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Abstract

In this paper we consider a regression model and a general family of shrinkage estimators of regression
coefficients. We derive the formula for the mean squared error (MSE) of the estimators for each individual
regression coefficient. It is shown analytically that the usual shrinkage estimators are dominated by their positive-
part variants in terms of MSE.
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1 Introduction

In the context of a linear regression, the Stein-rule (SR) estimator proposed by Stein (1956) and James and Stein
(1961) dominates the ordinary least squares (OLS) estimator in terms of predictive mean squared error (PMSE) if
the number of the regression coeflicients is larger than or equal to three. Though the SR estimator dominates the
OLS estimator, Baranchik (1970) showed that the SR estimator is further dominated by the positive-part Stein-rule
(PSR) estimator. As is shown in Judge and Bock (1978), the PSR estimator is considered as a pre-test estimator
after a pre-test for the null hypothesis that all the regression coefficients are zeros. Nickerson (1988) and Namba
(2003) considered general classes of shrinkage estimators which includes the SR and PSR estimator as special
cases, and showed that shrinkage estimators are dominated by their positive-part variants.

Though the SR and PSR estimators dominate the OLS estimator when all the regression coefficients are es-
timated simultaneously, the dominance does not necessarily hold when each individual regression coefficient is
estimated separately (e.g., Efron and Morris (1973) and Rao and Shinozaki (1978)). Ohtani and Kozumi (1996)
examined the mean squared error (MSE) performance of the SR and PSR estimators when our concern is to
estimate each individual regression coefficient, and showed that the SR and PSR estimators do not necessarily
dominate the OLS estimator while the MSE dominance of the PSR estimator over the SR estimator still holds.

In this paper, we suppose that our concern is to estimate each individual regression coefficient separately,
and consider a general class of pre-test shrinkage estimator considered by Namba (2003). We derive the explicit
formulae for the moments of the estimators and show that shrinkage estimators are dominated by their positive-part

variants in terms of MSE even when our concern is to estimate each individual regression coefficient.

2 Model and the estimators

Consider a linear regression model,
y=XB+e e~ N(0,0,), e))

where y is an n x 1 vector of observations on a dependent variable, X is an n x k matrix of full column rank of
observations on nonstochastic independent variables, 8 is a k x 1 vector of regression coefficients, and eis an n x 1
vector of normal error terms.

Following Judge and Yancey (1986, p. 11.), we reparameterize the model (1) and work with the following

orthonormal counterpart:
y=2y+e, )

where Z = XS~'/2,y = §'/2B, and S'/? is the symmetric matrix such that S ~'/2§§~1/2 = 7'Z = I, where



S = X’X. Then the ordinary least squares (OLS) estimator of vy is

y=2y. 3)
In the context of reparameterized model, the Stein-rule (SR) estimator proposed by Stein (1956) is defined as

N ac'e\ .

= (1-55)7 @
where ¢ = y — Zy and a is a constant such that 0 < a < 2(k — 2)/(v + 2), where v = n — k. As is shown by
Stein (1956), the SR estimator dominates the OLS estimator in terms of predictive mean squared error (PMSE)
when £ > 3. Also, James and Stein (1961) showed that the PMSE of the SR estimator is minimized when
a=(k—2)/(v+2).

Although the SR estimator dominates the OLS estimator, Baranchik (1970) showed that the SR estimator is

further dominated by the positive-part Stein-rule (PSR) estimator defined as

N ae'e .
Ypsg = max [0, 1— W] Y. 5)

Ohtani and Kozumi (1996) showed that the PSR estimator for each individual regression coefficient dominates the
SR estimator in terms of mean squared error (MSE).

After the findings of Stein (1956) and James and Stein (1961), lots of estimators which may have smaller
PMSE than the OLS estimator have been proposed. These estimators are called shrinkage estimators because they
are usually obtained by shrinking the OLS estimator towards the origin. In particular, Baranchik (1970) proposed

a general family of shrinkage estimators:
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where F = (¥'y)/(€'e). If we define F; = vF/k, then F, is the test statistic for the null hypothesis Hy : y = 0
against the alternative H; : vy # 0. This estimator dominates the OLS estimator in terms of PMSE if
(1). r(-) is monotone, non-decreasing,
(). 0<r(c) <2(k—2)/(v +2).
Also, Namba (2003) considered a general class of shrinkage estimators:
Yo = (1 = ¢(F))7, (7)
and its positive-part variant:
¥, = max[0, (1 - ¢(F))]y, ®)

where ¢(F) is any real value function of F. In general, ¢(-) is positive and continuous. Hereafter, we call these

estimators the shrinkage estimators and the positive-part shrinkage estimator respectively. The shrinkage and



positive-part shrinkage estimators include the most of the estimators proposed so far as special cases. Namba
(2003) showed that the positive-part shrinkage estimator dominates the shrinkage estimator in terms of PMSE.
However, the MSE dominance when our concern is to estimate each individual regression coefficient has not been
examined so far. Thus, in this paper, we derive the MSE of these estimators for each individual coefficient and

show that the MSE of the positive-part shrinkage estimator is smaller than that of the shrinkage estimator.

3 MSE and dominance
Consider a following pre-test shrinkage estimators:

Yo(c) = I(F = ¢)(1 — ¢(F))y, )

where I(A) is an indicator function such that 7/(A) = 1 if an event A occurs and I(A) = 0 otherwise, and ¢ is the
critical value of the pre-test. This estimator reduces to ¥, given in (7) when ¢ = 0 and includes the SR, PSR and

Baranchik’s (1970) estimators as special cases.

—1/2

Let h be a k x 1 vector with known elements. If 4’ is the ith row vector of S ~'/*, the estimator h',(c) is the

ith element of the pre-test shrinkage estimator for 8 in the original model. Since the elements of & are known, we

assume that h’h = 1 without loss of generality. Then the MSE of /'y, (c) is

MSE[174(c)] = E[(HT(c) — h'y)*]
— E[I(F = ¢) (1 — ¢(F))* (9)*]
—2WYE[I(F = ¢) (1 — ¢(F)) '] + (H'y). (10)

If we define functions H(p, q; ¢) and J(p, q;c) as

H(p.q:c) = E[I(F = c)(1 — ¢(F))"(h'3)™], (11)
J(p.g;c) = E[I(F = c)(1 — ¢(F))"(h'9)* ()], (12)

then the MSE of /'y4(c) is written as
MSE[R'Y4(c)] = H(2,1;¢) — 2h'yJ(1,0;¢) + (h'y)*. (13)

As shown in Appendix, the explicit formulae of H(p, ¢; ¢) and J(p, g; c) are

o
H(p.qic) = (207)7 > wi(A1)w;(42)Gij(p. g: ), (14)
i=0 j=0
o O
J(p.gic) = W'y(207)1 Y > T wild)w;j(2)Girj(p. gi ), (15)
i=0 j=0



where

C((v+k)24+q+i+ )T(1/2+q+1i)
T(k/2+q+i+ HT(1/2+i)T(v/2)

1 p
x J <1 o ¢ (%ﬂ)) tk/2+q+l’+j71(1 _ t)v/271dt’ (16)

wi(2) = exp(—1/2)(1/2)!/i!, 4y = (W'y)?/o?, 2 = ¥ (I — hi')y/o* and ¢* = ¢/(1 + ¢).

Gij(p.q:c) =

Hereafter, we assume that both H(2, 1; ¢) and J(1, 0; ¢) are absolutely convergent. For example, both H(2, 1;¢)
and J(1,0; ¢) are absolutely convergent if [¢(-)| < co. Also, they converge absolutely for k > 3 if |¢(15)/t| < o0
onte (0,1).

Assuming that ¢(+) is continuous and differentiating (16) with respect to ¢, we have:

0Gij(p.qic)  T((v+k)/2+q+i+ j)T(1/2+q+1i)
dc  Tk2+q+i+ )T(1/2+)T(v/2)

Ck/2+q+i+j—1
(1—¢(c))". (17)

X (1+ C)(v+k)/2+q+i+j

Using (17) and performing some manipulations, we have:

1 aMSE[h% C((v+k)/2+i+j+1)I{A/2+i+1)
202 ZO JZ;) i) R T T T2 + 0T02)
ck/2+i+j /ll
(el |1- 00 - =], (18)

when ¢(c) is continuous. Thus, the MSE of /y,(c) is a decreasing function of ¢ when ¢(c) > 1.
Assume that ¢(-) is a continuous function such that ¢(c) > 1if ¢ < ¢** and ¢(c) < 1if ¢ > ¢**. Then, the
MSE of h'y,(c) is monotonically decreasing on ¢ € [0, c**]. Also, ¥,(c) reduces to ¥, given in (7) when ¢ = 0

and to f/;r given in (8) when ¢ = ¢**, respectively. Thus, we obtain the following lemma.

Lemma 1 When our concern is to estimate each individual regression coefficient, the pre-test shrinkage estimator

Wy(c) with 0 < ¢ < ¢** dominates the shrinkage estimator h'y, in terms of MSE if
e ¢(-) is a continuous function such that $(c) > 1if 0 < ¢ < ¢** for some ¢** and ¢(c) < 1 otherwise.

In particular, the pre-test shrinkage estimator with c¢** has the smallest MSE in the class of the estimators with

0<c<c*

Since the pre-test shrinkage estimator with ¢ = ¢** reduces to the positive-part shrinkage estimator given in (8)

when the condition in Lemma 1 is satisfied, we obtain the following theorem.

Theorem 1 When our concern is to estimate each individual regression coefficient, the positive-part shrinkage

estimator h' )A/;r dominates the shrinkage estimator given in 'y, in terms of MSE if

o ¢(-) is a continuous function such that ¢(c) = 1if 0 < ¢ < ¢** for some ¢** and ¢(c) < 1 otherwise.



Next, we extend Theorem 1. Since ¥(c) reduces to ¥, when ¢ = 0, we have:
MSE[l'y,] = H(2,1;0) — 2h'yJ(1,0;0) + (h'y)%. (19)

Substituting (14) and (15) into (19) and performing some manipulations, we have:

MSE[1'5]

© @ T((v+k/2)+i+j+DI(1/2+i+1)
= ZZ 2 w,-(/h)wj‘(/lz) F(k/z +itj+ 1)1"(]/2 + i)F(y/Z)

[ e () [ o) e

n ® T((v+k/2)+i+j+DI(12+i+1)
=2, 2 wil)wj(d) T(k/2+i+ j+ DI(1/2+)T(v/2)

(L) (120 (75)) [(-0(75)) -]«

+4, (20)

where R is the region such that {f|1 — ¢(1=) > 0and 0 < 7 < 1}, R, is the region such that {f|]1 — ¢(:%) < 0
and 0 < < 1}, and (§; +§; )f(r)dt denotes §, f(t)dt + § f(r)dt.
Also, replacing (1 — ¢(+)) in (20) by max[0,1 — ¢(-)], we obtain the MSE of the positive-part shrinkage

estimator:



MSE[r'y; ]

- L((+K/2) i+ j+ DO(1/2 +i+ 1)
=237 wi(d)wi(4) T(k/2+ i+ j+ DI(1/2 +i)T(v/2)

Jormsre (o (7)) [0 (75)) -]

+4;. 2n

Subtracting (21) from (20), we have:
MSE[h'"y,] — MSE[H M’]
o2

w0 o C((v+k/2)+i+j+DI(12+i+1)
;; i()wj(d2) T(k/2+ i+ j+ 1DI(1/2 +i)[(v/2)

Lo (o) e

because R; is the region such that {t|/1 — ¢(7=) < 0 and 0 < 7 < 1}. Thus, we obtain the following theorem.

Theorem 2 When our concern is to estimate each individual regression coefficient, the shrinkage estimator is

dominated by its positive-part variant in terms of MSE, if
o 1 — ¢(F) < 0 for some region of F € [0, ).

1 — ¢(F) < 0 for any region of F € [0, c0) implies that the shrinkage estimator Y, coincides with the positive-part
shrinkage estimator )A/;r Therefore, we need not consider a positive-part estimator. Thus, Theorem 2 indicates that

the MSE of the shrinkage estimator can be improved whenever there exists a positive part variant.

Appendix

In this appendix, we derive the formulae for H(p, ¢;c) and J(p, g; ¢). First, we derive the formula for H(p, g; ).
Letu; = (W'y)*/o?, uy = 7' (I — hi')y/o? and us = €'e/o. Then, uy ~ x (A1) and uz ~ x>, (42), where x7(2)
is the noncentral chi-square distribution with f degrees of freedom and noncentrality parameter A, 1; = (h'y)?/o?
and Ay = y/(I; — hi')y/o?. Further, u3 is distributed as the chi-square distribution with v = n — k degrees of
freedom, and u;, u, and u3 are mutually independent.

Using uy, up and uz, H(p, g; ¢) is expressed as

H(p.q:c)
w 0 q
_ 2\q Uy + U
g ER o)
><ui/HqJ”;lugkfl)/zﬂflug/z*l exp[—(u1 + up + u3)/2]du; duy dus, (23)



where

wi(A1)w;(12)
20024 +0(1/2 + )0((k — 1)/2 + jT(v/2)’

w;i(A) = exp(—1/2)(4/2)'/i!, and R is the region such that (u; + uy)/uz > ¢

Kij = (24)

Making use of the change of variables, vi = (u; + uz)/uz, v = wjuz/(u; + uz) and vz = u3, (23) reduces to

0 0 00 (V3 00
k/24q+itj—1_1/24q+i—1_v/2 _ .
z)qZZKijLLf (17¢(v1))pv1/ e Vz/ rar V3/ (V37v2)(k D/2+j-1
i=0 j=0 c

x exp[—vs(vi + 1)/2]dv; dv, dvs. (25)

Again, making use of the change of variable, z; = v,/vs, (25) reduces to

P2+ g+ 00((k-1)/2+))
;);)K” C(k/2+q+i+))

X f f (1—¢(n))” VII/ZMHJFFIvgv+k)/2+q+i+j71 exp[—vs(vi + 1)/2]dv, dvs. (26)
0 Je

Further, making use of the change of variable, z, = v3(v; + 1)/2, (26) reduces to

v gric LA2+ g+ )T((k =12+ HI((v+k)/2+q+i+ ]
ZZ[( (k) /24 q+i+ I'(1/2+¢q )((r(k/)2/+qi)i$j) )/2+q )

i=0 j=
vk/2+q+i+j—1

o0
_ P 1
* J; (1=¢(n)) 1+ vl)(v+k)/2+q+i+jdvl' 27

Finally, making use of the change of variable, 7 = v; /(1 + v;). we obtain (14) in the text.

Next, we derive the formula for J(p, ¢; ¢). Differentiating H(p, ¢; ¢) given in (14) with respect to y, we have
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where we define w_1(1;) = w_1(4;) = 0. Since /'h = 1, we obtain

0H(p,q;c n n &
h’(a—y) = —O_—ZH(p,q;c) + —Z o?) qZZw, A)wi(2)Giy1,(p.q;c). (29)
i=0 j=0



Expressing H(p, ¢;c) by y and ¢’e, we have

Hpgi) = [| (1= 0() 09 ARGz aee) (30)

where F = (¥'y)/(€'e), f(€'e) is the density function of ¢’e, and

~ 1 -G -v
vy = WGXP [—T , (31
is the density function of .
Differentiating H(p, ¢; ¢) given in (30) with respect to vy, and multiplying 4’ from the left, we obtain
0H(p,q;c¢) Wy 1 ~ ~
/ > 1> . . P 12N\2q1,/
h o —gH(P,q,C) +—E [I(F=c)(1—¢(F)" (hy)*Hy]. (32)

Equating (29) and (32), we obtain (15) in the text.
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