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Abstract

Economists often study consumers’ aggregate behavior across markets choosing from a

menu of differentiated products. In this analysis, local demographic characteristics can

serve as controls for market-specific heterogeneity in product preferences. Given rich

demographic data, implementing these models requires specifying which variables to

include in the analysis, an ad hoc process typically guided primarily by a researcher’s

intuition. We propose a data-driven approach to estimate these models applying penal-

ized estimation algorithms imported from the machine learning literature along with

confidence intervals that are robust to variable selection. Our application explores the

effect of campaign spending on vote shares in data from Mexican elections.
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1 Introduction

When analyzing aggregated data about consumers’ choices in different regional markets,

researchers must account for the demographic characteristics of local markets that might

drive observable variability in consumers’ preferences and firms’ pricing policies. The abun-

dance of such variables, whether from census data, localized search trends, or local media

viewership surveys, immediately confronts researchers defining which model to adopt for this

analysis with difficult questions. Which variables should be included in the model? Which

controls can be excluded from the analysis without introducing omitted variable bias? How

sensitive are the estimated effects of a firm’s pricing policy on their market share to these

specification decisions?

In the current paper, we hope to help answer these questions by providing data-driven

algorithms for addressing model selection in analyzing consumer demand data. Our main

contribution here is to apply recent econometric results from the variable selection literature

to a popular nonlinear aggregate demand model. Specifically, our technique generalizes

procedures from Belloni et al. (2012) and Belloni et al. (2013a) for selecting variables to

a nonlinear Berry et al. (1995) model of consumer demand with random coefficients. Our

asymptotic results extend Gillen et al. (2014)’s results by adopting techniques from Fan and

Liao (2014)’s analysis of penalized GMM estimators, particularly the conditions for an oracle

property that ensures all necessary variables are included in the model.

The specific problem of interest addresses high-dimensional demographic data for local

markets that may help characterize local preferences. To address this problem, we adopt

techniques proposed by the literature on machine learning to identify the demographic char-

acteristics that exert the most important influence on observed market shares. As we discuss

in section 2.1, these innovative algorithms present powerful devices for variable selection that

require some care in their implementation. When properly deployed through multiple iter-

ations of variable selection with appropriate penalization, these algorithms identify all the

variables necessary for valid inference in the model.

We conduct an empirical investigation of campaign expenditures’ influence on election
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outcomes, utilizing structural models inspired by the industrial organization and marketing

literatures. In elections, the “consumers” are the voters, the “market” is the voting district,

and the set of available “products” is the set of political parties running in the district.

We use our technique to analyze the impact of campaign expenditures on candidate vote

shares in Mexican elections. With access to the full census records for Mexico, we have rich

demographic data for each voting district. We also have some variability in the “market

structure” or the set of political parties competing in each district, since Mexican elections

allow parties to form partial coalitions. In districts where parties coordinate, the number of

competing candidates is smaller than in those districts where they compete. Our analysis

yields the robust finding that campaign expenditures significantly influence voter preferences.

We present our inferential technique in a series of four progressively more complex mod-

els. We introduce the simple discrete choice approach to testing the influence of campaign

expenditures on voting in section 4. This simple setting assumes voters vote for their most

preferred candidate, with voter preferences represented by a linear utility function. This

simplicity admits a standard generalized linear model, which we refer to as Model LM-F

(Linear Model with Fixed Controls), for candidate vote shares, providing a first look at the

influence of campaign expenditures on vote shares in Mexican elections with a pre-selected

model. The results show that campaign expenditures make a positive and significant con-

tribution to a candidate’s vote share, though this contribution is mitigated by diminishing

marginal returns.

We then introduce data-driven variable selection for the demographic controls we in-

clude in the model. In so doing, section 5 applies the techniques proposed in Belloni et al.

(2012) and Belloni et al. (2013b) to develop our second empirical specification, Model LM-S

(Linear Model with Selected Controls). In this discussion, we explicitly present the sparsity

assumptions required for consistent and valid inference and describe the exact algorithm for

performing that analysis. Implementing Model LM-S for the Mexican voting data, we illus-

trate how the algorithm can provide an agnostic characterization of the robustness of our

results to model specification. In particular, the variable selection algorithm is governed by
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only two “tuning” parameters, both of which are constrained by theory to lie in a reasonably

small band of candidate values. Varying these tuning parameters allows us to verify the

robustness of our empirical findings from Model LM-F to different specifications.

Next, Model RC-F (Random Coefficients with Fixed Controls) allows heterogeneity in

voters’ responses to campaign expenditures in section 6. This specification corresponds

to the “BLP” random coefficients logit model (Berry et al. (1995)), which is a workhorse

model in empirical industrial organization. We fit Model RC-F to Mexican data using the

same pre-specified set of demographic variables for controls used in the linear Model LM-

F. Though we find very little evidence of heterogeneous impressionability, the impact of

campaign expenditures on vote shares from the linear specification remains robust.

Our main innovation lies in the final specification, Model RC-S (Random Coefficients with

Selected Controls). This model extends the results from Gillen et al. (2014) to a setting where

the number of potential parameters grows exponentially with the sample size. Estimation

and inference here poses some conceptual and computational challenges. The analytical

development incorporates asymptotic results from Fan and Liao (2014), which builds on

Caner and Zhang (2013) and Belloni et al. (2012) by establishing an oracle property for

penalized GMM estimators in the ultra-high dimensional setting. Computationally, we start

by fitting Model RC-F with the variables selected by Model LM-S to recover latent mean

utilities and optimal instruments from the nonlinear BLP voting model. We then select a

series of additional variables for robust inference, specifically including controls for observable

heterogeneity in the optimal instruments. Finally, we verify the first order conditions of the

penalized GMM-estimator to ensure we find a local optimum to which we can apply Fan and

Liao (2014)’s oracle property.

2 Related Literature

The current paper sits at the intersection of political science, economics, and statistics.

Our application addresses a well-worn question on how expenditures by a political campaign
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influence the outcome of an election. The inferential model we use to investigate this question

is grounded in structural econometric methods used for consumer demand estimation by

researchers in industrial organization and marketing. Finally, the statistical techniques we

apply utilize recent innovations in machine learning developing automated techniques for

variable selection.

2.1 Model Selection and Inference

Data-driven approaches to variable selection represents one of the most active areas of sta-

tistical research today. Tibshirani (1996)’s Lasso estimator ushered in a new approach to

estimation in high-dimensional settings by incorporating convex penalties to least-squares

objective functions. The penalized estimation technique has been further developed by Fan

and Li (2001)’s SCAD penalty, Zou and Hastie (2005)’s elastic net and Huang et al. (2008)’s

Bridge estimator, Bickel et al. (2009)’s infeasible lasso, and Zhang (2010)’s minimax concave

penalty. This literature has also inspired several closely related estimators, including Candes

and Tao (2007)’s Dantzig selector and Gautier and Tsybakov (2011)’s feasible Dantzig selec-

tor as well as Belloni et al. (2011)’s Square-Root Lasso. Each of these estimators incorporate

some form of L1-regularization to the objective function’s maximization problem, selecting

variables for the model by imposing a large number of zero coefficients on the solution.

For an estimator that imposes a large number of zero coefficients in the solution to

be consistent, it must be the case that a large number of zero coefficients are present in

true model for the data generating process. This restriction on the true parameters of

the model takes the form of a sparsity assumption. In its early formulations, the sparsity

restriction was stated as an upper bound on the L0 or L1 norm of the true coefficients.1 If an

estimator classifies zero and non-zero coefficients with perfect accuracy as the sample grows,

the estimator satifies an oracle property. In order to establish an oracle property, the sparsity

1Generalized notions of sparsity appear in Zhang and Huang (2008) and Horowitz and Huang (2010),
which allow for local perturbations in which the zero-coefficients are very small. A similar approach appears
in Belloni et al. (2012) and Belloni et al. (2013a) characterizing inference under an approximate sparsity
condition that constrains the error in a sparse representation of the true data generating process.
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restrictions need to be coupled with a minimum absolute value for non-zero coefficients to

ensure they are selected by the penalized estimator. Intuitively, the variability of a single

residual (which could be explained by an erroneously included explanatory variable) needs

to be dominated by the penalty, which in turn needs to be dominated by the effect of a

non-zero regressor (to justify the penalty associated with the coefficient’s non-zero value).

Performing inference after model selection, even with an estimator that satisfies the or-

acle property, has presented a non-trivial challenge to interpreting the results of estimators

that incorporate these techniques. Leeb and Pötscher (2005, 2006, 2008) present early cri-

tiques of the sampling properties for näıvely-constructed test statistics after model selection,

illustrating the failure of asymptotic normality to hold uniformly and the fragility of the

bootstrap for computing standard errors in the selected model. Lockhart et al. (2014), pub-

lished with a series of comments, propose significance tests for lasso estimators that perform

well on “large” coefficients but are less effective for potentially “small” coefficients for which

the significance tests are not pivotal due to the randomness of the null hypothesis. In a

series of papers, Belloni et al. (2013a) and Belloni et al. (2012) propose techniques for infer-

ence on treatment effects in linear, instrumental variables, and logistic regression problems.

These techniques incorporate multiple stages of variable selection with data-driven penalties

that ensure the relevant controls are included in the econometric model before performing

inference in an unpenalized post-selection model. By focusing on inference for a prede-

fined, fixed-dimensional, subset of coefficients, the selected models represent a desparsified

data generating process, with inference results from Van de Geer et al. (2014) providing

uniformly valid confidence intervals.

Extending these techniques from least squares regression models to more general settings

presents additional challenges. Fan and Li (2001), Zou and Li (2008), Bradic et al. (2011),

and Fan and Lv (2011) propose methods for analyzing models defined by quasi-likelihood.

Our application focuses on GMM estimators, whose properties in high-dimensions are con-

sidered by Caner (2009), Caner and Zhang (2013), Liao (2013), Cheng and Liao (2015), and

Fan and Liao (2014). Several of these papers address the issue of moment selection, as in
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Andrews (1999) and Andrews and Lu (2001). As our application considers an environment

with a fixed set of instruments, our analysis does not require moment selection but makes

heavy use of the oracle properties established by Fan and Liao (2014).

Our model builds directly on Gillen et al. (2014)’s analysis of demand models with com-

plex products. The Gillen et al. (2014) application considers aggregate demand models where

the dimension of the vector of product characteristics is large, on the same order of mag-

nitude as the number of observations. Our current application utilizes variable selection to

mitigate an incidental parameter problem in characterizing voter preferences. This utiliza-

tion is similar in motivation to Harding and Lamarche (2015), who use a penalized quantile

regression to allow for heterogeneity in individual nutritional preferences when analyzing a

household grocery consumption data. In addition to applying Gillen et al. (2014)’s approach

to an interactive fixed-effects model, our analysis allows for material weaker conditions on

the data generating process than in Gillen et al. (2014). Notably, by applying Fan and Liao

(2014)’s oracle properties, we can allow for the number of parameters to grow exponentially

with the number of observations, rather than linearly.

2.2 Structural Models of Campaign Spending and Voting

Empirical analysis of voting data presents a particularly challenging exercise for political

scientists due to the large number of factors driving voter behavior, endogeneity induced

by party competition and candidate selection, and behavioral phenomena driving individual

voter decisions. Including early work from Rothschild (1978) and Jacobson (1978), a number

of political scientists have explored the effect of campaign spending on aggregate vote shares,

often coming to different conclusions on its importance in influencing vote share by informing,

motivating, and persuading voters. These inconclusive results arise in part due to challenges

in identifying valid and relevant instruments (Jacobson, 1985; Green and Krasno, 1988;

Gerber, 1998). Gordon et al. (2012) discuss several challenges to this research agenda,

highlighting the value of incorporating historically underutilized empirical methods from

marketing researchers.
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A nascent literature in political science adopts structural approaches to inference for

analyzing political data. Discrete choice approaches to analyzing voting data date back to

Poole and Rosenthal (1985) and King (1997). Among the early adopters of this approach are

Che et al. (2007), who utilize a nested logit model that takes advantage of individual voter

data to identify the impact of advertisement exposure on their behavior. The problem we

consider is closest to Rekkas (2007), Milligan and Rekkas (2008), and Gordon and Hartmann

(2013), who apply a Berry et al. (1995) model to infer the impact of campaign expenditures

on aggregate voting data. The analysis presented in Gordon and Hartmann (2013) provides

an excellent motivation for our proposed inference technique. Though they find a robust

evidence that campaign spending on advertisement positively contributes to a candidate’s

vote share, the magnitude of this contribution varies by a factor of 3 depending on the spec-

ification of controls adopted. Their extremely large sample allows them to adopt very rich

models of fixed effects and, in the most flexible models, the significance of the contribution

of campaign expenditures to vote shares drops to 10%. A natural concern is that this loss

of significance is in part due to an excessively conservative model of control variables. Our

data-driven approach to selecting these control variables provides an agnostic approach to

addressing some of the inherent ambiguity in determining which of these estimates is “most

correct.”

A number of other researchers have also adopted a structural approach to analyze voting

behavior. Degan and Merlo (2011) present a structural model for analyzing multiple concur-

rent elections in US Congressional and Presidential elections, with an extension by Levonyan

(2013) analyzing the influence of the Presidential election on the outcome of California’s

Proposition 8. Kawai and Watanabe (2013) adopt a structural approach in investigating

strategic voting behavior using Japanese general election data. Kawai (2014) provides a

dynamic extension of Erikson and Palfrey (2000)’s model of fund-raising and campaigning

to analyze elections for US House of Representatives while adopting a control function ap-

proach to mitigate unobserved heterogeneity in voter behavior. Our application is clearly

most closely related to Montero (2015)’s structural analysis of the incentives for coalition
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formation in Mexican elections.

Beyond structural approaches for analyzing equilibrium outcomes, a massive body of

empirical research investigates the influence of campaign expenditures on vote shares using

natural and field experiments. These investigations are particularly valuable in their abil-

ity to differentiate how different styles of campaign advertising influences voter behavior.

Gerber (2011) surveys much of this literature. Though our inference technique is derived in

the context of a structural model of voting, the approach to selecting demographic control

variables could be readily adopted to these environments.

3 Voting in Mexico: Parties and Preferences

Mexico is a federal republic with the executive branch headed by the president and legislative

power wielded by a bicameral Congress. Our focus is restricted to elections for the lower

chamber of Congress, known as the Chamber of Deputies, which are held every three years.

Mexico is split into 300 electoral districts (see Figure 1), with the current boundaries drawn

by the federal electoral authority, the Federal Electoral Institute (Instituto Federal Electoral,

IFE), in 2005.2 These boundaries were set with the objective of equalizing population sub-

ject to additional constraints preserving state boundaries and representation. While voting

is mandatory in these elections for all citizens aged 18 and older, there are no sanctions

enforcing participation. Legislators can be re-elected only in non-consecutive terms, limiting

the incumbency power in these elections.

The Chamber of Deputies has 500 members, 300 of whom directly represent a district

after being elected by a simple plurality of votes in a direct ballot. The candidates in these

district races can be nominated by a single party or as a representative of a coalition of

multiple political parties. Election laws allow candidates to run independently or as a write-

in campaign, but their vote shares are negligible. The remaining 200 seats in the chamber

are allocated according to a proportional representation (PR) rule. Specifically, the votes are

2In March 2014, IFE was transformed into the National Electoral Institute (Instituto Nacional Electoral,
INE).
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Figure 1: Mexican states (shaded) and electoral districts (delimited)

pooled by party across all districts and each party receives a share of the 200 proportional to

the number of votes received by that party’s candidates.3 To identify candidates for the PR

assignment, parties submit national lists of up to 200 candidates concurrent with registering

district candidates. Parties must secure at least 2% of the national vote for accreditation to

hold seats in the legislature, with the votes for unaccredited parties annulled.

3.1 Fundraising and Advertising in Mexican Elections

Campaign funding for Mexican parties is allocated from the federal budget4 Of this total al-

location, 30% is divided equally among all the parties, with the remaining 70% distributed in

proportion to the parties’ national vote shares in the most recent Chamber of Deputies elec-

tion. The electoral authority then caps funding from other sources to 2% of the year’s total

public funding, ensuring public funds serve as the primary source of party incomes. Conse-

quently, candidate fundraising is not prominent in these elections, with the party national

committees mainly supplying the financial and administrative resources to run individual

3Additional restrictions for the PR assignment preclude any party from getting more than 300 total seats
in the chamber or a share of seats that exceeds the party’s national vote share by over 8 percentage points.
In these cases, the excess PR seats are divided among the remaining parties proportionally to vote shares,
though the adjustment is carried out only once: after performing the adjustment, if a new party exceeds the
8-percentage-points restriction with its additional share of seats, the process does not iterate.

4The total equals 65% of Mexico City’s legal daily minimum wage multiplied by the total number of
registered voters. After converting from Mexican pesos to U.S. dollars, this funding totaled about US$250
million in 2012.
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campaigns.

Campaigns take place within a fixed window of time: they must end 3 days before the

day of the election and can only last up to 90 days in Presidential election years and 60

days in intermediate election years. Campaign advertising media is highly restricted in

Mexican elections. The only legal access to TV and radio advertising is provided by the

electoral authority to the parties free of charge. The total airtime is fixed and distributed

to parties similarly to the public funding, with 30% divided equally and the remaining 70%

proportionally to the parties’ national vote shares in the most Chamber of Deputies election.

3.2 Parties & Coalitions in the 2012 Chamber of Deputies Election

The 2012 Chamber of Deputies election included seven political parties, two of which par-

ticipated independently, three of which formed a total coalition, and two of which formed

a partial coalition. The National Action Party (Partido Acción Nacional, PAN) and the

New Alliance Party (Partido Nueva Alianza, NA) participated independently. The total

coalition was called the Progressive Movement (Movimiento Progresista, MP), including the

Party of the Democratic Revolution (Partido de la Revolución Democrática, PRD), the La-

bor Party (Partido del Trabajo, PT), and the Citizens’ Movement (Movimiento Ciudadano,

MC). The partial coalition was called the Commitment for Mexico (Compromiso por México,

CM) and consisted of the Institutional Revolutionary Party (Partido Revolucionario Institu-

cional, PRI) and the Ecologist Green Party of Mexico (Partido Verde Ecologista de México,

PVEM). The partial coalition coordinated on a single candidate in 199 of the 300 districts

races, 156 of which featured a jointly nominated PRI candidate, and the remaining 43, a

joint PVEM candidate.

Figure 2 presents the parties on a one-dimensional ideology spectrum based on a national

poll by Consulta Mitofsky in 2012, along with their national vote shares in the 2012 election.

In analyzing the data on vote shares, we will treat coalitions as a single party. As such,

elections consist of five parties in those districts where PRI and PVEM candidates ran

separately and four parties where one candidate runs as part of the CM coalition. We do
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PT
(4.8%)

MP Coalition

PRD
(19.3%)

MC
(4.2%)

NA
(4.3%)

CM Coalition

PVEM
(6.4%)

voter
Average

PRI
(33.6%)

PAN
(27.3%)

Source: Consulta Mitofsky (2012). One thousand registered voters were asked in

December of 2012 to place the parties and themselves on a five-point, left-right ide-

ology scale. Arrows point to national averages. Parties’ vote shares in parentheses.

Figure 2: Left-right ideological identification of Mexican parties and voters

include the actual party affiliation of the coalition candidate as a characteristic.

3.3 Electoral and Census Data

We utilize the data analyzed by Montero (2015)’s investigation of the coalition formation

incentives of political parties. Individual-level voting data are not available as votes are cast

anonymously, but district-level vote totals are publicly available online from the electoral

authority. The final composition of the Chamber of Deputies, including the PR seats, is

presented in Table 1.

To control for observable heterogeneity in voter preferences by district, we have access

to rich demographic data—over 200 variables—from the 2010 population census, which the

National Statistics and Geography Institute (Instituto Nacional de Estad́ıstica y Geograf́ıa,

INEGI) makes available on a geo-electoral scale. Table 2 highlights summary statistics

for districts’ demographic composition along four specific variables regarding female heads

of households, population over 64, education, and economic well-being. Breaking these

characteristics down by the coalition structure of the parties within the district doesn’t

clearly indicate that demographics drive the coalition decision.

Campaign spending data are self-reported by the parties to the electoral authority, subject
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Table 1: Chamber of Deputies composition after 2012 election

Party Direct representation Proportional representation Total
seats seats

PRI 158 49 207
PVEM 19 15 34
PAN 52 62 114
MP 71 64 135
NA 10 10

Total 300 200 500

Table 2: District characteristics

Districts with distinct Districts with joint
PRI, PVEM candidates CM candidate

Variable Mean Std. dev. Mean Std. dev.

Female head
of household 23.8 3.1 25.1 4.6
(% of total)

Pop. over 64 10.6 2.6 9.6 2.7
(% of over 17)

Avg. years
of schooling 7.8 1.3 8.5 1.5
(among over 14)

Household
owns a car 45.3 17.7 42.5 14.8
(% of total)
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to audits. Audited spending data for the 2012 election are not yet available. We ignore

misreporting as a source of measurement error, but, for comparison, campaign spending was

overreported by about 4% in 2006, while no discrepancies were found in 2003. We focus on

total spending per candidate, since we do not have access to detailed information on how

funds were allocated to different forms of campaigning.

Table 3 reports average spending in a district by parties, broken down by the coalition

structure of that district. To characterize the geographic dispersion of campaign spending,

Figure 3 maps each party’s expenditures. We note that there is substantial variation in

campaign spending by parties across neighboring districts, indicating that parties’ spending

decisions are made strategically for each district. Specifically, the variability in expenditures

between parties within a district is greater than would be expected by differences in the price

of media, which would affect all parties equally.

Table 3: Campaign spending (in thousands of U.S. dollars)

Districts with distinct Districts with joint
PRI, PVEM candidates CM candidate

Party Mean Std. dev. Mean Std. dev.

PRI 54.9 11.0

PVEM 18.3 7.6

CM 83.5 31.2

PAN 38.0 10.4 42.1 13.1

MP 56.4 19.7 55.4 12.3

NA 19.7 8.5 17.2 5.6
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(a) PAN (b) MP

(c) NA (d) CM

(e) PRI (f) PVEM

0-20th percentile 20-40th 40-60th 60-80th 80-100th

Figure 3: Geographic distribution of campaign spending by party

4 Model LM-F: Homogeneous Voters with Fixed Con-

trols

We begin by introducing the structural model for voting in a setting free of complication by

variable selection and nonlinear effects. This approach allows us to describe the economic

environment for voting decisions and preferences before focusing on the methodological issues

introduced by model specification tests. We then estimate a pre-selected model for control

variables and instruments for the voting data in Mexico.
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4.1 The Structural Model and Estimation Strategy

In district t, we observe vote shares based on individual voters (indexed by i) who choose

from among the candidates competing in the district (indexed by j = 1, . . . , J). We represent

the option to not vote or to write in a non-party candidate as an “outside good” indexed

by j = 0. To characterize preferences for a representative voter in the district, we observe a

vector of K0 demographic characteristics for the district, denoted x0t and K1 characteristics

describing the candidate for party j in that district, denoted x1jt. The endogenous treatment

variable of interest, campaign spending in the district by a candidate, is represented by pjt.
5

Finally, we allow exogenous unmodelled variation in voters’ preferences through a product-

market specific latent shock, ξjt.

We begin by introducing preferences to our model in a restrictively homogeneous setting

without random effects in preference characteristics, though we will relax these assumptions

later. In district t, suppose consumer preferences are homogeneous up to an idiosyncratic,

individual specific shock, denoted εijt. This simplification allows us to represent consumer

i’s latent utility from voting for candidate j:

uijt = x′0tβ0j + x′1jtβ1 + pjtβp + ξjt + εijt. (1)

Note that, though the candidate-specific characteristics influence voter preferences in a com-

mon way across parties, district-specific demographics act as interactive fixed-effects, im-

pacting voter preferences differently for different parties. The latter form of heterogeneity

allows national party platform positions to influence local voting preferences depending on

the district’s demographic composition.

Assuming the individual εijt shocks are independently distributed with a Type-I Ex-

treme Value distribution and normalizing the utility of not voting to 0, the probability of a

5For expositional purposes, we treat pjt as a scalar, though it could be interpreted as a fixed-dimensional
vector of treatment variables. Our empirical specification will allow for campaign expenditures to exert both
a linear and quadratic influence on voter latent utilities.
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randomly-selected district t voter choosing candidate j is given by the usual logit form:

Pr {yijt = j} =
exp
{
x′0tβ0j + x′1jtβ1 + pjtβp + ξjt

}
1 +

∑J
r=1 exp{x′0tβ0r + x′1rtβ1 + prtβip + ξrt}κrt

. (2)

The modification κrt ≡ 1 {Party r runs in District t} reflects the impact coalition formation

has on the menu of parties available to voters in each district. This formulation assumes

that voters cast their ballots “sincerely” in favor of their most preferred candidate, without

any strategic considerations. While accounting for strategic voting is beyond the scope of

this paper, the proportional nature of the post-election allocation of seats and future funding

among parties described in Section 3 provides support for the sincere voting assumption.6

Let candidate j’s vote share in district t be denoted by sjt. The current setting, in which

the expected vote share simply equals the choice probabilities, admits a linear “demand”

system. Denoting the share of voters abstaining or writing-in candidates by s0t, the logged

vote shares (given a large number of voters) take the form:

Sjt ≡ log sjt − log s0t = x′0tβ0j + x′1jtβ1 + pjtβp + ξjt. (3)

Among other sources, endogeneity arises from parties’ consideration of unobserved local

shocks to voter preferences when determining expenditures. This reaction induces correlation

between the unobserved shock ξjt and spending levels pjt. However, these expenditures

also respond to L exogenous instruments zjt, allowing us to identify the causal relationship

between campaign expenditures and their impact on vote shares. Imposing an (admittedly

restrictive) linear structural relationship on expenditures and these features, suppose:

pjt = x′0tπ0j + x′1jtπ1 + z′jtπz + νjt, E[νjt|x0t, x1jt, zjt] = 0. (4)

6See Kawai and Watanabe (2013) for an example of the challenges involved in identifying strategic voting.
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Assumption 1 Linear Logit Truthful Voting Structural Model.

1. In each of T districts, a large and representative sample of voters truthfully vote for
their most-preferred candidate under equation (1)’s utility specification.

2. Logged vote shares are linear in K0 district characteristics x0t, K1 candidate charac-
teristics x1jt, and campaign spending pjt according to equation (3).

3. Campaign spending is linear in the district and candidate characteristics x0t and x1jt

as well as L exogenous instruments zjt, as in equation (4).

4. Residual vote share correlates endogenously with campaign spending, as in equation
5, but is exogenous with respect to instruments: E[ηjt|x0t, x1jt, zjt] = 0.

Finally, suppose that district-specific shocks to preferences take a linear form:

ξjt = ρνjt + ηjt, E[ηjt|νjt] = 0. (5)

We consolidate the above statements about the data generating process for observed vote

shares in Assumption (1). This setting presents a simple model for evaluating the influence of

campaign spending on voter preferences, in which instrumental variables via two-stage least

squares estimation can be used for accurate inference. With standard regularity conditions,

consistent inference on βp can proceed using a standard IV regression of the model:

Sjt = x′0tβ0j + x′1jtβ1 + pjtβp + ξjt, E[ξjt|x0t, x1jt, zjt] = 0. (6)

Fitting the first stage regression from equation 4 gives fitted values for pjt,

p̂jt = x′0tπ̂0j + x′1jtπ̂1 + z′jtπ̂z. (7)

The second stage then fits the regression using these fitted values:

Sjt = x′0tβ̂0j + x′1jtβ̂1 + p̂jtβ̂p + ξjt, E[ξjt|x0t, x1jt, zjt, p̂jt] = 0. (8)

Under standard conditions, these estimates will be asymptotically normal with the usual
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Table 4: Pre-Selected Controls for Fixed Model of Voting

Regional Dummies Demographics Economic Status

Region 1 % of Pop Age 18-24 Unemployment

Region 2 % of Pop Age 65+ % of Households w/Car

Region 3 % of Pop that’s Married % of Households w/Refrigerators

Region 4 Average Years of Education % of Households w/o Basic Utils

Region 5 % of Pop with Elementary Ed % of Households w/Female Head

This table presents demographic control variables taken from the census measured at the
district-level that are included in a pre-specified model of voter preferences. Each of these controls

are associated with a party-specific fixed effect, x0t in the utility model.

variance-covariance matrix, admitting standard hypothesis tests for inference.

4.2 A Preselected Model for Returns to Campaign Spending

As a first-pass in our empirical analysis, we present the results for the linear model us-

ing a preselected set of control variables adopted by Montero (2015). The selected control

variables, summarized in table 4, relate to regional dummies, economic characteristics, edu-

cation levels, and household structures. We allow for both a linear and quadratic impact of

campaign spending on candidate vote share, with the latter reflecting diminishing marginal

returns to campaign expenditure. As instruments for campaign spending, we include lagged

campaign expenditures, campaign expenditures by competitors in nearby districts, and, as

cost shifters, the population density of the district and the percent of the population with

internet access.

The main results in table 5’s Panel A indicate a positive first-order return to campaign

spending, with the linear contribution of campaign expenditure to vote share indicating a

0.63% expected increase from raising campaign spending by $10,000 USD. The coefficient

for squared campaign spending indicates the second-order effect diminishes this contribution

by 0.03%. Both of these effects are highly statistically significant.

Investigating the interactive fixed-effects for demographic characteristics shows that many

of these fixed-effects are statistically insignificant. Panel B in table 5 reports the p-Value for
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Table 5: Estimated Returns to Campaign Spending in Pre-Selected Model (Model LM-F)

Panel A: Main Results

Coefficient Std Error t-Stat p-Value
Expenditures 0.627 0.213 2.95 0%∗∗

Expenditures2 -0.033 0.011 3.03 0%∗∗

Panel B: Significance of Demographic Controls (p-Values)

Party Region 1 Region 2 Region 3 Region 4 Region 5
MP 45% 0%∗∗ 63% 15% 80%
NA 2%∗ 12% 29% 51% 92%
PAN 44% 0%∗∗ 4%∗ 1%∗ 26%
PRI 88% 48% 86% 37% 73%
PVEM 8% 79% 1%∗∗ 87% 8%
CM 11% 98% 5% 18% 14%

% of Households with
Party Unempl Car Refrigerator Utilities Female Head
MP 19% 0%∗∗ 9% 17% 1%∗

NA 26% 41% 0%∗∗ 0%∗∗ 47%
PAN 39% 13% 1%∗ 41% 88%
PRI 36% 1%∗∗ 23% 9% 3%∗

PVEM 52% 8% 59% 50% 35%
CM 11% 81% 63% 64% 0%∗∗

Avg Years
Party Pop 18-24 Pop 65+ Married Element Ed + School
MP 66% 73% 61% 3%∗ 1%∗∗

NA 10% 5%∗ 3%∗ 9% 8%
PAN 91% 1%∗∗ 31% 4%∗ 29%
PRI 38% 86% 32% 6% 77%
PVEM 2%∗ 35% 68% 92% 4%∗

CM 17% 48% 1%∗∗ 37% 49%

Panel A reports the return to campaign expenditures and squared campaign expenditures using the linear
logit voting model estimated from equation (8) with interactive fixed effects between the political party
and demographic controls listed in Table 4. Panel B reports the significance of each of the interactive

fixed-effects by party, with ∗ and ∗∗ indicating significance at the 5% and 1% levels, respectively.

the t-Statistics associated with each of these individual fixed effects. The majority (77%) of

these coefficients do not have a statistically significant effect on expected vote shares. This

result motivates our application of variable selection techniques in the current problem. Can

we reduce the number of parameters we need to estimate? Will doing so provide more robust

results?
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5 Model LM-S: Variable Selection and Inference

Without pre-specifying which demographic controls to include in the analysis, our application

includes more potential parameters in the model than we have available observations. These

demographic characteristics may be either irrelevant or redundant in describing voting pref-

erences, with many controls reporting similar information with slightly different measures.

As such, it’s both reasonable and necessary to ignore those demographic variables that have

little explanatory power. This variable selection exercise, however, has the potential to dis-

tort inference on the effect of campaign spending on vote shares and so our goal is to conduct

this exercise while maintaining consistent and valid inference.

As discussed in section 2.1, a considerable literature in econometrics and statistics ex-

plores the effect of model selection on inference in cases where the number of variables exceeds

the number of observations. Performing inference in this environment depends critically on

restricting the data generating process to satisfy some form of “sparsity.” Even though there

may be a large number of possible parameters, only a relatively small number of those pa-

rameters are truly non-zero in a sparse model. Consequently, estimation requires selecting

which variables are actually relevant to the estimation problem and excluding the irrelevant

variables. In this subsection, we’ll formally introduce the notion of sparsity we assume and

review existing results for consistent inference in the simple environment described above.

5.1 Sparsity Assumptions and Regularity Conditions

Sampling approximations for high-dimensional inference require an asymptotic framework

that allows the number of parameters (here, JK0 + K1) to grow with the number of obser-

vations. We treat each district as the unit of observation, due to obvious correlation in the

vote shares across parties within a given district. For convenience, we’ll assume that number

of candidate-specific characteristics, K1, and the number of excluded instruments, L, remain

fixed but allow the number of coefficients associated with district demographic characteris-

tics, K0, to become large as T → ∞. For measurement purposes, introducing sample-size

20



dependent variable specifications requires indexing the data generating process, which we’ll

denote PT , by the sample size. Within this sequence of data generating processes, we allow

KT ≡ JK0T +K1 to be much larger than sample size T , requiring only log (KT ) = o
(
T 1/3

)
.7

Assumption 2 Exact Sparsity in Preferences and Spending

Let θ = [β′01, . . . , β
′
0J , β

′
1, π
′
01, . . . , π

′
0J , π

′
1, π
′
z]
′. Each data generating process in the sequence

{PT }∞T=1, has KT possible parameters. Allowing for the possibility that KT > T , only kT < T
of these parameters are non-zero. We also allow for the possibility that both KT →

T→∞
∞ and

kT →
T→∞

∞, but we fix the number of excluded instruments in z at L ≥ 2.

1. The parameter space isn’t too large, with log (KT ) = o
(
T−1/3

)
.

2. The model is sparse, so the number of non-zero variables k2
T log2 (KT ∨ T ) = o

(
T−1

)
3. The Gram matrix satisfies a sparse eigenvalue condition that ensures finite-sample

identification of the sparse model.

4. Non-zero coefficients are bounded away from zero.

5. The distribution of controls, instruments, and vote shares have exponential tails.

A more detailed exposition of Assumption (2) appears in Appendix B.2, along with addi-

tional commentary. This assumption consolidates the restrictions in Belloni et al. (2013a)’s

(ASTE) condition with Belloni et al. (2012)’s (AS) condition in an exactly sparse specifica-

tion given a fixed number of excluded instruments. The first two conditions ensure that the

true model has sufficient structure and enough zeros to be estimable with available data. The

third assumption ensures that, even though the complete empirical Gram matrix (“X ′X”)

will be non-invertible (because KT > T ), the sub-matrices formed from the variables as-

sociated with non-zero coefficients are almost surely well-behaved. The fourth assumption

ensures that non-zero coefficients satisfy the conditions for an oracle inequality to be selected

by a Lasso estimator. The last assumption allows the application of large deviation theory

to bound the probability of mis-classifying zero-coefficients with a fixed penalty weighting.

Additionally, we require regularity conditions on variability in the data generating process

7Note that our limits are taken with respect to a large number of markets (T →∞) for a fixed number of
products competing in each market. Other analyses of demand data consider the problem where J →∞; we

maintain J as fixed. We could allow J to grow with the main restriction that log (JK0 +K1) = o
(

(JT )
1/3
)

,

which is already satisfied by assumption 2.1.
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Assumption 3 High-Dimensional Linear Logit Regularity Conditions

1. Sufficient moments for unmodeled variability in the data admit a LLN and CLT.

2. Variability in observables and their impact on unobservables is bounded.

3. Regularity conditions for asymptotic theory with i.n.i.d. sampling.

4. Regularity conditions for optimal instruments from first-stage regression.

summarized in Assumption (3) for well-behaved asymptotic properties of the post-selection

estimator. For completeness, the technical details and additional discussion appears in Ap-

pendix B. These conditions present a special case of the regularity conditions embedded in

Belloni et al. (2013a) and Belloni et al. (2012)’s condition RF. In their detailed remarks,

BCH and BCCH present a number of plausible sufficient conditions that illustrate these as-

sumptions are not overly restrictive. These restrictions are sufficient to apply the asymptotic

results for post-selection estimators established in Belloni et al. (2012).

5.2 Selecting Control Variables for Inference

Our inference strategy proceeds in two stages of penalized estimation for selecting control

variables followed by a two-state-least-squares estimator using the selected controls in an

unpenalized model. The two stages of selection reflect our need to model conditional ex-

pectations for the expected impact of control variables on both (I) the campaign spending

treatment variable and (II) the vote share outcome. We perform each of the variable selec-

tion exercises using a lasso regression, which minimizes the sum of squared residuals subject

to an L1 penalty on the regression coefficients. For ease of reference, we summarize our

inference approach in Algorithm (1).

Our variable selection exercise identifies the controls that are important for predicting

vote shares and campaign spending. For both of these stages, we apply the iterated Lasso

estimator proposed in Belloni et al. (2012) for heteroskedastic, non-Gaussian models. In

short, candidate and demographic characteristics that drive variation in p but have little

explanatory power for vote shares tend not to be selected by the first lasso (Step I), inviting
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Algorithm 1 Post-Selection Estimation and Inference on Treatment Effects after Double-
Selection of Controls in High-Dimensional Logit Voting Model

I. Select controls for expected vote share. Let xI ≡
{
x|β̃I (x) 6= 0

}
, where:

β̃I = arg min
β∈RKT+1

1

JT

T∑
t=1

J∑
j=1

(
Sjt−x′0tβ0j−x′1jtβ1−pjtβp

)2
+
λβ
T
‖Υ̂ββ‖1.

II. Select controls for campaign spending. Let xII ≡ {x|ω̃ (x) 6= 0}, where:

ω̃ = arg min
ω∈RKT

1

JT

T∑
t=1

J∑
j=1

(
pjt−x′0tω0j−x′1jtω1

)2
+
λω
T
‖Υ̂ωω‖1.

III. Post-Selection Estimation and Inference. Let x̃ = xI
⋃
xII and compute the unpenalized

IV regression:

Sjt = x̃′0tβ0j+x̃
′
1jtβ1+pjtβp + ξjt, E[ξjt|pjt, x̃0t, x̃1jt, zjt] = 0.

Details: λ(β) = 2c
√
TΦ−1 (1− γ/(2KT + 2)) and λ(ω) = 2c

√
TΦ−1 (1− γ/(2KT )), with c = 1.1

and γ = 0.05
log(KT∨T ) , satisfying the restrictions c > 1 and γ = o (log (KT ∨ T )). Υ̂β is a diagonal

matrix whose ideal (k, k) entry is

√
Ē
[
x2
k,jtε

2
jt

]
, with xk representing the kth regressor and residuals

εjt = Sjt−x′0tβ0j−x′1jtβ1−pjtβp. Υ̂ω is defined analogously for the regression in step (II). Since the
residuals are unobserved, these penalty loadings are feasibly calculated using the iterative algorithm
presented in Appendix A.

an omitted variable bias. The second stage of selection (Step II) mitigates this potential

distortion by explicitly modeling the campaign spending process.

The Lasso estimator’s loss function represents a convex optimization problem with a

penalty that enforces many of the estimated coefficients to be exactly zero. As such, it

presents a computationally tractable and convenient model selection device. We note here

that we allow for the demographic variables selected as relevant interactive fixed-effects to

differ across parties. For instance, Unemployment may be a relevant control for the PRI

party but not for the other parties. This yields a very flexible control strategy without

introducing six new parameters for each demographic variable under consideration.
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5.3 Post-Selection Estimation and Inference

The previous subsections focus on penalization strategies for estimating sparse models, par-

ticularly as a device for selecting which variables to include and which to exclude from the

model. We now take these selected variables and consolidate them into a post-selection model

for unpenalized estimation via a control function approach. We collect the controls selected

by either of the variable screening devices into x̃ = xI ∪ xII , the number of which we denote

by k̃T . Note that we allow each of the parties to have fixed-effects for different demographic

variables and, as such, no longer distinguish between demographic and candidate-specific

control variables.

After selection, we can use the usual 2SLS approach to estimate the effect of campaign

spending on vote share. Estimating the unpenalized, post-selection, first-stage regression:

pjt = x̃′jtπx + z′jtπz + ν̃jt, gives fitted values, p̃jt = x̃′jtπ̃x + z′jtπ̃z. (9)

This first-stage regression gives Belloni et al. (2012)’s optimal instruments in the presence

of a high-dimensional vector of controls with a fixed number of instruments. To characterize

the residual variation in p̃ after controlling for the selected demographic variables, which will

characterize the denominator for our standard errors, compute the regression:

p̃jt = x̃′jtψx + p̆jt, which gives fitted residuals, ˆ̆pjt = p̃jt − x̃′jtψ̃x. (10)

Finally, we use the first-stage estimate of exogenous variation in campaign spending and

the selected control variables in our second-stage regression.

Sjt = p̃jtβp + x̃′jtβx + ξjt, E[ξjt|x̃jt, p̃jt] = 0. (11)

The second-stage results provide a consistent estimator for the treatment effect of campaign

spending on candidate vote share. Our regularity conditions imposed thus far are sufficient

to yield asymptotic normality of the estimate for βp, allowing the application of standard
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hypothesis tests. This result follows immediately from Theorem 3 in Belloni et al. (2012).

Theorem 1 (Inference on Returns to Campaign Spending under Sparsity). Suppose Assump-

tions (1) - (3) hold, then the estimated treatment effect of campaign spending on candidate

vote share, β̂p, from fitting equation (11) is asymptotically normal:

V ∞−1/2
p

√
JT
(
β̂p − βp

)
→d N (0, 1) , with V ∞p = Ē

[
p̆2
jt

]−2
Ē
[
p̆2
jtξ

2
jt

]
.

Here p̆jt is the residual exogenous variation in the optimal instrument after regressing p̃jt on

x̃jt. Letting ξ̂jt = Sjt− p̃jtβ̂p− x̃′jtβ̂x represent the residuals from the regression (11), define:

Ω̂ ≡ 1

JT

J,T∑
j,t=1

ˆ̆p2
jt →p Ē

[
p̆2
jt

]−2
, Σ̂ ≡ 1

JT

J,T∑
j,t=1

J,T∑
k,s=1

ρ{jt,ks} ˆ̆pjt ˆ̆pksξ̂jtξ̂ks →p Ē
[
p̆2
jtξ

2
jt

]
,

where ρ{jt,ks} represents the regularization coefficient for a HAC variance estimator. Conse-

quently, V ∞p can be consistently estimated using V̂ ∞p ≡ Ω̂−1Σ̂Ω̂−1 and replacing V
∞−1/2
p with

V̂
∞−1/2
p preserves the t-statistic’s asymptotic standard normal distribution.

5.4 Returns to Campaign Expenditures after Control Selection

We now investigate the robustness of our findings on campaign spending from section 4.2 to

the fixed specification. Instead of restricting our attention to a fixed set of control variables,

we allow for fixed effects driven by any of the 210 demographic variables captured in the

Mexican census either linearly, quadratically, or in logs. With six parties’ fixed effects, the

most unstructured representation of this model allows for over 3,780 parameters when we

have only 300 markets and 1,301 total observed market shares.

Table 6’s Panel A presents the headline results for the flagship specification with the

tuning parameters c = 1.1 and γ = 0.05/ log(T ∨ KT ). This double-lasso model, which

includes 20 interactive fixed effects, is much more parsimonious than the pre-selected model,

which allowed for 90 such free parameters. With the reduced number of included controls,

the magnitude of the effect of $10,000 in campaign expenditures on vote share declines
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Table 6: Campaign Expenditure and Vote Shares with Control Selection (Model LM-S)

Panel A: Main Results
Coefficient Std Error t-Stat p-Value

Expenditures 0.423 0.098 4.32 0%
Expenditures2 -0.019 0.006 2.97 0%

Panel B: Robustness to Tuning Parameters

Expenditure - Coefficient (Std Err) Expenditure2 - Coefficient (Std Err)

γ log(KT ∨ T ) γ log(KT ∨ T )

c 0.01 0.05 0.1 0.2 c 0.01 0.05 0.1 0.2

1 0.423 0.421 0.421 0.491 1 -0.019 -0.019 -0.019 -0.027
(0.098) (0.098) (0.098) (0.149) (0.006) (0.006) (0.006) (0.009)

1.1 0.426 0.423 0.423 0.423 1.1 -0.019 -0.019 -0.019 -0.019
(0.097) (0.098) (0.098) (0.098) (0.006) (0.006) (0.006) (0.006)

1.25 0.381 0.407 0.398 0.426 1.25 -0.014 -0.016 -0.017 -0.019
(0.098) (0.098) (0.096) (0.097) (0.007) (0.007) (0.006) (0.006)

1.5 0.378 0.379 0.381 0.381 1.5 -0.014 -0.014 -0.014 -0.014
(0.101) (0.098) (0.099) (0.099) (0.007) (0.007) (0.007) (0.007)

1.75 0.412 0.387 0.397 0.378 1.75 -0.015† -0.015 -0.015 -0.014
(0.125) (0.102) (0.102) (0.101) (0.008) (0.007) (0.007) (0.007)

2 0.102† 0.182† 0.225† 0.412 2 0.004† 0.000† -0.003† -0.015†

(0.130) (0.139) (0.119) (0.125) (0.009) (0.010) (0.008) (0.008)

† Statistically insignificant at the 5% Level

Panel C: Number of Selected Interactive Fixed Effects
c

γ log(KT ∨ T ) 1.00 1.10 1.25 1.50 1.75 2.00

0.01 20 19 15 11 8 3
0.05 21 20 17 12 11 5
0.1 21 20 18 14 10 6
0.2 24 20 19 14 11 8

This table reports the contribution of campaign expenditures to a candidate’s vote share after data-driven
selection of demographic controls for interactive fixed-effects using Algorithm 1. Panel A reports the first-

and second-order contribution for a benchmark specification with tuning parameters c = 1.1 and
γ log(KT ∨ T ) = 0.1. Panel B reports the robustness of this result with respect to these tuning parameters.

Panel C indicates the number of interactive fixed-effects included under each of the model specifications.

from 0.63% to 0.42%. However, this reduction in magnitude brings with it much lower

standard errors, resulting in a much more significant t-Statistic. The second-order effect is

also somewhat reduced, from -0.033% to -0.019%, which remains significant at reasonable

confidence levels though slightly less so than in the pre-selected model.

Panel B in Table 6 reflects the sensitivity of these estimates to the tuning parameters
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c and γ, illustrating the robustness of these results. Under reasonable specifications of the

penalty, the estimated first-order effect ranges from 0.378% to 0.426% with all t-Statistics

greater than 3. The second-order effect maintains its significance in these specifications as

well, with an effect size ranging from -0.014% to -0.027%. At extreme levels of penalization,

the magnitude of the contribution diminishes severely and loses statistical significance in a

model that includes only three interactive fixed-effects. These findings are consistent with

the guidance by Belloni et al. (2012) that the value for c should be set close to unity and

that the selection mechanism may encounter problems when c becomes too large.

Finally, Panel C reports the number of selected control variables under the flagship

variable-selection specification. These results illustrate how large penalty terms effectively

reduce the model to one in which no controls are included to mitigate observed heterogeneity

in voting preferences and campaign expenditures. Interestingly, the number of included

controls roughly matches the number of significant controls from the pre-specified model.

However, we note that these controls are all different.

6 Model RC-F: Heterogeneous Impressionability with

Fixed Controls

The linear vote share model imposes a strong homogeneity restriction on voter preferences

within any given district with potentially material empirical implications. In the literature

on demand estimation, one approach to allowing for heterogeneity in preferences allows for

random-coefficients in the individual’s utility model. We incorporate this heterogenity here

by allowing voters to have heterogeneous impressionability, introducing a random-coefficient

to the individual influence of campaign spending. Among other sources, these random coeffi-

cients could reflect heterogeneous levels of attention paid by different voters in the population.
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6.1 GMM Estimation with the BLP Model

We begin by focusing on the structural model for preferences without addressing the vari-

able selection step necessary to address the high dimensionality of the problem. To model

heterogeneity in preferences, let an individual voter’s preference for candidate j be defined

as:

uijt = x0tβ0j + x′1jtβ1 + pjtβ0p + pjtbip + ξjt + εijt, bip ∼ N
(
0, v2

p

)
. (12)

Conditional on bip, when εijt has the usual Type-I extreme value distribution, voter i’s

decision will be governed by the logit choice probabilities:

Pr {yijt = j|bi} =
exp
{
x0tβ0j + x′1jtβ1 + pjtβp + pjtbi + ξjt

}
1 +

∑J
r=1 exp{x0tβ0r + x′1rtβ1 + prtβp + prtbi + ξrt}

. (13)

Since these individual shocks to voter sensitivity aren’t observed, we need to integrate equa-

tion 13 to compute the expected vote share for a candidate in the district. Letting Φ represent

the standard normal distribution’s cumulative density, gives:

sjt =

∫
Pr {yijt = j|bi} dΦ (bi/vp) . (14)

The nonlinear form of the expected vote share in equation 14 complicates inference be-

cause we can no longer transform the vote shares into a generalized linear model. As such, we

follow Berry et al. (1995)’s (BLP) approach to identify the model by exploiting the exogene-

ity of the party-district specific shocks to expected utility. Given a candidate specification

for parameter values θ, Berry et al. (1995) show that a contraction mapping recovers these

shocks, which we denote ξjt (θ,X, p, s). Under the true values for θ, the instruments are or-

thogonal to these shocks, i.e., E[ξjt (θ,X, p, s) |zjt] = 0, so that θ is estimated using a GMM

objective function with weighting matrix W :

Q (θ, x, z, p, s) =
1

JT
ξjt (θ,X, p, s)′ zWz′ξjt (θ,X, p, s) . (15)
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Assumption 4 BLP Truthful Voting Structural Model.

1. In each of T districts, a large number of voters truthfully vote for the candidate they
most prefer given the utility specification for uijt in equation 12.

2. Expected vote shares are non-linear in K0 district characteristics x0t, K1 candidate
characteristics x1jt, and campaign spending pjt as in equation 14.

3. Campaign spending is linear in the district and candidate characteristics x0t and x1jt

as well as L exogenous instruments zjt, as in equation 4.

4. Residual shocks to expected voter preferences in a district are endogenously correlated
with unmodeled variation in campaign spending, as in equation 5, but has a zero
conditional expectation given district and candidate district characteristics, observable
instruments: E[ξjt|x0t, x1jt, zjt] = 0.

In the standard setting with a fixed number of controls and instruments, for any positive-

definite W , minimizing equation 15 provides an asymptotically normal estimator for the

parameters in θ. To address numerical issues in the evaluation of this estimator, Dube et al.

(2012) present an MPEC algorithm, which we also use here.

One last sensitivity associated with the GMM objective function above relates to the

instruments themselves. Berry et al. (1999) present an early discussion on the importance

of using Chamberlain (1987) optimal instruments in evaluating (15). Gandhi and Houde

(2015) illustrate how to utilize vote shares themselves as valuable instruments. Reynaert

and Verboven (2014) illustrate how sensitive the estimator is to implementation with opti-

mal instruments, particularly with respect to estimating the variance parameters vp. Our

implementation adopts this latter approach, since the Reynaert and Verboven (2014) instru-

ments are easily recovered from the gradient of the constraints in the MPEC algorithm.

Assumption (5) contains regularity conditions, which are fairly standard for GMM es-

timation with i.n.i.d. data (additional technical details for these conditions are presented

in Appendix B). By textbook analysis, assumptions (4) and (5) are sufficient to establish

the usual consistency and asymptotic normality results for the value of θ that minimizes

equation (15).
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Assumption 5 Regularity Conditions for GMM Estimator

1. Compactness of parameter space: The true parameter values θ0 ∈ ΘKT
, where ΘK ⊂

RKT +2 is compact, with a compact limit set Θ∞ ≡ lim
T→∞

ΘK .

2. Continuity and differentiability of sample-analog and population moment conditions
in parameter space.

3. Letting gjt (θ) ≡
[
x′0t, x

′
1jt, z

′
jt

]′
ξjt (θ), a uniform law of large numbers ensures the

sample-analog, 1
JT

∑JT
j,t=1 gjt (θ), converges to the population moment condition.

4. A uniform law of large numbers applies to Hessian of sample analog to the population

moment condition, ĜT (θ) ≡ 1
JT

∑J,T
j,t=1

∂gjt(θ)
∂θ′ .

5. The weighting matrix, WT , is positive definite and converges to W , a symmetric,
positive definite, and finite matrix.

6. The expected outer product of the score, Ω ≡ lim
T→∞

(JT )−1
J,T∑
j,t=1

E
[
gjt (θ) gjt (θ)′

]
, is a

positive definite, finite matrix.

7. The matrix Σ ≡ G (θ0)′Ω−1G (θ0) is almost surely positive definite and finite.

6.2 Campaign Spending with Heterogeneous Impressionability

We again begin our empirical analysis of heterogeneous impressionability in voting for Mex-

ico using the pre-specified set of controls considered in table 4. These results allow us to

differentiate the influence of heterogeneity in the model from the effects of control selection.

Table 6.2’s Panel A reports the expected coefficients and standard deviation of coeffi-

cients associated with campaign expenditures’ influence on voters’ latent utility. The results

indicate that heterogeneous impressionability is not a prominent feature of preferences, as

revealed through the low variance of the coefficients themselves, which are not statistically

distinguishable from zero.

Partly as a consequence of this limited heterogeneity, the expected coefficients are rather

similar to those reported in Table 6. Estimating standard errors with the sandwich covari-

ance matrix we find weaker, but still significant, evidence for the significance of campaign

expenditure on candidate vote share. The linear term’s p-value rises to 4% and the negative

quadratic effect loses statistical significance with a p-value of 17%.
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As in our analysis of the linear model, 6.2’s Panel B reports the significance of the

demographic controls included in the model with heterogeneous impressionability. With

the higher variance of the estimates under the random coefficients specification, we find a

slightly smaller share of the interactive fixed effects achieve the threshold for a statistically

significant influence on voter preferences.

7 Model RC-S: Variable Selection in the BLP Voting

Model

We now address the implications of the high-dimensional setting on the BLP model, par-

ticularly when there are more control variables than observations. Inference in this setting

is non-trivial, since the model is unidentified in finite samples. That is, there exists a mul-

tiplicity of values for the parameters θ for which the residual shock to preferences, ξjt, can

be equal to zero for all observations. As in the linear setting, a sparsity condition on the

coefficients suggests incorporating a penalty to the criterion function that admits consistent

inference. Our approach builds on the proposed technique from Gillen et al. (2014), which

presents a model for inference in demand models after selection from a high-dimensional

set of product characteristics when the number of control variables is of the same order of

magnitude as the number of markets.

Our analysis here extends the Gillen et al. (2014) approach to a “non-polynomial” setting

that allows the number of possible control variables to grow exponentially with the number

of markets. Implementing selection in this “ultra-high” dimensional setting must confront

two significant complications. The first is computational, as optimizing nonlinear objective

functions with a non-polynomial number of parameters is simply infeasible in most circum-

stances. The second is analytical, in that we must apply the oracle properties established in

Fan and Liao (2014)’s analysis of penalized estimation in high-dimensional GMM problems.

We begin this section by discussing the conditions for valid inference under a penalized GMM

objective function before turning to the computational issues and empirical results.
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Table 7: Campaign Expenditure and Vote Shares with Heterogeneous Impressionability
(Model RC-F)

Panel A: Main Results

Expected Coefficients Coefficient Std Error t-Stat p-Value
Expenditures 0.77 0.38 2.04 4%
Expenditures2 -0.04 0.03 -1.39 17%

Variance of Coefficients Coefficient Std Error t-Stat p-Value
Expenditures 0.11 0.40 0.27 79%
Expenditures2 0.00 0.04 0.00 100%

Panel B: Significance of Demographic Controls (p-Values)

Party Region 1 Region 2 Region 3 Region 4 Region 5
MP 15% 0%∗ 84% 35% 85%
NA 2%∗ 11% 52% 41% 53%
PAN 0%∗ 0%∗ 4%∗ 10% 47%
PRI 62% 46% 89% 28% 58%
PVEM 11% 43% 1%∗ 95% 10%
CXM 32% 98% 10% 29% 27%

% of Households with
Party Unempl Car Refrigerator Utilities Female Head
MP 29% 0%∗ 14% 18% 5%
NA 24% 51% 0%∗ 0%∗ 71%
PAN 50% 30% 0%∗ 44% 96%
PRI 40% 2%∗ 22% 10% 5%∗

PVEM 35% 16% 35% 58% 44%
CXM 28% 90% 64% 86% 4%∗

Avg Years
Party Pop 18-24 Pop 65+ Married Element Ed + School
MP 81% 92% 50% 13% 2%∗

NA 6% 2%∗ 2%∗ 12% 7%
PAN 95% 2%∗ 23% 6% 46%
PRI 36% 99% 35% 13% 77%
PVEM 1%∗ 30% 65% 70% 4%∗

CXM 38% 52% 10% 58% 50%

Panel A reports the return to campaign expenditures and squared campaign expenditures using the
nonlinear BLP voting model with heterogeneous impressionability estimated from equation (15) with

interactive fixed effects between the political party and demographic controls listed in Table 4. Panel B
reports the significance of each of the interactive fixed-effects by party, with ∗ and ∗∗ indicating significance

at the 5% and 1% levels, respectively.

7.1 Sparsity Assumptions and Regularity Conditions

We begin by laying out the sparsity conditions required for establishing the oracle properties

from Fan and Liao (2014)’s analysis of penalized estimation in high-dimensional GMM prob-
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Assumption 6 Sparsity Assumptions for High-Dimensional BLP Model

Each data generating process in the sequence {PT }∞T=1, has KT > T possible parameters, kT < T
of which are non-zero, where both KT →

T→∞
∞ and kT →

T→∞
∞. Further, the number of excluded

instruments in z is fixed at L ≥ 2.

1. The parameter space isn’t too large, with log (KT ) = o
(
T−1/3

)
.

2. The model is sparse, with the number of non-zero variables, k3
T log kT = o

(
T−1

)
3. The Gram matrix for controls with non-zero influence on vote shares is almost surely

postive definite with finite eigenvalues.

4. The Hessian of the objective function with respect to non-zero variables is almost
surely positive definite.

5. Non-zero coefficients are bounded away from zero.

6. The marginal distributions for controls, instruments, and residual vote shares have
exponentially decaying tails.

lems. These properties allow us to generalize the results from Gillen et al. (2014) to apply to

a higher-dimensional setting. Gillen et al. (2014) relied on the asymptotic theory of Caner

and Zhang (2013), who establish oracle properties for Zou and Hastie (2005)’s Elastic Net

in a environment where the number of parameters grows more slowly than the number of

observations, so that KT/T → 0. In contrast, the oracle properties in Fan and Liao (2014)

apply to the setting where the dimensionality grows non-polynomially with the sample size,

requiring only that log(KT )/T 1/3 → 0. These requirements are summarized in assumption

(6), which slightly tightens the restrictions of the linear model in assumption (2), with the

technical details relegated to Appendix B.

These assumptions are sufficient to establish an oracle property for the lasso-penalized

GMM estimator, ensuring that the penalized estimator accurately identifies all non-zero

coefficients and effectively thresholds all irrelevant coefficients at zero. Coupled with the

continuity and uniform laws of large numbers of the GMM objective function from assump-

tion 5, the results from Fan and Liao (2014) establish sufficient conditions on the penalty

term for the penalized GMM estimator to achieve the near oracle convergence rate.

The first stage of inference requires solving a penalized GMM objective function with a

lasso penalty. Similar to the linear demand model, we apply a data-dependent penalization
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that is robust to heteroskedasticity in sampling across markets:

θ̃ = arg min
θ∈RKT+2

Q (θ, x, z, p, s)+
λθ
T
‖Υ̂θθ‖1. (16)

Our penalty loading, λθ = 2c
√
TΦ−1 (1− γ/(2 (KT + 4)) satisfies the restrictions in Fan and

Liao (2014) for a lasso penalty loading to be kT
√
kT/
√
T ≺ λθ/T ≺ 1/

√
kT when c = 0.05

and γ = 0.1/ log (KT ∨ T ). As in the linear model, Υθ is a diagonal matrix, with the ideal

weights for β0j,k equal to
√
Ē
[
x2

0t,kξ
2
jt

]
, for β1,k equal to

√
Ē
[
x2

1jt,kξ
2
jt

]
, and for βp equal

to
√
Ē
[
p2
jtξ

2
jt

]
. For the heterogeneity coefficient, vp, the ideal value in the Υθ matrix is√

Ē
[
∂ξjt(θ,x,z,p,s)

∂vp

2
ξ2
jt

]
. Since ξjt is unobserved, Appendix A reports the feasible iterated

algorithm used to calculate Υθ.

7.2 Implementing Variable Selection via Penalized GMM

We now describe the approach we use for selecting variables using a penalized GMM estima-

tor, since it is computationally infeasible to directly optimize the GMM objective function in

extremely high-dimensional problems. We begin by fitting the nonlinear model with hetero-

geneous impressionability to the model selected by Algorithm 1. Within this fitted model, we

can approximate the optimal instruments for the nonlinear features of the model, selecting

the relevant demographic controls for observed heterogeneity in these features. We augment

the selected demographic controls from Algorithm 1 with the controls for the latent utilities

and optimal instruments for nonlinear features of the model. With this robustly augmented

set of control variables, we compute unpenalized GMM estimates for the selected variables.

We then verify that the first order conditions for the selected model are satisfied in the

larger model with all included controls. The steps presented in algorithm 2 summarize our

approach to this implementation.

Our implementation picks up from where Algorithm 1 leaves off, defining the post-

selection model including demographic controls x̃. With this model, we solve the GMM
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Algorithm 2 Post-Selection Estimation and Inference with Double-Selection from High-
Dimensional Controls in a Voting Model with Heterogeneous Impressionability

I. Apply Algorithm 1 to select x̃ = xI
⋃
xII as the controls for a homogeneous model.

II. Compute GMM estimates for heterogeneous model using selected controls.

Let δ̃jt ≡ x̃′jtβ̃j + x′1jtβ̃1 + pjtβ̃p + ξjt

(
θ̃, x, z, p, s

)
, where θ̃ ≡

[
β̃′1, . . . , β̃

′
J , β̃1, ṽp

]′
:

θ̃ = arg minQ (θ, x̃, z, p, s) .

III. Estimate optimal instruments for heterogeneity in impressionability. Compute the derivative
of the moment condition with respect to the variability parameter vp:

z̃v,jt =
∂

∂vp
ξjt (θ, x̃, z, p, s) |θ=θ̃.

IV. Select controls for mean utilities. Let xIII ≡
{
x|φ̃ (x) 6= 0

}
, where:

φ̃ = arg min
φ∈RKT

1

JT

T∑
t=1

J∑
j=1

(
δ̃jt−x′0tφ0j−x′1jtφ1

)2
+
λφ
T
‖Υ̂φφ‖1.

V. Select controls for optimal nonlinear instruments. Let xIV ≡
{
x|ζ̃ (x) 6= 0

}
, where:

ζ̃ = arg min
ζ∈RKT

1

JT

T∑
t=1

J∑
j=1

(
z̃v,jt−x′0tζ0j−x′1jtζ1

)2
+
λζ
T
‖Υ̂ζζ‖1.

VI. Post-selection estimation and inference. Let x̃∗ = x̃
⋃
xIII

⋃
xIV and compute the unpenalized

GMM estimate:
θ̃∗ = arg minQ (θ, x̃∗, z, p, s) .

VII. Verify First Order Conditions in Unselected Model. For each excluded demographic control
x0k, define x̃k = x̃∗

⋃
x0k. Verify the first order improvement in the objective function from including

this variable x0k for any party is dominated by the penalty:

qk ≡
∂

∂β0jk
Q
(
θ̃∗, x̃k, z, p, s

)
< λθΥθ,(k,k), k = 1, . . . ,K0, j = 1, . . . , J.

VIII. Add improperly excluded variables to the model and iterate. Define the set of controls that
fail to satisfy first order conditions in step (VII) as xV =

{
xk : qk > λθΥθ,(k,k)

}
. Redefine x̃ = x̃∗

⋃
xV

and return to Step (II) until there are no changes in the set of included variables.

Details: λφ = λζ = 2c
√
TΦ−1 (1− γ/(2KT )), and λθ = 2c

√
TΦ−1 (1− γ/(2KT + 8)) with c = 1.1 and

γ = 0.05
log(KT∨T ) . The details for calculating the diagonal factor loading matrices Υ̂(·), whose ideal entries

reflect the square root of the expected product of the squared residual and control variable, are discussed in
the text. The iterative algorithms by which we feasibly calculate these values are detailed in Appendix A.

35



objective function without any penalization:

θ̃ = arg minQ (θ, x̃, z, p, s) . (17)

Given the solution θ̃, we can recover the latent mean utilities:

δ̃jt = x̃′jtβ̃j + x′1jtβ̃1 + pjtβ̃p + ξ̃jt.

These provide the outcome variable for which we need to select the relevant demographic

controls using another application of the lasso. In parallel to the linear model’s treatment,

let xIII ≡
{
x|φ̃ (x) 6= 0

}
, where:

φ̃ = arg min
φ∈RKT

1

JT

T∑
t=1

J∑
j=1

(
δ̃jt−x′0tφ0j−x′1jtφ1

)2

+
λφ
T
‖Υ̂φφ‖1. (18)

The penalization term λφ has the same expected form as previous applications. The Υφ

matrix requires a slight adjustment to account for estimation error in the δ̃jt’s. Defin-

ing εδ,jt ≡ δjt − δ̃jt and εφ,jt ≡ δ̃jt − x′0tφ0j − x′1jtφ1, the ideal weight for ζ0j,k is equal to√
Ē
[
x2

0t,k (εδ,jt + εφ,jt)
2] and

√
Ē
[
x2

1jt,k (εδ,jt + εφ,jt)
2] for β1,k. The additional residuals can

be characterized by using the asymptotic covariance matrix for θ̃, which can be consistently

estimated using the sandwich covariance matrix from the penalized GMM estimator.

We note that, by applying Algorithm 1, we have already selected the demographic con-

trols necessary to explain observable variation in campaign expenditure. Now we select the

demographic controls that explain variation across districts in the heterogeneity of impres-

sionability. To do this, we need the optimal instruments for the heterogeneity parameters

to identify the relevant controls for their first-order impact on model fit. Using the fitted

model from equation (17), we compute the derivative of the objective function with respect

to vp:

z̃v,jt =
∂

∂vp
ξjt (θ, x̃, z, p, s) |θ=θ̃.
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The formula for z̃v,jt from Berry et al. (1999) is presented in Nevo (2000)’s appendix and

easily recovered from the Jacobian of the constraint for the MPEC objective function. We

can then select demographic control variables that explain heterogeneity in this optimal

instrument using a last application of the lasso estimator. Let xIV ≡
{
x|ζ̃ (x) 6= 0

}
, where:

ζ̃ = arg min
ζ∈RKT

1

JT

T∑
t=1

J∑
j=1

(
z̃v,jt−x′0tζ0j−x′1jtζ1

)2
+
λζ
T
‖Υ̂ζζ‖1. (19)

Since z̃v,jt represents a generated regressor, we may wish to incorporate the variance

induced by estimation error in its definition when determining the adapted penalty factor

for equation (19), as in Υφ. However, by defining z̃v,jt as our identifying instrument, we

only need to select demographic controls for variation in the generated z̃v,jt without regard

to the population zv,jt, which plays no direct role in our estimation. Consequently, when

computing the values for Υζ , we ignore the generated-regressors problem.

7.3 Post-Selection Inference via Unpenalized GMM

Combining the selected controls from Algorithm 1, x̃ with xIII and xIV , define x̃∗ =

x̃
⋃
xIII

⋃
xIV . We then compute the unpenalized, post-selection estimator

θ̃∗ = arg minQ (θ, x̃∗, z, p, s) . (20)

To maximize the efficiency of our estimates, we first compute the optimal instruments for

the Berry et al. (1995) model as discussed in Berry et al. (1999) and Reynaert and Verboven

(2014). For the demographic controls and candidate characteristics, the selected variables

themselves present the optimal instruments. We computed the optimal instruments for het-

erogeneity, z̃v, in the variable selection stage. Finally, the optimal instruments for campaign

expenditures can be easily estimated by an unpenalized first-stage regression which contains
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the selected controls and excluded instruments as regressors:

z̃p,jt = x̃∗′jtπ̂x + z′jtπ̂z.

Denoting the optimal instruments by z̃ and the selected control variables by x̃, we then

compute the post-selection estimator for the voting model with heterogeneous impression-

ability as the solution to:

θ = arg min
θ∈Rk∗

T
+2

Q (θ, x̃, z̃, p, s) . (21)

The last step then verifies that this solution also satisfies the first-order conditions for the

penalized objective function (16) to ensure we have not erroneously excluded any variables.

We perform this test sequentially, evaluating the first-order conditions with respect to each

excluded variable and verifying that they are dominated by the magnitude of the penalty

term. As when calculating the optimal instruments for the variance parameters in the model,

these gradients can be recovered from the Jacobian of the constraint in the MPEC objective

function:

qk ≡
∂

∂β0jk

Q
(
θ̃∗, x̃k, z, p, s

)
< λθυk, k = 1, . . . , K0, j = 1, . . . , J.

Any variables whose first-order conditions dominate the penalty should be included within

the selected model. This requirement leads to an iterative process that, in our experience,

converges within two iterations.

Given assumptions 5 and 6, the post-selection estimator for the treatment effects βp and

their heterogeneity vp will be consistent and asymptotically normal. It is straightforward to

show that the oracle property established in Fan and Liao (2014) satisfies the High-Level

Model Selection condition in Belloni et al. (2012), giving the asymptotic result:

Theorem 2 (Inference on Returns to Campaign Spending under Sparsity). Suppose As-

sumptions (4) - (6) hold, then the estimated effect of campaign spending on mean latent
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voter utilities is asymptotically normal. That is:

V ∞−1/2
p

√
JT
(
β̂p − βp

)
→d N (0, 1) .

The asymptotic variance V ∞p is the element in the sandwich covariance matrix for θ̃∗ cor-

responding to βp. Specifically, defining the limit of the i.n.i.d. expectations:

G0 ≡ Ē

[
∂gjt (θ)

∂θ′

]
|θ=θ0, Ω0 ≡ Ē

[
gjt (θ0) gjt (θ0)′

]
, and Σ0 ≡ G (θ0)′Ω−1G (θ0) ,

then V ∞θ ≡ (G′0G0)−1 Σ0 (G′0G0)−1, which can be estimated with:

ĜT ≡
1

JT

J,T∑
j,t=1

∂gjt (θ)

∂θ′
|θ=θ̃∗ →p G0, and Ω̂ ≡ 1

JT

J,T∑
j,t=1

gjt

(
θ̃∗
)
gjt

(
θ̃∗
)′
→p Ω0.

Consequently, Σ̂T ≡ Ĝ′T Ω̂ĜT →p Σ0 and

V̂ ∞θ ≡
(
Ĝ′T ĜT

)−1

Σ̂T

(
Ĝ′T ĜT

)−1

→ V ∞θ ,

so replacing V
∞− 1

2
p with V̂

∞− 1
2

p preserves the t-statistic’s asymptotic normal distribution.

Further, if vp > δ > 0, the estimated variance of campaign spending’s impact on voter

utlities is also asymptotically normal with asymptotic variance of the estimate given by the

sandwich covariance matrix.

7.4 Heterogeneous Impressionability after Control Selection

Even with only validating local optimality conditions for the selected model, practical im-

plementation of Algorithm 2 is quite computationally intensive. In analyzing the Mexican

voting data, fitting a single penalty specification requires approximately 80 core-hours of

computation. Due to the intensive computational resources required for estimation, we

focus our empirical analysis on the benchmark penalty specification where c = 1.1 and

γ log (KT ∨ T ) = 0.10.

Panel A of Table 8 reports the impact of campaign expenditures on mean utilities. The
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Table 8: Campaign Expenditures and Candidate Vote Share with Heterogeneous Impres-
sionability and Selected Controls (Model RC-S)

Panel A: Main Results

Expected Coefficients Coefficient Std Error t-Stat p-Value
Expenditures 0.465 0.198 2.35 2%
Expenditures2 -0.020 0.015 -1.33 18%

Variance of Coefficients Coefficient Std Error t-Stat p-Value
Expenditures 0.05 0.67 0.07 94%
Expenditures2 0.00 0.06 0.01 99%

Panel B: Selected Demographic Controls

MP NA PAN

Party FE (+)∗∗ Party FE (–) Party FE (–)∗∗

Female Popn >60 (–)∗∗ % Female HoH (–)
% Pop 18-24 (–)

% Pop Married (+)
PVEM % Pop w/Elementary Ed (–)∗ CXM

Party FE (–)∗∗ Female Popn >60 (–) Party FE (–)∗∗

% HH w/o Utils (–) Total Popn >65 (–) Region 4 Dummy (–)
% HH w/o Fridge (–) Male Pop >15 w/Ed (–)∗ % Female HoH (–)∗∗

Total Popn >65 (–) Popn in Private Dwell (+)∗∗ Female Pop w/o Ed (+)∗∗

Popn in Private Dwell (+)∗∗ Avg Num People/Dwell (–) Pop w/Social Medicine (+)
Avg Num People/Dwell (–)∗∗ Travel Time to Polls (+)

PRI

Party FE (–)∗∗

estimated first-order mean effect of 0.465 is a bit lower than the pre-selected model’s result

of 0.767. This result matches the impact of variable selection on the estimated effect in

the linear model, which dropped to 0.423 from 0.627 after variable selection. The standard

error of the model with variable selection is lower than the pre-specified model’s, yielding

very similar t-Statistics for both the first- and second-order effects. As in the pre-selected

model, the variance coefficients reflecting heterogeneity in preferences are indistinguishable

from zero, indicating that there may not be much heterogeneity in voter impressionability.

Panel B of Table 8 reports the actual demographic controls affecting voters’ preferences

for each party’s candidates. For the two largest parties, PAN and PRI, only the party fixed

effects were selected to control for voter preferences. For the coalition parties, more controls
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were incorporated to reflect heterogeneity in preferences. Interestingly, these demographic

controls were most important for characterizing voter preferences for parties that sit in the

middle of the policy spectrum. Panel B also indicates the significance and sign of the controls’

impact on voter preferences. However, we caution against drawing too many conclusions from

their selection. These controls were selected to identify the impact of campaign expenditures

on voter preferences, not as independent causal elements driving voter preferences. As such,

their selection may only be as proxies representing the effect of other variables on preferences

and spending.

8 Generalizations and Extensions

Our results imposed an exact sparsity condition, requiring that the negligible coefficients

in the model are exactly equal to zero. This restriction is quite a bit stronger than the

approximate sparsity condition presented in Belloni et al. (2012) and Belloni et al. (2013a).

The sampling properties of the penalized GMM estimator presented in Fan and Liao (2014)

are robust to local perturbations, suggesting that exact sparsity could be weakened to the

generalized forms of sparsity considered by Zhang and Huang (2008) and Horowitz and

Huang (2010). Some additional regularity conditions may be required on the nonlinear

features recovering latent mean utilities from observed market shares, but such an extension

should be viable.

Though our analysis focused on GMM as an approach for estimating the voting model,

alternative estimation strategies could also be considered after performing a selection step.

Empirical likelihood approaches following Kitamura (2001) and Donald et al. (2003) have

been adapted to demand estimation by Moon et al. (2014) and Conlon (2013). The Fan and

Liao (2014) asymptotic analysis also applies to empirical likelihood estimators that could be

mapped onto these techniques.

Though we allow for correlation among vote shares across parties within a district, we note

that our analysis leans heavily on an independence assumption for sampling across districts.
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Limited spatial correlation could be accounted for by computing robust standard errors

in estimating the covariance matrix of residuals. As long as strong-mixing and ergodicity

conditions are met, this sort of dependence should not preclude effective variable selection.

There is some tension between our assumption of a linear campaign financing rule in light

of a structural model of competition between parties. Indeed, Montero (2015) solves the

equilibrium campaign financing rule in the Mexican election environment and shows it to be

highly nonlinear. One way to address this issue characterizes the linearized campaign finance

rule as an approximation to the structural finance rule, bounding the approximation error

relative to instrumental variability, and showing that the approximation error doesn’t affect

variable selection and inference. Another strategy might adopt a control function approach

to estimation, perhaps following Kawai (2014)’s strategy of incorporating techniques from

production function estimation.

9 Conclusion

We present several results in high-dimensional inference and apply these techniques in

an empirical analysis of voting behavior in Mexican elections. Our analysis applies high-

dimensional inference techniques for estimating aggregate demand models with a very large

number of demographic covariates. Though our statistical analysis is largely informed by pre-

viously established properties of these techniques, the extensions to the specific application

are not trivial.

Our results show, robustly, that campaign expenditures have a significant and positive

impact on voters’ latent utilities for a candidate, with indications that the impact of these

expenditures diminishes with the amount of campaign spending. Strikingly, we find little

evidence of heterogeneity in voters’ response to campaign expenditure, perhaps because

limited variability in the slate of candidates provides little opportunity for this heterogeneity

to impact vote shares.
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Appendices

A Iterative Computation for Penalty Loadings

The penalized estimators apply data-dependent factor loadings for each of the coefficients

included in the model. The data-dependent factor loadings scale the penalty for each coeffi-

cient according to the variability of the associated coefficient and the model residual. These

loadings appear in Υβ and Υω in Algorithm 1, Υθ in equation (16), Υφ in equation (18),

and Υζ in equation (19). Here we review the application of Belloni et al. (2013a)’s iterative

approach to computing these penalty loadings.

A.1 Iterative Computation for Linear Models

Recalling the formula for step I of Algorithm 1:

min
β∈RKT+1

1

JT

T∑
t=1

J∑
j=1

(
Sjt−x′0tβ0j−x′1jtβ1−pjtβp

)2
+
λβ
T
‖Υ̂ββ‖1.

As discussed in the details, λβ = 2c
√
JTΦ−1 (1− γ/2(KT + 1)), with Belloni et al. (2013a)’s

recommended values being c = 1.1 and γ = 0.05/ log(KT + 1 ∨ T ). The kth diagonal entry

in Υ̂β scales the penalty according to the variability in the kth regressor, which we’ll denote

xk,jt, and the residual εjt ≡ Sjt−x′0tβ0j−x′1jtβ1−pjtβp. The infeasible ideal sets Υ̂β,{k,k} =√
E
[
x2
k,jtε

2
jt

]
. The iterative algorithm A.1 initializes Υβ with the expected squared value

of each regressor, fits the lasso regression, recovers the residuals, and uses these residuals

to compute the sample analog to the ideal value. This algorithm extends immediately to

Υω. Defining the residual εjt ≡ pjt−x′0tω0j−x′1jtω1, the infeasible ideal penalty values for

this problem are Υ̂ω,{k,k} =
√
E
[
x2
k,jtε

2
jt

]
. For completeness, the calculation is detailed in

Algorithm A.2.
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Algorithm A.1 Iterative Algorithm for Υβ

I. Initialize Υ0
k,k =

√
1
JT

∑JT
j,t=1 x

2
k,j,t, k = 1, . . . , KT .

II. For I = 1, ..., Ī, or until ‖ΥI −ΥI−1‖ < δ:

a) Solve β̂ = arg min
β∈RKT+1

1

JT

T∑
t=1

J∑
j=1

(
Sjt−x′0tβ0j−x′1jtβ1−pjtβp

)2
+
λβ
T
‖ΥI−1β‖1.

b) Compute the Residuals: ε̂jt ≡ Sjt−x′0tβ̂0j−x′1jtβ̂1−pjtβ̂p.

c) Update ΥIk,k =
√

1
JT

∑JT
j,t=1 x

2
k,j,tε̂

2
jt, k = 1, . . . , KT .

III. Set Υ̂β = ΥI .

Algorithm A.2 Iterative Algorithm for Υω

I. Initialize Υ0
k,k =

√
1
JT

∑JT
j,t=1 x

2
k,j,t, k = 1, . . . , KT .

II. For I = 1, ..., Ī, or until ‖ΥI −ΥI−1‖ < δ:

a) Solve ω̂ = min
ω∈RKT

1

JT

T∑
t=1

J∑
j=1

(
pjt−x′0tω0j−x′1jtω1

)2
+
λω
T
‖Υ̂ωω‖1.

b) Compute the Residuals: ε̂jt ≡ pjt−x′0tω̂0j−x′1jtω̂1.

c) Update ΥIk,k =
√

1
JT

∑JT
j,t=1 x

2
k,j,tε̂

2
jt, k = 1, . . . , KT .

III. Set Υ̂ω = ΥI .

A.2 Iterative Computation for Nonlinear Models

The selection in nonlinear models requires accounting for the additional estimation error

introduced by selection on a generated regressor. Consequently, the residual with which to

scale the regressor’s variability must be augmented by the variance of the generated selection

target. Recall the selection problem in equation (18):

φ̃ = arg min
φ∈RKT

1

JT

T∑
t=1

J∑
j=1

(
δ̃jt−x′0tφ0j−x′1jtφ1

)2

+
λφ
T
‖Υ̂φφ‖1.
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Algorithm A.3 Iterative Algorithm for Υφ

I. Initialize Υ0
k,k =

√
1
JT

∑JT
j,t=1 x

2
k,j,t, k = 1, . . . , KT .

II. Compute ε̂2δ,jt = x̄′jtΣjx̄jt + σ2
ξ from the solution to the feasible GMM problem (17).

III. For I = 1, ..., Ī, or until ‖ΥI −ΥI−1‖ < δ:

a) Solve φ̃ = arg min
φ∈RKT

1

JT

T∑
t=1

J∑
j=1

(
δ̃jt−x′0tφ0j−x′1jtφ1

)2

+
λφ
T
‖ΥI−1φ‖1.

b) Compute the Residuals: ε̂φ,jt ≡ δ̃jt − x′0tφ̂0j − x′1jtφ̂1.

c) Update ΥIk,k =
√

1
JT

∑JT
j,t=1 x

2
k,j,t

(
ε̂2φ,jt + ε̂2δ,jt

)
, k = 1, . . . , KT .

IV. Set Υ̂φ = ΥI .

The Υφ matrix requires a slight adjustment to account for estimation error in the δ̃jt’s.

Defining

εδ,jt ≡ δjt − δ̃jt = δ̃jt = x̃′jt

(
β̃j − βj

)
+ x′1jt

(
β̃1 − β1

)
+ pjt

(
β̃p − βp

)
+ ξ̃jt − ξjt

and εφ,jt ≡ δ̃jt−x′0tφ0j−x′1jtφ1, the ideal weight for φ0j,k is equal to
√
Ē
[
x2

0t,k (εδ,jt + εφ,jt)
2]

and
√
Ē
[
x2

1jt,k (εδ,jt + εφ,jt)
2] for φ1,k.

We can define x̄jt =
[
x̃′jtx

′
1jt, pjt

]′
and Σj as the rows and columns of the variance-

covariance matrix for β̃ computed using the sandwich covariance matrix from the solution

to (17):

ε̂2δ,jt = E
[
ε2δ,jt
]

= x̄′jtΣjx̄jt + σ2
ξ .

For feasible implementation, we again initialize the Υφ matrix with the diagonal variances

of the regressors. We then recursively solve (18) to recover the residuals εφ,jt and update the

Υφ accordingly.

The approach above doesn’t apply as readily to the solution for (19), as we cannot eas-

ily characterize the variance of the optimum instruments for the nonlinear features of the
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Algorithm A.4 Iterative Algorithm for Υζ

I. Initialize Υ0
k,k =

√
1
JT

∑JT
j,t=1 x

2
k,j,t, k = 1, . . . , KT .

II. For I = 1, ..., Ī, or until ‖ΥI −ΥI−1‖ < δ:

a) Solve ζ̂ = arg min
ζ∈RKT

1

JT

T∑
t=1

J∑
j=1

(
z̃v,jt−x′0tζ0j−x′1jtζ1

)2
+
λζ
T
‖Υ̂ζζ‖1.

b) Compute the Residuals: ε̂ζ,jt = z̃v,jt−x′0tζ̂0j−x′1jtζ̂1.

c) Update ΥIk,k =
√

1
JT

∑JT
j,t=1 x

2
k,j,tε̂

2
ζ,jt, k = 1, . . . , KT .

III. Set Υ̂ζ = ΥI .

model. However, we don’t need to account for the population variance of the asymptotic

optimal instruments in our selection of controls. Importantly, the estimated optimal in-

struments provide the only source of exogenous variation used to identify the heterogeneity

in voter impressionability. Consequently, performing selection on the utilized instruments

as if they represented the population optimal instruments suffices to control for observable

heterogeneity. Recalling the penalization problem:

ζ̃ = arg min
ζ∈RKT

1

JT

T∑
t=1

J∑
j=1

(
z̃v,jt−x′0tζ0j−x′1jtζ1

)2
+
λζ
T
‖Υ̂ζζ‖1

and defining the residual εζ = z̃v,jt−x′0tζ0j−x′1jtζ1, the ideal (k, k)th entry in Υζ = E
[
x2
k,jtε

2
ζ

]
.

We can then apply the approach from Algorithms A.1 and A.2.

A.3 GMM Penalty for Verifying First Order Conditions

While we do not directly evaluate the objective function in the global parameter space for

equation (16), we do need to verify the first-order conditions for the local solution based on
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the selected model in the last step of Algorithm 2:

qk ≡
∂

∂β0jk

Q
(
θ̃∗, x̃k, z, p, s

)
< λθυk, k = 1, . . . , K0, j = 1, . . . , J.

As discussed in the text, the infeasible ideal value of υk =
√
Ē
[
x2

0t,kξ
2
jt

]
. Here, we are already

working from a (putative) local optimum, so we can take the estimated values ξ
(
θ̃∗, x̃, z, p, s

)
to estimate the empirical analog to the expectation:

υ̂k =

√√√√ 1

JT

J,T∑
j,t=1

x2
0t,kξ̃

2
jt.

This calculation has the added benefit of being computable variable-by-variable to mitigate

memory and computational limitations.

B Detailed Statements of Model Assumptions

B.1 Notation

• ĒT represents the average expectation of a series, for example, ĒT [x0tx
′
0t] = 1

T

∑T
t=1 E[x0tx

′
0t].

• ET represents the empirical average of a series, for example, ET [x0tx
′
0t] = 1

T

∑T
t=1 x0tx

′
0t.

• φmin (c) {Σ} and φmax (c) {Σ} represent the cth smallest and largest eigenvalues of the

matrix Σ.

B.2 Assumption 2: Exact Sparsity in Preferences and Spending

As discussed in the main text, assumptions 2.(1)-2.(4) consolidate the restrictions in Belloni

et al. (2012) and Belloni et al. (2013a) for the voting application with a fixed number of

excluded instruments. The restriction on exponential tails isn’t strictly necessary for ap-

plication in the linear model, as we adopt the Belloni et al. (2012) penalization strategy
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Assumption 2 Exact Sparsity in Preferences and Spending

Let θ = [β′01, . . . , β
′
0J , β

′
1, π

′
01, . . . , π

′
0J , π

′
1, π

′
z]
′. Each data generating process in the sequence

{PT}∞T=1, has KT > T possible parameters, 1 ≤ kT < T of which are non-zero, where both
KT →

T→∞
∞ and kT →

T→∞
∞. Further, the number of excluded instruments in z is fixed at

L ≥ 2. Finally, there exists a sequence {δT ,∆T} →T→∞ 0.

1. The parameter space isn’t too large: logKT ≤ (TδT )1/3.

2. The model is sufficiently sparse: k2
T log2 (KT ∨ T ) /T ≤ δT .

(a) The number of variables explicitly included, K1 + L in the model is fixed.

(b) In equation (1), the true coefficients have
∑J

j=1‖β0j‖0 ≤ kT .

(c) In the campaign spending equation (4), the true coefficients have
∑J

j=1‖π0j‖0 ≤ kT .

3. Sparse eigenvalues for Gram matrix: There exists a sequence `T → 0, κ′, and κ′′ such
that, with probability 1−∆T :

0 ≤ κ′ ≤ φmin (`nkT )
{
ĒT [x0tx

′
0t]
}
≤ φmax (`nkT )

{
ĒT [x0tx

′
0t]
}
≤ κ′′ <∞.

4. Detectable Non-zero Coefficients: min {|θk| |θk 6= 0} > δT .

5. Exponential tails: There exists b > 0 and r > 0 such that, for any τ > 0,

(a) P (|ξjt| > τ) ≤ exp (− (τ/b)r) ;

(b) ∀k, P (|x0t,k| > τ) ≤ exp (− (τ/b)r) .

that applies moderate deviation theory for self-normalized sums to bound deviations in the

maximal element of the score vector. However, we maintain the restriction, as it allows us

to use Fan and Liao (2014)’s results, which require results from large deviation theory, in

the nonlinear GMM setting.

B.3 Assumption 3: Regularity Conditions for High-Dimensional

Linear Logit

The regularity conditions here require somewhat cumbersome notation to specify explicitly.

The conditions presented in assumption 3 are sufficient to ensure a law of large numbers and

central limit theorem apply to the post-selection estimator with heteroskedastic and non-
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Gaussian residuals. With the exponential tails assumption in 2.5, the assumptions restricting

the sup-norm of regressors (3.2(a) and 3(b)) can be weakened. In our discussion of the GMM

estimator, many of these restrictions are subsumed by simply assuming a uniform law of large

numbers applies to the score of the objective function. Assumption 3.3 provide sufficient

conditions for such a ULLN to apply in the linear environment. The regularity conditions

for the first-stage regression in assumption 3.4 come from Belloni et al. (2012) and ensure

the existence of optimal instruments for the endogenous campaign spending and the ability

to consistently estimate these instruments via the first-stage regression.

B.4 Assumption 5: Regularity Conditions for GMM Estimator

The GMM regularity conditions are very similar to those in Gillen et al. (2014), reflecting

fairly standard restrictions on GMM estimators. The discussion in Caner and Zhang (2013)

and Fan and Liao (2014) provide more primitive conditions for these results, though their

restrictions are stated for i.i.d. sampling environments, requiring some additional notation

to extend to the i.n.i.d. setting here. These assumptions are fairly standard in the literature

on GMM estimation, with references to Newey (1990), Newey (1993), Caner (2009), and

Newey and Windmeijer (2009).

B.5 Assumption 6: Sparsity Assumptions for High-Dimensional

BLP Model

The additional sparsity restrictions for the high-dimensional BLP model are not that different

from those in the linear model. The sparsity restriction is a bit tighter, accounting for

the need to select variables on estimated optimal instruments. The restricted eigenvalue

assumption needs to be extended to the outer product of the gradients, and the exponential

tail restriction is extended to the optimal instruments.
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Assumption 3 Linear Logit DGP Regularity Conditions

Each data generating process in the sequence {PT}∞T=1, has KT > T possible parameters,
1 ≤ kT < T of which are non-zero, where both KT →

T→∞
∞ and kT →

T→∞
∞, but the

number of excluded instruments in z is fixed at L ≥ 2. Finally, there exists a sequence
{δT ,∆T} →T→∞ 0 and fixed constants 0 < c < C <∞.

1. Sufficient moments for unmodeled variability in the data admit a LLN and CLT:

(a) Ē [|ξjt|q + |νjt|q] ≤ C,

(b) c ≤ Ē
[
ξ2
jt|xjt, νjt

]
≤ C, a.s., and,

(c) c ≤ Ē
[
ν2
jt|xjt, zjt

]
≤ C, a.s.

2. Variability in observables and their impact on unobservables is bounded:

(a) Demographics Controls: max
t≤T
‖x2

0t‖∞kTT (−1
2

+ 2
q ) ≤ δT w.p. 1−∆T .

(b) Candidate Characteristics: Ē [|x1jt,k|q] ≤ C, and |β1,k| < C, k = 1, . . . , K1.

(c) Campaign Expenditure and Impact: Ē [|pjt|q] ≤ C, and |βp| < C.

3. Additional regularity restrictions for asymptotic theory with i.n.i.d. sampling:

(a) max
j≤J

Ē[|ξjt|q] + Ē[|Sjt|q] + max
k≤KT

{
Ē
[
x2
jt,kS2

jt

]
+Ē

[
|x3
jt,kξ

3
jt|
]
+1/Ē

[
x2
jt,k

]}
≤C.

(b) max
k≤KT ,j≤J

{
|
(
ET−Ē

)[
x2
jt,kξ

2
jt

]
|+|
(
ET−Ē

)[
x2
jt,kS2

jt

]
|
}

+max
t≤T
‖x0t‖2

∞
kT log(T∨KT )

T
≤δT .

4. Regularity restrictions for first-stage regression: Let p̃jt ≡ pjt − Ē [pjt],

(a) max
j≤J

Ē
[
p̃2
jt

]
+max

l≤L

{
Ē
[
z2
jt,lp̃

2
jt

]
+ 1/Ē

[
z2
jt,lν

2
jt

]}
+max
k≤K0

{
Ē
[
x2

0t,kp̃
2
jt

]
+ 1/Ē

[
x2

0t,kν
2
jt

]}
+

max
k≤K1

{
Ē
[
x2

1jt,kp̃
2
jt

]
+ 1/Ē

[
x2

1jt,kν
2
jt

]}
. 1.

(b) max
j≤J

{
max
k≤K0

Ē
[
|x3

0t,kν
3
jt|
]

+ max
k≤K1

Ē
[
|x3

1jt,kν
3
jt|
]

+ max
l≤L

Ē
[
|z3
jt,lν

3
jt|
]}

. κT with

κ2
T log3 (KT ∨ T ) = o (T ).

(c) max
t≤T,j≤J

(
max
l≤L

z2
jt,l + max

k≤K0

x2
0t,k + max

k≤K1

x2
1jt,k

)
[s log (KT ∨ T )] /T →p 0.

(d) max
j≤J

max
l≤L

{
|
(
E−Ē

)[
z2
jt,lν

2
jt

]
|+|
(
E−Ē

)[
z2
jt,lp̃

2
jt

]
|
}

+max
k≤K0

{
|
(
E−Ē

)[
x2

0t,kν
2
jt

]
|+|
(
E−Ē

)[
x2

0t,kp̃
2
jt

]
|
}

+

max
k≤K1

{
|
(
E−Ē

)[
x2

1jt,kν
2
jt

]
|+|
(
E−Ē

)[
x2

1jt,kp̃
2
jt

]
|
}
→p 0.
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Assumption 5 Regularity Conditions for GMM Estimator

Let θ = [β′01, . . . , β
′
0J , β

′
1, π

′
01, . . . , π

′
0J , π

′
1, π

′
z, vb]

′. For all T , each data generating process in
the sequence {PT}∞T=1, satisfies the following restrictions:

1. Compactness of Parameter Set: The true parameter values θ0 ∈ ΘKT
, where ΘK ⊂ RKT +2

is compact, with a compact limit set Θ∞ ≡ lim
T→∞

ΘK .

2. Continuity of Moment Conditions:

(a) The unconditional moment condition E [zjt,lξjt (θ)] is continuously differentiable in
θ, ∀j ≤ J, t ≤ T, and, l ≤ L.

(b) For the full-sample moment condition mlT (θ) ≡ Ē
[

1
J

∑J
j=1 E [zjt,lξjt (θ)]

]
,

i. mlT (θ) →
T→∞

ml (θ) uniformly for θ ∈ ΘKT
, for all KT ,

ii. mlT (θ) is continuously differentiable and its limit ml (θ) is continuous in θ, and,
iii. mlT (θ0) = 0 and mlT (θ) 6= 0,∀θ 6= θ0.

3. Uniform LLN for Sample Analog: Let gjt (θ) ≡
[
x′0t, x

′
1jt, z

′
jt

]′
ξjt (θ), the following uniform

law of large numbers applies:

sup
k≤KT

sup
θ∈Θk

‖ 1

JT

J,T∑
j,t=1

(
gjt (θ)− Ē [gjt (θ)]

)
‖ −−−→

T→∞ p
0.

4. Define the LT ×KT matrix ĜT (θ) ≡ 1
JT

∑J,T
j,t=1

∂gjt(θ)

∂θ′
:

(a) A uniform law of large numbers holds in a neighborhood of θ0 for all KT :

‖ĜT (θ)−G (θ)‖2
2 →p
T→∞

0.

(b) The limiting matrix G (θ) is continuous in θ and G (θ0) has full column rank KT .

5. WT is a positive definite matrix with ‖WT −W‖2
2 →p 0, with W a symmetric, positive

definite, and finite matrix.

6. The expected outer product of the score, Ω ≡ lim
T→∞

(JT )−1
J,T∑
j,t=1

E
[
gjt (θ) gjt (θ)′

]
is a

positive definite, finite matrix.

7. The minimal and maximal eigenvalues of Σ ≡ G (θ0)′Ω−1G (θ0), denoted e and ē, are
finite and bounded between finite constants 0 < c ≤e≤ ē ≤ C <∞.
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Assumption 6 Sparsity Assumptions for High-Dimensional BLP Model

Let θ = [β′01, . . . , β
′
0J , β

′
1, π

′
01, . . . , π

′
0J , π

′
1, π

′
zvp]

′. Each data generating process in the sequence
{PT}∞T=1, has KT > T possible parameters, 1 ≤ kT < T of which are non-zero, where both
KT →

T→∞
∞ and kT →

T→∞
∞. Further, the number of excluded instruments in z is fixed at

L ≥ 2. Finally, there exists a sequence {δT ,∆T} →T→∞ 0 with
√

kT log kT
T

> δT >
kT
T

.

1. The parameter space isn’t too large, with log (KT ) = o
(
T−1/3

)
.

2. The model is sparse, with the number of non-zero variables, k3
T log kT = o (T−1).

3. The Gram matrix for controls satisfies restricted eigenvalues of Assumption 2.3.

4. The Hessian of the objective function with respect to non-zero variables is almost
surely positive definite. There exists a sequence `T → 0, κ′, and κ′′ such that,
with probability 1−∆T :

0 ≤ κ′ ≤ φmin (`nkT ) {Ω} ≤ φmax (`nkT ) {Ω} ≤ κ′′ <∞.

5. Non-zero coefficients are bounded away from zero: min {|θk| s.t. θk 6= 0} > 2δT .

6. The marginal distributions for controls, instruments, and residual vote shares
have exponentially decaying tails.
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