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Abstract

This paper generalizes existing econometric models for censored competing risks by introducing a new
flexible specification based on a piccewise lincar bascline hasard, time-varying regressors, and unob-
served individual heterogeneity distributed as an infinite mixture of Generalized Inverse Gaussian (GIG)
densitios, nesting the ganuma kernel as a special case, A common correlabed latent time offect induces
dependence among risks. Our model is based on underlying latent exit decisions in continuous time while
only a time inferval containing the exit time is observed, as is common in economic data. We do not
make the simplifying assumption of discretizing exit decisions - our competing risk model setup allows
for latent exit times of different risk types to be realized within the same time period. In this setting, we
derive a tractable likelihood based on scaled GIG Laplace transforms and their higher-order derivatives.
We apply our approach to analyzing the determinants of unemployient duration with exits to jobs in
the same industry or a different industry among uncemployment insurance recipients on nationally rep-
resentative individual-level survey data from. the U.S. Department of Labor. Our approach allows us to
conduct a counterfactual policy experiment by changing the replacement rate: we find that the impact
of its change on the probability of exit from unemployment is inelastic.
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1. Introduction

In an cconomic competing risk (CR) model with censoring, an individual is associated
with a current state (e.g. of being imemployed) with the possibility to exit to one ofseveral
different states (e.g. finding a job in the same industry or a different industry). However,
only one such exit is observed for some individuals, while other (censored) individuals
are never observed to exit their current state. The state duration before exit to each
potential new state or censoring time is modeled with a separate latent variable but only
the shortest such duration is actually observed for each individual. A key ingredient of
'CR modcls is the survival function which captures the probability that the individual
will remain the current state beyond any given time. CR analysis then typically seeks to
determine the impact of observable characteristics of the individual and the various states

on the survival function that can lead to policy recommendations. ®

In this paper we introduce a new flexible model specification for the competing risk
model, extending several strands of cconometric and statistical literature on duration
analysis. Our model encompasses three key features: (i) we estimate non-parametrically
the density of unobserved individual heterogeneity; (ii) we model correlations between
the diflerent risk types; (iil) we allow for multiple latent exits within a time period with
interval outcome data. Our model nests the single exit type (so-called duration model)
as a special case. We apply our method to analyzing the determinants of unemployment
duration among unemployment insurance recipients using data from the U.S. Department
of Labor. We conduct a counterfactual experiment by changing the replacement rate.
‘The counterfactual results show the impact of changing key policy variables such as the

replacement rate on the survival function.

We will introduce each model feature in turn and discuss the advantages of using our model
over the existing alternatives. First, our model provides a flexible approach to controlling
for unobserved heterogeneity in competing risk data. A typical source of unobserved

®Applications of CR models in economices include analyzing unemployment duration (Flinn and Heck-
man, 1982; Katz and Meyer, 1990; Tysse and Vaage, 1099; Alba-Ramirez, Arrang, and Munoz-Bullon,
2007), Ph.D. completion (Booth and Satchell, 1995), leacher turnover (Dollon and van der Klaauw,
1999), studies of age at marriage or cohabitation (Berrington and Diamond; 2000), mortgage termination
(Deng, Quigley, and Van Order, 2000), school dropout decisions (Jakobsen and Rosholm, 2003), and
manufacturing firms’ exits from the markel (Estove-Peres, Sanchis-Llopis, and Sanchis-Llopis, 2010). A
comprehensive overview is given in Van den Berg (2001).
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heterogeneity is the omission of important but perhaps unobservable variables [rom the
conditioning set. As an example, more motivated individuals may exit unemployment

more quickly because they put more effort into the search for a new job.

It is well established that failure to account for unobserved heterogeneity biases the es-
timated hazard rate and the proportional cffects of explanatory variables on the popu-
lation hazard (Vaupel et al 1979; Lancaster 1979, 1990). A mumber ol semi-parametric
estimators for the single risk mixed proportional hazard (MPH) model have been pro-
posed following Elbers and Ridder (1982) proof of MPH semi-parametric identification
(Heckman and Singer, 1984; Honore 1990). Han and Hausman (1990) and Meyer (1990)
propose an estimator for piecewise-constant baseline hazard and gamma distributed un-
observed heterogeneity. Horowitz (1999) proposed a nonparametric estimator for both the
bascline hazard and the distribution of the unobserved heterogencity, under the assump-
tion of constant time-invariant regressors. Hausman and Woutersen (2012) show that a
nonparametric estimator of the baseline hazard with gamma heterogeneity yields incon-
sistent- estimatoes for all parameters and functions if the true mixing distribution is not a
garmma, stressiug the importance of avoiding parametric assmmptions on the unobserved

heterogeneity.

As the second key feature of our model, our approach allows for correlations between
the different risks in the CR model environment, even in the presence of the flexible
individual hicterogencity infinite GIG mixture model component. This is important since
the determinants of exit can differ depending on the risk type while being correlated -
across the risk types, and thus our approach provides additional information to the analyst

compared to single-risk duration models.

Third, in our application, we deal with interval outcome data as is common in economics
and other social scienees. Even though the underlying exit decision model is set in contin-
wous time, only the broader period in which exit occurred is observable. Our data contain
the week of exit from unemployment. Based on scaled GIG Laplace transforms and their
higher-order derivatives, we provide a complete likelihood specification allowing for mul-
tiple latent exits within a single time period which is more realistic than simplifying the
analysis by assuming that only one latent exit can occur in a given time period. Thus,

we do not rule out by assumption an individual contemplating different job offers from
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firms in the same industry or in a dilferent, industry as their pre-unemployment industry

within any given week.

' We show that given the analytical forms newly provided in this paper our model can be
implemented in a user-friendly way via a Bayesian nonparametric approach. One of the
key bencfits of Bayesian Markov chain Monte Carlo (MCMC) methods that we utilize is
their ability to factorize a complicated joint likelihood model into a sequence of conditional
tractable models, so-called Gibbs blocks, and by sampling each in turn deliver outcomes

from the joint model. We detail this approach for our proposed model.

The bulk of the literature on CR model development is concentrated in the natural sci-
ences. A tecent overview of CR modeling in biostatistics is provided by Beyersmamm,
Schumacher, and Allignol (2012), and in medical research by Pintilie (2006). "'he asso-
ciated estimation methods typically rely on continuous time data for the exact point of

exib. In contrast, we observe only discrete time intervals within which latent exits occur.

Competing risk models suitable for economic interval outcome data have been proposed
in various forms. Han and Hausman (1990), Fallick (1991), Sueyoshi (1992), and Me-
Call (1996) provide model specifications either without or with parametric individual
heterogeneity. Butler, Anderson, and Burkhauser (1989) propose a semiparametric CR
model controlling for the corrclation between unobscrved heterogeneity components in
cach state, with quadratic time dependence. Lleras-Muney and Honore (2006) analyze
identification issues in a general class of competing risk models allowing for correlation
among risk types. Their environment is free of many of the functional form and distri-
butional assumptions that we impose here and hence a number of paraneters are set-
identified. Bierens and Carvalho (2007) consider Weibull baseline hazards and common
flexible unobserved heterogeneity. Canals-Cerda and Gurmu (2007) approximate unob-
served heterogeneity distribution with Laguerre polynomials. They find that model se-
lection Tules (B1C, HQIC, and AIC) perform worse in determining the polynomial order
than a naive approach of controlling for unobserved heterogeneity using simple models
with a small number of points of support or a polynomial of small degree. Van den
Berg, vau Lomwel, and van Ours (2008) consider a model with nonparametric unobserved

heterogeneity terms that is based on discrete time counts. Although the model can be
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derived as a time-aggregated version of an underlying continuous-time model, the latter

is different from the continuous-time mixed proportional hazard model.

I'he literature on Bayesian nonparametric methods in the CR environment has been scant
and, to our knowledge, has only been used in biostatistics for estimation of other objects
of interest than individual heterogencity.® Variants of Bayesian Dirichlet Process analysis
have been used by Gasbarra and Karia (2000) for estimating nonparametically the overall
hazard rate and in Salinas-'lorres, Pereira, and 'l'iwari (2002) and Polpo and Sinha (2011)
for the vector of risk-specific cumulative incidence functions. De Blasi and Hjort (2007)
specify a beta-process prior for the baseline hagard, with asymptotic properties analyzed
in De Blasi and Hjort (2009).

Identification results under various assumptions were established by Heckman and Honore
(1989), Sueyoshi (1992). Abbring and van den Berg (2003). and Lee and Lewbel (2013). In
general, there have been three different approaches to identification (Honore and Llcras-
Mumney, 2006): (a) to make no additional assumptions beyond the latent competing risk
structure and estimate bounds on the objects of interest; (b), assume that the risks
are independent conditional on a set of observed. covariates and deal with a multipld
duration models enviromment; and (c), to specily a parametric or semi-parametric model
conditional on the covariates. Here we take the last approach. In particular, we do not

assume that the risks are independent conditional on the observed covariates.

"The-remainder of the paper is organized as follows. Section 2 establishes the assumptions
and building block results for a single risk duration model. Section 3 introduces assump-
tions and resulis for the competing risk model. Section 4 details our application and the
counterfactual experiment and Section 5 concludes, Proofs or all theorems and additional
empirical results are provided in the Appendix. The Online Appendix (Burda, Harding

and Hausman, 2013) contains further results.

Sin the single-risk, duration model case, Bayesian analysis with economics application was undertaken
by Ruggiero (1994), Florens, Mouchart, and Rolin (1999), Campolieti {2001), Pasermnan (2004), and Li
(2007).
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2. Single Risk Duration Model

Denote by 7 a continuous time variable with density f(7) and distribution F(1). Denote
a latent failure (or exit) time of individual ¢ by 7. Define the hazard rate Ai(7) as the
failure rate at time 7 conditional upon survival to time 7, A(7) = lims_oPr(T < 7; <
74+ 67, > 7)/§ and denote the integrated hazard by: ‘

(2.1) (r)= / Ai(u)du

with survivor [unction

(2.2) Si(7) = exp (—A: (7))

Denote by ¢ a generic time period |7, 7) with end poin.ts 7 and 7, and by ; the time period

[7,.7:) = 7 in which an individual 7 was observed to exit from a given state into another

state,

ASSUMPTION (A1), The data {t;}Y, consists of single spells censored at time T' and
drawn from a single risk process.

ASSUMPTION (A2). The hazard rule is paramelerized as

(2.3) A7) = Ao(7) exp(Xi(T) B + V3)

where Ao(7) is the baseline hazard, Xi(%) are observed covariates that are allowed to vary
over time, B are model paramciers, and V; is an unobserved heterogeneily component.
Hence, using (2.1) and (2.3) the integrated hazard is given by

(2.4) As(r) = / Dolt) exp (Xi(w)f + V3) du

ASSUMPTION (A3). The baseline hazard Ao(w) and the wvalucs of the covariates arc

constant for cach time pericd €.

Assumptions 1 and 2 are common in the literature. Assumption A3 is based on Han and
Hausman (1990). Given Assumption A3, instead of A(7) we can consider the integrated

haseline hazard in the form
7
(2.5) ' Haot = / Aofw)du,
dz

where we denote the veetor (gog, ..., for) by Ho.
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For notational convenience, we will use subscripts for the time index and denote by Az the
quantity A; () at the end of the time period ¢, and similarly for other variables. Denote
the probability of the exit event in time period ¢ by P(¢; = t). Conditional on V;, for

outcomes that are not censored (1; < 7,
(2.6) Pty =1) = Fy — Fyp_yy = (1 = Si) — (1 = Sie-1)) = Sige—1) — S
When the duration obscrvations arce censored at the end of time period T

(27) P(ti > r]’) = | — Iy = Sir

"T'he following result is familiar in the literature and we include it here for the sake of
completeness as a benchmark of comparison for the new competing risk model developed

in the next Section.

RESULT 1. Under Assumpticns A1-A3, conditional on Vi, for uncensored observations

-1 ¢
(2.8) P(t; =t V;) =exp (—‘ Z o exp (X0 + VL)) —exp (- Z#«oj exp (X8 + Vi))

jzl j:’l
and for the censored case
T

(2.9) P(t; > 1'V;) = exp (— Z,uoj exp (Xy8 + Vi))

i=1

2.1. Parametric Heterogeneity

ASSUMPTION (A4). Let v; = exp(Vi) ~ G(v) where G(v) s a generic probakility

measure with density g(v).

From (2.4). (2.5), and Assumption A3, we have

-t

(2.10) Ay = Y pojexp (Xyp)
i=1

(2.11) A = viky

If  is a random variable with probability density function g(v) then the Laplace transform

of g(v) evaluated at s € R is defined as

(2.12) ' L(3) = E,|exp(—vs)]
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Using (2.2). (2.11), and (2.12), the expectation of the survival function can be linked to

the Laplace transform of the integrated hazard function (Hougaard, 2000) as follows:

(2.13) Iy |Si) = L{(Ax)

Using (2.10), (2.11), and (2.13) yields the unconditional exit probability ol Result 1 as
follows: '

RESULT 2. The capectaticn of (£.6) for the uncensored cbservalions is

(2.14) I, |P(t; =1)] = E(Kz’(t‘n) - E(Kic)

and the ezpectation of (2.7) for the censored cbscrvations lakes the ferm

(2.15) | By |P(t: > T)] = L(Ayr)

Since the individual heterogeneity term v; defined in Assumption A4 is nou-negative, a
suitable family of distributions G(v) with support over |0, oo) and tractable closed-form
Laplace transforms is Generalized Inverse Gaussian (GIG) class of distributions, whose

special case is the gamma distribution popular in duration analysis.

ASSUMPTION (Aba). The unclbserved heterogeneity lerm v; is distributed according

i6 the Generalized Inverse Gaussian distribution, G(v) = G (v, k. . 9).

The GIG has the density

- 9gh—-1 g (,02
916 GIG (4. e 5. 0) = I AU N Y 4% -
(2.16) » g (v kL, ) ) g0&(00) exp ¢ —fv e

for .0 > 0, & € R, where K, () is the modified Bessel function of the second kind of

order & cvaluated at ¢ (Hougaard, 2000). The GIG Laplace transform is given by
Ko

(2.17) L£5%(s:k,0,0) = (1+5/6) ™ ;

K. (¥)
‘The GIG family includes as special cases the gamma distribution for ¢ = 0, the Inverse
gamma distribution for § = 0, and the Inverse Gaussian disttibution for k = m%, among
others.

Application of the Laplace transform of the GIG distribution (2.17) in Result 2 yields the

following result that appears to not have been previously stated in the literature:



RESULT 3. Under the Assumplions Al-A4, and Asa
— 1/2
—ny2 Ky (99 (1 + é&:(t-l.}) )

—~

B =0) = (14 ‘—A«é<f:-~‘>)

6 K. (p)
- N\1/2
1 —15f2 K, (§0 (I -+ %Ait) )
2.1 — 1+ Ay
219 ( “LHA‘) K.

and for the censcred observations

. 1/2
' a4 LA
(:) ]()) IPGI'G “)(L > rlv)] . (l 1 _I_K —uf2 KK (\P (1 } eAz'I) )
Lo d e J"i £ 3 V2 R A 9 T I(KI ((p)

A special case of the GIG distribution is the gamma. distribution, obtained from the GIG
density function (2.16) when ¢ = 0. We use the gamma distribution for v; as a benchiark

model under the following alternative to Assumption 5a.

ASSUMPTION (A5Bb). 1he unchserved heterogeneily Lerm. v s distribuled according

tc the gamma distribution, G(v) = GY(v:+.0).

The gamma density is parameterized as
0 -
- (2:20) 0(v:7,0) = = (fv)"" exp(—6v)
I'(y)
and its Laplace transform is given by
(2.21) L%(s;7,0) = (1+35/0)7
In the gamma density (2.20) the parameter y > 0 corresponds to the GIG parameter £ € R

in (2.16) restricted to the positive part of the real line. Using the gamma distribution in

place of the GIG constitutes a special case of Result 3:

RESULT 4. Under the Assumptions Al-A4, and ASt,

- - ~\"Y
and
1+ \ 77
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Result 4 was obtained in Han and Hausman (1990) and Meyer (1990).

In both gamma and GICG distributions, the scale parameter  performs the same role.
Specifically, for any ¢ € Ry, if v ~ G%(v;7,0) then cv ~ G%v;v.0/c), and if v ~
GO (u: k, 1, 0) then cv ~ GG (w; k, ¢, 6/¢). Due to this property, ¢ and hence its inverse
s = ¢! are not separately identified from 0 in the Laplace transform expressions (2.17)
and (2.21). Since all likelihood expressions are evaluated.at s = K,;(.) which is proportional
to po; for all j, as.specified in (2.10), any change in 8 only rescales the bascline hazard
parameters pg;. leaving the likelihood unchanged. Hence, 6 needs to be normalized to
identify po;. In the gamma case, typically this normalization takes the form 8 = v so
that Elv] = 1. We use the equivalent normalization for the GIG case in order to nest the

normalized gamma as a special case and to maintain the moment restriction [jv] = 1.

2.2. Flexible Heterogeneity

We now depart from the parametric form of the unobserved heterogeneity and consider
a nonparametric infinite mixture for the distribution of v;; as formulated in the following

assumplion.

ASSUMPTION (A6). The prior for v; G ~ G takes the form ¢f the hicrarchical model
G~ DP(Go, @), e ~ g%(ag. bo), Ilug) = 1.

In Assumption A6, G is a random probability measure distributed according to a Dirichlet
Process (DP) prior (Hirano, 2002; Chib and Hamilton, 2002). The DP prior is indexed
by two ].1yp<:3r[);,1.1'a,1:11.<§ters: a so-called baseline distribution G that defines the “location”
of the DP prior, and a positive scalar precision parameter c. 'I'he distribution Gg may be
viewed as the prior that would be used in a typical parametric analysis. The flexibility of
the DP mixture model environment stems from allowing G to stochastically deviate [rom
(. 'T'he precision parameter « determines the concentration of the prior-for G around
the DP prior location Gy and thus measures the strength of belief in Gy. For large values
of @, a sampled & is very likely to be close to Gy, and vice versa. Assumption A6 is then

completed by specifving the baseline measure Gy. We consider two cases:
, ) \ 0

ASSUMPTION (AT7a). In Assumplicn A6, Gy = G (k. p,0).
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Implementation of the GIG mixture model under Assumptions Al-A3, A6, and ATa uses
the probabilities (2.8), (2.9), (2.18) and (2.19). Further implementation details are given
in the Online Appendix (Burda, Harding and Hausman, 2013). '

ASSUMPTIGN (A7b). In Assumplion A6, Gy = G®(v.9).

Under Assumptions A6 and A7b, as a special limit case, putting all the prior probability on
the bascline distribution Gy by sctting « — oc would result in forcing G = Gy = G %(v.9)
which yields the parametric model of Han and Hansman (1990). Here we allow o and
hence G to vary stochastically. Furthermore, the gamma baseline in Assumption A7b
rosults as a special case of the GIG bascline in Assumption A7a for the hyperparameter
value ¢ = 0. Hence, both the gamma flexible case with G ~ DP(GC, a) and the para-
metric benchmark Han and Hausman (1990) case with G = G are nested within our full

GIG mixture model specification.

3. Competing Risk Model

We will now generalize the results from the single-risk case to the competing risk (CR)
environment with several different potential types of exit. Let the risk type be indexed by
k=1,..., K. Define the latent failure (or exit) times as Ty, ..., Tx; corresponding to each
risk type k, for cach individual 4. Define their minimmm by 7; = min (73, ..., Trs). In our
CR model for interval outcome data, 7; is not direcily observed. Instead, the observed
quantity is the time interval |7, 7;) labeled as #; which contains 7;. 'I'his is in contrast to
a large chss of other types of CR models where the exact failure time 7; is observed, as
is Lyplc,al in biostatistics. Intrinsically, the lifetimes of other risk Lypes, T for j # k, and

their corresponding time intervals, remain unobserved.

Denote by f(uy, ug) the joint density of [ailure at Lime « = (u;, up). The [unctional form
of f(uy, ug) is provided in the Online Appendix, (OA.2.1). Tor two risk types with K = 2,

this yields the probability of exit in time period ¢ of the form

T T T gv'ed
(31) P(t‘li = t: Ty > ’Tl,j) = / / f(u‘l,ug)dugdul -+ / / f('ll--l; Ug)du‘_),d’ul
ST uq « J Ty

The first right-hand side term in (3.1) gives the probability that the second latent exit

time occurred within the same time interval ¢ as the first latent exit time. The second
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right-hand side term in (3.1) is then the probability that the second latent exit time oc-
curred in 2 later time interval than t. A key difficulty with evaluating (3.1), precluding
direct factorization, is the presence of the outer integrand u; in the lower bound in the
inner integral of the first terme. We deal with this issue and derive a closed-form solution
for (3.1), under various assumptions on the latent model components. "The joint. density
fluq,uy) is obtained as a function of covariates and unobserved heterogeneity from the
parameterization of risk-specific hazard functions, in a direct analogy to the single-risk
case. Previous work using CR interval outcome data has either bypassed this link (e.g.
by assuming a multivariate Gaussian density for f(ua, ug)) or employed a discrete time
approximation whereby only one exit type can occur per ainy one time period. Our model
explicitly accounts for the continuons-time nature of the exit decisions. The statisti-
:al background for the stochastic environment of our CR model is given in the Online
Appendix (Burda, Harding and Hausman, 2013).

For clarity of exposition, the numbering of the Assumptions and Theorems in this Section
provides a direet counterpart to the Assumptions and Results of the single-risk casc in
the previous Section. We first treat the parametric case under the GIG and gamma
distributions of unobserved heterogeneity, adding a common latent component for all risk

types, and then proceed to infinite mixture modeling,

ASSUMPTION (B1). The data consists of single spcll data, drawn from a process with

{wo risks k=1,2, and is censcred at Ty,

Assumption B1 readily generalizes to an arbitrary number of risks. Without loss of

generality, suppose that the failure type is of type 1 so that 73; = min( 7y, 7:)-
ASSUMPTION (B2). The risk-specific hazard rate is parameterized as
)\ki('r) =S Agk(T) (*)XP(Xi('T),Bk + Vki + CIC(T))

where Mop(T) > 0 4s the bascline hazard whose logarithm is independent across k, X;(T)
are covariates thal are allowed Lo vary cuer time with full support en all of the real line
for any given T and one covariate common. to all k, B are model parameters, Vi s an
uncbserved heterogencity component, and (u(7T) 48 a commeon time compenent corrclated

acrass k nermalized Lo have mean zere in cach k.



13

ASSUMPTION (B3). For cach k, the baseline hazard Aop(7), the values of the covari-

ates, and C(T) are constant within each time period t.

Thus, the log-baseline hazard could also be stated as S = log(Aors) -+ Cee where dopg

is correlated across k due to the presence of ¢y Let G = (Guay---. Ger): ¢ = (G1;G):

V, = {Vii}£,, and V = {V¥;}V,. The probability (3.1), conditional on (V;;{) and a set of

covariates, is '

(3.2)

Pty =1, i > 112 Vi, () =/
T

1/ 1f(ul,ug Y/}TC)dugdu1+/ L/ flug, uy Vi, Q)duodu,
S ‘ oo S

3

Let Swy = exp(—Agy) denote the risk-specific survivor function. We derive a closed-
form solution to (3.2) in the following Theorem which extends Result 1 to our CR model

environment.

THEOREM 1. Under Assumptions B1-B3, conditional on the latent veclor (V;. () and
a set ¢f covariates,
(3.3)

Plty =1, 705 > T35 Vi, €) = Soise—1)Stige—1) i Aozt + Atie) "1 —exp (— (Maie + Asae))]

for uncensored ohservations, and
(3.4) Pl > T, to; > T Vi, () = (1 = Fur) (1 = Far) = SursSar

Jor censored cbservalions.
The proof is provided in the Online Appendix.

3.1. Parametric Heterogeneity in the CR Model

ASSUMPTION (B4). Let vy = oxp(Vis) ~ Gi(vr) where Gi(vg) s a generic probability

measure with density gn(ue). Let the correlation structure of G be given by

(Cn:) N (0)' 0} po10a
CQL 0 : PORTq (T%

with paramelers p, oy, 9.
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As in the single-tisk case, we consider two alternative forms of the distribution of unob-
served heterogeneity G(v) in Assumption B4. 'L'he first form is parametric given either by
the GIG or gamma density. We provide new results regarding the model likelihood for the
model B1-34. These will be used in the nonparametric mixture model. This approach
is different from Man and Hausman (1990) who considered the truncated multivariate

Normal likelihood.

For the expected likelihood, we have two new expression for the expected probability
of (3.3): onc based on a quadrature, and another one with a series expansion without
the need for a quadrature. The following Theorem extends Result 2 into the CR model

environment.,
THEOREM 2. Under Assumptions B1-B4,

o .I —— -’ — - s
(3.5) E,P(ty; =170 > Tii) = “)\h’t/ Ly (A’_’i(t~l) + )\22'1‘_5.1) E&” (Al.i(t—l) + /\m51) dsy
0

or
2r1—-21‘2+1
E Pty =1, T > Ty PUREPYE:
(t1 s T2 >T1 ;;)7'9‘7"1 7‘2—{—71-{—]) it \2it
(3.6) . x L) (Kuu—n)) £ (K:z‘i.(tw.l))
for uncensored cbservations, and ‘
(37 ByP(ty > T, tu > 1) = Ly (Xm) Ly (Km«)

Jor censcred cbservations, where [l( )( ) is the 7—th derivative of the Laplace transform,

The proof is given in the Online Appendix. Theorem 2 is derived for a generic distribution
of the unobserved individual heterogeneity term w; and provides a direct extension of (2.14)
and (2.15) to the competing risk model environmens. Specific alternative distributional

assumptions with corresponding likelihood expressions are provided next.

ASSUMPTION (B5a). 1he unobserved helerogencily term vy is distribuled according
to the Ceneralized Inverse Gaussian distribution, G(v) = G¥C(v; k., @, 0).

ASSUMPTION (B5b). The unobscrved heterogeneily term v; is disiributed according

{6 the gamma distributicn, G(v) = G%(v; . 6).
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The derivatives of the Laplace transform in (3.5) and (3.6) Theorem 2 depend on the
functional form of the density kernel of v;, givenr in Assumptions B5a and B5b. ‘L'he
formulas for the derivatives of arbitrary order of the Laplace transform for the GIG or
gamma densities do not appear to be available in the literature; we derive them in the
Online Appendix. Using those expressions in Theorem 2 yields the following two Corol-
laries, extending Result 3 and 4, respectively, from the single-risk case to the competing

risk model environment.

Corollary 1 (to 'l'heorem 2). Under Assumptions Bi-Bj and Bba, the functicnal forms
of Theorem 2 are given in.(CA.2.43), (CA.2.44), and (CA.2./5) in the Cnlinc Appendiz.

Corollary 2 (to Theorem 2). Under Assumptions B1-B4 and B5b, the functional forms
of Theorem 2 are given in (CA.2.47), (CA.2.48), and (OA.2.49) in the Cnline Appendiz

3.2. FPlexible Heterogeneity in the CR Model
We will now proceed to an-infinite mixture model for the distribution of vy;.

ASSUMPTION (136). 1he prior for vy Gy ~ Gy, is specified as the hierarchical model
Y ~ DP(Gor, o), a ~ g% a0k, boi), Blui] = 1.

The roles of the individual model components are described in Assumption A6 and gen-
cralize to the CR [ramework. Similarly to the single risk model environment, we consider

two cases for the functional form of the baseline measure Gy:
ASSUMPTION (BT7a). In Assumption B6, Go = GOTC (5, @, Or).
ASSUMPTION (B7h). In Assumption B6, Gor = G% (v, 01).

Implementation of the mixture models under Assumptions B1-B3, B6, and B7a or B7h
uses the probabilities derived in Theorem 1, Corollary 1, and Corollary 2. Further imple-

mentation details are given in the next Section and in the Online Appendix.

Heckman and Honore (1989) show how the introduction of covariates allows identifica-
tion of a large class of dependent competing risks models without invoking distributional
assumptions. Nonctheless. normalization assumptions are necessary for parameter iden-

tification. The normalization constraints gencralize directly from the single-risk case and



16

we impose them for each risk type. Assumptions B2 and B4 impose explicit restrictions
on the model behavior in continuous time within each time period. ‘I'hese restr ictions
allow us to invoke identification conditions of Heckman and Honore (1989). A detailed

discussion of identification is provided in the Online Appendix.

4. MCMC Posterior Sampling

4.1. Single Risk Model

All technical implementation details are provided in the Online Appendix. In this Section
we summarize the main points. For the implementation of the Dirichlet Process Mixture
model (Assumptions A6 and A7a,b) we used the Bayesian generalized Polya urn scheme
(Neal 2000 Algorithm 2; West, Milller, and Fscobar, 1994; Bush and MacEachern, 1996).
Implementation of the GIG mixture model (Assumptions Al-A3, A6, and ATa) uscs
the functions (2.8), (2.9), (2.18), and (2.19). The gamma mixture model (Assunptions
A1-A3, A6, and ATb) uses (2.8), (2.9). (2.22) and (2.23), respectively. 'I'he remaining
model parameters were sampled in standard Gibbs blocks using Hybrid Monte Carlo (Neal
2011) with diffuse priors unless stated otherwise above. The results are discussed in our

application below.

4.2, Competing Risk model

Similarly to the single-risk case, for the implementation of the Dirichlet Process Mixture
model in the competing risk environment (Assumptions 136 and B37ab) we also uged

the Baye%izm generalized Polya urn scheme. Implementation of the GIG mixture model

and Ooro]la;ry 1 to ‘l,.heo're,m 2. 'I'he gamma mixture model (Assumpmons 131 133, 136,
and B7h) uses (OA.2.47) and (OA.2.49) from Corollary 2 to Theorem 2. The remaining
model parameters were sampled in standard Gibbs blocks using Hybrid Monte Carlo (Neal
2011) with diffuse priors unless stated otherwise above, except the covariance matrix of
Assumption B4 with parameters o1, 09, p for which we specify a proper Inverse Wishart
prior with maximum possible dispersion, IW (K + 1, I)c) where Iy is the identity matrix

of dimension K = 2. The results are discussed in our application below.
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Application

Since its introduction in 1935 as part of Roosevelt’s Social Security Act, unemployment
insurance (UI) benefits provide partial insurance to workers who become unemployed.
Most states offer unemployment insurance for up to 26 weeks. Neoclassical economic
thought suggests that higher benefits also lead to reduced incentives to sea awrch for a job,
thus prolonging the period of time an individual spends out of employment. (Mnlligan,
2012). As a result policy makers have placed increased emphasis on reforming the Ul
system by rewarding personal responsibility rather than bad Iuck. This has lcad to a
shilt away from the unqualified provision of Ul benefits fowards a system that is search
intensive, making benefits conditional on providing evidence that the potential recipient
engaged in a certain minimum amount of job search. Additionally, schemes whereby in-
dividuals are provided one-off grants that atternpt to alleviate temporary hardship rather
than longer term Ul benefits are advocated. At the same time the recent economic crisis

has forced policy makers to extend the duration of UL benefits for up to 99 weeks.”

Applied economists require econorietric tools to accurately estimate the impact of un-
cmployment insurance on the duration of uncmployment, while accounting for state un-
employment rates, generosity of unemployment insurance benefits and workers’ observed
and unobserved heterogeneity. In this section we apply our approach to analyzing the
determinants of unemployment duration among unemployment insurance recipients. We
will stress the importance of relaxing the parametric assumptions of the cconometric mod-
els and accounting for correlations in the competing exit choices faced by workers. One
of the major advantagcs of our appr oach is that it is- po&mble to simulate counterfactual
pohcy changes which can 1n101m policy makers on the relative merits of various changes
that may be contemplated. We will illustrate this feature by evalugting the impact of a

change in the replacement rate on the duration of unemployment.

51. Data

We use daba from the Needels et. al. (2001) report submitted to the U.S. Department
of Labor that is based on a nationally representative sample built from individual-level

surveys of unemployment insurance (UI) recipients in 25 states between 1998 and 2001.

"The unemployment extension legislation was set to expire on Jamuary 1, 2013.
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Candidates for the survey are selecied on the basis of administrative records and are
sampled from the pool of unemployed individuals that started collecting Ul benefits at

some point during the year 1998.

VIV(;) are interested in analyzing the effect of unemployment insurance on the duration of
uncmployment. The duration of unemployment is measured in woeks. At the time of the
survey and [rom the states that were included in the survey only two states provided Ul
benefits for a maximum of 30 weeks, the rest providing UI benefits for a maximum of 26
wecks. Theoretical models of the impact of Ul benefits on unemployment duration, such
as Mortensen (1977) and Moffitt and Nicholson (1982), predict an increasing hazard up
to the point of benefit exhaustion and a flat one afterwards. We limit, our study to the
first 24 weeks of unemployment due to the recognized change in behavior in week 26 when
Ul benefits cease for a significant part of the sample (sce, ¢.g., Han and Hausman, 1990),

which would affect the econometric model.

The data contain individual-level information about labor market and other activities
from the time the person entered the UT system through the time of the interview. ‘The
data include information about the individual’s pre-UT job, other income or assistance
reccived, and demographic information. We use two indicator variables, race (defined as
an indicator for black) and age (defined as an indicator for over 50). We further use the
replacement rate, which is the weekly benefit amount divided by the UT recipient’s base
period carnings. Lastly, we utilize the state unemployment rate of the state from which
the individual received Ul benefits during the period in which the individual filed for
benefits. 'L'his variable changes over time. 'I'he Needels et. al. (2001) data shares certain
similarities to the PSID dataset used in Han and Hausman (1990). The Ul recipients are
mostly white, young, poorly educated workers who find themselves below or very near

the poverty line.®

Below we will estimate a single risk duration model for the duration to re-employment
and also a competing risk duration model for the duration to re-employment using our

proposed approach, which differentiates between workers who find a job in the same

8 Note that the labor market conditions captured in this dataset are substantially different than the
ones experienced today. According to the Burean of Labor Statistics (BLS), the latest figures broken
down by state for September 2012 show the mean state unemployment rate is 7.5% and varies between
3% and 11.8%. In contrast, in our dataset the state unemployment rate is approximately 4.5%.
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industry and workers who find a job in a different industry. For both analyses we erploy
subsamples from the Needels et. al. (2001) survey data, after removing outliers and
observations with missing values. For the single risk model we use a subsample consisting
of 15,358 individuals. Summary statistics for this sample are given in Table 2. For a
subsample of 1,243 of the Needels et. al. (2001) data we also know the SIC codes of
the employer before and after the unemployment spell. We denote individuals who find a
job in the same industry as individuals with risk type 1, while those who find a job in a
different industry as individuals with risk type 2. Summary statistics for this subsample
are given in ‘able 2. We note a marked difference in the unemployment durations of these
two groups of individuals. Figure 1 provides plots of the number of mdividuals who exited
in each time period, shown separately for workers who find a job in the same industry
and those who do not (risk type 2). Individuals who find a job in the same industry exit
unemployment much faster in the first few weeks after they lose their job but conditional
on not having found employment by weck 8 their exit pattern resembles that of the other
individuals. ‘I'his is empirically interesting as it points towards the importance of industry
specific human capital. We would expect variation among the industry specific human
capital to vary by industry but also by individual reflecting their level of experience and
motivation. 1t is thus fo be expected that some individuals have accumnlated a significant
degrée of hunan capital which makes them attractive to other employers in the same
industry. Switching industries usually entails learning new skills and the incentive to
do so may be affected by the duration and generosity of the uncmployment insurance
benefits. We would thus expect substantial behavioral differences between workers facing

these two competing risks.

5.2. Single Risk Duration Model with Flexible Heterogeneity

Kstimation results of the semiparametric duration model with a flexible form of unob-
served heterogeneity under GIG mixing (Assumptions A1-A3, A6, and A7a) are presented
in Table 3. In the Online Appendix we also present estimation results for two benchmark
parametric models. Istimation results of a model with parametric gamma heterogencity
(ITan and Hausman, 1990; Meyer 1990), as specified in Assumptions Al A4 and A5b, are
given in Table OA.1. In Table OA.2 we present estimation results for another benchmark

model with parametric GIG heterogencity (Assumptions Al-A4 and Aba).
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In addition to the above mentioned censoring at 1" = 24 weeks, we also include the bench-
mark cases where we censor at /' = 6 and I' = 13. In the GIG mixture model, all of
our variables (state unemployment rate, race, age, and replacement rate) are estimated
to have a negative significant impact on the hagard rate of exiting unemployment. Note
however, that when comparing the estimates of the f coefficients, the scaling changes de-
pending on the variance of the estimated heterogeneity distribution. Thus, the ratios of
the cocfficients should be compared, as opposed to their absolute values. This makes the
interpretation of the coefficients less transparent. We note however that the coefficient
estimates obtained from the flexible model are substantively different than those obtained
from the parametric model. As discussed above, the parametric restriction on the het-
erogeneity distribution can lead to inconsistent estimates if the true mixing distribution

does not exactly correspond to the parametric specification.

We would expect to obtain similar results irrespective of the fruncation point and thus the
coefficients obtained for the models truncated at 6, 13, and 24 weeks to be very similar.
While the cocfficient ratios are not constant they tend to be relatively similar. The one
exception comes from the ratios involving the replacement rate, in partieular for the model
with censoring at 24 periods. This is similar to the results in TTausman and Woutersen
(2012) and might be explained by behavioral changes as individuals approach the date of

Ul exhaustion.

The estimated distribution of the unobserved individual heterogencity is presented in
Figure 2. The estimated distributions can only be very roughly approximated by the
gamma distribution. While in all three cases the mode is negative, as we increase the
mumber of periods used in the estimation the distribution acquires a more pronounced
lolt tail. This indicates that as we observe individuals over a longer period of time the
model captires to a larger extent the part of unobserved heterogeneity which prevents
workers from finding employment and thus becomes indicative of the propensity for long

term unemployment.

The survival function estimates along with 95% confidence bands are presented in Figure
3, featuring the anticipated downward sloping shape. The smoothing parameter o of
the Dirichlet Process (DP) Mixture model introduced in Assumption A6 controls the

extent to which the DP draws mixture distributions that are more or less "similar” to
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the baseline parametric distribution (ip. In the limiting case ol @ — oo the mixture
distribution becomes equivalent to Cp, while in the other extreme o — 0 the mixture
distribution limits to a convolution of density kernels centered at each data point without
any influence of the DP prior. The posterior distribution estimates of « are plotted in
Figure OA.1 in the Online Appendix. I'he distributions are concentrated avound a well-
defined mode with a value of less than 1 indicating a strong influence of data relative to
the bascline prior distribution thereby providing a high degree of support in favor of our

nonparametric approach.

5.3. Competing Risk Model with Flexible Heterogeneity

We now present the results of our newly proposed competing risk model with a flexible
form of unobserved heterogeneity using GIG mixing and correlated risks (Assumptions
B1-B3, B6, and B7a). Note that in our example risk 1 corresponds to the cvent that a
worker find a job in the same industry, while risk 2 corresponds to the event that she finds
a new job in an industry that is different than the industry of her previous employer. We
-present the estimated coefficients in Table 4. For all three censoring times (T =6,13,24),
the partial cffects of race and age arc not statistically significant, with a few isolated
exceptions. 'This could be due to smaller sample size available for the competing risk
case as opposed to the single-risk case, with the former consisting of less than 10% of
observations of the latter. For all three censoring times, the relative influence of the
replacement tate is declining from 7' = 13 to T' = 24 indicating the impact of benefit

exhaustion.

The estimated density® of unobserved heterogeneity Vi is shown in Iigure 4 for the GIG
mixture model for both risk types k = 1,2, each centered at the time average of the risk-
specific latent common time cffect (e to refloet the overall influence of the unol:)scrvcdi
heterogeneity component Cm.' + Vi The differences between the density of unobserved
individual heterogeneity further highlight the importance of distinguishing between the
different risk types in the competing risk model environment as compared to the single-
risk duration case. In particular the two distributions of are distinet and well-separated

9 In Table 4 we report the estimated GIG mixture model coeflicients but as these enter all mixing

kernel moments their interpretation is not immediate, Hence it appears more informative to examine the

resulting mixture density estimate.
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indicating that conditional on observed covariates there is a significant degree of sorting
between workers finding jobs in the same or in a different industry. While the mode of
both distributions is negative, workers who find a job in the same industry possess latent
attribuges that make them more desirable than workers who are not. This may indicate
the presence of unobserved industry specific human capital for these workers which make

them more attractive to employers in the same industry.

‘I'he survival function estimates along with 95% confidence bands are presented in Figure
5 for both types of risks. The differences in the shapes for the first few weeks are striking
and also indicative of the differences in exit rates between workers finding a job in the
same industry compared who workers that find a job in a different industry. T'he estimated
survival function for workers who find a job in the same industry is convex while that for
workers who do not is concave, indicating a much slower overall re-integration into the
labor market. "This appears to confer a long term advantage with the overall probability
of being unemployed being substantially higher for workers with no apparent industry
specific human capital and which have no particular advantage in terms of finding a job

in the same industry as their pre-unemployment firm.

Figurc 6 shows the estimated correlation structure of the latent time variables (. common
to all individuals, defined in Assumption 134, for the GI I mixture model in. terms of the
estimated densities for the variances o2, o3, and the correlation coefficient p between
¢y and (o for the two different risk types. Interestingly, most probability mass for the
density of p is negative for T = 6, around zero for T' = 13 and positive for T' = 24.
'I'his may correspond to a negative correlation of common shocks for jobs in the same
and in different industries for the first several weeks of unemployment with a subsequent
correlation Teversal in later time periods, but may also be influenced by other factors,
as estimates of other model elements also change. Nonetheless, such correlation pattern
would explain the exit counts shown in Figure 1 for the two risks, with high ratios of
jobs in the same industry to different industrics for the first few wecks abetting to parity

around week six.

The posterior distribution estimates of the smoothing parameter o of the Dirichlet Process

Mixture model (Assumption B36) are plotted in Figure OA.2 in the Online Appendix.



The distributions are concentrated around a well-defined mode of value less than five,

indicating a strong influence of data relative to the baseline prior distribution.

It is informative to contrast the estimates from our preferred model with those obtained
under different modeling assumptions on the unobserved heterogeneity which are detailed
in the Online Appendix. Table OA.3 presents the estimated coctficients from a model that
ignores the presence of individual heterogeneity, Table OA.4 corresponds (o a model which
assumes parametric gamma distributed heterogeneity, 'lable OA.5 estimates a competing
risk model with parametric GIG heterogeneity, and Table OA.6 presents the estimation
results from a flexible model which estimates the unobserved semi-parametrically using
an infinite mixture of GIG distributions but also further imposes the assumption of inde-

pendence between the different risks. In Table OA.7 we present estimation results from
our single risk GIG mixture model but applied to the subsample of obscrvations which

records the outcomes for the two competing risks.

Given the large number of parameters to be considered it is helpful to compare these
different models in a graphical setting. In order to facilitate the comparison between
the model which pools the two risks and the models which do not we can combine the
two risks into a common survival function, as discussed in the Online Appendix. Thus,

in igure 7 we compare the estimated survival function of our CR GIG mixture model

model versions: 1) the parametric GIG case (labeled as 7CR param”), 2) the independent
risks case where we estimale a single-risk model separately for each risk type of data and
then merge their survival functions ex-post (labeled as "CR indep”); 3) the case without
individual unobserved heterogeneity under the restriction Vi, = 0 (labeled as "CR no
ihet”); and 4) the single-risk case where we do not distinguish between risk types in the

competing risk data (labeled as ” SR full”).

"I'wo featires are particularly significant. Ifirst, we notice that if we enforce the assumption
of independence of the two risk types, the resulting common survival function is severely
downward biased. The magnitude of the bias dominates the other modeling choices which
we make on the specification of unobserved heterogeneity, This could be due to fhe
distributional effects of the risk correlations (Iigure 7) that are absent in the independent

risk model. Second, we plot the confidence bounds for our proposed model which allows for
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a flexible specification of the unobserved heterogeneity but also for correlated competing
risks. We notice that all other more restrictive specifications are downward biased and

the differences become statistically significant as the number of time periods increases.

5.4. Counterfactual Policy Evaluation

One of the advantages of our model consists in the explicit estimation of the unobserved
heterogeneity components which enables us to evaluate the effectiveness of counterfactual
policy experiments taking into account the distributional effects of individual heterogene-
ity. As discussed above, onc of the main policy questions currently faced by cconomists
is the extent to which the generosity of unemployment insurance benefits impacts the
workers' incentives to find employment once their lose their job. On the one hand. more
pencrous benefits are expensive to provide given the ongoing debt crisis and may actu-
ally prove detrimental in the long run as they may erode workers® incentives to find a job
quickly. ‘'I'hus they would ultimately contribute to increasing long run unemployment. On
the other hand, low levels of unemployment insurance benefits can make unemployment
very difficult for many Tow incomnie familics. Poverty can also have a negative cffect on-their
ability to find employment since job search is costly and in the absence of unemployment;
insurance benefits many workers may find themselves unable to support their families
while also scarching for an adequate job. As a result workers may end up nnderemployed
or leave the labor market altogether. The relative magnitnde of the impact of incentives
over poverty is an empirical question and a counterfactual analysis using model estimates

can provide some evidence in this debate.

In the context of our model we can consider changing the replacement rate in order to
investigate its impact on the probability of exit from uncmployment as captured by the
survival function. Note that we assume that this policy change does not impact the
distribution of heterogeneity. We can perform this policy counterfactual using both the
single risk and the competing risk model. For clarity, we eombine the two risk types in
the CR model into & common survival function as described in the Online Appendix. The
counterfactual experiment consists in increasing and decreasing the replacement rate by
10%. We present counterfactual results from our preferred specification which flexibly

models the unobserved heterogencity as an infinite GIG mixture. The estimated and
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counterfactual survival curves nnder the two scenarios are presented in Figure 8 (SR) and
Figure 9 (CR).

Both Figures show that the survival function moves in the anticipated direction: for a
replacement rate decrease the probability of staying unemployed is lower, and for replace-
mont rate increase the probability of continued uncmployment is higher. Howevoer, the
~ changes are relatively small. For example, for T' = 24 in the final period the survival
fanction changes by —1.7% and 1.6% for the CR data, respectively. ‘L'his suggests that
while the estimated impact of a change in unemployment benefit generosity has the sign
predicted by economic theory, the magnitude of the impact on the probability of unem-
ployment exit is inelastic. Policy makers may thus wish to consider the extent to which

cutting unemployment benefits may ultimately influence an unemployed worker’s welfare.

Tn the Online Appendix we further report on the results of two extensions of the coun-
terfactual experiment that we bricfly summarize here. First, we split individuals into
two different subsamples based on their unobserved heterogeneity component -~ below
and above the median. 'I'he results indicate that individuals with higher unobserved
heterogeneity react more to replacement rate changes and have better chances exiting un-
cmployment faster than their counterparts with lower unobscrved heterogencity. Sccond,
we specify a time-varying replacement rate counterfactual change under two scenarios:
one with sharp initial change and one with sharp late change. On average the survival

function changes more under the former scenario, albeit inclastically in absolute terms.

6. Conclusion

We introduced a new fexible model specification for the competing risk model with piece-
wise linear baseline hazard, time-varying regressors, risk-specific unobserved individual
heterogeneity distributed as an infinite mixture of density kernels, and a eommon cor-
related latent cffect. Unobserved individual heterogeneity is assumed to be distributed
according a Bayesian Dirichlel Process mixture model with a data-driven stochastic mum-
ber of mixture components estimated along with other model parameters. We derive
a tractable likelihood for Generalized Inverse Gaussian (GIG) mixing based on scaled

GIG Laplace transforms and their higher-order derivatives. We find that mixing under
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a special case of the GIG, the gamma kernel, leads to degenerate outcomes in nonpara-
metric mixtures motivating the use of the-more flexible GIG. We apply our approach
to analyzing unemployment duration with exits to jobs in the same industry and to a
different industry among unemployment insurance recipients on nationally representative
individual-level survey data from the U.S. Department of Labor. We also conduct a coun-
terfactual policy experiment that changes the replacement rate and find that the extent
to which cuts in uncmployment benefits incentivize unemployed workers is relatively very

small.
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7. Appendix: Tables and Figures

Table 1. Overview of Assumptions

Helerogeneily type

Single Risk

Compeling Risks

No heterogeneity
Parametric GIG

Parametric gamma
Ilexible GIG mixture
Flexible ganuma, mixture

Al A3

Al-Ad, Aba

Al-A4, ASb
A1-A3, A6, ATa,  B1-B3, B6, B7a
Al-A3, A6, ATb  B1-B3, B6, B7b

BI1 B3

B1-B4, B5b

Tabl-e 2. Summary Statistics

Duration Data

Competing Risk Data

Variable Mean S.D. Min Max | Mean S8D. Min Max
Duration 23.245 16.334 1 63 27.958  28.410 1 140
. Race 0.117  0:321 G 1 0.107 0.310 0 1
Age 0.177  0.382 1§ 1 0.181 0.385 0 1
Replacement Rate 0.66568 0.3082 0.016 1.8434 1| 0.660 0.324 0015 2.173
State unemp rate: :
period 1 4.686 1.087 2 6.9 4.579 1.125 2 7.5
period 2 4.672 1.083 2 6.9 4,568  1.120 2 7.5
period 3 4.660 1.079 2 6.9 4,562  1.107 2 7.5
period 4 4,645 1,074 2 6.9 4,553  1.103 2 7.8
period 5 4.630 1.069 2 6.9 4:536  1.092 2 8.1
period 6 4.621  1.064 2 6.9 4.533 1.083 2 3.1
period 7 4.616  1.066 2 6.9 4,538  1.080 2 8.1
period 8 4.598 1.064 2 6.9 4.527 1.071 2 7.4
period 9 4.570 1.061 2 6.9 4518 1.070 2 7.2
period 10 4.538  1.061 2 6.9 4486 1.070 2 7.2
period 11 4.531  1.063 2 6.9 4.481 1.072 2 7.2
period 12 4.509  1.067 2 6.9 4.458  1.082 2 6.9
period 13 4483 1.075 2 6.9 | 4438 1.091 2 6.9
period 14 4.462 1.080 2 6.9 4.412  1.098 2 6.9
period 15 4.460 1.075 2 6.9 4404 1.102 2 6.9
period 16 4449 1.073& 2 6.9 4.380  1.097 2 6.9
period 17 4,439  1.067 2 6.9 4.376  1.088 2 7.8
period 18 4.440 1.055 2 6.9 4.368 1.078 2 7.8
period 19 4.431 1.054 2 6.9 4.367  1.073 2 7.8
period 20 4420  1.045 2 6.9 1.342  1.066 2 7.8
period 21 4.428  1.033 2 6.9 4.338  1.052 2 7.5
period 22 4.431  1.029 2 6.8 4.335 1.038 2 7.4
period 23 4.436 1.024 2 6.7 4.345  1.037 2 7.4
period 24 4.441  1.015 2 6.7 2 7.4

Observations

15,358

4.353 1037
. 1,243

31



Tabl e 3. New Semiparametric Duration Model, GIG Mixture

6 periods 13 periods 24 periods
Mean s.e. Mean s.e. Mean s.e.

i -0.963 0.039 -1.226 0.034 -1.659 0.101
i 2,984 0.110 3.022 0.097 4.240 0.285
Urate -0.184 0.021 -0.214 0.014 -0.327 0.034
Race -0.055 0.069 -0.126 0.042 -0.145 0.050
Age 0194 0067 <0178 0.035 -0.187 4.039
Brate -0.924 0076 -0.473 0.051 -0.147 0.066
i 1 -2.142 0.116 -2.264 0.090 -1.971 0.181
2 -1.716 0.109 -1.843 0.088 -1.573 0.175

3 -2.026 0112 -2.157 0.096 -1.878 0.182

4 -1733 0.112 -1.865 0.085 -1.678 0.182

5 -2.070 0.112 -2.198 0.099 -1.928 0.185

6 -1.833 0.102 -1.829 0.084 -1.547 0.184

7 -2.336 0.100 -2.061 0.205

8 2026 0.087 -1.743 0.189

9 ~2.347 0.097 -2.099 0.181

10 -2.130 0.087 -1.871 0.189

11 -2.347 0.087 -2.086 0.194

12 -2.120 0.095 -1.856 0.196

13 2277 0.074 -1.904 0.195

14 -1.840 0.191

15 -1.775 (.191

16 -1.740 0.195

17 -1.981 0.206

18 -1.641 0.191

19 ' -1.848 - 0.194

20 -1.674 0.191

21 -1.832 0.198

22 -1.738 0.199

23 -1.913 0.211

24 -1.006 0.179

N = 15,491, Urate denotes the state unemployment rate,
Rrate denotes the replacement rate.



Tabl e 4. New Semiparametric Competing Risk Model, GIG Mixture

33

6 periods

13 periods

24 periods

Risk 1 Risk 2 Risk 1 Risk 2 Risk 1 Risk 2

Mean s.e. Mean se Mean se. Mean se. Mean se. Mean se.

i -1.585 0.046 -1.516 0.046 -1.482 0.057 -1.554 0.062 -1.407 0.044 -1.492 0.047
0 3.800 0.129 3.838 0304 3741 0162 3944 0176 3.532 0126 3.771 0.134
Urate -0.111 0.065 -0.103 0.083 -0.107 0.048 -0.117 0.063 -0.216 0.040 -0.095 0.056
Race 0.054 0.225 0.033 0424 -0.044 0.183 -0.377 0.343 -0.046 0.157 0312 0.256
Age -0.008 0.176 -0.562 0.357 -0.016 0.154 -0.700 0.200 -0.036¢ 0.130 -0.461 0.212
Rrate -1.062 0.227 -0.465 0.390 -0.903 0.181 -0.411 0.288 -0.385 0.156 -0.831 0.226
i 1 -2553 0.314 -4.864 0.516 -2.680 0.276 -4.741 0.503 -2.496 0.256 -4.947 0.511
2 -1.993 0.296 -4.625 0491 -2.113 0.255 -4.514 0504 -1.933 0.234 -4.715 0475

3 -2.5924 0.311 -4.937 0.565 -2.445 0.272 -4.830 0.558 -2.263 0.253 -5.027 0.554

4 2022 0.302 -3.633. 0.400 -2.138 0.263 -3.506 0.388 -1.962 0243 -3.728 0.372

5 2470 0325 -3.638 0.413 -2.580 (.28 -3516 0.391 -2.406 0.273 -3.729 0.376

6 -3.854 0.290 -3.711 0.212 -3.044 0.322 -3.327 0.386 -2.872 (.308 -3.543 0.367

7 2047 0321 -4.361 0.518 -2.764 0.304 -4.599 0.508

8 -2.483 0.295 -3.068 (.372 -2.318 0.277 -3.285 (.355

9 -3.750 0.422 -3.984 0479 -3.571 0417 -4.203 0.460

10 -2.620 0.305 -3.950 0471 -2449 0.203 -4.149 0.451

11 -3.232 0.362 -3.925 0.480 -3.078 0.355 -1.129 0.449

12 -2,791 0.326 -3.866 0.445 -2.625 0.305 -4.003 0.454
13 -3.799 0.341 -3.829 0.409 -2.703 0.317 -4.057 0.453 .

14 -2.738 0.320 -3.807 0.437

15 -2.511 0.3086 -3.634 0.406

16 -3.074 0376 -3.927 0.452

17 -2.127 0.284 -3.872 0.453

18 -2.564 0.335 -4.580 0.569

19 -2.513 0322 -3.285 0.388

20 -2.702  0.347 -3.884 0.457

21 -1.850 0.278 -3.569 0.424

22 -3.795 0.540 -4.719 0.652

23 -2.13%  0.307 -3.780 0.464

24 -3.640 0.322 -3.770 0.106

N = 1,243, Urate denotes the state unemployment rate, Hrate denotes the replacement rate.
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Figure 1. Empirical Exit Count for Competing Risk Data
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Figur e 4. Heterogeneity density, GIG mixture
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Figure 7. Model Comparison in Terms of Survival Functions
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“A Bayesian Semiparametric Competing Risk Model with Unobserved Heterogeneity”
by Martin Burda, Matthew Harding, and Jerry Hausman
September 29, 2013

1. Details on MCMC Posterior Sampling

For our model implernentation we utilize the Gibbs sampling scheme which belongs to the class
of Markov Chain Monte Carlo (MCMC) simulation methods. An attractive feature of MCMC
techniques is that samples of random draws can be generated from the joint posterior densities
of parameters of interest indircetly, without the need to specify the exact analytical form of
the joint densities. 'I’he Gibbs sampler uses an iterative procedure to create Markov chains by
simulating from conditional densities instead which are analytically tractable. 'L'he sets of draws
obtained in this way can be effectively considered as samples from the joint posterior densities.

1.1. Gibbs Blocks

Jor the single risk case, let Ly = log(Lbe), Lo = (Lo1.. .-, igr), and V = {Vi}X,. The model
parameters consist of [, I3, V, hyperparameters either of the GIG mixture I and (0 or the
gamma mixture [J (denote the hyperparameters generically by [1), and the DI concentration
parameter . Under Assumptions A1-A7, the joint posterior density can be decomposed into

the following Gibbs blocks:

In the competing risk case, all the above parameters are risk-specific. Moreover, due to Assump-
tion 34, there are additional parameters [y, 1l T, and 7. Hence, let My = log(Toke) + (ke where
Cose = Cowe Since time intervals have unit length, Let further U= {L.),},{‘:l, Ok = (ks -+ - Dhwer),
T = (Co1, R;Q), 0= {HA}I{il’ V; = {V;;i}if;l, V = {Vi}g_,l, 0= {T—L}K,_,,l, and [l = {ﬂg}{;l In

our application, K = 2. 'I'he Gibbs blocks arc now as follows:

‘I'his frst Gibbs block is sampled using standard Hamiltonian Monte Carlo (HMC) with SR
posterior (2.8) and (2.9), and CR. posterior (3.3) and (3.4). ¥ora detailed description of the HMC
procedure, see e.g. Neal (2011), pp. 122-125. Inthe CR case, the covariance mafbrix of the second
bloek is endowed with a proper Inverse Wishart prior with waximum dispersion, | W (K+1,tg)
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strmeture in Assumption B4, the posterior can be found e.g. in Train (2003) on p. 301 and the
sampling procedure on p. 302. Sampling individual heterogeneity V, hyperparameters {1, and
is detailed in the next section. '

1.2. Individual Heterogeneity

The distribution of the unobserved heterogeneity component v; is modeled as a mixture with
countably infinite number of mixture components. In the Bayesian framework employing a prior
distribution for mixing proportions, such as the Dirichlet Process that we adopt here, leads to a
relatively few of the mixture components dominating in the posterior. Using a countably infinite
mixture bypasses the need to determine the " correct” number of components in a finite mixture
model.

DP mixture modeling is deseribed in detail e.g. in Hjort et al (2010). In our implementation,
we use Algorithm 2 of Neal (2000). Here we provide the essence of the procedure. The prior
structure of the model for v; is specified by our Assumptions A6 (SR) and 36 (CR). It is based on
two levels of hierarchy, where the first one is formed by a random measure G that stochastically
deviates from the bascline measure Gy and the second level i given by the Dirichlet Process
DP(Gy, [). 'The baseline measure Gy is specified in our Assurmptions A7a,b (SR) and B7ab

(CR).

‘T'he level formed by G can be integrated out to obtain a representation of the prior in terms of
successive conditional distributions of a mixture form (Blackwell and MacQueen 1973):

i1

1 [l
AL SV S w R S
(OA.LI) Ve Vi |~1.+G;L{V’)+|—1+DGO

where v_; denotes the collection of v, j ‘% i, and [{v;) is the Dirac measure concentrated on
the single point v;. When combined with the likelihood, this yields the following conditional
distribution for usc in Gibbs sampling (Neal 2000):
N
(OA.1.2) Vivoite o~ Y a5Tvs) 4+ aHs
J=1,458 »
G = bF(t,v;)

@ = b / F (t;, v)dGo(v)

where H; is the posterior for v; based on the prior Gg(v) and the single observation t; with
likelihood denoted by F (1;, v;), bis a normalizing constant such that Z#i g+ ® =1, and N
is the sample size. In the SR ease, implementation of the GIG mixture model (Assumptions
Al-A3, A6, and A7a) uses (2.8) and (2.9) for F (1;,v), while [ F (t;, v)dGy(v) is given by (2.18)
and (2.19). The gamma mixture model (Assumptions Al A3, A6, and A7b) uses (2.8), (2.9),

B6, and B7a) uscs (3.3) and (3.4) for F (t;,v) from Theorem 1, and [ F (t;, v)dGy(v), as derived
in Corollary 1 to Theorem 2. 'I'he gamma mixture model (Assumptions B1-B3, B6, and B7b)
uses (0A.2.47) and (0A.2.49) for the lalter integral, from Corollary 2 to Theorem 2. The
hyperparameters [} are then updated in a separate Gibbs block as given by Algorithm 2 (Neal
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2000, p. 254). Gibbs updates of the concentration parameter LI are detailed in Escobar and
West (1995).

1.3. Compilation and Runtime

All reported posterior means were obtained from Markov Chain Monte Carlo (MCMC) chains
of total length of 30,000 steps with a 10,000 burn-in scction. All models were implemented
using the Intel Fortran 95 compiler on a 2.8GHz Unix machine under serial compilation, lor a
sample of 15,358 individuals, the single risk model implementation took approximately 3 hours
for T = 6, 4 hoursfor T = 13, and 6 hours for T = 24 to run. In contrast, with a sample of 1,317
individuals, the competing risk model implementation took approximately 2 howrs for T =6, 6
howrs for T = 13, and 13 hours for T = 24.

1.4. Gamma versus GIG

In the gamma mixtire model we found that the probability mass of the individual heterogeneity
component was aceunnilating at zero; with a thin right tail diverging to infinity, leading to
a degenerate outcome. We believe this to be an arlefact of the ganma density kernel shape
with mode st zero for mean less than or equal to one. In contrast, for the GIG density under
the Assumptions AG and ATa (SR) or Assumptions B6 and B7a (CR), we obtained a well-
defined stable nonparametric heterogeneity clustering without the degenerative tendencies of
the gamma. We attribute this outcome to the more flexible functional form of the GIG with a
well-defined mode at a strictly positive value for v.for mean values smaller than one.

2. Details on Proofs and Derivations

2.1. CR Stochastic Environment

Consider the CR model sctup with interval outcome data and latent cxit times, as deseribed in
the main text. In this section we will initially omit the subseripts i and t and also covariates
and helerogeneity variables to focus on the general model, without loss of generality. We will
then include these elements into the model as needed. Denote the latent exit time variables by
0= (O, ..., k) while the time integration variables by u = (Uy,...,Ux), assumed conditionally
independent. :
The cause-specific hazard fauction for the k-th cause, which is the hazard from failing from a
given cause in the presence of the competing risks, is defined as
Pr(ug < 0 < Up + K 0> Ug)

h

Uk (ug) == lim
i( "‘) h—

The joint hazard from all causes is

i
AN
,
=
c
S
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where all inequalities are defined element-wise. The cause-specific integrated hasard is
T
(0A.21) A (0) = / (U du
Jo

‘and the joint integrated hazard is

- o K K o B
(0A.2.2) A= [ ou)du= [ (Ug)du = De(Up)du, = > Ag ()
/ /}_: > [ rutunrdue =3

f=1 fe=1

The joint survival function is

S(u) = Pr(0> u)
(0A.2.3) = exp(—A(u))
which is the complement of the probability of failure from any cause up to time O given by the
overall cumulative distribution function

F(u) = Pr(l<u)
1 —8(u)

For case of cxposition, we will focus on the case of two risk types with K = 2. T'he joint density
of failure at time u is thus given by

9
f (u‘l, UZ) = w
Tuy Cug

. F&QS(UL Ug)

BT |

_ MPexp (—Ag (U1) — Az (U2))

[RIFER VP ;

(0A.2.4) _ = exp(—Ag(U1) — Az (Ug)) [ (ug)Ch(ug)

Equation (QA.2.4) links f (U, uy) with the risk-specific hazard functions. Paramectrization of
the latter in terms of covariates and unobserved heterogeneity (V;, [) is given by Assumption

B2. We will now invoke this Assumption and reintroduce (V;, [), while suppressing notational
conditioning on the covariates X without loss of generality.

Note that conditional on X the failure times u; and uy are dependent since (3, and (3 are
correlated. However, conditional on X, V, Lithe failure times Uy and ug are independent. Hence
f (uy,ug 'V, ) can be factorized into the product

flugupVoo) =f (u V. OF (1 V.0)
From (OA.2.4) it follows that
(OA.ZS) f (Uk V, Li) = @Xp (‘Ak (uk)) Jk(uk)

Define the function

(OA.2.6) Si(ug) = exp (—Ag (Uz))
for k € {1,2}. From (OA.2.5) and (OA.2.6) we have,
(0A.2.7) f(ug V, 1) = Splug)lik(ug)
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Jirom (0A.2.1), (OA.2.6), and (OA.2.7) it follows that

i
(0A.2.8) f (g V, D)duy, = Sp(e—1) — Sk

STy

I'he density (OA.2.7) should not be confused with the so-called subdensity function fi(u;) =
S(u = u;)[4(u;) that is sometimes used in CR analysis, Moreover, the function Sp(ug) defined in
(0A.2.6) does not, in geueral, have the survival function interpretation for K > 1. Nonetheless,
examining (0A.2.2), (OA.2.3), and (OA.2.6) reveals that the product of Si(ug) over K equals
the joint survival function:

K
(0A.2.9) S(u) = [ Se(us)

o=l
(for further details of interpretation of functions with survival-like propertics see ¢.g. Porta,
Gomez, and Calle 2008). In general, the unconditional product form of (0A.2.9) characterizes
independent, risks. However, dependence among risks can be introduced by conditioning each
Sk(ur) on variables correlated across the risk types.

2.2. Competing Risk Model: Conditional Likelihood
From (3.2), |
(0A.2.10) Pty=1t, > ; Vi, ) =A+B
where
T T4 )
A = / / f (U1, uz Vi, D)dusduy
7 Ui
Ty oo
B = / / £ (uy, Uz Vi, D)duduy
7; JTy
‘'he expression A is more difficult to evaluate than B since in A the lower hound uy of the inner

integral is an argument of the outer integral. In contrast, the two integrals in B are independent
of each other and hence can be factorized. '

"1hus,
Ty T
A = / / Fuo(uy Vig, M)F (U2 Vag, T2)duaduy
T g
Ti Ty
(OA.2.11) = / / fa(Uy Vag, T3)dUz | F(up Vig, )duy
Jr, u4

where Uy, € [[1,73) for k € {1,2}. For the inner integral in (OA.2.11), using (OA.2.8)
(0A.2.12) fi(ua Vg, La)dug = So; (u1) — Sou
Jayy
Let Sp = Up — Lk so that sg € [0,1). Then, from (OA.2.5), using piecewise constancy of the

hazard function Ch; (-) and hence piecewise linearity of the integrated hazard function A (7)
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over timne,

falup Vis, T3) = oxp (—Agi (Ug)) Tii(U)
= oxp (—Agig—1) — Skhit) Meie
(0A.2.13) = exp (—Agie—1)) ©XP (—SkTkie) Chie
Similarly.
(OA.2.14) Ski (U3) = Spiqe—1) &P (— (55 0hkat))

for k,j € {1,2}. Using (OA.2.12), and integration by substitution with {OA.2.13) for k=1 and
with (OA.2.14) for k =2, ] =1, in (OA.2.11) yiclds

A = /ri [S2: (U1) — Saar] Fae(Uy Vg, 0 )duy

i

1
= S‘.Zi(t—«l.)/“ exp (— (S10hit)) exp (—Ayze—1y) exp (=51 Thit) Chirdsy

(0A.2.15) = Ay +Ap

where

1
Ay = 827',(1._1)4 exp (— (5102s)) exD (—Ayie—1)) xp (—S101:) Driedsy

(OA2-16) = ”S‘li(t ..... 1)SH(LM1)EJ|& (pﬁu‘ + mlit)_l IGXI) ("‘ (E":.sz + D],‘t)) - 1]
and
1
Ap = —So / exp (—Au(t_;)) exp (—S1hie) DheedSy
JU

(OA.2.17) = SpitSuy(r-1) lexp (—Diie) — 1]
Using (OA.2.16) and (OA.2.17) in (OA.2.15) yields

(0A.2.18) A = 89;811¢ {1 — exp(Uhge) — Dhat (Thae + Dhae) ™0 |1 — exp (Chiny + Ehz't,)]}

"The expression for B of (3.2) is given by
B = [_Flif — Fuige—y] [T — Fau]
= |Siige—1) — S1at) Sz
= Syi—1)S2it — S1:¢S0i

(0A.2.19) S1:¢Saie |exp(Chae) — 1]

Il
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Combining (OA.2.18) and (0A.2.19) in (OA.2.10) yields

!I - extp( (D}Lt -+ Dl.zt))]
with the resulting log-likelihood

InP(t =t 3> Vi, 0) = —Agp) — Aug-1) +log(Dtar) — log ( Chat + Char)
+log (1 — exp (— (Do + Diat)))

2.3. Competing Risk Model: Integrated Likelihood
2.3.1. Quadrature Version

Here we derive an expression for the expectation of the exit probability (3.2) with respect
to unobserved heterogeneity for each risk type, based on a simple quadrature. ‘laking the
expectation of (3.2) yields

i

E.P (= t, 15> [.,ii) E. / ' / ' flu,us Vg, LDdUQdU,]
ST M

Ty XD
+Ey / / f (uy, ug V;, L)dugduy
- / /  (Uz, Ua Vi, L)daduy

7 Ju
= E, / / f (g Vii, 1) s(Ua Vas, L) dugduy

- E, / / F 14U Vs, 18)dusf (U1 Vs, Li)dlug

(0A.2.20)

I

/ Ene S0 (U1)] E vy [Fae(un Vaz, 1)) duy
Hrom (OA.2.6), -

(OA.2.21) E o [S2: (U1)] = Lo (K%(Ul))
Using (0A.2.5),

i

Euqe [Fae(ur Via, L)) E oy, [exp (—Agz (U1)) Lhi(uy))]

= Tha(U1)Eay ICXD (—Vlixu(uzt)) V].i]
(0A.2.22) . = ~Fha(u) (Kli(ul))

where £ (s) is the first derivative of the Laplace tr ansform £ (8) evaluated at 5. Using (OA.2.21)
and (0A.2.22) in (OA.2.20) ywlds

(0!\_.2.23) E Pty =t [5> [:‘11,'_) = e /T i Ul)ﬁ)( Ul)) ({\1, Ul)) duy

i
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Letting again sy, = U, — (t — 1), s € [0, 1), k € {1,2}, and using piecewise constancy of Uk )
and piecewise linearity of Ag; (-), following a change of variables (OA.2.23) becomes
(0A.2.24)

1

EL{Mu=t > 0= '—‘r“[.df/(; Ly (Kg,;(-{, AAAAA n+ Eg,:tS‘]‘) [:g']) (K'li(t ,,,,, n+ E]]_itsvl) dsy

2.3.2. Series Expansion

"Ihe series expansion expression for the expectation of (3.2) can be derived as [ollows. Using
(OA.2.10) and taking expectations,

Elip(th“—"'ty 9 > r‘t)

i
H

T PTi
E, / ] £ (uy, U Vi, Mdusdu;
T Jw

»?,' O
+E, f (uy, up V;, Mdugdy,
I Fi
(0A.2.25) ~ E,A-+E,B

From (OA.2.11),

Ty
(0A.2.26) EA =" Jf =

T
/ fi(Ug Vo, C?)dufz} Euy, [Fae(ur Vaz, 0)] duy

kA
For the expectation of the inner integral,

Fa

E fae(Ua Vo, fé)duz} = By, [B2s (M1) — Sou]

U

uq

(0A.2.27) | = Eu, (S0 ()] — L2 (Kai)

with the first right-hand side term intentionally not converted to the Laplace form in order to
facilitate subsequent series cxpansion. Using (OA.2.27) in (OA.2.26),

Ti
EA = /

—i

- / Euy, [S25 (U1)] Euge [F (s Viz, 71)] duy

Euge 82t (U)] = £ (Raie) | Euye [y Vas, TD]

—Ls (7\‘21’.1,) Eu; / fa (U Vg, I1)duy
v,

(0A.2.28) = E,A;+EAs
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Substituting with (OA.2.6) and (0A.2.7),

. Ty
E,A = / Evny (S0 (U1)] Euge [F (U1 Vis, 0]ty
T

= EupEu / Sni(ur) [fae(Us Viz, 1)) dug
T

T
= EuuEuy exp (—Ag; (U1)) exp (—Aq; (Ur)) Dhauq)duy
vy
Ti - — -
(0A.2.29) = EupEu [ oxp (“‘V‘ZiA‘zi. (Uz)) exp (—V_uAn (U1)) vy (U )duy

i
Using integration by substitution with s; = U, — L in (OA.2.29) and piecewise constancy of
Chz (S1,) for s, € 10,1), k € {1,2},

EsA1 = EuEu, éXD ("VQiKQi(t—l)) exp (—‘Vlizli(t-—l)>

el _ B
x / exp (”‘V2i51 Dzz't\ exp (~V1i51 Dm) v1;Chadss
Jo

- —1y1 o~
/ Z( \szsﬂ 2u> Z ) (Vlzsl’m‘lzt) Vi3l dsy

12=0 ra! rrqe=()
o0 o AT .
(17 & (=07 | . S
= Z rol rol Euyy ‘»XP(—VliAJi(t—-l)) (Vliulit)
1p=0 rq=0
i~ ~ ™ /'] )
*xE o, lexp [ —Voilai_ Voilbi st2tids
24 ( 2i439; (¢ 1))( 2 zz) }./0 1 1
0A.2.30 = S DS EDT A LE, A A
( N 2.¢ ) == Zﬂ |'2! z:n 1”1! '01[ 11} vzl 12] 13
= l"l':.
where
! (0A.2.31) Ey [An] = EQELIEW exp (“VIiKli(t—-l)) VEH]
(OA.2.32) o ( 1)1111 f1+l£(r1+ ) (Ah(t 1))
(0A.2.33) EwlA12] = [BEw A‘GKP(-VziAQi(M,)) V§§]
(0A.2.34) = (-1 L8 (Ko
[ s
Ay = A s?“”dsl
' 1
2.35 S
(0A.2.35) ro+ry+1

whereby the time dimension of the previons quadrature has heen parsed through following the-
series expansion linearization and integrated out in the remaining polynomial term in (OA.2.35).
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Combining (0A.2.32) and (0A.2.34) and (0A.2.35) in (OA.2.30) results in

o0 9 o]
N o ) N O D N O V=
B = D Fo! > Pl Fodrg 41 % i
ryu={) i ==()
- o . r+1) /Y v} g
(0A.2.36) x L (Au(,__l)) £{ (Agi(t,u)
For the sccond part of (OA.2.28),
~ T
EA2 = —[52(Azu) Evu/ fa(ug Vg, L)dug
Ry Zi

= —L (7\22':) Euy, |Sisge—1) — Stat)
(0A.2.37) = —Lg (Kza) 'ﬁ'l (Kli(t—l)) — Ly (Xlit)]
Collecting (OA.2.36) and (0A.2.37) in (0A.2.28) yields

o0 x>
_ (_'1)1‘2 (_3')71 ('——1)” tra+l Tt
EvA - Z }‘.,! Z:() rl! r2 o} rl 4 '1 L"f‘-i’t’ g:'l‘lil'

120 2 =
x LD (Xli(t—l)) g™ (K%(t—l))
(0A.2.38) | —Ly (T\zu) lﬁ1 (Xli(t—1)> ~ L (T.\m)]

The expectation expression for B in (OA.2.25) is

Ty 00
/ Eu / fi(Un Vo, @)duz] E oy [f Uy Vg, 03)] dug
7 Ti

= Eu, [Soit) Ewye |Stse—1) — Suat]
(0A.239) = Ly{do) |Lr{ Mg

I

E.B

I
)
e
o~
=1
1
=
o
——
B
=
N
|
B
———
?2
| SE—

Substituting (OA.2.38) and (OA.2.39) into (OA.2.25) yields

oo o 1y2r1+2r2+1
ok tee i G ) A e T
E.P (th‘ =%, 19> LM) = E g Tl (fa + T1F l) !A.“Ei.t Lhi

rpe() g ==

(OA.2.40) ' x EY‘*” (Kli(t-U) Egﬂ (K‘zi(t—d))
2.3.3. Derivatives of the Laplace fransform

In general,

(0A.2.41) £0) (s) = (= 1) / V" exp (—sv) g(v)dv

(see e.g. Hougaard 2000, p. 498) and L£{) (s) exists for eachir > csuch that g(v) <K exp(cv)
if g(v) is plecewise continuous over ils domain.
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In the GIG density function (2.16), replace Uwith U 2, then let Li= (21 1] and then substitute
the resulting expression into (OA.2.41) te obtain

oot = (ay [v exp(—sv)g‘*‘m(v)dv

(D) et g ]
v exp 2((b-1 28)V + ) dv

= (“])rfsz((m)l/z)

r 2K KT (((II_H“ 23) m)l/g) ((['H_ 25)/ ﬁ)(n—i-r)/‘z .
9K s (((L+29) 1)) (L4-25) NGRE

(U7 e { 1t - }
x | ———t T loxp d -2 (O 28) V- — ) p v
/ZK,; (([]?1)1/2> | 2( v v)

Kietr (((ﬂ+ 2s) n)lﬂ) (o my/?
Koo (L) 2) (014 25) / C)KF772
x / (L 28) / L)AD/2
2K egr ( (T 29) )2

= (1)

! 1 L
rtr—1 o R =
v exp{ 2((ﬂ;—25)v+v)}dv

K Ker ( (L_H‘ 25) ﬂ)l/z) (n [—()u/Z

- Ko () (O 28)/ D)0

Reversing the substitution with Li= /{L! and then replacing Liwith 20 yields

Keer (B0 +S [1)1/2)

E GG "
(0A.2.42) LNGIG (g) = (1) )

(j;') (1 + s/ )~ =42

The quadrature version for the GIG then follows (rom (2.17), (0OA.2.24), and (OA.2.42).
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Thalh
200K K1 (Dl) K K2 (D‘.Z)

x/“(m s
0 - 7 1i(t—1) ¥ i1

EFOP(ty =t > i) =
) —~{r1+1)/2

5 1. 1/2
%Ki (‘71 (1 + F%‘A'li(tm-»l) -+ Hml_itsl) )

. . . - o
(OA.2.43) x K, (Uz (1 —;A it 1) - —g%....,;iy,S]_) dsy

"The serics version follows from (OA.2.40) and (OA.2.42).

1)%1 3

~ i+l o~ 2
Cha(h Thalls
EGIGD(ty; =t, ;> ) = et

ra==0 11

_ — (st 4+1)/2 1~ —~(r2+72)/2
% (] + ﬁ/\u(t—l)) (1 + ﬁ;A?,i(t—-l))

1. 1/2 _’
* K ey 141 (ﬂl (1 + ‘I:};[lli(tml)) ) L™ (M)]™

, "
(0/\24/‘) . x K,;,2+7~2 ( (1 “f —é'AZI(L 1)) ) IK; 2 (l ,,,,, )l

'I'he censored case,

, 1~ '""M/l( 1 r2 /2
EGCP@H;> T, tu>T) = (1 + EAMT) \1 + “‘bAZﬂ")

1/2
xK ( Up {1+ AlzT) )]KM (L§1)]1

{
\ |
( ) (1 + = Am’) 1/2) K ey (02)] 7

.
(OA.2.45) *xK iy

Expressions (0A.2.43), (0A.2.44), and (OA.2.45) are referenced in Corollary 1 to Theorem 2.
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For the gamma density function (2.20),
LG (s) = (=1) / V" exp (—sv) g% (v)dv

= (-1) / V" axp (—SV) P v oxp(—(¥)dv

(D)
= (~1)T/ZF%]5V”“"”] exp(— (0 s) v)dv

(MH48) T (4 1)

sk m Sy DO+ 1)
ﬁ) v exp(— (M-s) v)dv
- ( ¥ I(O+T)
B ( ]) (p.H__S)fH-r 11(1‘)
[ O g eat- (G v
(OA.2.46) = (=1 o O

(Li4+s)™" T(M)
‘I'ne quadrature version for the gamma then follows from (2.21), (OA.2.24), and (OA.2.46).

G D 1~ 1= 7
EjP(tu=1t Mu>ry) = 0 /0 (1+ AZZ(Lwl)“}' ”msl

M I
1~ 1~ '—(’ﬁ +1)
(OA.2.47) x (1 + EA},i(t-]) + ﬁﬂl.itsi) ds;
The series version follows from (0A.2.40) and (OA.2.46).
~ r4+l  ~ 2
Y 1’1 +72 . s
G et > 14t Lhat
Evp(th b G Li 7;)§)rl|f‘ﬂ r1+r2+1) ( ) ( [3 )
—(y14ri41) 1~ —{12-+72)
(1 + Alz(l ,,,,, 1)) ( Ah(t 1))
(OA.2.48) IOy 11+ 1) [I‘('(_'".ﬁ)]"I D( +ro) [P(Lig)]
For the censored case,
Y } ™~ —71 —"’2
(01\249) Eg’P(tli > T, 1g; > T) = (] - "‘,“Alz’l) (] - ‘,T..;AQ:LF)
O S S Y .

Fxpressions (0A.2.47), (OA.2.48), and (OA.2.45) are referenced in Corollary 2 to ‘L'heorem 2.
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3. Model Identification

Cox (1962) and I'siatis (1975) state that the simple competing risks model with no regressors is
not identified. In particular, any competing risk model with correlated risks is observationally
equivalent to some other competing risks model with independent risks. Heckman and Honore
(1989), henceforth HIIL, establish an identification theorem for a general class of competing
risks models with regressors. ‘L'his class includes models with marginal distributions that follow
proportional hazards, mixed proportional hazards, and accelerated hazards. ‘I'he results are
presented for two competing risks but generalize to any arbitrary finite number of risks. HH
assume that the exact time of exit is observed.

Our competing risk (CR) modecl is based on continuous latent times of exit M;,..., Mk with
a minimum [J = min ({3, ..., [k:) . We observe the time interval (L, T%). labeled as t;; which
contains LJ. Nonetheless, onr model assumptions impose more structure that would typically be
implied by interval outcome data, which allows us to identily the structural model components.
Assumption B2 explicitly parametrizes the time-varying model components as functions of the
continuous time M In Assnumptions B3 and B4, the values of these components are assumed
constant within each time period t. Assumptions B2 and B4 thus allow us to adhere to a
counterpart of the H1l identification approach in our model setting.

As in the main text, we assume K = 2 risk types. HH identify the single-index structural
parameters [k up to scale from the ratio of the derivatives of the survival function with respect
to a time increment of each risk type, evaluated at the time origin. Our counterpart is the ratio
of the survival functions integrated over the first time period (t = 1). From Theorem 1,

P(tiu=1 > V,0)  SuoSuolha (Tha + Ma) ™" |1 = exp (= (Thar + Mhan))]

Ptz =1, i > 3: V.0 Sya0S0i00hit (Trar + Do)~ |1 — exp (— (Chat + Chan))]
_ M |
Do

Vi exp(Xa Ly 4 L)

Vg exp(X iy M + Mhar)
Taking expectations with vespect to vy, = exp(Vir) and using the normalization restrictions
E [vi] = 1 from Assumption B6, the absence of a constant term in Xz, and the support condition
for X in Assuinption B2 identifies the ratio of Oy and .

tonditional on X = x, HH assume the survival funetion structure
(OA.3.1) S(Mx) =/C|U;(V§X),U2(Fix)]

where Up([1X) = exp |~Zp(0)0k(x)] and K is a joint distribution function on 0,112 In our
case, the counterpart of (X ) for period t outcomes, the joint expected survival function, can be
oxpressed as

(0A.3.2) EWSi(x) = K [Un(x), Un(x)]

where Uy (X) = oXp ("' 23‘2] Zit ijJk'l,()()) with Che(X) = exp (X I'—/‘,) and zj, = exp( Thre), or

equivalently Ug(X) = Ag(x). Our model assumptions uniquely determine the function K which
is given in Theorem 2: for censored observations K is a product of the Laplace transforins of
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A1¢(x) and As:(x), and for non-censored observations an expression involving the derivatives of
the respective Laplace transforms. ‘

Let Lhe(X) — 0 while holding Li:(x) fixed, which is feasible by the full support condition for the
covariates. 'hen

t
E,Si(X) =K |exp [ = zizoxp (xieM) | .1
j=1

Since K and Lh¢(X) are known and K is increasing in both arguments, z3; can be identified for
any t, and similarly for Zp;. Identification of T ¥, and Eg‘ follow directly from identification of
71, and Assumptions B2 and 134.

Using (OA.2.9) the joint expected survivor function can be expressed explicitly in terms of vy
and Vg as

(0A.3.3) E.Six) = /5; exp |—VviUis(x)] exp | —VaUge(x)] dG(v1, V2)

HH show nonparametric identification of G for a special case with v = vy = exp(cz[). Honore
(1993) provides the proof in full generality, albeit in that paper (OA.3.3) was obtained from a
multi-spell background. The argument is that if the marginal distribtions of G along with other
model components are identified, then G is nonparametrically identified by the uniqueness of
the multivariate Laplace transform. 'I'he same argument can be used when (OA.3.3) is obtained
from a multiple risk background as we consider here.

The marginal distributions of G are in turn identified under the following IElbers and Ridder
(1982) assumptions:

ER1: vi is nen-negative, with E [vg] = 1.

ER2: The function z;(C) defined on [0, 00) can be written as the integral of a non-negative
funetion .

18R3’: I'here are two points in the support of X, Xq and Xy, such that O(Xa) # C(Xy). Further-
more, [(Xp) = 1.

Assumption ER1 is satisfied by our Assumption B6, and Assumptions ER2 and ER3’ are satisfied
by our Assunptions B2, 36 and the definition of integrated baseline hazard.

Identification of Lk in 11 relies on a limit result with the time variable approaching zero. An
alternative proof of nonparametric identification of a general class of CR models that does not
rely on a time limit at zero is provided in a recent paper by Lee and Lewbel (2013), henceforth LL.
'Their approach also docs not depend on exclusion restrictions and allows for disercte regressors
as long as some are continuously distributed.

LL define mappings By(s X) and C(s X) that are identified directly from data and whose unique
sohution is the accelerated failure time nonparametric regression function g(x). Both By(sX)
and C(s1X) are expressed as integrals over the continuous time domain which we can evaluate
as well under our assumptions using the formula for the density of the continuous Jatent, time of
exit.
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Other than regularity conditions that are satisfied in our model, LL rely on a key rank assumption
statling that the columns of the Fréchet derivative of C*(s,h) = C(sX) with respect to its
functional argument h are linearly independent and that C* is a proper mapping preserving
compactness under inverse image. ‘L'hese conditions generally require that X contain at least K
continuously distributed elements and also that no one element of g(x) can be expressed as a
funetion of the other elements of g(x). LL show that the conditions can be met under parametric
assumptions preventing non-degeneracy of the correlation structure between the competing risks,
and hence we conclude that these will hold in our model.
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Figure OA.1. Posterior Density of the Dirichlet Process Concentration

Parameter ¢, GIG mixture

T=6
o .
/N
2 / \
=
& /
o
) 5 1 5 H 25
alpha
T=13
d
@ |
>
T \\
o
8 \
o e
) 5 1 15 2
. alpha
T =24
o~

y

Y

[N
/ O\
Y, N

X




Online Appendix page 18

Tabl e OA.1. Duration model with parametric gamma heterogeneity (Han
and Hausman, 1990) '

6 periods 13 periods 24 periods-
Mecan s.c. Mean s.¢. Mean sc.
1 0.210 0.034 0.242 0.017 0.316 (.020

Urate -0.480 0.036 -0.457 0.021 -0.402 0.012
Race -0.184 0.070 -0.186 0.060 -0.195 0.055
Age -0.403 0.077 -0.325 0.072 -0.284 0.048
Rrate -1.449 0.104 -0.941 0.074 -0.383 0.052
t 1 -0.346 0.215 -0.774 0.111 -1.374 0.058

2 0305 0237 -0.168 0.123 -0.819 0.058
3 0.194 0.263 -0.303 0137 -1.012 0.059
4 0.688 0289 0.153 0.139 -0.588 0.062
5 0.525 0.322 -0.046 0.154 -0.826 0.077
6 1.095 0.337 0.499 0.144 -0.324 0.072 -

7 ' 0.131 0.162 -0.721 0.078
8 0.571 0.161 -0.322 0.080
9 0.351 0.195 -0.566 0.100
10 0.700 0.179 -0.262 0.088
11 0.580 0.169--0.389 0.100
12 0.945 0.193 -0.063 0.102
13 1.007 0212 -0.015 0.101
14 0.163 0.120
15 0.305 0.096
16 0.463 0.125
17 0.307 0132
13 0.712 0142
19 0.658 0.153
20 ‘ 0.916 0.152
21 0.853 0.165
22 1.063 0.166
23 0,995 0.202
24 1.283 0.176

N = 15,491, Urate denotes the state unemployment rate,
Rrate denotes the replacement rate.
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Tabl e OA.2. Duration Model with Parametric GIG Heterogeneity

6 periods

13 periods

24 periods

Mean s.e. Mean se  Mean se
[ ~0.825 0.054 -1.176 0.048 -1.501 0.072
o 1.900 0.151 2.882 0.136 3.792 0.203
Urate -0.307 0.018 -0.285 0.014 -0.259 0.017
Race -0.108 0.058 -0.152 0.043 -0.111 0.044
Age 0973 0058 -0.223 0.041 -0.178 0.038
Brate -1.190  0.069 -0.708 0.043 -0.039 0.059
t 1 0.115 0.150 0.938 0.102 1.345 0.068
2 (0.584 0.139 1.397 0.092 1.734 0.095
3 0309 0.145 1.124 0.099 1.510 0.069
4 0.640 0.138 1.442 0.098 1.800 0.090
5 0.334 0.139 1.131 0.085 1.510 0.073
6 0734 0.104 1.538 0.103 1.891 0.117
7 1.059 0.117 1.429 0.071
8 1.400 - 0.098 1.718 0.090
9 1.066 0.161 1.438 0.068
10 1.311 0.100 1.623 0.082
11 1.096 0.103 1.462 0.054
12 1.356 0.098 1.665 0.084
13 1.334 0.074 1.676 0.072
14 1.669  0.093
15 1.788 0.097
16 1.819 0.100
17 1.677 0.066
18 1.931 0125
19 1.775  0.097
20 1.939 0.142
21 1.798 0.088
22 1.922 0.113
23 1.752  0.074
24 1.790  0.096

N = 15,491, Urate denotes the state unemployment rate,

Ryrate denotes the replacement rate.



Online Appendix page 20

Figure OA.2. Competing Risk Model; Posterior Density of the Dirichlet
Process Concentration Parameter ¢, 'Type 1 Risk (left) and Type 2 Risk

(right), GIG mixture
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Tabl e OA.3. Competing Risk Model without Individual Heterogeneity

6 periods 13 periods 24 periods
Risk 1 Risk 2 Risk 1 Risk 2 Risk 1 Risk 2
Mean s Mdan se Mean se. Mean se  Mean se  Mean se

Uraie 10995 0.061 -0.305 0.081 -0.199 0.045 -0.116 0.067 -0.199 0.087 -0.095 0.055
Race 0.003 0.220 -0.044 0.422 -0.083 0.181 -0.320 0.312 -0.035 (.136 -0.289 0.215
Age L0155 0.175 -0.807 0.420 -0.097 0.135 -0.596 0.271 -0.011 0.119 -0.437 0.200
Ryate 21461 0.265 -0.865 0.506 -1.092 0.222 -0.407 0.302 -0.330 0.138 -0.374 0.226
i 1 -1.312 0.343 -3.484 0.644 -1.928 0.302 -4.405 0578 -2.402 0.255 -4.643 0.494
9 0759 0.322 -3.210 0.609 -1.380 0.300 -4.288 0.540 -1.865 0.230 -4.426 0.462

3 -1.118 0.339 -3.538 0.669 -1.739 0.323 -4.583 0.601 -2.210 0.250 -4.736 0.524

4 -0.829 0.335 -2.236 0.549 -1.448 0.303 -3.320 0459 -1.946 0.243 -3.442 0.3584

5 -1.985 0.363 -2.226 0.547 -1.808 0.320 -3.335 0.482 -2.387 0.263 -3.444 0.360

¢ -1.763 0.384 -2.058 0.527 -2.407 0.369 -3.146 0.445 -2.891 0.299 -3.294 0.352

7 2997 0.858 -4.205 0.571 -2.779 (.303 -4.342 0.498

8 ~1.854 0.326 -2.922 0.452 -2.349 0.278 -3.031 0.336

9 ‘ -8.146 0.443 -3.818 0.529 -3.587 0405 -3.947 0.468

10 2004 0.362 -3.792 0.538 -2.503 0.289 -3.951 0.445

11 2.671 0.384 -3.798 0.533 -3.147 0.332 -3.910 0.448

12 2187 0.860 -3.741 0.536 -2.715 0.308 -3.875 0.421

13 -2.987 0.357 -3.721 0.521 -2.753 0.318 -3.832 ©.426

14 -2.833 0.320 -3.683 0.438

15 -2.592 0.329 -3.439 0.405

16 -3.169 0.381 -3.764 0.434

1T -2.241 09277 -3.713 0414

18 : -2.605 0.316 -4.388 0.571

19 -2.681 0.318 -3.145 0.393

20 -2.831 0.8341 -3.763 0.460

21 -2.020 0.275 -3.467 0.400

22 -4.002 0.576 -4.664 0.660

23 -2.307 0.308 -3.651 0.455

24 -3.277 0.433 -3.600 0.449

N = 1,243, Urate denotes the state uncmployment rate, Rrate denotes the replacement rate.
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Tabl e OA 4. Competing Risk Model with Parametric Gamma Heterogeneity

6 periods

13 periods

24 periods

. Risk 1 Risk 2 Risk 1 Risk 2 Risk 1 Risk 2
Mean s.e. Mean se Mean se Mean se Mean se  Mean se.
i 0.480 0.112 0.240 0.091 0420 0.061 0.128 0.028 0.350 0.051 0.207 0.045
Urale -0.8361 0.060 -0.327 0.106 -0.298 0.058 -0.199 0.080 -0.342 6.054 -0.167 0.071
Race 0.024 0272 -0.160 0.440 -0.130 0.236 -0.541 0416 -0.067 0.217 -0.330 0.296
Age -0.052 0.212 -0.766 0386 0.002 0.197 -1.072 0.398 0.089 0.192 -0.723 0.201
Rrate -1.763 0.257 -1.141 0.536 -1.434 0.235 -0.737 0.401 -0.957 0.223 -0.507 0.333
t 1 -0.844 0.321 -8.151 0.647 -1.278 0.306 -3.846 0.539 -1.381 0.296 -4.172 0.466
2 -0.171 0.287 -2.907 0.604 -0.605 0.295 -3.578 0.490 -0.678 0.269 -3.973 0.474
3 -0.401 0.285 -3.171 0577 -0.825 0.304 -3.782 0.537 -0.876 0.319 -4.190 0.682
4 -0.009 0265 -1.792 0487 -0.431 0.282 -2.427 0.426 -0.442 0.297 -2.891 0.373
5 -0:360 0.280 -1.719 0463 -0.798 0.321 -2.308 0.435 -0.791 0.3156 -2.799 0.399
6 -0.759 0227 -1.500 0403 -1.205 0.340 -1.967 0417 -1.192 0.371 -2.562 (0.357
7 -1.061 0.338 -2.809 0.531 -1.056 0.368 -3.507 0.420
8 -0.566  0.292 -1.490 0.376 -0.526 (0.321 -2.141 0.357
9 -1.762 0.406 -2.309 0.443 -1.756 0.419 -3.000 0.418
10 -0.607 0.318 -2.242 0.435 -0.585 (.362 -2.946 0.397
11 -1.186 0.359 -2.065 0465 -1.142 0.385 -2.746 0.390
12 -0.693 0.328 -1.962 0.472 -0.677 0.346 -2.759 0.434
13 -0.876  0.345 -2.073 0.325 -<0.70¢ 0.393 -2.719 0.415
14 -0.667 0.397 -2.433 0.400
15 -0.333 0.379 -2.105 0.393
16 -0.913 0.445 -2.385 0.440
17 0.109  0.361 -2.345 0.442
18 -0.263 0.402 -2.869 0.508
19 -0.204 0415 -1.526 0.358
20 -0.230 0.401 -2.216 0.456
21 0.679 0.384 -1.709 0.389
22 -1.313 0.748 -2.859 0.576
23 0.469 0.408 -1.835 0.421
24 -1.060 0.346 -1.594 (.318

N =1, 243, Urale denotes the state unemployment rate, Hrale denotes the replacement rate.
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Tabl e OA.5. Competing Risk Model with Parametric GIG Heterogeneity

6 periods 13 periods 24 periods
Risk 1 Risk 2 Risk 1 Risk 2 Risk 1 Risk 2
Mean s.e. Mean se Mean se. Mean se  Mean se.  Mean  se.
i 1117 0.043 -1.145 0.081 -1.121 0.036 -1.157 0.056 -1.134 0.029 -1.153 0.047

0 2715 0.122 2.794 0227 2.726 0.101 2.827 0.159 2762 0.083 2.817 0.132
Urate L0215 0.040 -0.259 0.077 -0.182 0.043 -0265 0.057 -0.295 0.044 -0.198 0.052
Race 0.059 0.250 -0.104 0401 -0.110 0.227 -0.472 0.342 -0.073 0190 -0.346 0.226
Age J0.026 01902 -0.733 0.418 -0.056 0.162 -0.760 0.269 -0.039 0.142 -0.553 0.224
Rrate J1.323 0.241 -0.797 0.428 -1.150 0.236 -0.631 0.318 -0.568 0.180 -0.473  0.202
t 1 -1.737 0272 -3.399 0.351 -1.949 0.255 -3.695 0.504 -1.798 0.276 -4.022 0.452
9 -1.J01 0255 -3.006 0332 -1.316 0.249 -3.485 0.539 -1.158 0.261 -3.834 0.450
3 -1.365 09272 -3.271 0.356 -1.588 0.264 -3.657 0.491 -1.440 0.276 -4.107 0.622
4 -1.080 0264 -2.257 0.265 -1.243 0.259 -2.395 0.373 -1.093 0.265 -2.844 0.372
5 .1.453 0.281 -2.228 0.281 -1.639 0.267 -2.397 0.359 -1.495 0.294 -2.849 0.346
G -2.908 0286 -2.195 0.215 -2.104 0.302 -2.185 0.353 -1.931 0.303 -2.623 0.356
7 S1.082 0317 -3.306 0.546 -1.821 0.341 -3.631 0.479
8 -1.527 0.280 -1.868 0.343 -1.354 0.284 -2.325 0.334
9 2,751 0.445 -2.821 0.418 -2.651 0.448 -3.230 0414
10 S1.627  0.297 -2.772 0446 -1.464 0.312 -3.188 0.396
11 -2.232 0.383 -2.711 0.505 -2.105 0.373 -3.102 0473
12 ' -1.768  0.320 -2.597 0.443 -1.632 0.335 -3.016 0.435
13 2215 0271 -2.285 0.300 -1.696 0.331 -3.053 0.396
14 --1.694 0.360 -2.848 0.389
15 -1.474 0.325 -2.640 0.410
16 -1.998 0.372 -2.924 0.396
17 -1.103 0.304 -2.870 0.482
18 -1.508 0.369 -3.572 (.513
19 -1.461 0.351 -2.223 0.367
20 -1.638 0.352 -2.019 0.469
21 -0.772 0316 -2.481 0364
22 -2.598 0.526 -3.746 (.687
23 -1.068 0.333 -2.695 0.404
24 - -2.241 0.358 -2.279 0.361

N = 1,243, Urale denotes the state unemployment rate, Hrate denotes the replacement rate.
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Tabl e OA.6. Competing Risk Model with Independent Risks, GIG Mixture

6 periods

13 periods

24 periods

Risk 1 Risk 2 Risk 1 Risk 2 Risk 1 Risk 2
Mean se Mean se Mean se Mean se  Mean se.  Mean se
il 1891 0.046 -1.015 0.058 -1.444 0.045 -1.314 0.056 -1.550 0.041 -1.466 0.056
N 3988 0.129 2430 0.163 3.634 -0.126 3270 0.159 3.933 0.115 3.698 0.160
Urate -0.153 0.048 -0.210 0.072 -0.120 0.042 -0.014 0.059 -0.170 0.037 -0.160 0.052
Race 0.011 0220 -0.031 0406 -0.085 0.177 -0.203 0329 -0.066 0.145 -0.305 0.243
Age -0.187 0.174 -0.487 0.308 -0.208 0.134 -0.255 0.277 -0.246 0.113 -0.174 0.204
Rrate 21952 0.233 -0.517 0371 -1.067 0.189 -0.226 0.261 -0.494 0.145 -0.151 0.197
t 1 -1.526 0.369 -4.443 0.383 -1.759 0.257 -3.392 0.484 -1.873 0.246 -3.656 0.487
9 .0.051 0.355 -4.176 0.356 -1.185 0.236 -3.212 0458 -1.302 0.228 -3.478 0.46]
3 -1.263 0.370 -4.408 0.387 -1.499 0.253 -3.356 " 0.520 -1.621 (.242 -3.820 (.528
4 -0.047 0.368 -8.453 0.302 -1.187 0.245 -2.309 0.357 -1.313 0.233 -2.572 0.354
5 .1.884 0.8392 -3.486 0.307 -1.624 0.273 -2.339 0.365 -l 751 0.250  -2.603  0.387
¢ -9.594 0.352 -3.846 0.319 -2.085 0.309 -2.168 0.350 -2.220 0.305 -2.435 0.346
7 188 (1310 -3.220 0489 -2.121 0.207 -3.509 0.493
8 -1.543 0.276 -1.938 0.335 -1.673 0.266 -2.207 0.338
9 22795 0.412 -2.857 0.435 -2.935 0.404 -3.128 0.437
10 S1.665 0.289 -2.861 0449 -1.806 0.278 -3.114 0.435
11 22207 0.355 -2.825 0.440 -2.435 0.349 -3.086 0.439
12 -1.835 0.306 -2.801 0.436 -1.982 0.301 -3.067 0.438
13 2661 0.349 -2.522 0.266 -2.060 0.314 -3.055 0.441
14 -2.088 0.322 -2.904 0.420
15 -1.855 0.300 -2.666 0.38b
16 2,494 0370 -2:976  0.437
17 -1.469 0.275 -2.854 0.434
18 -1.893 0.317 -3.703 0.586
19 -1.842 0.320 -2.400 0.371
20 -2.031 0.346 -3.018 0.455
21 -1.170 0.267 -2.725 0.417
22 -3.087 0.566 -3.929 0.661
23 -1.484 0.299 -2.052 0.456
24 2777 0.242 -2.690 0.461

N = 1,243, Urate denotes the state unemployment rate, Hrate denotes the replacement rate.
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Tabl e OA.7. Single Risk Model with Competing Risk Data, GIG mixture

§ periods

13 periods

24 periods

Mean s.e. Mean se. Mean se

0 -1.230 0035 -1.417 0.035 -1.534 0.037
) 3.632 0.101 3.560 0.099 3.887 0.105
Urate -0.150 0.038 -0.136 0.034 -0.167 0.031
Race 0.035 0192 -0.139 0.157 -0.117 0.122
Age -0,153 0157 -0.183 0.125 -0.136 (.099
Rrate -0.998 0.204 -0.765 0.155 -0.303 0.116
t 1.-2.075 0225 -2.242 0.220 -2.395 0.211
2 -1.567 0.206 -1.740 0.203 -1.894 0.190

3 -1.907 0.224 -2.084 0.221 -2.240 0.213

4 -1.463 0.208 -1.639 0.203 -1.798 0.194

5 -1.789 0.224 -1.966 0.222 -2.127 0.219

6 -2.416 0.239 -2.176 0.236 -2.335 0.226

7 -2.477 0.258 -2.640 0.251

8 -1.775  0.218 -1.937 0.209

9 -2.862 0.299 -3.024. 0.293

10 2157 0.243 -2.324 0.234

11 -2.571 0.276 -2.734 0.269

12 -2.274 0.255 -2.444 0.249

13 -2.636 0.237 -2.493 0.254

14 -2,464 0.252

15 -2.238 0.239

16 -2.693 0.279

17 -2.068 0.230

18 -2.561 0.274

19 -2.128 0.239

20 -2.487 0.272

21 -1.818 0.224

22 -3.448 0.408

23 -2.086 0.244

24 -2.761 0.238

N = 1,243, Urate denotes the state unemployment rate,

Rrate denotes the replacement rate.
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4. Extended Counterfactual Policy Experiment

In the main text we have reported the results of a counterfactual po]icy experiment whereby
we simulated a change in the replacement rate and estimated its impact on the probability of
exit from unemployment as captured by the survival function. Here we further provide the
details on two extensions of the counterfactual experiment: first estimating potential differences
between the policy impact on individuals with different unobserved heterogencitics, and sccond
cstimating the impact of varying the changes of the replacement rate over time. A summary of
the findings is presented in the main text.

4.1. _Counterfattuals for Split Samples Based on Unobserved Heterogeneity

"The unobserved heterogeneity term V; can be interpreted as a factor which also contributes to
the variation in the hazard rates but is not included among the observed explanatory variables
and instead inferred indirectly {rom. the model. One of the key advantages ol estimating V; is
that it enables us to differentiate among various groups of individuals based on their unobserved
qualities. ln our model specification, inereasing v; increases the cumulative hazard function
and hence decreases the survival function of unemployment. ''hus, individuals with higher v;
have better chanees exiting unemployment faster, while individuals with lower v; are more likely
to be long term uncmployed. It is difficult to interpret the exact meaning of the unobscrved
individual component. Nonetheless, given the way it influences the hazard function, v; can
perhaps he thought of as individual ability or quality of labor market characteristics.

As the MCMC output we obtained a Markov chain of draws for each v;. Denote its mean by V;
and the median of the individual means by Vyneq. For both single risk and competing risk model,
we split the sample into two parts: one for individuals with V; < Vieq (label these as "low type”)
and individuals with V; > Ve (label these as "high type”). We then ran the counterfactual
experiment changing the replacement rate by 10% for each subsample separately, for the case
T = 24. The resulting % change of the survival function are reported in 'table OA.8 (single
risk) and 'L'able OA.9 (competing risks) below. In each model, high type individuals react more
to the replacement rate changes than low type individuals, for either direction of the change.
In the single risk model, the relative ratio of the survival function changes of high type to low
type individuals is just over 20%, while in the competing risk case the corresponding fgure is
approximately 15%. This finding is consistent with the literature estimating the policy effect of
training and job placement effects.*0

0w would like Lo thank an anonymous referee for pointing this out.
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Tabl e OA.8. % Change in Survival Function, Single Risk, GIG mixture, T=24

Pooled

down

up

“THigh
down

Lype
up

Low Type

down

up

{
1
2
4

(o

3
5
6
Ké
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

-0.052
-0.128
-0.182
-0.255
-(1.305
-.377
-0.421
-0.480
-0.521
-0.570
-0.609
-0.657
-0.701
-{).746
-0.794
-0.838
-0.869
-0.919
-0.953
-0.998
-1.033
-1.071
-1.102
-1.187

0.045
0.111
0.158
0.221
(.265
0.328
0.366
(0.418
0.453
0.497
0.531
0.573
0.612
0.651
0.693
0.732
0.760
0.803
0.834
0.874
(.9056
0.938
0.966
1.041

-0.057
-0.140
-0.200
-0.282
-0.340
-0.421
-0.477
-0.5648
-0.601
-0.662
-0.713
-0.771
-0.828
-(.879
-0.940
-0.987
-1.018
-1.076
-1.107
-1.164
-1.203
-1.226
-1.292
-1.387

0.050
0.121
0.174
0.245
0.295
0.366
0.415
0.477
0.523
0.576
0.621
0.671
0.722
0.766
0.820
0.861
0.889
0.940
0.967
1.009
1.062
1.072
1.132
1.215

-0.047
-0.117
-0.167
-0.234
-().281
-0.348
-0.388
-0.443
-0.481
-0.528
-0.566
-0.613
-0.657
-0.705
-0.754
-0.802
-0.840
-0.892
-0.932
-0.981
-1.019
-1.062
-1.096
-1.183

0.041
0.101
0.145
0.203
0.244
0.302
0.338
0.386
0.419
0.460
0.493
0.534
0.574
0.615
0.658
0.701
0.734
0.780
0.816
0.8569
0.893
0.930
.960
1.038

" down”

denotes counterfactual decrease of the replacement
rate by 10%. and "up” denotes increase by 10%.
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Tabl e OA.9. % Change in Survival Function, Competing Risks, GIG mix-
ture. 1'=24

Pooled High ‘Lype Low 'Lype
t down up down up down - up
1 -0.141 0.120 -0.154 0.131 -0.109 0.093
2 0.370 0.316 -0.406 0.347 -0.286 0.244
4

3 -0.522 0446 -0.567 0.485 -0.411 0.351
4 -0.750 0.642 -0.817 0.701 -0.601 0.514
5 -0.896 0.768 -0.988 0.848 -0.735 0.630
8

6 -1.015 0.870 -1.126 0.967 -0.842 0.721
7 1103 0.946 -1.228 1.055 -0.924 0.792
S1.274 1095 -1.417 1.220 -1.081 0.929
9 -1.327 1.141 -1.481 1.275 -1.135 0.975
10 -1.450 1.248 -1.633 1.408 -1.246 1.071
11 -1.526 1.314- -1.722 1.485 -1.317 1.134
12 -1.630 1.404 -1.835 1.584 -1.414 1.218
13 -1.721 1.484 -1.936 1.672 -1.506 1.208
14 -1.816 1.568 -2.084 1.802 -1.600 1.380
15 -1.936 1.673 -2.245 1.943 -1.717 1.483
16 -1.997 1.726 -2.318 2.007 -1.792 1.548
17 2180 1.844 -2.472 2143 -1.933 1.672
18 -2.195 1.801 -2.506 2.173 -2.020 1.749
19 2299 1.994 -2.614 2.269 -2.148 1.862
20 -2.371 2.058 -2.735 2.378 -2.239 1.943
21 -2538 2206 -2.990 2.604 -2.417 2.101
29 2526 2.196 -2.874 2.499 -2.453 2.132
23 -2.664 2.318 -3.076 2.678 -2.588 2.253
24 -2.686 2.338 -3.101 2.717 -2.641 2.300
"down” denotes counterfactual decrease of the replacement
rate by 10%, and *up” denotes increase by 10%.
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4.2. Counterfactuals for Time-varying Changes in the Replacement Rate

In this section we further explore two additional scenarios for the counterfactual policy change:
first, a sharply declining replacement rate at the beginning of the spell, and sceond a scenario
where the rate declines sharply only at the end of the spell. For this purpose we construct a
decreasing function r : [0, 1] — |0, 1] defining the factor r (t/ T) by which we multiply the original
replacement rate in each time period t with T being the final period. Let u € [0,1]. In the first
scenario,
r =cxp (~—U5)

and in the second scenario,

ro = 14 exp(—1) — exp(—(1 — u)?)
A mirror image of ry and ry increasing from 1 is also used for a counterfactual increase of the
replacement rate. It is important to note that at the end of the observation time window both
factors hecome equal, r1(1) = ra(1). 'T'he constant 1€ (0,1) controls the degree of curvature
within the exponential change of ry and rs, which smaller Oyielding shaper curvature. We sct
1= 1/2, resulting in rq and ry as shown in Figure OA.3.

hY
l

Figure OA.3. Replacement Rate Counterfactual Decrease Factors
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'T'he results are presented in 'I'able OA.10. In both SR and CR models, factor 1 (sharp initial
change of the replacement rate) leads to an overall larger change in the survival [unction than
factor 2 (sharp change towards the end of the observation time period). In the SR model the
change for factor 1 relative to factor 2 at T = 24 is more than twofold, and in the CR model
it is cloge to threefold. This indicates that on average individuals respond more to incentives
provided early in their unemployment spells relative to ones provided later, even il the response
is still overall inelastic.
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Table OA.10. % Change in Survival Function, Time-varying Replace-
ment Rate, GIG mixture, 'I'=24

Single Risk Competing Risk
Factor 1 Factor 2 Factor 1 Bactor 2

t down up down up  down up  down up

1 -0.055 0.100 -0.006 0.029 -:0.264 0.219 -0.010 0.009
2 -0.253 0.220 -0.011 0.014 -0.855 0.702 -0.047 0.041
3 -0.428 0.319 -0.052 0.022 -1.330 1.085 -0.085 0.075
4 -0.648 0505 -0.074 0.018 -2.133 1732 -0.164 0.143
5
6
7
8

-0.816 0.645 -0.094 0.034 -2708 2194 -0.231 0.201
S1.117 0828 -0.173 0.025  -3.210 2,504  -0.297 0.259
-1.956  0.987 -0.171 0.070 -3.608 2913 -0.358 0.311
-1.454 1.215 -0.175 0.136 -4.419 3.565 -0.495 0.430
9 -1.603 1.375 -0.187 0.181 -4.685 3.777 -0.546 0.474
10 -1.855 1.527 -0.268 0.189 -5.318 4.288 -0.678 0.586
11 -2.025 1.686 -0.301 0.232 -5.725 4.612 -0.771 0.666
12 -2.239 1.885 -0.348 0.291 -6.297 5073 -0.916 0.790
13 -2.442 2.082 -0.395 0.356 -6.823 5.500 -1.0656 0.916
14 -2.659 2.279 -0.459 0.422 -7.385 5.957 -1.238 1.063
15 -2.853 2534 -0.491 0.538 -8.104 6.546 -1.479 1.266
16 -3.067 2.759 -0.558 -0.638 -8.502 6.869 -1.636 1.398
17 -3.263 2.898 -0.653 0.687 -9.342 7.574 -1.986 1.691
18 -3.476 3184 -0.717 0.844 -9795 7.953 -2.209 1.877
19 -3.616 3.411 -0.762 0.985 -10.499 8.551 -2.678 2.184
20 -3.783 3.714 -0.815 1.187 -10.989 8973 -2.870 2.425
21 -3.959 3.926 -0.916 1.330 -12.090 9.921 -3.557 2.989
29 -4.175 4.136 -1.070 1.48) -12.099 9.930 -3.645 3.059
23 -4.423 4.253 -1.290 1.568 -12.999 10.713 -4.368 3.637
24 -5311 4.369 -2.260. 1.725 -13.205 10.880 -4.720 3.895
"down” denotes counterfactual time-varying decrease of the
replacement rate, and "up” denotes time-varying increase.
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1. Introduction

'I'his paper investigates the extent to which the cleanup process of toxic waste sites, known as
Superfund sites, over the last 30 years was implemented in a fajr way without inherent demo-
graphic biases. The Environmental Protection Agency (BPA) defines Enuironmental Justice as
“the fair treatment and meaningful involvement of all people regardless of race, color, national
origin, or income with respect to the development, implewentation, and enforcement of envi-
roumnental laws, regulations, and policies”. Invironmental Justice considerations were formally
established in 1994 when President Bill Clinton signed ISxecutive Order 12898 which aimed to
prevent discrimination in the implementation of envircnmental protection policies.

Kvaluating Environmental Justice presents substantial challenges due to the inherent selection
of the location of productive activity and residential sorting decisions taken over a long period
of time. These may lead to the spurious correlation between neighborhood dernographics and
the presence of a hazardous waste site. This papers takes a novel identification approach to-
evaluating Environmental Justice claims. We analyze separate milestones in the cleanup pro-
cess conditional on a large set of site characteristics (both observable and unobservable) and
investigate whether the resulting duration of cleanup was in any way influenced by the demo-
graphic characteristics of the affected population. Since cleanups take many years to complete,
we expeet neighborhood demographics to also change as a result of the cleanup process itself.
We avoid this potential source of endogeneity by relating the duration of the cleanups to neigh-
borhood demographics at the very beginning of the cleanup process. 'Uhis allows us to treat the
factors driving the cleanup process as pre-determined with respect to the cleanup duration.

Our identification strategy requires us to model the cleanup duration conditional on a large
set of observed and unobserved site characteristics. In spite of the richness of our data, which
describes the nature of the contamination at a given site in detail, it is not possible to account for
all site specific features which may influence the duration of the cleanup process. We thercfore
rely on a state of the art, econometric model that accounts for the presence of unobserved
nonparametrically distributed site specific effects. T'his added flexibility helps diminish potential
biases due to model misspecification.

We further cvaluate the extent to which demographic biases may have changed over time and
in particular the degree to which the 1994 legislative change, which emphasized Environmental
Justice considerations, altered the way Superfund eleanups are conducted. We find that sites
located in black, urban, lower educated communities were diseriminated against at the beginning
of the Superfund program in the early 1980s. 'I'he degree of bias does diminish over time
though and the emphasis placed on Environmental Justice after 1994 lead to faster cleanup
times for Superfund sites located in poor neighborhoods, After the cleanup is completed, the
time to return a site to genersl use depends almost exclusively on the economic health of the
neighborhood.
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We also investigate whether the observed demographic or economic biases may in fact reflect
different aspects of the bargaining process between the government, the responsible pariies and
the local community. We do not find evidence that the Superfund litigation process is delaying
Superfund cleanups. We do however find that community involvement plays an important role
in the cleanup duration. '

Various aspects of Superfund sites have been under scrutiny in the previoué acadernic literature.
Knvironmental Justice concerns were initially introduced by a number of correlation based stud-
ies which documented the presence of a relationship between the location ol hazardous waste
sites and the dewographic cornposition of the adjacent neighborhoods (United Chureh of Christ
(UCC) 1987). While considerable disagreement exists regarding how best to define a neigh-
borhood, a number studies have documented the presence of racial and income inequalities in
the geographic location of Superfund sites (Stretsky and Hogan 1998, Smith 2009, Sigman and
Stafford 2010). A related strand of the literature investigates the process through which haz-
ardous waste sites arc designated as Superfund sites and finds that sites located in communities
with a higher pereontage of minorities are less likely to be listed on the National Priorities List
(NPL) thereby delaying the cleanup process (Anderton, Qakes, and Egan 1997). It is not clear
however to what extent the resulting biases documented in both strands of the literature reflect
actual biases or the influence of unobserved factors that initially determined the nonrandom dis-
tribution of production activity and hazardous waste location in the country. Wolverton (2009)
shows that when plant locations are associated with current demographic characteristics, both
race and income predict plant locations. However, when plant locations are associated with
demographic characteristics at the time of the siting race is no longer a significant predictor.

Limited attention has been given to the duration of cleanup at Superfund sites. Beider (1994)
uses a survey of KPA site managers to investigate the main reasons for the long cleanup durations
and concludes that the primary reasons are the inherent difficulty of cleanup (i.e. the extent and
nature of the contamination process) and -the associated legal process which may involve many
parties. Siginan (2001) is the only study we are aware of which employs a formal econometric
model for Superfund cleanup durations. 'L'he paper finds that the extent of contamination and
the nature of the liable parties explain the durations. However, higher income communities were
found to have longer cleanup durations.

The benefits of cleanup are substantial, Currie, Greenstone, and Morett (2011) report that
Superfund cleamips rednce the incidence of congenital anomalies in newly born babies by up
to 25%. ln general though, it is difficult to quaniily the cleanup influence on human health
precisely and incorporate it in a traditional cost benefit analysis (Hamilton and Viscusi 1999).
For example, measuring human health benefits in terms of the nuuber of cancer cases avoided
requires assﬁmptions on any number of behavioral and environmental confounders over a life
time. One of the diffculties also comes from the fact that we often have to rely on indirect
approaches, c.g. by looking at the impact of Superfunds on the housing market, which may
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conflate the true benefit of Superfund cleanups with informational or reputational considerations
(Gayer, Hamilton, and Viscusi 2000, Greenstone and Gallagher 2008).

"This paper procceds as follows. In Scction 2 we discuss the eleamup process and distinguish
hetween the various milestones in the cleanup of a Superfund site. Scction 3 introduces the
available data. We claborate on our approach to identifying the presence of demographic biases
that may be incongruent with Eavironmental Justice considerations. Sinee our identification
strategy requires the estimation of a complex econometric model, we also discuss our estimation
strategy in detail. Section 4 presents the main empirical results, while Section 5 explores the
robustness of these results to alternative explanations based ou the degree of bargaining power
between the different parties involved in the cleanup process. In particular we investigate the
role of litigation and community involvement activities. Section 6 concludes. '

2. The Superfund Cleanup Process

Over the years policy makers have become increasingly aware of both the need to regulate
dangerous substances and also to address the existing stock of hazardous waste sites. 'L'he most
well-known effort to clean up hazardous waste sites, commonly known as Superfund, provides
broad federal authority to the knvironmental Protection Agency (PA) to clean up or compel
the responsible partics to clean up the most hazardous of these sites.

Waste is an inevitable part of the production process. The 2010 census counted more than
5.7 million firms and over 7.3 million establishments. It has been estimated that over 600,000
establishments are currently generating waste which can be classified as hazardous to human
health (Sigman and Stafford 2010). This includes many types of substances which are known
to be toxic, ignitable, radioactive, or in some other fashion present a real danger to the nearby
population. In addition there are many hazardous waste sites resulting from production activity
or inappropriate storage in past decades which resulted in soil and water contamination, such
as abandoned factorics and warchouses, landfills and military installations.

In this paper we explicitly focus on and model the durations of two main stages in the Superfund
cleanup process, which we will briefly review.” "lo become a Superfund site, a hazardous waste
site must go through an evaluation process. 'I'his process consists of discovery, evaluation, and
nomination of contamination sites to the Superfund National Priorities List (NPL) as defined in
the Comprehensive Environmental Remediation, Compensation, and Liabilities Act (CKRCLA).

"The Superfund process begins with the discovery of a Superfund site or potification to EPA
of the possible release of hazardous substances. Site discovery can be initiated by a wumber
of different parties, including citizens, businesses, Stale or local government and EPA regional

3More detailed information can be found on the EPA website: http //www epa gov/superfund/



oflices. Once a site has been discovered, it is entered into the Comprehensive Environmental Re-
sponse, Compensation, and Liability Information System (CERCLIS). The site is then evaluated
to determine whether it meets the qualifications for listing on the NPL.

"T'he first step in this evaluation is a Preliminary Asscssment (PA) to determine if the site has
the potential to qualify for the NPL. This is a limited sercening investigation to distinguish sites
that pose little to no potential threat. During this stage, rendily available information about the
site is collected. If it is determined that the site indeed poses little to no threat, then the process
stops here, If instead the evaluation determines that. the site may pose a threat to human health
or the environment and therefore may qualify for the NPL, Site Inspection (81) will commence.
At this point environmental and waste related data is collected and analyzed. This data is then
used to determine if the site qualifies for the NPL. ''he data will also be used to score the site
based on the Hazard Ranking System (HRS). 'The HRS is a quantitative based tool to assess
the relative degree of risk to the environment and human health by a potential or actual release
of hazardous substances.

The proposal to list the site on the NPL and the HRS package is placed on the Federal Register.
After a preliminary investigation, if the site is still found to qualify for NPL, then it will be
placed on the NPL and the remedial process will begin. For our purpose we consider the NPL
listing date as the initial starting point of the cleanup process.

Once a site is Tisted on the NPL the first stage of the cleanup process, the “remedial program”
begins. Ifirst, a detailed examination of the site ensues which determines the precise nature
of the contamination and the technical requirements for cleaning up the site. At this stage
the I8PA is required to solicit public opinion in the evaluation of the various cleanup options.
Onee this evaluation is completed a Record of Decision (ROD) is issued which describes the
precise nature of the cleanup process to be implemented and the nature of the eventual cleanup
target. After this, the various actions listed in the ROD commence and it will normally take
years for the actions to be implemented. 'I'his is not unexpected given the technical challenges
encountered in the proeess of removing the hazardous substances involved and containing or
cleaning the contamination of surrounding soil and water. "I'he first milestone in the cleanmp
process consists of the date when a site is labeled as “constriction complete”. This indicates
that all physical or engineering tasks have been completed and both immediate and long term
threats have been addressed. Note that construction complete does not mean that all threats
have been neutralized and the cleanup goals have been achieved. For example, it is possible for
the source of the contamination to have been completely removed but the surrounding media to
- remain toxic and thus not ready for being returned to general use.

"I'he post construction complete phase may involve a number of different activitics nceessary
for achieving the ultimate elean up goals, For example, ground water restoration may require
prolonged ongoing treatment. Other hazardous sites may require ongoing monitoring and re-
stricted access for many years alter the engineering effort has ceased. This process is subject,
to regular reviews until it is determined that all cleanup goals have been met and no further
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action is required. At that point, the site reaches the seconid milestone in the cleanup process,
when it is “deleted” from the NPL. Depending on the nature of the site it may then be reuased
or redeveloped for a new purpose.

In this paper we use two different measures of the cleanup durations in the analysis. Since the
processes involved for reaching the two differont milestones are different we expect each measure
to be informative in its own right. Therefore, we do not. restrict the model parameters across the
duration types and estimate separate models for each duration. The durations are as follows:
(1) the duration between a site being listed on NPL and the construction being completed at
the site; (2) the duration between the construction being completed and the site being deleted
from NPL.

3. Data and Empirical Strategy

In this paper we use data obtained from the EPA on all sites listed on NPL between 1983
and the end of 2010. In Figure 1 we plot the histograms for the two durations. Many of the
observations arc censored and this feature will need to be accounted for in the cstimation. "T'he
mean values for the two durations are 13.8 years, and 9.0 years respectively. ‘'The first milestone
is reached by most sites within 20 years. Sites for which the construction compicte process has
not been reached within 20 years are substantially more likely to be censored by the end of 2010.
In contrast if the second milestone is reached, then it is reached for most sites within 5 years,
indicating that the cleanup goals are achieved relatively soon after construction is cowpleted.
Nevertheless, for a substantial numnber of the sites this milestone is not reached indicating that
only a fraction of the sites have been returned to general use so far.

For cach site we observe its location and also a very comprehensive deseription of the form
of contamination at that site. In particular we see the nature of the contaminated media
(debyis, groundwater, sediment, surface water, or waste) and the type of contaminants from-
acids to radioactive substances and volatile organic compounds (VOC). We believe this to be
both an accurate and comprehensive description of the challenges encountered at the site and
the degree of difficulty to clean it up. In particular note that many sites have both varied
contaminated media and numerous contaminants that need to be addressed. 'L'he presence of
a lype of contaminated media or contaminant at a site is recorded in the form of an indicator
variable. In ‘Lable 1 we report the means and standard deviations of the contaminants and
contaminated media of all sites listed for each of the decades 1980s, 1990s, and 2000s. We notice
a substantial degree of heterogencity both across contaminants and decades. In particular the
presence and extent of contamination appears to be decreasing over time. ‘Phis is consistont with
the notion that the most hazardous and challenging sites were detected in the early years of the
Superfund program and that advances in regulation bave reduced, although not eliminated,
the oceurrence of new hazardons waste. No new sites were listed during the 2000s that were
contaminated with radioactive materials or where the contaminated media consisted of debris
(often in the form of building remains contaminated with ashestos).



During the preliminary assessment and site inspection, each site is allocated an HRS score on
the IEPA Hazard Ranking System. The score is computed by aggregating along a number of
different dimensions such as the characteristics of the waste (toxicity and quantity), the extent
of hazardous waste released or expected to be released into the enviromment, the intensity with
which people may be affected, and the degree to which ground water, surface water, soil and
air have been exposed. ‘I'he HRS score is designed to capture the nature of the site’s hazard
used to decide whether the site should be placed on the NPL. Note however, that according
to the EPA? the HRS is not sufficient to prioritize the eleanup process at a Superfund site. In
particular, given resource constraints, a high HRS score doces not imply the reallocation of funds
from existing cleanups already in process. I'bus, while HRS is correlated with the degree to
which a site is hagardous and it plays an important role in the placement of a site on the NPL,
we expect it to be only weakly related to the cleanup duration itself. Thble 1 reveals a small
increase in the HRS scores at listing for sites over the three decades.®

A crucial component for determining the cleanup strategy consists in compiling the Record of
Decision (ROD). The ROD presents details on the planned cleanup implementation. 'T'he costs
recorded in the RODs are projected for the alternative selected from many possible options.
‘These inchiude eapital costs, transaction costs, and operation and management costs. We have
individually reviewed the RODs for all NPL sites and extracted from them a measure of the
estimated present value of the cleanup costs af.an assumed interest rate of 7%. | ble 1 does
not indicate any consistent trend in the costs associated with the cleanup process over time.

Note however that about 5% of the sites on NIPL have a recorded costs of 0. In this case the
solocted alternative was *no further action”. This could happen due to two possible reagons:
(1) upon further consideration it was determined that there was no threat to human life or the
environment, and (2) an immediate threat required removal action and by the time the rest of
the procedures (everything up to the ROD) were completed, no further action was needed. We
consider these sites to be different from other sites and assign them a separate indicator variable,

For each site we usc the site location to obtain the population demographics in the zip code in
which the Superfund sitc is located at the time of listing. We use the 1980 census to capture
the demographics for a site listed between 1981 and 1989, and similarly for other decades. We
record the median household income, and the fractions of the population which are college
educated, black, and urban. urthermore we record the fractions of the population by age.
Table 1 shows that the demographic composition of the neighborhoods in which the hasardous
sites were located varied with the time when the site was listed on the NPL. Sites listed earlier
were more likely to be located in affluent, white neighborhoods, while sites listed later were
more likely to be located in urban neighborhoods with a higher percentage of college educated

“nttp: //wuw. epa. gov/superfund/programs/npl_hrs/hrsint htm
SNote that this does not mean that sites Jisted later are more contaminated. 1\ lesis contaminated site can have

a larger score if the contamination presents a risk to a larger population.
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residents.® Sites listed earlier were also more likely to be located in neighborhoods with younger
residents. We condition on the event of the sites’ NPL listing and control for their demographic
characteristics.

"T'he Superfund discovery is a distinet process beyond the scope of our analysis. Recall that carlior
studies have found that sites located in neighborhoods with a higher percentage of minority
residents seem less likely to be placed on the NPL (Anderton, Qakes, and Egan 1997). It would
be difficult to convinecingly model the discovery process itself, as the loeation and nature of the
contamination were determined in most cases decades before the discovery process was initiated.

3.1. Identification

'I'his paper focuses on evaluating the extent to which biases based on demographie characteristies
such. as income and race may be affeeting the cleanup durations at Superfund sites in violation
of the principles of Environmental Justice. 'I'he main assumption, which drives the identification
of our model, is that the duration of eleanup is based purely on a rational cost-benefit analysis
which depends on a wide range of site specific factors (both observed and unobserved by the
econometrician) and a common baselie hazard which reflects macroeconomic trends and po-
tentially the variation in the Superfund budget. Departures from the cost-benelit framework,
e.g. in the form of [aster cleammps observed in wealthier neighborhoods, indicate the presence
of demographic biases. ‘Our approach to identification is similar to that chosen by Viscusi and
Hamilton (1999), who interpret departures [rom the cost-benefit analysis in the decisions taken
by regulators regarding the chemical cleanup targets at Superfund sites as evidence of departures
from rationality, behavioral biases, and risk misperceptions.

Our framework assumes that the following set of [actors provides a comprehensive model ex-
plaining the durations between the dilferent cleanup stages:

(1) the set of contaminants recorded at each site;

(2) the set of contaminated media al each site:

(3) the HRS score for each site;

(4) the engineering estimate of the cost of cleanup based on the original ROD;

(5) the time when a site was listed;

(6) information on the parties involved in litigation;

(7) information on the degree to which the community was involved in the cleanup decision

process; '

(8) an aggregate trend capturing the impaet of the macrocconomy or the Superfund budget
common to all sites;

(9) a site specific time invariant random effect.

SNote that in the tables for this paper we use the name Bachelor- to refer to the percentage of the population

which has oblained ab least a BA degree.



In order to test for the presence of biases we augment this model with demographic variables
pre-determined for each site at the time of listing. This avoids the potential endogenous feedback
between the duration of the cleanup and subsequent demographic and environmental changes.
In ‘Iable 2 we explore the extent to which neighborhood demographics change after a site is
designated a Superfund site. Income, in particular, declines sharply during the cleanup period.
"'his effect is not limited to the early years after a cleanup begins, which may be driven by
residents leaving an area once they become aware of the presence of a Superfund site in their
neighborhood. Median income continues to decline cven after 20 years of cleanup activities. If
we were to correlate the duration of cleanup with the change in the demographic composition of
the neighborhood we would find a large negative correlation between the duration of cleanup and
the change in median income. It would however be misleading to interpret this correlation as
implying that wealthy neighborhoods are cleaned up [aster, since it is likely that the composition
of the a neighborhood changes as wealthier households leave a peighborhood with a Superfund
site that is being cleaned up. Therefore, we only use the demographic composition of a site at
the time of its listing to explain the subsequent clearmp duration. In order to test for possible
violations of Environmental Justice we then test for the significance of the demographic variables
at the time when a site was listed on NPL. 'L'his approach is similar to that used hy Wolverton
(2009) who investigates the rclationship between firm locations and neighborhood demographics
by focusing on the demographic composition of the neighborhood at the-time when the location
decision was made.

Our econometric model allows for the the cleanup duration to also depend on a site specific effect,
which our Bayesian hierarchical model allows to be correlated with the observed site attributes.
Our estimation procedure will estimate the distribution of these effects in the sample. 'Lhe
rationale behind including a site specific effect is that in spite of the richness of our data,
which capturcs many of the observed site characteristics, it is nevertheless possible that not all
features of the site which are relevant for the cleanup process have been recorded and which
‘may lead to an omitted variables bias. Consider for example the period of time a site was
it may be correlated with the severity of the contamination. Furthermore, sites that have been
contaminated for a longer period of time may be inherently more dillicult to clean up or may
require more inkensive and time consuming engineering processes. This variable may also be
correlated with neighborhood characteristics, since the timing of the location could have been
driven by the latter. Below we introduce the econometric model and its technical assuruptions.

3.2. Econometric Model

In order to quantify the degree to which the duration of the cleanup process is biased by the
demographic characteristics of the neighborhoods in which the Superfund sites are located, we
develop o state of the art econometric maodel of the duration between the different milestones in
the Superfund cleanup process. The model builds on the recent work ol Burda, Harding, and
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Hausman (2012) (BHH) who introduce a flexible semiparametric Bayesian proportional hasard
duration model. The model allows for the presence of time variant or invariant observables but
also models the baseline hazard and the site specific unobserved heterogeneity nonparametrically.
While BHII devised their model for interval outcome data whereby only a general time period
of the duration outcome was observed, here we aller their model to make use of the exact {iming
of the duration with point-in-time outcomes.

Denote by tj the point in time elapsed when a gite | was observed to exit from a given state into
another state. Define the hagard rate Uy as the failure rate at time 1 conditional upon survival
to time t, Uit = limr oPr(t < t; < t 4 1)/ Uand denote the integrated hazard by:

el
(3.1) A= Ot Medr
‘T'he survivor function Syt and the distribution function Fj; of { are defined as
(3.2) Sit = exp(0Ajr)
(3.3) Fit = 108y
Hence, the conditional density [unction of exit at t is given by
fit = Fy
LiSH
exp (UAa) Lit
(3.4) = Sl

which forms the contribution to the conditional likelihood function for non-censored data. For
observations censored at time T, all we know under non-informative censoring is that the lifetime

exceeds T. The probability of this event, and therefore its contribution to the likelihood is
Pti>T) = 10Fy

(3.5) - = 87

The likelihood terms (3.4) and (3.5) can be written as the single expression’

(3.6) Lift) = Sl

where di is a censoring indicator variable taking the value of 1 if t; U T, or the value of 0 if
ti > T, in which case t; is set to equal T iu (3.6).

ASSUMPTION (1). The data {t} Y1 consisls of single spells censored at time T and draun
Jrom a single risk process.

ASSUMPTION (2). 1he hazard rale is parumelerized as

(3.7 Lit = Lt exp(Xitld+ W)

where Ly is the baseline hazard, X ure shserved covarieles thal are allowed 1o vary over lime,
0 are model parameters, and Vi 18 an uncbserved helerogencily componenl.
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ASSUMPTION (3). The Laseline hazard L and the values of the covariaies Xy are constanl
over lime intervals [tjii1.1) for] =1,.. d.

Assumptions 1 and 2 are common in the literature. Assumption 3 is based on Han and Hausman
(1990). Given Assumption 3, we can consider the integrated baseline hazard in the form

Oy " .
(3.8) My = Myrd

ty 1

where we denote the vector (g, --., Cos) by Co.

Denote by [ti, Ti) MM t; the time interval during which i’s exit occurred, with endpoints ti 1
{to,... 1y, 1} and § (1{ty,.. ., 1y} with {t;} ]Jzo as defined in Assumption 3. Pefine the variable

am:t , 0 EL:..J

3.9 i =
(39 ) (6 L) it ) = )

rewritten as q .

.

o o
(3.10) LtV =cxpdn Ty exp (X TV Tog/ (011D oxp(Xig T+ M)

=1

L,

3.3. Parametric Heterogeneity

ASSUMPTION (4). Lel
vi 0 exp(M) 0 G(v)

where GV) is a probabililty distribulion function with densily g(v).

Using Assumption 4, denote by tilde the part of the hazard without the heterogeneity termu
(3.11) Uy = vl
where, from Assumption 3 and (3.7), _

Hy = (Mo / (& Mtya)) exp(Xyy 1)
Hence, at the time of exit {j,
(3.12) iy = ! (60 1) exp(X i)
Similarly, using Assumption 4. let
(3.13) Ait = vi it
where, from (3.1), 1,

Ay = Comexp (Xinl) di
0 :
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Due to Assumption 3, (3.8), (3.9), and (3.13), at the time of exit ti,
]

oned

(3.14) N, = o (Cg/ (g Ot0))exp (Xi50)

j=1

If v is a random variable with probability density function g(v) then the Laplace transform of
g(v) evaluated at s UR is defined as

(3.15) L(s) ™ ’ exp(Tvs)g(v)dv
= Eyfexp(0vs)]
and its r-th derivalive is -
(3.18) LONs) o (o) : vl exp(livs)g(v)dv

Using (3.11), (3.13), and (3.15), the expectation of the survival [unction can be linked to the
Laplace transform of the integrated hazard function (Hougaard, 2000) as

(3.17)  Ev[Si] =L(&k)
which forms the expected likelihood for censored observations.

Jor uncensored observations, collecting (3.11), (3.12), (3.13), and (3.14) in (3.10), ylelds
U i
Lilti; Vi, di = 1) =exp Lvillhy iy,

Taking expectations and using (3.16) we-obtain
Ey [Litt; V)] = Ey exp Lvilky vil
oo oo
= Hthvs exp E_‘ngK!m Vi

(3.18) = 0B LD (M)

{

'I'he expected likelihood terms (3.17) and (3.18) are summarized in the following Result:

RESULT 1. 'lhe expectation of the likelihood (3.6) with respect 1o uncbhserved helerogencity,
distributed aceording to a generic probability measure as given. by Assumption. 4, 8 for uncensored
chservations '

(3.19) B [Li sV, b = 1)] = OF LD (A
and for censored observalions

(3.20) Evi ILi('ﬂ;V‘,dg == 0)] == L(N@T)
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Since the site heterogeneity term Vi defined in Assumption 4 is non-negative, a suitable farnily
of distributions G(v) with support over [0, U ) and tractable closed-form Laplace transforios is
Generalized Inverse Gaussian (GIG) class of distributions, whose special case, among others, is
the gamma, distribution popular in duration analysis.

ASSUMPTION (5). 1he unobserved heterogeneity term v is distributed according o the
Generalized Inverse Gaussian disiribution,

Gv) = G C(v; (1 11,0)
The GIG has the density
] U
(3.21) @®'Cv; L L) = e = (W) hexp LV U yTm
for [, 1> 0, 010 R, where K/ (L)) is the modified Bessel function of the second kind of order [J

evaluated at 17 (Hougaard, 2000). ‘Lhe GIG Laplace transform is given by
[

K, U(i+s/)Y?

3.22 LGS (s 1) = (1487 nry2
(3.22) (s: ) ={( ) o
and its dgrivatives by _

Kue 00 +s0Y2 0gG

(32 L0 ()= (1) (145 CH02

K (M) 2n
‘'he GIG family includes as special cases the gamma distribution for (1= 0, the Inverse gamina
distribution for 0= 0, and the Inverse Gaussian distribution for 0= [ %, among Qt.hnrs.
Application of the Laplace transform of the GIG distribution (3.22) and its derivatives (3.23) in
Result 1 yields the following result:

RESULT 2. Under the Assumplions 1 5,

e L q Ui gayiz U i Uyp!!

(3.24) Ey, |Li(ti; Vi di =1)] = —?j—-ﬁ‘ 1+~’—[.—‘11~, Ko (@] K B0 1+_F.§L 0
and for the censored clservations
O oo A= I
] MT M1 . AT ;
(3.25) Ev [LiltiVi,di =0)]= 14— K ()] K Um T+ — U

A special case of the GG distribution is the gamma distribution, obtained from the GIG density
function (3.21) when [1= 6 and {7is restricted to the positive part of the real line.
The scale parameter Uhas the feature that for any ¢ U Ry, il v U GP'G(v; 111, 1) then ov U

GBIG(v; L} 1, L/ ©). Due to this property, € and hevce its inverse s 1) cHl are not separately
identified from (Jin the Laplace transform (3.22). Since all likelihood expressions are evaluated
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at s = Ay which is proportional to Ty for all j, as specified in (3.8), any change in Donly
rescales the baseline hazard parameters [, leaving the likelihood unchanged. Hence, [ needs
to be normalized to identify [y by the moment restriction E{v] = 1.

3.4. Flexible Heterogeneity

We now depart from the parametrie form of the unobserved helerogeneity and instead con-
sider a nonparametric infinite mixture for the distribution of vi, as formmulated in the following
assumpéion.

ASSUMPTION (6). 1he pricr for vi takes the form of the hicrarchicol maodel

i 0O F(w)
vilG O G
G U DP(Gg,L)
- Uou I(ao, ko)
Elvi] = 1

In Assumption 6, G is a random probability measure distri buted according to a Dirichilet Process
(DP) prior (Hirano, 2002; Chib and Hamilton, 2002). The DP prior is indexed by two hyper-
parameters: a-so-called baseline distribution Go that defines the “Jocation” of the DP prior,
and a positive scalar precision parameter U, The distribution Gy may be viewed as the prior
that would be used in a typical parametric analysis. The flexibility of the DP mixture model
environment stems from allowing G to stochastically deviate from Gg. The precision parameter
(] determines the concentration of the prior for G around the DP prior location G and thus
measures the strength of belief in Gp. Hor large values of O, a sampled G is very likely to be
close to Gg, and vice versa. Assumption 6 is then completed by specifying the baseline measure
Gy as follows:

ASSUMPTION (7). In Assumplion 6,

(3.26) Go=CC'%(n o0

Implementation of the GIG mixture model under Assunptions 1 3, 6, and 7 uses the probabililies
(3.6), (3.24) and (3.25).

Under Assumptions 6 and 7, as a special limit case, putting all the prior probability on the
baseline distribution Gy by setting U U 1 would result in forcing G = Gg = - GBIC(v; 1)
which yields a parametric model. Here we allow U and hence G to vary stochastically and the
parametric benchmark specification is nested as a special case in our model.



3.5. Marginal Effects

One of the challenges of interpreting the economic significance of the empirical results Jies in the
inherent difficulty of computing marginal effects in this highly nou-linear setting, Thus, while
the estimated coefficients correctly capture the sign of the effect of interest it is non-trivial to
translate the magnitude into an easily interpretable quantity. While we follow the established
statistical practice of reporting the estimated coefficients, we also go a step further and use a
simulation based approach to. computing the economic significance of the statistically significant
coefficients that are likely to be of particular interest to the reader.

There is no unique way of computing marginal effects in this type of non-linear model, We
choose a simulation based approach which computes the average marginal effects for a discrete
change in the variable of interest over the sample and using a large numnber of repeated draws
from the distribution of unobserved heterogeneity. 'L'he economic significance of a coefficient is
most easily interpretable in terms of time and we thus report the impact of a discrete change in
the variable of interest as a fraction or multiple of 1 year of additional cleanup.

"T'he expectation of a non-negative random variable t truncated at T is given by
- Ot
327 Eff I T]= =<

where f (t) and F (t) are pd[ and cdf of t; respectively.

tf (t)dt

[n our model where t denotes duration to cleanup,
fi(t) = exp (A1) Li(t)
Fitt) = 10exp(DAi(Y))

Under the assumption of piece-wise constant baseline and covariates over timne

_ 1 7
p EftT]= ————— ] exp ([TA;) [
(3.28) [tt 11 T] 1D0XP(DA|T)J-::1]CXP(HA”)”J
where
O = Coj exp(Xij O+ W)
Aij = s
S==1

is the hazard and enmulative hazard, respectively.

For the effect of a Cichange of Xk on E |tjt T T]. we evaluate

(3.29) AEMtOT]I=E[t)t 0T, Xy +JDE[tt & T, X55k] -

Since, the choice of Uis arbitrary for continuous variables, we follow Sigman (2001) and simnlate

the economie siguificance of a change of one standard deviation in the relevant covariate. In
accordance with the censoring time of our observations, we truncate the simulated distribution
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at the latest date available in the sample. In the text below we report the economic significance
of the main variables when describing the empirical results. More detailed tables are available
from the authors.

4. Empirical Findings

Our current empirical framework allows us to investigate a number of important hypotheses
regarding the main factors driving the cleanup durations between the two milestones in the
cleanup process. It is important to note that throughout our identification strategy rules out
the impact of sorting on the cleanup process. We then proceed to measure the extent to which
the cleanup process was driven by cost-benefit factors associated with the engincering decisions
regarding the technological aspects of the cleanup.

o the extent that demographic variables remain significant drivers of the cleanup durations we
then proceed to investigate whether this reflects some form of direct discrimination or is perhaps
a more indirect form of discrimination resulting from the differential bargaining ability of the
different agonts involved in the cleanup. In particular we differentiate hetween:

(1) the role of the legal system and the bargaining power of the responsible parties,

(2) the impact of general collective action as proxied by home ownership in the community,

(3) a direct measure of Superfund related involvement as measured by EPA reported com-
munity activities.

4.1. Cleanup Durations

We consider a series of model specifications designed to estimate the factors determining the
two cleamip durations of interest: the duration between listing and construction completion
(1.C), and the duration between construction completion and deletion (CD) from the NPL list.
Recall that listing refers to the time when a site is listed on NPL, completion refers to the time
when the remedial process has been completed, and deletion refers to the time when the site is
removed from NPL and returned to.general use. 'Ihese models capture our baseline identification
approach and are developed to test a munber of hypotheses of interest.

Our aim is to control for site characteristics (both observable and unobservable) and also for
the demographic characteristics of the houscholds potentially impacted by the site. Under our
identification assumption we cxpeet the presence of statistically significant cocflicients on the
demographic characteristics to be indicative of biases potentially incompatible with Environ-
mental Justice considerations. In all specifications we model the conditional hazard rate for
each site, yielding the probability that a site reaches the next milestone in the cleanup process.
An estimated negative coeflicient implies a lower probability of reaching the next milestone and
a slower cleanup (longer cleanup duration).
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In Table 3 we first estimate a simple duration model without unobserved helerogeneity which
relates the two durations of interest, LC and CD, to neighborhood demographics only. These
models are misspecified as a result of omitting a number of potentially important explanatory
variables. Here, neighborhood demograplics are strong predictors of the cleanup durations.
Higher income, unemployment and the fraction of the population which is black are all associated
with slower cleanup times. We then add observable site characteristics to the specification. 'l'hese
include engineering cost estimates and the description of the contaminants and contaminated
media. If we now re-cvaluate the relovance of the neighborhood demographics we find that their
impact has been greatly diminished and most cocfficionts on the demographic variables become
statistically insignificant.

In 'Lable 4 we estimate the specification with both neighborhood demographics and observed
site characteristics (columns 5-8 in ‘L'able 3) while also allowing for the presence of unobserved
site specific effects. For each duration we estimate the corresponding model allowing for either
a paramctric specification or a nonparametric specification of the unobserved heterogencity.
While there are some noticcable differences, the models are comparable. From an econometric
perspective, we consider the nonparametric model to be superior to the parametric one, in
that the former nests the latter as a special case which may or may not be supported by the
data evidence. 'I'his implies that in the nonparametric model the coefficient estimates of the
demographic characteristics are likely to be more accurate and less confounded by the presence
of umobserved site specific factors. Therefore, in all other tables, we will only report estimates
derived from the nonparametric model.

First, consider the baseline model for the duration between listing and completion in ‘lable 4.
"The impact of the HRS score is small, negative, and statistically significant. "T'his is consistent
with the EPA strategy of using the HRS scores to determine whether a site should be listed on
NPL bul not using the HRS scores directly to prioritize the cleaup activities, even though it
rollects the extent to which a site is hazardous, The engineering cost estimates for the clean-up
constitute a large and significant LC duration predictor. These costs are determined by the
choice of remedy adopted and proxy for the complexity of the engineering process involved. We
also include in our model an indicator for sites who have zero cost recorded in the documents
available from the KPA. 'These are sites that were considered a priority and the cleanup was
initiated immediately before an ROD was compiled because of the imminent danger to the
population and the environment. "The cocficient on this variable is an order of magnitude larger
the one on the cost variable, refleeting the severity of the contamination at these sites.

The nature of contamination and the inherent techmical difficulties involved in the cleanup
process are major determinants of the cleanup durations. As we would expect sites containing
metals, radioactive or PCB waste take longer to clean up. 'Lhe contaminated media also represent
an important factor. Sites where the waste takes the form of debris or waste which can be easily
removed are much faster to clean up than sites where the sediment or soil is contaminated.



18

When considering the demographic variables we do not find statistical evidence that sites in
mainority neighborhood or low income neighborhoods are cleaned up slower. In fact we find that
sites' in wealthier neighborhoods are cleaned up slower but that sites located in neighborhoods
with a large fraction of the population over 65 are cleaned up faster. In general we expect both
wealthier and retired people to be more actively engaged in the construction decision process.
‘I'heir incentives will vary however. Wealthy households are likely to prefer a comprehensive
remedial process which will safeguard house prices by implementing more detailed and costly
engineering approaches. On the other hand, older retired houscholds may prefer a fast remedial
process.

Let us now consider the corresponding models for the duration between completion and deletion.
Sites with higher cleamup costs have longer durations. Contamination with metals, pesticides,
and VOC impose additional challenges and extend the period it takes for the EPA to release a
site for general use. Sites with contaminated groundwater are particularly challenging to clean
and return back to the community, and increase the duration to be deleted from the NPL.

We do not ind bisses associated with either incorue, race or education, or the fraction of children.
However, we find that the fraction of residents in the neighborhood which is unemployed is a large
negative predictor for the duration to deletion, as is the fraction of college educated individuals.
Countaminated sites in areas suflering from high unemployment are thus less likely to be returned
to general use and may linger on contaminated for quite some time. ‘I'his reflects the possibility
that in already economically depressed areas re-purposing a past Superfund site is not easily
accomplished. ’

The baseline bazard is estimated as a flexible partial linear function in all models but is not
reported in the tables due to space limitations. In all models for LC durations we have found the
baseline hazard to be monotonically increasing which is consistent with the cleanup following a
well-defined process driven by engineering milestones. "I'he baseline hazard for the CD durations
however is estimated to be non-monotonic reflecting the fact that after the construction is com-
pleted the site undergoes regular but not continuous reviews to determine progress and whethor
it can be returned to gcncra.l~1js0. In Scction 5.3 we discuss how the estimated unobscrved site
specific heterogeneity can be interpreted and what insights we can gain from it.

4.2. Time of Listing

One important consideration is the fact that the timing of the discovery of Superfund sites is
pot random. It is thus possible that Superfund sites may spuriously correlate to neighborhood
characteristics in virtue of the time when they were listed unless we also control for the year of
listing. In ‘Lable 5 we present estimation results from models for the two durations of interest
that also control for the year of listing.

We find that this virtually does not change the impact of the engineering characteristics of
the site such as the cost, contamination type, and contaminated media. We do see, bowever,
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some changes in the estimated elfect of the demographic features of the neighborhood. When
considering the LC duration, we continue to find that neighborhoods with a larger proportion of
the population over 65 are cleaned up faster but the relationship to income becomnes statistically
insignificant. For the CD duration, we continue to find that sites located in areas with high
unemployment take longer to be released for general use. We now also find a small negative
impact of income. '

It is rather surprising that in the above specifications the relationship between income and the
two durations of interest is sensitive to the inclusion of the controls for the time of Listing.
This may indicate that the relationship itself is time varying and requires additional model
specifications.

In the history of Superfund there arc two distinet periods in the development of the program itself
that need to be considered. They are separated by a very important milestone in the development
of the Superfund program, Executive Order 12898, “lederal Actions to Address Environmental
Justice in Minority Populations and Low-Incorne Populations”, signed by President Bill Clinton
in February 1994, which directed the attention of federal agencies to issues of environmmental
equity. In particular it explicitly focuses on the problems faced by low income and minority
populations living near a Superfund site.

We explore the effeet of the 1994 policy change by intcracting an indicator variable capturing
the period of listing 1994-2010 with all the demographic variables used in the model (in addition
to controlling for the time of listing). If the Executive Order did not change the prioritization-
of cleanup procedures, we would not expect the interaction terms to ‘be statistically significant. -
We present the results for the two durations of interest LC and CD in Table 5. For the LC
duration, neighborhoods with a high proportion of residents over 65 continue to be cleaned up
faster overall, but now it is also the case that sites located in low income areas and areas with
high unemployment arc cleaned up faster after 1994 than before that year. ''hese large negative
coefficients for median income and unemployment indicate that after 1994 the prioritization of
resources was cffectively directed towards speeding up the cleanups in cconomically depressed
neighborhoods. It is interesting to note that arcas with highly cducated residents also expori-
ence a faster cleanup after 1994, The 1994 policy change also included provisions for greater
transparency and community involvement, which seems to be reflected in the faster cleanup
durations.

In contrast, the results for the CD duration do not change much with the inclusion of the inter-
action: between the demographics and the post-1994 peried, indicating that the policy change
had a much smaller impact on the bmcess that leads to a site being deleted from the NPL
list. We continue to find that the primary demographic driver is whether a site is located in an
economically depressed neighborhood,

Another important feature of the Superfund NPL listing timeline is the distinetion between
the first listing wave in 1983 and sites that were listed after that year. 'L'he initial Superfund
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site discovery process started already in 1980 hut the discovered sites were only listed upon
the official launch of the cleanup program in 1983. Beider (1994) interviews site managers who
argue that the sites that were initially listed on the NPL were quintessentially different than
sites listed in later years and presented a mumber of techmical challenges that had to be overcome
which affected the cleanup duration. We therefore split the sample into sites that were listed
in 1983 and sites that were listed after that year. We estimate separate models for each split
sample for both the LC and CD durations. 'he estimated coefficients are presented in 'l'ables 6
and 7.

Jiirst, consider the results for the LC duration for sites listed in the first wave in 1983, It is
particularly notable that the nature of contamination does not appear to drive the durations
at all. 'L'be only exception consists of sites with contaminated sediment which take longer to
clean up. At the same time, the impact of the demographic variables is large and significant.
Sites with a large share of urban and black population take much longer to be cleaned up while
sites with a highly educated population are cleaned up faster. In contrast, when we consider
the sites listed after 1983, it appears that their cleanup duration is driven largely by costs and
the nature of the contamination and not by the demographic characteristics. Sites located in
neighborhoods with a larger share of the population over 65 are cleaned up faster (although the
coefficient is not significant in these specifications). If we now consider the GD duration, we find
that for botl sites listed before and after 1983, the single largest determinant. of the duration is
the economic health of the neighborhood as measured by the fraction of the population which
is unemployed. For sites listed more recently, the fraction of the population under 18 also seetns
to be a significant driver for speeding up the release of the site for general use. In both cases
contaminated groundwater is a major delay factor.

4.3. Economic Significance

"The models cstimated above reveal that the factors identified to be statistically significant in
driving the durations between the different milestones in the cleamip process are also cconomi-
eally very significant, We use the methodology deseribed in Section 3.5 to quantify the economic
significance of a discrete change in a variable of interest and determine what the implied coun-
terfactual change in the expected cleanup duration is. A one standard deviation increase in the
expected cost of a cleanup increases the LC cleanup duration by 4.8 years. Similarly the effects
of the contaminauts and contaminated media are also very significant. The presence of metal
increases the LC duration by 1.4 years while the presence of radioactive substances increases
the duration by 5.1 years. 'l'he CD duration is somewhat less determined by cost and contami-
nants. A one standard deviation increase in the expected cost increases the CD duration by 1.8
years. 'I'he contaminated media is however nmch more important. Contaminated groundwater
increases the CL duration by an average of 5.3 years.

The impact of the demographics is also substantial. An increase in one standard deviation in
the fraction of the population over 65 reduces the LC duration by approximately 8 months. In
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contrast a one standard deviation in the fraction of the population that is unemployed delays
deletion from the NPL list by an average of 3.6 years.

After 1994 we sce that sites located in neighborhoods which are one standard deviation poorer
reach the construction complete milestone 1.2 years faster. Similarly, sites in neighborhoods
with higher uncmployment also have an LC duration which is 2-3 months shorter. In contrast
we mmeasure that sites-listed in 1983 reached” the first cleanup milestone 5.7 years sooner in
more educated neighbor}m.ods but 2.5 years later in areas with a higher black population. T'his
confirms that the economic significance of the observed demographic discrimination during the
initial phase of the Superfund program. was quite substantial,

5. The Role of Bargaining Power

To the extent that we found that cleanup durations are a function of comnunity characteristics,
it is important to assess whether the estimated effects are a result of policy bias in terms of the
implementation of cleanup activities or whether they result from the differential use of bargaining
power by the parties involved in the cleanup (including the community). T'he first possibility
would be an indicator of direct discrimination based on neighborhood demographics, while
the sccond might refleet the extent to which different parties are involved in the process itscif
while the dogree of involvement may corrclate with the demographic characteristics. From an
econometric perspective, if the demographic variables are really capturing the degree to which-
the parties influence the cleanup process, we would expect that once we control for proxies
describing the involvement of the different parties, the effect of the demographics will diminish.

Below we consider two measures of involvement. One characterizes the litigation process as-
sociated with the cleanup, and the other measures the extent to which the communitics were
actively involved in deciding the course of the cleanup.

5.1. Litigation

The EPA searches for the Principal Responsible Parties (PRJ?) associated with a Superfund site
as a part of the litigation process. Vollowing a letter of determination these parties are asked
to contribute financially to the cleanup. It is important to note thal in many cases no such
respousible pariies can be found. This is generally becanse the associated entities no longer
exist, such as companies that dumped hazardous waste but have since been dissolved. If the
parties refuse to pay, legal action will be initiated.

While the EIPA list of PRPs is available, it is not possible to {ind out detailed information about
these companies in a comprehensive fashion. Most of the parties are quite small and no longer
exist. Thus, they are not tracked by databases such as Bloomberg or Compustat. With these
limitations in mind we create indicator variables for the case where no PRP exists for a site
(PRP 0), where the number of parties is belween 2-10 (PRP 2-10), and the case where the
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mumber of parties is greater than 10 (PRP 104). These provide a rough approximation of the
liability share of each party which will then impact the subsequent litigation and potentially
cleanup duration.

In Iable 8 we show the cocfficient cstimates for both the bascline model and the model with
year of listing indicators for both the LC and CD durations where we add the PRP indicators.
We find that sites with more than 10 £RPs experience faster construction completion times but
that the number of PRPs does not influence the time it takes to return the site to general use.
Since litigation happens at the beginning of the cleanup process, it makes sense for the litigation
process to only affect the LC but not the CD durations.

At first glance it may scem counterintuitive, that a larger number PRPs is associated with
shorter cleanup durations. 'U'his is consistent with the existing literature on Superfund litigation
though, which suggests that the existence of multiple parties does improve the odds of settlement
thereby reducing the length of the litigation process and reducing the LC duration (IRausser and
Simon 1998, Sigman 1998, Chang and Sigman 2000). The intuition is that it iy easier to obtain
settlements from litigation with many small parties than one large corporation which can sustain
a prolonged court battle. When sites have a small number of PRPs, it usually indicates that
the site is owned by a large corporation. In such a case, as carlier studies have shown, the
large corporation has an incentive to minimize its liability and require lengthy reviews, thereby
delaying the cleanup process. Furthermore, the presence of many PRPs can also be associated
with mostly local entitics who may have a more direct concern or benefit from the the cleanup.
'I'he impact of the joint liability framework is also cconomically significant. Sites where the
number of PRPs ig larger than 10 complete the LC duration an average of 2 yoars carlicr.

Concerning our-main hypothesis, we seek to assess whether the observed demographic biases
rellect policy biases or are driven by the extent to which neighborhoods with different demo-
graphic characteristics are also host to different types of businesses. Since the litigation process
involves the PRPs operating in that community, delays due to the litigation process may be
falscly attributed to neighborhood characteristics. ''able 8 however reveals that this is not the
case. The cocfficients on the demographic variables do not change much with the addition of
the PRP variables.

5.2. Community Involvement

While we do not have a direct measure of the extent to which a community is concerned about
the timing and nature of the cleanup of a local Superfund site, we do attempt fo proxy for
community involvement in two different ways. Ifirst, we investigate whether the fraction of
home ownership in the community impacts the cleanup durations. We report the estimated
coelficients in Table 9. While home ownership does not have a significant effect on the LC
durstion it does increase the probability that a site is deleted from the NPL list substantially.
A one standard deviation increase in the proportion of homeowners reduces the CD duration by
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almost 4 years. We note moreover that adding home ownership to the model leads to a small
decline of the effect of the percent of the population over 65 on the CD duration, but since
it is highly correlated with the percent of the population which is uneraployed it removes the
statistical significance of the latter variable in the CD specification. 'I'his makes it dificult to
interpret home ownership as a proxy for community involvement. While the results appear to
suggest that homeowners are somewhat more likely to be involved in the cleanup process, it is
also likely that the variable captures an aspeet of the economic vibraney of a community.

Second, we evaluate the extent to which the community was involved in the cleanup decision
process as recorded by the EPA. This involvement can happen at any point in the process
but does require coordination with the EPA site manager. Community involvement can take
many forms of dialogue between the EPA and the public such as public meetings. The data
does not record precise details on the process of community involvement, but it does report
whether community relations activities were conducted to address concerns raised by the local
community.

Using the available data, we construct . site specific indicator which records whether the com-
munity was involved in the cleanup process. Since Executive Order 12898 placed a much heavier
emphasis on commmunity involvernent as part of its requirement to promote Environmental Jus-
tice, we also-create an indicator variable which captures whether community relations activities
were performed for sites listed after 1994.

In "Iable 10, we report results for both the baseline model and the model with year of listing
indicators for both the LC and CD durations. We add the above indicators for community
involvement and find that community involvement is a siguificant predictor of shorter LC dura-
tions, but not for CD durations i the models which account for the year of listing. Moreover,
the magnitude of this effect is several times larger after 1994. 'L'his reflects the extent to which
community involvement was made a policy priority after 1994. At the same time, for the LC
duration model which controls for time of listing, we see that-adding controls for community
involvement removes the statistical significance of the demographic variables. 'T'he coefficient
on the fraction of the population over 65 is reduced from 3.234 to 1.424 and becomes statisti-
cally insignificant. We do not find a corresponding effect for community involvement on the CD
duration. ‘The impact of community involvement is economically significant. Before 1994 we
estimate that sites with active community involvement completed the LG duration on average
one year earlier than sites without community involvement. After 1994 sites with community
involvement activities reached the first cleanup milestone on average of 5.4 years sooner.

"I'his indicates that community involvement plays an important role in explaining the hetero-
geneity between cleanup durations, cven after accounting for tochnical factors related to the
nature and extent of the contamination. It is diffienlt to interpres this finding cansally, however,
since conmmunity activities are often initiated by the EPA site manager. ‘I'hus, while it is cer-
tainly probable that communities with a populalion over 65 are more likely to be engaged in the
cleanup process and participate in conununity events, we cannot exclude the possibility that at



24

least some neighborhoods were discriminated against by not engaging the local commmuunity in
the cleanup process. The analysis seems to confirm this view by finding a much larger impact
of community involvement after 1994, when Environmental Justice considerations prioritized
community mvolvement in the cleanup process.

5.3. Unobserved Site Heterogeneity

Jigure 2 shows the nouparametric estimate of the unobserved site heterogeneily estimated [rom
each of the baseline models corresponding to the two durations of interest. The density estimate
indicates that the distribution of helerogeneity can be characterized by two modes and a thick
right tail. 'I'hus, a small number of sites corresponding to heterogeneity estimates close to zero
suffer from conditions which slow down the clean up process. At the other extreme, there is a
substantial number of sites that benefit from additional unobserved factors that speed up the
cleanup process.

The estimated unobserved individual heterogeneity of Superfund sites can be interpreted as a
factor which also contributes to the variation in the cleanup or deletion duration but is not in-
cluded among the observable explanatory variables. ''he heterogeneity term thus acts as another
explanatory variable in itself, albeit not directly measured but ‘ather inferred indirectly from
the model. ‘L'he distribution of heterogeneity across all sites is normalized to have mean one,
reflecting the multiplicative way in which it enters the hazard model paramecterization. lts influ-
cnce is exhibited-as deviations beyond the mean offects captured by the measured observables
and the baseline hazard parametors. Heterogeneity is thus essentially estimated as explaining
the deviations of durations from the mean model prediction once the effect of the observables
has been accounted for. We do not coustrain the distribution of heterogeneily to any specific
parametric shape, but rather endow it with a flexible nonparametric model in order to mitigate
any potential model misspecification biases. At the same time, under the Bayesian lierarchical
model framework, the distribution of unobserved heterogeneity is allowed to be correlated with
the observed explanatory variables. An analysis of this correlation pattern may indicate the
source of heterogeneity.

In a post-estimation analysis, we investigate the extent to which the estimated heterogeneity at
the individnal site level correlates with the site and neighborhood characteristics by regressing
individual heterogeneity on the full set of covariates for each type of duration. Stalistically
significant partial correlation of heterogeneity was detected for some demographic characteristics
of the neighborhoods with Superfund sites for the completion to deletion duration, namely
income (negative), higher education (positive), and fraction of urban population (positive). 'T'his
suggests that the influence of the unobserved individual component on faster deletion duration
deereases with higher income but inereascs with cducation and urbanization.

It is difficult to interpret the exact mesning of the unobserved individual component. Nonethe-
less, since virtually no heterogeneity correlation was detected for the sile physical characteristics



25

we can conclude that the influence of any unobservables beyond the mean effect captured in the
tmain model rests either with the neighborhood characteristics (as opposed to the site attribu tes)
or other factors orthogonal to the variables included in the model:

States are also involved to some degree in the eleanup process and thus one possibility is that
the unobserved heterogencity captures funding or political cconomy differences across States.
However, we could not detect any statistically significant differences between the State level
heterogencity averages across States. Any State mean differences in terms of the observables
(such as income or [raction of urban population) are controlled for at the individual site level and
it appears that there is no residual spatial pattern. of unobserved differences on the aggregate
level.

6. Conclusion

'I'his paper introduces a more nuanced analysis of Environmental Justice in Superfund cleanups
than has previously been available. Given the inherent demographic bias resulting from the
geographic location decisions made by firms producing hazardous waste, we focus on the duration
of Superfund cleanups which is subject to decisions made by the various parties involved in the
cleammp process.

Ouwr identification assumption relies on the observation that conditional on a large number
of obscrvable site characteristies, a rational cleanup -process subject to cost-benefit analysis
will depend only on the site characteristics and not on the demographic composition of the
neighborhood. We use a state of the art econometric model to further account for the presence
of unobserved site heterogeneity.

‘I'he empirical results strongly suggest that the nature of demographic biases changed over
time. In particular we find that the cleanup of Superfund sites listed in the initial phase of
the program in the carly 1980s suffered from a number of biases against sites located in black,
urban neighborhoods but in favor of sites located in arcas with a highly edueated population.
‘These biases appear to diminish over time however, largely following the 1984 Executive Order
which formally establishes Environmental Justice as a policy concern. After 1994 we see in fact
a. prioritization of cleanups in economically disadvantaged neighborhoods. Furthermore, some
of these biases may have manifested themselves through the extent to which the community was
involved with the clessmp process, We do not find the associated litigation process to be an
impediment to Superfund cleanups, The return of a site to general use remains slow and driven
by the overall economic health of the community. 'I'his suggests that additional resources ought
to be made available to assist with the process of deleting Superfund sites from the NPL list in
underprivileged areas.

While we believe that, inn general faster, cleanups are beneficial to the communities where Su-
perfund sites it is irportant to note that based on the analysis in this paper we do not have
the ability to make concrete social welfare statements. Although we don’t have any data or
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evidence to this effect, we cannot exclude the possibility that longer durations may in fact be as-
sociated with higher quality cleanups, or reflect unobserved underlying preferences or sensitivity
to environmental damage of the commuuities involved.
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Tabl e 1. Summary Statistics

- 1980
Mean  S.D.

1990
Mean S.D.

2000
Mecan  S.D.

hrs

Cosl ($m)

41.044  9.357
15840 8.772

44.306  9.744
8.624 49.896

47.915  7.931
11,804 15.560

Acids

Dioxins Dibenzofurans
Inorganics

Metals

PAT

PCBs

Pesticides

Radioactive

vVOC

Other Contaminants

0.490  0.500
0133 0.339
0.338  0.473
0.775 0417
0.555  0.497
0.320 0.466
0.299 0.458

- 0.040  0.196

0.798  0.401
0.170  0.376

0.365  1.482
0.150  0.358
0.296  1.457
0.772 0.420
0.520  0.500
0.247 0.432
0.308 0.462
0.056 0.232
0.796  0.403
0.154 - 0.362

0.214 0415
0119 0.327
0071 0.260
0.738  0.445
0.333 0477
0.095  0.297
0.214 0415

0.571  0.500
0.142 0.354

Dcbris

Groundwaler

Sediment

Surface Water

Soil

Waste

Othoer Contaminated Media

0.188  0.301
0.863 0.344
0.320 0.466
0.249 0432
0.797  0.402
0.232  0.422
0.130 0337

0.093 0201
0.873 0.332
0.320 0.470
0.247  0.432
0.768  0.422
0.105 0.308
0.109  0.313

0.714  0.457
0.214 0415
0.166  0.377
0.809  0.397
0.095 0.297
0.190  0.397

N

774

2146

42

Tousehold Median Income
Fraction of Unemployed
Fraction of Bachelor plus
Fraction of Black

Fraction of Urban

36,767 10,134
0.041  0.019
0.051  0.080
0.079  0.149
0.456  0.457

24217 8,837
0.039  0.019
0.112  0.074
0.087 0.153
0.656 0.367

19,306 7,020
0.035  0.023
0.139  0.089
0.0904 0.158
0.722 0.334

Fraction Age 0-17 0.202  0.051  0.260 0.047 0250 0.046
Fraction Age 65 plus 0.104 0.045 0.122 0.047 0.144  0.052
N 1062 1062 1062

28



Tabl e 2. Demographics during the cleanup period.

29

Change over time Correlation
Al LCO10 10<LCT20 LC>20 Al Listed after 1983
In(income) . -0.484 -0414 -(.463 -0.595  -0.346 -(.324
Fraction of Unemployed  -0.003  -0.001 -0.005 0,003 -0.029 -0.012
Praction of Bachelor plus  0.065  0.053 0.059 0.088 0231 0.082
Fraction of Black 0.007 0.009 .005 0.011 0.033 0.022
Fraction of Urban 0.188 0.159 0.187 (.220 (0.084 0.091
Fraction Age 0-17 C-0.031 0 -0.030 -0.030 -0.033  -0.066 -0.025
Fraction Age 65 plus 0.027 0.016 0.028 0.036 (1.254 0.216

. LC denotes list to construction completion duration (N = 1,062, uncensored = 787, censored = 275).
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Tabl e 3. Models without Site Heterogeneity

Model Type LC CD LC CD
Variable Mean s.e. Mean  s.e. Mean 5.0 Mean S.6.
hrs -0.013%%  0.004  -0.002 0.009
In(cost) 0.198% 0021 -0.213%% 0.039
Cost zero indicator -2.515%% (0.369 -1.487*% 0.596
Acids 0.146%  0.084 0,326  0.172
Dioxins Dibenzofurans 0119 01100 0.247 0246
Inorganics 0.110 0.083 0.171 0.161
Metals 0.234  0.099 0.427%  0.197
PAH 0.086 0.092 0.088 0.166
PCBs -0.216%  0.093 0.008 0.176
Pesticides -0.154 0094 -0.328  0.208
Radioactive -0.663%F 0,204

YOC -0.171  0.109  -0.451%F 0.101
Other Contaminants -0.899%F (0,113 0.251  0.204
Debris 0.253%%  0.096 -0.406% 0.213
Groundwater -0.008  0.121 -1.185%¢ 0.194
Sediment 0.274% 0089  -0.035 0174
Surface Water 0104 0094 0183 0192
Soil -0.245%F  0.087 0.070 (.18
Waste 0.171*%  0.087 0137 0.197
Other contaminated media -0.129 0117 -0.378%  0.238
in(income) C0.6527 0.126 -0.250% 0.143 -0.517%* 0.105 0.403** 0.186
Fraction of Unermployed 3906 2.094 -6.187 3.854 -1.597 2076 -6.026 3.885
Fraction of Bachelort- 0924 1029 -3.639% 2044 0.468 0:995 -3.633% 2051
Fraction of Black 04770 0277 0.656  0.463  -0.174  0.288  0.978%  (0.480
Fraction of Urban S0.285% 0,085 -0.060  0.175 <0156 0.008  0.18) 0.17
I'raction Age 0-17 S .1.457 1004 2439 1529 -0.569  1.000 2.347 1.666
Fraction Age G5 plus 0727 0.939  -0.728  1.421 (.412 0.929 1.930 1.567

LC denotos list to construction completion duration (N = 1,062, uncensored = 787, consored = 275).

CD denotes construction completion to deletion dwration (N = 787, uncensored = 205, censored = 582).



Tabl e 4. Base Model with Site Ieterogeneity

31

Parametric LC

Model Type Non-parametric LC  Poramuetric CD  Non-parametric CD
Variable Mean 5.6, Mean $.0. Mean 5.c. Mean s.¢.
hrs | -0.012** 0005 -0.011** 0.004 -0.007 0.011  -0.007 0.009
In(cost) -0.191™ 0028 -0.180" 0.025 -0.368* 0.067 -0.293* 0.049
Cost zero indicator -2.121*  0.470 -2.068™ 0.431 -2.929"* 0.863 -2.434™" 0.746
Acids 0.131 0110 0.106 0.100 -0.040 . 0279 -0.117 0.184
Dioxins Dibenzofurans -0.117 01581 -0.002 0.125 0316 0364 0.208 0.294
Inorganics 0.094 (1,106 0.086 0,094 0,266  (.214 0.193 0177
Metals -0.226% 0122 -0.2127 0.107 0.489*"  0.251 0.424*" (.202
PAH 0.016 0.119 0.035 0.109 0.119 0.247 0.111 0.196
PCBs 0.280">  0.117 -0.237™ 0.101 0.191 0.265  0.163 0.192
Pesticides 0169 0,120 -0.154 0.102 0485  (.316 -0.381" (.230
Radioactive -0.914* 0,255 -0.710* 0.216

Voo .182 0139 -0.164 0.123 -0.6527 0276 -0.515" 0.208
Other Contaminants -0.3904**  0.135 -0.371* 0.112 0413 0348  0.262 0.246
Debris 0.278* 0.131 0.252"" 0.114 -0.631""  0.302 -0.445™" 0.214
Groundwater -0.057  0.150 -0.068 0.134 -1.918™ 0.311 -1.371*" 0.221
Sediment -0.363™ 0.117 -0.319™ 0.102 -0.030 0294 -0.054 0.208
Suslace Wator 0.072 0 0123 -0.070 0.110 0.306 0277 0.183 0.213
Soil -3.234" 0122 -0.215* 0.101 A.058  0.287 0.042 0.207
Waste 0.198 0.120  0.189* 0.107 (1.309 0,276 0.197 0.200
Other contaminated media  -0.181  0.139  -0.150 0.122 0460 0460 -0.362 0.298
In(income) 0136 0144 -0.212™ 0.102 0.551™"  0.269 0.140 0.215
Fraction of Unemployed 0.770 2.454 0.762 2,274 -7.405 5554 -7.6247 4.462
Fraction of Bachelor+ 2.018° 0886 1.581 1.001 -4.636  2.956 -4.476" 2.422
Fraction of Black G.105 0.351 0.023 0.310 1.256%  0.740 0.917 (1.548
Fraction of Urban 0081 0118 -0.080 0.101 0242  0.288  0.129 0.200
Praction Age 0-17 2406 1.312 1.502 0.995 4.132°  2.573 1.253 1.931
Fraction Age 65 plus 4253 1.380 2.930"" 0.916 2,801 2532 - -0.031 1.869

LC denotes Jist to construction completion duration (N == 1, 062, uncensored = 787, copsored = 275).
CD denotes construction completion to deletion duration (N = 787, uncensored = 205, censored = 582).
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Tabl e 5. Base Model with List Yealj Duminies

Model Type LC CD LG CD
Variable Mean s.€. Mean 5.6, Mean 5. Mean 5.
hrs -0.005  0.0058  -0.001 0.000  -0.005 0.005 -0.003 0.009
“In (cost) -0.218%  0.030 -0.265" 0.053 -0.222** 0.030 -0.288"" 0.051
Cost zero indicator .2.438** 0.497 -1.916" 0.796 -2.294* 0.494 .2.175™" 0.805
Acids 0008 0104 -0365 0190 0400 0107 -0.152  0.202
Dioxins Dibenzofurans L0158 0.139 0335 0253 0139 0.141 0347 (.272
Inorganics 0.054 0108 0202 079 0.057  0.103 0.212 0187
Metals S0.230% 0118 0.451*°  0.209 0229  0.115  0.470""  0.214
PAH 0.011 0.119 0.112 0.196 -0.005 6113 0.112 0.208
PCBs -0.220°"  0.111 0.068 0.204 -0.184" 0.109  0.089 0.213
Pesticides -0.155 0110 -D.301 0218 <0161 0112 -0.3200 0.232
Radioactive -0.915*  0.241 -0.891%*%  0.241
vOC 0.935  (.140 -0444* 09213 0201 0134 04617 0.229
Qther Contaminants -0.397* 0.135 0.222 0.232 -0.386%" 0134 0.241 0.245
Debris 0.240™  0.117 -0.450™ 0.223 0.274* 0.119 -0.479"" 0.237
Groundwater -0.143  0.153 -1.349™ 0.211 -0.169 0.1533 -1.415"" 0.228
Sediment -0.342* - 0.112 0.017 0.206 -0.355™ 0.113 -0.007 0.213
Surface Water 0077 Q116 02100 0209 0099 0116 0.224 0.218
Soil 02117 0012 0005 0204 02417 0114 0012 0214
Waste 9.213" 0114 0.147 0.193 0,210 0.114 0160 0.198
Gther contaminated media 0202 0132 -0.413  0.266  -0.199 0.134 0411 0.287
In(income) 0.018 0.160 -0.495> 0273 0.144 0.154 -0.615"" " 0.279
Fraction of Unemployed 2.995 2,403 -7.468" 4.360 2.280 2.407 -9.013™ 4.334
Fraction of Badelog+ 0.808 1437 1020 2845  -0.085  1.57h 0473 2.807
Fraction of Black ~0.040  0.348 0.729 0.479 0.122 0.360 .684 0.570
Fyaction of Urban S0.058 0 01150 0.205 0 0,202 <0083 0415 0272 0.208
Iraction Age 0-17 1.507 1.219 3.472 2,230  0.290 1.184 2.979 2,172
Traction Age 65 plus 1.234**  1.062 0.830 1962 2355 1.066 0.0414  1.983
L1984-86 0.258*"  0.122 0.011 0.214 0.243** 0.123 0.026 (.203
L1987-89 0.588*  0.141 0236 0223 0565 0134 0250 0.217
L1990-92 0547 0.200 -L.010" 0.387  0.6157%  0.180 -0.9947  0.352
L,1993-95 0150 0.298  -3.084% 1122 1976 4.100  -0.260 0.852
1,1996+4 0.710"  0.283 -1.409* 0.636 2373 4.063 0.103 0.785
L94-101 Hin(income) -1.824*"  0.890 -0.566 0.364
L94-107 Fraction of Unemployed 3.709%*  1.098 0407 0.912
L94- 100 Fraction of Bachelor+ 7.243* 3723 -0.049  1.029
194100 Praction of Black <0421 1159 0177 0.943
1.94- 1001 Fraction of Urban -0.362 0.455 -0.284  0.769
1.94-10¢ 'raction Age 0-17 7.651 5.305 -0.089 1.014
1.94-10: |Traction Age 65 plus 7.672 5006 0.008 0.813

LC denotes list to construction completion duration (N = 1,062, uncensored = 787, censored = 275).

C1) denotes construction completion to deletion duration (N = 787, uncensored = 205, censored = 582).



Tabl e 6. Split Samples, List to Construction Completion Duration

Model 1ype List Year 1983 List Years 1984-2010
Variable Mean s.c. Mean s.c.
hrs 0.001  0.008 -0.006 0.006
In{cost) -0.274""  0.055 -0.19177"  0.034
Cost zero indicator ©-2.650" 0983 2142 0.578

Acids 0082 0.174 0.100 0.125 -
Dioxins Dibenzofurans 0.025 0.232 -0.190 0.161
Inorganics -0.111  0.183 0.166 0.114
Meatals .307  0.204 -0.217 0.137
PAH -0.007  0.203 -0.007 0.144
PCBs . -0.086 0172 -0.290°  0.138
Pesticides 0.145  0.181 -0.258%  0.140
Radioactive 0554 0.548 <0968 0.279
\'el¢ 0.276 0231  -0.314% 0.152
Other Contaminants 0.167  0.189  -0.632"% 0172
Debris -0.120  0.204 0.340 0.144
Groundwater -0.350  0.230 0.034 0.192
Sediment -0.6321%° 0.180 -0.136 .136
Surface Water -0.203 0.204 -0.008 0.135
Soil -0.146  0.194 -0.211 0.143
Waste -0.141  0.190 0.286'" 0.130
Other contaminated media  -0.151  0.228  -0.276"  0.163
In(income) 0.797  0.296 -0.247 0.187
Iraction of Unemployed -2.880 4207 . 2.624 3.122.
Fraction of Bachelor+ 13.130"" 3.487 1.687 1.353
Fraction of Black S -2.2447F (.657 -0.468 (0.388
Iraction of Urban 05755 0,193 0.046 0.137
Ifraction Age 0-17 -1.218  1.933 0.424 1.394
Fraction Age 65 plus 2,162  1.804 1,757 1.176
1,1987-89 0.320°%  0.141
L.1990-92 0.129 .209
L1993-95 -0.533 0,330
L1996+ : 0.280 (.281

For list year 1983, N = 294, uncensored = 233, censored = 61.
For list years 1984-2010, N == 768, uncensored = 554, censored = 214.



Tabl e 7. Split Samples, Construction Completion to Deletion Duration

Model Lype List Year 1983 List Years 1984-2010
Variatle Mean s.e. Mean s.e.
hrs -0.015 0.015 0.006 0.012
in(cost) -0.167 0.104  -0.317""  0.037
Cost zero indicator -1.385 1.662 23657 0.514
Acids -0.121  0.350 -0.167 0.253
Dioxins Dibenzofurans 0.603  0.474 -0.002 0.369
Inorganics -0.094  0.338 0.367 0.221
Metals 0.718%  0.358 0.269 0.253
PAH -0.043. 0,369 0.189 (0.245
PCBs -0.321  0.352 0.382 {1.256
Pesticides -0.886'%  0.409 0.015 0.275
VOO -0.021,  0.467 0,593 .260
Other Contaminants .482 0.393 -0.088 0.300
Debris 07155 0424 <0332 0.249
Groundwaler S137IM 088 <17 0.270
Sedimeng 0.331 0.334 -0.247 0.273
Surface Water 0134 0.387 0.275  0.269
Soil 0.597 0.383 0.171 0.242
Waste (.405 0.316 -0.017 0.235
Other contaminated media  0.359  0.381  -0.886"""  0.406
In(income) -0.175  0.528 -0.386 0.349
Fraection of Unemployed -16.486" 7.660  -7.234'%  3.043
liraction of Bachelor+ -8.363  7.832 2.446 3.017
Fraction of Black 1595 1.133  0.696  0.653
Iraction of Urban 0.459  0.403 0.172 0.258
Ifraction Age 0-17 -0.996 4113 5386 2.620
Fraction Age 65 plus -2.007  3.362 2.948 2.225
1,1987-89 -0.285 0.221
1.1990-92 ' 211065 0.434
L1993-95 22907 1.406

For list year 1983, N = 233, uncensored = 68, censored = 165,
Kor list years 19842010, N = 556, uncensored = 137, censored = 417.



Tabl e 8. Potentially Responsible Parties (PRP) Variables

Model Type LC CDh LC Cb
Variable Mean 5.0, Mean s.¢. Mean s.¢. Mean s.e.
hrs -0.011* 0.004 -0.009  0.009  -0.007  0.005 -0.002  0.009
In(cost) -0.190™  0.024 -0.204** 0.047 -0.220** 0.032 -0.248" 0.046
Cost zero indicator -2.211*  0.391 -2.327"" 0.714 -2425 0.570 -1.634"" 0.706
Acids 0137 0.006  -0.088 0195 0.117 0407 0,440  0.156
Dioging Dibenzofurans -0.087 0125 0.233  0.285 -0.031 0137 0.288  0.260
Inorganics 0.100 0,091 0.193 0.187 0.070 0.102 0.197 0.176
Metals 0,236 C0.104 04347 0.218 -0.251*" 0.119 04617  0.202
PAH 0.047 0.103 0.116 0.200 0.017 0.116 0.091 0.195
PCBs -0.250%"  0.100 0.175 0.215 -0.240" 0.105 0.062 0.204
Pesticides -0.180 0102 -0.4383* 0232 -0.134 0110 -0.322  0.221
Radioactive -0.664""  0.230 -0.823™  0.244

vOoC S0.180 0120 -0.583** 0210 -0.231 0133 0494 0.214
Other Contaminants J0.882%% 0117 0.284  0.233  -0.8917* 0.133 0 0.269 0229
Debris 0.238" 0.111 -0.451** 0.236 0.228* 0.120 -0.480"" 0.232 '
Groumndwater -0.079 0120 -1.463*% 0217 -0.146  0.147 -1.364*" 0.216
Sediment -0.822* 0.102  -0.028 0.213 -0.3427" 0.109 0.032 0.201
Surface Water 0074 01060 0206 0216 0080 (114 0212 0.208
Soil -0.229* 0,102 0.022 0212 -0.246"* 0.116 0.032 0.204
Waste 0.173 0.105 0.238  0.204 0.208*  0.110 0.171 {1.194
Other contaminated media 0,172  0.123  -0.380 0.278 -0.227 0.139 -0.404 0.279
In(income) -0.347™  0.108 0.158 0.228 -0.158 0.161 -0.161  0.263
Fraction of Unemployed 01190 2192 -7.754% 4665 2,288 0 2.319 6895 4284
Fraction. of Bachelor4- 1434 0.984 -5013%% 2556 0.945 1318 0176 2.611
Fraction of Black J0.078 0 0.302 0942 0553 <0164 (0.345 (1.834 0.528
Irvaction of Urban -0.104. 0.098 0.128 0204 -0.064 0115 0.207  0.206
Fraction Age 0-17 0.939 0.985 0.935 2.049 1.035 1.148  3.643"  1.969
Fraction Age 65 plus 2,191 0.916 -0.155  2.006 2.449™  1.057 1.940 1.838
L1984-86 0.253™  0.121 0.014 0.207
1L1987-89 0.553**  0.133 -0.227 0.217
L1990-92 : 0.466**  0.197  -0.793" 0351
1,1993-95 0.207 0 0319 -2.676%  1.362
1,1996+ 0.661**  0.245 -1.263" 0.648
PRP O 0.102  0.141 0.271 0.288 0.093 0.158 0.349 0.270
PRP 2 10 0.248 0.152 -0.048 0302 .0.246 0.163 0.000 0.286
PRP 10+ 0.328%"  0.153 (3.233 0.323  0.340°*  0.169 0.278 0.300

LC denotes list to construction completion duration (N = 1, 062, uncensored = 787, cengored = 275).
CD denotes construction completion to deletion duration (N = 787, uncensored = 205, censored = 582).



Table 9. Home Ownership Variables

Mode! Type LG ¢p
Variable . Mean s Mean s
hrs -0.0080 L1005 0004 0.009
In(cost) -0.213**  0.029 -0.251*" 0.040
Cost zero indicator -2.420™  0.497 -1.826™ 0.611
Acids 0.118 0106 0117 0194
Dioxing Dibenzofurans -0.143 0136 0270 0.267
Inorganics 0051  0.102 0157 0172
Metals -0.186  0.116 0469 0.213
PAH 0.017 - 0111 0.007 0.193
PCBs -0,269"* 1110 0.163  0.218
Pesticides -0.129 0113 -0.269  0.220
Radivactive -0.887*"  0.255

vOQG -0.230*  0.130 -0.514™ 0.211
Other Contaminants -0.386** 0.131 0365  0.235
Debris -0.277* 0116 -0.446™ 0.212
Groundwater -0.112  0.147 -1.388™ 0.213
Sediment -0.376™  0.110  .-0.075  (.198
Surface Water 0083 L1160 0271 0207
Soil 00947 0112 -0.012 0 0,209
Waste 0.278**  0.115  0.2]2  0.193
Other contaminated media  -0.174 0132 -0.235  0.273
In(income) 0.084 0.160 -0.638"" 0.288
Fraction of Unemployed 2.049 2584 -6.365 4.356
Fraction ol Bachelor+- 1.441 1.285 L0110 2601
Fraction of Black 0098 0356 0.976 (.51l
Fraction of Urban 0070 01180 0303 0.205
Iraction Age 0-17 0.743 1.169  0.856 2.048
Fraction Age 65 plus 2.851%*  1.093 1.226 1.838
11984-86 0.107 0.125 0.104 1.209
L1987-89 0.262%  0.132  -0.049 0219
1,1990-92 0531 0195 -0.403  0.333
1,1993-95 0.168  0.508 -3.334*% 1.464
11996+ 0.129 0572 -3.263"  1.377
Fraction of homeowners -0.219 0371  1.898™ 0.685

L{94-10)1iFrhc homeown -0.004 0713 2460 1.703

LC denotes list to construction completion duration (N = 1, 056, uncensored = 786, censored = 270).
= 581).

CD denotes construction completion to deletion duration (N = 786, uncensored = 205, censored



Tabl e 10. Community Involvement Variables

Model Type LC CD LG CD
Variable Mean - se. Mean 5.6 Mean 5.6 Mean S8
hrs -0.011% 0.604 -0.009 0.010 -0.007 0005 -0.002 0.009
in{cost) -0.185*  0.025 -0.346™* 0.052 -0.205* 0.026 -0.280™ 0.051
Cost zero indicator 22.134% 0405 -3.004** 0.786 -2.212"* 0.462 -2.003"" 0.804
Acids 0.121 0.097 -0.118 0.218 0,110 0.102  -0.161  0.156
Dioxing Dibenzofurans 0105 0 0127 0310 0305 -0.166 0137 0335 0.272
Inorganics 0.086  0.094 0.203 0197  0.051 0.102 0.215 0.187
Metals -0.215*%  0.106 04647 0.229 -0,220" 0.114 0470 0.212
PAH 0.041 0.106 0.087 0.224  0.005 0.113 0.095 0.204
PCBs 0237 0.101 0.165 0235 -0.232" 0.106 0.082 0.209
Pesticides 0146 0104 0435 0.250 0130 0111 -0.322  0.228
Radioactive -0.723""  0.226 09107 0.249

vOC 0,193 0122 <0514 0.236  -0.214 0134 -0.4347  0.223
Other Contaminants -0.380% 0.118  0.202 0.258 -0.303*° 0.134  0.244  0.238
Debris T0.9254™  0.111 -0.502*¢  0.258 0.265™"  0.119 -0.472°7 0.228
Groundwater 0060 0131 -1.514* 0.242 -0.140 0154 -1.4107 0.223
Sediment -0.330™  0.104 0063 0.236 -0.337"" 0.114 0.020 0.209
Surlace Water 00710 0209 0.23¢ 0 0238 0069 0117 0.242 0.219
Soil -0.228* 0105 - 0.073 0.285  -0.241"° 0.112 0.021 0.210
Waste 0.181*  0.106 0.210  0.208 0209 0.119 0.156 0.197
Other contaminated media  -0.170 G126 -0.382  0.311  -0.238"  0.141  -0.365 0.287
In(income) -0.246""  0.109 0.224 0242 -0318 0334 -0.926 1.104
Fraction of Unemployed 0.458 2.242  R.519%  4.782 -0.030 0.160 -0:5397  0.281
Fraction of Bachelor4- CLE48 1012 5472 2680 2123 1846 -8.304%  4.340
Fraction of Black 0.020 0309 1163 0.612 0.618 1.407  1.3566  2.455
Fraction of Urban 0078 0104 0,128 0228 -0.062 0337 0604 0.564
Iraction Age O-17 1.456 1.022 0.679 2.172  -0.038  0.112 0.277 0.214
Traction Age 65 plus 2711 0.946 0.039 1.875 1.424 1,235  3.6017 2.089
1198486 ) 2,791 1.086 1.002 1.759
L.1987-89 0.200%  0.123 0.016 0.215
1,1990-92 05917 0.135 -.2634  0.224
1,1993-95 0.520**  0.196 -1.074*  0.369
11996+ -0.000 0378 -2.650" 1.437
Community 0.111 0.082 -0.222 0.189 0.185° 0.110 -0.203 0.183
L{94-10) s Community 0.878™ 0300 -1.193 0.837

LC denotes list to construction completion duration (N = 1,062

€D denotes construction completion to deletion duration (N = 787, uncensored = 205, censored = 582).

, uncensored = 787, censored = 275).
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Figure 1. Distributions of Durations (in Years) , for the different cleanup milestones.
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Figure 2. Istimated Density of Individual fleterogeneity
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