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Abstract

In this paper we consider a regression model and a general family of shrinkage estimators of regression
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regression coefficient. It is shown analytically that the usual shrinkage estimators are dominated by their positive-
part variants in terms of MSE.
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1 Introduction

In the context of a linear regression, the Stein-rule (SR) estimator proposed by Stein (1956) and James and Stein

(1961) dominates the ordinary least squares (OLS) estimator in terms of predictive mean squared error (PMSE) if

the number of the regression coefficients is larger than or equal to three. Though the SR estimator dominates the

OLS estimator, Baranchik (1970) showed that the SR estimator is further dominated by the positive-part Stein-rule

(PSR) estimator. As is shown in Judge and Bock (1978), the PSR estimator is considered as a pre-test estimator

after a pre-test for the null hypothesis that all the regression coefficients are zeros. Nickerson (1988) and Namba

(2003) considered general classes of shrinkage estimators which includes the SR and PSR estimator as special

cases, and showed that shrinkage estimators are dominated by their positive-part variants.

Though the SR and PSR estimators dominate the OLS estimator when all the regression coefficients are es-

timated simultaneously, the dominance does not necessarily hold when each individual regression coefficient is

estimated separately (e.g., Efron and Morris (1973) and Rao and Shinozaki (1978)). Ohtani and Kozumi (1996)

examined the mean squared error (MSE) performance of the SR and PSR estimators when our concern is to

estimate each individual regression coefficient, and showed that the SR and PSR estimators do not necessarily

dominate the OLS estimator while the MSE dominance of the PSR estimator over the SR estimator still holds.

In this paper, we suppose that our concern is to estimate each individual regression coefficient separately,

and consider a general class of pre-test shrinkage estimator considered by Namba (2003). We derive the explicit

formulae for the moments of the estimators and show that shrinkage estimators are dominated by their positive-part

variants in terms of MSE even when our concern is to estimate each individual regression coefficient.

2 Model and the estimators

Consider a linear regression model,

y “ Xβ` ε, ε „ Np0, σ2Inq, (1)

where y is an n ˆ 1 vector of observations on a dependent variable, X is an n ˆ k matrix of full column rank of

observations on nonstochastic independent variables, β is a k ˆ 1 vector of regression coefficients, and ε is an n ˆ 1

vector of normal error terms.

Following Judge and Yancey (1986, p. 11.), we reparameterize the model (1) and work with the following

orthonormal counterpart:

y “ Zγ ` ε, (2)

where Z “ XS ´1{2, γ “ S 1{2β, and S 1{2 is the symmetric matrix such that S ´1{2S S ´1{2 “ Z1Z “ Ik, where
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S “ X1X. Then the ordinary least squares (OLS) estimator of γ is

pγ “ Z1y. (3)

In the context of reparameterized model, the Stein-rule (SR) estimator proposed by Stein (1956) is defined as

pγSR “

ˆ

1 ´
ae1e
pγ1

pγ

˙

pγ, (4)

where e “ y ´ Zpγ and a is a constant such that 0 ď a ď 2pk ´ 2q{pν ` 2q, where ν “ n ´ k. As is shown by

Stein (1956), the SR estimator dominates the OLS estimator in terms of predictive mean squared error (PMSE)

when k ě 3. Also, James and Stein (1961) showed that the PMSE of the SR estimator is minimized when

a “ pk ´ 2q{pν` 2q.

Although the SR estimator dominates the OLS estimator, Baranchik (1970) showed that the SR estimator is

further dominated by the positive-part Stein-rule (PSR) estimator defined as

pγPSR “ max
„

0, 1 ´
ae1e
pγ1

pγ



pγ. (5)

Ohtani and Kozumi (1996) showed that the PSR estimator for each individual regression coefficient dominates the

SR estimator in terms of mean squared error (MSE).

After the findings of Stein (1956) and James and Stein (1961), lots of estimators which may have smaller

PMSE than the OLS estimator have been proposed. These estimators are called shrinkage estimators because they

are usually obtained by shrinking the OLS estimator towards the origin. In particular, Baranchik (1970) proposed

a general family of shrinkage estimators:

pγB “

„

1 ´
rpFq

F



pγ, (6)

where F “ ppγ1
pγq{pe1eq. If we define F1 “ νF{k, then F1 is the test statistic for the null hypothesis H0 : γ “ 0

against the alternative H1 : γ ‰ 0. This estimator dominates the OLS estimator in terms of PMSE if

(i). rp¨q is monotone, non-decreasing,

(ii). 0 ď rp¨q ď 2pk ´ 2q{pν` 2q.

Also, Namba (2003) considered a general class of shrinkage estimators:

pγφ “ p1 ´ φpFqqpγ, (7)

and its positive-part variant:

pγ`
φ “ maxr0, p1 ´ φpFqqspγ, (8)

where φpFq is any real value function of F. In general, φp¨q is positive and continuous. Hereafter, we call these

estimators the shrinkage estimators and the positive-part shrinkage estimator respectively. The shrinkage and
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positive-part shrinkage estimators include the most of the estimators proposed so far as special cases. Namba

(2003) showed that the positive-part shrinkage estimator dominates the shrinkage estimator in terms of PMSE.

However, the MSE dominance when our concern is to estimate each individual regression coefficient has not been

examined so far. Thus, in this paper, we derive the MSE of these estimators for each individual coefficient and

show that the MSE of the positive-part shrinkage estimator is smaller than that of the shrinkage estimator.

3 MSE and dominance

Consider a following pre-test shrinkage estimators:

rγφpcq “ IpF ě cqp1 ´ φpFqqpγ, (9)

where IpAq is an indicator function such that IpAq “ 1 if an event A occurs and IpAq “ 0 otherwise, and c is the

critical value of the pre-test. This estimator reduces to pγφ given in (7) when c “ 0 and includes the SR, PSR and

Baranchik’s (1970) estimators as special cases.

Let h be a k ˆ 1 vector with known elements. If h1 is the ith row vector of S ´1{2, the estimator h1
rγφpcq is the

ith element of the pre-test shrinkage estimator for β in the original model. Since the elements of h are known, we

assume that h1h “ 1 without loss of generality. Then the MSE of h1
rγφpcq is

MSErh1
rγφpcqs “ Erph1

rγφpcq ´ h1γq2s

“ ErIpF ě cq p1 ´ φpFqq
2

ph1
pγq2s

´2h1γErIpF ě cq p1 ´ φpFqq h1
pγs ` ph1γq2. (10)

If we define functions Hpp, q; cq and Jpp, q; cq as

Hpp, q; cq “ ErIpF ě cqp1 ´ φpFqqpph1
pγq2qs, (11)

Jpp, q; cq “ ErIpF ě cqp1 ´ φpFqqpph1
pγq2qph1

pγqs, (12)

then the MSE of h1
rγφpcq is written as

MSErh1
rγφpcqs “ Hp2, 1; cq ´ 2h1γJp1, 0; cq ` ph1γq2. (13)

As shown in Appendix, the explicit formulae of Hpp, q; cq and Jpp, q; cq are

Hpp, q; cq “ p2σ2qq
8
ÿ

i“0

8
ÿ

j“0

wipλ1qw jpλ2qGi jpp, q; cq, (14)

Jpp, q; cq “ h1γp2σ2qq
8
ÿ

i“0

8
ÿ

j“0

wipλ1qw jpλ2qGi`1, jpp, q; cq, (15)
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where

Gi jpp, q; cq “
Γppν` kq{2 ` q ` i ` jqΓp1{2 ` q ` iq
Γpk{2 ` q ` i ` jqΓp1{2 ` iqΓpν{2q

ˆ

ż 1

c˚

ˆ

1 ´ φ

ˆ

t
1 ´ t

˙˙p

tk{2`q`i` j´1p1 ´ tqν{2´1dt, (16)

wipλq “ expp´λ{2qpλ{2qi{i!, λ1 “ ph1γq2{σ2, λ2 “ γ1pIk ´ hh1qγ{σ2 and c˚ “ c{p1 ` cq.

Hereafter, we assume that both Hp2, 1; cq and Jp1, 0; cq are absolutely convergent. For example, both Hp2, 1; cq

and Jp1, 0; cq are absolutely convergent if |φp¨q| ă 8. Also, they converge absolutely for k ě 3 if |φp t
1´t q{t| ă 8

on t P p0, 1q.

Assuming that φp¨q is continuous and differentiating (16) with respect to c, we have:

BGi jpp, q; cq

Bc
“ ´
Γppν` kq{2 ` q ` i ` jqΓp1{2 ` q ` iq
Γpk{2 ` q ` i ` jqΓp1{2 ` iqΓpν{2q

ˆ
ck{2`q`i` j´1

p1 ` cqpν`kq{2`q`i` j
p1 ´ φpcqq

p . (17)

Using (17) and performing some manipulations, we have:

1
2σ2

BMSErh1
rγφpcqs

Bc
“ ´

8
ÿ

i“0

8
ÿ

j“0

wipλ1qw jpλ2q
Γppν` kq{2 ` i ` j ` 1qΓp1{2 ` i ` 1q

Γpk{2 ` i ` j ` 1qΓp1{2 ` iqΓpν{2q

ˆ
ck{2`i` j

p1 ` cqpν`kq{2`i` j`1
p1 ´ φpcqq

„

p1 ´ φpcqq ´
λ1

1{2 ` j



, (18)

when φpcq is continuous. Thus, the MSE of h1
rγφpcq is a decreasing function of c when φpcq ą 1.

Assume that φp¨q is a continuous function such that φpcq ą 1 if c ď c˚˚ and φpcq ď 1 if c ą c˚˚. Then, the

MSE of h1
rγφpcq is monotonically decreasing on c P r0, c˚˚s. Also, rγφpcq reduces to pγφ given in (7) when c “ 0

and to pγ`
φ given in (8) when c “ c˚˚, respectively. Thus, we obtain the following lemma.

Lemma 1 When our concern is to estimate each individual regression coefficient, the pre-test shrinkage estimator

h1
rγφpcq with 0 ă c ď c˚˚ dominates the shrinkage estimator h1

pγφ in terms of MSE if

• φp¨q is a continuous function such that φpcq ą 1 if 0 ă c ď c˚˚ for some c˚˚ and φpcq ď 1 otherwise.

In particular, the pre-test shrinkage estimator with c˚˚ has the smallest MSE in the class of the estimators with

0 ď c ď c˚˚.

Since the pre-test shrinkage estimator with c “ c˚˚ reduces to the positive-part shrinkage estimator given in (8)

when the condition in Lemma 1 is satisfied, we obtain the following theorem.

Theorem 1 When our concern is to estimate each individual regression coefficient, the positive-part shrinkage

estimator h1
pγ`
φ dominates the shrinkage estimator given in h1

pγφ in terms of MSE if

• φp¨q is a continuous function such that φpcq ě 1 if 0 ă c ď c˚˚ for some c˚˚ and φpcq ă 1 otherwise.
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Next, we extend Theorem 1. Since rγφpcq reduces to pγφ when c “ 0, we have:

MSErh1
pγφs “ Hp2, 1; 0q ´ 2h1γJp1, 0; 0q ` ph1γq2. (19)

Substituting (14) and (15) into (19) and performing some manipulations, we have:

MSErh1
pγφs

σ2

“ 2
8
ÿ

i“0

8
ÿ

j“0

wipλ1qw jpλ2q
Γppν` k{2q ` i ` j ` 1qΓp1{2 ` i ` 1q

Γpk{2 ` i ` j ` 1qΓp1{2 ` iqΓpν{2q

ˆ

ż 1

0
tk{2`i` jp1 ´ tqν{2´1

ˆ

1 ´ φ

ˆ

t
1 ´ t

˙˙ „ˆ

1 ´ φ

ˆ

t
1 ´ t

˙˙

´
λ1

1{2 ` i



dt ` λ1

“ 2
8
ÿ

i“0

8
ÿ

j“0

wipλ1qw jpλ2q
Γppν` k{2q ` i ` j ` 1qΓp1{2 ` i ` 1q

Γpk{2 ` i ` j ` 1qΓp1{2 ` iqΓpν{2q

ˆ

ˆ
ż

R1

`

ż

R2

˙

tk{2`i` jp1 ´ tqν{2´1
ˆ

1 ´ φ

ˆ

t
1 ´ t

˙˙ „ˆ

1 ´ φ

ˆ

t
1 ´ t

˙˙

´
λ1

1{2 ` i



dt

`λ1, (20)

where R1 is the region such that {t|1 ´ φp t
1´t q ą 0 and 0 ď t ď 1}, R2 is the region such that {t|1 ´ φp t

1´t q ď 0

and 0 ď t ď 1}, and p
ş

R1
`

ş

R2
q f ptqdt denotes

ş

R1
f ptqdt `

ş

R2
f ptqdt.

Also, replacing p1 ´ φp¨qq in (20) by maxr0, 1 ´ φp¨qs, we obtain the MSE of the positive-part shrinkage

estimator:
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MSErh1
pγ`
φ s

σ2

“ 2
8
ÿ

i“0

8
ÿ

j“0

wipλ1qw jpλ2q
Γppν` k{2q ` i ` j ` 1qΓp1{2 ` i ` 1q

Γpk{2 ` i ` j ` 1qΓp1{2 ` iqΓpν{2q

ˆ

ż

R1

tk{2`i` jp1 ´ tqν{2´1
ˆ

1 ´ φ

ˆ

t
1 ´ t

˙˙ „ˆ

1 ´ φ

ˆ

t
1 ´ t

˙˙

´
λ1

1{2 ` i



dt

`λ1. (21)

Subtracting (21) from (20), we have:

MSErh1
pγφs ´ MSErh1

pγ`
φ s

σ2

“ 2
8
ÿ

i“0

8
ÿ

j“0

wipλ1qw jpλ2q
Γppν` k{2q ` i ` j ` 1qΓp1{2 ` i ` 1q

Γpk{2 ` i ` j ` 1qΓp1{2 ` iqΓpν{2q

ˆ

ż

R2

tk{2`i` jp1 ´ tqν{2´1
ˆ

1 ´ φ

ˆ

t
1 ´ t

˙˙ „ˆ

1 ´ φ

ˆ

t
1 ´ t

˙˙

´
λ1

1{2 ` i



dt ě 0 (22)

because R2 is the region such that tt|1 ´ φp t
1´t q ď 0 and 0 ď t ď 1u. Thus, we obtain the following theorem.

Theorem 2 When our concern is to estimate each individual regression coefficient, the shrinkage estimator is

dominated by its positive-part variant in terms of MSE, if

• 1 ´ φpFq ă 0 for some region of F P r0,8q.

1 ´ φpFq ­ă 0 for any region of F P r0,8q implies that the shrinkage estimator pγφ coincides with the positive-part

shrinkage estimator pγ`
φ . Therefore, we need not consider a positive-part estimator. Thus, Theorem 2 indicates that

the MSE of the shrinkage estimator can be improved whenever there exists a positive part variant.

Appendix

In this appendix, we derive the formulae for Hpp, q; cq and Jpp, q; cq. First, we derive the formula for Hpp, q; cq.

Let u1 “ ph1
pγq2{σ2, u2 “ pγ1pIk ´ hh1qpγ{σ2 and u3 “ e1e{σ2. Then, u1 „ χ12

1 pλ1q and u2 „ χ12
k´1pλ2q, where χ12

f pλq

is the noncentral chi-square distribution with f degrees of freedom and noncentrality parameter λ, λ1 “ ph1γq2{σ2

and λ2 “ γ1pIk ´ hh1qγ{σ2. Further, u3 is distributed as the chi-square distribution with ν “ n ´ k degrees of

freedom, and u1, u2 and u3 are mutually independent.

Using u1, u2 and u3, Hpp, q; cq is expressed as

Hpp, q; cq

“ pσ2qq
8
ÿ

i“0

8
ÿ

j“0

Ki j

żżż

R

ˆ

1 ´ φ

ˆ

u1 ` u2

u3

˙˙q

ˆu1{2`q`i´1
1 upk´1q{2` j´1

2 uν{2´1
3 expr´pu1 ` u2 ` u3q{2sdu1 du2 du3, (23)
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where

Ki j “
wipλ1qw jpλ2q

2pν`kq{2`i` jΓp1{2 ` iqΓppk ´ 1q{2 ` jqΓpν{2q
, (24)

wipλq “ expp´λ{2qpλ{2qi{i!, and R is the region such that pu1 ` u2q{u3 ě c.

Making use of the change of variables, v1 “ pu1 ` u2q{u3, v2 “ u1u3{pu1 ` u2q and v3 “ u3, (23) reduces to

pσ2qq
8
ÿ

i“0

8
ÿ

j“0

Ki j

ż 8

0

ż v3

0

ż 8

c
p1 ´ φpv1qq

p vk{2`q`i` j´1
1 v1{2`q`i´1

2 vν{2
3 pv3 ´ v2qpk´1q{2` j´1

ˆ expr´v3pv1 ` 1q{2sdv1 dv2 dv3. (25)

Again, making use of the change of variable, z1 “ v2{v3, (25) reduces to

pσ2qq
8
ÿ

i“0

8
ÿ

j“0

Ki j
Γp1{2 ` q ` iqΓppk ´ 1q{2 ` jq

Γpk{2 ` q ` i ` jq

ˆ

ż 8

0

ż 8

c
p1 ´ φpv1qq

p vk{2`q`i` j´1
1 vpν`kq{2`q`i` j´1

3 expr´v3pv1 ` 1q{2sdv1 dv3. (26)

Further, making use of the change of variable, z2 “ v3pv1 ` 1q{2, (26) reduces to

pσ2qq
8
ÿ

i“0

8
ÿ

j“0

Ki j2pν`kq{2`q`i` j Γp1{2 ` q ` iqΓppk ´ 1q{2 ` jqΓppν` kq{2 ` q ` i ` jq
Γpk{2 ` q ` i ` jq

ˆ

ż 8

c
p1 ´ φpv1qq

p vk{2`q`i` j´1
1

p1 ` v1qpν`kq{2`q`i` j
dv1. (27)

Finally, making use of the change of variable, t “ v1{p1 ` v1q. we obtain (14) in the text.

Next, we derive the formula for Jpp, q; cq. Differentiating Hpp, q; cq given in (14) with respect to γ, we have

BHpp, q; cq

Bγ

“ p2σ2qq
8
ÿ

i“0

8
ÿ

j“0

„

Bwipλ1q

Bγ
w jpλ2q ` wipλ1q

Bw jpλ2q

Bγ



Gi jpp, q; cq

“ ´
hh1γ

σ2 p2σ2qq
8
ÿ

i“0

8
ÿ

j“0

wipλ1qw jpλ2qGi jpp, q; cq

`
hh1γ

σ2 p2σ2qq
8
ÿ

i“0

8
ÿ

j“0

wipλ1qw jpλ2qGi`1, jpp, q; cq

´
pIk ´ hh1qγ

σ2 p2σ2qq
8
ÿ

i“0

8
ÿ

j“0

wipλ1qw jpλ2qGi jpp, q; cq

`
pIk ´ hh1qγ

σ2 p2σ2qq
8
ÿ

i“0

8
ÿ

j“0

wipλ1qw jpλ2qGi, j`1pp, q; cq, (28)

where we define w´1pλ1q “ w´1pλ2q “ 0. Since h1h “ 1, we obtain

h1 BHpp, q; cq

Bγ
“ ´

h1γ

σ2 Hpp, q; cq `
h1γ

σ2 p2σ2qq
8
ÿ

i“0

8
ÿ

j“0

wipλ1qw jpλ2qGi`1, jpp, q; cq. (29)
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Expressing Hpp, q; cq by pγ and e1e, we have

Hpp, q; cq “

żż

Fěc
p1 ´ φ pFqq

p
ph1

pγq2q fNppγq fepe1eqdpγ dpe1eq, (30)

where F “ ppγ1
pγq{pe1eq, f pe1eq is the density function of e1e, and

fNppγq “
1

p2πqk{2σk
exp

„

´
ppγ ´ γq1ppγ ´ γq

2σ2



, (31)

is the density function of pγ.

Differentiating Hpp, q; cq given in (30) with respect to γ, and multiplying h1 from the left, we obtain

h1 BHpp, q; cq

Bγ
“ ´

h1γ

σ2 Hpp, q; cq `
1
σ2 E

“

IpF ě cq p1 ´ φ pFqq
p

ph1
pγq2qh1

pγ
‰

. (32)

Equating (29) and (32), we obtain (15) in the text.
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