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Abstract

Uncertainty about the choice of identifying assumptions is common in causal studies,

but has been often ignored in empirical practice. This paper considers uncertainty over a

class of models that impose different sets of identifying assumptions, which, in general, leads

to a mix of point- and set-identified models. We propose a method for performing inference

in the presence of this type of uncertainty by generalizing Bayesian model averaging. Our

proposal is to consider ambiguous belief (multiple posteriors) for the set-identified models,

and to combine them with a single posterior in a model that is either point-identified or

that imposes non-dogmatic identifying assumptions in the form of a Bayesian prior. The

output is a set of posteriors (post-averaging ambiguous belief ) that are mixtures of the

single posterior and any element of the class of multiple posteriors, with mixture weights

the posterior probabilities of the models. We propose to summarize the post-averaging

ambiguous belief by reporting the range of posterior means and the associated credible

regions, and offer a simple algorithm to compute these quantities. We establish conditions

under which the data are informative about model probabilities, which occurs when the

models are distinguishable for some distribution of data and/or specify different priors for

reduced-form parameters, and examine the asymptotic behavior of the posterior model

probabilities. The method is general and allows for dogmatic and non-dogmatic identifying

assumptions, multiple point-identified models, multiple set-identified models, and nested or

non-nested models.
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1 Introduction

The choice of identifying assumptions is the crucial step that allows empirical researchers to

draw causal inferences using observational data. This is a controversial choice in empirical

practice, and the researcher often faces uncertainty about which identifying assumptions to

impose from a menu of plausible ones. This uncertainty and its effects on inference have

been typically ignored in empirical work until now. We propose a formal method for drawing

inferences about causal effects in the presence of uncertainty about identifying assumptions,

which we characterize as uncertainty over a class of models that are characterized by different

sets of assumptions. The method can be viewed as a generalization of Bayesian model averaging

to include set-identified models, which arise in the common case when the assumptions are

under-identifying or when they are expressed as inequality restrictions.

There are several important examples of this set-up within economics. The first is macroe-

conomic policy analysis using structural vector autoregressions (SVARs), where identifying

assumptions include causal ordering restrictions (Bernanke (1986) and Sims (1980)), long-run

neutrality restrictions (Blanchard and Quah (1993)), and Bayesian prior mean restrictions

implied by a structural model (Del Negro and Schorfheide (2004)). Subsets of these assump-

tions will deliver set-identified impulse-responses, as will the widespread use of sign restric-

tions (Canova and Nicolo (2002), Faust (1998), and Uhlig (2005)). The second example is

microeconometric causal effect studies with identifying assumptions including selection on ob-

servables (Ashenfelter (1978) and Rosenbaum and Rubin (1983)), selection on observables and

unobservables (Altonji, Elder, and Taber (2005)), exclusion and monotonicity restrictions in

instrumental variables methods (Imbens and Angrist (1994), yielding set-identification of the

average treatment effect), and monotone instrument assumptions (Manski and Pepper (2000),

also yielding set-identification). The third example is missing data with identifying assump-

tions such as missing at random, Bayesian imputation (Rubin (1987)), and unknown missing

mechanism (Manski (1989), yielding set-identification). Finally, estimation of structural models

with multiple equilibria relies on assumptions about the equilibrium selection rule, with differ-

ent assumptions (or lack thereof) delivering point- or set-identified models (Bajari, Hong, and

Ryan (2010), Beresteanu, Molchanov, and Molinari (2011), and Ciliberto and Tamer (2009),

to list a few).

How should one draw inference for the object of interest in the presence of uncertainty

over point- and set-identified models? The common practice in empirical work is to report

the estimation result from what is deemed the most credible set of identifying assumptions,

or, in some cases, the results from a number of alternative sets of assumptions, viewed as an

informal way to conduct sensitivity analysis. This paper proposes a method that formalizes

the sensitivity analysis and provides a way to aggregate estimation results relying on point-

identifying assumptions and those relying only on set-identifying assumptions by generalizing
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Bayesian model averaging.

Standard Bayesian model averaging delivers a single posterior distribution that is a mix-

ture of the posterior distributions of the candidate models with weights equal to the posterior

model probabilities. This approach could in principle be extended to our context if one could

obtain a single posterior distribution for every candidate model, including those that are set-

identified. Obtaining a single posterior in the set-identified model is however a challenging task,

as has been recently pointed out in the context of SVARs with sign restrictions (Baumeister

and Hamilton (2015) and Giacomini and Kitagawa (2015)): when the available prior knowl-

edge is exhausted by an under-identifying set of assumptions, choosing a single prior for the

non-identified parameters (even an apparently uninformative one) may result in spuriously

informative posterior inference for the parameters of interest, an effect that persists even in

large samples. This problem does not occur in point-identified models, where the effect of

prior choice vanishes asymptotically. Choosing a single prior in set-identified models that can

precisely represent the lack of knowledge for the non-identified part of the models is generally

infeasible.1

The approach in this paper, in contrast, does not assume availability of a single posterior

for the set-identified model. The key innovation is to introduce multiple priors (an ambiguous

belief ) into Bayesian model averaging by representing the posterior information in the set-

identified model by a set of posteriors. We then combine the single posterior probabilistic belief

obtained from the point-identified models with the ambiguous belief obtained from the set-

identified models. The output of the procedure is a set of posteriors (post-averaging ambiguous

belief ), that consists of mixtures of the posterior distribution in the point-identified model and

any posterior belonging to the set of posteriors of the set-identified model, with weights equal

to the posterior model probabilities. To summarize and visualize the post-averaging ambiguous

belief, we recommend to report the range of posterior quantities such as the mean or median,

and associated credible region (an interval on which any posterior in the class allocates a certain

credibility level). We show that these quantities have analytically simple expressions and they

are easy to compute in practice.

Our motivation for introducing multiple priors in set-identified models builds on the robust

Bayes interpretation of multiple priors as a way to express the ”lack of knowledge”. As argued

by Giacomini and Kitagawa (2015) and Kitagawa (2012), allowing for ambiguity over the

unrevisable component of the prior knowledge (i.e., the prior for the non-identified parameters)

and conducting posterior inference based on the resulting class of posteriors offers a rationale

1The Bayesian analysis for set-identified SVARs commonly specifies the rotation invariant prior for non-

identified parameters (the uniform prior on a Stiefel manifold) as a representation of ”noninformative” prior

(Uhlig (2005) and Arias, Rubio-Ramirez, and Waggoner (2013)). It is important to acknowledge that such

noninformative prior assigns unique weights over the non-identified parameters and it fails to accommodate the

researcher’s inability to specify a belief for them.
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for focusing on the posterior distribution of the identified set, as proposed in Kline and Tamer

(2016), Moon and Schorfheide (2011), and Liao and Simoni (2013). Conditional on a set-

identified model, the state of knowledge we assume is that one cannot assess what parameter

values are more credible than the others within the identified set, and such ambiguity within

the identified set is represented by the resulting set of posteriors for the parameter of interest.

Conditional on a point-identified model, on the other hand, the state of knowledge we assume

is that the researcher can specify a prior distribution for the reduced-form parameters or for the

structural parameters subject to the point-identifying assumptions, so that she can summarize

the posterior information for the parameter of interest by the single posterior distribution.

Given prior model weights specified by the user, our averaging procedure aggregates these

distinct forms of posterior information for the common parameter of interest in a way coherent

to the robust Bayes prior-by-prior updating rule.

The method proposed in this paper can also be viewed as bridging the gap between point-

and set-identification. When focusing solely on the estimates from a point-identified model,

the researcher who is not fully confident about her choice of identifying assumptions may

doubt the robustness of the obtained conclusions. At the same time, discarding some of the

point-identifying assumptions entirely and reporting the estimate of the identified set under

the weaker restrictions may appear ”excessively agnostic” and can result in overwhelmingly

uninformative conclusions. Our averaging procedure reconciles these two extreme representa-

tions of the posterior beliefs by exploiting the prior weights that the researcher can assign to

alternative sets of identifying assumptions. We show that the range of posterior means for the

post-averaging ambiguous belief is given by the weighted average (in the sense of Minkowski

sum) of the posterior mean of the point-identified model and the range of posterior means (in-

terval) in the set-identified model. When the underlying identified set is a connected interval,

the range of posterior means can be viewed as an estimate of the identified set (Giacomini

and Kitagawa (2015)). Hence, our averaging procedure can effectively shrink the identified set

estimate toward the point estimate in the point-identified model. The degree of shrinkage is

governed by the posterior model probabilities. A key result in the paper is to clarify under

which conditions the prior model probabilities can be updated by data. We show that the up-

dating occurs if some candidate models are distinguishable for some distribution of data and/or

the priors for the reduced-form parameters are different across the models. We also perform

the asymptotic analysis for the posterior model probabilities. We show that in the situation

where only one candidate model is consistent with the true distribution of data, the posterior

model probability asymptotically assigns probability one to the correctly specified model. In

situations where multiple candidate models are observationally equivalent and non-falsified at

the true data generating process, we show that the posterior model probabilities asymptotically

assign nontrivial weights among them. We clarify what part of the prior input determines the
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asymptotic posterior model probabilities in such case. The large sample consistency property

of the Bayesian model selection has been well-studied in the statistics literature (see, e.g.,

Claeskens and Hjort (2008) and references therein). However, little is known about the asymp-

totic behaviors of the posterior model probabilities when the candidate models, which differ in

terms of the identifying restrictions, can be observationally equivalent in terms of the reduced

form model. Our asymptotic analysis of the posterior model probabilities therefore adds new

contributions to the literature of the Bayesian model selection and they could be of independent

interest.

The method proposed in this paper contributes to the empirical practice both in macroeco-

nomics and microeconomics by offering simple and flexible ways to conduct sensitivity analysis

of causal inference to the choice of identifying assumptions. First, when the set-identified

model nests the point-identified model, it can be used to assess posterior sensitivity in the

point-identified model with respect to arbitrary perturbations of the prior input in the direc-

tion of relaxing some of the point-identifying assumptions, with the maximal magnitude of the

perturbation is specified by the prior model probability assigned to the set-identified model.

From this viewpoint, we can formally interpret our averaging method as an ε-contamination

sensitivity analysis developed in Berger and Berliner (1986) with a particular construction of the

prior class. Second, if the point-identified model can be considered as a reasonable benchmark

model, the method offers a simple and flexible way to add non-dogmatic identifying information

to the set-identified model, which results in increasing informativeness of the conclusions in a

transparent and disciplined manner.

The remainder of the paper is organized as follows. Section 2 illustrates the main results

of this paper and the implementation of our averaging method in the context of a simple

two-variable SVAR. Section 3 presents formal analysis in a general framework and provides

a computational algorithm to implement the procedure. Section 4 discusses the relationships

between our method and existing (robust) Bayesian methods, and elicitation of model prob-

abilities. In Section 5, we apply our method to impulse response analysis in SVARs. The

Appendix contains proofs omitted from the main text and one microeconometric application.

1.1 Related Literature

The idea of model averaging has a long history in econometrics and statistics since the pioneer-

ing works by Bates and Granger (1969) and Leamer (1978). There are mainly two approaches

in the literature. One is Bayesian model averaging (see e.g., Hoeting, Madigan, Raftery, and

Volinsky (1999) and Claeskens and Hjort (2008) for a review of the literature). Another is

frequentist model averaging, with important developments made by Hansen (2007) and Hjort

and Claeskens (2003). See also Hansen (2014), Liu (2015), Liu and Okui (2013), Hansen and

Racine (2012), and Zhang and Liang (2011) for recent advances in frequentist model averaging,
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and Hjort and Claeskens (2003), Kitagawa and Muris (2016), and Magnus, Powell, and Prüfer

(2010) for proposals that compromise between Bayesian and frequentist averaging. None of

these works considers averaging point- and set-identified models. We tackle this problem from

the angle of Bayesian model averaging since it is not obvious how to approach it from the

frequentist standpoint. Unlike the standard Bayesian model averaging, however, our averag-

ing introduces ambiguity and does not require the full prior specification in the set-identified

model. To the best of our knowledge, this is the first paper that formally considers aggregating

of probabilistic beliefs and ambiguous beliefs in the context of model averaging.

This paper also contributes to the growing literature on Bayesian inference for partially

identified models (Giacomini and Kitagawa (2015), Kitagawa (2012), Kline and Tamer (2016),

Moon and Schorfheide (2012), Norets and Tang (2014), Liao and Simoni (2013)). This paper

follows the robust Bayes approach with multiple priors to model the lack of belief within the

identified set (Giacomini and Kitagawa (2015) and Kitagawa (2012)). When the set-identified

model is the only model considered, the range of posteriors generated by the robust Bayes

formulation leads to the posterior inference for the identified set proposed in Kline and Tamer

(2016), Liao and Simoni (2013), and Moon and Schorfheide (2011). When uncertainty on

the identifying assumptions is present, however, the usual definition of the identified set is not

available without conditioning on the model. The multiple prior viewpoint enjoys an advantage

in this case since the range of posteriors still has a well-defined subjective interpretation even

in the presence of model uncertainty.

The empirical application in this paper concerns SVAR analysis with classical causal or-

dering restrictions (Bernanke (1986) and Sims (1980)), dynamic stochastic general equilibrium

(DSGE) model restrictions (Del Negro and Schorfheide (2004)), and sign restrictions (Canova

and Nicolo (2002), Faust (1998), and Uhlig (2005)). In many SVAR applications, what set of

identifying assumptions to impose becomes a source of controversy given that the researchers

have heterogeneous opinions about the credibility of the identifying assumptions. One popular

empirical practice is to impose weaker assumptions in the form of sign restrictions on the im-

pulse responses or on the structural parameters. Although the resulting model generally only

set-identifies the impulse responses of interest, the common practice is to condier Bayesian

estimation by adding a ”noninformative” prior on the non-identified part of the model. Em-

pirical studies using this Bayesian approach include Canova and Nicolo (2002), Faust (1998),

Mountford (2005), Rafiq and Mallick (2008), Scholl and Uhlig (2008), Uhlig (2005), and Vargas-

Silva (2008) for applications to monetary policy, Dedola and Neri (2007), Fujita (2011), and

Peersman and Straub (2009) for applications to business cycle model, Mountford and Uhlig

(2009) for applications to fiscal policy, Kilian and Murphy (2012) for applications to oil prices.

As alternative methods, Moon, Schorfheide, and Granziera (2013) and Gafarov, Meier, and

Montiel-Olea (2016a,b) develop frequentist inference for the identified set and Giacomini and
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Kitagawa (2015) proposes a robust Bayesian approach. To our knowledge, little work has been

done on multi-model inference in the SVAR literature, and the methods proposed in this paper

could prove helpful in reconciling the controversies about the identifying assumptions that are

widespread in this literature.

2 Illustrative Example

We begin with a simple example that illustrates the analytical framework, motivations, and

the implementation of our proposal.2

Consider a model of static labor supply and demand:

A

(
Δnt

Δwt

)

=

(
εd
t

εs
t

)

, A =

(
a11 a12

a21 a22

)

. (2.1)

where (Δnt, Δwt), t = 1, . . . , T , are, respectively, the growth rates of employment and wages

and (εd
t , ε

s
t ) is a vector of demand and supply shocks that are independent of the past realizations

of (εd
t , ε

s
t ). We assume that the structural shocks are normally distributed with covariance

equal to the identity matrix, so that the impulse responses are with respect to a unit standard

deviation shock. A is the matrix of structural coefficients and the contemporaneous impulse

response matrix is A−1.

The reduced-form model is indexed by Σ the variance-covariance matrix of (Δnt, Δwt),

which is determined by A via Σ = A−1(A−1)′. We denote its lower triangular Cholesky de-

composition by Σtr =

(
σ11 0

σ21 σ22

)

with σ11 ≥ 0 and σ22 ≥ 0, and define the reduced form

parameters by φ = (σ11, σ21, σ22) ∈ Φ = R+×R×R+.3 We denote the map from the structural

parameters to the reduced-form parameters by φ = g(A).

Let the response of the first variable to a unit positive shock in the first variable be the object

of interest, α ≡ (1,1)-element of A−1. In the absence of identifying assumptions, the structural

parameters are not identified, i.e., knowledge of the reduced-form parameters φ cannot uniquely

pin down the structural parameters, since φ = g(A) is a many-to-one mapping.

We motivate our proposal and illustrate its implementation in two distinct scenarios.

2.1 Dogmatic Identifying Assumptions

Suppose that the researcher is uncertain about the following two sets of identifying assump-

tions, which are dogmatic, in the sense that they are imposed as exact equalities or inequality

2The scope of application of our averaging method includes not only macroeconometric applications but also

microeconometric applications. In Appendix A.2, we provide an application of our method to a treatment effect

model with noncompliance.
3Note that the positive semidefiniteness of Σ does not constrain the value of φ other than σ11 ≥ 0 and σ22 ≥ 0.
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restrictions on (functions of) the structural parameters.

Scenario 1: Candidate Models

• Model Mp (point-identified): The labor demand is inelastic to wage, a12 = 0.

• Model M s (set-identified): The wage elasticity of demand is non-positive, i.e., a12 ≥ 0,

and the wage elasticity of supply is non-negative a21 ≤ 0.

Model Mp restricts A to be lower-triangular and it leads to the classical causal ordering

assumption of Sims (1980) and Bernanke (1986). Combined with the sign normalization re-

strictions such that the diagonal elements of A are nonnegative, the contemporaneous impulse

responses can be identified by A−1 = Σtr. We can accordingly express the point-identified α

as α = αMp(φ) ≡ σ11.

In contrast, model M s uses only sign restrictions and it can only set-identify α. Appendix

A shows that the identified set for α, which is viewed as a set-valued map from Φ to R, is a

connected interval given by:

ISα(φ) ≡






[
σ11 cos

(
arctan

(
σ22
σ21

))
, σ11

]
, for σ21 > 0,

[
0, σ11 cos

(
arctan

(
−σ21

σ22

))]
, for σ21 ≤ 0.

(2.2)

Note that this identified set is non-empty for any φ. Hence, model Mp and model M s are

observationally equivalent at any φ ∈ Φ and neither of them is falsifiable, i.e., for any φ ∈ Φ

and in both model Mp and M s, there exist structural parameters A that satisfy the imposed

identifying assumptions. When σ21 > 0, the point-identified α in model Mp coincides with

the upper-bound of the identified set in model M s. On the other hand, when σ21 < 0, the

identified set in model M s does not contain the point-identified α.4

Suppose that the researcher’s prior uncertainty over the two models can be represented by

a weight assigned to model Mp, w ∈ [0, 1], and its complement (1−w) assigned to model M s.5

Consider specifying a prior distribution for the reduced-form parameters in each model.

Note that this prior is updated by the data, and conditional on the model, such a choice does

not affect the conclusion about the parameter of interest asymptotically.6 Bearing in mind the

observational equivalence of the two models at every φ ∈ Φ, it could be reasonable to specify

the same prior for φ between the two models:

πφ|Mp = πφ|Ms = π̃φ (2.3)

4This is because in model Mp, the parameter a21 is given by − σ21
σ11σ22

, which is positive if σ21 < 0. That

is, the point-identifying assumptions a12 = 0 and σ21 < 0 are not compatible with the upward sloping supply

restriction a21 ≤ 0.
5We discuss interpretation and elicitation of the prior model probabilities in Section 4.2 below.
6As we show in Section 3.5 below, the choice of a prior for reduced-form parameters in each model can

influence the posterior model probabilities even asymptotically.
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where π̃φ is a proper prior distribution for φ ∈ Φ, such as the one induced by a Wishart prior on

Σ. The common prior for φ for observational equivalent models leads to the identical posterior

for φ:

πφ|Mp,Y = πφ|Ms,Y = π̃φ|Y , (2.4)

where Y denotes the sample.

In model Mp, the posterior for φ implies a unique posterior for α via the mapping α =

αMp(φ). We denote the posterior of α in this model by πα|Mp,Y .

On the other hand, in model M s, having one prior for φ does not yield a unique posterior for

α, since the mapping given in (2.2) is generally set-valued. Following Giacomini and Kitagawa

(2015) and Kitagawa (2012), we formulate the lack of prior knowledge other than the sign

restrictions by multiple priors (an ambiguous belief). Formally, with πφ|Ms given, we form

the class of priors for A by admitting arbitrary conditional priors for A given φ as long as

they are consistent with the imposed identifying restrictions (including the sign normalization

restrictions):

ΠA|Ms ≡

{

πA|Ms =
∫

Φ
πA|Ms,φdπφ|Ms : πA|Ms,φ(Asign ∩ g−1(φ)) = 1, πφ|Ms-a.s.

}

,

where Asign = {A : a12 ≥ 0, a21 ≤ 0, diag(A) ≥ 0} is the set of structural parameters that

satisfy the sign restrictions and the sign normalizations, g−1(φ) is the set of observationally

equivalent A’s given reduced-form parameters φ.

Since the likelihood depends on the structural parameters only through the reduced-form

parameters, the Bayes rule applied to each prior in the class updates only the prior for φ, and

thereby leads to the following class of posteriors for A:

ΠA|Ms,Y ≡

{

πA|Ms,Y =
∫

Φ
πA|Ms,φdπφ|Ms,Y : πA|Ms,φ(Asign ∩ g−1(φ)) = 1, πφ|Ms-a.s.

}

.

(2.5)

We then form the class of posteriors for α by marginalizing the posteriors in ΠA|Ms,Y to α.

The resulting class of α-posteriors can be represented as

Πα|Ms,Y ≡

{

πα|Ms,Y =
∫

Φ̃
πα|Ms,φdπφ|Ms,Y : πα|Ms,φ(ISα(φ)) = 1, πφ|Ms-a.s.

}

. (2.6)

We use Πα|Ms,Y as the representation of the posterior uncertainty for α in the set-identified

model. Πα|Ms,Y consists of any α-posteriors that assign probability one on its identified set,

and it represents the lack of belief therein in terms of Knightian uncertainty (ambiguity). This

is an important departure from the standard approach to Bayesian model averaging, which
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requires a single posterior distribution in every candidate model including the one where the

parameter of interest is non-identified.

We combine the single posterior of α in model Mp and the set of posteriors of α in model M s

according to their posterior model probabilities denoted by πMp|Y and πMs|Y . It is important

to note that the posterior model probability on model M s depends only on the prior for the

reduced-form parameters. Hence, with πφ|Ms fixed in the construction of Πα|Ms,Y , πMs|Y can

be uniquely determined in spite of the multiple prior input for the structural parameters. An

important part of analysis is to establish conditions under which the prior model probabilities

are updated by data — the update occurs if the models are distinguishable for some reduced-

form parameter values and/or they have different priors for φ (see Lemma 3.1 below). In the

current scenario, the two models are observationally equivalent at any φ ∈ Φ, so the data never

update the prior model probabilities, (πMp|Y , πMs|Y ) = (w, 1 − w).

The main proposal in this paper aggregates the posterior beliefs for α by forming the

following set posteriors:

Πα|Y = {πα|Mp,Y πMp|Y + πα|Ms,Y πMs|Y : πα|Ms,Y ∈ Πα|Ms,Y }. (2.7)

We refer to Πα|Y as the post-averaging ambiguous belief ; the class of mixture distributions

in which the mixture weights are the posterior model probabilities (πMp|Y , πMs|Y ), the com-

ponent distribution corresponding to model Mp is πα|Mp,Y , and the component distribution

corresponding to model M s varies over the posterior class Πα|Ms,Y given in (2.6).7 To summa-

rize the post-averaging set of posteriors, we suggest to report the range of posterior means or

quantiles of Πα|Y and the robust credible region with credibility γ ∈ (0, 1), which is defined by

the shortest interval that receives posterior probability at least γ for every posterior in Πα|Y .

Proposition 3.1 below shows that the range of posterior means for α spanned by Πα|Y is

[

inf
πα|Y ∈Πα|Y

Eα|Y (α), sup
πα|Y ∈Πα|Y

Eα|Y (α)

]

=πMp|Y Eα|Mp,Y (α) + πMs|Y
[
Eφ|Ms,Y (l(φ)), Eφ|Ms,Y (u(φ))

]
, (2.8)

where (l(φ), u(φ)) are the lower and upper bounds of the nonempty identified set for α shown

in (2.2), a + b[c, d] stands for [a + bc, a + bd], and Eφ|Ms,Y (∙) denotes the posterior mean with

respect to πφ|Ms,Y = π̃φ|Y . This expression for the range of posterior means is intuitive and

simple to interpret; the range of averaged posterior means is the weighted average (Minkowski

sum) of the posterior mean in model Mp and the range of posterior means (interval) in model

7As we show in Section 4.1 below, averaging formula (2.7) can be derived by applying the Bayes rule prior-

by-prior to a certain class of priors that has the form of an ε-contaminated class priors.

10



M s. Noting that the range of posterior means can be viewed as an estimator for the identified

set in model M s, our model averaging procedure can be viewed as a method to shrink the

estimate of the identified set in the set-identified model toward the point estimate in the point-

identified model. The amount of shrinkage is determined by the posterior model probabilities,

which in the current case are not updated by the data (cf. Scenario 2 below and Example 2 in

Appendix A, where the prior model probabilities can be updated).

The robust credible region for α with credibility γ can be computed as follows. We first

draw z1, . . . , zG randomly from the Bernoulli distribution with mean πMp|Y . We then generate

g = 1, . . . , G random draws of the ”mixture identified set” for α according to

ISmix
α (φg) =






{α(φg)}, φg ∼ πφ|Mp,Y = π̃φ|Y , if zg = 1,

[l(φg), u(φg)], , φg ∼ πφ|Ms,Y = π̃φ|Y if zg = 0.
(2.9)

That is, with probability πMp|Y , a draw of the mixture identified set is a singleton corresponding

to the point-identified value of α, and with probability πMs|Y , a draw of the mixture identified

set is a nonempty identified set for α. The robust credible region with credibility level γ

is approximated by an interval that contains the γ-fraction of the drawn ISmix
α (φ)’s. The

minimization problem presented in Step 5 of Algorithm 4.1 in Giacomini and Kitagawa (2015)

is solved to obtain the shortest-width robust credible region.

2.2 Non-dogmatic Identifying Assumptions

Our method allows for identifying assumptions that are expressed as a non-dogmatic prior

distribution of the structural parameters.

Scenario 2: Candidate Models

• Model MB (single prior): A prior distribution for the structural parameter A is available.

• Model M s (multiple priors): Same as the set-identified model in Scenario 1.

An important feature of Model MB is the availability of a prior distribution for the whole

structural parameters. The prior in model MB can reflect Bayesian probabilistic uncertainty

about the equality identifying assumptions. See, for instance, Baumeister and Hamilton (2015)

for a careful construction of a prior distribution for a dynamic version of the current model

based on a meta-analysis of the literature.8

Model MB always yields a single posterior distribution for α. However, the influence of

prior choice does not vanish even asymptotically due to the lack of identification. If the re-

searcher could be fully confident with the prior specification in model MB , she could perform
8In the SVAR application in Section 5, we include a DSGE-VAR model (Del Negro and Schorfheide (2004))

as one of the single-posterior models.
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standard Bayesian inference and obtain a credible posterior despite the identification issue.

This situation is, in practice, rather rare. For instance, the prior specification for the elasticity

parameters considered in Baumeister and Hamilton (2015) is based on the elicitation of their

first and second moments and the remaining distributional characteristics of the prior distri-

bution are chosen according to analytical or computational convenience. Further, elicitation

of the dependence among structural parameters is a challenging task, and a naively-specified

independent prior could lead to unintended or counter-intuitive influences to the posterior in-

ference.9 These robustness concerns motivate us to mix the Bayesian model MB with the

set-identified model M s that can accommodate the lack of prior knowledge for the structural

parameters further than the dogmatic set-identifying restrictions.

The single prior for A specified in model MB implies a single prior for the reduced form

parameters πφ|MB . In Scenario 2, we therefore relax the restrictions (2.3), and allow the prior

for φ in model M s to be different from the prior for φ in model MB . This, in turn, affects

the posterior model probabilities. Let w ∈ [0, 1] be a prior weight assigned to model MB , and

p(Y |MB) ≡
∫
Φ p(Y |φ)dπφ|MB (φ) and p̃(Y ) ≡

∫
Φ p(Y |φ)dπ̃φ(φ) be the marginal likelihoods of

model MB and model M s, respectively, where p(Y |φ) is the likelihood of the reduced form

parameters (that is common across the models as reflected in the notation). The posterior

model probabilities are

πMB |Y =
p(Y |MB) ∙ w

p(Y |MB) ∙ w + p̃(Y ) ∙ (1 − w)
,

πMs|Y =
p̃(Y ) ∙ (1 − w)

p(Y |MB) ∙ w + p̃(Y ) ∙ (1 − w)
. (2.10)

The different priors for φ imply p(Y |MB) 6= p̃(Y ), and thereby the prior model probabilities

can be updated by the data.

With these posterior model probabilities, the construction of the post-averaging ambiguous

belief proceeds as in (2.7). The range of posterior means for α can be obtained similarly to

(2.8), where MB replaces Mp. The robust credible regions can be constructed in the same

manner as in Scenario 1: with iid draws of binary z1, . . . , zG ∼ Bernoulli(πMB |Y ), we generate

ISmix
α,g =






{α}, α ∼ πα|MB ,Y , if zg = 1,

[l(φg), u(φg)], , φg ∼ πφ|Ms,Y if zg = 0.
(2.11)

3 Formal Analysis

In this section, we formalize the idea in a more general setting and verify the analytical claims

made in the previous section.
9”Knowing no dependence” among the parameters differs from ”not knowing their dependence.”
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3.1 Notation and Framework

Consider J +K ≥ 2 candidate models, J,K ≥ 0, that can differ in various aspects including the

identifying assumptions imposed and the parametrizations of the structural models. We call a

member of J models as a single-posterior model, whose prior input always (i.e., independent

of the realization of data) leads to a single posterior distribution for the parameter of interest.

For instance, a model that imposes dogmatic point-identifying assumptions with a single prior

distribution for the reduced-form parameters (such as model Mp in Scenario 1) belongs to

this class, as does a model that assumes a single prior distribution for the whole structural

parameters (such as model MB in Scenario 2). We denote the collection of single-posterior

models by Mp.

A member of K models is a multiple-posterior model. The following two features define a

multiple-posterior model: (1) under a set of identifying assumptions, the parameter of interest

is set-identified, i.e., knowledge of the distribution of observables (value of the reduced-form

parameters) does not pin down a unique value for the parameter of interest, and (2) a single

prior distribution for the reduced-form parameters is available. The posterior information in a

multiple-posterior model is characterized by the set of posteriors. We denote the collection of

multiple-posterior models by Ms.

Let M ≡ Mp ∪ Ms. We denote a vector of structural parameters in model M ∈ M by

θM ∈ ΘM , where we define the domain ΘM as the set of structural parameters that satisfy the

identifying assumptions imposed in model M . We assume that the parameter of interest α =

αM (θM ) ∈ R is well-defined as a function of θM and it carries a common (causal) interpretation

in any of the candidate models. The reduced-form parameter φM is a function of the structural

parameters, φM = gM (θM ) ∈ RdM , where gM (∙) maps a set of observationally equivalent

structural parameters subject to the identifying assumptions of model M to a point in the

reduced-form parameter space.10 The domain of the reduced-form parameters is defined by

ΦM = gM (ΘM ). As reflected in the notations, our most general set-up allows the parameter

spaces of the structural parameters as well as those of the reduced-form parameters to differ

across the models.11 We express the likelihood in model M ∈ M in terms of the reduced-form

parameters by p(Y |φM ,M). For a multiple-posterior model M ∈ Ms, define the identified set

of α by ISα(φM |M) = {αM (θM ) : θM ∈ ΘM ∩ g−1
M (φM )}, which is a set-valued mapping from

ΦM to R.

10Let p̃(Y |θM , M) be the likelihood of the structural parameters in model M . p̃(Y |θM , M) depends on θM

only through the reduced-form parameters gM (θM ) for any realization of Y , i.e., there exists p(Y |∙, M) such

that p̃(Y |θM , M) = p(Y |gM (θM ), M) holds for every Y . The statistics literature refers to the reduced-form

parameters as the minimally sufficient parameters (see, e.g., Dawid (1979)).
11For instance, in the context of the simultaneous equation model considered in Section 2, the reduced-form

parameter space differs depending on how many lagged endogenous variables and/or other exogenous variables

are included in the equation system.
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Note that, by its construction, the domain of the reduced form parameters ΦM incorporates

the testable implications, if any, of the imposed identifying assumptions. For a set-identified

model M s ∈ Ms, ΦMs is equivalent to the set of φM ’s that yield a nonempty identified set,

ΦMs = {φMs ∈ RdMs : ISα(φMs |M s) 6= ∅}.12

We introduce the following concepts concerning the relationships of the reduced-form pa-

rameter spaces among candidate models.

Definition 3.1 Let M be a collection of candidate models.

(i) M admits an identical reduced-form if the following three condition holds:

(a) ΦM can be embedded into a common d-dimensional Euclidean space Rd for all M ∈

M (hence φM can be denoted by φ ∈ Rd).

(b) The reduced-form likelihood p(Y |φM = φ,M) defines a probability distribution of Y

for all φ ∈ Φ ≡ ∪M∈MΦM .

(c) Y is conditionally independent of M given φ, i.e., p(Y |φM = φ,M) = p(Y |φ) holds

for all φ ∈ Φ and M ∈ M, where p(Y |φ) is the likelihood function common among

M ∈ M.

(ii) The models in M are observationally equivalent at φ if M admits an identical

reduced-form and φ ∈ ∩M∈MΦM .

(iii) Two distinct models M,M ′ ∈ M are distinguishable if ΦM 6= ΦM ′ .

(iv) The models in M are indistinguishable if M admits an identical reduced-form and

ΦM = Φ for all M ∈ M.

The concept of an identical reduced-form formalizes the situation where the models differen-

tiated in terms of identifying assumptions lead to an identical parametric family of distributions

of observables (Condition (a) in Definition 3.1 (i)). Even when the models admit an identi-

cal reduced-form, the imposed identifying assumptions can be observationally restrictive, and

thereby {ΦM} the supports of the reduced-form parameters can differ across the models. Impor-

tant features in Definition 3.1 (i) are Conditions (b) and (c). They require that the distribution

of Y in model M (indexed by φ) can be well-defined over the extended domain Φ = ∪M∈MΦM .

For instance, if M consists of SVAR(p) models with different choices of identifying assumptions

12For instance, in SVAR(p) with observationally restrictive sign restrictions, ΦM is the set of reduced-form

parameters in VAR(p) yielding the nonempty impulse response identified set, which can be a proper subset of

the reduced-form parameter space of VAR(p).
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(including observationally restrictive ones such as SVARs with sign restrictions), the conditions

of Definition 3.1(i) are satisfied with the identical reduced-form being VAR(p).13

Models that are observationally equivalent at φ (Definition 3.1 (ii)) fit equally well to the

given distribution of data (corresponding to φ). Note that our definition of the observational

equivalence is local to the given φ, and it does not constrain relationships among ΦM ’s except

that they have the non-empty intersection. In contrast, the concept of (in)distinguishability

in Definition 3.1 (iii) and (iv) compares the domains of the reduced-form parameters across

the models. In particular, Definition 3.1 (iv) is interpreted as observational equivalence in the

global sense — if the models in M are indistinguishable, no matter what knowledge we have

for the distribution of data, we never be able to judge what model fits better than the others

(e.g., the candidate models of SVAR(0) considered in Section 2).

3.2 Posterior Model Probabilities

This section derives posterior model probabilities to be used for our averaging procedure.

Lemma 3.1 below shows analytical results in the special case where the candidate models

admit an identical reduced-form.

By the definition of reduced-form parameters, the value of the likelihood depends on θM

only through φM . This means that the marginal likelihood can be computed uniquely for every

model including any multiple-posterior model since it specifies a single prior for φMs .

Let (πM : M ∈ M),
∑

M∈M πM = 1, be prior probability weights assigned over M. By the

Bayes’ rule, the posterior model probabilities (πM |Y : M ∈ M) are

πM |Y =
p(Y |M)πM∑

M ′∈M p(Y |M ′)πM ′
. (3.1)

In the special cases addressed precisely in the next lemma, we can obtain simple formulae for

the posterior model probabilities.

Lemma 3.1 Suppose that the multiple-posterior models M s ∈ Ms admit an identical reduced-

form, so that we denote their reduced-form parameters by φMs = φ ∈ Rd. Let Φ = ∪Ms∈MsΦMs ⊂

Rd. Suppose also that for a proper prior π̃φ on Φ, π̃φ(ΦMs) = π̃φ(ISα(φ|M s) 6= ∅) > 0 holds

for all M s ∈ Ms. Let π̃φ|Y be the posterior of φ obtained by updating π̃φ with the likelihood

p(Y |φ) that is common among M s ∈ Ms.

(i) If the φ-prior in each multiple-posterior model satisfies for every measurable subset

B ⊂ Φ,

πφ|Ms(B) =
π̃φ(B ∩ ΦMs)

π̃φ(ΦMs)
, (3.2)

13The treatment effect models of Appendix A.2 shows another example that admits an identical reduced-form.
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i.e., the prior of φ in model M s ∈ Ms is constructed by trimming the support of π̃φ to ΦMs =

{ISα(φ|M s) 6= ∅}, then the posterior model probabilities are given by





πMp|Y = p(Y |Mp)πMp∑
Mp∈Mp p(Y |Mp)πMp+p̃(Y )

∑
Ms∈Ms OMsπMs

, for Mp ∈ Mp,

πMs|Y = p̃(Y )OMsπMs∑
Mp∈Mp p(Y |Mp)πMp+p̃(Y )

∑
Ms∈Ms OMsπMs

, for M s ∈ Ms,
(3.3)

where OMs is the posterior-prior plausibility ratio of the set-identifying assumptions of model

M s ∈ Ms and p̃(Y ) is the marginal likelihood with respect to prior π̃φ,

OMs ≡
π̃φ|Y (ΦMs)

π̃φ(ΦMs)
=

π̃φ|Y (ISα(φ|M s) 6= ∅)

π̃φ(ISα(φ|M s) 6= ∅)
, p̃(Y ) =

∫

Φ
p(Y |φ)dπ̃φ(φ) (3.4)

(ii) Suppose that, in addition to Ms, all the single-posterior models Mp admit the identical

reduced-form. If a prior for φ in every M ∈ M satisfies (3.2) with common π̃φ and π̃φ(ΦM ) > 0,

then the posterior model probabilities can be further simplified to

πM |Y =
OMπM∑

M∈M OMπM
for M ∈ M, (3.5)

where OM is the posterior-prior plausibility ratio OM =
π̃φ|Y (ΦM )

π̃φ(ΦM ) .

(iii) If all the candidate models are indistinguishable and a prior for φ is common, then the

model probabilities are not updated, πM |Y = πM for all M ∈ M.

Lemma 3.1 clarifies the sources of updating for the model probabilities when the candidate

models yield the identical reduced-form model but differ in terms of the identifying assumptions.

In the first claim, the specification of φ-prior (3.2) simplifies the marginal likelihood of the set-

identified model M s ∈ Ms to p̃(Y )OMs . Since computation for p̃(Y ) and OMs requires only

one set of Monte Carlo draws of φ from each π̃φ|Y and π̃φ, we save computation by avoiding

to run separate Monte Carlo simulations across the set-identified models. In the setting of

Lemma 3.1 (ii), we do not even need to compute the marginal likelihoods. The posterior model

probabilities are updated only through the posterior-prior plausibility ratios of the candidate

models, implying that draws of the reduced form parameters from prior π̃φ and posterior π̃φ|Y ,

and assessments of the validity of the identifying assumptions at each drawn φ are all we need

to approximate them. In particular, the claim in (iii) says if all the candidate models are

indistinguishable, the prior model probabilities can never be updated.

In the example presented in Section 2, Scenario 1 represents a case where Lemma 3.1 (iii)

applies: no update occurs for the model probabilities. Scenario 2 represents the case of Lemma

3.1 (i) with OMs = 1, since the identified set is never empty. In the example of the treatment

effect model presented in Appendix A.2, the point-identified and set-identified models are

distinguishable since they have distinct testable implications. Hence, if the common kernel of

the prior is maintained as in (3.2), Lemma 3.1 (ii) offers the formula of their posterior model

probabilities.
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3.3 Post-Averaging Ambiguous Belief and the Range of Posteriors

Estimation of the single-posterior models proceeds in the standard Bayesian way. We therefore

take πα|Mp,Y , the posterior for α in each single-posterior model Mp ∈ Mp, as given.

We perform posterior inference for model M s ∈ Ms in the robust Bayesian way: we specify

a single proper prior πφMs |Ms for the reduced form parameters with support ΦMs , and form

the set of priors for θMs as

ΠθMs |Ms ≡
{
πθMs |Ms : πθMs |Ms(ΘMs ∩ g−1

Ms(B)) = πφMs |Ms(B), ∀B ∈ B(ΦMs)
}

, (3.6)

where B(ΦMs) is the Borel σ-algebra of ΦMs .14 In words, ΠθMs |Ms collects prior distributions of

θMs that meet the imposed identifying restrictions with probability one (i.e., πθMs |Ms(ΘMs) =

1) and whose φMs-marginals coincide with the specified φMs-prior. Applying prior-by-prior up-

dating to ΠθMs |Ms with the likelihood p̃(Y |θMs ,M s) and marginalizing the resulting posteriors

in terms of α, we obtain the set of posteriors for α with the following form:15

Πα|Ms,Y

≡

{

πα|Ms,Y =
∫

ΦM

πα|Ms,φMs dπφMs |Ms,Y : πα|Ms,φMs (ISα(φMs |M s)) = 1, πφMs |Ms-a.s.

}

.

(3.7)

Given the posterior model probabilities, an averaged posterior for α is a mixture,

πα|Y =
∑

Mp∈Mp

πα|Mp,Y πMp|Y +
∑

Ms∈Ms

πα|Ms,Y πMs|Y .

where (πα|Mp,Y : Mp ∈ Mp) are given uniquely, while for M s ∈ Ms, the posterior information

of α is summarized by the set of posteriors given in (3.7). Since there are no cross-model

restrictions that constrain selections of posteriors across the different multiple posterior models,

the set of averaged posteriors spanned by {Πα|Ms,Y : M s ∈ Ms} is obtained as

Πα|Y =

{
∑

Mp∈Mp

πα|Mp,Y πMp|Y +
∑

Ms∈Ms

πα|Ms,Y πMs|Y : πα|Ms,Y ∈ Πα|Ms,Y ∀M s ∈ Ms

}

.

(3.8)

14By noting that the constraints in (3.6) are rewritten as
∫

B
πθMs |φMs ,Ms(ΘMs ∩ g−1

Ms(φ))dπφMs |Ms(φMs) =

πφMs |Ms(B) for all B ∈ B(ΦMs), the prior class (3.6) can be equivalently represented as

ΠθMs |Ms =

{∫

ΦMs

πθMs |φMs ,MsdπΦMs |Ms : πθMs |φMs ,Ms(ΘMs ∩ g−1
Ms(φMs)) = 1, πφMs |Ms,Y -a.s.

}

.

This alternative expression is exploited in the illustrative example of Section 2.
15Lemma A.1 in Appendix A shows a formal derivation of Πα|Ms,Y .
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Our presentation of the averaging step is heuristic and does not explicitly justify it in relation

to any robust Bayesian updating rule. If the structural parameters are common across the

candidate models (i.e., the subscript in θM can be dropped), we can formally derive the formula

of post-averaging ambiguous belief by applying the prior-by-prior updating rule to a certain

class of priors, as shown in the next proposition.

Proposition 3.1 Suppose that the structural parameters in any of the candidate models can

be embedded into a common parameter space, i,e,, θM = θ ∈ Rdθ for all M ∈ M. Accordingly,

define Θ = ∪M∈MΘM ⊂ Rdθ . Let prior models probabilities (πM : M ∈ M), πθ|Mp a unique

prior for θ in Mp ∈ Mp, and a unique prior for reduced-form paramters πφMs |Ms in M s ∈ Ms

be given. Define the following set of priors for (θ,M) ∈ Θ ×M:

Πθ,M ≡
{
πθ,M = πθ|MπM : πθ|Ms ∈ Πθ|Ms for every M s ∈ Ms

}
, (3.9)

The prior-by-prior Bayesian updating rule applied to Πθ,M with likelihood p̃(Y |θ,M) yields (3.8)

as the class of posteriors marginalized to α.

The next proposition shows the range of posterior means, posterior quantiles, and the

posterior probabilities when the posterior for α varies within Πα|Y .

Proposition 3.2 Let [l(φMs |M s), u(φMs |M s)] be the convex hull of the identified set ISα(φMs |M s)

in model M s ∈ Ms.

(i) The range of posterior means of Πα|Y is the convex interval with the lower and upper bounds

given by

inf
πα|Y ∈Πα|Y

Eα|Y (α) =
∑

Mp∈Mp

Eα|Mp,Y (α)πMp|Y +
∑

Ms∈Ms

EφMs |Y,Ms [l(φMs |M s)]πMs|Y ,

sup
πα|Y ∈Πα|Y

Eα|Y (α) =
∑

Mp∈Mp

Eα|Mp,Y (α)πMp|Y +
∑

Ms∈Ms

EφMs |Y,Ms [u(φMs |M s)]πMs|Y ,

where EφMs |Y,Ms(∙) is the expectation with respect to the posterior distribution of φMs in model

M s ∈ Ms.

(ii) For any measurable subset A in R, the lower bound of the posterior probabilities on {α ∈ A}

in the class Πα|Y (the lower posterior probability of Πα|Y ) is

inf
πα|Y ∈Πα|Y

πα|Y (A) =
∑

Mp∈Mp

πα|Mp,Y (A)πMp|Y +
∑

Ms∈Ms

πφMs |Y,Ms(ISα(φMs |M s) ⊂ A)∙πMs|Y .
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(iii) The lower and upper bounds of the cumulative distribution functions (cdf) of πα|Y ∈ Πα|Y

are

πα|Y (a) ≡ inf
πα|Y ∈Πα|Y

πα|Y ([−∞, a])

=
∑

Mp∈Mp

πα|Mp,Y ([−∞, a])πMp|Y +
∑

Ms∈Ms

πφMs |Y,Ms ({u(φMs |M s) ≤ a}) πMs|Y ,

π̄α|Y (a) ≡ sup
πα|Y ∈Πα|Y

πα|Y ([−∞, a])

=
∑

Mp∈Mp

πα|Mp,Y ([−∞, a])πMp|Y +
∑

Ms∈Ms

πφMs |Y,Ms ({l(φMs |M s) ≤ a}) πMs|Y ,

and the range of posterior τ -th quantiles, τ ∈ (0, 1), is
[
inf{a : π̄α|Y (a) ≥ τ}, inf{a : πα|Y (a) ≥ τ}

]
.

If a set-identified model delivers ISα(φMs |M s) as a connected interval at every reduced-

form parameter value, then we can view
[
EφMs |Y,Ms [l(φMs |M s)], EφMs |Y,Ms [u(φMs |M s)]

]
as a

point estimator for the identified set in model M s. We can therefore interpret the range of post-

averaging posterior means as the weighted Minkowski sum of the Bayesian point estimators

(posterior mean) in the point-identified models and the identified set estimators in the set-

identified models. The second claim of the proposition provides an analytical expression of the

lower probability of Πα|Y . This lower probability is a mixture of the containment functionals

of the random sets, which in turn can be viewed as the containment functional of the mixture

random sets Pr(ISmix
α ⊂ A), where ISmix

α is generated according to

M ∼ Multinomial
(
{πM |Y }M∈M

)
, (3.10)

ISmix
α =






{α}, α|(Mp, Y ) ∼ πα|Mp,Y for Mp ∈ Mp,

ISα(φMs |M s), φMs |(M s, Y ) ∼ πφMs |Ms,Y for M s ∈ Ms.

This way of interpreting the lower probability of Πα|Y simplifies its computation and justifies

the Monte Carlo algorithm presented in (2.9).

3.4 Computations

To report the range of posteriors based on the analytical expressions in Proposition 3.2, we

need to compute (I) the posterior model probabilities (equivalently, the marginal likelihood in

each M ∈ M), (II) the posterior distributions of α for each single-posterior model, and (III)

the identified set ISα(φMs |M s) and its probability law πφMs |Ms,Y for each multiple-posterior

model. Since the estimation of the single-posterior model in (II) is the standard Bayesian

inference, we assume some suitable posterior sampling algorithm is applicable to have Monte

Carlo draws of α ∼ πα|Mp,Y . For (I), efficient and reliable algorithms to compute the marginal

likelihood are available in the literature, e.g., see Chib and Jeliazkov (2001), Geweke (1999),
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and Sims, Waggoner, and Zha (2008). When Lemma 3.1 (i) or (ii) applies, such as in the

empirical application below, the computation of the marginal likelihoods for multiple-posterior

models can be reduced to the computation of the posterior-prior plausibility ratios OM . Since

OM ’s and the quantities in (III) are less common, this section briefly discusses how to compute

them under the setting of Lemma 3.1(i) or (ii).

In each multiple-posterior model, if we can assess non-emptiness of the identified set at

each φ ∈ Φ, the posterior-prior plausibility ratio OMs can be computed simply by plugging

in numerical approximations for the prior and posterior probabilities of non-emptiness of the

identified set into (3.4). The denominator of OMs is computed by drawing many φ’s from

the prior π̃φ and computing the fraction of draws that yield nonempty identified sets. The

numerator of OMs is computed similarly except that φ’s are drawn from the posterior π̃φ|Y .16

Monte Carlo draws of the lower and upper bounds of the identified set in model M ∈ Ms

can be obtained in the following two steps. In the first step, we draw φ’s from the posterior π̃φ|Y .

In the second step, we retain the draws of φ that yield nonempty ISα(φ|M s), and compute

corresponding l(φ|M s) and u(φ|M s). By taking their sample averages, we can approximate

Eφ|Ms,Y (l(φ|M s)) and Eφ|Ms,Y (u(φ|M s)). Implementation of this computational procedure

relies on computability of the lower and upper bounds of the identified set for each φ. Whether

it is a simple task or not depends on applications. In the SVAR application of Section 5, we

compute l(φ|M s) and u(φ|M s) by numerical optimization. Alternatively, adopting the criterion

function approach of Chernozhukov, Hong, and Tamer (2007), the computation of the lower and

upper bounds of the identified set can be facilitated by applying the slice sampling algorithm

proposed by Kline and Tamer (2016).

Utilizing the mixture random set representation shown in (3.10), we can use the following

algorithm to approximate the lower probability:

Algorithm 3.1

Step 1: Draw a model M ∈ M from the multinomial distribution with parameters (πM |Y : M ∈

M).

Step 2: If the drawn M belongs to Mp, then draw α ∼ πα|M,Y and set ISmix
α = {α} (a singleton

set). If the drawn M belongs to Ms, draw φM ∼ πφ|M,Y and set ISmix
α = ISα(φM |M).17

16For instance, in the SVAR application considered in Section 5, we can assess non-emptiness of the identified

set by drawing many non-identified parameters (rotation matrices) from the uniform distribution (Haar measure

on the space of orthonormal matrices) using the sampling algorithm of Uhlig (2005), and then verifying if any

of the draws satisfy the imposed sign restrictions. See also Algorithm 5.1 in Giacomini and Kitagawa (2015).
17Note that since πφ|M,Y is supported only on the set of φ’s yielding nonempty identified set, ISα(φ|M)

computed subsequently is nonempty.
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Step 3: Repeat Steps 1 and 2 many times (G times) and obtain G draws of ISmix
α denoted by

ISmix
α,1 , . . . , ISmix

α,G .

Step 4: Let [lmix
g , umix

g ] be the lower and upper bound of ISmix
α,g , g = 1, . . . , G, where lmix

g = umix
g

if ISmix
α,g is a singleton (i.e., g-th draw of M belongs to Mp). We approximate the mean

bounds of the post-average posterior class by

inf
πα|Y ∈Πα|Y

Eα|Y (α) =
1
G

G∑

g=1

lmix
g , sup

πα|Y ∈Πα|Y

Eα|Y (α) =
1
G

G∑

g=1

umix
g . (3.11)

We approximate the lower probability of the post-averaging posterior class at A ⊂ R by

inf
πα|Y ∈Πα|Y

πα|Y (A) ≈
1
G

G∑

g=1

1{ISmix
α,g ⊂ A}. (3.12)

The Monte Carlo draws of ISmix
α obtained in Steps 1-3 in Algorithm 3.1 are also useful for

constructing the robust credible regions. The robust credible region with credibility γ ∈ (0, 1) is

defined as the shortest interval to which every posterior in the posterior class assigns probability

at least γ;

Cγ ≡ arg min
C∈C

length(C), s.t. inf
πα|Y ∈Πα|Y

πα|Y (C) ≥ γ, (3.13)

where C is the class of connected intervals in R. Since the constraint in (3.13) can be interpreted

equivalently as Pr(ISmix
α ⊂ C) ≥ γ, the computation of Cγ can be reduced to finding the

shortest interval that contains the γ-proportion of the Monte Carlo draws of ISmix
α . A simple

computation algorithm for this optimization problem is shown in Proposition 5.1 of Kitagawa

(2012) and it can be readily applied to the current context.

3.5 Asymptotic Behaviour

This section analyzes the asymptotic properties of our averaging proposal. The proposed

procedure is indeed finite-sample exact (up to Monte Carlo approximation errors) and does not

rely on any asymptotic approximation. The asymptotic analysis is nevertheless valuable, as it

informs what aspect of prior input can be influential to the posterior output independent of

the sample size. In this section, we make the sample size explicit in our notation by denoting

a size n sample by Y n.

To keep tight links to the analytical results of Lemma 3.1 and the empirical application

below, we assume throughout this section that M admits an identical reduced-form in the

sense of Definition 3.1 (i). We assume that at least one model is correctly specified so that

the true data generating process is given by p(Y n|φtrue), where φtrue ∈ Φ is the true reduced-

form parameter value. We denote the unconstrained maximum likelihood estimator for φ by

21



φ̂ ≡ arg maxφ∈Φ p(Y n|φ). In what follows, we denote the true probability law of the sampling

sequence {Y n : n = 1, 2, . . . } by PY ∞|φtrue
.

Our asymptotic results shown below uses the following regularity assumptions:

Assumption 3.2 (i) M admits an identical reduced-form and every M ∈ M satisfies either

one of the following conditions:

(A) ΦM contains φtrue in its interior.

(B) Φc
M contains φtrue in its interior.

MA, denoting the set of models satisfying condition (A), is nonempty.

(ii) Let ln(φ) ≡ n−1 log p(Y n|φ). There exists B an open neighborhood of φtrue and n0 ≥ 1

such that for any {Y n : n = n0, n0 + 1, . . . }, ln(∙) is third-time differentiable with the

third-order derivatives bounded uniformly on B.

(iii) Let Hn(φ̂) ≡ −∂2ln(φ̂)
∂φ′∂φ . Hn(φ̂) is a positive definite matrix and lim infn→∞ det(Hn(φ̂)) >

0, with PY ∞|φtrue
-probability one.

(iv) For any B open neighborhood of φtrue,

lim sup
n→∞

sup
φ∈Φ\B

{ln(φ) − ln(φtrue)} < 0

holds with PY ∞|φtrue
-probability one.

(v) For every model M ∈ M, πφ|M has the probability density fφ|M (φ) ≡
dπφ|M

dφ (φ) with

respect to the Lebesgue measure on ΦM and fφ|M (φ) is continuously differentiable with

the uniformly bounded derivative. For every M ∈ MA, fφ|M (φtrue) > 0.

Assumption 3.2 (i) implies that none of the models has φtrue on the boundary of its reduced-

form parameter space. MA defined in Assumption 3.2 (i) collects the models that are observa-

tionally equivalent at φtrue in the sense of Definition 3.1 (ii). The requirement for φtrue being

in the interior of ΦM implies that ΦM , M ∈ MA, has a nonempty interior in Rd. In addition,

for a set-identified model, condition (A) implies that M s ∈ MA has nonempty ISα(φ|M s) on

an open neighborhood of φtrue, and condition (B) implies that M s ∈ Ms \ MA has empty

ISα(φ|M s) on an open neighborhood of φtrue. Assumptions 3.2 (iii) and (iv) impose regular-

ity conditions for the likelihood functions that imply strong (almost sure) consistency of φ̂.

Assumptions 3.2 (ii) and (v) that restrict smoothness of the log-likelihood and φ-prior allow

an application of the Laplace method to approximate the large sample marginal likelihood. A
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set of assumptions similar to Assumptions 3.2 (ii) - (v) appears in Kass, Tierney, and Kadane

(1990) in their validation of the higher-order expansion of the marginal likelihood.

The next proposition, which is a large sample analogue of Lemma 3.1, summarizes the large

sample limits of the posterior model probabilities.

Proposition 3.3 (i) Suppose Assumption 3.2 holds.

πM |Y ∞ ≡ lim
n→∞

πM |Y n =






fφ|M (φtrue)∙πM∑
M ′∈MA

fφ|M ′ (φtrue)∙πM ′
, for M ∈ MA,

0, for M /∈ MA.
(3.14)

with PY ∞|φtrue
-probability one.

(ii) Suppose that Assumption 3.2 holds and a prior for φ given M is constructed according

to (3.2) with a proper prior π̃φ. If π̃φ(ΦM ) > 0 for all M ∈ M,

πM |Y ∞ =






π̃φ(ΦM )−1∙πM∑
M ′∈MA

π̃φ(ΦM ′ )−1∙πM ′
, for M ∈ MA,

0, for M /∈ MA.
(3.15)

with PY ∞|φtrue
-probability one.

(iii) Under the assumptions of Lemma 3.1 (iii), πM |Y ∞ = πM holds for every M ∈ M for any

sampling sequence {Y n : n = 1, 2, . . . }.

This proposition clarifies the large sample behaviors of the averaging weights in the situa-

tions where the candidate models admit an identical reduced-form. First, the posterior model

probabilities can correctly screen out all the misspecified models M /∈ MA, as whose posterior

weights converge to zero asymptotically irrespective of an initial choice of prior model proba-

bilities. Accordingly, if there is only one model that is consistent with the true data generating

process, our averaging procedure asymptotically assigns weight one to it. Second, if MA con-

tains multiple models, the asymptotic weights allocated among M ∈ MA are determined by

the prior model probabilities {πM : M ∈ MA} and the densities of φ-priors evaluated at φtrue.

This implies that the sensitivity of post-averaging posterior to πφ|M and πM does not vanish

asymptotically when multiple candidate models are observationally equivalent at φtrue. Third,

when φ-priors share a common kernel as assumed in Proposition 3.3 (ii), the asymptotic model

probabilities are proportional to the reciprocal of the prior probability (in terms of π̃φ) that

the distribution of data is consistent with the identifying assumptions. Hence, the asymp-

totic posterior model probabilities are higher for more observationally restrictive models, i.e., if

ΦM1 ⊂ ΦM2 for M1,M2 ∈ MA, it holds πM1|Y ∞ ≥ πM2|Y ∞ . This result is in line with the prin-

ciple of parsimony (Ockham’s razor) which the standard Bayesian model selection/averaging
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is typically equipped with — we should prefer a more ”parsimonious” model among those that

explain the data equally well. Note that the notion of ”parsimony” consistent with the claim

of (ii) corresponds to the size of the reduced-form parameter spaces, and has nothing to do

with the strength of identifying assumptions often measured by the width of the α’s identified

set.18

A combination of the asymptotic posterior model probabilities obtained in Proposition 3.3

and the asymptotic behaviors of πα|M,Y n of single-posterior models and Πα|M,Y n of multiple-

posterior models yields the asymptotic convergence properties on the range of the post-averaging

ambiguous belief. To be specific, in addition to Assumption 3.2, we assume that (i) the poste-

rior for φ is consistent to φtrue with PY ∞|φtrue
-probability one, (ii) for Mp ∈ Mp ∩MA, αMp(∙)

is continuous at φtrue and the posterior of αMp(φ) is uniformly integrable with PY ∞|φtrue
-

probability one, and (iii) for M s ∈ Ms ∩MA, the identified set correspondence ISα(φ|M s), is

a compact and continuous correspondence at φtrue and the posteriors of l(φ|M s) and u(φ|M s)

are uniformly integrable with PY ∞|φtrue
-probability one. Then, the range of post-averaging

posterior means considered in Proposition 3.2 (i) has the following large sample limits:

lim
n→∞

[

inf
πα|Y n∈Πα|Y n

Eα|Y n(α), sup
πα|Y n∈Πα|Y n

Eα|Y n(α)

]

=
∑

Mp∈Mp∩MA

αMp(φtrue)πMp|Y ∞ +




∑

Ms∈Ms∩MA

l(φtrue|M
s)πMs|Y ∞ ,

∑

Ms∈Ms∩MA

u(φtrue|M
s)πMs|Y ∞



 .

4 Discussion

4.1 Relationship with Robust Bayes Analysis with ε-contaminated Class of

Priors

The method proposed in this paper has a close link to the robust Bayes analysis with an

ε-contaminated class of priors (Huber (1973), Berger and Berliner (1986)). To clarify this,

consider a simple case where the candidate models are one single posterior model and one

multiple posterior model, M = {Mp,M s}. Furtheremore, we assume that these two models

share a parametrization of the structural model, i.e., the likelihood for common structural

parameters θ does not depend on the models, i.e., Mp and M s differ only in the identifying

assumptions, implying ΘMp 6= ΘMs .
18For instance, in the SVAR context, a model just-identified by a set of equality restrictions is not observa-

tionally restrictive, while a model set-identified by sign restrictions is observationally restrictive if the number

of sign restrictions is larger than the number of variables in the SVAR system. If specifications of φ-prior satisfy

(3.2) and these two models are observationally equivalent at φtrue, then relative to the prior model weights, the

sign-restricted model receives a larger weight than the point-identified model in large sample.
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Given (πMp , πMs), πθ|Mp , and Πθ|Ms in the form of (3.6), consider the set of priors for θ

constructed by marginalizing Πθ,M of Proposition 3.1 to θ;

Πθ ≡
{
πθ = πθ|MpπMp + πθ|MsπMs : πθ|Ms ∈ Πθ|Ms

}
. (4.1)

Similarly to Proposition 3.1, we obtain the post-averaging ambiguous belief Πα|Y by updating

Πθ prior-by-prior and marginalizing to α.

A general formulation of ε-contaminated class of priors is given by

Πε
θ ≡

{
πθ = (1 − ε)π0

θ + εqθ : qθ ∈ Q
}

, (4.2)

where 0 ≤ ε ≤ 1 is a prespecified constant, π0
θ is a benchmark prior distribution for θ, and Q

is a set of priors of θ. Following Berger and Berliner (1986), a motivation for considering the

ε-contaminated class of priors can be stated as follows. The researcher can express an initial

believable prior for θ as π0
θ , but the elicitation process is subject to error by some amount

specified by ε. qθ captures in what way π0
θ differs from the most credible prior and Q specifies

the set of possible departures. Huber (1973) and Berger and Berliner (1986) show the ranges

of posterior probabilities for various specifications of Q when a prior varies over Πε
θ.

Despite that the motivation for our averaging procedure differs from the original motivation

of the ε-contaminated class of priors, the prior input of our averaging procedure specified in (4.1)

has exactly the same form as the ε-contaminated class of priors (4.2) — Πθ is an ε-contaminated

class of priors with benchmark prior coming from the single-prior (point-identified) model

π0
θ = πθ|Mp , the amount of contamination is the prior model probability assigned to the set-

identified model ε = πMs , and the set of priors Q corresponds to the multiple prior input

of the set-identified model Πθ|Ms . This coincidence clarifies the robust Bayes interpretation

behind our averaging scheme.19 If the single-posterior (point-identified) model plays the role

of a sensible benchmark model subject to potential misspecification, averaging it with the

set-identified model with weight πMs can be interpreted as performing sensitivity analysis by

contaminating the prior of the point-identified model by an amount πMs in every possible

direction subject to the set-identifying assumptions.

The robust Bayes literature on ε-contaminated priors has considered several specifications

of Q that lead to analytically tractable classes of posteriors (Berger and Berliner (1986)). To

our knowledge, however, the class of priors in the form of Πθ|Ms has not been investigated.

Motivated by the partial identification analysis, our analysis offers a new way to specify Q

without losing analytical and numerical tractability.
19As an alternative to the prior-by-prior updating, Berger and Berliner (1986) also considers the Type-II

Maximum Likelihood updating rule (empirical Bayes updating rule) of Good (1965). This alternative approach

resolves ambiguity by selecting from the class a prior that maximizes the marginal likelihood. Note that the

Type-II Maximum Likelihood procedure fails to select a unique prior from Πθ, because πθ|Ms ∈ Πθ|Ms sharing

a common prior for φ has the constant marginal likelihood over πθ|Ms ∈ Πθ|Ms .
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4.2 Eliciting Prior Model Probabilities

The key prior input of our procedure is the prior model probability. The robust Bayesian

viewpoint along the ε-contaminated class of priors clarifies interpretation of the prior model

probability and facilitates its elicitation in practice.

Suppose again the set of candidate models consists of one point-identified model Mp and

one set-identified model M s. In addition, we assume Mp is nested in M s in the sense that

the identifying assumptions in Mp include those imposed in M s. In this case, the prior model

probability assigned to Mp should be interpreted as the minimal amount of credibility assigned

to the identifying assumptions in model Mp, and the prior model probability assigned to the

set-identified model can be interpreted as the maximal amount of contamination given to the

point-identifying assumptions imposed in Mp but not in M s. The reason that πMp is giving

the credibility lower bound for model Mp is that, when model M s nests model Mp, the set of

priors specified in model M s contains beliefs that put full or partial credibility to the identifying

assumptions in Mp. As a result, any prior probability between [πMp , 1] can be attained for the

credibility of the identifying assumptions in Mp.

The interpretation of the prior model probabilities differs when the identifying assumptions

in models Mp and M s are non-overlapping. In this case, the prior model probabilities are

interpreted as the standard probabilistic belief assigned over the mutually exclusive models.

When the identifying assumptions in models Mp and M s are non-nested but overlapping

(e.g., Scenario 1 in Section 2), interpreting the model probabilities may not appear as clear-cut

as in the previous two cases. However, the lower credibility bound interpretation of πMp given

in the nested case above remains valid. What differs from the nested case is that the maximal

credibility that can be assigned to the identifying assumptions in Mp can be strictly less than

one.

4.3 Relationship with Hierarchical Bayesian Approach

Point-identifying assumptions or a prior for structural parameters sometime come from a struc-

tural econometric model utilizing economic theory. A set-identified model, in contrast, may

represent a ”semi-structural” heuristic description of the underlying causal mechanisms with a

flexible functional form. For instance, in empirical macroeconomic policy analysis, we can view

a commonly used DSGE model as a single-posterior model and a sign restricted SVAR model

as a set-identified model.

In such context, averaging them offers a way to combine the structural modelling approach

and a more ”reduced-form” approach.20 The macroeconometrics literature has proposed uses

20What we mean by ”reduced-form” approach here differs from the technical terminology of the reduced-form

model/parameters in our expositions.
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of hierarchical Bayesian methods to bridge the gap between the structural modelling approach

and the ”reduced-form” approach (Del Negro and Schorfheide (2004)), in which the structural

parameters in the DSGE model act as hyperparameters of a prior for SVAR parameters.

The robust Bayes averaging approach, albeit similar in motivation in such context, dif-

fers from the hierarchical Bayesian approach in the following aspects. First, the hierarchical

Bayesian approach always leads to a single posterior for the causal parameters (impulse re-

sponses), no matter whether they are identified or not in the SVAR model. If they are not,

this means that the prior for the structural parameters in the DSGE model and the prior for

the SVAR parameters (given the hyperparameters) have some part that is unrevisable by the

data. Hence, if one cannot specify these prior inputs with full confidence, posterior sensitivity

may well become a concern. In contrast, our procedure classifies the DSGE model as a single

posterior model and the set-identified SVAR as a multiple-posterior model. Limited credibility

in the prior for the Bayesian DSGE model can be incorporated into the posterior inference

by mixing with the set-identified SVAR model with carefully specified πMs . Second, in the

hierarchical Bayesian approach, tightness of the prior around the mean predicted by the DSGE

model plays the role of prior confidence assigned to the structural model. In our procedure,

the model probability assigned to the structural model governs the degree of confidence. It is

however important to distinguish the notions of confidence between the two approaches, since

the former is in the scale of the Bayesian probabilistic uncertainty while the latter is in the

scale of Knightian uncertainty.

5 Empirical Application

We illustrate our method in the context of a monetary SVAR. We consider a 4-variable SVAR

with two lags. Let yt = [it, Δyt, πt,mt]
′ denote the endogenous variables, where it is the federal

funds rate, Δyt is real output growth, πt is inflation and mt is a measure of real money.

Following Notation 3.1 in Giacomini and Kitagawa (2015), we order the variables so that we

can easily verify the conditions guaranteeing convexity of the identified set using their Lemmas

5.1 and 5.2.

A0









it

Δyt

πt

mt









= c +
2∑

j=1

Aj









it−j

Δyt−j

πt−j

mt−j









+









εi
t

εΔy
t

επ
t

εm
t









(5.1)

27



where

A0 =









a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44









. (5.2)

The reduced-form VAR is as follows

yt = b +
2∑

j=1

Bjyt−j + ut (5.3)

for t = 1, . . . , T , where b = A−1
0 c,Bj = A−1

0 Aj , ut = A−1
0 εt, var(ut) = E(utu

′
t) = Σ =

A−1
0 (A−1

0 )′. Let φ = (b,B1, B2, Σ) collect the reduced-form parameters.

We interpret the first equation as a monetary policy function: the Federal Reserve reacts

to price, GDP and money, as well as lags of all variables. Any additional change would be

an exogenous monetary policy shock. The second and third equations represent aggregate

demand (AD) and aggregate supply (AS), respectively. The last equation is a money demand

equation derived from the well-known relation MV = PY , where Y is the real income and V

represents velocity. In this perspective, εm
t stands for a velocity shock, provided that real GDP

is the real income. The data are quarterly observations from 1965:1 to 2005:1 and are from

the FRED2 database of the Federal Reserve Bank of St. Louis. The data set is from Aruoba

and Schorfheide (2011), and it is the same as that used by Moon, Schorfheide, and Granziera

(2013) and Giacomini and Kitagawa (2015).

The prior for the reduced-form parameters belongs to the Normal-Wishart family and is

common among the models unless otherwise stated:

Σ−1 ∼ W(Ψ−1, d), β|Σ ∼ N (b̄, Σ ⊗ Ω),

where β ≡ vec([b,B1, B2]′). Let Ψ be the location matrix of Σ and d a scalar corresponding to

the degrees of freedom. Let b̄ and Ω denote the prior mean and variance-covariance matrix of

β, respectively.

Following Christiano, Eichenbaum, and Evans (1999), we impose the sign normalization

restrictions so that the diagonal elements of A0 are all nonnegative.

5.1 Averaging Non-falsifiable Models

Suppose we are interested in the output response to a unit positive shock in the federal funds

rate εi
t, denoted by IRh

Δyi, and consider the following two sets of identifying assumptions.
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• Model 1 (M1, point-identified)

Consider the standard recursive causal ordering restrictions (Bernanke (1986) and Sims

(1980)). In particular, we adopt the Cholesky decomposition to identify the interest

rate shock and follow the literature in ordering it fourth after output, inflation, and the

monetary aggregate:








aM1
11 0 0 0

aM1
21 aM1

22 0 0

aM1
31 aM1

32 aM1
33 0

aM1
41 aM1

42 aM1
43 aM1

44

















Δyt

πt

mt

it









= c +
2∑

j=1

Aj









Δyt−j

πt−j

mt−j

it−j









+









εΔy
t

επ
t

εm
t

εi
t









(5.4)

The economic interpretation is that AD, AS and money demand do not react to the

contemporaneous interest rate shock. Since we are interested in identifying a single

shock, the identification scheme restricts A0 in equations (5.1) and (5.2) so that a21 =

a31 = a41 = 0.

• Model 2 (M2, set-identified through zero restrictions)

The recursive identification scheme in Model 1 is controversial21. For example, assump-

tion a31 = 0, assuming that prices do not react contemporaneously to the interest rate

shock, can be difficult to justify if the researcher relies on the stock price index rather

than the GDP deflator. Thus, in Model 2 we leave AS unrestricted, i.e., AS can react to

the interest rate within the quarter. By Lemma 5.1 in Giacomini and Kitagawa (2015),

Model 2 now delivers a convex identified set for IRh
Δyi for every value of the reduced form

parameters.

The prior weights assigned to the two models are w1 and w2 = 1−w1, respectively. In other

words, with prior weight w1 the researcher believes that AS does not respond to the interest

rate within a quarter (Model 1); with prior weight (1 − w1), the researcher believes that AS

reacts to the interest rate within a quarter (Model 2).

Figure 1 reports the credible region for the output response based on Model 1 and Model

2 at horizon h = 3. In the top panel, the vertical solid lines for Model 1 are the credible region

for the point-identified model based on a single posterior for the impulse response, and the

vertical dashed lines for Model 2 are the posterior mean bounds (consistent estimator of the

identified set) for the output response. The bottom left panel reports the combination results

for uniform prior weights, w1 = w2 = 0.5. The vertical dashed lines for the averaged model

can be interpreted as shrinking the identified set estimator from Model 2 towards the point

estimator from Model 1. Figure 2 reports the output impulse response credible sets for multiple

horizons for the same set of models as in Figure 1.

21See Kilian (2013) for details over the limitations of point-identifying assumptions in such a model.
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First of all, since the models are observationally equivalent and non-falsifiable, the prior

weights are not updated and hence directly affect the averaged model. Second, as common

for standard recursive causal ordering restrictions in small-scale SVAR, Model 1 shows output

puzzle22, while set-identified Model 2 supports neutrality of money. Under w1 = 0.5, the prior

weight attached to Model 1 is high enough to favour output puzzle in the averaged impact

response, i.e., the range of averaged posterior means at h = 0 lies entirely above zero and so

does most of the correspondent robust credible region. It can be shown that output puzzle

vanishes as prior model probability for Model 1 is equal or less than 0.24, i.e., zero is now

contained in the range of averaged posterior means and the robust credible region is (almost)

equally split above and below zero.

We also perform averaging exercise for w1 = 0.8. As expected, output puzzle is still present,

the range of averaged posterior means almost collapses to the (single) posterior mean of Model

1, and the robust credible region gets tighter.

5.2 Averaging with Falsifiable Models

In addition to the previous two sets of assumptions, we further consider two sets of identifying

assumptions that are widely used in empirical applications and that respectively lead to a set-

identified falsifiable model and a point identified model: sign restrictions and restrictions from

a DSGE model.

• Model 3 (M3, set-identified through sign restrictions)

We consider the following sign restrictions: the inflation response to a contractionary

monetary policy shock is nonpositive for two quarters; the interest rate response is non-

negative for two quarters; the response of money is nonpositive for two quarters. By

Lemma 5.2 in Giacomini and Kitagawa (2015), the identified set in Model 3 is convex.

Let the prior weights for Model 1, Model 2, and Model 3 be denoted by (w1, w2, w3). In

contrast to the previous examples, we are now able to update the prior weights by using equation

(3.6), starting from uniform prior weights, w1 = w2 = w3 = 0.33. Figure 3 and Figure 4 report

the results of averaging the three models: while the interpretation of Model 1 and Model 2

is the same as before, Model 3 favours neutrality of money as common in literature (Uhlig

2005, but he relies on a single prior). Table 1 shows that the posterior model probabilities

strongly support Model 3, implying that the weighted model is dominated by sign-restricted

framework. Note that the posterior weights for Model 1 and Model 2 are the same as they are

observationally equivalent.

22Output puzzle refers to contractionary shocks in monetary policy leading to an initial rising rather than

falling of output.
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• Model 4 (M4, DSGE-VAR)

We consider the DSGE-VAR approach suggested by Del Negro and Schorfheide (2004).

We use a standard New Keynesian DSGE model as a prior for the vector autoregression.

Thus, we now allow the reduced-form and its prior to differ across models. The DSGE

model consists of three main endogenous processes: inflation, real output, and a nominal

interest rate, represented in the form of a Phillips curve, a forward-looking IS equation,

and a monetary policy function, respectively23. In order to obtain the VAR prior from the

DSGE model, we simulate time-series data from the DSGE model and fit a VAR to these

data. Specifically, we replace the sample moments of the simulated data by population

moments computed from the DSGE model solution. The DSGE model relies on unknown

structural parameters, so we use a hierarchical prior by setting up a distribution on the

DSGE model parameters. A tightness parameter controls the weight on the DSGE model

prior relative to the weight of the actual sample. Finally, Markov Chain Monte Carlo

methods generate draws from the joint posterior distribution of the VAR and DSGE model

parameters and the Laplace approximation is used to compute the marginal likelihood.

In order to identify the interest rate shock, we construct an orthonormal matrix from

the VAR approximation of the DSGE model to map the reduced-form innovations into

structural shocks. This procedure induces a DSGE model-based prior distribution for the

VAR impulse responses. In other words, we first QR-factorize the state space representa-

tion of the DSGE model and then replace the unidentified rotation matrix of the SVAR

with it. Thus, this framework can be viewed as a way to obtain a non-degenerate prior

for the rotation matrix using the DSGE model and a prior for its parameters. Note that,

since the DSGE-VAR is a single-posterior model, what matters for updating the prior

weight for the model is its marginal likelihood.

It is noteworthy that the extent to which the SVAR impulse responses resemble the DSGE

model’s responses will depend on the tightness of the prior. The larger the latter, the

closer the responses will be. We choose the tightness of the prior endogenously based

on maximization of the marginal data density, as in equation (34) in Del Negro and

Schorfheide (2004). However, in our data the marginal data density is almost flat over

the tightness parameter, meaning that updating of posterior probabilities is not affected

by choice of tightness parameter.

We now propose to weight Model 1, Model 2, and Model 4. Let the prior weights be

w1 = w2 = w4 = 0.33. Given that the prior for reduced-form changes across point-identified

models, i.e., Model 1 and Model 4, we can update prior model probabilities by using equation

(3.4). Figure 5 and Figure 6 display the results of the averaging exercise: while Model 4 strongly

23As reference see Gali (2008); Lawless and Whelan (2011); Woodford (2003).
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supports textbook theory (negative impact of contractionary monetary shock on output), its

data-driven posterior probability converges to 1 (see Table 1). Thus, the weighted model

collapses to Model 4 and, in contrast to the previous examples, is now point-identified. We

observe a similar outcome as we weight Model 1, Model 2, Model 3, and Model 4 (Figure 7 and

Figure 8), where w1 = w2 = w3 = w4 = 0.25: the averaged model collapses to Model 4 as its

posterior probability goes to 1 again (Table 1). Interestingly, the last two averaging exercises

seem to support evidence of negative impact of (contractionary) monetary policy shock on

output24.

5.3 Methodological Note

In each multiple-posterior model (Model 2 and Model 3 above), the prior posterior odds ratio

OM can be computed simply by plugging in numerical approximates of the prior and posterior

probabilities for non-emptiness of the identified set into (3.5).

Specifically, the denominator of OM can be computed by drawing many φ’s from the

reduced-form prior distribution and getting the fraction of draws that yield a nonempty iden-

tified set. In doing so, for each draw of φ, we need to draw many non-identified parameters

(rotation matrices Q) and check if any of the draws satisfies the model’s assumptions. For

details, see Algorithm 5.1 in Giacomini and Kitagawa (2015). The numerator of OM can be

computed similarly except that φ’s are drawn from the posterior distribution.

Note that this procedure presents two drawbacks. First, it is computationally costly and

time-consuming when the number of variables/sign restrictions is large because it relies on

drawing many non-identified parameters25. Second, it is just a rough assessment of the identi-

fied set non-emptiness. As a result, for each draw φ26, we get around the subroutine of drawing

many Q’s and rely on alternative theorems in Border (2013), where construction of the iden-

tified set employs the criterion function approach in Chernozhukov, Hong, and Tamer (2007).

In this perspective, the emptiness of the identified set can be reduced to existence of a feasible

point in the linear system shaped by equality and inequality constraints, i.e., zero and sign

restrictions, respectively. To put it another way, we check for the emptiness of the polyhedron

created by such a system, meaning that the whole routine is reduced to a linear optimization

problem. We find that this procedure is sometimes faster than drawing many Q’s and becomes

more efficient as we increase the number of zero and sign restrictions. In turn, this leads to a

more precise estimate of the proportion of times that the identified set is empty.

24This statement is not supposed to be general and needs to be carefully considered. It is strictly conditional

on dataset and class of candidate models.
25For instance, Giacomini and Kitagawa (2015) propose to draw 3000 Q’s for each draw of reduced-form

parameters.
26In our algorithm, we draw 1000 φ’s.
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5.4 Reverse-Engineering Prior Model Weights

We assumed a uniform distribution of prior weights for the majority of the empirical applica-

tion. However, our procedure can readily accommodate non-uniform weights. For pioneering

contributions on how to determine prior weights in Bayesian averaging, see, e.g., George (1999)

in the discussion of Clyde (1999), where, in order to prevent from overvaluing similar models,

he suggests a ”dilution” technique, i.e., if some models are similar, the weight attached to the

original one should be split between that model and its duplicates. Among others, Chipman

(1996) attaches smaller prior weights to models that are unlikely, Hoeting, Madigan, Raftery,

and Volinsky (1999) rely on variable selection in regression models to determine prior weights

and Clyde and George (2004) propose a Bernoulli specification.

We now propose an exercise of reverse engineering. Suppose that we aim at selecting prior

weights such that the response of output to a contractionary interest rate shock in the averaged

model is initially non-positive, i.e., output puzzle. The economic rationale behind this exercise

is to shed light on the role of identification schemes in our understanding of contractionary

monetary policy shocks.

Reverse engineering constrains the following convex interval to be above zero for h =

0, . . . , H̄:
[

inf
πα|Y ∈Πα|Y

Eα|Y (α), sup
πα|Y ∈Πα|Y

Eα|Y (α)

]

⊆ [0,∞) ,

where

inf
πα|Y ∈Πα|Y

Eα|Y (α) =
∑

M∈Mp

Eα|M,Y (α)πM |Y +
∑

M∈Ms

EφM |Y,M [l(φM |M)]πM |Y ,

sup
πα|Y ∈Πα|Y

Eα|Y (α) =
∑

M∈Mp

Eα|M,Y (α)πM |Y +
∑

M∈Ms

EφM |Y,M [u(φM |M)]πM |Y .

We follow the usual notation and α is now the IRF of output to the interest rate shock. This

is a system of inequalities, where the unknowns are prior weights πM .

For simplicity of exposition, let us consider only Model 3 (set-identification through sign

restrictions) and Model 1 (point-identification through causal ordering restrictions) as described

in section 5.1 and 5.2. We thus have a system of inequalities, where the prior weight for Model

1 w is the unknown:
[

inf
πα|Y ∈Πα|Y

Eα|Y (α), sup
πα|Y ∈Πα|Y

Eα|Y (α)

]

=

= πM1|Y Eα|M1,Y (α) + πM3|Y

[
Eφ|Y,M3(l(φM3 |M3)), Eφ|Y,M3(u(φM3 |M3))

]
⊆ [0,∞) ,

and

πM1|Y =
O1 ∙ w

O1 ∙ w + O3 ∙ (1 − w)
and πM3|Y =

O3 ∙ (1 − w)
O1 ∙ w + O3 ∙ (1 − w)

.

33



We find that the averaged IRF between Model 1 and Model 3 is above zero for h = 0, 1, 2 as

w ≥ 0.95. This result is consistent with the monetary policy literature, where the evidence

for the output puzzle is very strong for small-scale SVAR with causal ordering restrictions.

Similar reverse engineering exercises can be useful to shed light on the role of identification

assumptions in generating so-called price and liquidity puzzles27. For simplicity, we considered

two frameworks. However, the number of models can be increased straightforwardly at the cost

of complicating the system of inequalities.

6 Conclusion

We proposed a method to average point-identified models and set-identified models from the

multiple prior (ambiguous belief) viewpoint. The method combines single prior(s) in point-

identified model(s) with multiple priors in set-identified model(s), and delivers a set of poste-

riors. The post-averaging set of posteriors can be summarized by the range of posterior means

and robust credible regions, which are easy to compute based on the MCMC draws of the iden-

tified sets in each candidate model. Our averaging method can effectively reduce the amount

of ambiguity (the size of the posterior class) relative to the analysis with a set-identified model

only, and hence offers a simple and flexible way to introduce additional identifying information

into the set-identified model. In the opposite direction, when the set-identified model nests

the point-identified model, our averaging method can also offer a simple and flexible way to

conduct sensitivity analysis for the point-identified model.

A Appendix

A.1 Omitted Proofs

Derivation of identified set (2.2). Following Uhlig (2005), we reparameterize A via the

Cholesky matrix Σtr and a rotation matrix Q =

(
cosρ −sinρ

sinρ cosρ

)

with spherical coordinate

ρ ∈ [0, 2π]. We can then express α as a function of φ and the non-identified parameter ρ

indexing a rotation matrix;

A−1 = ΣtrQ =

(
σ11 cos ρ −σ11 sin ρ

σ21 cos ρ + σ22 sin ρ −σ21 sin ρ + σ22 cos ρ

)

27Price puzzle occurs when contractionary monetary policy shocks produce a positive response of the price

level (Sims, 1992). The liquidity puzzle refers to shocks in monetary aggregates leading to an initial rising rather

than falling of interest rates (Reichenstein, 1987).
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and the parameter of interest is α = α(ρ, φ) ≡ σ11 cos ρ. We impose the sign normalization

restrictions throughout by constraining the diagonal elements of A to being nonnegative,

σ22 cos ρ − σ21 sin ρ ≥ 0 and σ11 cos ρ ≥ 0. (A.1)

The sign restrictions a12 ≥ 0 and a21 ≤ 0 are expressed as

σ11 sin ρ ≥ 0 (A.2)

−σ22 sin ρ − σ21 cos ρ ≤ 0. (A.3)

Given φ, the identified set for α = σ11 cos ρ is given by its range as ρ varies over the range

characterized by the restrictions (A.1) - (A.3). Since the second constraint in (A.1) and (A.2)

imply ρ ∈ [0, π/2], we focus on how the other two restrictions (the first constraint in (A.1) and

(A.3)) tighten up ρ ∈ [0, π/2].

Assume σ21 > 0. Then, they imply arctan(−σ21/σ22) ≤ θ ≤ arctan(σ22/σ21). Intersecting

this interval with ρ ∈ [0, π/2] leads to [0, arctan(σ22/σ21)] as the identified set for ρ. Hence,

the identified set for α in the σ21 > 0 case follows. A similar argument leads to the α identified

set for the σ21 ≤ 0 case.

Proof of Lemma 3.1. (i) By the construction of φ-prior (3.2), the marginal likelihood for

M ∈ Ms can be rewritten as

p(Y |M) =
∫

Φ
p(Y |φ,M)dπφ|M (φ)

=
∫

Φ
p(Y |φ) ∙

1{ISα(φ|M) 6= ∅}
π̃φ(ISα(φ|M) 6= ∅)

dπ̃φ(φ)

= p̃(Y )
∫

φ

1{ISα(φ|M) 6= ∅}
π̃φ(ISα(φ|M) 6= ∅)

dπ̃φ|Y (φ)

= p̃(Y )
π̃φ|Y (ISr(φ|M) 6= ∅)

π̃φ(ISr(φ|M) 6= ∅)
= p̃(Y )OM ,

where the second line uses the assumption that the set-identified models admit an identical

reduced-form and the third line follows from the Bayes theorem for the reduced-form param-

eters, p(Y |φ)π̃φ(φ) = p̃(Y )π̃φ|Y (φ). Plugging this expression of the marginal likelihood into

(3.1) leads to the claim.

(ii) Under the additionally imposed assumptions, the marginal likelihood of model Mp ∈

Mp agrees with p̃(Y )OMp . Hence, (3.5) follows.

(iii) The claim follows immediately by setting OM , M ∈ M, to one in (3.5).

Derivation of Πα|Ms,Y in equation (3.7). We derive Πα|Ms,Y in the next lemma:
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Lemma A.1 For a set-identified model M s with the structural parameters θMs ∈ ΘMs and

reduced-form parameters φMs = gMs(θMs) ∈ ΦMs = gMs(ΘMs), let a prior for φMs , πφMs |Ms

be given. Define the class of priors of θMs by

ΠθMs |Ms ≡
{
πθMs |Ms : πθMs |Ms(ΘMs ∩ g−1

Ms(B)) = πφMs |Ms(B), ∀B ∈ B(ΦMs)
}

.

Updating ΠθMs |Ms prior-by-prior with the likelihood p̃(Y |θMs ,M s) and marginalizing the result-

ing posteriors via α = αMs(θMs) leads to the following set of posteriors for α:

Πα|Ms,Y

≡

{

πα|Ms,Y =
∫

ΦM

πα|Ms,φMs dπφMs |Ms,Y : πα|Ms,φMs (ISα(φMs |M s)) = 1, πφMs |Ms-a.s.

}

.

(A.4)

Proof of Lemma A.1. The prior-by-prior updating rule updates ΠθMs |Ms to

ΠθMs |Ms,Y ≡
{
πθMs |Ms,Y : πθMs |Ms,Y (ΘMs ∩ g−1

Ms(B)) = πφMs |Ms,Y (B), ∀B ∈ B(ΦMs)
}

.

Since πθMs |Ms,Y (ΘMs ∩ g−1
Ms(B)) can be written as

πθMs |Ms,Y (ΘMs ∩ g−1
Ms(B)) =

∫

B
πθMs |φMs ,Ms(ΘMs ∩ g−1

Ms(φMs))dπφMs |Ms,Y (φMs),

the φMs-marginal constraints for πθMs |Ms,Y are equivalent to

∫

B
πθMs |φMs ,Ms(ΘMs ∩ g−1

Ms(φMs))dπφMs |Ms,Y (φMs) = πφMs |Ms,Y (B).

This equality holds for all B ∈ B(ΦMs) if and only if πθMs |φMs ,Ms(ΘMs ∩ g−1
Ms(φMs)) = 1,

πφMs |Ms,Y -a.s. Accordingly, an equivalent representation of the class of posteriors for θMs is

ΠθMs |Ms,Y =

{∫

ΦMs

πθMs |φMs ,MsdπΦMs |Y : πθMs |φMs ,Ms(ΘMs ∩ g−1
Ms(φMs)) = 1, πφMs |Ms,Y -a.s.

}

.

(A.5)

Note that we have

πα|φMs ,Ms(ISα(φMs |M s)) = πθMs |φMs ,Ms(α−1
Ms(ISα(φMs |M s)))

= πθMs |φMs ,Ms(ΘMs ∩ g−1
Ms(φMs)),

where the second equality follows by the definition of the identified set of α. Hence, πθMs |φMs ,Ms(ΘMs∩

g−1
Ms(φMs)) = 1, πφMs |Ms,Y -a.s. holds if and only if πα|φMs ,Ms(ISα(φMs |M s)) = 1, πφMs |Ms,Y -

a.s. The class of marginalized posteriors for α (A.4) therefore follows.
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Proof of Proposition 3.1. Let πθ,M ∈ Πθ,M be a prior. The corresponding posterior for θ

with M integrated out can be computed as follows: for any measurable subset A ⊂ Θ,

πθ|Y (A) =

∑
M∈M

∫
A p̃(Y |θ,M)dπθ|M (θ)πM

∑
M∈M

[∫
ΘM

p̃(Y |θ,M)dπθ|M (θ)
]
πM

=

( ∑
Mp∈Mp πθ|Mp,Y (A)p(Y |Mp)πMp

+
∑

Ms∈Ms

[∫
ΦMs

πθ|φMs ,Ms(A)p(Y |φMs ,M s)dπφMs |Ms(φMs)
]
πMs

)

∑
Mp∈Mp p(Y |Mp)πMp +

∑
Ms∈Ms

[∫
ΦMs

p(Y |φMs ,M s)dπφMs |Ms(φMs)
]
πMs

=
∑

Mp∈Mp

πθ|Mp(A)πMp|Y +
∑

Ms∈Ms

[∫

ΦMs

πθ|φMs ,Ms(A)dπφMs |Ms,Y (φMs)

]

πMs|Y

where the second line uses
∫

A
p̃(Y |θ,M)dπθ|M (θ) =

∫

ΦM

[∫

Θ
1{θ ∈ A}p̃(Y |θ,M)dπθ|φM ,M (θ)

]

dπφM |M (φM )

=
∫

ΦM

[∫

Θ
1{θ ∈ A}dπθ|φM ,M (θ)

]

p(Y |φM ,M)dπφM |M (φM )

=
∫

ΦM

πθ|φM ,M (A)p(Y |φM ,M)dπφM |M (φM ).

The class of posteriors for θ can be therefore represented as

Πθ|Y ≡

{
∑

Mp∈Mp

πθ|Mp,Y πMp|Y +
∑

Ms∈Ms

πθ|Ms,Y πMs|Y : πθ|Ms,Y ∈ Πθ|Ms,Y ∀M s ∈ Ms

}

,

where Πθ|Ms,Y is as defined in (A.5). As shown in the proof of Lemma A.1 above, marginalizing

Πθ|Ms,Y to α leads to Πα|Ms,Y defined in (3.7). We therefore conclude that marginalizing Πθ|Y

to α results in Πα|Y shown in (3.8).

Proof of Proposition 3.2. (i) Since there is no constraint across the posteriors belonging

to different posterior classes, it holds

inf
πα|Y ∈Πα|Y

Eα|Y (α) =
∑

Mp∈Mp

Eα|Mp,Y (α)πMp|Y +
∑

Ms∈Ms

inf
πα|Ms,Y ∈Πα|Ms,Y

{
Eα|Ms,Y (α)

}
∙πMs|Y .

By the construction of Πα|Ms,Y , an application of Proposition 4.1 (ii) of Giacomini and Kita-

gawa (2015) shows infπα|M,Y ∈Πα|M,Y

{
Eα|M,Y (α)

}
= Eφ|M,Y (l(φ|M)). The claim of the mean

lower bound therefore follows. The mean upper bound can be shown similarly.

(ii) Note that

inf
πα|Y ∈Πα|Y

πα|Y (A) =
∑

Mp∈Mp

πα|Mp,Y (A)∙πMp|Y +
∑

Ms∈Ms

inf
πα|Ms,Y ∈Πα|Ms,Y

{
πα|Ms,Y (A)

}
∙πMs|Y .
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Proposition 3.1 of Kitagawa (2012) shows

inf
πα|Ms,Y ∈Πα|Ms,Y

{
πα|Ms,Y (A)

}
= πφMs |Ms,Y (ISα(φMs |M s) ⊂ A).

(iii) By setting A to [−∞, a], the lower probability obtained in part (ii) yields the lower bound

of the cdfs, since the event ISα(φMs |M s) ⊂ [−∞, a] is equivalent to u(φMs |M s) ≤ a. The

upper bound follows by noting

sup
πα|Ms,Y ∈Πα|Ms,Y

πα|Ms,Y ([∞, a]) = πφMs |Ms,Y (ISα(φMs |M s) ∩ [∞, a] 6= ∅)

= πφMs |Ms,Y (l(φMs |M s) ≤ a).

The range of quantiles then follows by inverting these cdf bounds.

Next, we show two lemmas used to prove Proposition 3.3. We denote the set of candidate

models satisfying condition (A) of Assumption 3.2 (i) by MA and the set of those satisfying

condition (B) by MB . Under Assumption 3.2 (i), M = MA ∪MB holds. Note that through

these lemmas and the proof of Proposition 3.3, M is assumed to admit an identical reduced-

form with reduced-form parameter dimension d ≥ 1.

Lemma A.2 Suppose Assumption 3.2 holds. For M ∈ MA,

nd/2 det(Hn(φ̂))1/2p(Y n|M)

(2π)d/2p(Y n|φ̂)
− fφ|M (φ̂) = O(n−1/2),

with PY ∞|φtrue
-probability one.

Proof of Lemma A.2. Denote the reduced-form parameter vector by φ = (φ1, . . . , φd) and

the third-derivative of ln(∙) by hijk(∙) ≡ ∂3

∂φi∂φj∂φk
ln(∙), 1 ≤ i, j, k ≤ d. By Assumptions 3.2 (i),

(ii) and (iv), there exists B∗ an open neighborhood of φtrue such that B∗ ⊂ ΦM holds for all

M ∈ MA, and

sup
φ∈B∗

max
1≤i,j,k≤d

|hijk(φ)| < ∞, (A.6)

and

lim sup
n→∞

sup
φ∈Φ\B∗

{ln(φ) − ln(φtrue)} < 0, with PY ∞|φtrue
-probability one (A.7)

hold. Since Assumptions 3.2 (iii) and (iv) imply the strong convergence of φ̂, for all sufficiently

large n, φ̂ ∈ B∗ holds. Given φ̂ ∈ B∗, consider the third-order mean value expansions of nln(φ):

nln(φ) = nln(φ̂) −
n

2
(φ − φ̂)′Hn(φ̂)(φ − φ̂) +

n

6

∑

1≤i,j,k≤d

hijk(φ̃)(φi − φ̂i)(φj − φ̂j)(φk − φ̂k)

= nln(φ̂) −
1
2
u′Hn(φ̂)u +

1
√

n
R1n(u),
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where φ̃ is a convex combination of φ and φ̂, u ≡
√

n(φ−φ̂), and R1n(u) = 1
6

∑
1≤i,j,k≤d hijk(φ̃)uiujuk,

where ui is the i-th entry of vector u. By the boundedness of hijk on B∗, R1n(u) can be bounded

by a third-order polynomial of u with bounded coefficients on
√

n(B∗ − φ̂), where
√

n(B∗ − φ̂)

is the subset in Rd that translates B∗ by φ̂ and scales up by
√

n. Plugging this expansion in

p(Y n|φ) = exp(nln(φ)) and combining it with the first-order expansion of fφ|M (φ), we obtain

on φ ∈ B∗ (or equivalently on u ∈
√

n(B∗ − φ̂))

p(Y n|φ)fφ|M (φ) = exp

{

nln(φ̂) −
1
2
u′Hn(φ̂)u

}{

1 +
1
√

n
R1n(u) +

1
2n

R1n(u)2 + ∙ ∙ ∙

}

×

{

fφ|M (φ̂) +
1
√

n
R2n(u)

}

= exp

{

nln(φ̂) −
1
2
u′Hn(φ̂)u

}{

fφ|M (φ̂) +
1
√

n
R3n(u)

}

, (A.8)

where the first equality invokes the expansion of exp(x) = 1+x+2−1x2 + ∙ ∙ ∙ , R2n = f ′
φ|M (φ̃)u,

and R3n collects the residual terms that can be bounded uniformly on
√

n(B∗ − φ̂) by a finite

order polynomial of u with bounded coefficients.

Integration of p(Y n|φ)fφ|M (φ) over φ ∈ B∗ is equivalent to integrating (A.8) in u over
√

n(B∗ − φ̂):
∫

B∗
p(Y n|φ)fφ|M (φ)dφ

=n−d/2 exp{nln(φ̂)}

(∫

√
n(B∗−φtrue)

(
fφ|M (φ̂) + R3n(u)

)
exp

{

−
1
2
u′Hn(φ̂)u

}

du

)

=(2π)d/2p(Y n|φ̂)n−d/2 det(Hn(φ̂))1/2
(
fφ|M (φ̂)EHn [1√n(B∗−φ̂)(u)] + n−1/2EHn [R3n(u) ∙ 1√n(B∗−φ̂)(u)]

)

=(2π)d/2p(Y n|φ̂)n−d/2 det(Hn(φ̂))1/2
(
fφ|M (φ̂) + O(n−1/2)

)
, (A.9)

where EHn(∙) is the expectation taken with respect to u ∼ N (0, Hn(φ̂)−1). Note that the third

equality follows since the replacement of
√

n(B∗ − φ̂) with Rd incurs an error of exponentially

decreasing order and EHn(R3n(u)) is finite, i.e., the multivariate normal distribution has finite

moments at any order.
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Consider now integrating p(Y n|φ)fφ|M (φ) over ΦM \ B∗.
∫

ΦM\B∗
p(Y n|φ)fφ|M (φ)dφ

=(2π)d/2p(Y n|φ̂)n−d/2 det(Hn(φ̂))1/2

×

(

(2π)−d/2nd/2 det(Hn(φ̂))−1/2

∫

ΦM\B∗
exp{n(ln(φ) − ln(φ̂))}fφ|M (φ)dφ

)

≤(2π)d/2p(Y n|φ̂)n−d/2 det(Hn(φ̂))1/2

×

(

(2π)−d/2nd/2 det(Hn(φ̂))−1/2f̄φ|M sup
φ∈Φ\B∗

{exp{n(ln(φ) − ln(φtrue))}}

)

, (A.10)

where by Assumption 3.2 (v), f̄φ|M ≡ supφ∈Φ fφ|M (φ) < ∞. Assumptions 3.2 (iii) and (iv)

imply that the term in the parentheses of (A.10) converges to zero faster than n−1/2-rate

with PY ∞|φtrue
-probability one. Summing up (A.9) and (A.10) gives the following asymptotic

approximation of the marginal likelihood in model M ∈ MA.

p(Y n|M) =
∫

B∗
p(Y n|φ)fφ|M (φ)dφ +

∫

ΦM\B∗
p(Y n|φ)fφ|M (φ)dφ

= (2π)d/2p(Y n|φ̂)n−d/2 det(Hn(φ̂))1/2
(
fφ|M (φ̂) + O(n−1/2)

)
, (A.11)

with PY ∞|φtrue
-probability one. Bringing the multiplicative terms in the right-hand side of

(A.11) to the left-hand side completes the proof.

Lemma A.3 Suppose Assumption 3.2 holds. For model M ∈ MB,

nd/2 det(Hn(φ̂))1/2p(Y n|M)

(2π)d/2p(Y n|φ̂)
= o(n−1/2),

with PY ∞|φtrue
-probability one.

Proof of Lemma A.3. Let B∗ be an open neighborhood of φtrue as defined in the proof of

Lemma A.2. Consider the marginal likelihood of model M ∈ MB divided by (2π)d/2p(Y n|φ̂)n−d/2 det(Hn(φ̂))1/2:

nd/2 det(Hn(φ̂))1/2p(Y n|M)

(2π)d/2p(Y n|φ̂)
=

nd/2 det(Hn(φ̂))1/2

(2π)d/2

∫

ΦM

exp{n(ln(φ) − ln(φ̂))}fφ|M (φ)dφ

≤
nd/2 det(Hn(φ̂))1/2

(2π)d/2
f̄φ|M sup

φ∈ΦM

exp{n(ln(φ) − ln(φ̂))}

≤
nd/2 det(Hn(φ̂))1/2

(2π)d/2
f̄φ|M sup

φ∈Φ\B∗
exp{n(ln(φ) − ln(φtrue))},

(A.12)
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where f̄φ|M = supφ fφ|M (φ) < ∞, and the third line follows since B∗ ⊂ Φc
M implies ΦM ⊂ Φ\B∗.

Note that by Assumption 3.2 (iv), the upper bound shown in (A.12) converges to zero faster

than the polynomial rate of n−1/2 with PY ∞|φtrue
-probability one.

Proof of Proposition 3.3. (i) Under Assumption 3.2 (i), the posterior model probability of

model M ∈ M can be written as

πM |Y n =
p(Y n|M)πM∑

M ′∈MA
p(Y n|M ′)πM ′ +

∑
M ′∈MB

p(Y n|M ′)πM ′

By dividing both the numerator and denominator by (2π)d/2p(Y n|φ̂)n−d/2 det(Hn(φ̂))1/2 and

applying Lemmas A.2 and A.3, we have

πM |Y n =






fφ|M (φ̂)πM
∑

M ′∈MA
fφ|M ′ (φ̂)πM ′

+ O(n−1/2), for M ∈ MA,

o(n−1/2), for M ∈ MB ,

with PY ∞|φtrue
-probability one.

Since fφ|M (∙) is assumed to be continuous and Assumptions 3.2 (iii) and (iv) imply almost

sure convergence of φ̂ to φtrue, πM |Y ∞ of the current proposition follows.

(ii) With the given specifications of the φ-prior, fφ|M (φtrue) is proportional to π̃(ΦM )−1 up

to the model-independent constant (the Lebesgue density of π̃φ evaluated at φ = φtrue). Hence,

(i) of the current proposition is reduced to the asymptotic model probabilities of (ii).

(iii) This trivially follows from Lemma 3.1 (iii).

A.2 Example 2: Treatment Effect Model with an Instrument

This appendix illustrate applicability of our averaging proposal to the treatment effect model

with noncompliance and a binary instrumental variable Z ∈ {0, 1} (Imbens and Angrist (1994)).

Assume that the treatment status and the outcome of interest are both binary. Let

(W1,W0) ∈ {1, 0}2 be the potential treatment status in response to the instrument, and

W = ZW1 + (1 − Z)W0 be the observed treatment status. (Y1, Y0) ∈ {1, 0}2 is a pair of

treated and control outcomes and Y = WY1 + (1 − W )Y0 is the observed outcome. Follow-

ing Imbens and Angrist (1994), consider partitioning the population into four subpopulations

defined in terms of the potential treatment-selection responses:

T =






c if W1 = 1 and W0 = 0 : complier,

at if W1 = W0 = 1 : always-taker,

nt if W1 = W0 = 0 : never-taker,

d if W1 = 0 and W0 = 1 : defier,
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where T is the indicator for the types of selection responses.

Assume that the instrument is randomized in the sense that Z ⊥ (Y1, Y0,W1,W0).28 Then,

the distribution of observables and the distribution of potential outcomes satisfy the following

equalities for y ∈ {1, 0}:

Pr(Y = y,W = 1|Z = 1) = Pr(Y1 = y, T = c) + Pr(Y1 = y, T = at), (A.13)

Pr(Y = y,W = 1|Z = 0) = Pr(Y1 = y, T = d) + Pr(Y1 = y, T = at),

Pr(Y = y,W = 0|Z = 1) = Pr(Y0 = y, T = d) + Pr(Y1 = y, T = nt),

Pr(Y = y,W = 0|Z = 0) = Pr(Y0 = y, T = c) + Pr(Y1 = y, T = nt).

Ruling out the marginal distribution of Z, the structural parameters index a joint distribution

of (Y1, Y0, T ):

θ =
(
Pr(Y1 = y, Y0 = y′, T = t) : y = 1, 0, y′ = 1, 0, t = c, nt, at, d

)
∈ Θ,

where Θ is the 16-dimensional probability simplex.

Let the average treatment effect (ATE) be the parameter of interest.

α ≡ E(Y1 − Y0) =
∑

t=c,nt,at,d

[Pr(Y1 = 1, T = t) − Pr(Y0 = 1, T = t)]

=
∑

t=c,nt,at,d

∑

y=1,0

[Pr(Y1 = 1, Y0 = y, T = t) − Pr(Y1 = y, Y0 = 1, T = t)] .

The reduced-form parameter vector consists of the eight probability masses:

φ = (Pr(Y = y,W = w|Z = z) : y = 1, 0, d = 1, 0, z = 1, 0) .

Consider the following two candidate models.

Candidate Models

• Model Mp (point-identified): In addition to the randomized instrument assumption Z ⊥

(Y1, Y0,W1,W0), the instrument monotonicity (no-defier) assumption of Imbens and An-

grist (1994) holds and the causal effects are homogeneous in the sense that E(Y1−Y0|T =

c) = E(Y1 − Y0|T = at) = E(Y1 − Y0|T = nt) = E(Y1 − Y0).

• Model M s (set-identified): The randomized instrument assumption holds. Heterogeneity

of the treatment effects is unrestricted.
28As reflected in the notation of the potential outcomes (Y1, Y0), we assume the exclusion restriction of the

instrument.
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In model Mp, the complier’s average treatment effect is identified by the Wald estimand

(Imbens and Angrist (1994)), and combined with the homogeneity of the causal effects, we

achieve the point-identification of ATE,

αMp(φ) =
Pr(Y = 1|Z = 1) − Pr(Y = 1|Z = 0)
Pr(W = 1|Z = 1) − Pr(W = 1|Z = 0)

.

In model M s, what the Wald estimand identifies is the complier’s average treatment effect,

while ATE becomes set-identified. See Balke and Pearl (1997) for the construction of the ATE

identified set, ISα(φ|M s).

The two models considered admit the identical reduced-form (the distribution of (Y,W )|Z),

whereas these two models are distinguishable, since they have different testable implications.

The testable implication for model Mp is given by the testable implication for the joint re-

striction of randomized instrument and instrument monotonicity shown by Balke and Pearl

(1997):29

Pr(Y = 1, D = 1|Z = 1) ≥ Pr(Y = 1, D = 1|Z = 0),

Pr(Y = 0, D = 1|Z = 1) ≥ Pr(Y = 0, D = 1|Z = 0),

Pr(Y = 1, D = 0|Z = 1) ≤ Pr(Y = 1, D = 0|Z = 0),

Pr(Y = 0, D = 0|Z = 1) ≥ Pr(Y = 0, D = 0|Z = 0).

Accordingly, ΦMp is given by the set of φ’s that satisfy these four inequalities.

Kitagawa (2009) shows that the instrument inequality of Pearl (1995) gives the sharp

testable implication for the randomized instrument assumption, i.e., ISα(φ|M s)) is empty

if and only if

max
w

∑

y

max
z

{Pr(Y = y,W = w)|Z = z} ≤ 1. (A.14)

Hence, the reduced-form parameter space of model M s, ΦMs , is obtained as the set of φ’s that

fulfills (A.14).

Set prior model probabilities at (πMp , πMs) = (w, 1 − w). Construct a prior for φ in each

model as

πφ|Mp(B) =
π̃φ(B ∩ ΦMp)

π̃φ(ΦMp)
,

πφ|Ms(B) =
π̃φ(B ∩ ΦMs)

π̃φ(ΦMs)
.

for any measurable subset B in the probability simplex that φ lies, where π̃φ is a prior for φ

such as a Dirichlet distribution.
29Under the joint restriction of randomized instrument and instrument monotonicity, additionally imposing

homogeneity of the treatment effects does not strengthen the testable implication of Balke and Pearl (1997).
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The two models Mp and M s are distinguishable since ΦMp is a proper subset of ΦMs .

With the current construction of the priors for φ, Lemma 3.1 (ii) gives their posterior model

probabilities,

πMp|Y =
OMp ∙ w

OMp ∙ w + OMs ∙ (1 − w)
,

πMs|Y =
OMs ∙ (1 − w)

OMp ∙ w + OMs ∙ (1 − w)
,

where OMp and OMs are the posterior-prior plausibility ratio as defined in Lemma 3.1.

With these posterior model probabilities, the robust Bayes averaging operates as presented

in Scenario 1 of Example 1. The resulting range of posterior means shrinks the Balke and

Pearl’s ATE identified set toward the posterior mean of the Wald estimand that one would

report in the point-identified model. Since the posterior model probabilities can differ from the

prior ones, the degree of shrinkage can reflect how well the identifying assumptions fit the data.

The current analysis offers one way to aggregate the Wald instrumental variable estimator and

the ATE bounds with exploiting a partially credible assumption on homogeneity of the causal

effects.
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Figure 1: Density and Robust Credible Region of Output Impulse Responses

Note: Output Impulse Response at horizon h = 3. For set-identified models, step lines represent the Robustified

Credible Region (RCR) at different credibility levels (90%, 50%, 10% levels are explicitly indicated) as described in the

last paragraph of Section 2.1 by modifying (Step 5) of Algorithm 4.1 in Giacomini and Kitagawa (2015). The vertical

dashed lines represent the posterior mean bounds. For point-identified models (Model 1 and Model 4 in Figure 3), the

vertical solid lines display the standard credible region. In such a case, we reported its posterior density, since the posterior

mean bounds collapse to a singleton.
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Figure 2: Plots of Output Impulse Responses

Note: for point-identified models, the points plot the (unique) posterior mean and the dashed curve represent the

highest posterior density regions with credibility 90%. For set-identified models (Model 2, the averaged models and Model

3 in Figure 4), the vertical bars show the posterior mean bounds and the dashed curves connect the upper/lower bounds

of posterior robust credible regions with credibility 90%.
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Figure 3: Density and Robust Credible Region of Output Impulse Responses

See the caption of Figure 1 for remarks.
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Figure 4: Plots of Output Impulse Responses

See the caption of Figure 2 for remarks.
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Figure 5: Density and Robust Credible Region of Output Impulse Responses

See the caption of Figure 1 for remarks.
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Figure 6: Plots of Output Impulse Responses

See the caption of Figure 2 for remarks.
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Figure 7: Density and Robust Credible Region of Output Impulse Responses

See the caption of Figure 1 for remarks.
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Figure 8: Plots of Output Impulse Responses

See the caption of Figure 2 for remarks.
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Averaging M1, M2 Averaging M1,M2 Averaging M1,M2,M3 Averaging M1,M2,M4 Averaging M1,M2,M3,M4

Prior w1 0.50 0.80 0.33 0.33 0.25

Prior w2 0.50 0.20 0.33 0.33 0.25

Prior w3 / / 0.33 / 0.25

Prior w4 / / / 0.33 0.25

O1 1 1 1 1 1

O2 1 1 1 1 1

O3 / / 2.69 / 2.69

O4 / / / 1 1

ln p̃(Y ) −815.23 −815.23 −815.23 −815.23 −815.23

ln p(Y |M1) −815.23 −815.23 −815.23 −815.23 −815.23

ln p(Y |M4) / / / −468.82 −468.82

Posterior w∗
1 0.50 0.80 0.21 0 0

Posterior w∗
2 0.50 0.20 0.21 0 0

Posterior w∗
3 / / 0.58 / 0

Posterior w∗
4 / / / 1 1

Table 1: Output Responses: Prior and Posterior Weights
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M1 M2

h = 1 h = 10 h = 20 h = 1 h = 10 h = 20

Post. Mean .187 −.493 −.553 / / /

90% CR [.030, .331] [−.773,−.101] [−.915,−.087] / / /

Post. Mean Bounds / / / [−.068, .250] [−.575, .102] [−.661, .110]

90% robustified CR / / / [−.259, .379] [−.901, .588] [−1.150, .629]

M3 M4

h = 1 h = 10 h = 20 h = 1 h = 10 h = 20

Post. Mean / / / −.378 −.027 −.003

90% CR / / / [−.509,−.261] [−.076,−.003] [−.915,−.087]

Post. Mean Bounds [−.629, .798] [−.743, .577] [−.672, .644] / / /

90% robustified CR [−.757, .910] [−.967, .782] [−.927, .967] / / /

Averaging M1,M2(w1 = 0.5) Averaging M1,M2(w1 = 0.8)

h = 1 h = 10 h = 20 h = 1 h = 10 h = 20

Post. Mean / / / / / /

90% CR / / / / / /

Post. Mean Bounds [.036, .181] [−.443,−.125] [−.508,−.135] [.077, .153] [−.391,−.216] [−.447,−.233]

90% robustified CR [−.172, .341] [−.809, .336] [−1.004, .467] [−.162, .363] [−.758, .445] [−.877, .516]

Averaging M1,M2,M3 Averaging M1,M2,M4

h = 1 h = 10 h = 20 h = 1 h = 10 h = 20

Post. Mean / / / −.378 −.027 −.003

90% CR / / / [−.509,−.261] [−.076,−.003] [−.915,−.087]

Post. Mean Bounds [−.384, .568] [−.639, .326] [−.620, .365] / / /

90% robustified CR [−.477, .646] [−.817, .520] [−.819, .699] / / /

Averaging M1,M2,M3,M4

h = 1 h = 10 h = 20

Post. Mean −.378 −.027 −.003

90% CR [−.509,−.261] [−.076,−.003] [−.915,−.087]

Post. Mean Bounds / / /

90% robustified CR / / /

Table 2: Output Responses: Estimation and Inference
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