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1 Introduction

Conditional independence is an important concept in probability theory and a widely used assumption

in economic and financial modeling. Let X , Y and Z be random variables or vectors. Then Y is inde-

pendent of Z givenX , which we denote as Y⊥Z|X , if the joint probability density function of Y and Z

conditional on X equals to the product of the conditional marginal density functions of Y and Z for any

values of (Y,Z) in their support. The conditional independence assumption encompasses many impor-

tant hypotheses in econometrics and statistics (Dawid, 1979; 1980). To motivate the important roles of

the conditional independence assumption, we provide a few examples in economics and econometrics.

The first example of conditional independence is the Markov property of a time series process. A

strictly stationary time series Xt is said to follow a Markov process if

Xt+1⊥(Xt−1, Xt−2, · · · )|Xt

For a Markov process {Xt}, the current state variable or vector Xt will contain all useful information

in predicting the future behavior of Xt. The Markov property is broadly used in economics and finance

(e.g., Easley and O’Hara, 1987; Rust, 1994). It is a fundamental property in time series analysis and is

widely accepted in econometric testing (Bouissou et al., 1986; Aı̈t-Sahalia et al., 2009) and economic

modeling (Beja, 1979; Pakes and McGuire, 2001). In particular, if the Markov property holds, we can

reduce the time dimension and capture a large amount of data information using a simple time series

model with only one lag. However, if this property is violated, then economic models and predictions

based on the Markov assumption will be suboptimal. Recently, such literature as Aı̈t-Sahalia et al.

(2010), Chen and Hong (2012) propose some nonparametric tests for Markov Property, which are quite

useful in testing Markov hypothesis in practice.

The second example of conditional independence is non-Granger causality, which was first proposed

by Granger (1969, 1980). Given two time series processes {Zt} and {Yt}, and lag orders p and q, {Zt}
does not Granger cause {Yt} in distribution if

Yt⊥Zt−1
t−q |Y

t−1
t−p

where Zt−1
t−q

4
= {Zt−1, Zt−2, · · · , Zt−q}, Y t−1

t−p
4
= {Yt−1, Yt−2, · · · , Yt−p}. If the hypothesis of distri-

butional non-Granger causality is rejected, then the information Zt−1
t−q is useful in predicting the future

distribution of {Xt}. Granger (1969) proposes a convenient F test for Granger causality in a linear

regression framework, which is a special case of Granger causality in mean. Considerable empirical

studies in the literature have focused on testing linear Granger causality between financial and economic

variables using Granger’s (1969) F test, such as Thornton and Batten (1985), Granger et al. (2000),

Calderón and Liu (2003). Although they find some interesting linear economic relationships, they may

miss some important nonlinear phenomenons, such as the asymmetric effect of monetary policy (Kim

and Nelson, 2006) and asymmetric behavior of financial returns (Campbell, 1992; Peiró, 1999).

The third example of conditional independence is the missing at random assumption, which is widely

maintained in treatment response analysis and missing data problems, such as Hahn et al. (2001) and
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Wang et al. (2004). The data is missing at random if the missingness does not depend on the values

of variables in the data set subject to analysis (Rubin, 1976). More specifically, for a triple of random

variables {X,Y, Z}, where Y is an outcome variable, X is an explanatory variable, and Z is a binary

variable indicating treatment, which is equal to 1 if Y is observed and 0 otherwise. Here, a researcher

observes (X,Z) but observes Y only when Z = 1. The variable Y is missing at random conditional on

X if:

Y⊥Z|X.

In empirical analysis, if the missing at random assumption holds, one can obtain consistent estimation by

simply throwing away the unobservable samples and point-identify treatment effect in response analysis.

However, abuse of this assumption generally yields inconsistent estimation, which is called selectivity

bias in the literature (Heckman, 1976; Little, 1985). In addition, Horowitz and Manski (2000) and

Manski (2000, 2003, 2007) show that, absent the ignorable treatment selection assumption, we can only

obtain interval estimators for the treatment effect and mean response function rather than point-identify

them.

The last example of conditional independence is exogeneity. Suppose the random variable Y is

generated by the following unknown structural function:

Y = g(X,U) (1)

where X is an observed explanatory variable or vector, and U is an unobserved error term. In the

literature, X is called an exogenous variable in Eq.(1) if X⊥U . To test exogeneity, some researchers

(e.g., Blundell and Horowitz, 2007; Lee, 2009) introduce an instrumental variableZ forX and show that

X is exogenous if and only if Y⊥Z|X . Exogeneity is fundamental to econometric theory and economic

modeling. Generally, econometric models suffer from endogenous problem usually require different

estimation approaches, which are always less efficient than those when all explanatory variables are

exogenous. For example, Hall and Horowitz (2005) document the estimation efficiency loss due to the

use of instrumental variables when explanatory variables are endogenous in nonparametric regression

analysis of Eq.(1) .

Motivated by the widespread applications of the conditional independence assumption, a growing

literature focuses on testing conditional independence. Linton and Gozalo (1996) test the conditional

independence assumption for an i.i.d. data generation process (DGP) using the empirical distribution

function. Su and White (2007, 2008) develop nonparametric tests based on the weighted distances be-

tween the conditional characteristic functions and between the densities respectively. Huang (2010) tests

conditional independence based on a maximal nonlinear conditional correlation. Su and White (2011a)

propose two smoothed empirical likelihood ratio tests by representing the null hypothesis as an infinite

collection of conditional moment restrictions. Su and White (2011b) test conditional independence us-

ing local polynomial quantile regression which has the appealing advantage of parametric convergence

rate, but with the cost of a non-pivotal asymptotic distribution. Bouezmarni et al. (2012) develop a

nonparametric copula-based test for conditional independence.
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In this paper, we propose a characteristic function-based test for conditional independence using a

nonparametric regression approach. Compared with Su and White (2007) and other related nonparamet-

ric tests for conditional independence in the literature, our test has the following features:

First of all, our test can detect a class of local alternatives that converge to the null hypothesis of

conditional independence at a faster convergence rate than Su and White’s (2007) test and some other

tests in the literature. Suppose the dimensions of random vectors X , Y , Z are dx, dy, dz respectively

and we are interested in testing whether Y is independent of Z conditional on X . Let n and h = h(n)

denote the sample size and the bandwidth used in our nonparametric test. Then, thanks to the use

of a regression approach and conditional characteristic functions, the convergence rate of the class of

local alternatives for our test is n−1/2h−dx/4, which is faster than the rate of local alternatives for most

nonparametric tests aforementioned, including Su and White (2007, 2008, 2011a), Bouezmarni et al.

(2012), which depends not only on dx but also the dimensions of other variables. Since the convergence

rate of our test only depends on the dimension of X , it is less severely subjected to the notorious “curse

of dimensionality” problem than the aforementioned tests.

Secondly, our test is more flexible in gauging possible sources of conditional dependence. As is well

known, the characteristic function can be differentiated to obtain various moments. By differentiating

our ominous test statistic with respect to auxiliary parameters at the origin up to various orders, we

obtain a class of useful derivative tests, including tests of omitted variables, Granger causality in mean,

and conditional uncorrelatedness. In addition, all of these tests have a convenient asymptotic one-side

N(0, 1) distribution under the null hypothesis.

Thirdly, unlike many nonparametric tests of conditional independence, we use a single bandwidth

rather than two different bandwidths in estimating both the conditional joint and marginal characteris-

tic functions, which significantly improves the size performance of the proposed test in finite samples

and avoids difficulties in choosing multi-bandwidths. In the most of the previous literature, different

bandwidths are used when estimating joint and marginal densities (or joint and marginal characteristic

functions). In particular, certain conditions on the relative speeds of the bandwidths are imposed, so that

nonparametric estimators of marginal densities (or marginal characteristic functions) have faster conver-

gence rates and thus have no impact on the asymptotic distribution of the proposed tests, although the

order of magnitude for marginal density estimators may be rather close to that of joint density estimators.

In contrast, since we choose a common bandwidth, nonparametric estimation errors of the conditional

joint and marginal characteristic functions jointly affect the asymptotic distribution of our test statistic.

This renders it more challenging to derive the asymptotic distribution of our test. However, it is expected

to result in a better size of the test in finite samples due to fewer negligible high order terms. In addition,

unlike Su and White’s (2007) requirement of using a high order kernel function, we allow to use positive

(i.e., second order) kernel functions. Besides, we apply local linear regression to estimate the conditional

characteristic functions, which has significant advantages over the Nadaraya-Watson kernel estimator,

particularly in reducing the bias, and adapting automatically to the boundary bias due to asymmetric

coverage of data in the boundary regions.

Finally, our tests are applicable to both cross-sectional and time series data. The proposed tests
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follow a convenient asymptotic N(0, 1) distribution under the null hypotheses. Furthermore, while we

require the conditioning variable X to be a continuous random variable, we allow both Y and Z to be

either discrete or continuous random variables or a mixture of them.

The paper is organized as follows. In Section 2, we formalize the conditional independence con-

dition and state the hypothesis of interest. In Section 3, we propose a characteristic function based

test for conditional independence using a nonparametric regression approach. We derive the asymptotic

null distribution of our test statistic in Section 4 and investigate its asymptotic local power property in

Section 5. In Section 6, we develop a class of derivative tests to gauge possible patterns of conditional

dependence by differentiating our ominous test with respect to auxiliary parameters at the origin. In

Section 7, we study the finite sample performance of our test in comparison with Su and White’s (2007)

test. Section 8 considers an empirical application to nonlinear Granger causality between money and

output. Conclusions are provided in Section 9. All proofs are relegated to the Appendix.

2 Conditional Independence and Hypothesis of Interest

Let X , Y and Z be random vectors of dimension dx, dy and dz respectively. Suppose we have n i-

dentical distributed but weakly dependent observations (Xt, Yt, Zt), t = 1, 2, · · · , n. As our results are

applicable in both cross-sectional and time series contexts, the index t stands for time in a time series

context, and it denotes a cross-sectional unit (e.g., household, firm, etc) in a cross-sectional context.

Denote f(·|·) as the conditional density (mass) function of one random vector given another. For conve-

nience, the function f(·|·) is referred to as conditional density function below. However, we allow both

Y and Z to be either discrete or continuous random variables or a mixture of them and our results are

same for each case. Our null hypothesis of interest is that conditional on X , the random vectors Y and

Z are independent, i.e.

H0 : P [f(y, z|X) = f(y|X)f(z|X)] = 1 for any (y, z) ∈ Rdy+dz . (2)

The alternative hypothesis is

HA : P [f(y, z|X) 6= f(y|X)f(z|X)] > 0 for some (y, z) ∈ Rdy+dz with positive Lebesgue measure .

(3)

Su and White (2007, 2008, 2011a) test whether Y and Z are independent conditional on X under

the null hypothesis P [f(y|X,Z) = f(y|X)] = 1 for any y ∈ Rdy , which is equivalent to our null

hypothesis (2). However, (2) only relates to densities conditional on X , which will only involve dx
dimensional smoothing when estimating conditional characteristic functions, whereas Su and White’s

(2007, 2008, 2011a) tests involve at least dx + dz dimensional smoothing because they use the density

of Y conditional on both X and Z. This, together with the use of characteristic functions, makes our

test more powerful than Su and White’s (2007) test and many other nonparametric tests. See Section 5

for more discussion.

As the Fourier transform of the conditional density, the conditional characteristic function can equal-

ly capture the entire conditional probability distribution of a random vector. Thus, we can also represent
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the null hypothesis using conditional characteristic functions. Denote:

φyz(u, v, x) = E
(
ei(u′Yt+v′Zt)|Xt = x

)
,

φy(u, x) = E
(
eiu′Yt |Xt = x

)
,

φz(v, x) = E
(
eiv′Zt |Xt = x

)
.

Furthermore, define a generalized conditional covariance

σ(u, v, x) = cov
(
eiu′Yt , eiv′Zt |Xt = x

)
, (u, v) ∈ Rdx+dy . (4)

Straightforward algebra shows that

σ(u, v,Xt) = φyz(u, v,Xt)− φy(u,Xt)φz(v,Xt). (5)

Thus, σ(u, v,Xt) = 0 for all u, v ∈ Rdy+dz with probability one if and only if Yt and Zt are independent

conditional on Xt.

For a weakly stationary time series {Yt}, whenZt = Yt−k andXt = (Yt−1, · · · , Yt−k+1)′, σk(u, v, x)

could be regarded as a generalized partial autocovariance function which is similar as Hong’s (1999) gen-

eralized autocovariance function. It can capture any type of pairwise conditional partial dependence over

various lags, including those with zero partial autocovariance, such as the bilinear, nonlinear moving av-

erage, ARCH/GARCH processes. To see this, we rewrite σk(u, v, x) using the Taylor series expansion:

σk(u, v, x) = cov

( ∞∑
m=0

(iuYt)m

m!
,
∞∑
l=0

(ivYt−|k|)l

l!
|Xt = x

)

=
∞∑
m=0

∞∑
l=0

(iu)m (iv)l

m!l!
cov

(
Y m
t , Y l

t−|k||Xt = x
)

Intuitively, when all moments of Yt exist, the test of σk(u, v, x) = 0 is equivalent to testing whether Y m
t

and Y l
t−|k| is partially uncorrelated for any pair of (m, l), where m, l = 0, 1, 2, · · · .

Using the definition of σ(u, v, x), the hypotheses H0 and HA can be equivalently represented as

follows:

H0 : P [σ(u, v,Xt) = 0] = 1 for any (u, v) ∈ Rdy+dz (6)

versus

HA : P [σ(u, v,Xt) 6= 0] > 0 for some (u, v) ∈ Rdy+dz . (7)

It is important to emphasize that we must check (6) for all the (u, v) ∈ Rdy+dz rather than only

a subset of Rdy+dz . Although this is quite involved, it offers some appealing features of our test. For

example, by differentiating the generalized conditional covariance function σ(u, v,Xt) with respect to u

or v or both at the origin, we can infer possible patterns of conditional dependence, which may provide

valuable information for modeling economic relationships.
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3 Nonparametric Regression Based Testing

3.1 Generalized Nonparametric Regression

Recall that σ(u, v,Xt) = 0 a.s. for all (u, v) ∈ Rdy+dz under H0. Given an observed sample {Xt, Yt, Zt}nt=1

of size n, we shall estimate the generalized conditional covariance σ(u, v,Xt) nonparametrically and

check whether it is identically zero for all (u, v) ∈ Rdy+dz . We shall estimate φyz(u, v, x), φy(u, x)

and φz(v, x) nonparametrically, which are potentially highly nonlinear. Since φyz(u, v, x), φy(u, x)

and φz(v, x) are generalized regression functions, namely, φyz(u, v, x) = E(ei(u′Yt+v′Zt)|Xt = x),

φy(u, x) = φyz(u, 0, x), and φz(v, x) = φyz(0, v, x), we use local linear regression. Compared with

the Nadaraya-Watson estimator, the local linear regression estimator can not only reduce bias in the

interior region, but also automatically corrects boundary biases. Since the conditional marginal charac-

teristic functions φy(u, x) and φz(v, x) can be obtained from the conditional joint characteristic function

φyz(u, v, x) by setting v = 0 or u = 0 respectively, we only need construct a nonparametric estimator

for φyz(u, v, x).

To estimate φyz(u, v, x), we consider the following local weighted least squares problem:

minβ∈Cdx+1

n∑
t=1

|ei(u′Yt+v′Zt)−β0−β′1(Xt−x)|2Kh(Xt−x), where x ∈ Rdx , u ∈ Rdy , v ∈ Rdz , (8)

where β = (β0, β
′
1)′ is a (dx + 1) × 1 parameter vector, Kh(x) = h−dxK(xh), and K : Rdx → R is a

kernel function, and h = h(n) is a bandwidth. The solution to the problem (8) is:

β̂ ≡ β̂(u, v, x) = (X ′WX)−1X ′WV, x ∈ Rdx , (9)

where X is a n × (dx + 1) matrix with the ith row given by [1, (Xi − x)′], W = diag[Kh(X1 −
x), · · · ,Kh(Xn − x)], and V =

(
ei(u′Y1+v′Z1), · · · , ei(u′Yn+v′Zn)

)′
.

The conditional expectation φ(u, v, x) = E
(
ei(u′Yt+v′Zt)|Xt = x

)
can be estimated by the local

intercept estimator β̂0(u, v, x), that is:

φ̂yz(u, v, x) =
n∑
t=1

Ŵ

(
Xt − x
h

)
ei(u′Yt+v′Zt), (10)

where Ŵ (·) is an effective kernel, defined as

Ŵ (t) ≡ e′1S−1
n [1 th]′K(t)/hdx , (11)

e1 = (1, 0, · · · , 0)′ is a (dx+1)×1 unit vector, Sn = X ′WX is a (dx+1)×(dx+1) matrix. According

to Hjellvik et al. (1998) and Chen and Hong (2010), the effective kernel can be written as:

Ŵ (t) =
1

nhdxg(x)
K(t)[1 + oP (1)]. (12)
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By setting v = 0 or u = 0 respectively, we can obtain the estimators of the conditional marginal

characteristic functions φy(u, x) and φz(v, x):

φ̂y(u, x) = φ̂yz(u, 0, x) =

n∑
t=1

Ŵ

(
Xt − x
h

)
eiu′Yt , (13)

φ̂z(v, x) = φ̂yz(0, v, x) =
n∑
t=1

Ŵ

(
Xt − x
h

)
eiv′Zt . (14)

We note that the nonparametric estimators for all three conditional expectations, φyz(u, v, x), φy(u, x),

φz(v, x), only involves smoothing over the conditional variable Xt. This differs from nonparametric es-

timators for conditional densities such as f(y, z|x) or f(y|z, x), which will involve smoothing over

Yt, Zt, Xt simultaneously. It also differs from nonparametric estimators for the conditional characteris-

tic function E(eiu′Yt |Xt, Zt), which involves smoothing over Xt and Zt simultaneously. The reduction

in curse of dimensionality renders our test more powerful than most existing nonparametric tests of

conditional independence. See Section 5 for asymptotic local power analysis.

3.2 Nonparametric Based Test Statistic

Under the null hypothesis, we have σ(u, v,Xt) = 0 a.s. for all u, v. Therefore, we can measure

H0 : σ̂(u, v,Xt) = φ̂yz(u, v,Xt)− φ̂y(u,Xt)φ̂z(v,Xt) = 0

via the quadratic form:

M̂ =
1

n

n∑
t=1

∫∫
|σ̂(u, v,Xt)|2a(Xt)dW1(u)dW2(v) (15)

where a : Rdx → R+ is a weighting function for the conditioning vector Xt, W1 : Rdy → R+ and

W2 : Rdz → R+ are nondecreasing weighting functions of u, v that weight supports symmetric about

the origin equally. The weighting function a(·) is commonly used in the literature to truncate integra-

tions (e.g., Hjellvik et al., 1998; Aı̈t-Sahalia et al., 2001; Chen and Hong, 2010). Since nonparametric

estimation at sparse extreme observations is inaccurate in finite samples, by choosing an appropriate

weighting function a(·), one can alleviate the influences of unreliable estimates. The introduction of

weighting functions W1(u) and W2(v) allows us to consider many points for u, v. One popular weight-

ing function in the literature is the N(0, 1) cumulative distribution function (CDF). In fact, W1 and W2

need not to be continuous functions. Any nondecreasing function with countable discontinuity points

satisfies our requirement for W1,W2. One special case of discontinuous weighting function is a discrete

multivariate CDF, which allows us to consider a countable number of grid points of (u, v) and provides

a convenient way to avoid high dimensional integration.

Our test statistic (15) has the following standardized version:

ŜM =

[
hdx/2

n∑
t=1

∫∫
|σ̂(u, v,Xt)|2a(Xt)dW1(u)dW2(v)− B̂

]
/
√
V̂ (16)
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where

B̂ = h−dx/2
∫ [∫ (

1− |φ̂y(u, x)|2
)
dW1(u)

] [∫ (
1− |φ̂z(v, x)|2

)
dW2(v)

]
a(x)dx

×
∫
K2(τ)dτ, (17)

V̂ = 2

∫ [∫∫
|Φ̂y(u1 + u2, x)|2dW1(u1)dW1(u2)

∫∫
|Φ̂z(v1 + v2, x)|2dW2(v1)dW2(v2)

]
a2(x)dx

×
∫ [∫

K(τ)K(τ + η)dτ

]2

dη, (18)

Φ̂s(a1 + a2, x) = φ̂s(a1 + a2, x)− φ̂s(a1, x)φ̂s(a2, x), and φ̂s(a, x) is the nonparametric estimator for

φs(a, x), s = y or z.

The factors B̂ and V̂ are the estimators for the asymptotic mean and variance of the quadratic form

in Eq.(15). The asymptotic variance estimator V̂ involves 2 max{dy, dz}+ dx dimensional integration.

When the dimensions of X , Y or Z are high, the calculation of ŜM depends on high-dimensional

integration. In practice, one can adopt numerical integration or simulation techniques. Alternatively, one

can simply use a finite number of grid points for (u, v) or refer to other technical integration methods,

such as sequential Monte Carlo simulation.

Both B̂ and V̂ in (17) and (18) are derived under the null hypothesis as the sample size n → ∞.

However, they may not approximate well the mean and variance of the statistic (15) in finite samples

respectively, which may lead to poor size. To improve the size of the test in finite samples, we also

consider the following finite-sample version test statistic:

ŜMn =

[
hdx/2

n∑
t=1

∫∫
|σ̂(u, v,Xt)|2a(Xt)dW1(u)dW2(v)− B̂n

]
/
√
V̂ (19)

where

B̂n = hdx/2
n∑
t=1

n∑
s=1

a(Xt)Ŵ

(
Xs −Xt

h

)2 ∫∫
|ε̂y(u,Xs)ε̂z(v,Xs)|2dW1(u)dW2(v)

with ε̂y(u,Xs) = eiu
′Ys− φ̂y(u,Xs) and similarly for ε̂z(v,Xs). The complex-valued random variables

ε̂y(u,Xs) and ε̂z(v,Xs) could be viewed as estimated generalized regression errors. One could also

replace the scaling factor V̂ by its finite-sample version

V̂n = 2hdx/2
∑

1≤r<s≤n

{
n∑
t=1

a(Xt)Ŵ

(
Xs −Xt

h

)
Ŵ

(
Xr −Xt

h

)

×
∫∫

Re [(ε̂y(u,Xs)ε̂z(v,Xs))(ε̂y(u,Xr)ε̂z(v,Xr))
∗] dW1(u)dW2(v)

}2

,

where Re(A) and A∗ denote the real part and the conjugate of a complex-valued number A respective-

ly. However, since it is tedious and computational costly when n is large, we do not intend to do so.

Simulation studies show that the test statistics in Eq.(19) works reasonably well in finite samples.

9



4 Asymptotic Distribution

In this section, we will derive the asymptotic distribution of the omnibus test statistic ŜM under the null

hypothesis. We first impose the following regularity conditions.

Assumption A.1 [Data Generating Process]: Let (Ω,F , P ) be a complete probability space. (a) The

stochastic vector process Wt ≡ (X ′t, Y
′
t , Z

′
t)
′, t = 1, · · · , n is a strictly stationary absolutely regular

process on Rdx+dy+dz with β-mixing coefficients satisfying
∑∞

j=1 j
2β(j)δ/(1+δ) < C for some 0 <

δ < 1
3 ; (b) The marginal density function g(x) of Xt is positive, bounded, continuous, and twice

differentiable for all x ∈ G, where G is a compact support set of Xt in Rdx .

Assumption A.2 [Conditional Characteristic Function]: Let φyz(u, v, x), φy(u, x), φz(v, x) be the

conditional characteristic functions of (Yt, Zt), Yt, Zt given Xt = x respectively. For each u ∈
Rdy , v ∈ Rdz , φyz(u, v, x), φy(u, x), and φz(v, x) are measurable and twice continuously differen-

tiable with respect to x ∈ G.

Assumption A.3 [Kernel Function]: K : Rdx → R+ is a product kernel function of some univariate ker-

nel k, i.e.,K(u) =
∏dx
j=1 k(uj), where k : R→ R+ satisfies the Lipschitz condition and is a symmetric,

bounded, and twice continuously differentiable function with
∫∞
−∞ k(u)du = 1,

∫∞
−∞ uk(u)du = 0 and∫∞

−∞ u
2k(u)du = Ck <∞.

Assumption A.4 [Weighting Functions]: (a) W1 : Rdy → R+, and W2 : Rdz → R+ are nondecreasing

right continuous functions that weight sets symmetric about zero equally, with
∫
Rdy ‖u‖4dW1(u) <

∞,
∫
Rdz ‖v‖4dW2(v) < ∞; (b) a : G → R+ is a bounded weighting function that is continuous over

G, where G ⊂ Rdx is a compact support set of Xt given in Assumption A.1.

Assumption A.1 imposes regularity conditions on the DGP. Assumption A.1(a) is standard for ap-

plication of a central limit theorem for U statistics for weakly dependent data (e.g. Hjellvik et al., 1998).

The β-mixing condition restricts the degree of temporal dependence in (Xt, Yt, Zt), which is generally

adopted in the nonparametric time series literature, see, e.g., Hjellvik et al. (1998), Su and White (2007,

2008) and Chen and Hong (2010). A variety of time series processes, such as autoregressive moving

average (ARMA), bilinear, and autoregressive conditional heteroscedastic (ARCH) process, satisfy the

β-mixing condition (Fan and Li, 1999). Assumption A.1(b) is a smoothness condition, which rules out

discrete random variables for Xt. However, we could extend our test to incorporate the discrete case

of Xt in a similar way to Su and White (2008). Note that we allow the components of Yt and Zt to be

either continuous or discrete random variables or a mixture of them.

Assumption A.2 provides conditions on conditional characteristic functions, which are the Fourier

transforms of conditional density functions. We can easily translate these conditions into the condi-

tions on the conditional density functions (when they exist). In particular, Assumption A.2 holds if

f(Yt, Zt|x), f(Yt|x), f(Zt|x) are measurable and twice continuously differentiable with respect to

x ∈ G with probability one.

Assumption A.3 allows the use of familiar positive kernels, such as the Gaussian and Epanechnikov

kernels. Unlike Su and White (2007, 2008), we do not have to use a higher order kernel, which could

reduce biases to a higher order but at the cost of a larger variance, and therefore would affect the asymp-
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totic efficiency of our test.

Assumption A.4 imposes some mild conditions on the weighting functions W1(u),W2(v) and a(x),

respectively. These conditions ensure the existence of the integral in (16). Many functions satisfy

the conditions for W1(u) and W2(v), an example being the CDFs with finite fourth order moment. In

addition,W1(u) andW2(v) need not be continuous, which allows us to compute our test statistic using a

finite number of grid points of (u, v) instead of computational costly numerical integration or simulation

methods. For convenience, we can use the weighting functions of multiplicative form:

W1(u) =

dy∏
i=1

w(ui) and W2(v) =

dz∏
i=1

w(vi),

where w : R→ R+ is a univariate CDF.

We now derive the asymptotic distribution of ŜM under H0.

Theorem 1. Suppose Assumptions A.1 - A.4 hold, h = cn−λ for 1 ≤ dx ≤ 8, and 1
dx+4 < λ < 2

3dx
,

where 0 < c <∞. Then ŜM d→ N(0, 1) under H0 as n→∞.

The proof relies on the central limit theorem for degenerate U -statistics for weakly dependent pro-

cesses in Tenreiro (1997), which has been widely used by Su and White (2007, 2008) and Hong and Lee

(2013). To derive the asymptotic distribution, we decompose M̂ into the sum of ten terms, from which,

we obtain six U -statistics. These six U -statistics jointly determine the asymptotic distribution of our test

statistic. Since the proof is quite involved, we relegate it to Appendix.

Theorem 1 restricts the dimension of Xt no more than 8. This condition is not severely restrictive

in practice. For comparison, Su and White (2008) restrict the sum of the dimensions of Xt, Yt, Zt to be

no more than 7. Moreover, we do not impose any constraints on the dimensions of Yt and Zt because

the convergence rate of our test statistic only depends on the dimension of Xt. This differs from Su and

White (2007, 2008), which involve smoothing of dx+dz and dx+dy +dz dimensions respectively, and

therefore require restrictions on the sum of the dimensions of Xt, Yt, Zt.

Theorem 1 allows the choice of a wide range of admissible rates for the bandwidth h. In order to

reduce the number of leading terms in asymptotic mean and variance, and to avoid estimating the Lapla-

cian of conditional characteristic functions, we rule out the optimal bandwidth that minimizes integrated

mean squared error (IMSE). Since our assumption in Theorem 1 requires nhk+4 → 0, only the square of

sampling error terms, e.g. |φ̂yz(u, v, x)−Eφ̂yz(u, v, x)|2, Re[(φ̂yz(u, v, x)−Eφ̂yz(u, v, x))(φ̂y(u, x)−
Eφ̂y(u, x))∗], affect the limiting distribution of our test statistic.

It is important to emphasize that we adopt the same bandwidth h in estimating the conditional joint

characteristic function φyz(u, v, x) and the conditional marginal characteristic functions φy(u, x) and

φz(v, x). As a result, both the nonparametric estimation errors from the conditional joint and marginal

characteristic functions are of the same order of magnitude and they jointly determine the limiting distri-

bution of our test statistic. This differs from most of the existing literature, where different bandwidths

are used to estimate joint and marginal densities (or joint and marginal characteristic functions), and the

relative speeds for bandwidths are carefully imposed so that the nonparametric estimators of marginal
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densities or marginal characteristic functions converge faster than their multivariate counterparts and

thus they have no impact on the asymptotic distribution of the test statistic. This is the case approach

taken by Fan and Li (1996), Lavergne and Vuong (2000), Aı̈t-Sahalia et al. (2001), Su and Ullah (2009),

Su and White (2007, 2011a). However, although the estimation errors for the marginal densities are

higher order terms of that for the joint density, their magnitudes may be rather close to each other in fi-

nite samples. Due to the impact of neglecting higher order estimation errors from the marginal densities,

the size of their tests may be poor in finite samples. In contrast, by choosing the same bandwidth, we

expect that our approach will provide a better size performance in finite samples, as is confirmed in our

simulation study. We also avoid the delicate business of choosing multi-bandwidths and do not have to

choose a higher order kernel.

Our test is applicable in both cross-sectional and time series contexts. Under the null hypothesis, it

is asymptotically pivotal and has a convenient asymptotic N(0, 1) distribution. Hence, we can compare

the test statistic ŜM with the one-sided critical value zα at significance level α from the N(0, 1) distri-

bution, and reject H0 when ŜM > zα. For example, the asymptotic critical value at the 5% significant

level is 1.645. In contrast with Su and White’s (2011b) test, our test is not only pivotal for indepen-

dent or martingale difference sequence observations, but also has an asymptotic N(0, 1) distribution

for observations with weak dependence. Furthermore, in a time series context, since σ(u, v, x) can be

regarded as the generalized partial autocovariance function, our test is suitable for testing partial serial

dependence and is powerful in detecting any type of partial serial dependence, including those with zero

partial autocorrelation.

5 Asymptotic Local Power

Since both Su and White’s (2007) test and our test are based on the characteristic function, it is interesting

to compare their relative efficiency. We first consider the following class of local alternatives:

H1(an) : f(y, z|x) = f(y|x)f(z|x) + anqa(y, z|x) (20)

where qa(y, z|x) is a twice continuously differentiable function, which satisfies qa(y, z|x) 6= 0 and∫∫
qa(y, z|x)dydz = 0. The additional term anqa(y, z|x) characterizes the departure of the conditional

joint density function from the product of conditional marginal density functions and the rate an is the

speed at which the deviation vanishes to 0 as the sample size n → ∞. By taking the Fourier transform

of Eq. (20), we obtain

φyz(u, v, x) = φy(u, x)φz(v, x) + anδ(u, v, x)

where δ(u, v, x) =
∫∫

ei(u′y+v′z)qa(y, z|x)dydz is the Fourier transform of qa(y, z|x) and satisfies:

γ ≡
∫∫∫

|δ(u, v, x)|2a(x)g(x)dW1(u)dW2(v)dx <∞

12



Theorem 2. Suppose Assumptions A.1-A.4 and H1(an) hold with an = n−1/2h−dx/4, and the band-

width h = cn−λ for 1 ≤ dx ≤ 8 and 1
dx+4 < λ < 2

3dx
, where 0 < c <∞. Then, as n→∞, the power

of the test satisfies

P
[
ŜM ≥ zα|H1(an)

]
→ 1− Φ(zα − γ/

√
V )

where Φ(·) is the N(0, 1) CDF, zα is the one side critical value of N(0, 1) at significance level α, and

V = 2

∫ [∫∫
|Φy(u1 + u2, x)|2dW1(u1)dW1(u2)

∫∫
|Φz(v1 + v2, x)|2dW2(v1)dW2(v2)

]
a2(x)dx

×
∫ [∫

K(τ)K(τ + η)dτ

]2

dη (21)

with Φs(a1 + a2, x) = φs(a1 + a2, x)− φs(a1, x)φs(a2, y) for s = y or z.

Theorem 2 shows that our test has nontrivial power against the class of local alternatives H1(an)

with an = n−1/2h−dx/4. We note that the convergence rate n−1/2h−dx/4 is slower than the parametric

rate n−1/2, but only slightly. For example, if h ∝ n−
1

3+dx , then n−1/2h−dx/4 = n−(6+dx)/[4(3+dx)]

is only slightly slower than n−1/2. In contrast to Su and White (2007, 2008, 2011a), Bouezmarni et

al. (2012) and many other smoothed nonparametric tests, the convergence rate of our test depends

on the dimension of Xt only. As a result, our test is less severely subjected to the notorious “curse

of dimensionality” problem and is asymptotically more efficient than the aforementioned tests. This is

because our test only involves dx dimensional smoothing, whereas the other tests involve dx+dz or dx+

dy + dz dimensional smoothing. Thus, those tests can only detect local alternatives with a convergence

rate of n−1/2h−(dx+dz)/4 or n−1/2h−(dx+dy+dz)/4, which is slower than our rate of n−1/2h−dx/4 and

so is asymptotic less efficient than our test. In addition, our test is asymptotic pivotal under the null

hypothesis for weakly dependent data. It is in stark contrast to Su and White’s (2011b) test, which is

only asymptotic pivotal for independent or martingale difference sequence data.

It should be noted that Su and White’s (2011b) test can detect a class of local alternatives that

converge to H0 at parametric rate n−1/2, which is faster than an = n−1/2h−dx/4 for our test. However,

this conclusion is peculiar to the smooth type local alternatives in Eq.(20). Suppose we consider another

class of local alternatives:

H2(an, bn) : φyz(u, v, x) = φy(u, x)φz(v, x) + anδ

(
u, v,

x− c
bn

)
where δ(u, v, x) is a continuous function of x on G, c is a constant in the interior of the support of Xt,

an → 0, bn → 0 as n → ∞, a2
nbn = n−1h−dx/2, and h = o(bn). This type of alternatives has been

considered by Rosenblatt (1975) and Horowitz and Spokoiny (2001) among others.

The alternative H2(an, bn) could be transformed from some interesting local alternatives in terms of

conditional density functions. For example, it can arise when

f(y, z|x) = f(y|x)f(z|x) + anq(y, z|x)

with

q(y, z|x) = qa(y, z)G

(
x− c
bn

)
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where G(·) is a bounded smooth function, qa(y, z) 6= 0, and
∫∫

qa(y, z)dydz = 0. Under this kind

of alternatives, the deviation between H2(an, bn) and H0 has a nonsmooth spike at location c. In this

case, Y and Z display significant dependence conditional on X in a neighborhood of the value c. The

shrinking parameter bn measures the effective size of the neighborhood of point c, and an controls the

speed at which the deviation of H2(an, bn) from H0 for all x on its support vanishes to 0. It is not

difficult to see that, the departure of H2(an, bn) from H0 is of the order an for Xt = c, but of a higher

order anbn for any other distinct points of Xt on its support except c.

Following an analogous proof of Theorem 2, we could obtain the asymptotic property of our test

under the class of local alternatives H2(an, bn).

Theorem 3. Suppose Assumptions A.1-A.4 hold and the bandwidth h = cn−λ for 1 ≤ dx ≤ 8 and
1

dx+4 < λ < 2
3dx

, where 0 < c < ∞. Then, under H2(an, bn) with an → 0, bn → 0, a2
nbn =

n−1h−dx/2, and h = o(bn),

P
[
ŜM ≥ zα|H2(an, bn)

]
→ 1− Φ(zα − κ/

√
V )

where κ = a(c)g(c)
∫∫∫
|δ(u, v, x)|2dW1(u)dW2(v)dx, Φ(·) is the N(0, 1) CDF, zα is the one side

critical value of N(0, 1) at significance level α, and V is defined by Eq. (21).

With Theorem 3, we can show that our proposed test is asymptotically more efficient than not only Su

and White (2007) but also Su and White (2011b) under H2(an, bn). For example, suppose dx = 1, h =

n−
1
4 , bn = h

5
6 and an = n−1/2h−2/3, the magnitude of the indefinite integral of anδ (u, v, (x− c)/bn)

over x ∈ G is of the order anbn = n−1/2h1/6, which vanishes to 0 faster than n−1/2 given h→ 0. Thus,

Su and White’s (2011b) test will fail to detect the class of local alternatives H2(an, bn).

6 Inference on Patterns of Conditional Dependence

When the null hypothesis of conditional independence is rejected, one may like to gauge possible sources

of rejection, which can provide valuable information for modeling the relationship among economic

variables. For example, if we know that two variables have conditional dependence in mean, then we

can search for a conditional mean model to capture it. Therefore, once the conditional independence

hypothesis is rejected, inference on patterns of conditional dependence then becomes an important issue.

As is well known, the characteristic function can be differentiated to obtain various moments (if

exists), which is quite useful in checking the existence of conditional dependence in various moments.

As our ominous test is based on the conditional characteristic function, we will develop a class of

derivative tests to capture various aspects of conditional dependence patterns. As we show below, our

derivative tests are rather convenient to test various hypothesis of interest, including omitted variables,

Granger causality in mean, and conditional uncorrelatedness. An important feature of our derivative tests

is that they are all model-free, i.e., they do not impose auxiliary parametric restrictions when testing the

hypotheses of interest. For example, we do not assume a parametric regression model when testing

omitted variables.
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6.1 Inference on Conditional Dependence of Various Moments

Suppose the p-th order moment of Yt exists. For the generalized covariance function σ(u, v, x) in Eq.

(4), taking the p-th order partial derivative with respect to u at u = 0, we obtain

σ(p)(0, v, x) =
∂pσ(u, v, x)

∂up
|u=0 = ipcov

(
Y p
t , e

iv′Zt |Xt = x
)
, (22)

for any p = 1, 2, · · · .
Under the null hypothesis:

H(p)
0 : P

[
cov

(
Y p
t , e

iv′Zt |Xt = x
)

= 0
]

= 1, (23)

Eq. (22) equals to zero for all x ∈ G. Following Bierens (1982), we have cov(Y p
t , e

iv′Zt |Xt = x) = 0

if and only if E(Y p
t |Xt, Zt) = E(Y p

t |Xt). That is, we check whether Zt could provide valuable infor-

mation in modeling the mean dynamics of Y p
t conditional on Xt. Thus, we can test (23) by examining

the derivation of cov(Y p
t , e

iv′Zt |Xt = x) from a zero function of x. Denote the nonparametric regres-

sion estimator of σ(p)(0, v, x) as σ̂(p)(0, v, x) = ∂p

∂up σ̂(u, v, x)|u=0. Similar to the construction of our

ominous test, we can use the following quadratic form to test the null hypothesis (23):

M̂ (p) =
1

n

n∑
t=1

∫ ∣∣∣σ̂(p)(0, v,Xt)
∣∣∣2 a(Xt)dW2(v)

Following the proof of Theorem 1, we can show that, under the null hypothesis H(p)
0 and other regularity

conditions, the standardized version of M̂ (p) asymptotically follows a N(0, 1) distribution, i.e.,

ŜM
(p)

=
nhdx/2M̂ (p) − B̂(p)√

V̂ (p)

d→ N(0, 1),

where

B̂(p) = h−dx/2
∫∫

a(x)
[
φ̂(2p)
y (0, x)− |φ̂(p)

y (0, x)|2
] [

1− |φ̂z(v, x)|2
]
dW2(v)dx

×
∫
K2(τ)dτ,

V̂ (p) = 2

∫∫∫
a2(x)

[
φ̂(2p)
y (0, x)− |φ̂(p)

y (0, x)|2
]2
|Φ̂z(v1 + v2, x)|2dW2(v1)dW2(v2)dx

×
∫ [∫

K(τ)K(τ + η)dτ

]2

dη,

with φ̂(s)
y (0, x) = ∂s

∂us φ̂y(u, x)|u=0, and Φ̂z(v, x) is defined as in Theorem 1.

Moreover, to improve size of the test statistic in finite samples, we can consider the following finite

version test statistic:

ŜM
(p)

n =
nhdx/2M̂ (p) − B̂(p)

n√
V̂ (p)

,

where

B̂(p)
n = hdx/2

n∑
t=1

n∑
s=1

a(Xt)Ŵ

(
Xs −Xt

h

)2 [
Y p
s − φ̂(p)

y (0, x)
]2
∫
|ε̂z(v,Xs)|2 dW2(v).
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We now consider the primary case of p = 1. In this case, M̂ (1) will test the null hypothesis that

cov
(
Yt, e

iv′Zt |Xt

)
= 0, which is equivalent to the model-free hypothesis E(Yt|Xt, Zt) = E(Yt|Xt),

i.e., Zt is not an omitted variable. Aı̈t-Sahalia et al. (2001) also consider a nonparametric test for

omitted variables in a time series regression context. In a cross-section context, Fan and Li (1996)

and Lavergne and Vuong (2000) also develop some nonparametric tests for omitted variables using a

weighted average of squared conditional mean estimates of residuals based on nonparametric smoothing.

As our characteristic function based test only involves dx dimensional smoothing, it is more powerful

than tests of Aı̈t-Sahalia et al. (2001), and Fan and Li (1996), Lavergne and Vuong (2000). The later

involve a higher dimensional smoothing and are therefore asymptotically less efficient. In a time series

context, our test M̂ (1) could be applied to test Granger causality in mean without any modification. Put

Xt = Y t−1
t−p = (Yt−1, Yt−2, · · · , Yt−p)′ and Zt = Xt−1

t−q = (Xt−1, Xt−2, · · · , Xt−q)
′. Then the null

hypothesis becomes to H(1)
0 : E(Yt|Y t−1

t−p , X
t−1
t−q ) = E(Yt|Y t−1

t−p ), i.e., there is no Granger causality in

the mean of Yt from Xt−1
t−q . Compared with the traditional F test for Granger causality, which assumes

a linear regression model, our M̂ (1) test is a model-free test for Granger causality in mean, and it is

powerful in capturing not only linear but also various nonlinear relationships in mean, including ARCH-

in-mean effect (Engle et al. 1987), Threshold effect (Tong and Lim, 1980) and functional coefficient

autoregressive model (Priestley, 1988; Chen and Tsay, 1993).

6.2 Inference on Conditional Correlation Between Two Specified Moments

Suppose the p-th and q-th order moments of Yt and Zt exist respectively. Then taking the p-th and q-th

orders partial derivative of σ(u, v, x) with respect to (u, v) at (u, v) = (0, 0), we obtain

σ(p,q)(0, 0, x) =
∂p+qσ(u, v, x)

∂up∂vq
|(u,v)=(0,0) = ip+qcov (Y p

t , Z
q
t |Xt = x) (24)

for any p = 1, 2, · · · ; q = 1, 2, · · · .

Under the null hypothesis:

H(p,q)
0 : P [cov (Y p

t , Z
q
t |Xt = x) = 0] = 1, (25)

Eq. (24) equals to zero. Like in Section 6.1, we denote the nonparametric regression estimator of

σ(p,q)(0, 0, x) as σ̂(p,q)(0, 0, x) = ∂p+q

∂up∂vq σ̂(u, v, x)|(u,v)=(0,0). Then we could use the following statistic

M̂ (p,q) =
1

n

n∑
t=1

a(Xt)|σ̂(p,q)(0, 0, Xt)|2 (26)

to check conditional uncorrelatedness between Y p
t and Zqt given Xt. Following an analogous reasoning

to the proof of Theorem 1, we can prove that under the null hypothesis H(p,q)
0 and suitable regularity

conditions, the standardized version of M̂ (p,q) also converges to a N(0, 1) distribution, i.e.,

ŜM
(p,q)

=
nhdx/2M̂ (p,q) − B̂(p,q)√

V̂ (p,q)

d→ N(0, 1)
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where

B̂(p,q) = h−dx/2
∫
a(x)

[
φ̂(2p)
y (0, x)− |φ̂(p)

y (0, x)|2
] [
φ̂(2q)
z (0, x)− |φ̂(q)

z (0, x)|2
]
dx

×
∫
K2(τ)dτ

V̂ (p,q) = 2

∫
a2(x)

[
φ̂(2p)
y (0, x)− |φ̂(p)

y (0, x)|2
]2 [

φ̂(2q)
z (0, x)− |φ̂(q)

z (0, x)|2
]2
dx

×
∫ [∫

K(τ)K(τ + η)dτ

]2

dη

Once again, to improve the size of the test in finite samples, we can use a finite version of ŜM
(p,q)

:

ŜM
(p,q)

n =
nhdx/2M̂ (p,q) − B̂(p,q)

n√
V̂

(p,q)
n

where

B̂(p,q)
n = hdx/2

n∑
t=1

n∑
s=1

a(Xt)Ŵ

(
Xs −Xt

h

)2

ê(p)
y (0, Xs)ê

(q)
z (0, Xs)

V̂ (p,q)
n = 2hdx/2

∑
1≤r<s≤n

[
n∑
t=1

a(Xt)Ŵ

(
Xs −Xt

h

)
Ŵ

(
Xr −Xt

h

)
ê(p)
y (0, Xs)ê

(q)
z (0, Xs)

ê(p)
y (0, Xr)ê

(q)
z (0, Xr)

]2

with ê(p)
y (0, Xs) = Y p

s − φ̂(p)
y (0, Xs) and e(q)

z (0, Xs) = Zqs − φ̂(q)
z (0, Xs).

The choice of derivative orders (p, q) allows us to examine various conditional correlation structures

between Yt and Zt. As a primary example, we now consider the case of (p, q) = (1, 1). This yields a

model-free test of conditional uncorrelatedness with the null hypothesisE(YtZt|Xt) = E(Yt|Xt)E(Zt|Xt).

Su and Ullah (2009) also propose a nonparametric test of conditional uncorrelatedness in a time series

context. Their test relies on the assumption of E(Yt|Xt) = E(Zt|Xt) = 0. Once this assumption fails,

they first regress Yt on Xt and Zt on Xt nonparametrically and then construct the test statistic using the

nonparametric residuals. Moreover, they carefully choose different bandwidths to avoid the impact of

estimation errors from the first step on the asymptotic distribution of their test statistic. Compared with

Su and Ullah (2009), we use a single bandwidth in estimating the conditional expectations E(YtZt|Xt),

E(Yt|Xt) and E(Zt|Xt), and allow the estimation errors from these conditional expectations to jointly

determine the limiting distribution of our test. As a result, our test is expected to have a better size

performance in finite samples because we have better asymptotic approximation.

For a time series {Yt}nt=1 and a positive integer 2 ≤ k < n, define Zt
∆
= Yt−k and Xt

∆
= Y t−1

t−k+1 =

{Yt−1, · · · , Yt−k+1}, then γ(k, yt−1
t−k+1)

∆
= cov(Yt, Yt−k|Y t−1

t−k+1 = yt−1
t−k+1), where k is a lag order, is the

well known partial autocovariance function (PACF) in time series analysis. Therefore, our test statistic

M̂ (1,1) is a weighted average of squared PACFs and could be used to test the significance of the higher

lag order of the dependent variable conditional on lower lag orders in a nonparametric autoregressive

process. Compared with the commonly used t statistic, our nonparametric based test not only avoids
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misspecification problem, but also is powerful in detecting such nonlinear relationships as threshold and

smooth transition autoregressive processes.

7 Monte Carlo Study

We now study the finite sample performance of the proposed tests in comparison with some popular

tests of conditional independence, namely Su and White’s (2007) test and Granger’s (1969) F test for

Granger causality. For the derivative tests M̂ (p) and M̂ (p,q), we consider the primitive cases of p = 1

and (p, q) = (1, 1). As noted in Section 6, M̂ (1) tests whether Zt is an omitted variable in modeling the

conditional mean of Yt given Xt, whereas M̂ (1,1) tests conditional uncorrelatedness between Yt and Zt
given Xt.

To examine the size and power of M̂, M̂ (1), M̂ (1,1) in finite samples, we consider the following

DGPs:

DGP.S1: Yt = 0.5Yt−1 + ε1,t

DGP.S2: Yt =
√
htε1,t, ht = 0.01 + 0.5Y 2

t−1

DGP.S3: Yt =
√
h1,tε1,t, h1,t = 0.01 + 0.9h1,t−1 + 0.05Y 2

t−1

Zt =
√
h2,tε2,t, h2,t = 0.01 + 0.9h2,t−1 + 0.05Z2

t−1

DGP.P1: Yt = 0.5Yt−1 + 0.5Zt−1 + ε1,t

DGP.P2: Yt = 0.5Yt−1Zt−1 + ε1,t

DGP.P3: Yt = 0.4Yt−1 + 0.2Z2
t−1 + ε1,t

DGP.P4: Yt = 0.3 + 0.2 log(ht) +
√
htε1,t, ht = 0.01 + 0.5Y 2

t−1 + 0.3Z2
t−1

DGP.P5: Yt = 0.5Yt−1 + 0.5Zt−1ε1,t

DGP.P6: Yt =
√
htε1,t, ht = 0.01 + 0.5Y 2

t−1 + 0.25Z2
t−1

DGP.P7: Yt =
√
h1,tε1,t, h1,t = 0.01 + 0.1h1,t−1 + 0.4Y 2

t−1 + 0.5Z2
t−1

Zt =
√
h2,tε2,t, h2,t = 0.01 + 0.9h2,t−1 + 0.05Z2

t−1

where ε1,t and ε2,t are i.i.d.N(0, 1) sequences and Zt in DGP.S1-DGP.S2 and DGP.P1-DGP.P6 is gen-

erated by an AR(1) process

Zt = 0.5Zt−1 + ε2,t.

All the above DGPs except DGP.P4 are investigated by Su and White (2008). DGP.P4 is an ARCH-

in-mean process proposed by Engle et al. (1987). These DGPs cover a wide range of linear and nonlinear

time series processes. In this section, we test whether Yt is independent with Zt−1 conditional on Yt−1,

that is, whether Zt Granger-causes Yt by setting the lag order to 1. Among all ten DGPs, DGP.S1-S3

are used to study the sizes of our tests while DGP.P1-P7 allow us to examine their powers. All DGPs

except DGP.P1 are nonlinear in mean or in variance or both. Under DGP. P3-P7, the null hypothesis of
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conditional uncorrelatedness for the test M̂ (1,1) holds and under DGP.P5-P7, the null hypothesis of no

Granger causality in mean for the test M̂ (1) holds.

For each DGP, we simulate 1000 data sets with the sample size n = 100, 200, 500, 1000 respectively.

For our tests M̂, M̂ (1), M̂ (1,1), following Aı̈t-Sahalia et al. (2001) and Chen and Hong (2010), we

choose the Gaussian kernel k(x) = 1/
√

2π exp(−x2/2) and the truncated weighting function a(Xt) =

1(|Xt| ≤ 1.5), where 1(·) is the indicator function andXt has been standardized by its sample mean and

standard deviation. We choose both W1(·) and W2(·) to be the N(0, 1) CDF and choose the bandwidth

h = n−2/9. We also consider the empirical sizes and powers of the tests under DGP.S1-S3 and DGP.P1-

P3 respectively by setting h = cn−2/9 with c = 0.5, 1.5, 2. The results are similar to those reported in

Tables 1 and 2. For space, we do not report results with c 6= 1, which are available from the authors

upon request.

For Su and White’s (2007) test, we choose the fourth order kernel k(u) = (2 − u2)ϕ(u)/2, where

ϕ(u) is the N(0, 1) density. To make Su and White’s (2007) test and ours comparable, we choose

h1 = n−2/9 and h2 = n−1/3 for Su and White’s (2007) test, which satisfy Assumption A.2 in Su and

White (2007). We also consider Granger’s (1969) F test for linear Granger causality in mean. For

n = 100, 200, we use the local bootstrap procedure proposed by Paparoditis and Politis (2000) and

modified by Su and White (2008). For the bootstrap, we generate 500 data sets for each DGP and use

B = 100 bootstrap iterations for each simulated data set. In addition, we use the Gaussian kernel and

h1 as the bootstrap kernel and resampling bandwidth respectively.

Table 1 reports the sizes of tests under DGP.S1-S3 at the 10% and 5% significance levels using

asymptotic critical values and bootstrap critical values respectively. All our three tests have reasonable

sizes using both asymptotic critical values and bootstrap critical values. With asymptotic critical values,

our tests tend to overreject a bit but not excessively, and they improve as the sample size n increases.

This conforms the advantage of allowing the nonparametric estimation errors of both conditional joint

and marginal characteristic functions to jointly determine the asymptotic distribution of the test statistic.

The bootstrap procedure reduces overrejection, but the improvement is not significant. Since our tests

have achieved reasonable sizes using asymptotic approximation, it should not be surprised to see the

inappreciable role of bootstrap approximation. Thus, it does not seem to be necessary to use bootstrap

for our tests. This is practically appealing, because bootstrap in a nonparametric time series context is

rather time consuming. In contrast, Su and White’s (2007) test suffers from severe overrejection when

using asymptotic critical values but it has a remarkable improvement using the bootstrap procedure.

Therefore, for Su and White’s (2007) test, the bootstrap delivers more reliable results and we will use it

in an empirical application below.

Table 2 reports the powers of Su and White’s (2007) test, Granger’s (1969) F test and our three

tests under DGP.P1-P7 at the 10% and 5% levels, using asymptotic critical values and bootstrap critical

values respectively. For simplicity, we only report the bootstrap results for Su and White’s (2007) test

and our test M̂ when the sample size n = 100, 200 respectively. From Table 2, we see that the traditional

F test is most powerful under DGP.P1, which has a linear Granger causality relationship. Our test M̂

is very powerful in detecting all derivations given by DGP.P1-P7 and achieves unity power quickly as
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n increases. For M̂ , the bootstrap power is slightly lower than the power based on asymptotic critical

values, while for Su and White’s (2007) test, the bootstrap power is significantly lower. In comparison

with Su and White’s (2007) test, M̂ is generally more powerful in terms of both the asymptotic and

bootstrap critical values. This is consistent with our analysis on the relative efficiency between our test

and Su and White’s (2007) test. Moreover, it is interesting to see that M̂ (1) is powerful in capturing

various form of Granger causality in mean in DGP.P1-P4 and it is robust to higher order conditional

dependence such as ARCH/GARCH effects in DGP.P5-P7 for which there exists no Granger causality

in mean. Similarly, M̂ (1,1) is powerful in capturing various forms of conditional correlation between Yt
and Zt−1, and is robust to conditional correlation in higher order moments. Indeed, under DGP.P3-P7,

for which there exists no conditional correlation but there exists dependence in higher order moments,

the empirical rejection frequencies of M̂ (1,1) are close to the nominal significance levels, which means

that M̂ (1,1) has robust reasonable sizes under the null in finite samples. Finally, we note that M̂ (1,1) is

different from the F test. The M̂ (1,1) test is powerful in capturing some nonlinear Granger relationships

in mean such as DGP.P2, while the F test is silent about this kind of derivation.

8 Application to Nonlinear Granger Causality Between Money and Out-
put

The relationship between money and output has attracted a phenomenal amount of interest over years

from both empirical and theoretical macroeconomic studies. This issue not only reflects the causal

relationship between nominal economic variables (such as money) and real economic variables (such

as output), but also involves the discussion about whether the monetary policy is neutral. Since the

1970s, many studies have investigated the relationship between output and money, such as Sims (1972,

1980), Christiano and Ljungqvist (1988), Stock and Watson (1989), and Friedman and Kuttner (1993).

However, the results vary with different sample intervals. Recently, some researchers believe that there

exists a nonlinear relationship between the money and output, while the sensitivity testing result is

a reflection of this nonlinear relationship. Indeed, a stream of economic theories imply a nonlinear

relationship between money and output. The sources of nonlinear effect between money and output may

include the nonlinear wage indexation and price adjustment (Kandil, 1995), the asymmetric preference

of central bank’s monetary policy (Nobay and Peel, 2003), the nonlinearity of aggregate supply and

demand curve in economic reaction and so on. However, most related empirical studies have employed

the traditional linear Granger causality test, which has little power in discovering nonlinear relationships,

as seen in our simulation study. In this section, we will use our tests to study various Granger causality

relationships between money and output.

We use US monthly data in the period 1959:M1-2012:M6, with 642 observations. We measure

output by monthly Industrial Production Index (IPI). According to Psaradarkis et al. (2005), we use

three monetary or financial variables, the narrow money supply M1, the broad money supply M2 and

the Federal Funds rate (ir), as the proxy variables of monetary policy. We logarithmically transform

IPI, M1, M2, denoted as ipi, m1, m2 respectively. All data except the interest rate are seasonally
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adjusted.

We first check the stationarity of the data by the augmented Dickey-Fuller test. The results sug-

gest that ipi, m1, m2, ir are integrated of order one, and the differenced series, which we denote as

∆ipi, ∆m1, ∆m2, ∆ir are integrated of order zero. As mentioned in Bae and de Jone (2007), con-

sidering the fact that the Federal Reserve Broad usually adjusts its target interest rate by multiples 25

basis points, not by a certain percentage of the current interest level, it is more appropriate to assume

its difference rather than the difference of its logarithm to be a stationary process. Thus, we can em-

ploy the Granger causality tests on the differenced series ∆ipi, ∆m1, ∆m2, ∆ir. The data series

∆ipi, ∆m1, ∆m2, ∆ir are depicted in Figure 1.

The traditional linear Granger causality F test checks whether output (∆ipi here) and money (∆m1,

∆m2, ∆ir) Granger cause each other in the following linear regressions:

∆ipit = α0 + α1∆ipit−1 + · · ·+ αp∆ipit−p + β1∆mt−1 + · · ·+ βq∆mt−q + ε1t (27)

∆mt = α0 + α1∆mt−1 + · · ·+ αp∆mt−p + β1∆ipit−1 + · · ·+ βq∆ipit−q + ε2t (28)

where ∆m equals ∆m1,∆m2 or ∆ir, and εit ∼ i.i.d.N(0, σ2
i ). The hypothesis of no Granger causality

in mean for linear regressions (27) and (28) is :

H0 : β1 = β2 = · · · = βq = 0.

Compared with the linear Granger causality F test, the null hypothesis of our M̂ (1) test is no Granger

causality in mean:

E(∆ipit|∆mt−1
t−q ,∆ipi

t−1
t−p) = E(∆ipit|∆ipit−1

t−p),

E(∆mt|∆ipit−1
t−q ,∆m

t−1
t−p) = E(∆mt|∆mt−1

t−p),

and the null hypothesis of our M̂ test is no Granger causality in distribution:

f(∆ipit,∆m
t−1
t−q |∆ipi

t−1
t−p) = f(∆ipit|∆ipit−1

t−p)f(∆mt−1
t−q |∆ipi

t−1
t−p),

f(∆mt,∆ipi
t−1
t−q |∆m

t−1
t−p) = f(∆mt|∆mt−1

t−p)f(∆ipit−1
t−q |∆m

t−1
t−p),

where ∆mt−1
t−s = (∆mt−1,∆mt−2, · · · ,∆mt−s), and ∆ipit−1

t−s = (∆ipit−1,∆ipit−2, · · · ,∆ipit−s),

with s = p, q. The M̂ (1) test checks whether past money growths can provide valuable information in

predicting the mean of future output growths and whether past output growths are useful in predicting the

mean of future money growths. As documented in our simulation study, M̂ (1) is powerful in capturing

linear and various nonlinear Granger causalities in mean, whereas the traditional F test is only powerful

in detecting linear Granger causality. On the other hand, our M̂ test checks whether past money growths

are useful in predicting the distribution of future output growths and wether past output growths are

useful in predicting the distribution of future money growths. Density forecasts for macroeconomic

variables have been important for such decision makers as central banks (Diebold et al. 1999; Clements,

2004; Casillas-Olvera and Bessler, 2006).

We apply M̂ , Su and White’s (2007) test, M̂ (1) and Granger’s (1969) F test to investigate the

Granger causalities between output and three monetary variables. All the data have been standardized
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to have zero mean and unit variance before applying these tests. For test statistics M̂ and M̂ (1), we use

the Gaussian kernel, the truncated weighting function a(Xt) = 1(|Xt| ≤ 1.5) and the N(0, 1) CDF for

Wi(.), i = 1, 2. For the bandwidth, we set

h = h∗n−3/[2(4+dx)]

where dx is the dimension of Xt, and h∗ is the least-squares cross-validated bandwidth for estimating

the conditional expectation of Yt given Xt. For Su and White’s (2007) test, we use a fourth order kernel

as Su and White (2007). Since Su and White’s (2007) test involves the choice of two bandwidths, we set

h1 = h∗1n
−3/[2(4+dx)], h2 = h∗2n

−3/[4(dx+4)]n−3(dx+dz)/[4dx(dx+4)]

where h∗1 and h∗2 are the least-squares cross-validated bandwidths for estimating the conditional expec-

tation of Yt given (Xt, Zt) and Xt, respectively. These two bandwidths satisfy Assumption A.2 in Su

and White’s (2007). As the bootstrap procedure is more reliable than the asymptotic distribution for Su

and White’s (2007) test, we use the bootstrap in this empirical application. The Gaussian kernel is used

as the bootstrap kernel and the resampling bandwidth is:

hb = n−1/(dx(dx+4))

The resampling bandwidth satisfies Assumption A.8 in Paparoditis and Politis (2000) and hb = n−1/5,

when dx = 1. We use B = 200 bootstrap iterations and choose the least-squares cross-validated

bandwidths for each iteration. We also obtain results using the following two bandwidths: (1) We fixed

h∗ = h∗1 = h∗2 = dx for both the original data series and bootstrap samples; (2) We select the least-

squares cross-validated bandwidths using the original data and regarded them as the fixed bandwidths

for bootstrap samples. The bootstrap iterations B = 500 for these two cases. The results are rather

similar to Table 3 and is available by request to the author. Besides, for Su and White’s (2007) test,

we further obtain results using the bandwidths given by Su and White (2007) and the conclusion has no

significant difference with which based on Panel C of Table 3.

The results of the tests are summarized in Table 3, where we choose the lag orders p, q = 1, 2, 3

respectively. Panel A of Table 3 reports the results of Granger’s (1969) F test. At the 5% level, all of

three monetary variables do not Granger cause output, which indicates the ineffectiveness of monetary

policy. This result is consistent with Uhlig’s (2005) linear VAR setup based conclusion that monetary

policy shocks have no clear effect on real GDP. Besides, the results of Panel A also suggest that the

growth rate of M2 does not respond to the growth rate of output, and the growth rate of M1 only respond

to output at the third order lag. However, it rejects the null hypothesis that ∆ipi does not Granger cause

∆ir for any lags, which may indicate the existence and rationality of the linear Taylor rule (Taylor,

1993).

Panel B of Table 3 reports the results of the M̂ (1) test. Compared with Panel A, our M̂ (1) test reveals

further Granger causalities in mean between money and output in addition to the traditional F test. For

example, according to our M̂ (1) test, ∆ipi Granger causes ∆m1 at the second and third lag orders,

and Granger causes ∆m2 at the third lag order. Thus, the results of Panel B document the existence of
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nonlinear Granger causalities in mean and provide justification for modeling the relationship of money

and output by a nonlinear conditional mean model.

The results of Su and White’s (2007) test and our ominous M̂ test are given in Panels C and D of

Table 3 respectively. Comparing Panel C with Panel A, we find no significant difference between Su

and White’s (2007) test and the traditional Granger (1969)’s F test. That is, Su and White’s (2007) test

can not detect any additional relationship between money and output except the linear Granger causality.

However, from the left part of Panel D, our M̂ test documents strong evidence against the null hypothesis

that output does not Granger cause money for all of the three monetary variables and all lag orders except

for ∆m2 when p = 1. This result implies that the monetary authority responds to economic situations

and uses some appropriate monetary polices to stimulate recovery or curb overheating. In addition,

the right part of Panel D shows that interest rate is effective in stimulating the economy for any lag

orders p, q = 1, 2, 3, and there is one month lag for broad money supply to affect output. Besides,

we do not find any evidence against ineffectiveness of narrow money supply in affecting the economy.

With the development of the financial markets and the convenience of borrowing, it is not difficult to

understand the ineffectiveness of the narrow money supply. To sum up, the results of our test indicate

strong evidence against the non-Granger causality between money and output for most cases. This is

consistent with the recent use of nonlinear models in capturing the relationship between money and

output in the literature.

9 Conclusion

Conditional independence is one of most widely used concepts in economic and financial modeling and

encompasses many important assumptions in econometrics and statistics, such as the Markov property,

Granger causality, missing at random and exogeneity. In this paper, we propose a test for conditional

independence via a nonparametric regression approach in combination with the use of conditional char-

acteristic function. In comparison with Su and White’s (2007) test and other nonparametric approaches

in the literature, our test has the following appealing features: our test is asymptotically locally more

powerful in detecting a class of local alternatives; it is more flexible in inferring possible patterns of

conditional dependence and it does not require use of a higher order kernel and multi-bandwidths. By

adopting a single bandwidth, we allow the nonparametric estimation errors of both conditional joint and

marginal characteristic functions to jointly determine the asymptotic distribution of our test statistic. As

a result, our test has much better size than Su and White (2007) in finite samples. In addition, by tak-

ing appropriate order partial derivatives, our test can be used to construct model-free tests for omitted

variables, Granger causality in mean, and conditional uncorrelatedness. All of the proposed tests have a

convenient null asymptotic one-side N(0, 1) distribution.

Monte carlo simulation study shows that our tests have reasonable size and excellent power in com-

parison with Su and White’s (2007) test and the traditional F test for Granger causality. More important-

ly, it does not seem to be necessary to use bootstrap for our test, which is practically appealing because

nonparametric bootstrap is very time consuming. We apply our tests to study the Granger causality
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between money and output. The results of our tests document some nonlinear relationships which are

ignored by the traditional Granger causality test and Su and White’s (2007) test. They provide justifica-

tion on necessity of modeling the relationship between money and output via nonlinear models.
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Table 1: Size of Tests Under DGP.S1-S3
SW07 M̂ M̂ (1) M̂ (1,1) LIN

5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

DGP.S1

n = 100, AS .247 .344 .093 .148 .097 .155 .108 .149 .050 .106

n = 100, BS .048 .096 .038 .092 .044 .092 .038 .088 – –

n = 200, AS .198 .288 .073 .117 .070 .121 .060 .094 .052 .102

n = 200, BS .048 .086 .042 .086 .032 .090 .052 .110 – –

n = 500, AS .156 .240 .056 .103 .074 .122 .069 .107 .045 .092

n = 1000, AS .137 .234 .072 .114 .069 .108 .070 .105 .046 .093

DGP.S2

n = 100, AS .247 .354 .120 .177 .084 .140 .102 .144 .047 .103

n = 100, BS .068 .126 .068 .126 .060 .106 .054 .110 – –

n = 200, AS .238 .337 .083 .135 .066 .107 .072 .114 .057 .108

n = 200, BS .054 .092 .048 .098 .056 .116 .078 .116 – –

n = 500, AS .194 .292 .067 .112 .057 .087 .064 .100 .037 .100

n = 1000, AS .173 .217 .070 .109 .063 .103 .068 .115 .050 .086

DGP.S3

n = 100, AS .224 .313 .107 .166 .076 .121 .072 .107 .042 .094

n = 100, BS .040 .072 .054 .090 .050 .092 .064 .124 – –

n = 200, AS .199 .296 .072 .116 .061 .108 .064 .106 .046 .102

n = 200, BS .040 .080 .062 .090 .078 .130 .066 .114 – –

n = 500, AS .167 .254 .064 .107 .071 .107 .062 .103 .053 .097

n = 1000, AS .123 .203 .072 .114 .063 .101 .067 .107 .051 .101

Notes: (i) Results of SW07 are based on Su and White’s (2007) test, and results of LIN are Granger’s (1969) F

test for linear Granger causality. (ii) AS and BS denote the results using asymptotic critical values and bootstrap

critical values respectively. (iii) The results using asymptotic critical values are based on 1000 iterations, while

the bootstrap results are based on 500 iterations.
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Table 2: Power of Tests Under DGP.P1-P7
SW07, AS SW07, BS M̂,AS M̂,BS M̂ (1), AS M̂ (1,1), AS LIN

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

DGP.P1

n = 100 .840 .886 .436 .572 .978 .984 .914 .968 .990 .991 .997 1.00 1.00 1.00

n = 200 .970 .985 .794 .876 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

n = 500 1.00 1.00 – – 1.00 1.00 – – 1.00 1.00 1.00 1.00 1.00 1.00

n = 1000 1.00 1.00 – – 1.00 1.00 – – 1.00 1.00 1.00 1.00 1.00 1.00

DGP.P2

n = 100 .730 .806 .420 .526 .918 .953 .836 .896 .952 .965 .957 .973 .206 .290

n = 200 .885 .917 .694 .778 .996 .997 .996 .996 .998 .999 .999 1.00 .215 .286

n = 500 .997 .997 – – 1.00 1.00 – – 1.00 1.00 1.00 1.00 .249 .323

n = 1000 1.00 1.00 – – 1.00 1.00 – – 1.00 1.00 1.00 1.00 .265 .338

DGP.P3

n = 100 .397 .492 .102 .170 .476 .588 .316 .438 .607 .677 .139 .189 .175 .267

n = 200 .462 .583 .164 .264 .743 .815 .618 .716 .850 .903 .084 .134 .149 .219

n = 500 .669 .772 – – .986 .991 – – .998 1.00 .082 .118 .165 .253

n = 1000 .899 .945 – – 1.00 1.00 – – 1.00 1.00 .069 .100 .181 .252

DGP.P4

n = 100 .877 .925 .568 .688 .790 .878 .554 .712 .341 .443 .078 .133 .191 .264

n = 200 .989 .994 .882 .936 .973 .985 .904 .956 .481 .561 .058 .106 .149 .227

n = 500 1.00 1.00 – – 1.00 1.00 – – .799 .867 .063 .100 .189 .264

n = 1000 1.00 1.00 – – 1.00 1.00 – – .987 .994 .056 .101 .173 .255

DGP.P5

n = 100 .967 .985 .760 .864 .967 .984 .884 .950 .208 .284 .086 .135 .250 .344

n = 200 1.00 1.00 .982 .994 1.00 1.00 1.00 1.00 .197 .260 .066 .104 .223 .310

n = 500 1.00 1.00 – – 1.00 1.00 – – .189 .236 .059 .091 .248 .326

n = 1000 1.00 1.00 – – 1.00 1.00 – – .172 .216 .062 .093 .267 .340

DGP.P6

n = 100 .776 .858 .390 .524 .689 .801 .494 .650 .151 .223 .083 .138 .163 .243

n = 200 .922 .959 .610 .736 .937 .969 .850 .932 .129 .190 .070 .104 .147 .227

n = 500 1.00 1.00 – – 1.00 1.00 – – .135 .182 .061 .092 .195 .280

n = 1000 1.00 1.00 – – 1.00 1.00 – – .096 .144 .061 .092 .178 .255

DGP.P7

n = 100 .664 .766 .302 .424 .538 .646 .354 .518 .140 .189 .081 .134 .175 .268

n = 200 .787 .872 .436 .602 .800 .889 .690 .800 .123 .186 .066 .098 .215 .167

n = 500 .979 .991 – – 1.00 1.00 – – .108 .157 .053 .088 .167 .249

n = 1000 .998 1.00 – – 1.00 1.00 – – .097 .152 .051 .089 .157 .241

Notes: (i) Results of SW07 are based on Su and White (2007)’s test, and results of LIN are the traditional F test

for linear model. (ii) AS and BS denote the results using asymptotic critical value and bootstrap critical value

respectively. (iii) The results using asymptotic critical value are based on 1000 iterations, while the bootstrap

results are based on 500 iterations.

29



Table 3: Granger Causality Tests Between Money and Output
H0: ∆ipi does not Granger cause ∆m H0: ∆m does not Granger cause ∆ipi

∆m1 ∆m2 ∆ir ∆m1 ∆m2 ∆ir

Panel A: Granger’s (1969) linear Granger causality F test
p = 1, q = 1 .798 .557 .000 .332 .491 .034
p = 1, q = 2 .144 .232 .000 .581 .739 .052
p = 1, q = 3 .000 .098 .000 .684 .329 .111
p = 2, q = 1 .848 .466 .000 .364 .432 .094
p = 2, q = 2 .282 .232 .000 .662 .679 .188
p = 2, q = 3 .000 .089 .000 .722 .341 .296
p = 3, q = 1 .855 .413 .000 .280 .336 .139
p = 3, q = 2 .218 .185 .000 .551 .579 .302
p = 3, q = 3 .000 .071 .000 .714 .286 .349
Panel B: This paper’s nonlinear Granger causality in mean test M̂ (1)

p = 1, q = 1 .165 .220 .055 .430 .625 .035
p = 1, q = 2 .000 .175 .010 .685 .295 .015
p = 1, q = 3 .000 .025 .020 .385 .145 .085
p = 2, q = 1 .085 .175 .005 .660 .660 .145
p = 2, q = 2 .000 .085 .000 .830 .520 .130
p = 2, q = 3 .000 .035 .000 .400 .340 .150
p = 3, q = 1 .105 .180 .010 .500 .365 .085
p = 3, q = 2 .015 .020 .005 .690 .230 .060
p = 3, q = 3 .000 .025 .010 .285 .160 .085
Panel C: Su and White’s (2007) nonlinear Granger causality test
p = 1, q = 1 .345 .185 .000 .885 .525 .000
p = 1, q = 2 .580 .865 .015 .890 .275 .720
p = 1, q = 3 .180 .995 .055 .970 .865 .845
p = 2, q = 1 .370 .230 .005 .070 .050 .005
p = 2, q = 2 .105 .530 .000 .645 .715 .855
p = 2, q = 3 .315 .850 .020 .530 .895 .710
p = 3, q = 1 .000 .075 .005 .750 .290 .080
p = 3, q = 2 .095 .170 .025 .105 .270 .190
p = 3, q = 3 .135 .480 .015 .030 .280 .565
Panel D: This paper’s nonlinear Granger causality test M̂
p = 1, q = 1 .025 .075 .015 .425 .130 .000
p = 1, q = 2 .000 .075 .020 .450 .015 .000
p = 1, q = 3 .000 .135 .040 .150 .025 .010
p = 2, q = 1 .000 .045 .000 .415 .145 .000
p = 2, q = 2 .000 .040 .000 .310 .045 .000
p = 2, q = 3 .000 .025 .000 .150 .045 .005
p = 3, q = 1 .050 .050 .000 .520 .110 .000
p = 3, q = 2 .010 .005 .000 .595 .020 .000
p = 3, q = 3 .005 .015 .000 .105 .010 .000

Notes: (i) Numbers in the main entries are the p−values. (ii) p−values of the linear Granger causality test are

calculated using F distribution with (q, n − p − q) degrees of freedom. (iii) p−values of Su and White’s (2007)

test and our tests are based on 200 bootstrap iterations.
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Figure 1: Data Series During the Period 1959:M01- 2012:M06
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Appendix
Thoughout the appendix, we denote dx = k, and

M̂h = nhk/2M̂ = hk/2
n∑
t=1

∫∫
|σ̂(u, v,Xt)|2a(Xt)dW1(u)dW2(v),

εyz(u, v,Xs) = ei(u′Ys+v
′Zs) − φyz(u, v,Xs),

εy(u,Xs) = εyz(u, 0, Xs),

εz(v,Xs) = εyz(0, v,Xs).

In addition, c ∈ (0,∞) is a generic bounded constant that may vary from case to case. A ∼ B means A and B
are the same order of magnitude.

Proof of Theorem 1. We first decompose σ̂(u, v, x) into four terms:

σ̂(u, v, x) = φ̂yz(u, v, x)− φ̂y(u, x)φ̂z(v, x)

=
[
φ̂yz(u, v, x)− φyz(u, v, x)

]
− φz(v, x)

[
φ̂y(u, x)− φy(u, x)

]
−φy(u, x)

[
φ̂z(v, x)− φz(v, x)

]
−
[
φ̂y(u, x)− φy(u, x)

] [
φ̂z(v, x)− φz(v, x)

]
. (29)

According to Eq. (29), M̂h could be decomposed into ten terms:

M̂h = hk/2
n∑
t=1

∫∫ {
|φ̂yz − φyz|2 + |φy|2|φ̂z − φz|2 + |φz|2|φ̂y − φy|2 + 2Re

[
φyφ

∗
z(φ̂z − φz)(φ̂y − φy)∗

]
−2Re

[
(φ̂yz − φyz)φ̂∗y(φ̂z − φz)∗

]
− 2Re

[
(φ̂yz − φyz)φ∗z(φ̂y − φy)∗

]
+ |(φ̂y − φy)(φ̂z − φz)|2

−2Re
[
(φ̂yz − φyz)(φ̂y − φy)∗(φ̂z − φz)∗

]
+ 2Re

[
(φ̂y − φy)φ∗y

]
|φ̂z − φz|2

+2Re
[
(φ̂z − φz)φ∗z

]
|φ̂y − φy|2

}
a(Xt)dW1(u)dW2(v)

= T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8 + T9 + T10, (30)

where φ̂yz ≡ φ̂yz(u, v, x), φ̂y ≡ φ̂y(u, x), φ̂z ≡ φ̂z(v, x), φyz ≡ φyz(u, v, x), φy ≡ φy(u, x), φz ≡ φz(v, x).
We should analyze these ten terms T1 to T10 given by Eq. (30) one by one to extract leading terms that determine
the asymptotic distribution of our test. The leading terms of T1 to T10 are given by Propositions 1 to 7 as follows.

Proposition 1. Under the conditions of Theorem 1,

T1 = B1 + Ũ1 + oP (1),

with

B1 = h−k/2
∫∫∫

a(x)
[
1− |φyz(u, v, x)|2

]
dW1(u)dW2(v)dx

∫
K(τ)2dτ,

Ũ1 =
2

nh3k/2

∑
1≤s<r≤n

U1(ξs, ξr)

=
2

nh3k/2

∑
1≤s<r≤n

∫∫∫
a(x)

g(x)
K

(
Xs − x
h

)
K

(
Xr − x
h

)
×Re [εyz(u, v,Xs)εyz(u, v,Xr)

∗] dW1(u)dW2(v)dx.
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Proposition 2. Under the conditions of Theorem 1,

T2 = B2 + Ũ2 + oP (1),

with

B2 = h−k/2
∫∫∫

a(x)|φy(u, x)|2
[
1− |φz(v, x)|2

]
dW1(u)dW2(v)dx

∫
K(τ)2dτ,

Ũ2 =
2

nh3k/2

∑
1≤s<r≤n

U2(ξs, ξr)

=
2

nh3k/2

∑
1≤s<r≤n

∫∫∫
a(x)

g(x)
K

(
Xs − x
h

)
K

(
Xr − x
h

)
|φy(u, x)|2

×Re [εz(v,Xs)εz(v,Xr)
∗] dW1(u)dW2(v)dx.

Proposition 3. Under the conditions of Theorem 1,

T3 = B3 + Ũ3 + oP (1),

with

B3 = h−k/2
∫∫∫

a(x)|φz(v, x)|2
[
1− |φy(u, x)|2

]
dW1(u)dW2(v)dx

∫
K(τ)2dτ,

Ũ3 =
2

nh3k/2

∑
1≤s<r≤n

U3(ξs, ξr)

=
2

nh3k/2

∑
1≤s<r≤n

∫∫∫
a(x)

g(x)
K

(
Xs − x
h

)
K

(
Xr − x
h

)
|φz(v, x)|2

×Re [εy(u,Xs)εy(u,Xr)
∗] dW1(u)dW2(v)dx.

Proposition 4. Under the conditions of Theorem 1,

T4 = Ũ4 + oP (1),

with

Ũ4 =
2

nh3k/2

∑
s6=r

U4(ξs, ξr)

=
2

nh3k/2

∑
s6=r

∫∫∫
a(x)

g(x)
K

(
Xs − x
h

)
K

(
Xr − x
h

)
×Re [φy(u, x)φz(v, x)∗εz(v,Xs)εy(u,Xr)

∗] dW1(u)dW2(v)dx.

Proposition 5. Under the conditions of Theorem 1,

T5 = B5 + Ũ5 + oP (1),

with

B5 = −2h−k/2
∫∫∫

a(x)|φy(u, x)|2
[
1− |φz(v, x)|2

]
dW1(u)dW2(v)dx

∫
K(τ)2dτ,

Ũ5 =
2

nh3k/2

∑
s6=r

U5(ξs, ξr)

= − 2

nh3k/2

∑
s6=r

∫∫∫
a(x)

g(x)
K

(
Xs − x
h

)
K

(
Xr − x
h

)
×Re [φy(u, x)∗εyz(u, v,Xs)εz(v,Xr)

∗] dW1(u)dW2(v)dx.
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Proposition 6. Under the conditions of Theorem 1,

T6 = B6 + Ũ6 + oP (1),

with

B6 = −2h−k/2
∫∫∫

a(x)|φz(v, x)|2
[
1− |φy(u, x)|2

]
dW1(u)dW2(v)dx

∫
K(τ)2dτ,

Ũ6 =
2

nh3k/2

∑
s6=r

U6(ξs, ξr)

= − 2

nh3k/2

∑
s6=r

∫∫∫
a(x)

g(x)
K

(
Xs − x
h

)
K

(
Xr − x
h

)
×Re [φz(v, x)∗εyz(u, v,Xs)εy(u,Xr)

∗] dW1(u)dW2(v)dx.

Proposition 7. Under the conditions of Theorem 1,

T7 + T8 + T9 + T10 = oP (1).

According to Proposition 1 to Proposition 7, we get the asymptotic mean B and the leading term U that
determine the asymptotic distribution of our test:

B = B1 +B2 +B3 +B5 +B6

= h−k/2
∫∫∫

a(x)(1− |φy(u, x)|2)(1− |φz(v, x)|2)dW1(u)dW2(v)dx

∫
K2(τ)dτ,

and

U = Ũ1 + Ũ2 + Ũ3 + Ũ4 + Ũ5 + Ũ6

=
2

nh3k/2

∑
1≤s<r≤n

U(ξs, ξr)

=
2

nh3k/2

∑
1≤s<r≤n

[U1(ξs, ξr) + U2(ξs, ξr) + U3(ξs, ξr) + U4(ξs, ξr) + U4(ξr, ξs)

+U5(ξs, ξr) + U5(ξr, ξs) + U6(ξs, ξr) + U6(ξr, ξs)] .

The following Proposition presents the asymptotic property of the leading term U .

Proposition 8. Under the conditions of Theorem 1, U/
√
V

d→ N(0, 1), where the asymptotic variance

V = 2

∫ [∫∫
|Φy(u1 + u2, x)|2dW1(u1)dW1(u2)

∫∫
|Φz(v1 + v2, x)|2dW2(v1)dW2(v2)

]
a2(x)dx

×
∫ [∫

K(τ)K(τ + η)dτ

]2
dη,

with Φs(a1 + a2, x) = φs(a1 + a2, x)− φs(a1, x)φs(a2, x) for s = y or z.

As our test replaces the asymptotic meanB and variance V by their nonparametric estimators B̂ and V̂ , which
are given by Eqs. (17) and (18), we should show that B̂ and V̂ are consistent estimators for B and V , so that
replacing B and V by B̂ and V̂ has asymptotic negligible impacts on the limiting distribution.

Proposition 9. Under the conditions of Theorem 1, B̂ and V̂ are consistent estimators for B and V under H0

respectively.
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The proof of Theorem 1 will be completed provided Propositions 1 to 9 are proven, which we turn to next.
Moreover, since the proofs of Propositions 1 to 7 are quite similar, for space, we only focus on the proofs of
Proposition 1, Proposition 8, and Proposition 9.

Proof of Proposition 1. We first decompose T1 as follows:

T1 = hk/2
n∑
t=1

∫ ∣∣∣φ̂yz(u, v,Xt)− φyz(u, v,Xt)
∣∣∣2 a(Xt)dW1(u)dW2(v)

= hk/2
n∑
t=1

∫ ∣∣∣φ̂yz(u, v,Xt)− Eφ̂yz(u, v,Xt)
∣∣∣2 a(Xt)dW1(u)dW2(v)

+2hk/2
n∑
t=1

∫
Re
[
(φ̂yz(u, v,Xt)− Eφ̂yz(u, v,Xt))(Eφ̂yz(u, v,Xt)− φyz(u, v,Xt))

∗
]
a(Xt)dW1(u)dW2(v)

+hk/2
n∑
t=1

∫ ∣∣∣Eφ̂yz(u, v,Xt)− φyz(u, v,Xt)
∣∣∣2 a(Xt)dW1(u)dW2(v)

= A1 + 2R1 +R2. (31)

Then the proof of Proposition 1 consists of the proofs of lemma 1 to lemma 3 below.

Lemma 1. Under the conditions of Theorem 1,

A1 = B1 + Ũ1 + oP (1).

Lemma 2. Let R1 be defined as in (31), then R1 = oP (1).

Lemma 3. Let R2 be defined as in (31), then R2 = oP (1).

Proof of Lemma 1. The proof of Lemma 1 is quite similar as the proof of Proposition A.3 of Chen and Hong
(2010). For space, we neglect it.

Proof of Lemma 2. Firstly, we decompose R1 into two terms:

R1 = hk/2
∫∫ n∑

t=1

Re

[
n∑
s=1

a(Xt)

nhkg(Xt)
K

(
Xs −Xt

h

)(
φ̂yz(u, v,Xs)− Eφ̂yz(u, v,Xs)

)
×
(
Eφ̂yz(u, v,Xt)− φyz(u, v,Xt)

)∗]
dW1(u)dW2(v) [1 + oP (1)]

=
1

nhk/2

n∑
t=1

∫∫
K(0)a(Xt)

g(Xt)
Re
[(
φ̂yz(u, v,Xt)− Eφ̂yz(u, v,Xt)

)(
Eφ̂yz(u, v,Xt)− φyz(u, v,Xt)

)∗]
×dW1(u)dW2(v) · [1 + oP (1)] +

1

nhk/2

n∑
t=1

∑
s6=t

∫∫
a(Xt)

g(Xt)
K

(
Xs −Xt

h

)
×Re

[(
φ̂yz(u, v,Xs)− Eφ̂yz(u, v,Xs)

)(
Eφ̂yz(u, v,Xt)− φyz(u, v,Xt)

)∗]
dW1(u)dW2(v) · [1 + oP (1)]

= [R11 +R12] · (1 + oP (1)). (32)

Then, we will prove R11 = oP (1).

Since
Eφ̂yz(u, v, x)− φyz(u, v, x) =

1

2
h2∇2φ(u, v, x)Ck + oP (h2k),

where ∇2φ(u, v, x) =
∑k
j=1

∂2

∂x2
j
φ(u, v, x) is the Laplacian of the function φ(u, v, x), then by Assumptions A.3

and A.4, we have R11 = OP (h3k/2) = oP (1) immediately.

Finally, let us prove R12 = oP (1).
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Putting ξt = (Xt, Yt, Zt), we define

Ψ(ξs, ξt) =

∫∫
a(Xt)

g(Xt)
K

(
Xs −Xt

h

)
Re
[(
φ̂yz(u, v,Xs)− Eφ̂yz(u, v,Xs)

)(
Eφ̂yz(u, v,Xt)− φyz(u, v,Xt)

)∗]
dW1(u)dW2(v)

+

∫∫
a(Xs)

g(Xs)
K

(
Xt −Xs

h

)
Re
[(
φ̂yz(u, v,Xt)− Eφ̂yz(u, v,Xt)

)(
Eφ̂yz(u, v,Xs)− φyz(u, v,Xs)

)∗]
dW1(u)dW2(v),

and

Ψ(ξs) =

∫
Ψ(ξs, ξt)dP (ξt)

=

∫∫∫
a(Xt)

g(Xt)
K

(
Xs −Xt

h

)
Re
[(
φ̂yz(u, v,Xs)− Eφ̂yz(u, v,Xs)

)(
Eφ̂yz(u, v,Xt)− φyz(u, v,Xt)

)∗]
dW1(u)dW2(v)dXt,

where we have used the fact that E
[(
φ̂yz(u, v,Xt)− Eφ̂yz(u, v,Xt)

)
|Xt

]
= 0. Then

R12 =
1

nhk/2

∑
1≤t<s≤n

[Ψ(ξs, ξt)−Ψ(ξs)−Ψ(ξt)] +
2(n− 1)

nhk/2

n∑
t=1

Ψ(ξt)

= R
(1)
12 +R

(2)
12 . (33)

Obviously, E[Ψ(ξs, ξt) − Ψ(ξs) − Ψ(ξt)] = 0, which means E(R
(1)
12 ) = 0. By Lemma A(ii) of Hjellvik et al.

(1998), we have

var
(
R

(1)
12

)
≤ c

n2hk
n2E

[
|Ψ(ξs, ξt)−Ψ(ξs)−Ψ(ξt)|2(1+δ)

] 1
1+δ

∞∑
j=1

j2β
δ

1+δ (j)

= OP (hk+4)

= oP (1).

In addition,

var
(
R

(2)
12

)
≤ 4(n− 1)2

n2hk

n∑
t=1

var(Ψ(ξt)) +
4(n− 1)2

n2hk
n

n−1∑
j=1

(
1− j

n

)
cov (Ψ(ξ1),Ψ(ξ1+j))

≤ cnh−kOP (h4+2k) + 4nh−k
∞∑
j=1

j2β
δ

1+δ (j)OP (h4+2k)

= OP (nh4+k)

= oP (1).

Then, R(1)
12 = oP (1), R

(2)
12 = oP (1) follows from Chebyshev’s inequality. Therefore, we finish the proof of

Lemma 2.

Proof of Lemma 3. Define

Υ(Xt) =

∫∫ ∣∣∣Eφ̂yz(u, v, xt)− φyz(u, v, xt)∣∣∣2 a(Xt)dW1(u)dW2(v).

Then

R2 = hk/2
n∑
t=1

[Υ(Xt)− E(Υ(Xt))] + nhk/2E[Υ(Xt)]

= R
(1)
2 +R

(2)
2 .
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Firstly, we prove R(1)
2 = oP (1).

var(R(1)
2 ) ≤ hk

n∑
t=1

var (Υ(Xt)) + 2n

n−1∑
j=1

(
1− j

n

)
cov (Υ(X1)),Υ(X1+j)))

≤ cnhkOP (h8) + 2n

∞∑
j=1

j2β
δ

1+δ (j)OP (h8)

= OP (nh8+k)

= oP (1)

Then, R(1)
2 = oP (1) follows from Chebyshev’s inequality.

Besides, R(2)
2 is a constant, satisfying:

R
(2)
2 = nhk/2

∫∫∫ ∣∣∣∣12∇2φ(u, v, x)h2Ck +OP (h3)

∣∣∣∣2 a(x)g(x)dW1(u)dW2(v)dx

= OP (nhk/2+4)

= B1 · oP (1)

which is a higher order term of B1.

Proof of Proposition 8. To derive the asymptotic distribution, we apply Tenreiro’s (1997) central limit the-
orem for degenerate U -statistics of a time series context process, which has been generally used by Su and White
(2007, 2008), Hong and Lee (2013). Follow Tenreiro’s (1997) central limit theorem, we have σ−1n

∑
1≤s<r≤n U(ξs, ξr)

d→
N(0, 1) if the following conditions are satisfied: For some constants δ0 > 0, γ0 < 1

2 and γ1 > 0, (i) un(4 +

δ0) = O(nγ0); (ii) vn(2) = o(1); (iii) wn(2 + δ0/2) = o(n1/2), and (iv) zn(2)nγ1 = O(1), where σ2
n =∑

1≤s<r≤n var[U(ξs, ξr)], and

un(p) = max

{
max
1≤i≤n

‖U(ξi, ξ1)‖p, ‖U(ξ1, ξ̄1)‖p
}
,

vn(p) = max

{
max
1≤i≤n

‖Gn1(ξi, ξ1)‖p, ‖Gn1(ξ1, ξ̄1)‖p
}
,

wn(p) = ‖Gn1(ξ1, ξ1)‖p,

zn(p) = max
1≤i≤n

max
1≤j≤n

{
‖Gnj(ξi, ξ1)‖p, ‖Gnj(ξ1, ξi)‖p, ‖Gnj(ξ1, ξ̄1)‖p

}
Gni(η, τ) = E [U(ξi, η)U(ξ1, τ)], ξ̄1 is an independent copy of ξ1, and ‖ · ‖p = {E| · |p}1/p.

First, we calculate the asymptotic variance of U(ξs, ξr)

σ2
0 = var [U(ξs, ξr)] =

∫∫
U(ξs, ξr)

2dP (ξs)dP (ξr).

Since U(ξs, ξr) contains six terms, we need to calculate the variances of these six terms as well as their fifteen
pairwise covariances. During the calculation, we have used the following facts: (1) The weighting functions
W1(u),W2(v) are symmetric, which means Φs(u1 + u2, x) = Φs(u1 − u2, x); (2) Under the null hypothe-
sis, Yt is independent of Zt conditional on Xt; (3) Φyz(u1 + u2, v1 + v2, x) ≡ φyz(u1 + u2, v1 + v2, x) −
φyz(u1, v1, x)φyz(u2, v2, x) = φz(v1 + v2, x)Φy(u1 + u2, x) + φy(u1 + u2, x)Φz(v1 + v2, x).

By tedious but straightforward algebra, we obtain

σ2
0 = h3k

∫
a2(x)

[∫∫
|Φy(u1 + u2, x)|2dW1(u1)dW1(u2)

∫∫
|Φz(v1 + v2, x)|2dW2(v1)dW2(v2)

]
dx

×
∫ [∫

K(τ)K(τ + η)dτ

]2
dη
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Then, similar as Hjellvik et al. (1998), we obtain σ2
n = n2

2 σ
2
0 [1 + o(1)]. Thus, we have

V = var (U) =
4

n2h3k
σ2
n =

2

h3k
σ2
0 .

Now, we verify conditions (i)-(iv). Since U(ξs, ξr) is the sum of six terms, U(ξi, η)U(ξj , τ) contains 36
terms, which is very tedious. But fortunately, these terms have the same order, and we can verify the first term
U1(ξi, η)U1(ξj , τ) only.

E|U(ξi, ξ1)|p ∼ E

∣∣∣∣∫∫ a(x)

g(x)
K

(
xi − x
h

)
K

(
x1 − x
h

)
Re [εyz(u, v, xi)εyz(u, v, x1)∗] dW (u, v)dx

∣∣∣∣p
= hpkE

∣∣∣∣∫∫ a(xi − τh)

g(xi − τh)
K (τ)K

(
τ +

x1 − xi
h

)
Re [εyz(u, v, xi)εyz(u, v, x1)∗] dW (u, v)dτ

∣∣∣∣p
= O

(
h(p+1)k

)
Therefore, we have ‖U(ξi, ξ1)‖p = O

(
hk+k/p

)
. By a similar argument, we can obtain the same order of magni-

tude for ‖U(ξ1, ξ̄1)‖p. Hence, condition (i) holds for any δ0 > 0 and γ0 < 1
2 .

Now, we verify condition (ii).

E |Gn1(ξi, ξ1)|p = E |E1 [U(ξ1, ξi)U(ξ1, ξ1)]|p

∼ E

∣∣∣∣∫∫∫ a(x)

g(x)
K

(
x1 − x
h

)
K

(
xi − x
h

)
Re [εyz(u, v, x1)εyz(u, v, xi)

∗] dW (u, v)dx

×
∫∫

a(x′)

g(x′)
K2

(
x1 − x′

h

)
Re [εyz(u, v, x1)εyz(u, v, x1)∗] dW (u, v)dx′dG(ξ1)

∣∣∣∣p
= h2pkE

∣∣∣∣∫∫∫ a(x1 − τh)

g(x1 − τh)
K (τ)K

(
τ +

xi − x1
h

)
Re [εyz(u, v, x1)εyz(u, v, xi)

∗] dW (u, v)dτ

×
∫∫

a(x1 − ηh)

g(x1 − ηh)
K2 (η)Re [εyz(u, v, x1)εyz(u, v, x1)∗] dW (u, v)dηdG(ξ1)

∣∣∣∣p
= O

(
h3pk

)
Thus, ‖Gn1(ξi, ξ1)‖p = O

(
h3k
)
. By a similar argument, we can obtain the same order of magnitude for

‖Gn1(ξ1, ξ̄1)‖p. Consequently, condition (ii) is satisfied.

E |Gn1(ξ1, ξ1)|p = E |E1 [U(ξ1, ξ1)U(ξ1, ξ1)]|p

∼ E

∣∣∣∣∫∫∫ a(x)

g(x)
K2

(
x1 − x
h

)
Re [εyz(u, v, x1)εyz(u, v, x1)∗] dW (u, v)dx

×
∫∫

a(x′)

g(x′)
K2

(
x1 − x′

h

)
Re [εyz(u, v, x1)εyz(u, v, x1)∗] dW (u, v)dx′dG(ξ1)

∣∣∣∣p
= h2pkE

∣∣∣∣∫∫∫ a(x1 − τh)

g(x1 − τh)
K2 (τ)Re [εyz(u, v, x1)εyz(u, v, x1)∗] dW (u, v)dτ

×
∫∫

a(x1 − ηh)

g(x1 − ηh)
K2 (η)Re [εyz(u, v, x1)εyz(u, v, x1)∗] dW (u, v)dηdG(ξ1)

∣∣∣∣p
= O

(
h2pk

)
Thus, wn(p) = O

(
h2k
)

= o(1), condition (iii) is satisfied.
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E|Gnj(ξi, ξ1)|p = E |Ej [U(ξj , ξi)U(ξ1, ξ1)]|p

∼ E

∣∣∣∣∫∫∫ a(x)

g(x)
K

(
xj − x
h

)
K

(
xi − x
h

)
Re [εyz(u, v, xj)εyz(u, v, xi)

∗] dW (u, v)dx

×
∫∫

a(x′)

g(x′)
K2

(
x1 − x′

h

)
Re [εyz(u, v, x1)εyz(u, v, x1)∗] dW (u, v)dx′dG(ξj)

∣∣∣∣p
= h2pkE

∣∣∣∣∫∫∫ a(xj − τh)

g(xj − τh)
K (τ)K

(
τ +

xi − xj
h

)
Re [εyz(u, v, xj)εyz(u, v, xi)

∗] dW (u, v)dτ

×
∫∫

a(x1 − ηh)

g(x1 − ηh)
K2 (η)Re [εyz(u, v, x1)εyz(u, v, x1)∗] dW (u, v)dηdG(ξj)

∣∣∣∣p
= O

(
h3pk

)
By similar argument, we have E|Gnj(ξ1, ξi)|p = O

(
h3pk+k

)
, E|Gnj(ξ1, ξ̄1)|p = O

(
h3pk+k

)
. Therefore,

zn(p) = O
(
h3k+k/p

)
and condition (iv) is satisfied by setting γ1 = 1

λ (3k + k/2) > 0. Hence, we finish the
proof of Proposition 8.

Proof of Proposition 9. We need to show B̂ − B and V̂ − V are higher order terms relative to B and V
respectively. As B = OP (h−dx/2) and V = OP (1), we should prove:

B̂ −B = h−dx/2oP (1) (34)

V̂ − V = OP (1) (35)

As the proofs of Eq. (34) and Eq. (35) are quite similar, we focus on the proof of Eq. (34).

B̂ −B = h−dx/2
∫∫∫

a(x)
[(

1− |φ̂y(u, x)|2
)(

1− |φ̂z(v, x)|2
)
−
(
1− |φy(u, x)|2

) (
1− |φz(v, x)|2

)]
×dW1(u)dW2(v)dx

∫
K2(τ)dτ

= h−dx/2
∫∫∫

a(x)
[
|φz(v, x)|2

(
|φ̂y(u, x)|2 − |φy(u, x)|2

)
+ |φ̂y(u, x)|2

(
|φ̂z(v, x)|2 − |φz(v, x)|2

)
−
(
|φ̂y(u, x)|2 − |φy(u, x)|2

)
−
(
|φ̂z(v, x)|2 − |φz(v, x)|2

)]
dW1(u)dW2(v)dx

∫
K2(τ)dτ

According to Assumptions A.1-A.3, we just need to prove

|φ̂y(u, x)|2 − |φy(u, x)|2 = oP (1), (36)

|φ̂z(v, x)|2 − |φz(v, x)|2 = oP (1). (37)

To show (36), we first decompose |φ̂y(u, x)|2 − |φy(u, x)|2 into two parts:

|φ̂y(u, x)|2 − |φy(u, x)|2 = |φ̂y(u, x)− φy(u, x)|2 + 2Re
[(
φ̂y(u, x)− φy(u, x)

)
φy(u, x)∗

]
.

According to Li and Racine (2006), we know

|φ̂y(u, x)− φy(u, x)|2 = OP
(
T−1h−dx + h4

)
= oP (1),

φ̂y(u, x)− φy(u, x) = OP

(
T−1/2h−dx/2 + h2

)
= oP (1).

Since φy(u, x) is measurable, we obtain (36). The proof of (37) is quite similar as (36), so that we omit it. From
(36) and (37), we can obtain B̂ −B = h−dx/2oP (1) immediately.
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Proof of Theorem 2. Under the class of local alternatives H1(an), we have

σ̂a(u, v, x) = φ̂yz(u, v, x)− φ̂y(u, x)φ̂z(v, x)

= [φ̂yz(u, v, x)− φyz(u, v, x)]− φz(v, x)[φ̂y(u, x)− φy(u, x)]− φy(u, x)[φ̂z(v, x)− φz(v, x)]

−[φ̂y(u, x)− φy(u, x)][φ̂z(v, x)− φz(v, x)] + anδ(u, v, x)

= σ̂(u, v, x) + anδ(u, v, x)

where σ̂(u, v, x) is given by Eq. (29).

Hence, our test statistic:

M̂a = hk/2
n∑
t=1

∫∫
|σ̂a(u, v,Xt)|2a(Xt)dW1(u)dW2(v)

= M̂h + 2hk/2
n∑
t=1

∫∫
Re [anσ(u, v,Xt)δ(u, v,Xt)

∗] a(Xt)dW1(u)dW2(v)

+hk/2
n∑
t=1

∫∫
|an|2|δ(u, v,Xt)|2a(Xt)dW1(u)dW2(v)

= M̂h + 2M1 +M2

It is straightforward to show that E(M1) = OP (n1/2h(k+4)/2)B̂1/2 and var(M1) = OP (hk/2(n−1h−k +

h4)) = oP (1). Therefore M1 = oP (1) by Chebyshev’s inequality. Moreover, M2
p→ γ by the Law of large

number. In addition, under the class of local alternatives H1(an), the asymptotic variance Va = var(M̂a)
p→ V ,

as M1 = oP (1) and M2 − γ = oP (1). Consequently, we get the conclusion of Theorem 2.
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