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Abstract

Many key environmental concerns today involve strategic interactions among
sovereign countries. While most transboundary pollution problems involve stock pol-
lutants, much of the literature on international environmental agreements (IEAs) uses
static models. Such models ignore the fact that changes in the stock of pollution may
affect the incentives of countries to join an IEA.

In this paper we analyze effect of pollutant stock dynamics on IEA membership
assuming that at any time period each country makes a decision whether to partici-
pate in an IEA or not, and depending on the outcome on these decisions, each country
adjusts its emission policy according to the feedback Nash equilibrium. Our objective
is to find equilibrium size of an IEA, which withstands possible one-shot deviations.
The model is applied to a numerical calibration reflecting the climate policy problem.
We show that optimal emission policy is determined as a function of the current pol-
lution level and equilibrium size of the IEA membership strongly depends on whether
a potential deviator may or may not be allowed to rejoin the agreement after the devi-
ation: in case when a deviator can return to the agreement at the next stage following
her deviation, the agreement at the steady state contains only two countries, however

if a deviator can not return, the agreement size can be very large.
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1 Introduction

Many key environmental concerns today involve strategic interactions among sovereign
countries. Some important problems are global in nature: climate change, depletion of
the ozone layer, and loss of biodiversity call for policy coordination at the global level.
Marine pollution, eutrophication and depletion of fish stocks and marine ecosystem services
may be addressed at a more regional level but still call for measures to be undertaken in
many countries. In practice global and international environmental cooperation has proven
challenging. What makes reaching an international agreement particularly difficult is that
countries cannot be forced to participate and comply with an agreement but must do so
voluntarily:.

There is an extensive economics literature on participation in international environmen-
tal agreements (IEAs), starting with Carraro and Siniscalco (1993) and Barrett (1994). This
literature builds on a static two-stage non-cooperative game, developed by d’Aspremont et
al. (1983) in cartel theory. In the first stage, countries decide whether they want to par-
ticiate in the agreement or not. In the second stage, a coalition of IEA members and the
individual outsiders choose their production and emission levels. The subgame perfect Nash
equilibrium of the resulting two-stage game is usually interpreted in terms of internal and
external stability of the agreement: no signatory has an incentive to leave the agreement
and no outsider has an incentive to join, which is the Nash equilibrium of the first stage
given the equilibrium in the second stage. The basic static model yields the pessimistic
conclusion that free-rider incentives are stronger than incentives to cooperate and that the
size of the stable coalition is small, regardless of the total number of countries.

While important insights have been developed in this literature, it largely fails to recog-
nize that most pollutants accumulate in the environment over time and that environmental
harm is caused by the accumulated pollution rather than current emissions (e.g., concen-
trations of greenhouse gases in the atmosphere or acidification of soils). The incentives to
participate in an IEA may then change over time, as the pollution stock changes. There
are only a few published papers that include both the participation decision and stock dy-
namics as elements of the game. Rubio and Casino (2005) adapt the model developed in
Carraro and Siniscalco (1993) and Barrett (1994) to a dynamic framework but do not really
address the impact of the pollution stock on the prospects of cooperation - they consider an
open loop solution where countries commit to their initial period membership status and
emission paths for an infinite length of time. Rubio and Ulph (2007) extend the model in
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decision for the duration of one period only, and are thus able to update their membership
status as the stock level changes. In their model, the per period payoffs consist of a linear
benefit from emissions and a quadratic damage from the stock of accumulated pollution.
Membership of the IEA is allowed to vary depending on the evolution of the stock. The
paper concludes that the prospects for cooperation are not very bright: the size of the stable
coalition decreases as the emission stock approaches its steady state.

While Rubio and Ulph (2007) is an important step towards analyzing countries’ strategic
incentives for participation in an environmental treaty, the model is of limited applicability
due to a number of strong assumptions made in order to achieve analytical results. First,
the model can only be applied to cases where the number of potential participants is large,
on the order of at least 20-30 countries. This will be true for global problems such as
climate change, but does not hold in the case of local pollutants and regional treaties,
where number of participants is typically smaller. Second, the assumption of linear benefits
from emissions is unlikely to find empirical support. Finally, the numerical illustrations
presented in the paper concern the case where the current pollution stock is below the
cooperative steady state, whereas in many real-world the opposite is more likely to hold.
Models similar to the Rubio and Ulph (2007) one have been considered by Breton et al.
(2010), who apply replicator dynamics to analyze a similar model, and Nkuiya (2012), who
develops a continuous-time version of the Rubio and Ulph (2007) model, and treats the
length of the period of commitment as a parameter that can take on any strictly positive
value.

Battaglini and Harstad (2015) examine the hold-up problem related to underinvestment
in green technologies in the context of an IEA and a stock pollutant. The paper considers a
symmetric dynamic game where individual payoffs in each period are composed of the sum
of disutility from reduced individual consumption, environmental damage and investments
in green technology. The model has two decision variables, emission reduction (interpreted
as reduced consumption) and investments, and two stock variables, an emission stock and
a technology stock. Two IEA structures are compared: one where the IEA is a contract
on both emissions and investments, and one where the IEA is a commitment on emissions
only while investments are set individually, and assumed non-tradable. It is also assumed
that countries can commit to participation (or non-participation) in the agreement for an
endogenous length of time that depends on the coalition size. However, Battaglini and
Harstad (2015) focus on the hold-up problem in different contracting environments, and do
not allow the pollution stock to have an effect on IEA participation: They assume that the

damage from pollution is linear, which has the consequence that equilibrium emissions are
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independent of the pollution stock.

In this paper, we extend the Rubio and Ulph (2007) approach to the more realistic
work-horse model of IEAs: countries’ per period payoffs are identical and equal to quadratic
benefit from production minus quadratic environmental damage (a one-to-one relationship
is assumed between production and emission). In contrast to the Battaglini and Harstad
(2015) model, equilibrium emission decisions then depend on the current level of pollution.
We focus on international cooperation on emission reductions, leaving the hold-up problem
with dynamic stock effects for future study. Unlike the Rubio and Ulph (2007) model,
no restrictions need to be placed on the number of participating countries, neither do
we rely on random assignment rule for determining which countries become signatories.
Instead, we consider a two-stage game over the entire time horizon of the game, rather
than in each period and proceed by solving the emission game for any coalition size and
stock level. The feedback Nash solution to the emission game determines the emissions of
signatories and non-signatories as functions of the stock level with coalition size entering
the control functions as a parameter. We then solve the membership game for any stock
level and equilibrium pollution control strategies. Since we have assumed that the countries
are identical, the identity of the countries in the coalition of IEA members is irrelevant.
We are interested in characterizing the equilibrium number of countries that participate
in the IEA at any stock level, and will henceworth ignore the identity of countries in the
equilibrium coalition. The model is applied to a numerical calibration reflecting the climate
policy problem. We show that equilibrium size of the IEA membership strongly depends on
whether a potential deviator may or may not be allowed to rejoin the agreement after the
deviation: in case when a deviator can return to the agreement at the next stage following
her deviation, the agreement at the steady state contains only two countries, however if a
deviator can not return, the agreement size can be very large.

The paper is organized as follows. In Section 2 we present the game-theoretic model
with stock pollutant, as well as first best (full cooperation case) and no cooperation case,
whether we derive optimal emission policies and steady state conditions. Section 3 describes
approach to model IEAs with participation changing over time. As in the previous literature,
we assume two stage game played at every period of the game: membership game (each
country decides whether cooperate or not in the agreement in order to reduce emissions) and
emission game (countries consequently adjust their emission behavior over time). Section 3.1
shows how we solve emission game and find steady state emission policies for any given size
of the agreement (as feedback Nash equilibrium). In Section 3.2 we proceed with analysis

of the number of signatories along the path to the steady state. First, we analyze countries’
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incentives to participate in an IEA assuming that a signatory might deviate for one period
and can rejoin the agreement in the following course of the game. Secondly, we assume
‘infinite punishment’ for the deviator: after one-shot deviation, it can never become an IEA
member again. A stand-alone outsider is always permitted to join the agreement for one
period. Subsection 3.3 presents steady state analysis of the membership game, first, under
assumption of one-shot deviation, and, secondly, under infinite punishment. In Section 4
and 5 we proceed with numerical application and analysis of the game. Section 6 presents

conclusive discussion.

2 Model and preliminaries

We consider N identical players, each of which emits a pollutant ¢4, ¢ = 1,..., N and
t = 1,2,..., that damages a shared environmental resource. A one-to-one relationship
is assumed between production and emissions so that ¢; > 0 denotes both production
and emissions. Environmental damage is a quadratic function of the emission stock z,
t =0,1,.... The per period net benefit to each player depends on her own production g¢;

and on the pollution stock z; :

1 1
Hit(Qita Zt) = Oé(ﬁ%‘t - §qz2t) - 572152‘
Later we refer to the benefit from emissions as m; = (8¢ — %q?t). The stock of pollution

evolves according to
N

Zty1 = P2+ Z it (1)
i=1
where p > 0 is the carry-over of the pollution stock. The initial stock is given by zy. The

objective of each player is to choose the emissions ¢, t = 1,2,..., so as to maximize her
expected net benefits over time. In the absence of environmental damage, production ¢;;
would be equal to 3, which we refer to as the business-as-usual emission level. Without
loss of generality, we normalize the model so that 5 = 1. The marginal benefit and damage

parameters o and 7y are positive and identical among the players.

2.1 The first-best solution: full cooperation

Suppose now that all the N countries cooperate and coordinate their emissions to maximize
the present value of joint welfare. We consider a utilitarian joint welfare function, where
each country’s individual welfare has weight 1. The per-period joint welfare then is W (+) =

> It (qit, z¢). The countries maximize the present value of joint welfare,
1EN



o) N

Z ot Z It (e, 2e),
i=1

t=1
subject to the state equation (1). We solve this problem by dynamic programming. The

Bellman equation for the joint welfare maximization problem is

Viz) = Z It (qit, 2) + 6V (2441)- (2)

i=1
As the problem is linear-quadratic, the value function will be quadratic in z. We define
the quadratic value function as V' (z) = %Aczf + B,z + C.. The first-order conditions for

maximizing (2) are then straightforward to derive. The first-best emission levels are given
by
e poA. 0B, + «
Gt o ONA T G NA, )

The value function coefficients A., B, and C. can be solved by inserting V (z) = %ACZE +

Bz + C, and the optimal emissions (3) into (2) and equating the coefficients.
The symmetric steady state, with ¢;; = ¢*, is given by

a(l—¢")+ NoXx* = 0
—yZ"+0pAT =N = 0

pzt—2"+Nqg" = 0

where \* is the steady state shadow value of the pollution stock.

2.2 No cooperation

Suppose instead that all countries choose their emission levels simultaneously and in a
noncooperative way. In a Markov-perfect equilibrium country ¢ assumes that its choice of
¢i+ will not affect the future choice of ¢;, for any player j or time 7 =t +1, .... Furthermore,
each country takes the other countries’ current emissions as given. FEach country is then

maxizing
oo

Z 6t_1Hit(qit7 Zt)7

t=1
subject to the state equation z; 1 = pz: + qit + Y gje. Again, we solve the problem using
i
dynamic programming. The Bellman equation for the individual country’s problem is

Vi(2e) = Wie(qit, 2¢) + OVi(2e41)- (4)



The individual country’s problem is also linear-quadratic, and the value function will be

quadratic in z. We define the quadratic value function as V;(z) = %Anzf + Bpz + C,.

Again, the first-order conditions for maximizing (4) are straightforward to derive. The
non-cooperative emission levels are given by

pPOA, n 0B, + «
a—OoNA T A SNA,

n o __
4y =

The coefficients A,,, B, and C,, can again be solved in the standard way.

The symmetric steady state, with ¢;; = ¢°, is given by

a(l—=¢°)+0X° = 0
—v2° +opA° =A% = 0
pz° —2°+Nqg° = 0

where \° is the steady state shadow value of the pollution stock when the countries do not
cooperate.

It is easy to show that for any NV > 1 the steady-state stock and per-period emissions
are lower in the cooperative equilibrium than in the non-cooperative equilibrium, and the
discounted present value of net benefits per country is higher in the cooperative equilibrium
thatn in the non-cooperative equilibrium. The non-coopearative equilibrium coincides with

the first-best only if N = 1.

3 IEA with participation changing over time

We now turn to the case of partial cooperation. We examine the formation of an infinite
sequence of IEAs, where in each period some countries participate in the IEA while some
countries choose to stay out. The structure and the timing of the game are as follows: At
the beginning of each period ¢, the N countries observe the size of the pollution stock z;.
Countries can condition both their IEA membership and emissions at time ¢ on the pollution
stock at time ¢t. Countries may adjust their strategy at each point in time. In particular,
in each period, countries are free to join or leave the agreement. This structure captures
the fact that countries enter IEAs voluntarily and may at any time abandon the process.
Canada, for example, ratified the Kyoto protocol in 2002 but withdraw from the agreement
in 2011. The model of IEA formation is a dynamic version of the work-horse model of
self-enforcing IEAs developed by Carraro and Siniscalco (1993) and Barrett (1994).

The emission game is defined by a triple that consists of the set of players, the players’

1=

strategy space, and the players’s payoff vectors (N, {qit}N’thl, {Hit}f\i‘ﬁzl) and a set of
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rules. The fact that countries may adjust their emissions at any time implies that we look
for the feedback Nash or Markov Perfect equilibrium of the emission game. As the payoffs
do not depend on time ¢, the solution to the emission game will be stationary, meaning that
the equilibrium emissions will only be a function of the pollution stock and not a function
of time.

A country may decide whether or not to cooperate with other countries in order to reduce
total emissions at any time ¢. That is, countries may also adjust their IEA membership at any
time. The decision regarding whether or not to cooperate is the outcome of a ‘metagame’,
called a membership game in the IEA literature. In the membership game, each country
choose between the cooperative and the non-cooperative strategy (IEA membership versus
fringe) by anticipating the outcomes of the related emission game.

The feedback Nash or Markov perfect equilibrium of the emission game can be found by
solving the dynamic programming equations in the value functions of the countries. At each
time ¢, IEA members choose emissions to maximize the expected total net benefits of all
signatory countries, taking as given the behavior of non-signatories. The non-signatories in
turn simultaneously and independently choose emissions to maximize their own, individual
expected net benefits. At this stage, the size of the IEA is considered fixed. However, the
value functions determined by the feedback Nash equilibrium will depend on the size of the
IEA: for each IEA size, there will be value functions and feedback controls for signatories
and non-signatories that determine emissions as a function of the pollution stock.

Given emission game equilibrium, the membership game equilibrium outcome will be
determined through internal and external stability of the agreement: no signatory has
an incentive to leave the agreement and no outsider has an incentive to join (the Nash
equilibrium of the membership game). In particular, the equilibrium IEA size at stock level
z; is a number of signatories n such that no signatory country would wish to switch to being
a non-signatory (internal stability), and no non-signatory would wish to switch to being a
signatory (external stability).

Differing from Rubio and Ulph (2007), we consider a two-stage game over the entire
time horizon of the game, rather than in each period, as has been done by Rubio and
Ulph (2007). That is, we proceed by solving the emission game for any n and z;. The
feedback Nash/MPE solution to the emission game determines the emissions of signatories
and non-signatories as functions of the stock level z;, with coalition size n entering the
control functions as a parameter. We then solve the membership game for any z;, given the
feedback Nash emissions at stock z; for each n. Timing of the game is presented in Fig. 1.

Since we have assumed that the countries are identical, the identity of the countries
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in the coalition S of IEA members is irrelevant. That is, if we have an equilibrium with
coalition S, we will have an equilibrium with any other coalition S’ # S with |S"| = |S].
We are interested in characterizing the equilibrium number of countries that participate in
the IEA at any stock level z;, and will henceworth ignore the identity of countries in the

equilibrium coalition.

(1 (2
participation emission
decision game
Zin Zt41,n
n n
| |
I I
t t+1 time
! J
L
periodt

Figure 1: Timing of the game

In the following course of analysis, we shall use the following notation. The state variable

in the partial membership game is

ze € [07 OO) )
and the action variables are
qit S [07 OO) )
qjit € [0,00)

where ¢;, are a signatory country’s emissions in period ¢ and qf , a non-signatory country’s

emissions. The state transition function for the pollution stock then is

n N—n
Zepl = P2t Z G+ Z q;,ta
i=1 j=1

where p is carry-over and N the number of countries in total.

3.1 Emission game

Suppose that there are are n members in the IEA. With n given, the group of signatories
and each non-signatory country face a standard deterministic linear-quadratic game.
Signatories’ and non-signatories’ control rules are linear in the stock, and the value functions

are quadratic. Thus, we can use standard methods to find Nash feedback controls. Let
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V5 (2) and V. (%) denote the value functions that describe the continuation values for
signatories and non-signatories given a pollution stock z;. Here, V?(z;) is the joint value
function for all signatory countries while V. (z;) is the value function for an individual
non-signatory country j. The value function coefficients are different under each value of n.

The Bellman equation for a non-signatory (or fringe) country, given n, is
7 f L, 7
VJ () = max S 7 (of ) = 7528 + V) (2040 (5)

The Bellman equation for signatories (which optimize a group) is:

Vi () = max { o (4F) = nv g4 0V; ) (6)

Given (5) and (6), the first-order condition for the non-signatories’ problem is

f
om <Qt> VI (z141)
7 + 6 5
aq; Zt+1

as each fringe country only accounts for its own emissions and takes the other countries

:()7

emissions as given.
The first-order condition for the signatories’ problem is

o (q7) | 5Vi ()

=0.
q; 0241

The signatories maximize their joint value, accounting for the effect of all signatories’ emis-
sions on the pollution stock.

In Appendix A [to be completed later, Mathematica file] we show that the
optimal values of ¢; and q{ are linear in the pollution stock, and the value functions V/ ()

and V? (z;) are quadratic in the stock z;41:

. >+ 06*(N —n)(AB, — A,By) +ad (Bs + (N —n) (A, — Ay)) + adpAyz

G = a(a— ONA, 1 on (A, — 4,)) (7)

;a*+6*n(A,B, — AB,) +ad (B, +n (A, — A,)) +adpA,z @)
L a(a—O6NA, +on(A, —A))

q

1
VIi(z) = §A7{22 + Bz 4 CY,
1
Vi(z) = 514222 + B2+ C:.
The coefficients of these value functions satisfy

10



B = (10)
= ... (11)
Al = (12)
B = . (13)
cf = .. (14)

Given that the value functions are bounded above (for 6 < 1) and that they are
quadratic, it must be the case that A/ < 0 and A3 < 0. Equation (12) is quadratic in
Al and equation (9) in A5. We first solve the system of equations (12) and (9) to obtain
the unique negative roots of this system of equations. We then solve the linear systems
of equations (13) and (10) and (14) and (11) recursively. Given the values of A/ to
C: we use equations (7) and (8) to obtain signatories’ and non-signatories’ optimal levels

of emissions at stock level z; under partial cooperation with any n IEA members.

3.1.1 Steady state emissions

Let the steady state stock corresponding to IEA size n be given by z!. In the steady
state, the emissions ¢/* and ¢ * have to satisfy the following Euler and state stationarity

conditions: 5 ; ;
* oV (z*
7T( n ) + 5 n (Zn)

oq! 9z 0

o (g7) | 4V ()

o¢° 5.

2= pz" gt + (N —n)gl*

11



3.2 Number of signatories (membership game) along the path to

steady state

The value functions V/ (z) and V? (2) describe the value of the optimal feedback solu-
tion for each non-signatory country and the group of signatories at stock level z, for a given
IEA size n. We denote the continuation values for a non-signatory country and an individual
signatory country that maintain their period ¢ — 1 membership status in period ¢ by W/ (2;)
and W (2;). With ¢/ (2;) and ¢¢ (2;) denoting the optimal emissions of non-signatories and
signatories, these continuation values are as follows:

W1 () = V() = 7 [a] (20] — 75 (20 + 0V ()

and, since V,? (z;) is the joint value function for all signatories,

W () = V3 () = 1g5 ()] = 75 (20 + 0 (o).

We next consider the internal and external stability of the agreement. We define internal
and external stability as follows: an agreement is internally stable at stock level z; if no
signatory wishes to leave the agreement, and externally stable at stock level z; if no non-
signatory wishes to join the agreement at time ¢. If a country that is a member in the IEA
withdraws from the agreement at time ¢, it will emit as a non-signatory country in period
t. Similarly, if a non-member country joins the agreement in period ¢, it will emit as a

signatory in period t.

3.2.1 Stability check 1: no punishment

We first consider stability when the rules of the agreement allow countries to leave and then
rejoin the agreement at any time. A signatory country withdrawing from the agreement is
then not punished in any way. To check whether such an agreement is stable with n members
at stock size z;, we utilize the one-time deviation principle: the agreement with n members
is stable at stock level z; if there are no profitable one-time deviations for signatories or
non-signatories. That is, an agreement with n members is internally stable at stock level z,
if there are no profitable deviations where a signatory country ¢ would exit the agreement
in period ¢t but rejoin it in period ¢ 4+ 1. An agreement with n members is externally stable
at stock level z; if there are no profitable deviations where a non-signatory country j would
join the agreement in period ¢ and exit it in period ¢t 4+ 1.For each pollution level z; we then
take the stable size of the agreement to be the largest n that is internally and externally

stable.
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Suppose that a signatory country i exits the agreement in period t. Country ¢ then
emits as a non-signatory in period ¢ but returns to being a signatory in period ¢ 4+ 1. The

pollution stock in period ¢ + 1 obtains the value

2ot = P2+ (0= 1) g5y (2) + [N — (n = D] gy (=) , (15)

where ¢¢_, (z) and ¢/_, (z) are signatories’ and non-signatories’ optimal emissions with
the period t stock z; and n — 1 signatories. With a one-period deviation, the deviating
signatory’s period t + 1 value function is the one for signatories, but the stock in period
t + 1 is different from the stock along the path with n signatories. The continuation payoff

to a signatory country deviating from the agreement then is

1 1
Wg:l (Zt) =T [95—1 (Zt)] - 75 (Zt)2 + 55‘/718 (Zt+1,n—1) .

Consider next the case where a non-signatory country j enters the agreement in period
t but exits it again in period t + 1. Country j then emits as a signatory in period t but
returns to emitting as a non-signatory in period ¢t + 1. The pollution stock in period ¢ + 1
is given by

Zeriner = pz+ (1) @y (20) + [N = (n+ D] gl (20), (16)

where ¢, (%) and ¢/, (2) are signatories’ and non-signatories’ optimal emissions with
the period ¢ stock z; and n + 1 signatories. Country j’s period ¢ + 1 value function is the
one for a non-signatory country.

The continuation payoff to a non-signatory country entering the agreement then is

1
Wit (z) =7 (g0 41 ()] — 73 (20)* + 6V (21s1.011) - (17)

The internal and external stability conditions at any IEA size n and stock level z; can
be written as follows:
Wi (2) > Wiz, (2) (18)
Wi (z) = Wity (=) (19)
The internal stability condition (18) states that no signatory has an incentive to leave the
coalition, and the external stability condition (19) states that no non-signatory has an
incentive to join the coalition when the coalition has n members and the pollution stock is
2.

The internal stability condition can be written out as
T (20) = Wy (20) = Wit (20) = g (20] = 7 [al (20)] (20)

1
"‘55 Vi (2t) = V) (2t41,0-1)] 2 0.
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The external stability condition in turn equals

Wi (z) = W () = 7 [g541 (20)] — 7 [a] (20)] (21)
‘I‘(S [an (Zt—f—l,n-i-l) — an (Zt)} S 0.

The stable size of the agreement at any stock level z; is the largest n that satisfies the
internal and external stability conditions (20) and (21) at z;.
The payoffs from deviating, W (2;) — W=, (2:) and W2, (2¢) — Wi (2:) , are quadratic
in z (as shown in Appendix). Suppose for now that W (z,) — W97, (2,) is concave in z
and W (2) — W (2) convex in 2.

Then, if W (z,) — W9, () = 0 has roots z; and 2y, with z; < 2, an agreement with
n members is internally stable for all stock levels z; < 2z, < zo. If W2 (2) — W, () = 0
only has one root z;, an agreement with n members is internally stable only at stock level
21 If W2 () — W9, (2) = 0 has no roots, there are no z; for which an agreement with n
members is internally stable.

Similarly, if W, (2;) =W (2;) = 0 has roots z3 and 2y, with z3 < 2y, an agreement with
n members is externally stable for all stock levels z3 < 2z, < z4. If W2 () — W2, (z) =0
only has one root z3, an agreement with n members is externally stable only at stock level
z3. If W (2,) — W%, (%) = 0 has no roots, there are no z for which an agreement with n

members is externally stable.

3.2.2 Stability check 2: infinite punishment

We next consider stability when a signatory country that exits the agreement is not allowed
to rejoin. This amounts to an infinite punishment to a signatory country deviating from the
agreement. If there are no profitable deviations at stock level z; where a signatory country
1 leaves the agreement in period ¢ to remain a non-signatory thereafter, membership size
n is internally stable at z;. As it does not seem plausible that a non-signatory country
entering the agreement could be prevented from ever leaving the agreement, in terms of
external stability we maintain the same rule as in the previous section - a non-signatory
joining the agreement is free to leave it in the following period. Hence, external stability
still corresponds to there being no profitable one-time deviations where a non-signatory
country j joins the agreement in period ¢ and exits the agreement in period t + 1.
Suppose a signatory country ¢ deviates from the agreement. Country ¢ then emits as a

non-signatory from the current period onwards, and remains a non-signatory up to infinity.

1To be developed analytically, proposition. Otherwise, verified numerically.
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Thus, its value function in the following period is the one for a non-signatory country. The
stock in period ¢ + 1 is again different from the stock along the path with n signatories,
obtaining the value given by Equation (15).The continuation payoff to a signatory country

deviating from the agreement then is

e 1
Wi () = 7 |4l (20)] =75 (20" + Vi (vann)

2

A one-time deviation by a non-signatory country j in period t is defined as in the
previous section. Country j emits as a signatory in the current period but returns to
emitting as a non-signatory in the following period. The stock in period ¢ + 1 obtains the
value in Equation (16) and the continuation payoff to a non-signatory country entering the
agreement the value in Equation (17).

The internal and external stability conditions in the steady state can be written as
follows:

W () = Wi (20) (22)
Wil () = Wiy (=) (23)

As before, the internal stability condition (22) states that no signatory has an incentive to
leave the agreement, and the external stability condition (23) states that no non-signatory
has an incentive to join the agreement.

The internal stability condition can be written out as

Wi () = Wii® (1) = lgh (0] = [l (=0) (24)
>

1
+5 ﬁvs (Zt) — Vf (Zt+1 n— 1):| 0.

The external stability condition is again given by Equation (21).

3.3 Steady state membership

Let n denote a candidate IEA size whose stability at the steady state we are checking,
and z* the corresponding steady state stock. Let W (2*) and W/ (z) be the continuation
values for an individual signatory and non-signatory country when each country maintains
its steady state membership status. With ¢ * and ¢/* denoting the optimal emissions of
signatories and non-signatories with IEA size n and steady state stock 2z, the continuation

values W? (2%) and W (27) at the steady state are as follows:
1
Wl(z) =Vl (z) = 7 (al7) =75 ()" + 0V (20)
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and, since V,? (z) is the joint value function for all signatories,

* 1 S [ % S% 1 * 1 S (%
Wi (Z ) = ﬁvn (Z ) =T (Qn ) - 75 (zn>2 + ﬁ(svn (Zn) .

n n

3.3.1 Stability check 1: no punishment

Again, we first consider stability when countries deviating from the agreement are not
punished, and examine whether there are profitable one-time deviations for signatories or

non-signatories. Suppose a signatory country ¢ deviates from the agreement. The next

*

», as the change in membership from

period stock will differ from the steady state value z

* ). The stock now obtains

) and g; (2

n to n — 1 in period t affects optimal emissions q{ (2 .

the value
3;71 =pzp+(n—1)q, _(z,)+ [N —(n— 1)] Q£—1 (Z:L) ) (25)

*
n

*

*) are signatories’ and non-signatories’ optimal emissions with

where ¢ _, (22) and ¢/_, (2
the period ¢ stock z* and n — 1 signatories. The continuation payoff to a signatory country
deviating from the agreement then is

1 1 )
Wity () = 7 (aly (20)) =75 (200" + 0V (1)

Suppose next that a non-signatory country j deviates in period ¢. The stock in period

t 4+ 1 again differs from its steady state value 2, obtaining the value

A=+ (1) g () + [N = (n+ )] gl (2), (26)

*
n

*

- ) are signatories’ and non-signatories’ optimal emissions with

where ¢; ., (z;) and qgﬂ (z
the period ¢ stock 2z} and n + 1 signatories. The continuation payoff to the non-signatory

country entering the agreement for one period then is
* * 1 %) 2

The internal and external stability conditions in the steady state can be written as

follows:
W () = Wiz (27) (28)
Wi (z) = Wik (=) (29)
The internal stability condition in the steady state can be written out as
Wi (1) = Wiy () = ma) — m (al (20) (30)

[V () = Vi ()] 2 0

n n
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The external stability condition in turn equals

Wit (zn) = W () = 7 (g5 (=) — 7 (4) (31)
+0 [Vf (Z;H—l) - an (z;iﬂ <0.

n

The stable size of the agreement in the steady state will be the largest n* that satisfies
the internal and external stability conditions (30) and (31) at the steady state stock z

corresponding to n.

3.3.2 Stability check 2: Infinite punishment to deviating signatories

We next consider stability when a signatory country leaving the agreement is not allowed to
rejoin the coalition. If there are no profitable deviations where a signatory country ¢ leaves
the agreement in period t to remain a non-signatory thereafter, the membership size n is
internally stable in the steady state corresponding to n. External stability still corresponds
to there being no profitable deviations where a non-signatory country j joins the agreement
in period ¢t and exits the agreement in period ¢ + 1.

Suppose a signatory country ¢ deviates from the agreement. Country ¢ then emits as a
non-signatory from the current period onwards, and remains a non-signatory up to infinity.
The stock in the following period again obtains the value given by Equation (25). The
continuation payoff to a signatory country deviating from the agreement then is [notation

di:
- Wi

n—

—,00 * * 1 * /
ngi (Zn) =T (qgfl (Zn)> - ’75 (Zn)z + 5an71 (Zn—l) .

Period t 4+ 1 stock and continuation payoff in the case of a one-time deviation by a non-
signatory country j in period ¢ are defined as in the previous section (Equations 26 and
27).
The internal stability condition in the steady state is
Wi (1) = Wami® (z3) = m(a3) = 7 (a7 (1)) (32)
+0 ans (22) =V, (2 )] > 0.
n

n n—1

The external stability condition is again given by equation (31).

4 Numerical application and results

Allowing for quadratic benefits and damages brings about need to use numerical analysis

to solve the model. We consider a numerical example based on data pertaining to climate
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change, from Nordhaus (1994), Tol (1995), Dellink et al. (2004) and Tol (2008). Given that
this paper aims at a game-theoretic analysis of an IEA, we have made some simplifying
assumptions regarding variety of climate change scenarios and ranges of uncertainty and
focus on a limited number of parameter estimates in the baseline scenario. We consider a
world of N = 10 identical regions. To obtain an estimate for parameter o that characterizes
the marginal benefit from production, we utilize a result by Diamantoudi and Sartzetakis
(2006) that a direct correspondence exist between emission and abatement models. That is,
the slope parameter for marginal abatement costs equals the slope parameter for marginal
benefits from emissions in the case of a quadratic payoff structure. Empirical literature has
largely used the abatement model approach, rather then emission model, and we proceed
by approximating a parameter that describes the slope of the marginal abatement function.
We use available estimates of abatement functions provided by Dellink et al. (2004) and
Nordhaus (1994), who use a cubic-quadratic functional form calibrated for twelve world
regions. We select the regions with the highest and lowest emission paths according to

their estimates, which are the USA and Brazil. Using the least squares method we obtain

a range of values for parameter a, a € [0.05,19], where o has the dimension (é??)z- To

obtain an estimate for parameter v that characterizes the slope of the marginal damage

from the pollution stock, we use Tol’s (1995) projections of global warming damage costs

from 1990 till 2100, and Nordhaus and Sztorc (2013) data on atmospheric concentrations of

COs under alternative policies in DICE-2013R. This yields an approximation for parameter
$

v equal to 9.8 - 107¢ 7. The discount factor is set equal to 6 = 0.99 and the carry-over

coefficient to 0.92. Table 1 displays the parameter values used in the numerical analysis.

Table 1: Model parameters values

Parameter value units

Parameter of marginal benefit function o | [0.05, 19] égé%

Parameter of marginal damage function v | 9.8 - 1076 é%%
Carry over p 0.92
Discount factor o 0.99

Initial stock of C'O5 in 2010 70 GtC
Number of countries (world regions) 10

For all the parameter values in Table 1, there always exists a self-enforcing IEA in the

steady state. We have explored several values for the damage parameter ~, ranging from
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0.5 to 1.5 times the base line value v, = 9.8 -107° In the present numerical analysis, the

$
E.
results are obtained for o = 0.05 and total number of players N = 200.

Table 2. Agreement for different values of v, evaluated at a = 0.05 and N = 200

v IS, IS, ES; n®' no®
4,910°° 2 2 23 2 2
6,910 2 2 23 2 2
78106 2 2 23 2 2
9,8107¢ 2 2 22 2 2
11,8 1076 2 2 22 2 2
13,7100 59 2 21 2 21
14,7107 48 2 21 2 21
15,7107 42 2 20 2 20
18,610 31 2 19 2 19

The first column in Tab. [2] contains ranging values of +, the second column of the table
contains the largest number of signatories for which internal stability holds under one-
shot deviation assumption, the third column contains the largest number of signatories
for which internal stability holds under infinite punishment, the forth column contains the
largest number of signatories for which external stability holds (one-shot deviation). The
last two columns in Tab. [2] present equilibrium number IEA under one-shot assumption
and infinite punishment assumption. Our results show that equilibrium size of the IEA
membership strongly depends on whether a potential deviator may or may not be allowed
to rejoin the agreement after the deviation: in case when a deviator can return to the
agreement at the next stage following her deviation, the agreement at the steady state
contains only two countries (similar to Rubio and Ulph (2007)), however if a deviator can

not return, the agreement size can increase (if damage parameter v is large enough).

5 Conclusions

This paper analyzes a dynamic model of international environmental cooperation, where
the stock of pollution affects both signatory and non-signatory countries’ emissions, and the
stability of the IEA. We extend existing literature by allowing for quadratic benefits from
emissions together with endogenous IEA membership. We apply the model to a numerical

calibration reflecting the climate policy problem.
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We find that that emission stock in fully cooperative case is below emission stock in
non-cooperative, also discounted net benefits are lower in case of no cooperation than in
case of cooperation. It is interesting that in cooperative case when « is low emission
stock approaches steady state from above and when « is high it approaches steady state
from below. Both cooperative and non-cooperative emission stocks approach steady state
asymptotically. The following results differ from observations of similar cases in Rubio and
Ulph (2007).

Firstly, it is interesting that in cooperative case when « is low emission stock approaches
steady state from above and when « is high it approaches steady state from below. Both
cooperative and non-cooperative emission stocks approach steady state asymptotically. Sec-
ondly, we can learn from our example that when « is low optimal emission path in cooper-
ative case starts low and then goes up towards steady state, while optimal emission path in
non-cooperative case starts high and then goes down towards steady state. When « is high
optimal emission path in both cooperative and non-cooperative case start high and then
goes down towards steady state. Thus while players behave in a similar way in the absence
of cooperation, it case of full cooperation emission path and approach towards steady state
of the stock largely depend on parameter a of benefit function.

Further, we analyze effect of pollutant stock dynamics on IEA membership assuming
that at any time period each country makes a decision whether to participate in an IEA or
not, and depending on the outcome on these decisions, each country adjusts its emission
policy according to the feedback Nash equilibrium. Our objective is to find equilibrium
size of an IEA, which withstands possible one-shot deviations. The model is applied to a
numerical calibration reflecting the climate policy problem. We show that optimal emission
policy is determined as a function of the current pollution level and equilibrium size of
the IEA membership strongly depends on whether a potential deviator may or may not be
allowed to rejoin the agreement after the deviation: in case when a deviator can return to
the agreement at the next stage following her deviation, the agreement at the steady state
contains only two countries, however if a deviator can not return, the agreement size can

be very large.
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6 Appendix

A signatory’s payoff from deviating (with return to cooperation in period t + 1) is

J () =l (20] = 7 [l ()

1
+5; Vi (20) = Vi (2e41,n-1))]

= (g} (2] —  [af 1 (20)

510 [+ (0= gy () + (N =+ gl (20)]

Differentiating with respect to z; yieldsn
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OK UP TO HERE
CHeck this -could perhaps get rid off the first two lines using the envelope theorem.

Could there be some argument for why A% > or < AZ?

(44)

0® (%) ) orlg (2)] OV [pz + g () + (N —n)gl ()] | dg3 (=)
= +n
0z og;, Oz41 dzy

om[al ()] 0V ozt (n = Dgisy (o) + (N =+ Dl (2] | ag?l ()
— +4 n—
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A signatory’s payoff from deviating at ns=2 (with return to cooperation in period ¢+ 1)

is

Ins2 (z) = 7lq (z1)] — 7 [qne (2¢)]

1
+o— (Vi (2) = Vil (2t41,0-1))]

with
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Differentiating with respect to z; yieldsn
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OK UP TO HERE
CHeck this -could perhaps get rid off the first two lines using the envelope theorem.

Could there be some argument for why A% > or < AZ?
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A signatory’s payoff from deviating with ”infinite punishment” is
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HO— AL P* 17 (10)” + (N = n)* (,) (74a)

AL [P = (0= 1) (Mem-1)® — (N =0+ 1)2 (pn1)?]

OK UP TO HERE
CHeck this -could perhaps get rid off the first two lines using the envelope theorem.

Could there be some argument for why A% > or < AZ?
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75
0z 0qs 0%i11 dzy (75)

aWMMMMWmewww%m@w]mM>
8q£_1 (2t) D211 dz;

09 () _ {aw @2 (0], 5, OVar [p2e+ ng () + (N = n)gf (=] } dg;, ()

(76)

+5p% OV [pz +ngs () + (N — n)g! (z)]

77
aZt+1 ( )

Ve [pz +ng (z0) + (N —n)gf (21)] dgs (=)
aZf;+1 dz

N —ndV; [pz +ng;, (2) + (N —n)gj (2)] dgf, (z)
n 0zi11 dz

10V pat (0= Dy (o) + (N =t g (a0
_p_
n

—d(n—1)

+0

O0zi41

_ﬁlmﬁP%+O%4MLM%H%N—H+4MLM%Hd%lwida)
n

02141 dqy_y dz

)
n 02441 dzy

(78)

(79)

f
00 () _ on gy (20) da () 07 |91 ()] gl (20
0z dqs dz g, (=) dz

+5p% ovs [pzt +ngs (z) + (N —n)q/ (zt)}

aZt+1
19V [pz +ng; () + (N = n)qg (20)] dzian dg (21)
n 0z141 dg;,  dz

+0

A signatory’s payoff from deviating at ns=2 (with return to cooperation in period ¢+ 1)

18

Ins2 (z) =7 (q, (2¢)] — 7 [qne (24)]

1
+5ﬁ Vi (20) = Viy (ze41,n-1)]

31



with
Zt+1n—1 = P2t + Nan (Zt)

Jns2 (Zt) =T [q,i (Zt)] - [an (Zt)]
+5%V; [p2 + na;, (z) + (N = n)g] (2)]

1
_55‘/7? [Pzt + Nane (24)]

Differentiating with respect to z; yieldsn

ons2J (z) _ or [qp (z0)] day, () O [gne (21)] dgne (21)
0z 0qs dz One (21) dz

10V [2 + ngi (20) + (N — n), (2]

n 02441

10V, [pz + ng;, (z) + (N = n)gf (20)] dza dgg (21)

n 82t+1 dqu dZt

st Vs [pze +ng, (2) + (N —n)g (2)] dzesr dgf (2)
n

(81)

+op

+6

O0zi41 dgb  dz

10 pact (= Dy (o) + (N =+ g (2]
_p_
n

Ozt11

_4lmﬁ@4+0%4M3N%H%N—H+U%1@ﬂd%ﬂwm@)

n azt—H dan dzt

0Jns2 (z) _ or (g5, (21)] e — 07 [Gne (21)) n
8Zt E)q;i o 8(]710 (Zt) "

+5p% ovs [pzt +nqs (z) + (N —n)q/ (zt)}

(82)

aZt+1

51,0V [pa + ng; () + (N = m)g, ()] .
n 8Zt+1

OV [pz + ngg (z) + (N — n)g (2)]

6Zt+1

1oV [p2t + Nne (2)]

n aZf:+1

Vi [pz + Npe (21)]

0241

1
O—(N — n
+ n( n) ny,

—5p

nc

1
—0—N
n

32



0% Jns2 (z) B 5 0% (42 (21)] o 0T [Gne (20)]

o g " TG
L 5,2 1OV [z 4 g () + (N — n)gy ()]
P n 82Z’t+1
—|—§ln 0°Vyy [pz +ng;, (2) + (N = n)qj (20)] dz 1 dg;, (21)

n len 022111 dgg  dz
+61(N ) Ve [pze +ngl () + (N —n)gl (20)] dzyi1 dgl (2)
n rm 822’t+1 dq,,]:: dZt

10 2+ (0= 1)g3 (20) + (N =0+ 1)l ()]
—op ﬁ 0?2141

1V ozt (= Dgiy () + (N =4 Dl (20)] iy dge ()

_§=N
O Ve P24 dgne  dz

0?Jns2 (z)

2 2
aZtQ = - (775,71) a + (Mne)” @
2 1 s
+op —A;
n

HO0 () A5 0N =) ()" 4

1 1
—0p? =A% — §=N? (o) A°
n n

n

0?ns2J (2)
022

1
+ A |60 (150)" + 0 ~(N—n)’ ()"

=« [(%:)2 - (778,71)2}

1
_5_N2 nc 2
—N (1ne)

8‘]2;2;(2'5) =a [(nnc)2 - (ns,n>2}

1
AL [n2 (150)" + (N = n)? (n7.0)°

_N2 (nnc)Q}
OK UP TO HERE
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CHeck this -could perhaps get rid off the first two lines using the envelope theorem.

Could there be some argument for why A% > or < AZ?

00 (=) _ ) omlay (=)] AL [pze + gy, (2) + (N = n)gf ()] | dgj (=) (01)
0z oq 02441 dz
o |4l () o o2+ (0= 1)giy (20 + (N =n+ Daly (0] ag! | (20)
- +
a%{—l (2t) 0241 dzy
(92)
avs s N — f
n 0211
s 1)3‘/75 [pze +1g;, (2) + (N = n)g] (2)] dgj, (=)
32t+1 dz
—|—(5N —n OV [pz +ngs (z) + (N = n)gl (2)] dgf (z)
n 0241 dz
1OV |pa+ (n = 1)giy (20) + (N =0+ 1))y (=)
n 0zi41
R o2+ (0 = Dgy (z0) + (N =0+ 00l (0] sy dge, ()
n 02441 dqy 4 dz
(N — 20+ 1) O3 [+ (0= Dagiy (20 + (V= 0+ Daly (20 ag? | ()
s (94)
n 0zi11 dz
(95)
f
00 () _ onlas (el dap () _ 07 [ G0 dgf (2 0
0z 9q;, dz dql | (=) dz
+5pl Vs [pz +ngd (z) + (N —n)gl (z)]
n O0zi41
1OV [pze + ng, (z) + (N = n)gf, (z)] dzei1 dgs (2)
o~
n 02141 dg,  dz

A signatory’s payoff from deviating with ”infinite punishment” is

Jie () = 7 la; (20)) = 7 |4l (0]

1
+0 EVnS (2¢) — VJ_1 (Zt+1,n1):|

34



=l ()] = 7 [y (1)

6V [+ (0 = D () + (N = n 4+ gl (20)

Differentiating with respect to z; yieldsn

0Jip () _ Orlap () das () O |9h1 (0] gl (20

0z dq dz ¢!, (%) dz

+60 % OVy? [pze +ng; (=) + (N —n)gf, (21)]

aZt+1
L0V [+ g () + (N — m)af (2] v dy ()
n 0zi11 dgs  dz
19V [pz + gy, (2) + (N = n)gh ()] dzi 1 dgf ()
n 02441 dgl,  dz
VL ozt (n = 1)y () + (N =+ 1)al_y (2)]
0241
OV [+ (0 = Dy (o) + (N =+ gl ()] s g o0
0z 41 dq,—;  dz
VL oz (= Dy () + (N =+ 1)l (0] ey, dg! ()
0211 alq,’i_1 dz

+6

+0

_5p

f
0Jrp (%) _ or [q;, (2)] Mo — on [qn_l (Zt)] Nfn_1 (97)
% o, " ol () T

6o % OV;s [pz + gy (z0) + (N = n)gf (z)]

Ozt11

L 51, Vi [p2e 4 ng; () + (N = m)gf, (=1)]
n

s,n
0z

1 (N ) OV [pz +ng, () + (N — n)gf ()]

+6 Nfn

n 0z141
OV oz (n = 1)y () + (N =+ 1)afy (2)]
0241
VL, |pzt (0= 1)giy (20) + (N = n+1)g)_, (20)]

02441
VL pat (n = D)5y () + (N =+ 1)gl_y (=)

8Zt+1

—5p

—d(n—1)

n&n—l

—0(N —n+1)

nﬁnfl

35



f
P Jip(z) (o) 0?1 (¢ (2)] _ 2 o’ [qnfl (zt)} (98)
022 TTsn 0%q -t ¢ (2)
+6p2182v7f [pz: + ng;, (jt) + (N —n)gj (=)]
n 0 Zt+1
+6lnns n82v,f [Pzt +ngs () + (N —n)q] (Zt)] dzi1 dg;, (%) (99)
n 0?2141 dg;,  dz
1 o*V# [pzt +nqs (z) + (N —n)q/ (zt)] dzep1 dgl (2)
+ TL( n)nf, 822t+1 dq7j~2 dZt ( OO)
VL [+ (0= 1)g3 (2) + (N =0+ 1l ()|
—6p? (101)
Pzt
5 ) azvnfq [Pzt +(n—1Dgny (2) + (N —n+ 1)Q£71 (Zt>] dzip1 dgs_ ()
_ (n - )ns,n—l 8221&—1—1 dqul dZt
(102)

VL ozt (n =Dy () + (N =+ 1)l (0] s,y gl ()
02141 dqfh1 dz
(103)

—(5<N —n -+ 1)77}0’”,1

82J1p (Zt)

2 2
ath = (ns,n) o+ (nf,n—l) (6%

1
+6— A3 p?
n
1 1 2
6_A32 sn2 S=A5(N — 2 (2
—502A£—1
00— 1) (o) Ay — 6N — 4 12 () AL

62 J[P (Zt)
PA L) ot g
1
FO= Ay [ 0 (o) + (N = )2 (12,)°] (105a)

AL PP = (0= 1) (sp-1)" = (N =0+ 1) (,01)°]

OK UP TO HERE
CHeck this -could perhaps get rid off the first two lines using the envelope theorem.

Could there be some argument for why A% > or < AZ?
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106
0z 0qs 0%i41 dzy (106)

) {aw )]

3%{_1 (2t) 021

0% () _ {aw 4Gl 5, OVa [pze+ g () + (N = n)gf (=] } dg;, (2)

0V [+ (0= gy (2 + (N =+ gy (20)] } dal_, ()
dz

(107)

i % OV [pze + na; (z) + (N —n)gf ()]

108
0241 (108)

OV,y [pz +ng;, (2) + (N —n)qj ()] dg;, (2)
aZf;+1 dz

N —ndV; [pz +ng;, (2) + (N —n)gj (2)] dgf, (z)
n 0zi11 dz

10V pat (0= Dy (o) + (N =t g (a0
P p_
n

—d0(n—1)

+0

O0zi41

19V [Pzt +(n—=1)g5_; () + (N —n+1)g!_, (Zt)} dzei1 g4 (%)

n O0zi41 dqy_y dz

(N — 204 1) OV o2+ (n = Dy (20 + (N = n+ D)l ()] agf ()

n 0z dz

(109)

(110)

f
00 () _ om gy (20) da (z0) 07 |91 ()] gl (20
0z dqs dz g, (=) dz

5 % OV [pze +na; (z) + (N —n)gf ()]

(111)

Oz2i41
l@V,f [pzt +ngs (z) + (N —n)g (Zt)] dzi1 dg), (z)
n 0z141 dg;,  dz

+0

A signatory’s payoff from deviating at ns=2 (with return to cooperation in period ¢+ 1)

18

Ins2 (z) =7 (q, (2¢)] — 7 [qne (24)]

1
+5ﬁ Vi (20) = Vi (ze41n-1)]
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with
Zt+1n—1 = P2t + Nan (Zt)

Jns2 (Zt) =T [q,i (Zt)] - [an (Zt)]
+5%V; [p2 + na;, (z) + (N = n)g] (2)]

1
_55‘/7? [Pzt + Nane (24)]

Differentiating with respect to z; yieldsn

ons2J (z) _ or [qp (z0)] day, () O [gne (21)] dgne (21)
0z 0qs dz One (21) dz

107 [o2 + ngi (20) + (N = n)e, (20)]

n 02441

10V, [pz + ng;, (z) + (N = n)gf (20)] dza dgg (21)

n 82t+1 dqu dZt

st Vs [pze +ng, (2) + (N —n)g (2)] dzesr dgf (2)
n

(112)

+0p

+6

O0zi41 dgb  dz

10 pact (= Dy (o) + (N =+ g (2]
_p_
n

Ozt11

_4lmﬁ@4+0%4M3N%H%N—H+U%1@ﬂd%ﬂwm@)

n azt—H dan dzt

0Jns2 (z) _ or (g5, (21)] e — 07 [Gne (21)) n
8Zt E)q;i o 8(]710 (Zt) "

+5p% ovs [pzt +nqs (z) + (N —n)q/ (zt)}

(113)

aZt+1

51,0V [pa + ng; () + (N = m)g, ()] .
n 8Zt+1

OV [pz + ngg (z) + (N — n)g (2)]

6Zt+1

1oV [p2t + Nne (2)]

n aZf:+1

Vi [pz + Npe (21)]

0241

1
O—(N — n
+ n( n) ny,

—5p

nc

1
—0—N
n
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9% Jns2 (z) B 5 0% (42 (21)] o 0T [Gne (20)]

o g " TG
L 5,2 1OV [z 4 g () + (N — n)gy ()]
P n 82Z’t+1
—|—§ln 0°Vyy [pz +ng;, (2) + (N = n)qj (20)] dz 1 dg;, (21)

n len 022111 dgg  dz
+61(N ) Ve [pze +ngl () + (N —n)gl (20)] dzyi1 dgl (2)
n rm 82Zt+1 dq,,]:: dZt

10 2+ (0= 1)g3 (20) + (N =0+ 1)l ()]
—op ﬁ 0?2141

10V ot (= Dy () + (N =4 Dl (2] a1 dge (20

_§=N
O e 24 dgne — dz

0?Jns2 (z)

2 2
82’? - (ns,n) a+ (77716) o

1
+6p° = A3
n
1 1
O () A 8N = ) ()" 4
1 1
_5[)2_14;91 —6—N? (nn0)2 A;
n n

n

0?ns2J (2)
022

1
+ A |60 (150)" + 0 ~(N—n)’ ()"

=« [(77710)2 - (778,71)2}

1
_5_N2 nc 2
—N (1ne)

al]g;ztz(%) =a [(nnc)2 - (ns,n>2}

1
AL [n2 (150)" + (N = n)? (n7.0)°

—N? (77n0)2}

A signatory’s payoff from deviating with ”infinite punishment” and n = 2 is

39

(114)

(115)

(116)

(117)

(118)



J1pn2 (Zt) =7 [QZ (Zt)] -m [qnc (Zt)]

1
+5 EV; (Zt> — Ve (ZtJrl)

=7l (z)] = 7[q" (2)]
+5%V;’ [pz0 + 145, (20) + (N = n)g) (21)]

=V [pze + Nq™ ()]

Differentiating with respect to z; yieldsn

0Jipna (z) _ Om gy ()] dgy, () — 07 [q" (2)] dg" (=)

0z aqs dz 0q™e (z) dz
oV ; N —n)q}
+5pl i [p2 + gy (20) + (N —n)gf (=)
n OZ141
10V [pze +ng; (2) + (N —n)gf (20)] dz11 dg; (21)
+0—

n 02441 dq; dz
+51 Vs [pzi + ng;, () + (N — n)g) (20)] dziyr dgl (2)
n 0241 dgy,  dz
5Vl NG ()

Dz141
_55’V"C [pze + Nq" (2¢)] dzei1 dg" (z)
02141 dge  dz
0Jrpn2 (21) _ or [q;, (21)] Ton — or [q" (21)] n
0z oq o oqne (z) ¢
oV ; N —n)g}
+(5pl o [Pz + ngy () + (N = n)gh (2)]
n Ozi11
+5lnavns [Pzt +ngs (z) + (N —n)g} (Zt)} -~
n 8Zt+1 7
oV ; N —n)g
oty [pz + ng (;t) + (N —n)gj (2)] .
n Zt+1
5,2V Lo+ Na ()
Ozt11
oV lpn N ()]
O0zi41

40



0% J1pna (2 0?m(q (= or? [¢" (2
1P ;( t) _ (7757”)2 [g s( t)] _ (Unc)2 2[36 (20)]
0z; 0%q 02q"¢ (2)

+5p2132vns [pze + ng;, (2) + (N —n)g} (2)]
n

0?2141

1 Vs [pz +ng (z) + (N — n)gl (20)] dzer dgs (1)

+6—nns.p, (122)
n

022111 dgy  dz
aQVnS [Pzt + ng;, (Zt) + (N - n)q,{ (zt)] dzi4q d%{ (Zt)
82Zt+1 dq,,]:: dZt
62vnc [pZt + Nqnc (zt>]
0?2141
02V [pzs + Nq™ (2)] dzesr dg™ ()
0241 dgc  dz

1
0—(N —
+ n( n)1fn

_(5/)2

—ONNye

aQJ[P (Zt)

2 2
82152 = - (ns,n> o+ (nf,nfl) «

1
+6— A3 p?
n
1 1 2
5= A5n2 on 2 5= A° N2 (2
—502/4571
—d(n —1) (Us,nfl)z A£—1 — (N —n+1)? (nf,nfl)2 A£—1

a2J[P (Zt)
027

1
H0= 5 [P 40 () + (N = ) (73,)°] (124a)

AL PP = (0= 1) (sp-1)" = (N =+ 1)* (,01)°]

= - (ns,n>2 o+ (nf,nfl)Q (67

OK UP TO HERE
CHeck this -could perhaps get rid off the first two lines using the envelope theorem.

Could there be some argument for why A% > or < A7?
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125
0z 0qs 0%i41 dzy (125)

) {aw )]

3%{_1 (2t) 021

0% () _ {aw 4Gl 5, OVa [pze+ g () + (N = n)gf (=] } dg;, (2)

0V [+ (0= gy (2 + (N =+ gy (20)] } dal_, ()
dz

(126)

i % OV [pze + na; (z) + (N —n)gf ()]

127
0241 (127)

OV,y [pz +ng;, (2) + (N —n)qj ()] dg;, (2)
aZf;+1 dz

N —ndV; [pz +ng;, (2) + (N —n)gj (2)] dgf, (z)
n 0zi11 dz

10V pat (0= Dy (o) + (N =t g (a0
P p_
n

—d0(n—1)

+0

O0zi41

19V [Pzt +(n—=1)g5_; () + (N —n+1)g!_, (Zt)} dzei1 g4 (%)

n O0zi41 dqy_y dz

(N — 204 1) OV o2+ (n = Dy (20 + (N = n+ D)l ()] agf ()

n 0z dz

(128)

(129)

f
00 () _ om gy (20) da (z0) 07 |91 ()] gl (20
0z dqs dz g, (=) dz

5 % OV [pze +na; (z) + (N —n)gf ()]

(130)

Oz2i41
l@V,f [pzt +ngs (z) + (N —n)g (Zt)] dzi1 dg), (z)
n 0z141 dg;,  dz

+0

A signatory’s payoff from deviating at ns=2 (with return to cooperation in period ¢+ 1)

18

Ins2 (z) =7 (q, (2¢)] — 7 [qne (24)]

1
+5ﬁ Vi (20) = Vi (ze41n-1)]
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with
Zt+1n—1 = P2t + Nan (Zt)

Jns2 (Zt) =T [q,i (Zt)] - [an (Zt)]
+5%V; [p2 + na;, (z) + (N = n)g] (2)]

1
_55‘/7? [Pzt + Nane (24)]

Differentiating with respect to z; yieldsn

ons2J (z) _ or [qp (z0)] day, () O [gne (21)] dgne (21)
0z 0qs dz One (21) dz

107 [o2 + ngi (20) + (N = n)e, (20)]

n 02441

10V, [pz + ng;, (z) + (N = n)gf (20)] dza dgg (21)

n 82t+1 dqu dZt

st Vs [pze +ng, (2) + (N —n)g (2)] dzesr dgf (2)
n

(131)

+0p

+6

O0zi41 dgb  dz

10 pact (= Dy (o) + (N =+ g (2]
_p_
n

Ozt11

_4lmﬁ@4+0%4M3N%H%N—H+U%1@ﬂd%ﬂwm@)

n azt—H dan dzt

0Jns2 (z) _ or (g5, (21)] e — 07 [Gne (21)) n
8Zt E)q;i o 8(]710 (Zt) "

+5p% ovs [pzt +nqs (z) + (N —n)q/ (zt)}

(132)

aZt+1

51,0V [pa + ng; () + (N = m)g, ()] .
n 8Zt+1

OV [pz + ngg (z) + (N — n)g (2)]

6Zt+1

1oV [p2t + Nne (2)]

n aZf:+1

Vi [pz + Npe (21)]

0241

1
O—(N — n
+ n( n) ny,

—5p

nc

1
—0—N
n

43



0% Jns2 (z) B 5 0% (42 (21)] o 0T [Gne (20)]

= - - - - 7 1
az? (ns,n> 82(]781 (77716) a2qnc (Zt) ( 33)
+5p2132v7f [pze + ng;, (2) + (N —n)g} (2)]
n 0?2141
—|—§lnns n82v¢f [PZt + anb (Zt) + (N - n>q1{ (Zt)] dzt—l—l dq; (Zt) (134)
n 022141 dgy  dz
1 0V, [Pzt +ng,, (2¢) + (N — n)qf (zt)] dzi 1 dqf (2¢)
d—(N — = = = - 1
H—(N = n)gn s P (135)
1 2V (o2 (n = Dy (20) + (N = n+ Dl ()]
—6p*— (136)
n 0?2141
—(51]\[ o*V® [pzt +(n=1¢_,(z)+ (N —n+1)qg (zt)] dzesr dgne (20) (137)
no e 24 dgne — dz
02 Jns2 (z)

2 2
82’3 - (ns,n) a+ (77716) o

1
+6p° = A3
n
1 1
O )" AL 80 (N =) )" A

1 1
—0p? =A% — §=N? (o) A°
n n

n

0?ns2J (2)
022

1
+ A |60 (150)" + 0 ~(N—n)’ ()"

=« [(%:)2 - (778,71)2}

1
_5_N2 nc 2
—N (1ne)

8‘]2;2;(2'5) =a [(nnc)2 - (ns,n>2}

1
AL [n2 (150)" + (N = n)? (n7.0)°

_N2 (nnc)Q}
OK UP TO HERE

44



CHeck this -could perhaps get rid off the first two lines using the envelope theorem.

Could there be some argument for why A% > or < AZ?

00 (2) _ [onlaz (o] , 5, Ve [t nai (o0 + V= miaf o) | daz ),
0z g 0zi41 dz
or [qf:_l (zt)} ov? [,Ozt +(n—1)¢_; (=) +(N—n+ 1)%{—1 (Zt)] dqf 1 ()
— +4 =
09 (=) Ozt b
(142)
avs S N _ f
1o, L2V pa1 e (2) + (N = m)gi ()] (143)
n 0241
S 1>3Vns [pze + ng;, () + (N = n)gf ()] dg;, (=)
0z dz
+5N —n IV [pz +ng; (2) + (N —n)g) (2)] dgf ()
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