z2. This
mismatch between supply and demand will drive the price schedule function Pm to adjust
to clear the market.

Following Chiappori, McCann, and Nesheim (2010), the equilibrium of this model is
defined as follows.

Definition 1. (Equilibrium) Let µm be a joint density on the space of effective amount z,
characteristics (x, a) of sellers and (y, b) of buyers. A pair (µm, Pm) is an equilibrium if:

(i) the marginal of µm with respect to (x, a) equals fmx,a, and that with respect to (y, b)

equals fmy,b (market clears); and
(ii) if (z, x, a, y, b) is in the support of µm, then z = sm(x, a) = dm(y, b) (agents optimize).

By the argument provided in Chiappori, McCann, and Nesheim (2010) (also in Ekeland
(2010) and Heckman, Matzkin, and Nesheim (2010)), Assumptions 2-4 are sufficient for the
equilibrium to exist and to be unique and pure. A pure equilibrium means that each seller
matches to a single buyer, and each pair chooses a single effective amount z.

Note that the effective amount supply function sm(x, a) and demand function dm(y, b)

have a superscript m, since they both depend on the market-specific price schedule function
Pm. And price schedule function Pm is itself an equilibrium outcome, which in turn depends
on the market primitives (fmx,a, f

m
y,b, U, e, R). To see this more clearly, substitute ∂(sm)−1(x,z)

∂zs

and ∂(dm)−1(y,z)
∂zd

, rearrange equation (2.5) and suppress the arguments of the functions, one
gets

Pm
zz (z) =

´
Y
fmy,b
Rzb

Rzzdy +
´
X

fmx,a
−(Uhae−Pm

z eea−Uhhhmea)
Uhhdx´

Y
fmy,b
Rzb

dy +
´
X

e2fmx,a
−(Uhae−Pm

z eea−Uhhhmea)
dx

. (2.6)

Equation (2.6) implies that the curvature of the price schedule function Pm can be regarded as
a weighted average of the curvatures of the sellers’ disutility and the buyers’ utility functions.
Assumptions 2 and 3 imply that the second-order condition (SOC)11

Rzz · e2 − Uhh < 0 (2.7)

holds for all (h, x, a) ∈ H × X × A and all (z, y, b) ∈ Z × Y × B. Together, equation (2.6)
11SOC of a pair-wise surplus maximization problem.

9



and equation (2.7) imply Pm
zze

2 − Uhh < 0.
Since the structural functions (U, e, R) remain invariant across markets, equation (2.6)

implies that cross-market variation in the price schedule functions Pm is driven by that in
the distributions fmx,a and fmy,b. As a result, cross-market variation in other reduced form
(equilibrium outcome) functions, such as sm, dm, hm and Im, also depends on that in fmx,a
and fmy,b. Throughout this paper, I summarize this dependence using the superscript m.

In the same market, all sellers and buyers face the same price schedule function Pm, so
sellers with the same characteristics (x, a) always choose the same quantity hm(x, a) to supply.
Without restrictions on sellers’ marginal disutility function Uh(h, x, a), its identification using
single market data is obstructed by this endogeneity problem. With multiple market data,
however, the distributions fmx,a and fmy,b serve as aggregate supply or demand shifters (i.e.,
instruments) that induce variation in Pm (and hence hm(x, a)) while maintaining individual
values of (x, a). In practice, multiple markets could be geographically isolated locations, or
repeated observations of the same market over time.

Chiappori, McCann, and Nesheim (2010) showed that the classic hedonic equilibrium
model is mathematically equivalent to a stable matching problem and to an optimal trans-
portation problem. The same argument applies to the model in this paper as well, since
quality is observable to both sellers and buyers. This insight suggests an algorithm for solv-
ing for the counterfactual equilibria, which is provided in Appendix A.

2.2 Applications

In this section, I discuss two markets to which the model just introduced could be applied
to conduct counterfactual distributional analysis. In these examples, the unobserved quality
of product plays a key role in determining the payment.

2.2.1 Labor Markets

In labor markets, workers are the sellers, and (single-employed) firms are the buyers.12 Both
workers and firms exhibit considerable heterogeneity. Workers differ in observed characteris-
tics x (e.g., age, education and skills) and unobserved characteristic a (e.g., ability). Likewise,
employers differ in observed characteristics y (e.g., capital stock) and unobserved character-
istic b (e.g., productivity). For a worker with characteristics (x, a), her efficiency is given
by the function e(x, a), which is the same across markets and is unknown to researchers.13

On the other hand, distributions of agent heterogeneity (fmx,a and fmy,b) could vary among
markets, which induce market-specific earnings schedule functions Pm(z). As a result, work-

12It is also helpful to think of the buyers as job positions.
13Firms know z and e(x, a) by looking at how much work the worker gets done.
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ers with the same characteristics may choose to work different amount of time hm(x, a) and
make different earnings Im(x, a) in different markets. Workers’ working time and efficiency
are substitutes in production, and firms care about how much work is done, but not the
working time in itself.14 Therefore, earnings depend on the effective amount of labor z via
the earnings schedule functions Pm(z), but not on working time hm(x, a) or efficiency e(x, a)

per se.
The model in this paper could be used to answer various counterfactual questions that

labor economists are interested in. For example, to understand the distributional effects
of the changes in labor market institutions during 1979-1988, one may want to construct
counterfactual earnings distribution in 1988 had there been no de-unionization since 1979
(e.g., DiNardo, Fortin, and Lemieux, 1996). This corresponds to the equilibrium earnings
of a market in which workers’ union status (one element of x) had remained what it was in
1979 and other agent characteristics (other variables in (x, a, y, b)) had shifted to their 1988
values.

2.2.2 Housing Markets

In housing markets, renters are the buyers, and rental companies (or landlords) are the
sellers.15 Renters’ observed characteristics y include income and family structure, and their
unobserved characteristic b may be preference over amenities. Rental companies diversify in
their characteristics (x, a) as well. For a rental company (x, a), the quality of its apartments
is given by e(x, a), which does not depend on which neighborhood m the rental company is in
and is unknown to researchers. However, varying composition of renters and rental companies
(fmy,b and fmx,a) across neighborhoods result in neighborhood-specific rental price schedule
functions Pm(z), which in turn prompt rental companies with the same characteristics to
offer apartments with different sizes hm(x, a) (e.g., square footage) across neighborhoods.
Rental payments Im(x, a) depend on the effective amount of housing z via Pm(z), but not
directly on the sizes.

A number of interesting counterfactual questions in housing markets could be analyzed
using the model in this paper. For example, one may be interested in the distributional effects
on housing prices if some public good (e.g., improvement in air quality) were provided.16 The
public good enhances effective amount of housing for all apartments (by all rental companies)
in the neighborhood, and it is manifested in increased value of e(x, a) for any given (x, a).

14Ideally, researchers would want to measure the actual time workers spend in working. The required
working time written on the contract deviates from the actual time, since workers could shirk or work over-
time.

15I focus on housing rental markets, but the same logic applies to housing sale markets.
16Harrison and Rubinfeld (1978) and Chay and Greenstone (2005) used housing prices to evaluate

willingness-to-pay for clean air. Another example is predicting the effects of cleaning up a hazardous waste
site on the distribution of housing prices (Stock, 1991).
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Therefore, the counterfactual analysis could be conducted by solving the new equilibrium
with a higher quality function e(x, a) estimated using data for neighborhoods with more
public good.

3 Identification

This section explains identification of the reduced form (equilibrium outcome) functions
and the structural functions of the model. The analysis in this section assumes that seller
characteristics x, buyer characteristics y, equilibrium payment I and equilibrium quantity h
in all markets are observed. The effective amount z, however, is unknown to researchers.

The identification consists of three steps. First, identify the reduced form payment func-
tions Im(x, a) and the quantity functions hm(x, a) using single market data. This step em-
ploys an existing method (Matzkin, 2003) and facilitates the identification of structural func-
tions. Second, exploit the variation of the payment and quantity functions within and across
markets to identify the quality function e(x, a). This is the key step, and I will provide
both graphical illustration of intuition and general results. The key identification condition
requires that the relative returns to sellers’ characteristics differ across markets. Finally,
combine the functions identified from the first two steps and sellers’ FOC to recover sellers’
marginal disutility function Uh(h, x, a). To overcome the endogeneity problem of h, this final
step requires multiple market data as well. Section 3.1, 3.2 and 3.3 elaborate these steps,
respectively.

This section focuses on the quality function e(x, a) and sellers’ marginal disutility func-
tion Uh(h, x, a). The identification of buyers’ marginal utility function Rz(z, y, b) can be
achieved via the same method as that used for Uh(h, x, a), and is briefly discussed in Section
3.4. Although fmx,a and fmy,b are also primitives of the model and serve as aggregate supply
or demand shifters that generate cross-market variation in equilibria, their identification is
straightforward. The convergence rate results in Section 4.2 account for the fact that they
need to be estimated.

3.1 Identification of Payment Functions Im(x, a) and Quantity Func-
tions hm(x, a) Using Single Market Data

In each market m, there is a payment function Im(x, a) and a quantity function hm(x, a) in
equilibrium. This section uses the method developed by Matzkin (2003) to identify these
reduced form functions using data from their own markets.

Assumption 5. Suppose that x ⊥⊥ a and y ⊥⊥ b within each market m ∈M.17

17Like Heckman, Matzkin, and Nesheim (2010), because a enters the quality function and sellers’ marginal
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Assumption 6. Suppose that the sellers’ unobserved characteristic a follows the uniform
distribution U [0, 1] in all markets.

Assumption 6 may seem restrictive at first glance. But an equivalent interpretation is
that a is the quantile of the seller’s unobserved characteristic. Based on this interpretation,
Assumption 6 requires that the sellers’ unobserved characteristic has the same distribution
(probably unknown) across all markets.18 In Appendix B, I relax this requirement to allow
for a finite number of types of markets: markets of the same type have the same distribution
of a, yet markets of different types have different distributions of a. The method discussed in
the main text can be applied to each type without modification, as long as the type of each
market is known and each type has multiple markets.19 Assumption 6 is also a normalization
that facilitates identification of nonseparable functions like Im(x, a) (see Matzkin, 2003 for
details).20 But this normalization does not affect counterfactuals.

Lemma 1. Under Assumptions 1-6, the payment function Im(x, a) is strictly increasing in
the seller’s unobserved characteristic a, and Im(x, a) is nonparametrically identified within
each market m.

Proof. By the payment equation (2.3), Im(x, a) is strictly increasing in a if Pm is strictly
increasing in z and sm is strictly increasing in a. Given the sellers’ FOC in equation (2.1),
Assumptions 2 and 3 guarantee that Pm

z > 0. On the other hand, by the SOC in equa-
tion (2.7) and the equilibrium condition in equation (2.6), we have Pm

zz · e2 − Uhh < 0. Then
the expression of ∂sm(x, a)/∂a in equation (2.2) is positive under Assumptions 3 and 4 and
the setup of the model. This proves the first statement of the lemma.

Given the strict monotonicity of Im(x, a) and Assumption 6, the identification of Im(x, a)

follows the same argument as in Matzkin (2003) (Specification I). In particular, by mono-
tonicity, Assumptions 5 and 6, we have

FIm|xm=x (Im(x, a)) = Fam(a) = a.

Then
Im(x, a) = F−1

Im|xm=x(a),

disutility function nonparametrically, this independence assumption is much weaker than it would be if a
entered additively.

18To see this clearly, suppose that Fa is the distribution function of a, and suppose Ũ(h, x, a) and ẽ(x, a)
are the "real" supply side structural functions. Then, based on the quantile interpretation, the supply side
structural functions identified in this paper are compounds of Fa and the "real" structural functions. That
is, U(h, x, a) = Ũ

(
h, x, F−1a (a)

)
and e(x, a) = ẽ

(
x, F−1a (a)

)
. Therefore, Assumption 7 implicitly requires

that Fa is invariant across markets.
19One example of such market level heterogeneity might be large cities v.s. small cities.
20One could normalize the distribution of a to any other distributions.
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where F−1
Im|xm=x is the inverse function of the conditional distribution function FIm|xm=x with

respect to Im.

Corollary 1. Under the conditions for Lemma 1, the partial derivatives of the payment
function Imxj(x, a) (j = 1, . . . , dx) and Ima (x, a) are nonparametrically identified within each
market m.

Once one identifies the payment function Im, she can invert it with respect to a to obtain
a = (Im)−1(x, I). Now that a is known, it is easy to identify the quantity function hm(x, a).
Unlike Im(x, a), monotonicity is not necessary for identification of hm(x, a).

Lemma 2. Under the conditions for Lemma 1, the quantity function hm(x, a) is nonpara-
metrically identified within each market m. Moreover, its partial derivatives hmxj(x, a) (j =

1, . . . , dx) and hma (x, a) are nonparametrically identified within each market m as well.

Note that the functional forms of Im(x, a) and hm(x, a) vary from market to market due
to the cross-market variation in fmx and fmy , and they are identified within each market.
Their variation within and across markets reveals enough information to identify the quality
function e(x, a).

3.2 Identification of Quality Function e(x, a) Using Multiple Market
Data

This section explains how to use within- and cross-market variation in the reduced form
functions to identify the structural quality function e(x, a). Section 3.2.1 illustrates the
intuition for scalar-valued x. The intuition applies to vector-valued x as well. Section 3.2.2
gives general results.

Since quality e and effective amount z are both unobserved, one can always re-scale the
price schedule function to make two quality functions observationally equivalent. So we need
the following normalization.

Assumption 7. Suppose that for a known fixed vector (x̄, ā) ∈ X ×A, we have e(x̄, ā) = 1.

The vector (x̄, ā) corresponds to a normalization seller, and the quality of other sellers
will be expressed as ratio relative to her.

3.2.1 Intuition

This section illustrates the intuition for identifying the unobserved quality function e(x, a)

for scalar-valued x. The interpretation of the key identification condition is that relative
returns to sellers’ characteristics differ across markets.
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Recall the payment equation (2.3),

Im(x, a) = Pm(sm(x, a)) = Pm(hm(x, a) · e(x, a)).

Since all sellers in the same market face the same price schedule function Pm(z), those sellers
who receive the same payment must have sold the same effective amount z of the product.
In other words, if Imi = Imj for two sellers i and j in the same market m, then

hm(xmi , a
m
i ) · e(xmi , ami ) = hm(xmj , a

m
j ) · e(xmj , amj ),

which implies
e(xmi , a

m
i )

e(xmj , a
m
j )

=
hm(xmj , a

m
j )

hm(xmi , a
m
i )
. (3.1)

That is, the quality ratio between sellers who receive the same payment in the same market
equals the inverse ratio of their quantities.

This is illustrated by Figure 3.2.1. The solid green line in Step 1 of Figure 3.2.1 represents
the iso-payment curve in Market 1 that contains the normalization seller (x̄, ā). By equa-
tion (3.1), the quality of any seller (x1, a1) on the same iso-payment curve can be identified
as

e(x1, a1) =
h1(x̄, ā)

h1(x1, a1)
.

The same argument applies to other iso-payment curves in Market 1, which are represented
by dashed green lines in Step 1. For example, for sellers (x̃, ã) and (x2, a2) on another
iso-payment curve, we get

e(x2, a2)

e(x̃, ã)
=

h1(x̃, ã)

h1(x2, a2)
. (3.2)

Since iso-payment curves in the same market are disjoint, neither e(x2, a2) nor e(x̃, ã) could
be identified relative to the normalization seller (x̄, ā). The dashed green lines in Step 1
indicate that the quality of the sellers on those iso-payment curves are not identified yet.
This is the most one can get from variation of reduced form functions in one market.

With data from another market, however, it is possible to connect the disjoint iso-payment
curves. Suppose that in Market 2, there is an iso-payment curve that contains both (x̄, ā)

and (x2, a2), then

e(x2, a2) =
h2(x̄, ā)

h2(x2, a2)
. (3.3)

Combining equation (3.2) and equation (3.3), we now can identify the quality for seller (x̃, ã)

as
e(x̃, ã) =

h1(x2, a2)

h1(x̃, ã)
· h

2(x̄, ā)

h2(x2, a2)
.
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Once e(x̃, ã) is identified, so is the quality of other sellers on the same iso-payment curve.
In Step 2 of Figure 3.2.1, the iso-payment curve in Market 2 is represented by the solid

blue line. It connects the Market 1 iso-payment curve that contains (x̄, ā) with the one that
contains (x̃, ã), and thus helps determine the quality level of the latter. In Step 3 of Figure
3.2.1, the latter becomes solid green as the quality of those sellers are identified. Step 4 shows
that by applying this idea recursively to the iso-payment curves from the two markets that
cross with each other, one will be able to identify the quality of all sellers with characteristics
in the support of their distribution.

As suggested by Figure 3.2.1, the key identification condition is that for any seller char-
acteristics (x, a), one could find two markets that have iso-payment curves with different
slopes. Otherwise, all the iso-payment curves are disjoint, and it is impossible to connect a
seller (x, a) with the normalization seller (x̄, ā) if they do not belong to the same iso-payment
curve.

Note that the slope of an iso-payment curve can be expressed in terms of the partial
derivatives of the payment function, then the identification condition is

I1
x(x, a)

I1
a(x, a)

6= I2
x(x, a)

I2
a(x, a)

,

for ∀(x, a) ∈ X × A, scalar-valued x and two markets. This condition is also equivalent to
that the matrix (

I1
a(x, a) −I1

x(x, a)

I2
a(x, a) −I2

x(x, a)

)
has full column rank.

This key condition is easy to understand. Partial derivatives of the payment functions
represent the equilibrium market returns to respective seller characteristics. For example,
Imx (x, a) could represent labor market return to education, and Ima (x, a) to ability. Then the
identification condition requires that the relative equilibrium returns to education and to
ability differ in at least two markets. This in turn requires that cross-market variation in fmx
and fmy is sufficiently rich to induce such cross-market variation in equilibria.

3.2.2 General Results

It is not hard to generalize the intuition explained in Section 3.2.1 to vector-valued x. This
section formalizes this intuition and gives general results on the identification of the unob-
served quality function e(x, a).

When x is vector-valued (dx > 1), the key identification condition is still that relative
market returns to seller characteristics differ in at least two markets. Without loss of general-
ity, one could measure returns as relative to that to the unobserved characteristic a. Suppose
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Ima (x, a) 6= 0 and Im′a (x, a) 6= 0 for markets m and m′. Then it is required that(
Imx1(x, a)

Ima (x, a)
, . . . ,

Imxdx (x, a)

Ima (x, a)
, 1

)
6=

(
Im
′

x1
(x, a)

Im′a (x, a)
, . . . ,

Im
′

xdx
(x, a)

Im′a (x, a)
, 1

)
. (3.4)

These are just the gradient vectors of the payment functions Im(x, a) and Im′(x, a).
Cross-market variation in equilibria is crucial for identifying the quality function. The

following assumption requires that neither sellers nor buyers move across markets on a large
scale. Otherwise, the distributions fmx and fmy will tend to equalize across markets, which
diminishes the cross-market variation.

Assumption 8. Suppose that the sellers and buyers do not move across markets.

In order to state the formal identification condition and the theorem, I need some no-
tation. Let ∇xI

m(x, a) denote the dx × 1 vector of the derivatives of Im(x, a) with respect
to (x1, . . . , xdx)′, let ∇xh

m(x, a) denote those of hm(x, a) and let ∇xe(x, a) denote those of
e(x, a). For any integer d, let Id denote a d× d identity matrix.

Assumption 9. Suppose that there exist M markets such that the (Mdx)× (dx + 1) matrix
B(x, a) defined as

B(x, a) ≡

 Idx ⊗ I1
a(x, a) −∇xI

1(x, a)
...

...
Idx ⊗ IMa (x, a) −∇xI

M(x, a)


has full column rank for all (x, a) ∈ X ×A.21

It only takes some basic algebra to see that if equation (3.4) holds for all (x, a) ∈ X ×A,
then Assumption 9 is satisfied. Moreover, if Assumption 9 holds, there could be more than
two markets satisfying equation (3.4).

Define the (Mdx)× 1 vector A(x, a) as

A(x, a) ≡

 [h1
a(x, a)∇xI

1(x, a)− I1
a(x, a)∇xh

1(x, a)] /h1(x, a)
...[

hMa (x, a)∇xI
M(x, a)− IMa (x, a)∇xh

M(x, a)
]
/hM(x, a)

 .

And define dx + 1 real-valued functions g1(x, a), . . . , gdx+1(x, a) as

(g1(x, a), . . . , gdx+1(x, a))′ ≡ [B(x, a)′B(x, a)]−[B(x, a)′A(x, a)],

21Note that a necessary condition for B(x, a) to have full column rank is that there are dx + 1 linearly
independent rows in B(x, a). Therefore we need at least two markets. But when data from more markets is
available, and multiple combinations of rows satisfy the requirement, we get over-identification.
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where the superscript “−” indicates the generalized inverse of a matrix.

Theorem 1. Suppose that Assumptions 7-9 and the conditions for Lemma 1 are satisfied.
The quality function is then nonparametrically identified on X ×A as

e(x, a) = exp

(
dx∑
j=1

ˆ xj

x̄j

gj(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)dsj +

ˆ a

ā

gdx+1(x, t)dt

)
,(3.5)

where x̄j (j = 1, . . . , dx) and ā are coordinates of the normalization vector (x̄, ā).

Proof. Suppose that all the functions involved are continuously differentiable. Then, taking
the partial derivatives of the payment equation (2.3) yields

∇xI
m(x, a) = Pm

z (hm(x, a) · e(x, a)) · [∇xh
m(x, a)e(x, a) + hm(x, a)∇xe(x, a)] ,

Ima (x, a) = Pm
z (hm(x, a) · e(x, a)) · [hma (x, a)e(x, a) + hm(x, a)ea(x, a)] . (3.6)

Provided that Ima (x, a) 6= 0 and hm(x, a) 6= 0, one may take the ratios of the first dx equations
to the last equation. One then obtains dx equations of the same form:

∇xI
m(x, a)

Ima (x, a)
=
∇xh

m(x, a)e(x, a) + hm(x, a)∇xe(x, a)

hma (x, a)e(x, a) + hm(x, a)ea(x, a)
=

∇xhm(x,a)
hm(x,a)

+ ∇xe(x,a)
e(x,a)

hma (x,a)
hm(x,a)

+ ea(x,a)
e(x,a)

=⇒ Ima (x, a)
∇xe(x, a)

e(x, a)
−∇xI

m(x, a)
ea(x, a)

e(x, a)

= [hma (x, a)∇xI
m(x, a)− Ima (x, a)∇xh

m(x, a)] /hm(x, a), (3.7)

for all m ∈M and all (x, a) ∈ X ×A. Stack equation (3.7) for all markets, one gets a system
of equations

B(x, a) ·
(
∇xe(x, a)′

e(x, a)
,
ea(x, a)

e(x, a)

)′
= A(x, a), (3.8)

for all (x, a) ∈ X × A. Suppose that Assumption 9 is satisfied. Then, there is a unique
solution of ea(x, a)/e(x, a) and exj(x, a)/e(x, a) (j = 1, . . . , dx) for all (x, a) ∈ X × A.22

Define a system of differential equations in an unknown function ε(x, a) as follows(
∇xε(x, a)′

ε(x, a)
,
εa(x, a)

ε(x, a)

)′
= [B(x, a)′B(x, a)]−1[B(x, a)′A(x, a)], (3.9)

which depends only on the identified reduced form functions Im(x, a), hm(x, a) and their
22In fact, it also requires that the vector A(x, a) lies in the space spanned by the column vectors of B(x, a)

for all (x, a) ∈ X ×A, but it is implied by Assumption 1.
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derivatives. Then the identification of the quality function e(x, a) amounts to a unique
solution to the differential equations in (3.9).

First fix (x2, . . . , xdx , a) = (x̄2, . . . , x̄dx , ā), and only consider the first equation in (3.9).
Note that

ex1(x1, x̄2, . . . , x̄dx , ā)

e(x1, x̄2, . . . , x̄dx , ā)
=
d log (e(x1, x̄2, . . . , x̄dx , ā))

dx1

= g1(x1, x̄2, . . . , x̄dx , ā).

Then,

log (e(x1, x̄2, . . . , x̄dx , ā)) =

ˆ x1

x̄1

g1(s1, x̄2, . . . , x̄dx , ā)ds1 + log (e(x̄, ā))

=

ˆ x1

x̄1

g1(s1, x̄2, . . . , x̄dx , ā)ds1, (3.10)

for all x1 ∈ X1, where the second equality holds by Assumption 7. Then, consider the second
equation in (3.9). Similarly, for any given x1 ∈ X1 and fixed (x3, . . . , xdx , a) = (x̄3, . . . , x̄dx , ā),
we have

ex2(x1, x2, x̄3, . . . , x̄dx , ā)

e(x1, x2, x̄3, . . . , x̄dx , ā)
=
d log (e(x1, x2, x̄3, . . . , x̄dx , ā))

dx2

= g2(x1, x2, x̄3, . . . , x̄dx , ā),

which implies

log (e(x1, x2, x̄3, . . . , x̄dx , ā))

=

ˆ x2

x̄2

g2(x1, s2, x̄3, . . . , x̄dx , ā)ds2 + log (e(x1, x̄2, . . . , x̄dx , ā))

=

ˆ x2

x̄2

g2(x1, s2, x̄3, . . . , x̄dx , ā)ds2 +

ˆ x1

x̄1

g1(s1, x̄2, . . . , x̄dx , ā)ds1,

for all (x1, x2) ∈ X1 × X2. Continue to integrate over (x3, . . . , xdx , a) once at a time in this
manner, one will eventually obtain the solution to the initial value problem in equation (3.9)
and e(x̄, ā) = 1 as

e(x, a) = exp

(
dx∑
j=1

ˆ xj

x̄j

gj(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)dsj +

ˆ a

ā

gdx+1(x, t)dt

)
.

Moreover, this solution is unique by the first fundamental theorem of calculus. This completes
the proof of the theorem.

Define the range of equilibrium effective amount supplied in market m as

Zms = {z ∈ Z: there exists some (x, a) ∈ X ×A in market
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m ∈M such that in equilibrium z = hm(x, a) · e(x, a)}.

Corollary 2. Under the conditions for Theorem 1, the unobserved effective amount z =

hm(x, a) · e(x, a) is identified.

Corollary 3. Under the conditions for Theorem 1, the price schedule function Pm(z) for
market m ∈M is nonparametrically identified on Zms .

Proof. Assumption 1, earnings equation (2.3), Lemmas 1 and 2, and Theorem 1 together
imply the result.

3.3 Identification of Sellers’ Marginal Disutility Function Uh(h, x, a)

Using Multiple Market Data

The next important result is the identification of the marginal disutility function Uh. Before
stating the theorem, define the equilibrium support for sellers’ marginal disutility function
as:

HXA = {(h, x, a) ∈ H ×X ×A: there exists a market m ∈M and

some (x, a) ∈ X ×A such that in equilibrium h = hm(x, a)}.

If |M| = 1, then HXA is degenerate since h is endogenous. As discussed in Section
2.1, different distributions fmx and fmy serve as aggregate supply or demand shifters (i.e.,
instruments) that induce variation in Pm (and hence hm(x, a)) while maintaining individual
values of (x, a). The richer the variation in fmx and fmb , the larger the set HXA will be.

Theorem 2. Under the conditions for Theorem 1, the sellers’ marginal disutility function
Uh(h, x, a) is nonparametrically identified on HXA.

Proof. The result follows from Theorem 1, Corollary 3, and the sellers’ FOC

Pm
z (hm(x, a) · e(x, a)) · e(x, a) = Uh(h

m(x, a), x, a)

in each market m ∈M.

3.4 Identification of Buyers’ Marginal Utility Function Rz(z, y, b) Us-
ing Multiple Market Data

Identifying buyers’ marginal utility functionRz(z, y, b) and the effective amount demand func-
tion dm(y, b) makes little difference from Heckman, Matzkin, and Nesheim (2010)’s method.
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The only tweak stems from the fact that z is not directly observed. Once one recovers z from
the supply side, Heckman, Matzkin, and Nesheim (2010)’s method can be applied without
modification. The relevant definition, assumption and results are given below.

Define the equilibrium support for buyers’ marginal utility function Rz(z, y, b) as:

ZYB = {(z, y, b) ∈ Z × Y × B: there exists a market m ∈M
and some (x, a) ∈ X ×A such that z = dm(y, b)

and z = hm(x, a) · e(x, a) in equilibrium}.

Assumption 10. Suppose that the buyers’ unobserved characteristic b follows the uniform
distribution U [0, 1] in all markets.

Lemma 3. (Heckman, Matzkin, and Nesheim 2010 Theorem 4.1) Under Assump-
tion 10 and the conditions for Theorem 1, the buyers’ marginal utility function Rz(z, y, b) is
nonparametrically identified on ZYB.23

4 Estimation

This section provides an estimation procedure for the structural functions. Section 4.1 de-
scribes the estimation procedure step by step, and in Section 4.2 I derive the uniform rates
of convergence for the estimators.

4.1 Series Estimation of Structural Functions

The estimators introduced in this section are premised on the following data structure. Sup-
pose that linked seller-buyer data for M independent markets are available. Within each
market m, suppose that there are Nm seller-buyer pairs, and each pair is indexed by i. Re-
searchers observe which seller is matched with which buyer. For each pair i (i = 1, . . . , Nm

and m = 1, . . . ,M), researchers observe (Imi , x
m
i , h

m
i , y

m
i ).24 For the rest of the paper, I

maintain the following sampling assumptions.

Assumption 11. Suppose {(Imi , xmi , hmi , ymi )}Nm

i=1 are i.i.d. for m = 1, . . . ,M .

Assumption 12. For notational simplicity, suppose that the sample sizes from all the mar-
kets are equal, i.e., N1 = N2 = · · · = NM = N .

23In labor markets, if the firms’ revenue is observed by researchers, then the function R(z, y, b) is also
nonparametrically identified under the conditions of Lemma 3.

24In labor markets, it is possible that the employers’ revenue Rm
i is also observed in the data.
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In the rest of this paper, I maintain Assumptions 1-12. Assumption 12 is not essential
for deriving the convergence rates, but relaxing it will complicate the notation and will not
provide any new insights. In principle, even though the sample sizes from all the markets
are the same, one still could use market-specific numbers of series basis functions kmQ,N , kmI,N
and kmh,N to estimate âm, Îm(x, a) and ĥm(x, a) respectively within each market. To keep the
notation simple, however, I assume that one uses the same tuning parameters for all markets
for the rest of the paper, i.e., kmQ,N = kQ,N , kmI,N = kI,N and kmh,N = kh,N . All the convergence
rate results in Section 4.2 hold if one relaxes this assumption.25

For any vector v, let ‖v‖ ≡ (v′v)1/2 denote its Euclidean norm; for any matrix A, let
‖A‖ ≡ [trace(A′A)]1/2 denote its Euclidean norm.

The estimation of the structural functions (Uh, e, Rz) follows the steps suggested by the
identification strategy. I start with the within market estimation of two reduced form func-
tions, namely, the payment function Im(x, a) and the quantity function hm(x, a), as well as
their partial derivative functions for each market. Then in light of the proof of Theorem
1, the quality function e(x, a) can be estimated by first solving an estimated version of the
equations (3.8) and then integrating over x and a. Finally, sellers’ marginal disutility function
Uh(h, x, a) can be estimated by a series minimum distance (MD) estimator using the sellers’
FOCs.

Following the identification steps in Section 3, this section describes the steps for esti-
mating e(x, a) and Uh(h, x, a) in details. The steps for the buyers’ marginal utility function
Rz(z, y, b) are similar and will be briefly summarized at the end.

4.1.1 Estimation of Payment Functions Im(x, a) and Quantity Functions hm(x, a)

Using Single Market Data

Let me first clarify some notation used in this section: Im(x, a) and hm(x, a) indicate the
reduced form functions; Im (or hm, xm, or am) is a random variable, denoting the payment
received by (or the quantity supplied by, the observed characteristics of, or the unobserved
characteristic of) a randomly chosen seller from market m; and Imi (or hmi , xmi , or ami )
represents the observed payment (or the observed quantity, the observed characteristics, or
the unobserved characteristic) value of a specific seller i in market m.

In Section 2.1, I showed that the payment function Im(x, a) is strictly increasing in a

under Assumptions 1-4. Recall that am is the conditional quantile of the payment Im given
observed characteristics xm of the seller in market m. That is

FIm|xm=x(I
m(x, a)) = Fam(a) = a.

25With minor changes in notation to accommodate market-specific tuning parameters.
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Use a series of basis functions ΛkQ,N
(x) ≡ (λ1(x), . . . , λkQ,N

(x))′ to approximate the indicator
function I(Im ≤ Imi ) , where kQ,N is the number of basis functions. Then one can estimate
ami , the conditional quantile of Im given xm by

âmi ≡ F̂Im|xm=xmi
(Imi )

≡ ΛkQ,N
(xmi )′

(
N∑
j=1

ΛkQ,N
(xmj )ΛkQ,N

(xmj )′

)−( N∑
j=1

ΛkQ,N
(xmj )I(Imj ≤ Imi )

)
. (4.1)

Note that the tuning parameter kQ,N might depend on the sample size N . Here, âmi serves
as a generated regressor when we estimate functions Im(x, a) and hm(x, a).

Use a series of basis functions ΦkI,N (x, a) ≡ (φ1(x, a), . . . , φkI,N (x, a))′ to approximate the
unknown payment function Im(x, a), where kI,N is the number of basis functions. Then,
the estimated series coefficients for the payment function Im(x, a) are the solution to the
following least square problem

ξ̂mI,kI,N ≡ arg min
ξ∈RkI,N

N∑
i=1

(
Imi − ΦkI,N (xmi , â

m
i )′ξ

)2
.

Therefore, the estimated payment function is

Îm(x, a) ≡ ΦkI,N (x, a)′ξ̂mI,kI,N . (4.2)

Note that there is an explicit solution for ξ̂mI,kI,N ,

ξ̂mI,kI,N =

(
N∑
i=1

ΦkI,N (xmi , â
m
i )ΦkI,N (xmi , â

m
i )′

)−( N∑
i=1

ΦkI,N (xmi , â
m
i )Imi

)
. (4.3)

Because ΦkI,N (x, a) is a series of known functions, their first-order derivatives are also known.
Therefore, the series estimator of the partial derivatives of Im(x, a) can be obtained imme-
diately

Îmxj(x, a) ≡
(
∂φ1(x, a)

∂xj
, . . . ,

∂φkI,N (x, a)

∂xj

)
ξ̂mI,kI,N , (4.4)

for j = 1, . . . , dx, and

Îma (x, a) ≡
(
∂φ1(x, a)

∂a
, . . . ,

∂φkI,N (x, a)

∂a

)
ξ̂mI,kI,N . (4.5)

Similarly, use the series of basis functions Φkh,N (x, a) ≡ (φ1(x, a), . . . , φkh,N (x, a))′ to approx-
imate the unknown quantity function hm(x, a).
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Then the estimated series coefficients for the quantity function hm(x, a) is

ξ̂mh,kh,N ≡

(
N∑
i=1

Φkh,N (xmi , â
m
i )Φkh,N (xmi , â

m
i )′

)−( N∑
i=1

Φkh,N (xmi , â
m
i )hmi

)
. (4.6)

Therefore, the estimated quantity function and its first-order derivatives are

ĥm(x, a) ≡ Φkh,N (x, a)′ξ̂mh,kh,N , (4.7)

ĥma (x, a) ≡
(
∂φ1(x, a)

∂a
, . . . ,

∂φkh,N (x, a)

∂a

)
ξ̂mh,kh,N , (4.8)

and

ĥmxj(x, a) ≡
(
∂φ1(x, a)

∂xj
, . . . ,

∂φkh,N (x, a)

∂xj

)
ξ̂mh,kh,N . (4.9)

for j = 1, . . . , dx.

4.1.2 Estimation of Quality Function e(x, a) Using Multiple Market Data

Just like the identification strategy, estimating the quality function e(x, a) starts with the sys-
tem of equations (3.8). Replace Im(x, a), hm(x, a) and their derivatives in equation (3.8) (i.e.,
in the expressions of B(x, a) and A(x, a)) with their counterparts estimated in Section 4.1.1.
Use the series of basis functions Φkxj,MN

(x, a) = (φ1(x, a), . . . , φkxj,MN
(x, a))′ to approximate

exj(x, a)/e(x, a) and Φka,MN
(x, a) = (φ1(x, a), . . . , φka,MN

(x, a))′ to approximate ea(x, a)/e(x,

a). Let the series coefficients be βxj ,kxj,MN
(j = 1, . . . , dx) and βa,ka,MN

, respectively. And
let βMN ≡ (β′x1,kx1,MN

, . . . , β′xdx ,kxdx ,MN
, β′a,ka,MN

)′. Then, for each seller i and each market m,
one obtains an estimated version of the equations (3.8) as follows:

B̂m(xmi , â
m
i ) ·


Φkx1,MN

(xmi , â
m
i )′β̂x1,kx1,MN

...
Φkxdx ,MN

(xmi , â
m
i )′β̂xdx ,kxdx ,MN

Φka,MN
(xmi , â

m
i )′β̂a,ka,MN

 = Âm(xmi , â
m
i ),

where the dx × (dx + 1) matrix B̂m(xmi , â
m
i ) is

B̂m(xmi , â
m
i ) ≡

(
Idx ⊗ Îma (xmi , â

m
i ) , −∇xÎ

m(xmi , â
m
i )
)
,
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and the dx × 1 vector Âm(xmi , â
m
i ) is

Âm(xmi , â
m
i ) ≡

[
ĥma (xmi , â

m
i )∇xÎ

m(xmi , â
m
i )− Îma (xmi , â

m
i )∇xĥ

m(xmi , â
m
i )
]/

ĥm(xmi , â
m
i ).

Therefore, the estimated series coefficients are the solutions to the following least square
problem

β̂MN ≡ arg min
β

M∑
m=1

N∑
i=1

LS(xmi , â
m
i ; β),

where

LS(xmi , â
m
i ; β) ≡

∥∥∥∥∥∥∥∥∥∥
B̂m(xmi , â

m
i ) ·


Φkx1,MN

(xmi , â
m
i )′βx1

...
Φkxdx ,MN

(xmi , â
m
i )′βxdx

Φka,MN
(xmi , â

m
i )′βa

− Âm(xmi , â
m
i )

∥∥∥∥∥∥∥∥∥∥

2

.

There is an explicit expression for β̂MN as follows:

β̂MN = Ŝ−ΦΦŜΦA,

where

ŜΦΦ ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΦ(xmi , â
m
i )′ŜΦ(xmi , â

m
i ), (4.10)

ŜΦA ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΦ(xmi , â
m
i )′Âm(xmi , â

m
i ). (4.11)

In equations (4.10) and (4.11),

ŜΦ(xmi , â
m
i ) ≡

(
ŜΦ,1(xmi , â

m
i ) , ŜΦ,2(xmi , â

m
i )
)
,

where

ŜΦ,1(xmi , â
m
i ) ≡


Φkx1,MN

(xmi , â
m
i )′ 0

. . .
0 Φkxdx ,MN

(xmi , â
m
i )′

⊗ Îma (xmi , â
m
i ),
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ŜΦ,2(xmi , â
m
i ) ≡ −∇xÎ

m(xmi , â
m
i )⊗ Φka,MN

(xmi , â
m
i )′.

Then the estimated ratios of the quality function are

êx1 (x,a)

e(x,a)
≡ ĝ1(x, a) = Φkx1,MN

(x, a)′β̂x1,kx1,MN
,

...
...

̂exdx (x,a)

e(x,a)
≡ ĝdx(x, a) = Φkxdx ,MN

(x, a)′β̂xdx ,kxdx ,MN
,

êa(x,a)
e(x,a)

≡ ĝdx+1(x, a) = Φka,MN
(x, a)′β̂a,ka,MN

.

(4.12)

By replacing the relevant ratios of the quality function in equation (3.5) with their estimators
given in equation (4.12), one obtains the estimator of the quality function

ê(x, a) = exp

(
dx∑
j=1

ˆ xj

x̄j

ĝj(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)dsj +

ˆ a

ā

ĝdx+1(x, t)dt

)

= exp

(
dx∑
j=1

ˆ xj

x̄j

[
Φkxj,MN

(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)′β̂xj ,kxj,MN

]
dsj

+

ˆ a

ā

[
Φka,MN

(x, t)′β̂a,ka,MN

]
dt

)
. (4.13)

4.1.3 Estimation of Sellers’ Marginal Disutility Function Ûh(h, x, a) Using Mul-
tiple Market Data

Estimation of the sellers’ marginal disutility function starts from the partial derivatives of
the payment equation (3.6). Combined with the sellers’ FOC in equation (2.1), they imply
that for ∀(x, a) ∈ X ×A,∇xI

m(x, a) =
[
∇xh

m(x, a) + hm(x, a)∇xe(x,a)
e(x,a)

]
· Uh(hm(x, a), x, a),

Ima (x, a) =
[
hma (x, a) + hm(x, a) ea(x,a)

e(x,a)

]
· Uh(hm(x, a), x, a).

(4.14)

Now, use a series of basis functions ΨkU,MN
(h, x, a) ≡ (ψ1(h, x, a), . . . , ψkU,MN

(h, x, a))′ to
approximate the unknown marginal disutility function. Then, one wants to choose the series
coefficients γ̂kU,MN

to minimize the sum of the squared distances between the left-hand sides
and the right-hand sides of the equations (4.14). Specifically, define

Gx,MN(hmi , x
m
i , â

m
i ; γ)

≡

[
∇xĥ

m(xmi , â
m
i ) + ĥm(xmi , â

m
i )

̂∇xe(xmi , â
m
i )

e(xmi , â
m
i )

]
ΨkU,MN

(hmi , x
m
i , â

m
i )′γ −∇xÎ

m(xmi , â
m
i ),
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and

Ga,MN(hmi , x
m
i , â

m
i ; γ)

≡

[
ĥma (xmi , â

m
i ) + ĥm(xmi , â

m
i )

̂ea(xmi , â
m
i )

e(xmi , â
m
i )

]
ΨkU,MN

(hmi , x
m
i , â

m
i )′γ − Îma (xmi , â

m
i ).

And the minimum distance (MD) estimator of the series coefficients are defined as

γ̂kU,MN
≡ arg min

γ∈RkU,MN

M∑
m=1

N∑
i=1

∥∥∥∥∥
(
Gx,MN(hmi , x

m
i , â

m
i ; γ)

Ga,MN(hmi , x
m
i , â

m
i ; γ)

)∥∥∥∥∥
2

.

The estimator γ̂kU,MN
has a closed-form expression given by

γ̂kU,MN
= Ŝ−ΨΨŜΨI

where

ŜΨΨ ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΨ(hmi , x
m
i , â

m
i )′ŜΨ(hmi , x

m
i , â

m
i ), (4.15)

ŜΨI ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΨ(hmi , x
m
i , â

m
i )′ŜI(h

m
i , x

m
i , â

m
i ). (4.16)

In equations (4.15) and (4.16), the (dx + 1)× kU,MN matrix ŜΨ(hmi , x
m
i , â

m
i ) is

ŜΨ(hmi , x
m
i , â

m
i ) ≡


[
∇xĥ

m(xmi , â
m
i ) + ĥm(xmi , â

m
i )

̂∇xe(xmi ,â
m
i )

e(xmi ,â
m
i )

]
⊗ΨkU,MN

(hmi , x
m
i , â

m
i )′[

ĥma (xmi , â
m
i ) + ĥm(xmi , â

m
i )

̂ea(xmi ,â
m
i )

e(xmi ,â
m
i )

]
ΨkU,MN

(hmi , x
m
i , â

m
i )′


and the (dx + 1)× 1 vector ŜI(hmi , xmi , âmi ) ≡ (∇xÎ

m(xmi , â
m
i )′, Îma (xmi , â

m
i ))′. As a result, the

estimated sellers’ marginal disutility function is

Ûh(h, x, a) ≡ ΨkU,MN
(h, x, a)′γ̂kU,MN

.

The steps described in Sections 4.1.1-4.1.3 complete the estimation of the supply side
structural functions (e, Uh).
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4.1.4 Estimation of Buyers’ Marginal Utility Function R̂z(z, y, b) Using Multiple
Market Data

The buyers’ marginal utility function Rz can be estimated by similar steps. First, within
each market m, estimate the conditional quantile bmi of the payment Imi using a formula
similar to equation (4.1). The unobserved effective amounts can also be estimated as ẑmi ≡
hmi · ê(xmi , âmi ), since researchers observe which seller is matched with which buyer. Second,
estimate the reduced form payment function Im(y, b) and effective amount demand function
dm(y, b) using the generated regressor b̂mi and generated dependent variable ẑmi from the single
market m. Third, taking the partial derivatives of the payment equation for the buyers yields

∇yI
m(y, b) = Pm

z (dm(y, b)) · ∇yd
m(y, b),

Ima (y, b) = Pm
z (dm(y, b)) · dma (y, b).

Combine these equations with the buyers’ FOC in equation (2.4), and use a series of basis
functions ΘkN (z, y, b) ≡ (θ1(z, y, b), . . . , θkN (z, y, b)) to approximate the unknown buyers’
marginal utility function Rz(z, y, b). Then, the function can be estimated by an MD estimator
similar to that in Section 4.1.3. Moreover, if the buyers’ utility values Rm

i are observed,26 then
the second and third steps are not necessary. The series estimation of R and its derivative
functions boils down to a linear regression of Rm

i on ΘkN (ẑmi , y
m
i , b̂

m
i ) using multiple market

data.

4.2 Uniform Rates of Convergence of Structural Function Estima-
tors

In this section and Appendix D, C denotes a sufficiently large, generic positive constant, and
c denotes a sufficiently small, generic positive constant, both of which may take different
values in different uses.

4.2.1 Unobserved Heterogeneity Estimators âmi

This subsection derives the convergence rates of the within market kernel estimators of the
conditional quantile ami given in equation (4.1).

Assumption 13. Suppose that FIm|xm(I|x) ≡ FIm|xm=x(I) is continuously differentiable of
order d1 > dx on the support with derivatives uniformly bounded in I and x.

26For example, firm revenue in labor markets.
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Define

νa,N ≡
(
kQ,N
N

+ k
1−2d1/dx
Q,N

)1/2

.

And I will assume that kQ,N/N → 0 and kQ,N

Theorem 3. Suppose that Assumption 13 is satisfied. Then,

N∑
i=1

|âmi − ami |2/N = O
(
ν2
a,N

)
.

4.2.2 Payment Function Estimators Îm(x, a) and Quantity Function Estimators
ĥm(x, a)

This subsection derives the convergence rates of the within market series estimators of the
reduced form payment functions Im(x, a) and quantity functions hm(x, a) and their first-order
derivatives.

Assumption 14. Suppose that X and Y are Cartesian products of closed intervals.

Assumption 15. Suppose that Φk(x, a) = Φ1,k1(x1) � · · · � Φdx,kdx
(xdx) � Φa,ka(a). This

implies that k = ka ·
∏dx

j=1 kj.

In Assumption 15, if k denotes the number of series basis functions used to approximate
an unknown function of (x, a) (or of (h, x, a)), then let kh, kj and ka denote the numbers of
series basis functions used to approximate the h component, xj component and a component
in the Cartesian space, respectively.

Let ζ0(k) ≡ k, ζa(k) ≡ k2
ak, and ζj(k) ≡ k2

jk.

Assumption 16. Suppose that for all m ∈ M, Im(x, a) and hm(x, a) are continuously
differentiable of order d ≥ 2 on the support.27

For a function l(x, a) : X × A → R, define the norm |l|δ as |l|δ ≡ max|µ|≤δ sup(x,a)∈X×A

|∂µl(x, a)/∂xµ11 · · · ∂x
µdx
dx
∂aµa |, with µ1 + · · ·+ µdx + µa = µ (µ1, . . . , µdx , µa are integers).

One implication of Assumptions 5, 6 and 16 is that there exist some positive constants
BI and Bhu such that for all m ∈M, |Im|2 ≤ BI , and |hm|2 ≤ Bhu.

Suppose that the following assumption about the approximation error by the basis func-
tions holds.

27Without loss of generality, here I assume that d is the same across all markets m ∈M.
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Assumption 17. Suppose that for a positive integer δI ≥ 1, there exist a constant αI > 0

and pseudo-true series coefficients ξm0,I,kI ∈ RkI such that |Im − Φ′kIξ
m
0,I,kI
|δI ≤ Ck−αI

I for all
positive integers kI . Suppose as well that for a positive integer δh ≥ 1, there exist a constant
αh > 0 and pseudo-true series coefficients ξm0,h,kh ∈ Rkh such that |hm−Φ′khξ

m
0,h,kh
|δh ≤ Ck−αh

h

for all positive integers kh.28

Let lm(x, a) denote either the payment function Im(x, a) or the quantity function hm(x, a).
Let l̂m(x, a) denote the series estimator of lm(x, a) defined in equation (4.2) or equation (4.7),
and let l̂mxj(x, a) (j = 1, . . . , dx) and l̂ma (x, a) denote the series estimators of the first-order
derivatives of lm(x, a) defined in equation (4.4), equation (4.5), equation (4.8) or equa-
tion (4.9).

Define

νl,N ≡ ζ0(kl,N)
(
νa,N + k−αl

l,N

)
,

νlj ,N ≡ ζj(kl,N)
(
νa,N + k−αl

l,N

)
,

νla,N ≡ ζa(kl,N)
(
νa,N + k−αl

l,N

)
.

And I will assume that νl,N → 0, νlj ,N → 0 and νla,N → 0 as N → ∞ for the rest of the
paper. Moreover, note that νl,N = O(νlj ,N), and νl,N = O(νla,N).

Theorem 4. Suppose that Assumptions 14-17 and the conditions of Theorem 3 are satisfied.
Suppose as well that the numbers of series basis functions used to approximate each component
in kl,N all increase to infinity with N , and

√
kl,Nνa,Nζa(kl,N)→ 0 as N →∞. Then

sup
(x,a)∈X×A

|l̂m(x, a)− lm(x, a)| = Op (νl,N) .

Theorem 5. Suppose that the conditions for Theorem 4 are satisfied . Then

sup
(x,a)∈X×A

∣∣∣l̂mxj(x, a)− lmxj(x, a)
∣∣∣ = Op

(
νlj ,N

)
,

and
sup

(x,a)∈X×A

∣∣∣l̂ma (x, a)− lma (x, a)
∣∣∣ = Op (νla,N) .

Since âmi is used as a generated regressor,29 the convergence rates of the reduced form
functions and their derivatives depend on the estimation errors of âmi as well as on the series
approximation errors of the functions themselves.

28Without loss of generality, here I assume that αI and αh are the same across all markets m ∈M.
29Recall equations (4.3) and (4.6).
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4.2.3 Quality Function Estimator ê(x, a)

This subsection derives the convergence rates of the cross-market series estimators of the
quality function e(x, a) and its first-order derivative ratios.

Assumption 18. Suppose that for a positive integer δe ≥ 0, there exist a constant αe > 0

and pseudo-true series coefficients β0,xj ,kxj
∈ Rkxj (for j = 1, . . . , dx) and β0,a,ka ∈ Rka such

that |exj/e−Φ′kxj
β0,xj ,kxj

|δe ≤ Ck−αe
xj

and |ea/e−Φ′kaβ0,a,ka|δe ≤ Ck−αe
a for all positive integers

kxj (j = 1, . . . , dx) and ka.

Define

SΦΦ ≡ (MN)−1

M∑
m=1

N∑
i=1

SΦ(xmi , a
m
i )′SΦ(xmi , a

m
i ),

where
SΦ(xmi , a

m
i ) ≡ (SΦ,1(xmi , a

m
i ) , SΦ,2(xmi , a

m
i )) ,

SΦ,1(xmi , a
m
i ) ≡


Ima (xmi , a

m
i )Φkx1,MN

(xmi , a
m
i )′ 0

. . .
0 Ima (xmi , a

m
i )Φkxdx ,MN

(xmi , a
m
i )′

 ,

and
SΦ,2(xmi , a

m
i ) ≡ −∇xI

m(xmi , a
m
i )⊗ Φka,MN

(xmi , a
m
i )′.

Assumption 19. Suppose that there exist some positive constants Beu and Bel such that the
quality function e(x, a) satisfies |e|2 ≤ Beu and |e|0 ≥ Bel.

Assumption 20. Suppose:
(i) λmin (E(SΦΦ)) ≥ c > 0;
(ii) There exists some positive constant Bhl such that for all m ∈M, |hm|0 ≥ Bhl.

For j = 1, . . . , dx, define

νej ,M,N ≡ ζ0(kxj ,MN)

[
dx∑
j=1

νhj ,N + νha,N +
dx∑
j=1

νIj ,N + νIa,N + k−αe
a,MN +

dx∑
j=1

k−αe
xj ,MN

]
,

and

νea,M,N ≡ ζ0(ka,MN)

[
dx∑
j=1

νhj ,N + νha,N +
dx∑
j=1

νIj ,N + νIa,N + k−αe
a,MN +

dx∑
j=1

k−αe
xj ,MN

]
.

31



And I will assume that νej ,M,N → 0 (j = 1, . . . , dx) and νea,M,N → 0 as N → ∞ for the rest
of the paper.

Lemma 4. Suppose that Assumptions 18-20 and the conditions of Theorems 3-5 are sat-
isfied. Suppose as well that the numbers of series basis functions kxj ,MN → ∞, ν2

a(σN)(
ζ2
a(kxj ,MN) + ζ2

a(ka,MN)
)
→ 0, νa,N(ζa(kxj ,MN) + ζa(ka,MN))(ζ0(kxj ,MN) + ζ0(ka,MN)) → 0,

[νla,Nζ0(kxj ,MN)+ζ0(ka,MN)νlj ,N ](ζ0(kxj ,MN)+ζ0(ka,MN))→ 0 for j = 1, . . . , dx, ka,MN →∞,
and [ζ2

0

(
maxj=1,...,dx kxj ,MN

)
+ ζ2

0 (ka,MN)](maxj=1,...,dx kxj ,MN + ka,MN)/(MN) → 0 as N →
∞. Then

∥∥∥β̂MN − β0,MN

∥∥∥ = Op

(
dx∑
j=1

νhj ,N + νha,N +
dx∑
j=1

νIj ,N + νIa,N + k−αe
a,MN +

dx∑
j=1

k−αe
xj ,MN

)
.

Theorem 6. Suppose that the conditions for Lemma 4 are satisfied. Then, for j = 1, . . . , dx

sup
(x,a)∈X×A

∣∣∣ ̂exj(x, a)/e(x, a)− exj(x, a)/e(x, a)
∣∣∣ = Op

(
νej ,M,N

)
,

and

sup
(x,a)∈X×A

∣∣∣ ̂ea(x, a)/e(x, a)− ea(x, a)/e(x, a)
∣∣∣ = Op (νea,M,N) .

Theorem 7. Suppose that the conditions for Theorem 6 are satisfied. Then

sup
(x,a)∈X×A

|ê(x, a)− e(x, a)| = Op

(
dx∑
j=1

νej ,M,N + νea,M,N

)
.

The convergence rates of the quality function and its derivative ratios depend on the
estimation errors of the reduced form functions and the series approximation errors of the
quality function itself. Note that the estimation errors in âmi affect the estimation errors of
exj(x, a)/e(x, a), ea(x, a)/e(x, a) and e(x, a) only through Îm, ĥm and their partial derivatives.

4.2.4 Sellers’ Marginal Disutility Function Estimator Ûh(h, x, a)

This subsection derives the convergence rate of the cross-market series estimator of the sellers’
marginal disutility function Uh(h, x, a).

For a function l(h, x, a): H × X × A → R, define the norm |l|δ as |l|δ ≡ max|µ|≤δ

sup(h,x,a)∈H×X×A |∂µl(x, a)/∂hµh∂xµ11 · · · ∂x
µdx
dx
∂aµa |, with µh + µ1 + · · · + µdx + µa = µ (µh,

µ1, . . . , µdx , µa are integers).
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Assumption 21. Suppose that for a positive integer δU ≥ 0, there exist a constant αU > 0

and pseudo-true series coefficients γ0,kU ∈ RkU such that |Uh − Ψ′kUγ0,kU |δU ≤ Ck−αU
U for all

positive integers kU .

Assumption 22. Suppose that there exists some positive constant BU such that |Uh|1 ≤ BU .

Assumption 23. Suppose that Ψk(h, x, a) = Ψh,kh(h) � Ψ1,k1(x1) � · · · � Ψdx,kdx
(xdx) �

Ψa,ka(a). This implies that k = kh · ka ·
∏dx

j=1 kj.

Assumption 24. Suppose that H is a compact set and the cross-market variation in fmx and
fmy is rich enough that the equilibrium cross-market joint density of (h, x, a) is bounded away
from zero.

Define

SΨΨ ≡ (MN)−1

M∑
m=1

N∑
i=1

SΨ(hmi , x
m
i , a

m
i )′SΨ(hmi , x

m
i , a

m
i ),

where

SΨ(hmi , x
m
i , a

m
i ) ≡

 [
∇xh

m(xmi , a
m
i ) + hm(xmi , a

m
i )
∇xe(xmi ,a

m
i )

e(xmi ,a
m
i )

]
⊗ΨkU,MN

(hmi , x
m
i , a

m
i )′[

hma (xmi , a
m
i ) + hm(xmi , a

m
i )

ea(xmi ,a
m
i )

e(xmi ,a
m
i )

]
ΨkU,MN

(hmi , x
m
i , a

m
i )′

 .

Assumption 25. Suppose that λmin (E(SΨΨ)) ≥ c > 0.

Lemma 5. Suppose that Assumptions 21-25 and the conditions for Theorem 6 are satisfied.
Suppose as well that kU,MN → ∞,

√
kU,MNνa,Nζa(kU,MN) → 0, kU,MNνej ,N → 0 and kU,MN

νea,N → 0 as N →∞. Then

∥∥γ̂kU,MN
− γ0,kU,MN

∥∥ = Op

(
νea,M,N +

dx∑
j=1

νej ,M,N + k−αU
U,MN

)
.

In addition, define

νUh,M,N ≡ ζ0(kU,MN)

[
νea,M,N +

dx∑
j=1

νej ,M,N + k−αU
U,MN

]
.

And I will assume that νUh,M,N → 0 as N →∞ for the rest of the paper.

Theorem 8. Suppose that the conditions of Lemma 5 are satisfied. Then

sup
(h,x,a)∈H×X×A

∣∣∣Ûh(h, x, a)− Uh(h, x, a)
∣∣∣ = Op (νUh,M,N) .
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The convergence rate of the sellers’ marginal disutility function depends on the estimation
errors of the quality function and on the series approximation error of the sellers’ marginal
disutility function itself. Note that the estimation errors of âmi and the reduced form functions
and their derivatives directly affect the convergence rate of the sellers’ marginal disutility
function, but they are dominated by the estimation errors of the quality function and its
derivatives.

5 Empirical Illustration in Labor Markets

In this section, I apply the estimation procedure provided in Sections 4.1 to estimate the
efficiency (quality) function e in labor markets. Section 5.1 introduces the data set, and
Section 5.2 estimates the workers’ unobserved efficiency function.

5.1 Data: the 2015 American Time Use Survey

The data set I use is the American Time Use Survey (ATUS, see Hofferth, Flood, and Sobek,
2013 for details). The ATUS randomly chooses one individual from a subsample of the
households that are completing their participation in the Current Population Survey (CPS)
and asks them to recall their time spent, minute by minute, on various activities within a
randomly picked 24-hour period in the past. The ATUS classifies activities into 17 major
categories and many more sub-categories, and provides a quite precise measure of the time
that workers actually spent in working.30

I consider the 2015 ATUS respondents,31 and focus on full-time workers in the three largest
cities: New York, Los Angeles and Chicago32. After dropping observations on Saturdays and
Sundays and making some other minor adjustments, I end up with a sample of 92 workers
in New York, 74 workers in Los Angeles, and 55 workers in Chicago.

I use the time spent in the “working” sub-category of the ATUS as the measure of working
time hmi , the weekly earnings in the CPS as the measure of earnings Imi , and the age reported
in the CPS as the observed characteristic xmi of the workers.33

30Major categories include working and work-related activities, household activities, education, traveling
and others. For working and work-related activities, it further breaks down to working, looking for a job,
eating and drinking on the job (e.g., lunch breaks), security procedures, and so on. I use the time spent in
the working sub-category as the measure of working time.

31The data were obtained via ATUS-X Extract Builder: Sandra L. Hofferth, Sarah M. Flood, and Matthew
Sobek. 2013. American Time Use Survey Data Extract System: Version 2.4 [Machine-readable database].
Maryland Population Research Center, University of Maryland, College Park, Maryland, and Minnesota
Population Center, University of Minnesota, Minneapolis, Minnesota.

32To be precise, the three largest metro areas: New York-Newark-Bridgeport (NY-NH-CT-PA), Los
Angeles-Long Beach-Riverside (CA), and Chicago-Naperville-Michigan City (IL-IN-WI).

33Individuals in the ATUS can be linked to their observations in the CPS to obtain rich demographic
information. In this illustration, I use age as the only observed characteristic for simplicity. The application
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Figure 5.1 shows the scatter plots of working time per day and weekly earnings of each
worker in the three cities. Within- and cross-market variation appears prominent: (i) both
working time and earnings vary substantially within all the markets; (ii) for the same working
time, earnings in New York tend to be higher than those in Los Angeles, which in turn, tend
to be higher than those in Chicago. In fact, the median of the earnings-to-working-time
ratio is 2.47 for the workers in New York, 2.03 in Los Angeles, and 1.62 in Chicago. Such
within- and cross-market variation is crucial for the identification of the unobserved efficiency
function.

5.2 Estimation of Unobserved Efficiency Function

With the observed data (Imi , h
m
i , x

m
i ) from the three cities, one is able to estimate the efficiency

function e(x, a).
As discussed in Sections 2.1 and 3, distributions fmx of workers’ observed characteristic

xmi (age) serve as aggregate instruments that induce cross-market variation in the earnings
functions. Figure 5.2 plots the kernel estimated densities of the workers’ age distributions in
the three cities. It shows that in the 2015 ATUS sample, full-time workers in Chicago are
slight younger than in the other two cities. The age distributions in Los Angeles and Chicago
are slightly more dispersed than that in New York.

Such variation in the distributions fmx appears to be sufficient to generate adequate vari-
ation in the earnings functions. Figure 5.2 draws representative iso-earnings curves for the
three cities on the support X × A = [25, 65] × [0.05, 0.95]. Recall that Assumption 9 for
identifying the efficiency function requires that the iso-earnings curves from at least two
cities have different slopes. For each value of (x, a) on the support, this is the case, except
in the very small region with a > 0.9 and x ∈ [35, 55]. This suggests that Assumption 9
is satisfied. Moreover, using estimated derivatives of the earnings functions Îmx (x, a) and
Îma (x, a), m = 1, . . . ,M , I compute B̂(x, a), the estimate of the coefficient matrix B(x, a)

defined in Assumption 9 for a grid of (x, a) values on the support X ×A. The determinants
of B̂(x, a)′B̂(x, a) for all these (x, a) values are bounded well away from zero. This indicates
that the matrix B(x, a) has full column rank. As a result, I am convinced that the key
identification condition for the efficiency function e(x, a) is satisfied.

The normalization worker I choose is (x̄, ā) ≡ (25, 0). I used the tensor product of
quadratic polynomials of x and a to approximate ex(x, a)/e(x, a) and ea(x, a)/e(x, a).34 With
the two estimated ratio functions, one could obtain the estimates of the efficiency function

to more observed variables poses no theoretical problem, but it may take more computing time.
34That is, I approximate the two ratio functions using β0 + β1x + β2x

2 + β4a + β5zx + β6ax
2 + β7a

2 +
β8a

2x+ β9a
2x2. There is no obvious rule for how one should determine the order of the polynomials for the

efficiency function or for the other structural functions in this model. This may serve as a topic for further
research.
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defined as in equation (4.13). Figure 5.2 plots the estimated efficiency function ê(x, a) on the
support X ×A.

Figure 5.2 presents a prominent and interesting pattern of the efficiency function. For
workers with the same level of unobserved characteristic a (“ability”), efficiency first increases
with age, and then decreases. For workers of the same age, efficiency increases with a. At age
25, workers with the highest ability do not exhibit much higher efficiency than their lower
ability peers. As they mature, however, their efficiency could be much higher than their peers
with the lowest ability.35

6 Conclusion and Extensions

In this paper, I study the identification and estimation of a nonparametric hedonic equilib-
rium model with unobserved quality. I explain how to use within- and cross-market variation
in equilibrium prices and quantities to identify and estimate the structural functions of the
model. Using the estimated structural functions and the equilibrium-solving algorithm sug-
gested in this paper, researchers could solve the counterfactual equilibrium to analyze the
distributional effects of policy interventions. In contrast to other widely used methods, the
counterfactuals thus constructed account for unobserved quality and equilibrium effects of
policy interventions in a nonparametric setting. Yet several directions of extension are worth
more research.

First, asymptotic distribution results are necessary for conducting inference on the struc-
tural functions and the counterfactuals. In addition, providing an easy-to-implement, data-
driven method to determine the tuning parameters for each step of the estimation procedure
is relevant to empirical work.

Second, in this paper I assume that agents’ unobserved heterogeneity is scalar-valued,
which might restrict its applicability (e.g., Roy model is excluded). Chernozhukov, Galichon,
and Henry (2014) considered the identification of hedonic equilibrium models with multidi-
mensional unobserved heterogeneity among agents. It might be an interesting research topic
to see whether one can extend their method to models with unobserved product characteris-
tic. Another related possible extension is to allow for multidimensional unobserved product
characteristics that is more general than the single-index model discussed in Appendix C.
Multidimensional quality could be important for a variety of empirical questions.36

Third, the results in this paper are based on the assumption that agents’ observed and
35Since I only control for age and neglect the dynamic perspective of the workers, one should be cautious

when interpreting this estimate. But this issue will be investigated in future research, and an in-depth
empirical analysis is beyond the scope of this section.

36For example, Halket, Nesheim and Oswald (2015) found that the English Housing Survey data rejects
unidimensional unobserved housing quality assumption.
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unobserved heterogeneities are independent of each other in each market. While this could
be a very restrictive assumption for scenarios in which agents select their own observed
characteristics, it might be possible to relax it by controlling on some additional variables.

Fourth, it is necessary to re-examine the identification results under alternative data
structures. For example, what can be identified if a positive proportion of workers choose
not to work at all?37 Another example is that quantity only has discrete support in the data
(e.g., full-time v.s. part-time work, number of bedrooms in a house). Moreover, assuming
that one seller is matched with one buyer might not capture certain decisions they make
(e.g., firm size) or over-simplify the production process (e.g., no complementarity among
workers).38

Finally, the current static model might give biased estimates and counterfactuals if in fact
agents optimize over a longer horizon.39 Investigating identification of a dynamic model will
be an important topic for future research.

37Chiappori, McCann, and Nesheim (2010) showed the existence of equilibrium if agents had potentially
binding outside options.

38Proper frameworks to analyze (non-)identification of these complications remain a question.
39For example, efficiency might be under-estimated for young workers and over-estimated for experienced

workers, if young workers choose to work extra time to enhance human capital.
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A Solving for Counterfactual Equilibrium

This section suggests an algorithm to numerically solve for counterfactual equilibrium, as
there is in general no closed-form solution to hedonic equilibrium models. This algorithm
can be applied to analyze the distributional effects of a wide range of interventions. Take
labor markets as example, an expansion of higher education may change education level from
xmi to x̃mi for a large number of workers; new investment projects may increase firms’ capital
stock from ymi to ỹmi ; or advances in total factor productivity may give rise to a new revenue
function R̃ instead of R. Establishing counterfactual distributions of worker earnings Ĩmi
(or labor supply h̃mi ) constitutes a vital part of welfare analysis of interventions like these
and helps understanding sources of earnings inequality (or other questions concerning labor
supply h̃mi ).

To fix idea, suppose we are under the first intervention, namely, xmi is replaced by x̃mi
(for all i = 1, . . . , Nm, m = 1, . . . ,M). And suppose that the estimates of the other market
primitives, i.e. the structural functions (Ûh, ê, R̂), the unobserved worker characteristic âmi ,
and the firm characteristics (ymi , b̂

m
i ), have been obtained using the estimation procedure

provided in Section 4.1 and will remain constant under the intervention.40 The equilibrium
is solved for each market m separately.

A.1 Algorithm to Solve for Counterfactual Equilibrium

The algorithm consists of two steps:

1. Obtain the general solution to the ODE in equation (2.6) that characterizes the equi-
librium.

2. Determine the initial value condition of the ODE in equation (2.6) by solving the
optimal transportation problem, which is mathematically equivalent to the hedonic
equilibrium model.

To implement the first step, let us take a closer look at the equilibrium condition in equa-
tion (2.6). It is a first-order ODE in the first-order derivative of the earnings schedule function
Pm
z . Given any Pm

z function and any value z ∈ Z, the right-hand side of equation (2.6) can
be approximated numerically. In particular, the first term of the numerator can be approxi-
mated as

Nm∑
i=1

R̂zz (z, ymi , b
∗(z, ymi ))

R̂zb (z, ymi , b
∗(z, ymi ))

,

40Under multiple concurrent interventions, researchers may also replace ymi and/or one or more estimated
structural functions with their "tilde" counterparts. The algorithm described in this section still applies.
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where R̂zz and R̂zb are the second-order derivatives associated with the estimated revenue
function R̂, and b∗(z, y) is the inverse effective labor demand function that satisfies firms’
FOC under the given Pm

z function. That is,

Pm
z (z) = R̂z (z, y, b∗(z, y)) .

Similarly, the first term of the denominator can be approximated as

Nm∑
i=1

1

R̂zb (z, ymi , b
∗(z, ymi ))

.

On the other hand, define the inverse effective labor supply function a∗(z, x) that satisfies
workers’ FOC under the given Pm

z function

Pm
z (z) = Ûh

(
z

ê (x, a∗(z, x))
, x, a∗(z, x)

)
/ê (x, a∗(z, x)) .

Thus, the second term of the numerator can be numerically approximated as

Nm∑
i=1

−Ûhh
(

z
ê(x,a∗(z,x))

, x, a∗(z, x)
)

T1(z, x)− T2(z, x)− T3(z, x)
,

and the second term of the denominator can be approximated as

Nm∑
i=1

− [ê (x, a∗(z, x))]2

T1(z, x)− T2(z, x)− T3(z, x)
,

where

T1(z, x) ≡ Ûha

(
z

ê (x, a∗(z, x))
, x, a∗(z, x)

)
ê (x, a∗(z, x)) ,

T2(z, x) ≡ Pm
z (z)ê (x, a∗(z, x)) êa (x, a∗(z, x)) ,

T3(z, x) ≡ Ûhh

(
z

ê (x, a∗(z, x))
, x, a∗(z, x)

)
z

ê (x, a∗(z, x))
êa (x, a∗(z, x)) ,

and êa, Ûhh and Ûha are the partial derivatives associated with the estimated efficiency
function ê and marginal disutility function Ûh, respectively.

Therefore, replacing the four components of the right-hand side of the equilibrium condi-
tion in equation (2.6) with their numerical approximation above, one could numerically solve
the ODE for its general solution. That is, for each value Pm

z,0 ∈ R, we get a different function
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Pm
z such that Pm

z satisfies equation (2.6) and Pm
z (z0) = Pm

z,0 for a fixed value z0 ∈ Z.41

The next step, therefore, is to determine the value Pm
z,0. Without loss of generality,

one could let z0 = 0. Chiappori, McCann, and Nesheim (2010) showed that the hedonic
equilibrium model is mathematically equivalent to an optimal transportation problem. Note
that this equivalence holds even when quality is unobserved (by researchers) as long as z is
observed by both sellers and buyers. Therefore, the algorithm they proposed to solve the
optimal transportation problem can be employed to solve for the equilibrium of my model.
With the general solution of the ODE obtained in the first step, one only needs to optimize
over a one-dimensional parameter Pm

z,0 to solve the optimal transportation problem.42 Other
equilibrium outcomes, such as Ĩmi and h̃mi , can be constructed as a result.43

A.2 Stability of Numerical Equilibrium Solutions

Cautious researchers might be interested in the stability of numerical equilibrium solutions
of the model. Two sources of errors might contribute to the difference between the numerical
solution and the true counterfactual equilibrium: estimation errors in the estimation of the
market primitives and numerical errors in the implementation of the algorithm described in
Section A.1. If the mapping from the market primitives to the equilibrium outcomes is not
continuous, then the numerical equilibrium solution will be unstable with respect to these
errors.

To examine the stability of the numerical equilibrium solutions, I conduct a small-scale
simulation experiment. I implement the algorithm in Section A.1 to solve for the equilibrium
in a market with 1000 worker-firm pairs.44 The first panel of Figure A.2 shows the (kernel
estimated) equilibrium densities of effective labor supply zs and demand zd when I use the true
structural functions. The second panel shows the (kernel estimated) equilibrium densities of
zs and zd when I perturb the structural functions by them with multiplying normal random
variables with mean 1 and standard deviation 0.01.45 The third and fourth panels show the

41Matlab provides toolboxes that quickly deliver numerical solutions to first-order ODEs.
42In fact, instead of solving the optimal transportation problem directly, they suggested solving the dual

problem, a constrained linear programing problem (equation (42) in their paper). They did not have the
first step and used a series expansion to approximate the unknown equilibrium price schedule function.
Therefore, they needed to optimize over multidimensional series coefficients. Please refer to their paper for
details. Depending on the sample size, the shape of the equilibrium price schedule function, and the ranges
of the series coefficients, among other factors, my algorithm might be faster or slower than theirs. Further
research is needed to investigate the situations to which each algorithm is suited.

43With the first-order derivative function Pm
z , one may let Pm(0) ≡ 0 to determine the level of the price

schedule function Pm.
44I assume that x and y follow beta distributions, that is, xi ∼ β(9, 1) and yi ∼ β(1, 9). I also assume that

U(h, x, a) =
[
h2x1 + (1− a)1

]1, e(x, a) = x0.7a0.5 and R(z, y, b) = z1/2y1/2b1/2.
45In the interim steps of the algorithm, every time I need to evaluate a structural function, I compute the

true value and multiply it by a new normal random variable.
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cases when the standard deviations of the perturbations are 0.05 and 0.1, respectively.
Figure A.2 has two important implications. First, even though I approximate the integrals

in the equilibrium condition in equation (2.6) with sample averages and approximate the in-
tegrals in the constraints of the optimal transportation problem with quadratures (details in
Chiappori, McCann, and Nesheim, 2010), the algorithm in Section A.1 is still able to deliver
a very precise numerical equilibrium solution. This is illustrated by the estimated densities
of zs and zd, which trace each other very closely in the first panel. Second, the mapping from
the structural functions to the equilibrium is likely to be continuous; otherwise, small pertur-
bations in the structural functions would result in large changes in the equilibrium quantities
or even render the equilibrium non-solvable. However, the last three panels of Figure A.2
show the contrary. With moderately sized perturbations to the structural functions, I still
obtain equilibrium solutions that closely resemble the one obtained using the true structural
functions.

B Market Level Heterogeneity

In the main text of this paper, I assume that efficiency function e(x, a) takes the same value
for all workers with the characteristics (x, a) across markets. This implies that a worker with
ath quantile of unobserved characteristic in one market will have the same efficiency as a
worker with ath quantile of unobserved characteristic in another market (given that their x’s
are the same). If the markets (cities, counties, etc. depending on specific applications under
investigation) are comparable with each other in terms of the distributions of workers’ un-
observed characteristics, then this is a plausible assumption. In many applications, however,
this may not be true. The distribution of workers’ unobserved characteristics in Manhattan,
New York may well be different from that in Manhattan, Kansas. My model and all the
results still apply if there are finite types of markets. As long as the type of each market is
observed (or can be estimated based on some market level observables), then all the results
in this paper apply within each market type. One important practical implication is that
we may allow large cities to have a different efficiency function from small cities. So long
as we have multiple cities of the same type in our sample, then the efficiency functions can
be identified and estimated separately. Accommodating this generality formally provides no
extra insight, but induces notational complexity.

C Multidimensional Quality with Single Index Structure

In this section, I relax the assumption that hm and e are single-dimensional. Let the constant
L > 1 denote the dimensional of hm and e. Let hm(x, a) ≡ (hm1 (x, a), . . . , hmL (x, a))′ and e(x,
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a) ≡ (e1(x, a), . . . , eL(x, a))′. Assume that the coordinates of h and e enter the price schedule
function collectively in a single index. Recall Assumption 1 and the payment equation (2.3)
in market m, then we have

Im(x, a) = Pm (hm1 (x, a) · e1(x, a) + · · ·+ hmL (x, a)eL(x, a)) , (C.1)

for all m ∈ M and all (x, a) ∈ X × A. Taking the partial derivatives with suppressed
arguments gives us:∇xI

m(x, a) = Pm
z · [∇xh

m
1 e1 + hm1 ∇xe1 + · · ·+∇xh

m
L eL + hmL∇xeL] ,

∂Im

∂a
(x, a) = Pm

z ·
[
∂hm1
∂a
e1 + hm1

∂e1
∂a

+ · · ·+ ∂hmL
∂a
eL + hmL

∂eL
∂a

]
.

Provided that ∂Im(x, a)/∂a 6= 0, we may take the ratio of the first equation to the last
equation:

∂Im

∂x1
∂Im

∂a

=

∂hm1
∂x1

+ hm1
∂e1
∂x1
/e1 + · · ·+ ∂hmL

∂x1

eL
e1

+ hmL
∂eL
∂x1

/e1

∂hm1
∂a

+ hm1
∂e1
∂a
/e1 + · · ·+ ∂hmL

∂a
eL
e1

+ hmL
∂eL
∂a
/e1

,

which implies

∂Im

∂a
hm1

∂e1

∂x1

/e1 −
∂Im

∂x1

hm1
∂e1

∂a
/e1 + · · ·+ ∂Im

∂a
hmL

∂eL
∂x1

/e1 −
∂Im

∂x1

hmL
∂eL
∂a

/e1

+

(
∂Im

∂a

∂hm2
∂x1

− ∂Im

∂x1

∂hm2
∂a

)
e2

e1

+ · · ·+
(
∂Im

∂a

∂hmL
∂x1

− ∂Im

∂x1

∂hmL
∂a

)
eL
e1

=
∂Im

∂x1

∂hm1
∂a
− ∂Im

∂a

∂hm1
∂x1

. (C.2)

Taking the ratio of the second equation to the last equation:

∂Im

∂x2
∂Im

∂a

=

∂hm1
∂x2

+ hm1
∂e1
∂x2
/e1 + · · ·+ ∂hmL

∂x2

eL
e1

+ hmL
∂eL
∂x2

/e1

∂hm1
∂a

+ hm1
∂e1
∂a
/e1 + · · ·+ ∂hmL

∂a
eL
e1

+ hmL
∂eL
∂a
/e1

,

which implies

∂Im

∂a
hm1

∂e1

∂x2

/e1 −
∂Im

∂x2

hm1
∂e1

∂a
/e1 + · · ·+ ∂Im

∂a
hmL

∂eL
∂x2

/e1 −
∂Im

∂x2

hmL
∂eL
∂a

/e1

+

(
∂Im

∂a

∂hm2
∂x2

− ∂Im

∂x2

∂hm2
∂a

)
e2

e1

+ · · ·+
(
∂Im

∂a

∂hmL
∂x2

− ∂Im

∂x2

∂hmL
∂a

)
eL
e1

=
∂Im

∂x2

∂hm1
∂a
− ∂Im

∂a

∂hm1
∂x2

. (C.3)
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By the same token, we could get another (dx− 2) equations like (C.2) and (C.3). After some
rearrangement, we get

Bm(x, a)

(
∇e1(x, a)′

e1(x, a)
, . . . ,

∇eL(x, a)′

e1(x, a)
,
e2(x, a)

e1(x, a)
, . . . ,

eL(x, a)

e1(x, a)

)′
= Am(x, a). (C.4)

In the above equation, for l = 1, . . . , L, the (dx + 1)× 1 vector ∇el(x, a) is defined as

∇el(x, a) ≡
(
∇xel(x, a)′,

∂el(x, a)

∂a

)′
;

the dx × 1 vector Am(x, a) is defined as

Am(x, a) ≡ ∂hm1 (x, a)

∂a
∇xI

m(x, a)− ∂Im(x, a)

∂a
∇xh

m
1 (x, a);

and the dx × (dxL+ 2L− 1) matrix Bm(x, a) is defined as

Bm(x, a) ≡
(
Bm

1 (x, a), . . . , Bm
L (x, a), Bm

L+1(x, a)
)
,

in which for l = 1, . . . , L, the dx × (dxL+ L) matrix Bm
l (x, a) is

Bm
l (x, a) ≡

(
∂Im(x, a)

∂a
hml (x, a)Idx ,−hml (x, a)∇xI

m(x, a)

)
,

and the dx × (L− 1) matrix Bm
L+1(x, a) is

Bm
L+1(x, a) ≡

(
Bm
L+1,2, . . . , B

m
L+1,L

)
,

where for l′ = 2, . . . , L

Bm
L+1,l′ ≡

∂Im(x, a)

∂a
∇xh

m
l′ (x, a)− ∂hml′ (x, a)

∂a
∇xI

m(x, a)

If we stack the equations like (C.4) for all markets, we get a system of Mdx equations with
dxL+ 2L− 1 unknowns for all (x, a) ∈ X ×A,

B̃(x, a)

(
∇e1(x, a)′, . . . ,∇eL(x, a)′,

e2(x, a)

e1(x, a)
, . . . ,

eL(x, a)

e1(x, a)

)′
= Ã(x, a), (C.5)

where
B̃(x, a) ≡

(
B1(x, a)′, . . . , BM(x, a)′

)′
,
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and
Ã(x, a) ≡

(
A1(x, a)′, . . . , AM(x, a)′

)′
.

Therefore, there exists a unique solution of (∇e1(x, a)′, . . . ,∇eL(x, a)′, e2(x,a)
e1(x,a)

, . . . , eL(x,a)
e1(x,a)

)′ if
the matrix B̃(x, a) has full column rank. A necessary condition for this is that M ≥ L +

(2L− 1)/dx. The full-column-rank condition here has a similar gradient interpretation as in
Section 3.2.2, but I will not fully elaborate it.

By normalize e1(x̄, ā) = 1, and solving the ordinary differential equations for each el(x, a)

(l = 1, . . . , L) with the steps described in the proof of Theorem 1, one can recover all the
quality functions el(x, a) (l = 1, . . . , L).

Finally, note that with large M , one might get over-identification as well.

D Proofs of the Theorems in Section 4.2

D.1 Proof of the Theorem in Section 4.2.1

This section provides the proof of Theorem 3. But some notation is needed first. Let Λm
i ≡

ΛkQ,N
(xmi ), ωij ≡ I(Imj ≤ Imi )− FIm|xm(Imi |xmj ) (i, j = 1, . . . , N) and Ŵm ≡

∑N
i=1 Λm

i Λm′
i /N .

Lemma 6. For xm ≡ (xm1 , . . . , x
m
N) and kQ,N × 1 vectors of functions bi(xm) (i = 1, . . . , N),

if
∑N

i=1 bi(x
m)′Ŵmbi(x

m)/N = Op(rN), then

N∑
i=1

[
bi(x

m)′
N∑
j=1

Λm
j ωij/

√
N

]2

/N = Op(rN).

Proof. This lemma is the same as Lemma S.1 in Imbens and Newey (2009), only with the
notation adapted to that in this paper.

Lemma 7. Suppose that Assumption 13 is satisfied, then there exists C such that for each I
there is ρ(I) with supx∈X |FIm|xm(I|x)− Λk(x)′ρ(I)| ≤ Ck−d1/dx.

Proof. This lemma is the same as Lemma S.2 in Imbens and Newey (2009),46 only with the
notation adapted to that in this paper.

Proof of Theorem 3

This theorem is the same as Lemma 11 in Imbens and Newey (2009), only with the notation
adapted to that in this paper.

46It is a reiteration of Theorem 8 (p. 90) in Lorentz (1986).
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D.2 Proofs of the Theorems in Section 4.2.2

In the rest of this subsection, I will suppress the superscript m for functions and variables
for notational simplicity. The results in Section 4.1.1 and the proofs in this subsection hold
regardless of the market index m.

Recall that lm(x, a) denotes either the payment function Im(x, a) or the quantity func-
tion hm(x, a) in a market m. Let l ≡ (lm(x1, a1), . . . , lm(xN , aN))′, l̃ ≡ (lm(x1, â1), . . . ,

lm(xN , âN))′, Φi ≡ Φkl,N (xi, ai), Φ̃i ≡ Φkl,N (xi, âi), Φ ≡ (Φ1, . . . ,ΦN)′, Φ̃ ≡ (Φ̃1, . . . , Φ̃N)′,
Q ≡ E(ΦiΦ

′
i), Q̄ ≡ Φ′Φ/N , and Q̃ ≡ Φ̃′Φ̃/N . Without loss of generality, we can set Q = Ikl,N ,

the kl,N×kl,N identity matrix, as in Newey (1997). Note that the estimated series coefficients
in equation (4.3) and equation (4.6) can be written with this notation as ξ̂l,kl,N ≡ Q̃−Φ̃′l/N .
Finally, let ξ̃l,kl,N ≡ Q̃−Φ̃′l̃/N .

Recall that the estimated series coefficients ξ̂l,kl,N take least square forms. So the proof
in this subsection proceeds in three steps: (i) to show that the “denominator” of the esti-
mated series coefficients converges in probability to a constant matrix; (ii) to find out the
rate at which the “numerator” converges to its probability limit, hence the estimated series
coefficients converge to the pseudo-true series coefficients at the same rate; (iii) to obtain
the convergence rates for l̂(x, a) and its derivatives using the results in step (ii), the compact
support assumption, and the assumptions on the approximation errors by the series basis
functions. In what follows, Lemma 9 presents step (i), Lemma 10 presents step (ii), and step
(iii) is given by Theorems 4 and 5.

Lemma 8. Suppose that Assumptions 14 and 15 are satisfied. Then, sup(x,a)∈X×A ‖Φk(x, a)‖ ≤
Cζ0(k), sup(x,a)∈X×A ‖∂Φk(x, a)/∂xj‖ ≤ Cζj(k) and sup(x,a)∈X×A ‖∂Φk(x, a)/∂a‖ ≤ Cζa(k).

Proof. Under the maintained Assumptions 5 and 6, the joint density of (x, a) is bounded
away from zero. Combine this with Assumption 15, then the results follow from equations
(3.13)-(3.16) in Andrews (1991).

Lemma 9. Suppose that the conditions of Theorem 3 and Lemma 8 are satisfied. Suppose as
well that the numbers of series basis functions used to approximate each component in kl,N

all increase to infinity with N , and
√
kl,Nνa,Nζa(kl,N)→ 0. Then, the following results hold:

(i) ‖Φ̃− Φ‖2/N = Op
(
ν2
a,Nζ

2
a(kl,N)

)
;

(ii) ‖Q̄−Q‖ = Op
(
ζ0(kl,N)

√
kl,N/N

)
;

(iii) ‖Q̃− Q̄‖ = Op
(
ν2
a,Nζ

2
a(kl,N) +

√
kl,Nνa,Nζa(kl,N)

)
;

(iv) λmin(Q̃) ≥ c > 0, λmin(Q̄) ≥ c > 0 with probability approaching 1, where λmin denotes
the minimum eigenvalues of a symmetric matrix.
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Proof. For (i), consider a mean value expansion for i ∈ {1, . . . N},

Φ̃i = Φi +
∂Φkl,N

∂a
(xi, ãi) · (âi − ai),

where ãi lies between âi and ai. Since âi and ai are in [0, 1], so is ãi. By Lemma 8,
‖∂Φkl,N (xi, ãi)/∂a‖ ≤ Cζa(kl,N). Then by Cauchy-Schwarz inequality, ‖Φ̃i−Φi‖ ≤ Cζa(kl,N)

|âi − ai|. Together with Theorem 3, this implies

‖Φ̃− Φ‖2/N =
N∑
i=1

‖Φ̃i − Φi‖2/N = Op
(
ν2
a,Nζ

2
a(kl,N)

)
.

So (i) holds.
For (ii), let Ijl denote the (j, l)-element of an identity matrix. Note that E(φj(x, a)

φl(x, a)) = Ijl, then

E
[
‖Q̄−Q‖2

]
= E

∥∥∥∥∥N−1

n∑
i=1

ΦiΦ
′
i −Q

∥∥∥∥∥
2


= E

kl,N∑
j=1

kl,N∑
l=1

(
N−1

n∑
i=1

φj(xi, ai)φl(xi, ai)− Ijl

)2


≤ N−1E

kl,N∑
j=1

φ2
j(xi, ai)

kl,N∑
l=1

φ2
l (xi, ai)


≤ N−1ζ2

0 (kl,N)tr(Ikl,N )

= ζ2
0 (kl,N)kl,N/N.

So (ii) follows by the Markov’s inequality.
For (iii), by the triangular inequality and the Cauchy-Schwarz inequality,

‖Q̃− Q̄‖ ≤
N∑
i=1

‖Φ̃iΦ̃
′
i − ΦiΦ

′
i‖/N

≤
N∑
i=1

‖Φ̃i − Φi‖2/N + 2

(
N∑
i=1

‖Φ̃i − Φi‖2/N

)1/2( N∑
i=1

‖Φi‖2/N

)1/2

.

Moreover, by the Markov’s inequality

N∑
i=1

‖Φi‖2/N = Op
(
E
(
‖Φi‖2

))
= Op (tr(Q)) = Op

(
tr(Ikl,N )

)
= Op (kl,N) . (D.1)
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So the result follows from (i).
For (iv), by the definition of ζ0(kl,N) and ζa(kl,N), and the fact that νa,N converges to zero

slower than N−1/2, we have that
√
kl,Nνa,Nζa(kl,N) → 0 implies ζ0(kl,N)

√
kl,N/N → 0 and

ν2
a,Nζ

2
a(kl,N)→ 0. Therefore by (ii) and (iii), we have that ‖Q̄−Q‖ p.−→ 0 and ‖Q̃−Q̄‖ p.−→ 0.

By the same argument following equation (A.1) in Newey (1997), |λmin(Q̄) − λmin(Q)| and
|λmin(Q̃) − λmin(Q̄)| are bounded by ‖Q̄ − Q‖ and ‖Q̃ − Q̄‖, respectively. Since Q ≡ Ikl,N ,
λmin(Q̄)

p.−→ 1 and λmin(Q̃)
p.−→ 1. So the result follows.

Lemma 10. Suppose that Assumptions 16 and 17, and the conditions of Theorem 3 and
Lemma 9 are satisfied. Then, the following results hold:

(i) ‖ξ̂l,kl,N − ξ̃l,kl,N‖ = Op (νa,N) ;

(ii) ‖ξ̂l,kl,N − ξl,0,kl,N‖ = Op
(
k−αl
l,N

)
.

Proof. For (i), consider a mean value expansion for i ∈ {1, . . . N},

l(xi, âi) = l(xi, ai) +
∂l

∂a
(xi, ãi) · (âi − ai),

where ãi lies between âi and ai and might take a different value from that in the proof of
Lemma 9. Since âi and ai are in [0, 1], so is ãi. Together with Assumptions 14 and 16, this
implies that |∂l(xi, ãi)/∂a| ≤ C. Moreover, by Lemma 9, we have that λmin(Q̃) ≥ c with
probability 1, so ∥∥∥Q̃1/2(ξ̂l,kl,N − ξ̃l,kl,N )

∥∥∥2

= (l − l̃)′Φ̃Q̃−Φ̃′(l − l̃)/N2

≤ C‖l̃ − l‖2/N

≤ C
N∑
i=1

|âi − ai|2/N,

Then (i) holds by Theorem 3 and Lemma 9 (iv).
Similarly, for (ii), by the definition of ξ̃l,kl,N ,∥∥∥Q̃1/2(ξ̃l,kl,N − ξl,0,kl,N )

∥∥∥2

=
∥∥∥Q̃1/2(ξ̃l,kl,N − Q̃−Φ̃′Φ̃ξl,0,kl,N/N)

∥∥∥2

= (l̃ − Φ̃ξl,0,kl,N )′Φ̃Q̃−Φ̃′(l̃ − Φ̃ξl,0,kl,N )/N2

≤ C‖l̃ − Φ̃ξl,0,kl,N‖2/N

≤ C

(
sup

(x,a)∈X×A
|l(x, a)− Φkl,N (x, a)′ξl,0,kl,N |2

)
= Op

(
k−2αl
l,N

)
,

where the last equality holds by Assumption 17. Therefore the result holds by Lemma 9
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(iv).

Proof of Theorem 4

Proof. By the definition of ζ0(kl,N) and ζa(kl,N), the condition k3/2
l,N k

2
a,l,Nνa,N → 0 implies that√

kl,Nζa(kl,N)νa,N → 0.
By the triangular inequality,

sup
(x,a)∈X×A

|l̂(x, a)− l(x, a)|

≤ sup
(x,a)∈X×A

|Φkl,N (x, a)′(ξ̂l,kl,N − ξl,0,kl,N )|+ sup
(x,a)∈X×A

|Φkl,N (x, a)′ξl,0,kl,N − l(x, a)|

= Op
(
ζ0(kl,N)

(
νa,N + k−αl

l,N

))
+Op

(
k−αl
l,N

)
= Op

(
ζ0(kl,N)

(
νa,N + k−αl

l,N

))
,

The first equality holds by the Cauchy-Schwarz inequality, Assumption 17, and Lemmas 8
and 10. The second equality holds since ζ0(kl,N) → ∞ as N → ∞. This completes the
proof.

Proof of Theorem 5

Proof. For j = 1, . . . , dx, by the triangular inequality,

sup
(x,a)∈X×A

∣∣∣l̂mxj(x, a)− lmxj(x, a)
∣∣∣

≤ sup
(x,a)∈X×A

∣∣∣∣ ∂∂xjΦkl,N (x, a)′(ξ̂l,kl,N − ξl,0,kl,N )

∣∣∣∣
+ sup

(x,a)∈X×A

∣∣∣∣lmxj(x, a)− ∂

∂xj
Φkl,N (x, a)′ξl,0,kl,N

∣∣∣∣
= Op

(
ζj(kl,N)

(
νa,N + k−αl

l,N

))
+Op

(
k−αl
l,N

)
= Op

(
ζj(kl,N)

(
νa,N + k−αl

l,N

))
.

The first equality holds by the Cauchy-Schwarz inequality, Assumption 17, and Lemmas 8 and
10. The second equality holds by that ζj(kl,N) → ∞ as N → ∞. This completes the proof
of the first statement. The proof of the second statement follows the same argument.

D.3 Proofs of the Theorems in Section 4.2.3

This subsection proceeds with the same steps as in Appendix D.2. In the rest of the proof,
I will spell out the superscripts of the market index m.
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Define

S̄ΦΦ ≡ (MN)−1

M∑
m=1

N∑
i=1

S̄Φ(xmi , â
m
i )′S̄Φ(xmi , â

m
i ).

In this equation,
S̄Φ(xmi , â

m
i ) ≡

(
S̄Φ,1(xmi , â

m
i ) , S̄Φ,2(xmi , â

m
i )
)
,

where

S̄Φ,1(xmi , â
m
i ) ≡


Φkx1,MN

(xmi , â
m
i )′ 0

. . .
0 Φkxdx ,MN

(xmi , â
m
i )′

⊗ Ima (xmi , â
m
i ),

and
S̄Φ,2(xmi , â

m
i ) ≡ −∇xI

m(xmi , â
m
i )⊗ Φka,MN

(xmi , â
m
i )′.

Lemma 11. Suppose that Assumption 16, and the conditions of Theorems 3 and 5 and
Lemma 8 are satisfied. Suppose as well that the numbers of series basis functions used to
approximate each component in kxj ,MN (j = 1, . . . , dx) and ka,MN all increase to infinity with
N , νa,N(ζa(kxj ,MN) + ζa(ka,MN))→ 0, ka,MN +

∑dx
j=1 kxj ,MN → 0, (νIa,N

∑dx
j=1 kxj ,MN +ka,MN∑dx

j=1 νIj ,N)→ 0. Then
(i)

‖S̄ΦΦ − SΦΦ‖

= Op

(
ν2
a,N

dx∑
j=1

(
ζ2
a(kxj ,MN) + ζ2

a(ka,MN)
)

+νa,N

[
dx∑
j=1

(
ζa(kxj ,MN) + ζa(ka,MN)

)](
ka,MN +

dx∑
j=1

kxj ,MN

)1/2
 ;

(ii)

‖ŜΦΦ − S̄ΦΦ‖

= Op

(ν2
Ia,N

dx∑
j=1

kxj ,MN + ka,MN

dx∑
j=1

ν2
Ij ,N

)1/2(
ka,MN +

dx∑
j=1

kxj ,MN

)1/2
 ;

(iii) λmin(ŜΦΦ) ≥ c, λmin(S̄ΦΦ) ≥ c and λmin(SΦΦ) ≥ c with probability approaching 1,
where λmin denotes the minimum eigenvalue of a symmetric matrix.

Proof. To prove (i), some preliminary results are needed. For j = 1, . . . , dx, consider the
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mean value expansion

Ima (xmi , â
m
i )Φkxj,MN

(xmi , â
m
i )′ − Ima (xmi , a

m
i )Φkxj,MN

(xmi , a
m
i )′

= Imaa(x
m
i , ã

m
i )Φkxj,MN

(xmi , ã
m
i )′(âmi − ami )

+Ima (xmi , ã
m
i )

∂

∂a
Φkxj,MN

(xmi , ã
m
i )′(âmi − ami ),

where ãmi is between ami and âmi , so it must be in [0, 1]. By Lemma 8, Assumption 16, the
triangular inequality, and the Cauchy-Schwarz inequality, we get

‖Ima (xmi , â
m
i )Φkxj,MN

(xmi , â
m
i )′ − Ima (xmi , a

m
i )Φkxj,MN

(xmi , a
m
i )′‖2

≤ C
(
ζ2

0 (kxj ,MN) + ζ2
a(kxj ,MN)

)
|âmi − ami |2

≤ Cζ2
a(kxj ,MN)|âmi − ami |2. (D.2)

By the same token, we have that for j = 1, . . . , dx,

‖Imxj(x
m
i , â

m
i )Φka,MN

(xmi , â
m
i )′ − Imxj(x

m
i , a

m
i )Φka,MN

(xmi , a
m
i )′‖2

≤ C
(
ζ2

0 (ka,MN) + ζ2
a(ka,MN)

)
|âmi − ami |2

≤ Cζ2
a(ka,MN)|âmi − ami |2. (D.3)

Equation (D.2) implies that∥∥S̄Φ,1(xmi , â
m
i )− SΦ,1(xmi , a

m
i )
∥∥2

=
dx∑
j=1

‖Ima (xmi , â
m
i )Φkxj,MN

(xmi , â
m
i )′ − Ima (xmi , a

m
i )Φkxj,MN

(xmi , a
m
i )′‖2

≤ C |âmi − ami |2
dx∑
j=1

ζ2
a(kxj ,MN).

And equation (D.3) implies that∥∥S̄Φ,2(xmi , â
m
i )− SΦ,2(xmi , a

m
i )
∥∥2

=
dx∑
j=1

‖Imxj(x
m
i , â

m
i )Φka,MN

(xmi , â
m
i )′ − Imxj(x

m
i , a

m
i )Φka,MN

(xmi , a
m
i )′‖2

≤ Cdx|âmi − ami |2ζ2
a(ka,MN).

As a result, ∥∥S̄Φ(xmi , â
m
i )− SΦ(xmi , a

m
i )
∥∥2
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=
∥∥S̄Φ,1(xmi , â

m
i )− SΦ,1(xmi , a

m
i )
∥∥2

+
∥∥S̄Φ,2(xmi , â

m
i )− SΦ,2(xmi , a

m
i )
∥∥2

= C|âmi − ami |2
dx∑
j=1

(
ζ2
a(kxj ,MN) + ζ2

a(ka,MN)
)
. (D.4)

On the other hand, by Lemma 8, Assumption 16 and the Cauchy-Schwarz inequality, we
have

‖SΦ,1(xmi , a
m
i )‖2 =

dx∑
j=1

∥∥∥Ima (xmi , a
m
i )Φkxj,MN

(xmi , a
m
i )′
∥∥∥2

≤
dx∑
j=1

|Ima (xmi , a
m
i )|2 ·

∥∥∥Φkxj,MN
(xmi , a

m
i )
∥∥∥2

= Op

(
dx∑
j=1

kxj ,MN

)
.

In this expression, the inequality holds by the Cauchy-Schwarz inequality. The second equal-
ity holds because I set the basis functions to be orthonormal without loss of generality, and
hence for j = 1, . . . , dx,

E
(∥∥∥Φkxj,MN

(xmi , a
m
i )
∥∥∥2
)

= tr(Ikxj,MN
) = kxj ,MN .

Then by the Markov’s inequality,∥∥∥Φkxj,MN
(xmi , a

m
i )
∥∥∥2

= Op
(
kxj ,MN

)
. (D.5)

By similar argument, we also have∥∥Φka,MN
(xmi , a

m
i )
∥∥2

= Op (ka,MN) , (D.6)

which implies that
‖SΦ,2(xmi , a

m
i )‖2 = Op (ka,MN) .

As a result,

‖SΦ(xmi , a
m
i )‖2 = ‖SΦ,1(xmi , a

m
i )‖2 + ‖SΦ,2(xmi , a

m
i )‖2

= Op

(
ka,MN +

dx∑
j=1

kxj ,MN

)
. (D.7)
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Now consider (i),

‖S̄ΦΦ − SΦΦ‖

= (MN)−1

M∑
m=1

N∑
i=1

∥∥S̄Φ(xmi , â
m
i )′S̄Φ(xmi , â

m
i )− SΦ(xmi , a

m
i )′SΦ(xmi , a

m
i )
∥∥

≤ (MN)−1

M∑
m=1

N∑
i=1

∥∥S̄Φ(xmi , â
m
i )− SΦ(xmi , a

m
i )
∥∥2

+2(MN)−1

M∑
m=1

N∑
i=1

(∥∥S̄Φ(xmi , â
m
i )− SΦ(xmi , a

m
i )
∥∥2
)1/2 (

‖SΦ(xmi , a
m
i )‖2)1/2

,

where the inequality holds by the triangular inequality and the Cauchy-Schwarz inequality.
Combine this result with Theorem theorem 3, equation (D.4) and equation (D.7), we get

‖S̄ΦΦ − SΦΦ‖

= Op

(
ν2
a,N

dx∑
j=1

(
ζ2
a(kxj ,MN) + ζ2

a(ka,MN)
)

+νa,N

[
dx∑
j=1

(
ζa(kxj ,MN) + ζa(ka,MN)

)](
ka,MN +

dx∑
j=1

kxj ,MN

)1/2
 .

So (i) holds.
To prove (ii), some preliminary results are necessary. Note that the Cauchy-Schwarz

inequality, Theorem 5, equation (D.5) and equation (D.6) imply that∥∥∥(Îmxj(xmi , âmi )− Imxj(x
m
i , â

m
i )
)

Φka,MN
(xmi , â

m
i )
∥∥∥′2

≤
∣∣∣Îmxj(xmi , âmi )− Imxj(x

m
i , â

m
i )
∣∣∣2 · ∥∥Φka,MN

(xmi , â
m
i )
∥∥2

= Op
(
ν2
Ij ,N

ka,MN

)
,

for j = 1, . . . , dx, and ∥∥∥(Îma (xmi , â
m
i )− Ima (xmi , â

m
i )
)

Φkxj,MN
(xmi , â

m
i )′
∥∥∥2

≤
∣∣∣Îma (xmi , â

m
i )− Ima (xmi , â

m
i )
∣∣∣2 · ∥∥∥Φkxj,MN

(xmi , â
m
i )
∥∥∥2

= Op
(
ν2
Ia(σN , kI,N)kxj ,MN

)
.
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They further imply that∥∥∥ŜΦ,1(xmi , â
m
i )− S̄Φ,1(xmi , â

m
i )
∥∥∥2

=
dx∑
j=1

∥∥∥(Îma (xmi , â
m
i )− Ima (xmi , â

m
i )
)

Φkxj,MN
(xmi , â

m
i )′
∥∥∥2

= Op

(
ν2
Ia(σN , kI,N)

dx∑
j=1

kxj ,MN

)
,

and ∥∥∥ŜΦ,2(xmi , â
m
i )− S̄Φ,2(xmi , â

m
i )
∥∥∥2

=
dx∑
j=1

∥∥∥(Îmxj(xmi , âmi )− Imxj(x
m
i , â

m
i )
)

Φka,MN
(xmi , â

m
i )′
∥∥∥2

= Op

(
ka,MN

dx∑
j=1

ν2
Ij ,N

)
.

As a result, ∥∥∥ŜΦ(xmi , â
m
i )− S̄Φ(xmi , â

m
i )
∥∥∥2

=
∥∥∥ŜΦ,1(xmi , â

m
i )− S̄Φ,1(xmi , â

m
i )
∥∥∥2

+
∥∥∥ŜΦ,2(xmi , â

m
i )− S̄Φ,2(xmi , â

m
i )
∥∥∥2

= Op

(
ν2
Ia,N

dx∑
j=1

kxj ,MN + ka,MN

dx∑
j=1

ν2
Ij ,N

)
. (D.8)

On the other hand, by the fact that âmi ∈ [0, 1], Lemma 8, Assumption 16, the Cauchy-
Schwarz inequality, and that the basis functions are orthonormal, we have

∥∥S̄Φ,1(xmi , a
m
i )
∥∥2

= Op

(
dx∑
j=1

kxj ,MN

)
,

∥∥S̄Φ,2(xmi , a
m
i )
∥∥2

= Op (ka,MN) .

As a result ∥∥S̄Φ(xmi , a
m
i )
∥∥2

=
∥∥S̄Φ,1(xmi , a

m
i )
∥∥2

+
∥∥S̄Φ,2(xmi , a

m
i )
∥∥2

= Op

(
ka,MN +

dx∑
j=1

kxj ,MN

)
. (D.9)
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Now consider (ii),

‖ŜΦΦ − S̄ΦΦ‖

= (MN)−1

M∑
m=1

N∑
i=1

∥∥∥ŜΦ(xmi , â
m
i )′ŜΦ(xmi , â

m
i )− S̄Φ(xmi , a

m
i )′S̄Φ(xmi , a

m
i )
∥∥∥

≤ (MN)−1

M∑
m=1

N∑
i=1

∥∥∥ŜΦ(xmi , â
m
i )− S̄Φ(xmi , a

m
i )
∥∥∥2

+2(MN)−1

M∑
m=1

N∑
i=1

(∥∥∥ŜΦ(xmi , â
m
i )− S̄Φ(xmi , a

m
i )
∥∥∥2
)1/2 (∥∥S̄Φ(xmi , a

m
i )
∥∥2
)1/2

,

where the inequality holds by the triangular inequality and the Cauchy-Schwarz inequality.
Combine this result with equation (D.8) and equation (D.9), we get

‖ŜΦΦ − S̄ΦΦ‖

= Op

((
ν2
Ia,N

dx∑
j=1

kxj ,MN + ka,MN

dx∑
j=1

ν2
Ij ,N

)

+

(
ν2
Ia,N

dx∑
j=1

kxj ,MN + ka,MN

dx∑
j=1

ν2
Ij ,N

)1/2(
ka,MN +

dx∑
j=1

kxj ,MN

)1/2


= Op

(ν2
Ia,N

dx∑
j=1

kxj ,MN + ka,MN

dx∑
j=1

ν2
Ij ,N

)1/2(
ka,MN +

dx∑
j=1

kxj ,MN

)1/2
 .

So (ii) holds.
To prove (iii), note that

E
[
‖SΦΦ − E(SΦΦ)‖2

]
≤

dx∑
j=1

E
[
(MN)−1 (Ima (xmi , a

m
i ))4

∥∥∥Φkxj,MN
(xmi , a

m
i )Φkxj,MN

(xmi , a
m
i )′
∥∥∥2
]

+2
dx∑
j=1

E
[
(MN)−1 (Ima (xmi , a

m
i ))2

(
Imxj(x

m
i , a

m
i )
)2 ∥∥∥Φka,MN

(xmi , a
m
i )Φkxj,MN

(xmi , a
m
i )′
∥∥∥2
]

+E

( dx∑
j=1

(
Imxj(x

m
i , a

m
i )
)2
)2 ∥∥Φka,,N (xmi , a

m
i )Φka,MN

(xmi , a
m
i )′
∥∥2


≤ B4

I

dx∑
j=1

E
[
(MN)−1

∥∥∥Φkxj,MN
(xmi , a

m
i )Φkxj,MN

(xmi , a
m
i )′
∥∥∥2
]
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+2B4
I

dx∑
j=1

E
[
(MN)−1

∥∥∥Φka,MN
(xmi , a

m
i )Φkxj,MN

(xmi , a
m
i )′
∥∥∥2
]

+d2
xB

4
IE
[∥∥Φka,,N (xmi , a

m
i )Φka,MN

(xmi , a
m
i )′
∥∥2
]
, (D.10)

where the first inequality holds by the definition of SΦΦ, Assumption 11, and that the second
moment of a random variable is no less than its variance; the second inequality holds by
Assumption 16. Recall that I assume the series basis functions are orthonormal (i.e. Q = I),
then by Lemma 8, we have that for j = 1, . . . , dx,

E
[
(MN)−1

∥∥∥Φkxj,MN
(xmi , a

m
i )Φkxj,MN

(xmi , a
m
i )′
∥∥∥2
]

= (MN)−1E

kxj,MN∑
k=1

φ2
k(x

m
i , a

m
i )

kxj,MN∑
l=1

φ2
l (x

m
i , a

m
i )


≤ (MN)−1ζ2

0 (kxj ,MN)tr(Ikxj,MN
)

= ζ2
0 (kxj ,MN)kxj ,MN/(MN). (D.11)

By the same token,

E
[
(MN)−1

∥∥∥Φka,MN
(xmi , a

m
i )Φkxj,MN

(xmi , a
m
i )′
∥∥∥2
]
≤ ζ2

0 (kxj ,MN)ka,MN/(MN), (D.12)

E
[
(MN)−1

∥∥∥Φka,MN
(xmi , a

m
i )Φkxj,MN

(xmi , a
m
i )′
∥∥∥2
]
≤ ζ2

0 (ka,MN)kxj ,MN/(MN), (D.13)

and

E
[
(MN)−1

∥∥Φka,MN
(xmi , a

m
i )Φka,MN

(xmi , a
m
i )′
∥∥2
]
≤ ζ2

0 (ka,MN)ka,MN/(MN). (D.14)

Plug the bounds in equations (D.11)-(D.14) into equation (D.10), we get

E
[
‖SΦΦ − E(SΦΦ)‖2

]
≤

[
ζ2

0

(
max

j=1,...,dx
kxj ,MN

)
+ ζ2

0 (ka,MN)

](
max

j=1,...,dx
kxj ,MN + ka,MN

)/
(MN).

Then by the Markov’s inequality,

‖SΦΦ − E(SΦΦ)‖

= Op

(√[
ζ2

0

(
max

j=1,...,dx
kxj ,MN

)
+ ζ2

0 (ka,MN)

](
max

j=1,...,dx
kxj ,MN + ka,MN

)/
(MN)

)
.
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Since νa,N converges to zero at a slower rate than N−1/2, νa,N(ζa(kxj ,MN) + ζa(ka,MN)) → 0

and ka,MN +
∑dx

j=1 kxj ,MN → 0 imply that [ζ2
0

(
maxj=1,...,dx kxj ,MN

)
+ ζ2

0 (ka,MN)](maxj=1,...,dx

kxj ,MN + ka,MN)/(MN)→ 0. As a result, ‖SΦΦ − E(SΦΦ)‖ = op(1).
Note that νa,N(ζa(kxj ,MN) + ζa(ka,MN)) → 0 implies ν2

a,N(ζ2
a(kxj ,MN) + ζ2

a(ka,MN)) → 0.
Then by result (i), we have ‖S̄ΦΦ−SΦΦ‖ = op(1). Moreover, by result (ii), and the conditions
that the numbers of series basis functions used to approximate each component in kxj ,MN

(j = 1, . . . , dx) and ka,MN all increase to infinity with N , (νIa,N
∑dx

j=1 kxj ,MN + ka,MN

∑dx
j=1

νIj ,N)→ 0 for j = 1, . . . , dx, ka,MN +
∑dx

j=1 kxj ,MN → 0, we have ‖ŜΦΦ− S̄ΦΦ‖ = op(1). Then
(iii) follows by the same argument for the proof of Lemma 9(iv). This completes the proof
of the lemma.

Define

S̄ΦA ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΦ(xmi , â
m
i )′Ām(xmi , â

m
i ),

S̄0,ΦA ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΦ(xmi , â
m
i )′Ām0 (xmi , â

m
i ),

Ŝ0,ΦA ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΦ(xmi , â
m
i )′Âm0 (xmi , â

m
i ),

where

Ām(xmi , â
m
i ) ≡ [hma (xmi , â

m
i )∇xI

m(xmi , â
m
i )− Ima (xmi , â

m
i )∇xh

m(xmi , â
m
i )] /hm(xmi , â

m
i ),

Ām0 (xmi , â
m
i ) ≡


Ima (xmi , â

m
i )Φkx1,MN

(xmi , â
m
i )′β0,x1,kx1,MN

...
Ima (xmi , â

m
i )Φkxdx ,MN

(xmi , â
m
i )′β0,xdx ,kxdx ,MN


−∇xI

m(xmi , â
m
i )⊗

[
Φka,MN

(xmi , â
m
i )′β0,a,ka,MN

]
,

Âm0 (xmi , â
m
i ) ≡


Îma (xmi , â

m
i )Φkx1,MN

(xmi , â
m
i )′β0,x1,kx1,MN

...
Îma (xmi , â

m
i )Φkxdx ,MN

(xmi , â
m
i )′β0,xdx ,kxdx ,MN


−∇xÎ

m(xmi , â
m
i )⊗

[
Φka,MN

(xmi , â
m
i )′β0,a,ka,MN

]
.

Now we need some intermediate coefficients which help analyze the estimated series coeffi-
cients for the quality function. Define

β̄MN ≡
(
β̄′x1,kx1,MN

, . . . , β̄′xdx ,kxdx ,MN
, β̄′a,ka,MN

)′
≡ Ŝ−ΦΦS̄ΦA,
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β̄0,MN ≡
(
β̄′0,x1,kx1,MN

, . . . , β̄′0,xdx ,kxdx ,MN
, β̄′0,a,ka,MN

)′
≡ Ŝ−ΦΦS̄0,ΦA.

And with some standard algebra, we get

β0,MN ≡
(
β′0,x1,kx1,MN

, . . . , β′0,xdx ,kxdx ,MN
, β′0,a,ka,MN

)′
≡ Ŝ−ΦΦŜ0,ΦA.

Moreover,

β̂MN ≡
(
β̂′x1,kx1,MN

, . . . , β̂′xdX ,kxdx ,MN
, β̂′a,ka,MN

)′
.

Note that if we let ŜΦ denote the stack of ŜΦ(xmi , â
m
i ) for all i ∈ {1, . . . , N} and all m ∈

{1, . . . ,M}, then ŜΦΦ = Ŝ ′ΦŜΦ/(MN). Let S̄A, S̄0,A and Ŝ0,A denote the similar stacks of
Ām(xmi , â

m
i ), Ām0 (xmi , â

m
i ) and Âm0 (xmi , â

m
i ), respectively. Then S̄ΦA = Ŝ ′ΦS̄A/(MN), S̄0,ΦA =

Ŝ ′ΦS̄0,A/(MN) and Ŝ0,ΦA = Ŝ ′ΦŜ0,A/(MN). Then we have the following lemma.

Lemma 12. Suppose that Assumptions 18-20, and the conditions of Theorem 4 and Lemma
11 are satisfied. Then

(i)
∥∥∥β̂MN − β̄MN

∥∥∥ = Op
(∑dx

j=1 νhj ,N + νha,N +
∑dx

j=1 νIj ,N + νIa,N

)
;

(ii)
∥∥β̄MN − β̄0,MN

∥∥ = Op
(
k−αe
a,MN +

∑dx
j=1 k

−αe
xj ,MN

)
;

(iii)
∥∥β̄0,MN − β0,MN

∥∥ = Op
(
νIa,N +

∑dx
j=1 νIj ,N

)
.

Proof. For (i), by Theorems 4 and 5, and the conditions that νl,N → 0, νlj ,N → 0 and
νla,N → 0 (l = Im or l = hm), we have that |Îm − Im|1

p.−→ 0 and |ĥm − hm|1
p.−→ 0 for

m = 1, . . . ,M .
Some notation is necessary before I proceed with the proof. Let Im (m = 1, . . . ,M) denote

a set of functions I: Rdx+1 → R such that each function in Im is continuously differentiable
of order one. Similarly, let Hm (m = 1, . . . ,M) denote a set of functions h: Rdx+1 → R such
that each function in Hm is continuously differentiable of order one.

For any functions (I, h) ∈ Im ×Hm, define dx functionals Γ
(j)
x,a(I, h) indexed by (x, a) ∈

X ×A and j ∈ {1, . . . , dx} as follows:

Γ(j)
x,a(I, h) ≡ Ixj(x, a)

ha(x, a)

h(x, a)
− Ia(x, a)

hxj(x, a)

h(x, a)
.

Note that
Âm(xmi , â

m
i ) =

(
Γ

(1)
xmi ,â

m
i

(Îm, ĥm), . . . ,Γ
(dx)
xmi ,â

m
i

(Îm, ĥm)
)′
,

and
Ām(xmi , â

m
i ) =

(
Γ

(1)
xmi ,â

m
i

(Im, hm), . . . ,Γ
(dx)
xmi ,â

m
i

(Im, hm)
)′
.
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In what follows, I will omit the explicit dependence of Γ(j) on (x, a), and the results in this
proof hold uniformly for all (x, a) ∈ X × A. In particular, since âmi ∈ [0, 1], it must be the
case that (xmi , â

m
i ) ∈ X ×A. Let ∆Im ≡ Îm − Im and ∆hm ≡ ĥm − hm. Then we have∥∥∥Âm(xmi , â

m
i )− Ām(xmi , â

m
i )
∥∥∥2

=
dx∑
j=1

∣∣∣Γ(j)(Îm, ĥm)− Γ(j)(Im, hm)
∣∣∣2

=
dx∑
j=1

∣∣DΓ(j)(Im, hm; ∆Im,∆hm) +RΓ(j)(Im, hm; ∆Im,∆hm)
∣∣2

≤ C

(
dx∑
j=1

∣∣DΓ(j)(Im, hm; ∆Im,∆hm)
∣∣2

+
dx∑
j=1

∣∣RΓ(j)(Im, hm; ∆Im,∆hm)
∣∣2) , (D.15)

where the inequality holds by the triangular inequality. In equation (D.15), the first terms
of the summands are linear functionals with

|DΓ(j)(Im, hm; ∆Im,∆hm)|

=

∣∣∣∣hmahm∆Imxj +
Imxj
hm

∆hma −
Imxjh

m
a

(hm)2
∆hm

−
hmxj
hm

∆Ima −
Ima
hm

∆hmxj +
Ima h

m
xj

(hm)2
∆hm

∣∣∣∣
≤ C (|∆Im|1 + |∆hm|1) , (D.16)

where the inequality holds by Assumptions 16 and 20(ii), and the triangular inequality. And
in equation (D.15), the second terms of the summands are nonlinear functionals with

|RΓ(j)(Im, hm; ∆Im,∆hm)|

=

∣∣∣∣ 1

(hm)2(hm + ∆hm)

[
(hm)2

(
∆Imxj∆h

m
a −∆Ima ∆hmxj

)
+ (Imxjh

m
a − Ima hmxj)(∆h

m)2

−hm(Imxj∆h
m
a + hma ∆Imxj − I

m
a ∆hmxj − h

m
xj

∆Ima )∆hm
]∣∣∣

≤ C
(
|∆Im|21 + |∆hm|21

)
, (D.17)

where the inequality holds by Assumptions 16 and 20(ii), the triangular inequality, and the
Cauchy-Schwarz inequality.

By the consistency of Îm, ĥm and their derivatives, equation (D.16) and equation (D.17)
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imply that |RΓ(j)(Im, hm; ∆Im,∆hm)| = o
(
|DΓ(j)(Im, hm; ∆Im,∆hm)|

)
. Then combine

equation (D.15), equation (D.16) and Assumptions 16 and 20(ii), we get∥∥∥Âm(xmi , â
m
i )− Ām(xmi , â

m
i )
∥∥∥2

= Op

(
dx∑
j=1

∣∣DΓ(j)(Im, hm; ∆Im,∆hm)
∣∣2)

= Op

(
dx∑
j=1

ν2
hj ,N

+ ν2
ha,N + ν2

ha,N +
dx∑
j=1

ν2
Ij ,N

+ ν2
Ia,N

)

= Op

(
dx∑
j=1

ν2
hj ,N

+ ν2
ha,N +

dx∑
j=1

ν2
Ij ,N

+ ν2
Ia,N

)
.

Recall that this result holds for all i ∈ {1, . . . , N} and allm ∈ {1, . . . ,M}. By Lemma 11(iii),
we have that λmin(ŜΦΦ) ≥ c with probability approaching 1, then we have∥∥∥Ŝ1/2

ΦΦ

(
β̂MN − β̄MN

)∥∥∥2

=
(
ŜA − S̄A

)′
ŜΦŜ

−
ΦΦŜ

′
Φ

(
ŜA − S̄A

)
/(MN)2

≤ C
(
ŜA − S̄A

)′ (
ŜA − S̄A

)
/(MN)

= Op

(
dx∑
j=1

ν2
hj ,N

+ ν2
ha,N +

dx∑
j=1

ν2
Ij ,N

+ ν2
Ia,N

)
.

So (i) holds by Lemma 11(iii).
For (ii), consider∥∥Ām(xmi , â

m
i )− Ām0 (xmi , â

m
i )
∥∥2

=
dx∑
j=1

∣∣∣∣Imxj(xmi , âmi )
hma (xmi , â

m
i )

hm(xmi , â
m
i )
− Ima (xmi , â

m
i )Φkxj,MN

(xmi , â
m
i )′β0,xj ,kxj,MN

−Ima (xmi , â
m
i )
hmxj(x

m
i , â

m
i )

hm(xmi , â
m
i )

+ Imxj(x
m
i , â

m
i )Φka,MN

(xmi , â
m
i )′β0,a,ka,MN

∣∣∣∣∣
2

=
dx∑
j=1

∣∣∣∣Ima (xmi , â
m
i )

[
exj(x

m
i , â

m
i )

e(xmi , â
m
i )
− Φkxj,MN

(xmi , â
m
i )′β0,xj ,kxj,MN

]

−Imxj(x
m
i , â

m
i )

[
ea(x

m
i , â

m
i )

e(xmi , â
m
i )
− Φka,MN

(xmi , â
m
i )′β0,a,ka,MN

]∣∣∣∣2

59



= Op

(
dx∑
j=1

k−2αe
xj ,MN + k−2αe

a,MN

)
.

where the second equality holds by equation (3.7); the third equality holds by Assumptions 16
and 18, the triangular inequality and the Cauchy-Schwarz inequality. By the same argument
as in the proof of (i), we have

∥∥∥Ŝ1/2
ΦΦ

(
β̄MN − β̄0,MN

)∥∥∥2

= Op

(
k−2αe
a,MN +

dx∑
j=1

k−2αe
xj ,MN

)
.

So (ii) holds by Lemma 11(iii).
For (iii), note that∥∥∥Ām0 (xmi , â

m
i )− Âm0 (xmi , â

m
i )
∥∥∥2

=
dx∑
j=1

∣∣∣(Ima (xmi , â
m
i )− Îma (xmi , â

m
i )
)

Φkxj,MN
(xmi , â

m
i )′β0,xj ,kxj,MN

−
(
Imxj(x

m
i , â

m
i )− Îmxj(x

m
i , â

m
i )
)

Φka,MN
(xmi , â

m
i )′β0,a,ka,MN

∣∣∣2
=

dx∑
j=1

∣∣∣∣(Ima (xmi , â
m
i )− Îma (xmi , â

m
i )
)[

Φkxj,MN
(xmi , â

m
i )′β0,xj ,kxj,MN

−
exj(x

m
i , â

m
i )

e(xmi , â
m
i )

]
+
(
Ima (xmi , â

m
i )− Îma (xmi , â

m
i )
) exj(xmi , âmi )

e(xmi , â
m
i )

−
(
Imxj(x

m
i , â

m
i )− Îmxj(x

m
i , â

m
i )
)[

Φka,MN
(xmi , â

m
i )′β0,a,ka,MN

− ea(x
m
i , â

m
i )

e(xmi , â
m
i )

]
−
(
Imxj(x

m
i , â

m
i )− Îmxj(x

m
i , â

m
i )
) ea(xmi , âmi )

e(xmi , â
m
i )

∣∣∣∣2
= Op

(
ν2
Ia,N

dx∑
j=1

k−2αe
xj ,MN + ν2

Ia,N + k−2αe
a,MN

dx∑
j=1

ν2
Ij ,N

+
dx∑
j=1

ν2
Ij ,N

)

= Op

(
ν2
Ia,N +

dx∑
j=1

ν2
Ij ,N

)
,

where the third equality holds by Theorem 5, Assumptions 18 and 19, the triangular inequal-
ity and the Cauchy-Schwarz inequality; the fourth equality holds by that ka,MN → ∞ and
kxj ,MN →∞. By the same argument as in the proof of (i), we have

∥∥∥Ŝ1/2
ΦΦ

(
β̄0,MN − β0,MN

)∥∥∥2

= Op

(
ν2
Ia,N +

dx∑
j=1

ν2
Ij ,N

)
.
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So (iii) holds by Lemma 11(iii). This completes the proof of the lemma.

Proof of Lemma 4

Proof. By the triangular inequality, we have∥∥∥(β̂MN − β0,MN

)∥∥∥
≤

∥∥∥(β̂MN − β̄MN

)∥∥∥+
∥∥(β̄MN − β̄0,MN

)∥∥+
∥∥(β̄0,MN − β0,MN

)∥∥ .
So the result follows by Lemma 12.

Proof of Theorem 6

Proof. By the triangular inequality, for j = 1, . . . , dx,

sup
(x,a)∈X×A

∣∣∣∣∣ ̂exj(x, a)

e(x, a)
−
exj(x, a)

e(x, a)

∣∣∣∣∣
≤ sup

(x,a)∈X×A

∣∣∣Φkxj,MN
(x, a)′

(
β̂kxj,MN

− β0,xj ,kxj,MN

)∣∣∣
+ sup

(x,a)∈X×A

∣∣∣∣Φkxj,MN
(x, a)′β0,xj ,kxj,MN

−
exj(x, a)

e(x, a)

∣∣∣∣ .
Then the result follows by Lemma 4, 8, Assumption 18, the triangular inequality and the
Cauchy-Schwarz inequality.

The uniform convergence rate of ̂ea(x, )/e(x, a) holds by the same argument.

Proof of Theorem 7

Proof. By Assumption 14, Theorem 6 and the conditions that for j = 1, . . . , dx, νej ,M,N → 0

and νea,M,N → 0, then we have

ˆ xj

x̄j

̂exj(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)

e(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)
dsj −

ˆ xj

x̄j

exj(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)

e(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)
dsj

= Op

(∣∣∣∣∣ ̂exj(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)

e(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)
−
exj(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)

e(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)

∣∣∣∣∣
)

= Op

(
sup

(x,a)∈X×A

∣∣∣∣∣ ̂exj(x, a)

e(x, a)
−
exj(x, a)

e(x, a)

∣∣∣∣∣
)

= op(1), (D.18)
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and

ˆ a

ā

êa(x, t)

e(x, t)
dt−

ˆ a

ā

ea(x, t)

e(x, t)
dt

= Op

(∣∣∣∣∣ êa(x, t)e(x, t)
− ea(x, t)

e(x, t)

∣∣∣∣∣
)

= Op

(
sup

(x,a)∈X×A

∣∣∣∣∣ ̂ea(x, a)

e(x, a)
− ea(x, a)

e(x, a)

∣∣∣∣∣
)

= op(1). (D.19)

Let J denote a set of functions J : Rdx+1 → R. Define a family of functionals Ξx,a(J) indexed
by (x, a) ∈ X ×A as follows

Ξx,a(J) ≡ exp(J(x, a)).

Let

Ĵ(x, a) ≡
dx∑
j=1

ˆ xj

x̄j

̂exj(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)

e(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)
dsj +

ˆ a

ā

êa(x, t)

e(x, t)
dt,

J(x, a) ≡
dx∑
j=1

ˆ xj

x̄j

gj(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)dsj +

ˆ a

ā

gdx+1(x, t)dt.

Then it is easy to see that ê(x, a) = Ξx,a

(
Ĵ
)
and e(x, a) = Ξx,a (J). In what follows, I will

omit the explicit dependence of Ξ on (x, a), and the results in this proof hold uniformly for
all (x, a) ∈ X ×A. Let ∆J ≡ Ĵ − J , then we have

ê− e = Ξ (J + ∆J)− Ξ (J)

= DΞ(J ; ∆J) +RΞ(J ; ∆J).

The first term in this decomposition is a linear functional with

sup
(x,a)∈X×A

|DΞ(J ; ∆J)| ≡ sup
(x,a)∈X×A

| exp(J)∆J | ≤ C|∆J |0,

where the inequality holds since X ×A is compact by Assumption 14. And the second term
in the decomposition is a nonlinear functional with

sup
(x,a)∈X×A

|RΞ(J ; ∆J)| = o (|∆J |0) .
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Then by the triangular inequality,

sup
(x,a)∈X×A

|ê(x, a)− e(x, a)| ≤ C|∆J |0 + o (|∆J |0)

= Op

(
C sup

(x,a)∈X×A

∣∣∣∣∣
ˆ a

ā

(
êa(x, t)

e(x, t)

)
dt−

ˆ a

ā

ea(x, t)

e(x, t)
dt

∣∣∣∣∣
+C sup

(x,a)∈X×A

∣∣∣∣∣
ˆ x

x̄

(
êx(s, ā)

e(s, ā)

)
ds−

ˆ x

x̄

ex(s, ā)

e(s, ā)
ds

∣∣∣∣∣
)
.

And the result follows by equation (D.18), equation (D.19) and Theorem 6.

D.4 Proofs of the Theorems in Section 4.2.4

This subsection proceeds with the same steps as in Appendix D.2.

Lemma 13. Suppose that Assumption 23 and the conditions for Theorem 3 are satisfied.
Then, sup(h,x,a)∈H×X×A ‖Ψk(h, x, a)‖ ≤ Cζ0(k), sup(h,x,a)∈H×X×A ‖∂Ψk(h, x, a)/∂h‖ ≤ Cζh(k),
sup(h,x,a)∈H×X×A ‖∂Ψk(h, x, a)/∂xj‖ ≤ Cζj(k) and sup(h,x,a)∈H×X×A ‖∂Ψk(h, x, a)/∂a‖ ≤ Cζa(k).

Proof. This lemma holds by the same argument as Lemma 8.

Define

S̄ΨΨ ≡ (MN)−1

M∑
m=1

N∑
i=1

S̄ ′Ψ(hmi , x
m
i , â

m
i )S̄Ψ(hmi , x

m
i , â

m
i ),

where

S̄Ψ(hmi , x
m
i , â

m
i ) ≡

 [
∇xh

m(xmi , â
m
i ) + hm(xmi , â

m
i )
∇xe(xmi ,â

m
i )

e(xmi ,â
m
i )

]
⊗ΨkU,MN

(hmi , x
m
i , â

m
i )′[

hma (xmi , â
m
i ) + hm(xmi , â

m
i )

ea(xmi ,â
m
i )

e(xmi ,â
m
i )

]
ΨkU,MN

(hmi , x
m
i , â

m
i )′

 .

Lemma 14. Suppose that Assumptions 22, 23 and 25, and the conditions for Theorem 6 are
satisfied. Suppose as well that the numbers of series basis functions used to approximate each
component in kU,MN all increase to infinity with N ,

√
kU,MNνa(σN)ζa(kU,MN) → 0, kU,MN

νej ,M,N → 0 for j = 1, . . . , dx, and kU,MNνea,M,N → 0. Then
(i) ‖S̄ΨΨ − SΨΨ‖ = Op

(
ν2
a,Nζ

2
a(kU,MN) +

√
kU,MNνa(σN)ζa(kU,MN)

)
;

(ii) ‖ŜΨΨ − S̄ΨΨ‖ = Op
(
kU,MN

[∑dx
j=1 νej ,M,N + νea,M,N

])
;

(iii) λmin(ŜΨΨ) ≥ c, λmin(S̄ΨΨ) ≥ c and λmin(SΨΨ) ≥ c with probability approaching 1,
where λmin denotes the minimum eigenvalue of a symmetric matrix.

Proof. To prove (i), some preliminary results are needed. For j = 1, . . . , dx, consider the
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mean value expansion[
hmxj(x

m
i , â

m
i ) + hm(xmi , â

m
i )
exj(x

m
i , â

m
i )

e(xmi , â
m
i )

]
ΨkU,MN

(hmi , x
m
i , â

m
i )′

−
[
hmxj(x

m
i , a

m
i ) + hm(xmi , a

m
i )
exj(x

m
i , a

m
i )

e(xmi , a
m
i )

]
ΨkU,MN

(hmi , x
m
i , a

m
i )′

=

[
hmxja(x

m
i , ã

m
i ) + hma (xmi , ã

m
i )
exj(x

m
i , ã

m
i )

e(xmi , ã
m
i )

+ hm(xmi , ã
m
i )
exja(x

m
i , ã

m
i )

e(xmi , ã
m
i )

−hm(xmi , ã
m
i )
exj(x

m
i , ã

m
i )ea(x

m
i , ã

m
i )

[e(xmi , ã
m
i )]2

]
·ΨkU,MN

(hmi , x
m
i , ã

m
i )′(âmi − ami )

+

[
hmxj(x

m
i , ã

m
i ) + hm(xmi , ã

m
i ) ·

exj(x
m
i , ã

m
i )

e(xmi , ã
m
i )

]
· ∂
∂a

ΨkU,MN
(hmi , x

m
i , ã

m
i )′(âmi − ami ),

where ãmi is between ami and âmi , so it must be in [0, 1]. Note that ãmi might take a different
value from the previous uses. By Lemma 13, Assumptions 16, 19 and 20(ii), the triangular
inequality, and the Cauchy-Schwarz inequality, we get∥∥∥∥[hmxj(xmi , âmi ) + hm(xmi , â

m
i )
exj(x

m
i , â

m
i )

e(xmi , â
m
i )

]
ΨkU,MN

(hmi , x
m
i , â

m
i )′

−
[
hmxj(x

m
i , a

m
i ) + hm(xmi , a

m
i )
exj(x

m
i , a

m
i )

e(xmi , a
m
i )

]
ΨkU,MN

(hmi , x
m
i , a

m
i )′
∥∥∥∥2

≤ C|âmi − ami |2
(
ζ2

0 (kU,MN) + ζ2
a(kU,MN)

)
≤ C|âmi − ami |2ζ2

a(kU,MN). (D.20)

By the same token,∥∥∥∥[hma (xmi , â
m
i ) + hm(xmi , â

m
i )
ea(x

m
i , â

m
i )

e(xmi , â
m
i )

]
ΨkU,MN

(hmi , x
m
i , â

m
i )′

−
[
hma (xmi , a

m
i ) + hm(xmi , a

m
i )
ea(x

m
i , a

m
i )

e(xmi , a
m
i )

]
ΨkU,MN

(hmi , x
m
i , a

m
i )′
∥∥∥∥2

≤ C|âmi − ami |2
(
ζ2

0 (kU,MN) + ζ2
a(kU,MN)

)
≤ C|âmi − ami |2ζ2

a(kU,MN). (D.21)

Equation (D.20) and equation (D.21) imply that∥∥S̄Ψ(hmi , x
m
i , â

m
i )− SΨ(hmi , x

m
i , a

m
i )
∥∥2

≤ C|âmi − ami |2ζ2
a(kU,MN). (D.22)
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Without loss of generality, I can set the basis functions to be orthonormal. So(
E
(∥∥ΨkU,MN

(hmi , x
m
i , a

m
i )
∥∥2
))

= tr
(
IkU,MN

)
= kU,MN .

Then by the Markov’s inequality, we have∥∥ΨkU,MN
(hmi , x

m
i , a

m
i )
∥∥2

= Op (kU,MN) . (D.23)

This implies, together with Lemma 13, Assumptions 16, 19 and 20(ii), and the Cauchy-
Schwarz inequality, that ∥∥SΨ,kU,MN ,x(x

m
i , a

m
i )
∥∥2

= Op (kU,MN) . (D.24)

Now consider (i),

‖S̄ΨΨ − SΨΨ‖ = (MN)−1

M∑
m=1

N∑
i=1

∥∥S̄Ψ(hmi , x
m
i , â

m
i )′S̄Ψ(hmi , x

m
i , â

m
i )

−SΨ(hmi , x
m
i , a

m
i )′SΨ(hmi , x

m
i , a

m
i )‖

= (MN)−1

M∑
m=1

N∑
i=1

∥∥S̄Ψ(hmi , x
m
i , â

m
i )− SΨ(hmi , x

m
i , a

m
i )
∥∥2

+2(MN)−1

M∑
m=1

N∑
i=1

(∥∥S̄Ψ(hmi , x
m
i , â

m
i )− SΨ(hmi , x

m
i , a

m
i )
∥∥2
)1/2

(∥∥SΨ,kU,MN
(xmi , a

m
i )
∥∥2
)1/2

,

where the inequality holds by the triangular inequality and the Cauchy-Schwarz inequality.
Combine this result with Theorem theorem 3, equation (D.22) and equation (D.24), we get

‖S̄ΨΨ − SΨΨ‖ = Op
(
ν2
a,Nζ

2
a(kU,MN) +

√
kU,MNνa(σN)ζa(kU,MN)

)
.

So (i) holds.
To prove (ii), some preliminary results are necessary. Recall that Hm (m = 1, . . . ,M)

denotes a set of functions h: Rdx+1 → R such that each function in Hm is continuously
differentiable of order one; and that J denotes a set of functions J : Rdx+1 → R.

For any functions (h, J) ∈ Hm × J , define a family of functionals Υ
(j)
x,a(h, J) indexed by

(x, a) ∈ X ×A and j ∈ {1, . . . , dx} as follows:

Υ(j)
x,a(h, J) ≡ hxj(x, a) + h(x, a)

exj(x, a)

e(x, a)
. (D.25)
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And define another family of functionals Υ
(a)
x,a(h, J) indexed by (x, a) ∈ X ×A as follows:

Υ(a)
x,a(h, J) ≡ ha(x, a) + h(x, a)

ea(x, a)

e(x, a)
. (D.26)

Note that

ŜΨ(hmi , x
m
i , â

m
i ) =

(
Υ

(1)
xmi ,â

m
i

(
ĥm,

êx1
e

)
, . . . ,Υ

(dx)
xmi ,â

m
i

(
ĥm,

êxdx
e

)
,Υ

(a)
xmi ,â

m
i

(
ĥm,

êa
e

))′
⊗ΨkU,MN

(hmi , x
m
i , â

m
i )′,

and

S̄Ψ(hmi , x
m
i , â

m
i ) =

(
Υ

(1)
xmi ,â

m
i

(
hm,

ex1
e

)
, . . . ,Υ

(dx)
xmi ,â

m
i

(
hm,

exdx
e

)
,Υ

(a)
xmi ,â

m
i

(
hm,

ea
e

))′
⊗ΨkU,MN

(hmi , x
m
i , â

m
i )′.

In what follows, I will omit the explicit dependence of Υ(j) and Υ(a) on (x, a), and the results
in this proof hold uniformly for all (x, a) ∈ X × A. In particular, since âmi ∈ [0, 1], it must

be the case that (xmi , â
m
i ) ∈ X × A. Let ∆hm ≡ ĥm − hm, let ∆

(
exj
e

)
≡ êxj

e
− exj

e
for

j = 1, . . . , dx, and let ∆
(
ea
a

)
≡ êa

e
− ea

e
. Then we have∥∥∥ŜΨ(hmi , x

m
i , â

m
i )− S̄Ψ(hmi , x

m
i , â

m
i )
∥∥∥2

≤

[
dx∑
j=1

∣∣∣∣Υ(j)

(
ĥm,

êxj
e

)
−Υ(j)

(
hm,

exj
e

)∣∣∣∣2

+

∣∣∣∣Υ(a)

(
ĥm,

êa
e

)
−Υ(a)

(
hm,

ea
e

)∣∣∣∣2
]
·
∥∥ΨkU,MN

(hmi , x
m
i , â

m
i )
∥∥2
, (D.27)

where the inequality holds by the Cauchy-Schwarz inequality. By the same argument as for
equation (D.23), we have ∥∥ΨkU,MN

(hmi , x
m
i , â

m
i )
∥∥2

= Op (kU,MN) . (D.28)

Moreover, ∣∣∣∣Υ(j)

(
ĥm,

êxj
e

)
−Υ(j)

(
hm,

exj
e

)∣∣∣∣2
=

∣∣∣DΥ(j)
(
hm,

exj
e
; ∆hm,∆

(exj
e

))
+RΥ(j)

(
hm,

exj
e
; ∆hm,∆

(exj
e

))∣∣∣2
≤ C

∣∣∣DΥ(j)
(
hm,

exj
e
; ∆hm,∆

(exj
e

))∣∣∣2
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+C
∣∣∣RΥ(j)

(
hm,

exj
e
; ∆hm,∆

(exj
e

))∣∣∣2 , (D.29)

where the inequality holds by the triangular inequality. In equation (D.29), the first term is
a linear functional with∣∣∣DΥ(j)

(
hm,

exj
e
; ∆hm,∆

(exj
e

))∣∣∣ =
∣∣∣∆hmxj − hm∆

(exj
e

)
−∆hm

exj
e

∣∣∣
≤ C

(
|∆hm|1 +

∣∣∣∆exj
e

∣∣∣
0

)
, (D.30)

where the inequality holds by Assumptions 16, 19 and 20(ii), and the triangular inequality.
And the second term in equation (D.29) is a nonlinear functional with∣∣∣RΥ(j)

(
hm,

exj
e
; ∆hm,∆

(exj
e

))∣∣∣ =
∣∣∣∆hm∆

(exj
e

)∣∣∣
≤ C

(
|∆hm|0 ·

∣∣∣∆(exj
e

)∣∣∣
0

)
, (D.31)

where the inequality holds by Assumptions 16, 19 and 20(ii), the triangular inequality, and
the Cauchy-Schwarz inequality.

By the consistency of ĥm, ĥmxj and
êxj
e
, equation (D.30) and equation (D.31) imply that

|RΥ(j)(hm,
exj
e
; ∆hm,∆(exj/e))| = o(|DΥ(j)(hm,

exj
e
; ∆hm,∆(exj/e))|). Then combine equa-

tion (D.29), equation (D.30), Assumptions 16 and 20, we get∣∣∣∣Υ(j)

(
ĥm,

êxj
e

)
−Υ(j)

(
hm,

exj
e

)∣∣∣∣2 = Op
(
ν2
hj ,N

+ ν2
ej ,M,N

)
= Op

(
ν2
ej ,M,N

)
, (D.32)

for j = 1, . . . , dx. By the same token, we have∣∣∣∣Υ(a)

(
ĥm,

êa
e

)
−Υ(a)

(
hm,

ea
e

)∣∣∣∣2 = Op
(
ν2
ea,M,N

)
. (D.33)

Together, equation (D.27), equation (D.28), equation (D.32) and equation (D.33) imply that

∥∥∥ŜΨ(hmi , x
m
i , â

m
i )− S̄Ψ(hmi , x

m
i , â

m
i )
∥∥∥2

= Op

(
kU,MN

[
dx∑
j=1

ν2
ej ,M,N + ν2

ea,M,N

])
.(D.34)

On the other hand, by equation (D.28), Assumptions 22 and 25, and the Cauchy-Schwarz
inequality, we have ∥∥S̄Ψ,kN ,x(x

m
i , a

m
i )
∥∥2

= Op (kU,MN) . (D.35)
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Now consider (ii),

‖ŜΨΨ − S̄ΨΨ‖ = (MN)−1

M∑
m=1

N∑
i=1

∥∥∥ŜΨ(hmi , x
m
i , a

m
i )′ŜΨ(hmi , x

m
i , a

m
i )

−S̄Ψ(hmi , x
m
i , â

m
i )′S̄Ψ(hmi , x

m
i , â

m
i )
∥∥

= (MN)−1

M∑
m=1

N∑
i=1

∥∥∥ŜΨ(hmi , x
m
i , a

m
i )− S̄Ψ(hmi , x

m
i , â

m
i )
∥∥∥2

+2(MN)−1

M∑
m=1

N∑
i=1

(∥∥∥ŜΨ(hmi , x
m
i , a

m
i )− S̄Ψ(hmi , x

m
i , â

m
i )
∥∥∥2
)1/2

(∥∥S̄Ψ,kU,MN
(xmi , a

m
i )
∥∥2
)1/2

,

where the inequality holds by the triangular inequality and the Cauchy-Schwarz inequality.
Combine this result with equation (D.34) and equation (D.35), we get

‖ŜΨΨ − S̄ΨΨ‖ = Op

(
kU,MN

[
dx∑
j=1

νej ,M,N + νea,M,N

])
.

So (ii) holds.
To prove (iii), note that

E
[
‖SΨΨ − E(SΨΨ)‖2] ≤ dx∑

j=1

E

[
(MN)−1

(
hmxj(x

m
i , a

m
i ) + hm(xmi , a

m
i )
exj(x

m
i , a

m
i )

e(xmi , a
m
i )

)2

·
∥∥ΨkU,MN

(hmi , x
m
i , a

m
i )ΨkU,MN

(hmi , x
m
i , a

m
i )′
∥∥2
]

+E

[
(MN)−1

(
hma (xmi , a

m
i ) + hm(xmi , a

m
i )
ea(x

m
i , a

m
i )

e(xmi , a
m
i )

)2

·
∥∥ΨkU,MN

(hmi , x
m
i , a

m
i )ΨkU,MN

(hmi , x
m
i , a

m
i )′
∥∥2
]

≤ CE
[∥∥ΨkU,MN

(hmi , x
m
i , a

m
i )ΨkU,MN

(hmi , x
m
i , a

m
i )′
∥∥2
]
, (D.36)

where the first inequality holds by the definition of SΨΨ, Assumption 11, and that the second
moment of a random variable is no less than its variance; the second inequality holds by As-
sumptions 16, 19 and 20(ii). Recall that I assume the series basis functions are orthonormal,
then by Lemma 13, we have

E
[∥∥ΨkU,MN

(hmi , x
m
i , a

m
i )ΨkU,MN

(hmi , x
m
i , a

m
i )′
∥∥2
]
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= (MN)−1E

kU,MN∑
k=1

ψ2
k(h

m
i , x

m
i , a

m
i )

kU,MN∑
l=1

ψ2
l (h

m
i , x

m
i , a

m
i )


≤ (MN)−1ζ2

o (kU,MN)tr(IkU,MN
)

= ζ2
o (kU,MN)kU,MN/(MN). (D.37)

Plug the bounds in equation (D.37) into equation (D.36), then we get

E
[
‖SΨΨ − E(SΨΨ)‖2] ≤ Cζ2

o (kU,MN)kU,MN/(MN).

Then by the Markov’s inequality,

‖SΨΨ − E(SΨΨ)‖ = Op
(
ζo(kU,MN)

√
kU,MN/(MN)

)
.

Again, since νa(σN) converges to zero at a slower rate thanN−1/2,
√
kU,MNνa(σN)ζa(kU,MN)→

0 implies ζ2
o (kU,MN)kU,MN/(MN)→ 0. As a result, ‖SΨΨ − E(SΨΨ)‖ = op(1).

Note that
√
kU,MNνa(σN)ζa(kU,MN) → 0 implies ν2

a,Nζ
2
a(kU,MN) → 0. Then by result (i),

we have ‖ŜΨΨ − S̄ΨΨ‖ = op(1). Moreover, by result (ii), the conditions that the numbers of
series basis functions used to approximate each component in kU,MN all increase to infinity
with N , kU,MNνej ,M,N → 0 for j = 1, . . . , dx, and kU,MNνea,M,N → 0, we have ‖S̄ΨΨ−SΨΨ‖ =

op(1). Then (iii) follows by the same argument for the proof of Lemma 9(iv). This completes
the proof of the lemma.

Define

S̄ΨI ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΨ(hmi , x
m
i , â

m
i )′S̄I(h

m
i , x

m
i , â

m
i ),

S̄0,ΨI ≡ (MN)−1

M∑
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N∑
i=1

ŜΨ(hmi , x
m
i , â

m
i )′S̄0,I(h

m
i , x

m
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m
i ),

S̃0,ΨI ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΨ(hmi , x
m
i , â

m
i )′S̃0,I(h

m
i , x

m
i , â

m
i ),

Ŝ0,ΨI ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΨ(hmi , x
m
i , â

m
i )′Ŝ0,I(h

m
i , x

m
i , â

m
i ),

where

S̄I(h
m
i , x

m
i , â

m
i ) ≡

(
∇xI

m(xmi , â
m
i )′, Ima (xmi , â

m
i )
)′
,
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S̄0,I(h
m
i , x

m
i , â

m
i ) ≡

(
∇xh

m(xmi , â
m
i ) + hm(xmi , â

m
i )
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m
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e(xmi ,â
m
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hma (xmi , â
m
i ) + hm(xmi , â

m
i )

ea(xmi ,â
m
i )

e(xmi ,â
m
i )

)
⊗
[
ΨkU,MN

(hm(xmi , â
m
i ), xmi , â

m
i )′γ0,kU,MN

]
,

S̃0,I(h
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m
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m
i ) ≡

(
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m
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m
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∇xe(xmi ,â

m
i )

e(xmi ,â
m
i )

hma (xmi , â
m
i ) + hm(xmi , â

m
i )
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m
i )

e(xmi ,â
m
i )

)
⊗
[
ΨkU,MN

(hmi , x
m
i , â

m
i )′γ0,kU,MN

]
,

Ŝ0,I(h
m
i , x

m
i , â

m
i ) ≡

 ∇xĥ
m(xmi , â

m
i ) + ĥm(xmi , â

m
i )

̂∇xe(xmi ,â
m
i )

e(xmi ,â
m
i )

ĥma (xmi , â
m
i ) + ĥm(xmi , â

m
i )

̂ea(xmi ,â
m
i )

e(xmi ,â
m
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
⊗
[
ΨkU,MN

(hmi , x
m
i , â

m
i )′γ0,kU,MN

]
.

Now we need some intermediate coefficients which help analyze the estimated series coeffi-
cients for the sellers’ marginal disutility function. Define

γ̄kU,MN
≡ Ŝ−ΨΨS̄ΨI ,

γ̄0,kU,MN
≡ Ŝ−ΨΨS̄0,ΨI ,

γ̃0,kU,MN
≡ Ŝ−ΨΨS̃0,ΨI .

And with some standard algebra, we get

γ0,kU,MN
≡ Ŝ−ΨΨŜ0,ΨI .

Note that if we let ŜΨ denote the stack of ŜΨ(hmi , x
m
i , â

m
i ) for all i ∈ {1, . . . , N} and all

m ∈ {1, . . . ,M}, then ŜΨΨ = Ŝ ′ΨŜΨ/(MN). Let S̄I , S̄0,I , S̃0,I and Ŝ0,I denote the similar
stacks of S̄I(hmi , xmi , âmi ), S̄0,I(h

m
i , x

m
i , â

m
i ), S̃0,I(h

m
i , x

m
i , â

m
i ) and Ŝ0,I(h

m
i , x

m
i , â

m
i ), respectively.

Then S̄ΨI = Ŝ ′ΨS̄I/(MN), S̄0,ΨI = Ŝ ′ΨS̄0,I/(MN), S̃0,ΨI = Ŝ ′ΨS̃0,I/(MN) and Ŝ0,ΨI = Ŝ ′ΨŜ0,I/

(MN). Then we have the following lemma.

Lemma 15. Suppose that Assumption 21 and the conditions of Lemma 14 are satisfied.
Then

(i) ‖γ̂kU,MN
− γ̄kU,MN

‖ = Op
(∑dx

j=1 νIj ,N + νIa,N

)
;

(ii) ‖γ̄kU,MN
− γ̄0,kU,MN

‖ = Op
(
k−αU
U,MN

)
;

(iii) ‖γ̄0,kU,MN
− γ̃0,kU,MN

‖ = Op
(
k−αU
U,MN + νa(σN)

)
;

(iv) ‖γ̃0,kU,MN
− γ0,kU,MN

‖ = Op
(
νea,M,N +

∑dx
j=1 νej ,M,N

)
.

Proof. For (i), consider∥∥∥Ŝ1/2
ΨΨ

(
γ̂kU,MN

− γ̄kU,MN

)∥∥∥2

=
(
ŜI − S̄I

)′
ŜΨŜ

−
ΨΨŜ

′
Ψ

(
ŜI − S̄I

)
/(MN)2
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≤ C
(
ŜI − S̄I

)′ (
ŜI − S̄I

)
/(MN)

= Op

(
dx∑
j=1

ν2
Ij ,N

+ ν2
Ia,N

)
, (D.38)

where the second equality holds by Theorem 5. So (i) holds by Lemma 14(iii).
For (ii), note that equation (4.14) implies for j = 1, . . . , dx,

Imxj(x
m
i , â

m
i ) =

[
hmxj(x

m
i , â

m
i ) + hm(xmi , â
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i )
exj(x
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i )
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]
Uh (hm(xmi , â

m
i ), xmi , â

m
i ) .

Then ∥∥S̄I(hmi , xmi , âmi )− S̄0,I(h
m
i , x

m
i , â

m
i )
∥∥2

≤

(
dx∑
j=1

∣∣∣∣hmxj(xmi , âmi ) + hm(xmi , â
m
i )
exj(x

m
i , â

m
i )

e(xmi , â
m
i )

∣∣∣∣2

+

∣∣∣∣hma (xmi , â
m
i ) + hm(xmi , â

m
i )
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m
i , â

m
i )

e(xmi , â
m
i )

∣∣∣∣2
)

·
∣∣Uh (hm(xmi , â

m
i ), xmi , â

m
i )−ΨkU,MN

(hm(xmi , â
m
i ), xmi , â

m
i )′γ0,kU,MN

∣∣2
≤ Ck−2αU

U,MN ,

where the first inequality holds by the Cauchy-Schwarz inequality; the second inequality
holds by Assumptions 16, 19, 20(ii) and 21. As a result,∥∥∥Ŝ1/2

ΨΨ

(
γ̄kU,MN

− γ̄0,kU,MN

)∥∥∥2

=
(
S̄I − S̄0,I

)′
ŜΨŜ

−
ΨΨŜ

′
Ψ

(
S̄I − S̄0,I

)
/(MN)2

≤ C
(
S̄I − S̄0,I

)′ (
S̄I − S̄0,I

)
/(MN)

= Op
(
k−2αU
U,MN

)
.

So (ii) holds by Lemma 14(iii).
For (iii), consider the mean value expansion

Uh(h
m(xmi , â

m
i ), xmi , â

m
i )− Uh(hmi , xmi , âmi )

= Uh(h
m(xmi , â

m
i ), xmi , â

m
i )− Uh(hm(xmi , a

m
i ), xmi , â

m
i )

= Uhh(h̃
m
i , x

m
i , â

m
i )hma (xmi , ã

m
i )(âmi − ami ). (D.39)

Then we have ∣∣ΨkU,MN
(hm(xmi , â

m
i ), xmi , â

m
i )′γ0,kU,MN

−ΨkU,MN
(hmi , x

m
i , â

m
i )′γ0,kU,MN

∣∣2
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≤
∣∣Uh(hm(xmi , â

m
i ), xmi , â

m
i )−ΨkU,MN

(hm(xmi , â
m
i ), xmi , â

m
i )′γ0,kU,MN

∣∣2
+
∣∣Uh(hmi , xmi , âmi )−ΨkU,MN

(hmi , x
m
i , â

m
i )′γ0,kU,MN

∣∣2
+ |Uh(hm(xmi , â

m
i ), xmi , â

m
i )− Uh(hmi , xmi , âmi )|2

≤ C
(
k−2αU
U,MN + |âmi − ami |2

)
,

where the first inequality holds by the triangular inequality and the Cauchy-Schwarz inequal-
ity; the second inequality holds by Assumptions 16, 20(ii), 21, 22, and equation (D.39). This
implies that ∥∥∥S̄0,I(h

m
i , x

m
i , â

m
i )− S̃0,I(h

m
i , x

m
i , â

m
i )
∥∥∥2

≤ C
∣∣ΨkU,MN

(hm(xmi , â
m
i ), xmi , â

m
i )′γ0,kU,MN

−ΨkU,MN
(hmi , x

m
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m
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∣∣2
≤ Op

(
k−2αU
U,MN + |âmi − ami |2

)
.

Together with Theorem theorem 3, this implies that∥∥∥Ŝ1/2
ΨΨ

(
γ̄0,kU,MN

− γ̃0,kU,MN

)∥∥∥2

=
(
S̄0,I − S̃0,I

)′
ŜΨŜ

−
ΨΨŜ

′
Ψ

(
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)
/(MN)2

≤ C
(
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)′ (
S̄0,I − S̃0,I

)
/(MN)

= Op
(
k−2αU
U,MN + ν2

a,N

)
.

So (iii) holds by Lemma 14(iii).
For (iii), recall the definitions of the functionals in equation (D.25) and equation (D.26).

Together with the Cauchy-Schwarz inequality, they imply that∥∥∥S̃0,I(h
m
i , x

m
i , â

m
i )− Ŝ0,I(h

m
i , x

m
i , â

m
i )
∥∥∥2

≤

[
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∣∣∣∣Υ(j)

(
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e

)
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(
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+
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ĥm,

êa
e

)
−Υ(a)

(
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·
∥∥ΨkU,MN

(hmi , x
m
i , â
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. (D.40)

In equation (D.40),∥∥ΨkU,MN
(hmi , x

m
i , â

m
i )′γ0,kU,MN

∥∥2 ≤
∥∥Uh(hmi , xmi , âmi )−ΨkU,MN

(hmi , x
m
i , â

m
i )′γ0,kU,MN

∥∥2

+ ‖Uh(hmi , xmi , âmi )‖2

≤ Ck−2αU
U,MN +BU , (D.41)
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where the first inequality holds by the triangular inequality and the Cauchy-Schwarz in-
equality; the second inequality holds by Assumptions 21 and 22. Together, equation (D.32),
equation (D.33), equation (D.40), equation (D.41) and Lemma 14(iii) imply∥∥∥Ŝ1/2

ΨΨ

(
γ̃0,kU,MN

− γ0,kU,MN

)∥∥∥2

=
(
S̃0,I − Ŝ0,I

)′
ŜΨŜ
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′
Ψ
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)
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)′ (
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)
/(MN)

= Op

(
ν2
ea,M,N +

dx∑
j=1

ν2
ej ,M,N

)
.

So (iv) holds.

Proof of Lemma 5

Proof. By the triangular inequality, we have∥∥γ̂kU,MN
− γ0,kU,MN

∥∥
≤

∥∥γ̂kU,MN
− γ̄kU,MN

∥∥+
∥∥γ̄kU,MN

− γ̄0,kU,MN

∥∥+
∥∥γ̃0,kU,MN

− γ0,kU,MN

∥∥ .
So the result follows by Lemma 15.

Proof of Theorem 8

Proof. By the triangular inequality,

sup
(h,x,a)

∣∣∣Ûh(h, x, a)− Uh(h, x, a)
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≤ sup
(h,x,a)

∣∣ΨkU,MN
(h, x, a)′

(
γ̂kU,MN

− γ0,kU,MN

)∣∣
+ sup

(h,x,a)

∣∣ΨkU,MN
(h, x, a)′γ0,kU,MN

− Uh(h, x, a)
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= Op

(
ζ0(kU,MN)

[
νea,M,N +

dx∑
j=1

νej ,M,N + k−αU
U,MN

])
+Op

(
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U,MN

)
= Op

(
ζ0(kU,MN)

[
νea,M,N +

dx∑
j=1

νej ,M,N + k−αU
U,MN

])
,

where the inequality holds by the triangular inequality; the equality holds by Lemmas 5 and
13, Assumption 21, and the Cauchy-Schwarz inequality. So the result holds.
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The green line illustrates the distribution of the optimal effective labor supply zs under the price schedule
function Pm in market m, as a function of sellers’ observed characteristics x and unobserved characteristic a,
which follow the distribution fmx,a. Similarly, the blue line illustrates the distribution of the optimal effective
labor demand zd under the same price schedule function Pm in market m, as a function of buyers’ observed
characteristics y and unobserved characteristic b, which follow the distribution fmy,b. As is shown in this figure,
when the distributions of zs and zd are the same, the market clears.

Figure 2.1: Equilibrium
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The green line illustrates the distribution of the optimal effective labor supply zs under the price schedule
function Pm in market m, as a function of sellers’ observed characteristics x and unobserved characteristic a,
which follow the distribution fmx,a. Similarly, the blue line illustrates the distribution of the optimal effective
labor demand zd under the same price schedule function Pm in market m, as a function of buyers’ observed
characteristics y and unobserved characteristic b, which follow the distribution fmy,b. As is shown in this
figure, when the distributions of zs and zd are different (for example, density of the effective labor supply is
larger than that of the demand at z1, and is the opposite at z2), the market is off equilibrium and the price
schedule function Pm will adjust.

Figure 2.2: Off Equilibrium
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Green lines (solid and dashed) illustrate the disjoint iso-payment curves in Market 1 and blue lines (solid and
dashed) illustrate the disjoint iso-payment curves in Market 2. The quality e(x̄, ā) is normalized to be one.
In each market, the relative qualities for sellers on the same iso-payment curves can be identified, but not
for those on different iso-payment curves. For example, e(x1, a1)/e(x̄, ā) and e(x2, a2)/e(x̃, ã) are identified
from Market 1 (illustrated in Step 1), but not e(x2, a2)/e(x̄, ā). From Market 2, however, e(x2, a2)/e(x̄, ā)
can be identified (illustrated in Step 2). As a result, e(x2, a2)/e(x̄, ā) can be identified using the data from
both markets (illustrated in Step 3). This idea could be applied repeatedly to identify the quality function
e(x, a) (illustrated in the last panel). The identification requires a rank condition on the derivatives of the
payment functions Im(x, a) across markets. As is shown in the figure, this condition can be understood as
requiring that the slopes of the iso-payment curves across markets are different.

Figure 3.1: Identification of e(x, a) in Two Markets
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Figure 5.1: Scatter Plots of Weekly Earnings and Working Time in the Three Cities
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For ease of illustration, age is used as the single observed characteristic (x) of the workers. This figure shows
that there is decent cross-market variation in the distributions of x, which drives (partially) the cross-market
variation in the equilibrium payment functions.

Figure 5.2: Distributions of Age in the Three Cities
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This figure shows representative iso-earnings curves for the three cities, on the support of age (x) and “ability”
(a). For majority of the support, the iso-earnings curves from at least two markets cross. This suggests that
the identification condition for the efficiency function e(x, a) is satisfied.

Figure 5.3: Iso-Earnings Curves in the Three Cities
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Estimated worker efficiency function increases with “ability” (a), and is hump-shaped with age (x).

Figure 5.4: Estimated Efficiency Function e(x, a)
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The first panel shows the equilibrium densities of effective labor supply zs and demand zd when solving the
equilibrium using the true structural functions. The following three panels show the equilibrium when the
structural function values are perturbed by multiplying random variables drawn from N (1, 0.011), N (1, 0.051)
and N (1, 0.11), respectively. The perturbed equilibria are very close to the true one. This suggests that the
equilibrium is a continuous mapping from the structural functions, and that the algorithm approximates the
equilibrium well.

Figure A.1: Numerically Solved Equilibrium Using True and Perturbed Structural Functions
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