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Abstract

Perennial crop production is inherently dynamic due to several salient physical characteristics

including an establishment period of several years, long lives in commercial production, and path-

dependence of yields on input use and other exogenous factors such as weather. While perennial

crop production is properly regarded as a dynamic investment under uncertainty, the literature on

regional agricultural production is typically static, deterministic, and rarely are the dynamic biophys-

ical elements of perennial crops represented. This paper seeks to address some of the shortcomings

of the literature by developing a dynamic regional model of irrigated agriculture with representative

perennial and annual crops. The model explicitly accounts for the age composition of perennial stocks

including crop establishment period and age-dependent yields and input use.

The model is applied to wine grape production in the Riverland region of the Murray-Darling

Basin (MDB) in Australia using a representative agricultural household to analyze joint consumption

and investment decisions. Borrowing is allowed but the assumption of perfect capital markets is re-

laxed; the household faces an interest rate schedule that is increasing in the amount of debt held. We

explore the dynamic properties of the model including the existence and uniqueness of a steady state

and the conditions required for convergence to the steady state. Because the state-space required for

an age-explicit regional model is too large for conventional dynamic programming methods, a running

horizon algorithm is used to approximate an infinite horizon dynamic programming solution.

The effects of the age structure of initial perennial plantings are investigated. Starting with

an initial age distribution of grape stocks different from the steady state levels leads to dampened

oscillations in area planted by vintage with eventual convergence to a steady state with an equal

age distribution. The impact of water entitlement reductions for several possible scenarios under

the proposed MDB Plan are estimated under both deterministic and stochastic frameworks, the

latter of which is based on Monte Carlo simulations that draw on the distribution of historical

water diversions in the region. Also, the long-run water demand for perennial crops is identified by

systematically running simulations over varying water allocation levels and capturing the farmer’s

marginal willingness to pay for water.
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Introduction

The potential effects of climate variability and climate change on agricultural productivity is a well-

researched subject as evidenced by Adams et al. (1990), Rosenzweig and Parry (1994), Rosegrant and

Cline (2003), and Lobell et al. (2008) among others. The validity of the economic impacts derived from

such studies depends crucially on the accuracy of the characterization of the underlying production pro-

cesses. Accordingly, significant advances in the representation of the biophysical aspects of agricultural

production have been made in studies such as Letey, Dinar, and Knapp (1985), and Kan, Schwabe, and

Knapp (2002), and Schlenker and Roberts (2009). Unfortunately, similar advances in the representation

of the complexities of perennial production are not well captured by the existing literature; consequently,

the economics of perennial agriculture are poorly understood.1

Adequately modeling perennial crop production involves recognizing that it is inherently dynamic due

to several salient physical traits including an establishment period of multiple years before marketable

yields are produced, a long life in commercial production of up to 50 or more years, and the long-lasting

impact of the pattern and timing of input use and other exogenous factors such as weather on the produc-

tivity of the crop over its life. Furthermore, the hump-shaped age-yield relationship characteristic of most

perennial crops means that perennial production is essentially non-linear. Due to these factors, perennial

crop production is best represented as an investment under uncertainty characterized by non-linear dy-

namics, a characterization not reflected by the current literature. Efforts to study perennial production

by econometric methods are severely constrained by data limitations since the age distribution of the crop

is rarely known. It is also very difficult, if not impossible, to determine this distribution from time series

data on production levels due to the heterogeneous effects of weather and disease on perennial stocks,

the possibility that it may be optimal to not harvest (i.e., mothball) or partially harvest in a given year,

and the constantly changing mix of different varieties in production (Nerlove 1979). Given the difficulties

inherent in an econometric approach, one would think that programming studies would be numerous but

few such studies exist.

The motivation behind reconsidering how perennial crops have been represented is clear when one

considers their value, especially in the role these crops play during drought and under climate change.

While only approximately 9% of global crop area is devoted to perennial shrubs and trees (Monfreda,

Ramankutty, and Foley 2008), regions with Mediterranean climates often devote a large amount of agri-

cultural land to high-value perennial crops such as citrus, stone fruits, almonds, avocadoes, and grapes.

1This critique of the literature, noted by Nerlove (1979) nearly 35 years ago, has been made as recently as 2001 by Just

and Pope who make the claim, “.. the work of French, King, and Minami (1985) is essentially the last substantive work on

perennial crops.”
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These perennial crops often constitute a large percentage of gross value of farm production in such regions.

For example, perennials constituted over 1/3 of total crop value in California in 2011-12 (California Agri-

cultural Statistics Service 2012) and perennial fruit crops, including grapes, represented approximately

41% of gross value of irrigated agriculture in the Murray-Darling Basin (MDB) of Australia in 2009-2010

(Australian Bureau of Statistics 2009). Additionally, for crops such as wine grapes there are often large

associated industries including tourism that are vital to the local economy (MKF Research, 2007). Fur-

thermore, when one considers what is driving the benefits of water markets among agricultural users

and how they can mitigate the impacts of drought, it is clear that the markets allow water to move

to its highest valued use, which in many circumstances means moving towards perennials (e.g. Connor,

Schwabe, King, Kaczan, and Kirby 2009).

To better understand dynamic land use patterns and quantify water demand in the midst of drought

and possible climate change, it is necessary to develop models that can both account for the benefits

of re-allocating water between annuals and perennials as well as the costs of under-watering perennials.

This paper attempts such an analysis by developing a dynamic regional model of irrigated agriculture

with representative perennial and annual crops. The age composition of perennial stocks is accounted

for explicitly as are the effects of the crop establishment period and age-dependent yields and input use.

Because the state space required for an age-explicit regional model is too large for conventional dynamic

programming methods (i.e., the curse of dimensionality), a running horizon algorithm (detailed in an

appendix) is used to approximate an infinite horizon dynamic programming solution. The impacts from

changes in economic and biophysical characteristics are estimated under both deterministic and stochastic

frameworks, the latter of which is based on a time series of water diversions within the region. The long-

run water demand for agriculture is identified, as are implications of changes in model parameters. For

instance, results from the deterministic model suggest that starting with an age distribution of grapevine

stocks outside the steady state leads to cycles in area planted by vintage and quantity supplied of wine

grapes. Over very long time horizons the cycles in area planted are shown to be dampened oscillations

which eventually converge to a steady-state with an equal age distribution.

This study is concerned with perennial production in arid and semi-arid regions where irrigation is

common and, therefore focuses on the effects of water supply variability on farm management decisions

which affect perennial stocks. The particular application we focus on is wine grape production in the

Riverland region of South Australia in the MDB. The MDB is the main area of irrigated agriculture in

Australia, using over 70% of the nation’s irrigation water (Appels, Douglas, and Dwyer 2004). Recently,

the MDB experienced the worst drought in recorded history, which put severe stress on the agricultural

sector and perennial horticulture in particular (Grant, Knight, Nation, and Barratt 2007). The vast

majority of perennial production depends on irrigation– 87% of fruit and over 96% of grape production

was irrigated in 2009-10 (Australian Bureau of Statistics 2011, Australian Bureau of Statistics 2009).
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Perennial farmers adapted to the drought in several ways including securing additional water through

trade, deficit irrigation, mothballing, and removal of existing perennial stocks.

Since the vast majority of agricultural enterprises in Australia are family-owned (Barclay, Foskey, and

Reeve 2007), we use a utility-maximizing representative agricultural household to analyze joint consump-

tion and investment decisions. This is consistent with (Pope, LaFrance, and Just 2011) who note that

the literature on risk in agricultural production lends credence to “a more integrative examination of the

broader portfolio problem in agriculture that includes consumption, investment, and other risk sharing

activities as well as production.” Within this framework, borrowing is allowed but the assumption of

perfect capital markets is relaxed; the household faces an interest rate schedule that is increasing in the

amount of debt held. The representative household model is then used to analyze the effects of permanent

reductions to agricultural water allocations as has been discussed in the policy outlined by the MDB Plan.

The next section provides a brief literature review. Section three details an analytical description

of the model and the optimal steady state is characterized, followed by section four which explores,

computationally, its dynamic properties. The conditions required for convergence to the steady state

and length of time required to reach it are determined for various versions of the model. The effects of

liquidity constraints and annual crop cultivation on the dynamics of the model are explored as well. The

fifth section uses the model to analyze recent water reform policy in the MDB and the potential effects

on the Riverland region where perennial crops are dominant. The sixth section draws conclusions and

suggests possible directions for future research.

Literature Review

Much of the literature on perennial supply is comprised of extensions to the seminal model of annual

crop supply by Nerlove (1956, 1958). The Nerlove model is a partial adjustment model with price ex-

pectations and is typically estimated as a reduced form econometric model in which area cultivated is

regressed on past crop areas and prices (Askari and Cummings 1977). However, there are serious limi-

tations to reduced form studies; chief among them is the fact that they do not allow for the recovery of

the underlying structural parameters that drive perennial supply. While some papers such as Hartley,

Nerlove, and Peters (1987) and Akiyama and Trivedi (1987) have used relatively more detailed datasets

to estimate structural models, for perennial crops in most regions of the world detailed datasets large

enough to support sophisticated econometric studies simply do not exist. A few studies use innovative

methods to deal with data limitations; Kalaitzandonakes and Shonkwiler (1992) use a dynamic unob-

served components model and, in the programming literature, Knapp and Konyar (1991) use a Kalman

filter to recover the age distribution of perennial crops.
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One theoretical paper used to validate the present study is Mitra, Ray, and Roy (1991) [MRR]. MRR

explores an orchard problem as a class of point input, flow outputs vintage capital model. They charac-

terize the age composition of the optimal stationary forest (OSF) and, given an arbitrary initial forest,

determine if the optimal management program will converge to the OSF. Bellman and Hartley (1985) de-

scribe a theoretical dynamic programming (DP) model of perennial supply that accounts for all previous

input decisions. However, their model would be difficult to implement in practice due to the large number

of state variables required to capture the history of normally long-lived crops and no studies we know

of attempt to follow their approach directly. Knapp (1987) is one applied study following Bellman and

Hartley which uses explicitly defined age classes but does not consider the dynamic biophysical processes

central to their paper.

Most programming studies of agricultural supply treat perennial crop production as tantamount to

annual crop production, rarely attempting dynamic analyses. The regional agricultural literature often

focuses on institutional or physical factors affecting agricultural land and water use and typically ignores

any complications that might arise due to the presence of perennial crops. There is no study we know

of which incorporates a detailed perennial production sector in a fully dynamic analysis of regional agri-

cultural production. Among the models that at least recognize some of the characteristics of perennial

crops, Rosegrant, Ringler, McKinney, Cai, Keller, and Donoso (2000) and Ward and Michelsen (2002)

acknowledge that water demand for and the profitability of perennials may differ from other crops but no

attempt is made to model perennial stocks. Howitt, MacEwan, Medellin-Azuara, and Lund (2010) put

a lower bound on perennial crop area based on expected perennial crop retirements but otherwise treat

annual and perennial crops as interchangeable. Marques, Lund, and Howitt (2005) model perennial crop

production but the analysis is limited to a two-stage, Dantzig-style stochastic DP model with all perma-

nent decisions on the level of investment in irrigation technology and perennial crops made in the first

stage. In the second stage, annual crop choices are made as well as adjustments to irrigation techniques

used. The model explicitly allows for deficit irrigation of perennials in years of drought and uses a linear

penalty term to model the amount of the stock that is lost due to excessive stress. Similarly, Connor,

Schwabe, King, Kaczan, and Kirby (2009) conduct a study of irrigated agriculture in the lower Murray-

Darling Basin in which they test irrigator adaptation to different climate change scenarios. The model

also employs a two-stage non-linear programming (NLP) approach and simple future yield penalties that

account for deficit irrigation.
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Analytical Model

Sequence Problem

The model as currently formulated assumes that costs accrue at the beginning of the time period and

revenue at the end of the time period after harvesting. Below is a diagram of the model timing.

Jan

Water allocation, prices announced.

6/4/2012

Revenue received.

5/9/2012

Crops harvested.

2/8/2012

Land use decisions made, costs incurred.

3/22/2012

Crops watered.

Beginning of Period End of Period

Figure 1: Model Timing

The functions which determine net benefits in the non-linear programming (NLP) model are specified

below. U(ct) is the instantaneous utility function which is assumed to be one of the class of CRRA

utility functions, ct is current period consumption, c is the subsistence level of consumption, and α is the

subjective discount factor. Agricultural households are assumed to maximize the discounted net present

value of utility as follows:

Max
ct,s0,t,xt,zk,t

∞∑
t=1

αt−1U(ct) (1)

U(ct) =
(ct − c)1−ρ

1− ρ
(2)

ct = (1 + r(at))at − at+1 + πt (3)

The choice variables in the model are given by {ct, s0,t, xt, zk,t} representing consumption, new perennial

plantings, annual plantings, and perennial removals by age class respectively. Perennial crop age is indexed

by k = 0, 1, ..,K.

The budget constraint is given by (3) where at denotes the financial assets held by the household and

the term πt denotes profits from agricultural production. The standard assumption of perfect capital

markets is relaxed as is reflected by the interest rate schedule r(at) having a higher interest rate for

borrowing than saving. To mimic increasing interest rates for borrowing as debt levels increase, the

interest rate for borrowing and corresponding first derivative are expressed as
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rb(at) = β0 + β1a
2

t (4)

r′b(at) = 2β1at (5)

where β0 and β1 > 0. The interest rate for saving (rs) is constant and β0 > rs > 0. One possible param-

eterization of the interest rate function is shown below:

-10 -5 0 5 10
at per unit land

0.05

0.10

0.15

0.20
rHatL

Figure 2: Interest rate schedule

Profits from agricultural production are given by (6)-(9) and are comprised of profits from existing

perennials (πs,t derived from sk,t where 1 ≤ k ≤ K) net of the cost of new plantings (π0,t) plus annual

crop profits (πx,t). Note that annual and perennial cost terms are brought forward once within the

respective profit sub-functions to reflect the timing of the model. Costs are incurred up front and profit

is calculated at the end of the time period, which implies that consumption also occurs at the end of the

period.

πt = π0,t + πs,t + πx,t (6)

π0,t = − 1

α
(γww0 + γ0) s0,t (7)

πs,t =

K∑
k=1

1

α
((αpsyk − γwwk − γk) (sk,t − zk,t)− γzzk,t) (8)

πx,t =
1

α
(αpx(xt)yx − γwwx − γx)xt (9)
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Cost terms include water costs per unit land (γw) and removal costs (γz) corresponding to the area of

age k removed (zk,t). For the purposes of this model, the water use coefficients per unit of land (wk, wx)

and annual yield per unit of land (yx) are exogenous. The price of perennial crops (ps) is assumed to

be time-invariant whereas the region exerts market power in the annual crop market and thus faces a

downward-sloping demand curve with the price denoted (px(xt)).

Perennial yields (yk), water requirements (wk), and non-water variable costs (γk) are all a function

of crop age. The functional form used for each of the age-dependent functions is based on a review of

the viticulture literature, regional production surveys, gross margin spreadsheets, and informal farmer

interviews. In general terms, water requirements are monotonically increasing in age while non-water

production costs are monotonically decreasing with age where planting costs are ascribed to the first

period and removal costs are ascribed to age at removal. Yields are strictly monotonically increasing

during establishment (y0 = 0 < y1 < .. < y
k
′ ) then remain level before decreasing beyond a certain age

(y
k
′ = .. = y

k
′′ > y

k
′′

+1
.. > yK) where k

′
and k

′′
represent age of maturity and age of decline respectively.

This specification is equivalent to the yield profile as specified in 2.1 of Mitra, Ray, and Roy (1991)

(hereafter, MRR) with weak inequalities replaced by strict ones. Production costs, including those

associated with irrigation, also vary with the age of the crop. It is assumed that yields, removal costs,

and replanting costs dominate such that

π0 < π1 < .. < π
k
′ = .. = π

k
′′ > π

k
′′

+1
.. > πK (10)

The yield and profit functions are illustrated below under certain parameter assumptions for the nu-

merical model.
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Figure 3: Yields by age
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Figure 4: Profits by age

Removal are restricted such that z0,t = 0, which implies that one cannot first plant and then remove

the same plot in the same season. This choice could never be economically optimal since removals occur

at the beginning of the time period and, even if this were not so, there are no yields in the first period.

In addition, the final age class possible, if still in production, must be removed:

zK,t = sK,t ∀t (11)
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These restrictions on the first and last age class reduce the dimension of the control space by two vari-

ables; there are K−1 removal variables in addition to consumption, perennial planting area, and annuals

planting area, adding up to K + 2 control variables in total. The state variables are at and sk,t ∀k > 0,

representing assets and area of land devoted to perennials by age class except for the first age class (s0,t),

which is a choice variable. The number of state variables is therefore K + 1. For a perennial such as

wine grapes that may remain in production for 40 years2 (Mullins, Bouquet, and Williams 1992), this

implies 42 control variables and 41 state variables. Clearly, this leads to a high-dimensional optimization

problem that cannot be analyzed using traditional DP methods. Instead, as is discussed later, a running

horizon (RH) algorithm which approximates an infinite horizon DP algorithm is applied to make the

problem computationally feasible.

The law of motion for financial assets is given by re-writing the budget constraint as (12) with the

interpretation being that next period’s assets are equal to current period assets with interest plus profits

from agricultural production less total consumption. Equation (13) defines the law of motion for perennial

stocks, indicating that the future area devoted to an age class is equal to previous period level of the next

youngest age class less removals of that class.

at+1 = (1 + r(at))at + πt − ct ∀t (12)

sk+1,t+1 = sk,t − zk,t ∀k, t (13)

Equations (14) and (15) are resource constraints for regional land use and regional water use respectively

where regional land available is normalized to one unit and q̄ represents total water volume available for

irrigation.

K∑
k=0

(sk,t − zk,t) + xt ≤ 1 ∀t (14)

K∑
k=0

wk(sk,t − zk,t) + wxxt ≤ q̄ ∀t (15)

Note that, as previously mentioned, the timing of removals is such that they occur at the beginning of

the time period rather than the end. This is captured by the term sk,t − zk,t in (8), (14), and (15) and is

required for running simulations in which low water allocation levels may necessitate perennial removals

to meet the water constraint.

2In principle, grapevines can stay in production for up to 100 years or more. However, yields decline significantly beyond

a certain age, making older vines unsuitable for production except in the case of boutique wines that can command a

premium price. This study seeks to understand mainstream wine production and the region the model is applied to is

known for mid-priced, not fine, wines.
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Aside from (13), several rotation constraints must be specified for a complete representation of the

dynamics of perennial production. New plantings are constrained by (14) to be no greater than total

land available given existing vintages net of removals and annual plantings. As Wan (1994) and others

point out, theoretical models of forestry are closely related to standard growth theory models with a key

difference being the so-called “cross-vintage constraint.” This constraint ensures that the area devoted

to a given vintage must be greater than or equal to the area subsequently devoted to the same vintage

one period later. This point applies equally to perennial crop production and is formally stated here as

sk+1,t+1 ≤ sk,t ∀k < K, t (16)

Mathematically, this is equivalent to putting the appropriate bounds on removals as follows:

0 ≤ zk,t ≤ sk,t ∀ 1 ≤ k ≤ K − 1, t (17)

Consumption must be greater than or equal to some subsistence level c which is strictly positive. The

initial stock of land devoted to perennial vintages and all the remaining variables except for assets are

constrained to be non-negative as well.

ct ≥ c, xt ≥ 0 ∀t (18)

sk,t ≥ 0 ∀k, t (19)

The debt collateral constraint or No-Ponzi-Game condition is

at +

K∑
n=1

πs,t+n
(1 + r(at+n))n

≥ 0 ∀t (20)

This condition means that debt will never exceed the net present value of the profit stream which

may be generated by the remaining perennial stock discounted at the interest rate corresponding to the

debt level in each period. This ensures that if the representative farmer were to continue production

over the economically productive life cycle of remaining perennials he or she would be able to repay the

debt plus interest given that the interest rate will decrease as debt is paid off. Whereas many theoretical

models require that debt be non-negative as a terminal condition, one may argue that allowing persistent,

manageable levels of debt is much more realistic for models of small agricultural producers.

Dynamic Programming Problem

For the purposes of derivations, we will use the Dynamic Programming formulation of the model

presented above. Rewriting (1) in Bellman form we have the following where V (θt) is the value function,
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θ2,t = 〈θ1,t, θ2,t〉 is the vector of choice variables (θ1,t = ct, s0,t, xt, z1,t, .., zK−1,t) and state variables (θ2,t =

at, s1,t, .., sK,t), and f(θt) = 〈f1(θt), f2(θt)〉 is a vector function given by (12) and (13) respectively.

V (θ2,t) = Max
θ1,t

U(ct) + αV (f(θt)) (21)

The problem is subject to the constraints given by (14)-(19) which are denoted here as

gj(θt) ≥ 0 (22)

Given the above, the Lagrangian can be written compactly using j=1,..,6 constraints as

L (θt, λj,t) = U(ct) + αV (f(θt)) +

6∑
j=1

λj,tgj(θt) (23)

and expressed fully as

L (θt, λj,t) =
(πt + (1 + r(at))at − at+1 − c)1−ρ

1− ρ
+ αV (f(θt))

+ λ1,t

[
1−

K∑
k=0

(sk,t − zk,t)− xt

]
+ λ2,t

[
q̄ −

K∑
k=0

wk(sk,t − zk,t)− wxxt

]

+

K−1∑
k=1

λ3,k,tzk,t +

K−1∑
k=1

λ4,k,t(sk,t − zk,t) + λ5,txt +

K∑
k=0

λ6,k,tsk,t

The KKT conditions are specified as follows:

at+1 : −(c∗t − c)−ρ + α
∂V (·)
∂f1(·)

∂f1 (·)
∂a∗t+1

= 0

(24)

s0,t : −(c∗t−c)−ρ
(
γww0 + γ0

α

)
+α

∂V (·)
∂f2(·)

∂f2 (·)
∂s∗0,t

−λ∗1,t−λ∗2,tw0+λ∗6,0,t = 0 (25)

xt :
1

α
(c∗t − c)

−ρ
(αpx(x

∗
t )yx + αp′x(x

∗
t )yxx

∗
t − γwwx − γx)−λ∗1,t−λ∗2,twx+λ5,t = 0 (26)

zk,t :

− 1

α
(c∗t − c)−ρ(αpsy1 − γww1 − γ1 − γz) + λ∗1,t + λ∗2,tw1 + λ∗3,1,t − λ∗4,1,t = 0

..

− 1

α
(c∗t − c)−ρ(αpsyK−1 − γwwK−1 − γK−1 − γz) + λ∗1,t + λ∗2,twK−1 + λ∗3,K−1,t − λ∗4,K−1,t = 0


K-1 equations

(27)

λ∗1,t

(
1−

K∑
k=1

(s∗k,t − z∗k,t)− x∗t

)
= 0 , λ∗1,t ≥ 0 (28)
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λ∗2,t

(
q̄ −

K∑
1

wk(sk,t − z∗k,t)− wxxt

)
= 0 , λ∗2,t ≥ 0 (29)

λ∗3,k,tz
∗
k,t = 0 , λ∗3,k,t ≥ 0 ∀1 ≤ k ≤ K − 1 (30)

λ∗4,k,t(s
∗
k,t − z∗k,t) = 0 , λ∗4,k,t ≥ 0 ∀1 ≤ k ≤ K − 1 (31)

λ∗5,tx
∗
t = 0 , λ∗5,t ≥ 0 (32)

λ∗6,k,ts
∗
k,t = 0 , λ∗6,k,t ≥ 0 ∀k (33)

gj(θ
∗
t ) ≥ 0 j = 1, .., 6 (34)

where (24)-(27) give the first order conditions, (28)-(33) specify the complementary slackness conditions,

and (34) are the constraints evaluated at the optimal level of the choice variables.

Using the envelope condition, the standard Euler consumption equation corresponding to (24) is

(c∗t − c)−ρ = α(c∗t+1 − c)−ρ(1 + r(a∗t+1) + r′(a∗t+1)a
∗
t+1) (35)

Equation (35) simply means that on the optimal consumption path the marginal utility of current

consumption must be equal to the discounted marginal utility of next period consumption adjusted for

borrowing or saving between the two periods. Re-arranging terms and substituting for the interest rate

terms, when borrowing is optimal we have

(
c∗t+1 − c

c∗t − c

)ρ
= α(1 + β0 + 3β1a

∗2
t+1) (36)

and for the case of saving we have

(
c∗t+1 − c

c∗t − c

)ρ
= α(1 + rs) (37)

which indicates that the intertemporal marginal rate of substitution is equal to the discounted marginal

cost (benefit) of borrowing (saving) between the two periods. Because of the vintage structure of the

perennial, the Euler equation corresponding to (25) is more complicated. Knapp (1983) derives the analog

of the envelope theorem for problems with inequality constraints. Applying equation (13) from Knapp

to the area of the second perennial age class gives the envelope equation for this problem:
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∂V (·)
∂s∗1,t

=
1

α
c∗−ρt (αpsy1 − γww1 − γ1) + α

∂V (·)
∂s∗2,t+1

− λ∗1,t − λ∗2,tw1 + λ∗4,t + λ∗6,1,t (38)

Iterating forward one period and substituting into (25) gives the Euler equation

(c∗t − c)−ρ(γww0 + γ0) + λ∗1,t + λ∗2,tw0 − λ∗6,0,t =

α

(
1

α
(c∗t+1 − c)−ρ (αpsy1 − γww1 − γ1) + α

∂V (·)
∂s∗2,t+2

− λ∗1,t+1 − λ∗2,t+1w1 + λ∗4,1,t+1 + λ∗6,1,t+1

)

Notice that this equation still depends on the derivative of the unknown value function which represents

the marginal value of the perennial stock. Due to the vintage structure, the value function cannot be

substituted out except recursively by using the whole set of equations as follows:

∂V (·)
∂s∗1,t+1

= (c∗t+1 − c)−ρπ1 + α
∂V (·)
∂s∗2,t+2

− λ∗1,t+1 − λ∗2,t+1w1 + λ∗4,1,t+1 + λ∗6,1,t+1

..

∂V (·)
∂s∗K−1,t+K

= (c∗t+K − c)−ρπK−1 + α
∂V (·)

∂s∗K,t+K+1

− λ∗1,t+K − λ∗2,t+Kw1 + λ∗4,K−1,t+K + λ∗6,K−1,t+K

∂V (·)
∂s∗K,t+K+1

= 0



K-1 eqtns

(39)

where πk = psyk− 1
α (γwwk + γk) is average profit per unit of land by age class. This can be written more

succinctly as

∂V (·)
∂s∗1,t+1

=

K−1∑
n=1

αn−1
[
(c∗t+n − c)−ρπn − λ∗1,t+n − λ∗2,t+nwn + λ∗4,t+n + λ∗6,n,t+n

]
(40)

The recursive nature of the Euler equation is indicative of the vintage structure of the perennial crop

and the stream of revenues that the initial investment may provide over the life of the crop. As MRR

put it, this is a “point-input, flow-output” capital problem. However, the presence of future Lagrange

multipliers also points out the dependence of future production levels on scarce and sometimes variable

inputs such as irrigation water.

We can now substitute (40) into (25) to obtain
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K−1∑
n=1

αn
[
(c∗t+n − c)−ρπn − λ∗1,t+n − λ∗2,t+nwn + λ∗4,t+n + λ∗6,n,t+n

]
=

1

α
(c∗t−c)−ρ(γww0+γ0)+λ

∗
1,t+λ

∗
2,tw0−λ∗6,0,t

(41)

which indicates that the discounted marginal benefit of the perennial plantings over its productive life

must be equal to the full cost of planting as measured by the marginal utility of forgone consumption

and the marginal opportunity costs of resources used.

Re-arranging (26), we have

px(x
∗
t )yx + p′x(x

∗
t )yxx

∗
t −

1

α
(γwwx + γx) =

λ∗1,t + λ∗2,twx − λ5,t

(c∗t − c)−ρ
(42)

which indicates that the marginal profit of the production of annuals must equal the marginal opportunity

cost of resources used in dollar terms. Likewise for removals, the set of equations in (43) implies that the

marginal cost of removal must equal the marginal benefit of relaxing the resource and removal constraints

valued in dollar terms.

psy1 −
1

α
(γww1 + γ1 + γz) =

λ∗1,t + λ∗2,tw1 − λ∗3,1,t + λ∗4,1,t
(c∗t − c)−ρ

..

psyK−1 −
1

α
(γwwK−1 + γK−1 + γz) =

λ∗1,t + λ∗2,twK−1 − λ∗3,K−1,t + λ∗4,K−1,t

(c∗t − c)−ρ


K-1 equations (43)

Optimal Rotation and Steady State

Given the age-dependent yield function discussed above, the discrete time Faustmann rule for perennials

can be expressed as

k∗ = argmax
0<k≤K

k∗∑
k=0

αkπk

1− αk∗+1
(44)

where πk is the profit from perennials of age class k only. Note that this is equivalent to (3.1) in MRR

given the assumption of strict rather than weak inequalities for yields as discussed previously. This as-

sumption also ensures that k∗ will be unique rather than having two possible optimal removal ages as

in MRR. Below is a plot showing the results of a simulation of the model using the parameters for wine

grapes in the Riverland region, which shows an optimal removal age of 32 years old.
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Figure 5: Total profits over life cycle

The steady state conditional on the optimal rotation age is given by evaluating the FOC’s, envelope

equations, laws of motion, constraints, and complementary slackness conditions at the steady-state values

of all variables, i.e., where 〈a∗, s∗〉 = f(a∗, s∗) and x∗, z∗k are constant. The constraints and complementary

slackness follow exactly as in (28)-(34) when evaluated at the steady state levels of the variables. The

steady state budget constraint and Euler equation of consumption respectively become

c∗ =


(β0 + β1a

∗2)a∗ + π∗ a∗ < 0

π∗ a∗ = 0

rsa
∗ + π∗ a∗ > 0

(45)

1 + r(a∗) + r′(a∗)a∗ =
1

α
(46)

The optimal steady-state asset level depends on the relationship between the subjective discount factor

and the interest rate schedule. In general, the range of possible optimal steady-state asset levels is shown

as a function of the subjective discount factor and interest rate schedule as

3/31/2012

 1/(1+Β0)

12/30/1899 - 12/30/1899

Debt

 Optimal steady state assets for given levels of 
5/6/2012

0

4/20/2012

 1/(1+rs)

5/6/2012

1

5/6/2012 - 6/3/2012

No Assets

5/6/2012 - 6/3/2012

Savings

Figure 6: Steady-state assets for given levels of subjective discount factor
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Whereas steady-state savings cannot be uniquely determined from (46) due to the flat interest rate for

saving, given (4) and (5) the steady-state debt has two possible solutions:

a∗ = ±

√
1− α− αβ0

3αβ1
(47)

but since assets must be negative for debt only the negative solution is feasible. Note that for α > 1
1+β0

this will give a complex root. However, such values of α mean that the representative farmer is either

more patient than the market or would like to borrow at unavailable interest rates in the range (rs, β0)

and hence will not be a borrower. The optimal steady-state asset debt level over the range of subjective

discount factors for a given set of model parameters can be illustrated as:

0.80 0.85 0.90 0.95 1.00
Α0

2000

4000

6000

8000

10 000

12 000

Debt per unit land

1

1 + Β0

1

1 + rs

Figure 7: Steady state debt as function of subjective discount factor

(β0 = .06, β1 = 4.5−10 , rs = .04)

The steady-state area planted in annuals can be defined solely as a function of shadow values and

model parameters using the derivations detailed in the appendices. The steady-state law of motion for

perennials (13) is s∗k+1 = s∗k − z∗k ∀k which given the existence of k∗ implies that

s∗k+1 =


s∗k ∀k ≤ k∗

0 ∀k > k∗
(48)

z∗k =


0 ∀k 6= k∗

s∗k k = k∗
(49)
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This means that at the optimal steady state the area devoted to different perennial vintages will be

equal for new plantings through the optimal removal age k∗ and zero for any older age. Also, removals

will be zero for all age classes except k∗, which will be cleared in its entirety.

Computational Analysis

The table below depicts the main scenarios covered by the present model, ignoring the possibility of

alternate specifications for the utility function. The two columns represent which resource is binding-

land or water.3 The top half of the table allows for the planting of annuals (x ≥ 0) while the bottom half

represents the pure perennial problem. Within the top and bottom halves there are separate scenarios

which allow for borrowing and savings (a 6= 0) or not (a = 0). The MRR model is taken as a point of

reference to validate the simplest version of the present model against and to compare to more detailed

versions of the model. While this section explores the land-constrained versions of the model, the next

section explores lowering water allocation levels permanently in deterministic and stochastic frameworks.

Land Constrained Water Constrained

No Annuals I. No Assets (MRR) V. No Assets

II. With Assets VI. With Assets

With Annuals III. No Assets VII. No Assets

IV. With Assets VIII. With Assets

Table 1: Model Scenarios

The MRR model approximately corresponds to a special case of the present model in which there are

no annuals, no capital markets, and land is the only constrained resource (model I above). MRR’s model

assumes a unit of land and no other inputs with the total stock of trees held fixed. The only use for land is

perennial production and any land cleared is automatically replanted with new crops. It is assumed that

there are ages P and Q such that yields are monotonically increasing before age P, then constant through

age Q, and monotonically decreasing thereafter. Amongst the key findings, the authors conclude that the

OSF is invariant to the utility function used so long as it is twice continuously differentiable and concave.

The growth pattern over the life of the crop and the discount factor determine the characterization of

the OSF. Given a linear utility function, an arbitrary forest will not converge to the OSF whereas, given

3In principle, one doesn’t know a priori which resource is binding and it is possible that both resource constraints might

bind. However, by setting the baseline water allocation to the mean water use level we have found that, for the parameters

used, the water resource constraint is only binding when allocation levels drop below 90% of the baseline. Both resource

constraints bind only as a special case.

19



some restrictions on the discount factor, the optimal program combined with a strictly concave utility

function will always converge.

One difference between MRR and the present model is that the profits by age in the present model

are more restrictive in the sense that the present model assumes strict inequalities of returns during

establishment while MRR assume only that there must be one strict inequality. Also, the present model

is less flexible with respect to age of maturity and decline in that the age of maturity and decline, P and

Q respectively, are assumed to be distinct with both less than the oldest possible age class. Since the

present model is less general in these ways, all proofs from MRR should apply a fortiori to the relevant

case of the present model, which is characterized by pure perennial production with no capital markets.

However, there is one major aspect in which MRR is very unrealistic; they normalize returns by age such

that there are never negative returns to perennial plantings. High fixed costs and lags in production are

salient characteristics of perennial crop production and ignoring these traits means that MRR’s findings

may not hold in the present model and especially in more general models which include borrowing and

saving.

Initial Land Distribution

To easily generate a wide variety of initial land distributions, we have used the beta binomial discrete

distribution as a data generating mechanism. The PDF is given as

f(x) =
xα−1(1− x)β−1

B(α, β)
(50)

where B(α, β) is the Beta function dependent on shape parameters α and β and the number of “trials”

n = 0, .., 30. This results in 31 age classes for the initial land distributions; this number is chosen due

to the fact that the model parameters cause it to be optimal to remove the vines in the 32nd period.

Since removals are at the beginning of the period this means the vines actually remain in production

for 31 years and hence 31 initial age classes is appropriate. The shape parameters can take any value

in the range (0,∞) but for our purposes it should be sufficient to use all combinations of α and β in

{ 0.25, 0.5, 0.75, 1, 1.5, 2, 3 }. This gives 49 possible combinations to which we add the scenario of no initial

perennials for a total of 50 initial land distributions. Below is a plot of some convenient land distributions,

including the uniform land distribution which holds at the steady state, and the parameter values used

to create them.
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Figure 8: Land distributions generated using the beta binomial distribution

Difference from the Steady State

To describe the evolution of the perennial land holdings with respect to the difference from the steady

state, we have chosen to use the L-1 norm as follows:

dss =

40∑
k=1

|sk,t − s∗k| (51)

where sk,t is the land devoted to age k at any given time and s∗k is the steady-state land area for each

age
(

1
32 = .. = 1

32 ; 0, .., 0
)

given the model parameters. Given the 50 initial land distributions generated,

a plot of the L-1 norms relative to the steady state is shown below.
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Figure 9: Deviations from steady state for initial land distributions

The symmetry of the plot results directly from the way in which the tuples of the shape parameters

are used. Note that the 25th vector generated is the steady-state land distribution and hence has a norm

of zero.

Model I. Pure Perennial Production

For the pure perennial problem, the only means of the household obtaining an income is by growing

perennial crops. There are no annual crops and borrowing is not allowed. Given that consumption is

constrained to be non-negative and that there are large fixed costs for new plantings, if the household

starts with no perennial plantings it is effectively caught in a poverty trap and it is not possible to run

the optimization model. To avoid this, it is necessary to provide an exogenous income stream c0 which is

constant over time. Also, to eliminate the possibility that the level of c0 initially acts as a de facto credit

constraint and therefore alters the household’s planting sequence it has been set high enough to allow the

household to plant all of the land available in the first period if it so chooses. Although artificial, in this

way we can isolate the effects of initial land holdings on household behavior. The point of this exercise

is not to be realistic but to systematically isolate and explore the features of the model.

A further important consideration is to test the degree to which the model behaves as predicted by

MRR. The pure perennial model gives a very clean comparison to their model. The assumed age-yield

relationship in this model is more restrictive than theirs and therefore their findings should hold here.

However, there is one major aspect in which MRR is very unrealistic; they normalize returns by age such

that there are never negative returns to perennial plantings. The fact that real-world perennial crops

production is characterized in part by high fixed costs for new plantings is what causes the problem noted

above and is the reason why an exogenous income stream must be specified. It is nonetheless possible to
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compare the results from the model presented here to the salient findings in their paper, which are that

perennial plantings will converge to an optimal stationary forest characterized by equal land area devoted

to each age class assuming that 1) utility is strictly concave and 2) the discount rate (factor) is not too

high (low). The findings here do, in fact, match these findings. The discount rate used throughout is

rh = .05 except where noted.

Linear Utility

Linear utility is time-additive separable with an infinite intertemporal elasticity of substitution and

therefore effectively equivalent to the case of perfect capital markets. Only in the first period is it

necessary to bound consumption away from zero via the exogenous income stream in order for the

problem to be computationally feasible. After that point, the simulation may result in some periods in

which consumption is lower than c0 = 9.0. Note that consumption is given in $1, 000 per hectare and

plantings are given as a fraction of the normalized land available; i.e. new plantings, and total land

planted, are ≤ 1.0 hectares in each period.

100 Year Simulations

Simulations over a 100 year time horizon using a running horizon algorithm (detailed in Appendix 2)

show that the household desires to plant all land in perennials as quickly as possible and to maintain full

perennial stocks over time by replanting based on the Faustmann rule for perennials. Also, consumption

and new plantings always move in opposite directions and there is no tendency for perennial plantings to

smooth out over time. The L-1 norm is constant for each of the initial distributions shown here. The 3

initial distributions highlighted here are meant to give a sample which covers the cases of a young initial

perennial stock (α = 1, β = 3), a peaked/normally distributed one (α = 3, β = 3), and the case in which

there are no initial plantings.
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In order to be certain that the results shown above are not simply an artefact of using too short of

a time horizon, results for a 1,000 year time horizon are given below. The results are exactly as above

but on a longer time scale with a constant L-1 norm over the whole time horizon. Not only are these

results compatible with MRR but, in the case of no initial plantings, they also agree with the findings

of Mitra and Wan (1985) for the case of a regional forestry model with discounting. In that study, they

find that the optimal program will lead to a periodic solution as is found here. Plots of the full 1,000

year simulation can be found in Appendix 3.

Log Utility

100 Year Simulations

Given strictly concave utility, the model should lead to convergence to the steady state in order to

agree with MRR. The 100 year plots shown below do show substantial smoothing in consumption and

planting over time but do not come close to converging to the steady state.
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The 1,000 year simulations exhibit continued movement toward the steady state. While convergence

to the steady state does not occur, this, in itself, does not contradict MRR as they don’t undertake any

simulations or give any other indication of how long convergence might take in practice. In general, the

time to convergence will vary with the discount rate used, the rotation length of the perennial crop, and

the details of the age-yield relationship specified. Also, as all the plots shown thus far indicate, the closer

the initial land distribution is to the steady state the quicker it will converge. It should be noted that in

the case of both linear and log utility if the land distribution starts at the steady state it never leaves it as

would be expected. Another point to note is that the young and old distributions are exactly symmetric

(α = 1, β = 3 and α = 3, β = 1 respectively) and have the same constant L1-norm in the linear case. In

the log utility case, the young distribution shows greater convergence toward the steady state. While log

utility causes smoothing in both cases, this difference appears to be a result of the greater need to replant

earlier in the case of the old distribution as opposed to the young. The delayed replanting schedule for the

young distribution means that discounting will have a greater effect, diminishing the difference between

the net present value of area replanted in successive years.

High Discount Rate

The optimization model was also run using high discount rates. For linear utility, using a discount rate

of .20 (4 times higher than the base case) leads to slight oscillations in replantings but otherwise does

not affect the results. In particular, the rank of L-1 norms remains fixed for the various scenarios and

there is no trend to convergence. Only when raising the discount rate to extremely high values such as

0.5 does the model behavior change dramatically; specifically, there are no new plantings of perennials
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in any scenario. The optimal removal age is extended from 32 years to 38 years and all scenarios remove

the perennial plantings accordingly until they reach zero. For log utility, a discount rate of .20 similarly

has small effects on the rate of convergence and a discount rate of .50 results in no new plantings just as

in the linear utility case.

Model III. Annuals Included

Including annuals enables the model to converge to the steady state more quickly as can be seen below:
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As a result of introducing annuals, the mean L1 norm decreases across the three scenarios between 37.5%

to 53.6%.
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The effect of adding annuals adds little to overall consumption levels but does allow for significant re-

ductions in the variance of consumption across the three scenarios. The table below shows the difference

in endogenous consumption, i.e., consumption not including c0, between models I and III. As you can

see, the variance of endogenous consumptions decreases between approximately 61-73% across the three

scenarios.

Table 2: Differences in Endogenous Consumption ($1,000 per unit land)

Young Peaked None

∆ Median (∆%) -0.0136 -0.0063 -0.0327

(-0.17) (-0.08) (-0.42)

∆ Variance (∆%) 0.0957 0.111 0.521

(60.85) (72.73) (61.72)

∆ Min -0.0666 -0.0082 -4.441

∆ Max -0.0311 -0.0431 0.0981

Ct from model I less Ct from model III

Model IV. Annuals and Borrowing/Saving

Recall that the budget constraint is defined as

ct = (1 + r(at))at − at+1 + πt (52)

The standard assumption of perfect capital markets is relaxed as is reflected by the interest rate

schedule r(at) having a higher interest rate for borrowing than saving. To mimic increasing interest rates

for borrowing as debt levels increase, the interest rate for borrowing and corresponding first derivative

are expressed as

rd(at) = β0 + β1a
2

t (53)

r′d(at) = 2β1at (54)

where β0 and β1 > 0 while the interest rate for saving (rv) is constant and β0 > rv > 0.

Computational issues arise due to the discontinuous, non-linear interest rate schedule specified above.

Specifically, because discontinuous functions are difficult for gradient-based solvers to handle we have

been using a continuous non-linear approximation around the zero asset level. While this strategy works

for solving the model, due to the extreme curvature it takes a long time to solve. Therefore, we have
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re-formulated the problem by explicitly splitting assets into savings and debt with the relevant interest

rate function specified for each. Assets are now defined as savings (vt) less debt (dt): at = vt − dt. The

interest rate for savings, rv, is given as a parameter and has a baseline value of 0.04. The interest rate

for debt is a function defined as above with baseline values for the intercept and slope terms being 0.06

and 9×10−4 respectively. Given that both savings and debt are restricted to be non-negative, the budget

constraint is re-written as:

ct = (1 + rv)vt − (1 + rd)dt − at+1 + πt (55)

Specified this way, the model solution is much easier for the solver to compute and the interest rates

used are exactly as specified above rather than an approximation for asset values near zero. The results

below show that the introduction of borrowing and saving greatly decreases the time to convergence for

the young and peaked land distributions while for no initial perennials the time to convergence is similar

to model III except that the variance of the time paths for all variables is greatly decreased. Because

the discount rate used below (0.05) lies in the kink of the interest rate schedule it is optimal to hold no

assets. This leads to very quick convergence of assets to zero except in the case of no initial plantings.
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Figure 10: Full model: Consumption and assets
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Figure 11: Full model: Total perennial area, annual crop area, and L-1 norm

The table below shows results similar to that comparing models I and III with some reduction of variance

due to the ability to borrow and save.

Table 3: Differences in Endogenous Consumption ($1,000 per unit land)

Young Peaked None

∆ Median (∆%) -0.001 -0.002 -0.0336

(-0.017) (-0.027) (-0.427)

∆ Variance (∆%) 0.003 0.0003 0.092

(5.48) (0.699) (28.575)

∆ Min -0.073 -0.0156 -0.994

∆ Max 0.005 0 0.0358

Ct from model III less Ct from model IV
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Policy Analysis

Policy Context

Aside from the MDB being the most important agricultural area in Australia, the cities of Adelaide

and Canberra depend on its river flows as do the 16 Ramsar listed wetlands in the basin (Pittock and

Connell 2010). The rivers of the MDB are among the most variable in the world when measured by

the ratio of maximum to minimum annual flows. One way to manage this variability has been to build

as much storage as possible; the MDB currently has enough storage to handle over twice the average

annual river flow (Chartres and Williams 2006). Water rights have been over-allocated based on op-

timistic estimates of annual flows and irrigation has received higher priority than the environment for

much of history of European settlement (Connell 2007). As a result, increasing environmental damage

and threatened urban water supplies led to an agreement to cap water diversions across the basin at

1995 levels. An increase in the use of groundwater and surface water entitlements that were previously

under-used have been seen after the cap, highlighting the need to manage groundwater and surface water

together (Chartres and Williams 2006).

Recognition that the constituent parts of the basin are interdependent and therefore need to be man-

aged as a whole (i.e. integrated catchment management) go back at least a century but attempts to

act upon this realization have been consistently thwarted by the self-interested actions of local and state

governments (Connell 2007). Or, in the words of Pittock and Connell (2010), “.. the Basin’s management

is a history of cultural resistance to the natural variability, with drought-induced crises triggering insti-

tutional reforms so far largely at the margins.” The latest crisis was the extreme Millennium Drought

from 1997-2009 and the latest attempts at reform are embodied in the National Water Initiative of 2004,

the Water Act of 2007, and the proposed MDB Plan released in 2010. The MDB Plan has undergone

intense public debate and several revisions; originally, basin-wide reductions of diversions of up to 4,000

gigaliters per year (GL/yr.) (approximately 31 % of current use) were called for but the most recent pol-

icy discussion proposes a reduction of only 2,750 GL/yr (22%). (Lamontagne, Aldridge, Holland, Jolly,

Nicol, Oliver, Paton, Walker, Wallace, and Ye 2012). The final level of the Sustainable Diversion Limits

(SDL’s) set by the Plan remain under debate as the SDL’s will not take effect until 2019 (Pittock and

Connell 2010). Furthermore, no version of the Plan considers the potential impact of climate change even

though the most thorough study of climate change in Australia suggests that under a median climate

scenario there will be a 10% reduction in runoff across the basin by 2030 (CSIRO 2008).
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Data

Wine Grapes

Wine grape production is very important to the economy of the Riverland. The Riverland produces

more wine grapes than any other region in Australia and more than half of farm gate receipts in the

region come from wine grapes. In addition, wine making is the biggest employer in the manufacturing

sector of the region (Riverland Winegrape Grower’s Association 2012). As can be seen in the figure below,

many of the wine grape growers in the Riverland region have vineyards that are quite small. While most

of the household farms have significant off-farm income, those less than 10 hectares in size are likely to

be “hobbby farms.” While there are many such farms, the second chart makes it clear that most of the

area planted is on larger farms: 46% of farms are 50 hectares or larger and 61% are at least 25 hectares

in area (Phylloxera and Grape Industry Board of South Autralia 2012)[Phylloxera Board]. To give some

sense of the viability of relying on the proceeds of a farming operation with 25 hectares of vines, it is

useful to note that average annual revenue over a 20 year period for this size farm assuming mature but

relatively young vines would be $298,753.4 While some of the grapes in a given year are grown by the

wineries themselves, they typically constitute a small fraction of total production. In 2011, for example,

independent growers produced 82.5% of the total grape crush (Phylloxera Board).
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Figure 12: Riverland Wine Grape Farms (i) Size Distribution (ii) Total Area Planted by Farm Size

In order to determine average farm debt level per unit land for the representative farming household,

it is necessary to determine average farm size. Given the presence of many smaller farms that may not

rely on income from the farm itself, we exclude farms under 10 hectares in size and then use the average

of the remaining farms. Doing so results in an average farm size of 38 hectares. Using data from Ashton,

Hooper, and Oliver (2010), an estimate of debt held by farming households for the year 2007-08 can

be determined. While the data is at the level of the whole basin it distinguishes between horticulture,

4The revenue calculated based on Phylloxera Board data as 25 hectares∗18.609 tonnes per hectare∗$661.37 per tonne =

$298, 753.
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broadacre, and dairy farms. Horticultural operations held an average debt of just over $275,000. Given

an average farm size of 38 hectares derived above, this implies and average debt per hectare of $7,250.

This will serve as the initial debt level per hectare in the model.

The age distribution of the existing grape stocks in the Riverland were calculated as detailed in the

appendix. The resulting estimated distribution is seen below.
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Figure 13: Source: S.A. Winegrape Utilisation and Pricing Surveys 2000-2012 from the Phylloxera Board

Potatoes

Australia trades very few potatoes internationally and South Australia, including the Riverland, is

the primary producer of potatoes for domestic consumption due to advantages of sandy soils and the

availability of irrigation water. Additionally, potato cultivation is one of the biggest uses of irrigated land

in the Riverland and is the most valuable irrigated horticulture crop next to wine grapes in the region

(PIRSA Industry Structure and Strategy Team 2005). For that reason, using potatoes as a representative

annual crop with a downward-sloping demand curve can be justified and may provide a solution to the

bang-bang solutions which the model might otherwise produce. Data for prices and average area devoted

to potatoes are drawn from data in Australian Bureau of Statistics (2009) and an estimate of the South

Australian potato supply elasticity is taken from Mules and Jarrett (1966).

Water Use

Wine grapes use less water than potatoes; the model uses parameter values of 4.4 mL per hectare

(mL/ha.) for mature wine grapes and 6.1 (mL/ha.) for potatoes. Over 86% of South Australian vineyards

use high efficiency drip or micro spray irrigation systems (Australian Bureau of Statistics 2009) whereas

center pivot is the dominant form of irrigation for potatoes (Department of Primary Industries 2011).
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The irrigation system is accordingly assumed fixed for both crops with annualized costs of $4,000 and

$2,000 per hectare for drip and center pivot systems respectively.

Diversions

Below is a graph of modeled historical annual irrigation diversions under current water entitlement rules

and levels of development for a 110 year period in the South Australian MDB obtained from Connor,

Banerjee, Kandulu, Bark, and King (2011). While the time series exhibits some volatility, it is much less

variable than the underlying river flows with the main reason being that dam storage helps smooth water

supply across years. Another reason is that in the past very little importance was given to maintaining

sufficient river flows to maintain the health of ecosystems that depend on the river. Note that diversions

are endogenous and ideally we would have a similar time series for allocations. However, due to the

prioritization of irrigation over the environment irrigators have received 100% water allocations up until

the recent drought, the vast majority of which has actually been diverted. The marked decrease at the

end of the time series is due to an extremely severe drought which put severe strain on irrigators and

ecosystems alike. The drought continued through 2009 and only ended in late 2010.
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Figure 14: Modeled diversions in South Australia

The above data is historical and therefore provides a baseline to which other water availability sce-

narios may be compared. In addition, we have access to data on diversions modeled as if permanent

water reductions had been in place over the same 110 year history. These time series maintain the same

hydrological sequence but vary institutional rules in a way that results in nearly parallel downward shifts

of the baseline time series as can be seen below:
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Figure 15: Diversions for South Australia under different scenarios

The result is that reductions by 3,000, 3,500, and 4,000 GL lead to median diversion levels that are

67%, 62%, and 57% of the baseline levels respectively.

34



Reductions in Irrigation Water

Given the parameters specific to the Riverland, the model can be used to analyze the effects of permanent

reductions to agricultural water entitlements. Household consumption and debt as well changes in land

use can be evaluated for alternate levels of reduction. We consider three scenarios: a baseline in which

there are no changes to water entitlements and two levels of permanent reductions corresponding to 3,000

and 4,000 GL per year across the basin.

Water Demand

Given the estimated impacts of permanent water entitlement reductions on South Australian irrigators,

which reside predominantly in the Riverland, we estimate the short-run and long-run agricultural water

demand in the region for allocation reductions of 0-50%. This is done by running the optimization model

at successively lower water allocation levels and capturing the shadow values from the water constraint.

For each water level, the model is allowed to run for as many periods as needed to reach a steady state.

The shadow value divided by the marginal utility of consumption for the first and last periods then

define points on the short-run and long-run water demand curves respectively. The following results were

obtained from the model without household saving (Model VII).
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Figure 16: Water demand curves: Short run and long run
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Note that, as expected, the long-run demand curve is more elastic than that of the short run but the

long-run demand curve is generally higher. This reflects the fact that the initial conditions of the model

are based on the situation that the region is in currently, which does not coincide with the steady state.

Because this version of the model is not calibrated to constrain increased perennial plantings it devotes

most of the land in the region to perennials in the long run, hence increasing the marginal value of water

in agricultural production due to the relatively higher perennial prices. The model is constrained from

a corner solution only because of the demand curve for annuals; annuals are removed up until the point

that the marginal value of potatoes equals that of wine grapes. Now, consider the figure below that

shows the shadow values for both land and water obtained from the model runs at varying levels of water

allocations.
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Figure 17: Water and land shadow values

The above indicates that the water resource constraint is binding for allocation levels up to around

90% of the baseline level. Above that level, land is the constrained resource and the constraint on water

is slack.5

Below is a bar chart of long-run (steady state) land use for each water allocation level:

5Note that irrigated land area is truly limited by the physical configuration of the irrigation infrastructure in the region.

It would be neither economically nor politically feasible to extend the infrastructure.
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Figure 18: Land use by water allocation level

The interpretation of the above is that as water allocations are reduced first annuals are taken out of

production and then perennial stocks are removed. Note that this overstates the likely impact of such

reductions because deficit irrigation is not allowed by the model.

Stochastic Water Supply

Using the Monte Carlo procedure detailed in Appendix 5, we can look at the effect of stochastic water

allocations on consumption, land use, and quantity supplied under the baseline and alternate water

reduction levels.

Monte Carlo Simulation Results

Below is a histogram of water allocations pooled across all MC runs for each scenario considered, includ-

ing the baseline plus scenarios where basin-wide water allocations have been reduced by 3,000 and 4,000

GL per year respectively. Since the water allocations are exogenous, there is no problem including such

pooled histograms for allocations; however, for endogenous variables such plots would not make sense.

This is because the time path for a given variable in a single model run reflects intertemporal trade-offs.

Pooling together plots of endogenous variables across model runs would obliterate any economic content

represented by the individual runs.

Below are some plots generated using model VIII which show the mean of a variable taken across all

model runs for a specific point in time. We have also added lines which show the mean plus or minus 2

standard deviations. The following are such plots for the baseline water scenario in which allocations are

not reduced:
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Figure 19: Histogram of allocations pooled by scenario
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Figure 20: Baseline consumption and assets under log utility
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Figure 21: Baseline land use under log utility

Below are the mean values of key variables across the baseline, 3,000 GL reduction, and 4,000 GL

reduction scenarios. Notice that consumption drops significantly as allocations are reduced although, as

previously noted, this is an overestimate due to the lack of adaptation methods such as deficit irrigation

in the model. Also, note that annuals increase in area for the 3,000 GL reduction but then drop below

the original level at the 4,000 GL reduction level. Furthermore, rotation lengths shorten significantly in
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response to uncertain water applies.

Baseline 3000 GL 4000 GL

Consumption 7.36 5.56 4.42

Assets -0.22 -1.58 -2.59

Total Perennials 0.899 0.755 0.646

Annuals 0.078 0.119 .066

Oldest Perennials 29.6 21.67 21.05

Table 4: Mean values across Monte Carlo scenarios

Recursive Utility

In order to better calibrate the model for policy analysis, we have created a version of the model which

uses recursive utility. Specifically, the Epstein-Hynes recursive utility function is used:

U(C) = −
∞∑
t=1

exp

[
−

t∑
τ=1

u(cτ)

]
(56)

where u(cτ) represents the instantaneous utility function. Key features of this utility function are that

utility depends on an aggregate of the future consumption path even for deterministic models and the

discount rate is endogenous and decreasing in the index of future consumption. In practice, this allows

for a model which can be calibrated to a given ratio of perennial to annuals land use as well as an optimal

household debt level. This has been applied to models IV and VIII with some success. Results to follow.

Here we consider only the stochastic version of model VIII. The plots of mean values from the Monte

Carlo runs given above are shown here for the base allocation with Epstein-Hynes utility. Notice that

the land use mix and asset levels are much different now:
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Figure 22: Consumption and assets under Epstein-Hynes utility
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Figure 23: Land use under Epstein-Hynes utility

Conclusions

This study develops a dynamic model of irrigated perennial production at a regional level and, in so

doing, advances the literature on the economics of perennial supply as well as the literature on regional

agricultural programming models. The model is explored analytically using a dynamic programming

formulation and the optimal steady state conditional an optimal removal age is characterized. The model

is then implemented in a dynamic optimization framework in GAMS. The most restricted form of the

model is compared to the theoretical model of Mitra et al. (1992) and is found to be in agreement with

several of their key results despite the more realistic representation of perennial production in the current

model. The effects of including an annual crop and borrowing and saving under imperfect capital markets

are then explored. Once the basic properties of the model are established, the model is used to investigate

the effects of reduced water allocations on irrigators in the Riverland region of the MDB. This analysis

allows for the derivation of agricultural water demand curves and the study of the additional impact of

introducing stochastic water allocations.

The proposed MDB Plan does not address scientific findings indicating that climate change is likely

to have a negative impact on water flows in the MDB. The official policy analysis only addresses long run

average flows despite the fact that the rivers in the basin are among the most variable in the world. While

others have made advances in addressing the potential impacts of water reform in the face of climate

variability and climate change, the present study appears to be the only one to address such issues in the

context of a fully dynamic model of perennial crop production. Although the emphasis in the current

study on the vintage structure of perennial stocks introduces more realism than is commonly found in

the literature, the model in its current form is limited in several respects and any quantitative results

should be treated with caution. Perhaps the most obvious way in which the current model should be

extended is by altering the crop production functions to allow for deficit irrigation. This fact combined

with the absence of alternate crops, alternate water sources, and inter-regional water trade all tend to

bias the results by limiting farmer flexibility. Hence, the quantitative findings presented here suggest an
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upper bound on the likely impacts of water policy reform and stochastic water supply.

Aside from deficit irrigation, there are many other potentially fruitful extensions to the present study.

The model could be readily integrated into a larger basin-wide hydro-economic optimization model. In-

cluding alternate water supplies such as groundwater and modelling water storage and carry-over would

allow for more realistic adaptation to drought by perennial and annual crop producers and could al-

low for better estimates of agricultural water demand. While salinity is an important and ever-present

concern in the MDB, it is not considered in the present model. Introducing salinity in a larger hydro-

economic model with perennial production and groundwater would be very policy-relevant for the MDB

and could also be adapted to analyze other regions where irrigated perennials and salinity are important

such as California’s Central Valley. In general, the model presented here could benefit from being incor-

porated into a more integrated hydro-economic model and, in turn, enrich the analysis from such a model.
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Appendix 1: Running Horizon Algorithm

Let us denote a time horizon which we are interested in optimizing over as t = 1,2, ..,T. The previ-

ously described NLP model is defined over its own time horizon τ = 1,2, ..,T(c) which may be called

relative or artificial time. Given the NLP model and an initial value of the variables for t = 0 denoted

as sk,0, we may solve the model repeatedly in a loop of length T using updated initial values each time.

For the first iteration, the initial values of the NLP model are specified as ŝ(1)k,0 = sk,0 and after the

first iteration the initial values for subsequent iterations are set to the value of the optimally chosen

variables at τ = 1 from the previous iteration of the NLP model. That is, if the optimal values of the

variables for a given iteration t are denoted as ŝ(t)k,τ then we first make the assignment s∗k,t = ŝ(t)k,1 and

then update the initial value for the next iteration via the assignment ŝ(t+1)

k,0 = s∗k,t. In this way, we

may use the forward-looking NLP model to approximate the solution of an infinite horizon dynamic pro-

gramming model.6 The end result is a vector of variables corresponding to each period 1,2,..,T denoted as

< s∗k,1, s
∗
k,2, .., s

∗
k,T >=< ŝ(1)k,1, ŝ

(2)

k,1, .., ŝ
(T )

k,1 >,∀ k in 1,2,..,K.

No-Ponzi-Game Conditions for RH Algorithm

Because the RH algorithm is an approximation to an infinite horizon DP algorithm it is not possible to

implement the usual NPG conditions directly. Instead, the approach taken here it to have a traditional

NPG condition for the last period of relative time ( T(c)) and combine this with a check in the last

period of the simulation model (T) to ensure that simulation does not allow debt to exceed the so-called

natural debt limit which in this case is equal to the NPV of profits from perennial stocks at time T (sk,T ).

The reason this is necessary is that because the model is effectively re-optimized after each period in

the simulation it is possible for the economic agent to hold persistent debt so long as at the end of the

planning horizon assets are non-negative. That is, for the planning horizon (relative, or artificial, time)

we enforce

aT (c) ≥ 0 (57)

and for the simulation in real time we check that the following natural debt limit condition holds:

aT ≥
−

K∑
n=1

πs,T+n

r(aT )
(58)

6Note that this approximation is possible due to the effect of discounting over a long time horizon; because periods in

the distant horizon are so heavily discounted the effect of the terminal period on the first period decisions is negligible.

However, a refinement of the algorithm that may merit inclusion in future research would be to assign a scrap value to the

terminal period perennial stocks.
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This condition means that debt in the last period must not be more than the net present value of

profits from remaining perennial stocks discounted at the interest rate prevailing at that debt level. This

ensures that if the representative farmer were to continue production over the economically productive

life cycle of remaining perennial stocks he or she would be able to repay the debt plus interest at the rate

prevailing in the last time period. Whereas many theoretical models disallow any debt in the last period,

one may argue that allowing persistent, manageable levels of debt is much more realistic for models at

any level of aggregation (consumer, household, industry, region, nation, etc.). In the case study under

consideration here, persistent debt is certainly the norm for agricultural producers.

Appendix 2: Steady-State Derivations

The rest of the FOC’s at the steady state are as follows:

1

α
(c∗ − c)−ρ(γww0 + γ0) + λ∗1 + λ∗2w0 − λ∗6,0 = α

∂V (f(a∗, s∗))

∂s∗1
(59)

px(x
∗)yx + p′x(x

∗)yxx
∗ − 1

α
(γwwx + γx) =

λ∗1 + λ∗2wx − λ∗5
(c∗ − c)−ρ

(60)

psy1 −
1

α
(γww1 + γ1 + γz) =

λ∗1 + λ∗2w1 − λ∗3,1 + λ∗4,1
(c∗ − c)−ρ

..

psyK−1 −
1

α
(γwwK−1 + γK−1 + γz) =

λ∗1 + λ∗2wK−1 − λ∗3,K−1 + λ∗4,K−1

(c∗ − c)−ρ


K-1 equations (61)

and the analog of the envelope theorem for perennial area at the steady state is given by the following

∂V (·)
∂s∗1

=

k∗∑
n=1

αn−1
[
(c∗ − c)−ρπn − λ∗1 − λ∗2wn + λ∗4,n + λ∗6,n

]
(62)

which substituted into (59) yields

1

α
(c∗ − c)−ρ(γww0 + γ0) + λ∗1 + λ∗2w0 − λ∗6,0 = (c∗ − c)−ρ

k∗∑
n=1

αn
[
πn − λ∗1 − λ∗2wn + λ∗4,n + λ∗6,n

]
(63)

This simplifies to

c∗ =


k∗∑
n=1

αn
[
πn − λ∗1 − λ∗2wn + λ∗4,n + λ∗6,n

]
− 1

α (γww0 + γ0)

λ∗1 + λ∗2w0 − λ∗6,0


1
ρ

+ c (64)

which defines steady-state consumption as a function of the Lagrange multipliers and model parameters.

Assuming a linear demand curve for annuals, (60) can also be solved for steady-state annuals crop area

using the following:
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px = p̄x + (x∗ − x̄) p′x(x
∗) (65)

where x̄ is the average area devoted to annuals, p̄x is the average price of annuals, and p′x(x
∗) is a scalar

derived from the elasticity estimate. Using this, (60) simplifies to

x∗ = 0.5

(
1

p′x(x
∗)

(
λ∗1 + λ∗2wx − λ∗5
yx(c∗ − c)−ρ

− p̄x +
γwwx + γx

α

)
+ x̄

)
(66)

and substituting in (64) gives

x∗ =
1

2p′x(x
∗)

 (λ1 + λ2wx − λ5)
(∑k∗

n=1 α
n(πn + λ6,n − λ1 + λ4,n + λ2wn)− γ0+w0γw

α

)
yx(λ1 + λ2 − λ6,0w0)

− p̄x +
γwwx + γx

α

+
x̄

2

(67)

Let us now simplify the problem by assuming the land constraint is binding while the water constraint

is not (λ∗1 > 0 and λ∗2 = 0) and furthermore that we do not have a corner solution in which either annuals

or perennials are not cultivated. (The downward-sloping demand curve for annuals practically guarantees

this in any case.) Then, given (48) and (49), the equivalent of the optimal stationary forest discussed in

MRR adjusted for the alternate land use of annual production is the vector

s∗ =

〈
1− x∗

k∗ + 1
,

1− x∗

k∗ + 1
, ..,

1− x∗

k∗ + 1
; 0, .., 0

〉
(68)

which implies that the vector of optimal removals is given by

z∗ =

〈
0, .., 0,

1− x∗

k∗ + 1
, 0, .., 0

〉
(69)

where the only non-zero removal level occurs at k∗. For initial perennial stocks that include vintages

older than k∗, convergence to the steady state would require that the oldest vintages, starting with k∗,

be removed using the following rule:

z∗t = 〈0, .., 0; sk∗,t, .., sK,t〉 (70)

Using (68) and (69), the steady-state profit equation is

π∗ =
1

α

(
1− x∗

k∗ + 1

)( k∗∑
k=1

(αpsyk − (γwwk + γk))− (γww0 + γ0 + γz)

)
+(px(x

∗)yx−
1

α
(γwwx+γx))x

∗ (71)
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which accounts for constant costs corresponding to equal plantings and removals each period.

The optimal rotation strategy has implications for the Lagrange multipliers. Because removals are all

or nothing, exactly one of the two multipliers for removals (λ∗3,k and λ∗4,k ∀1 ≤ k ≤ K−1) will be binding

at the steady state. Furthermore, since the λ∗6,k terms correspond to the lower bound on the perennial

area by age class, (68) implies that these must be equal to zero for all age classes included in the rotation

and positive for older age classes. The two vectors of multipliers for removals can be written as

λ∗3 =
〈
λ∗3,1, .., λ

∗
3,k∗−1, 0, λ

∗
3,k∗+1, .., λ

∗
3,K−1

〉
(72)

λ∗4 =
〈
0, .., 0, λ∗4,k∗ , 0, .., 0

〉
(73)

and, using (43), the value of the multipliers can be expressed as

λ∗3,k =


λ∗1 − (c∗ − c)−ρ(psyk − 1

α (γwwk + γk + γz)) ∀k 6= k∗

0 k = k∗
(74)

λ∗4,k =


0 ∀k 6= k∗

−λ∗1 + (c∗ − c)−ρ(psyk − 1
α (γwwk + γk + γz)) k = k∗

(75)

while the vector of perennial stock multipliers is

λ∗6 =
〈
0, .., 0, λ∗6,k∗ , λ

∗
6,k∗+1, .., λ

∗
6,K

〉
(76)

Given the restrictions on the multipliers, (64) and (67) can be re-written as

c∗ =


k∗∑
n=1

αn−1
[
πn − λ∗1 + λ∗4,n

]
− 1

α (γww0 + γ0)

λ∗1


1
ρ

+ c (77)

x∗ =
1

2p′x(x
∗)

λ1

(∑k∗

n=1 α
n−1(πn − λ1 + λ4,n)− γ0+w0γw

α

)
yxλ1

− p̄x +
γwwx + γx

α

+
x̄

2
(78)
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While this description of the steady state is simplified, it still relies on the Lagrange multipliers for

land and removals. It does not seem possible to eliminate them entirely and therefore it is not possible

to give a simple numerical example here. However, we can look at the effect of perturbations of some key

parameters at the steady state. For instance, area devoted to annuals displays the following properties

∂x∗

∂ps
=

∑k∗

n=1 α
n−1yn

2p′x(x
∗)yx

< 0 (79)

∂x∗

∂p̄x
=

−1

2p′x(x
∗)
> 0 (80)

which indicates that area for annual crops will decrease in response to an increase in perennial prices and

increase with respect to an outward shift in the demand curve. The effect of a change in the subjective

discount factor

(
∂x∗

∂α

)
is a long expression that depends on the Lagrange multipliers but has a negative

sign for any plausible values. Intuitively, this implies that if the farmer became more (less) patient, she

will keep a longer (shorter) perennial rotation, thus devoting less (more) land to annuals.

Appendix 3: Additional Plots from the Computational Analysis

1,000 Year Simulations from Model I
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Appendix 4: Age Distribution Calculation

From the Phylloxera Board, we obtained data on total area planted and new plantings by year for

1996-2011 with partial data extending back to 1992. Using this data and assuming an initially even

distribution across age classes up to 32 years old (the optimal removal age in my model), we attempted

to derive an estimate of the age composition of vines using a simple mass balance equation:

st = st−1 + s0,t − zt (81)

where st is total vine area in year t, s0,t is new plantings, and zt is total removals and all terms except

removals are observed from 1996 onward. However, using this equation reveals serious questions about
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the data as for numerous years this equation implies negative removals, which is logically impossible.

After struggling to impose some consistency on the data we decided on a simple strategy for inferring

the region’s age composition. The steps are as follows:

• Assume the year 2011 total area data is correct.

• Assume all new plantings from previous years remain intact and constitute a fraction of the 2011

total.

• Subtract total new plantings from the previous step from total area in 2011 to determine total area

of older vines planted in 1995 or earlier.

• Divide the old vine area equally across age classes 21-31.

• The resulting age distribution is then representative of the vine age composition as of the beginning

of the 2012 growing year.

This is obviously a simplified picture of the true age composition given that removals regularly occur for

younger age classes due to vine health problems or the need to change varieties due to market pressures.

Also, there are clearly any number of plots with vines older than 32 years old. However, given the data

available and the need to make some simplifying assumptions we believe that this estimated age distri-

bution is adequate as it clearly captures the boom in new grape area during the period of 1996-2003.

Furthermore, we know of no other estimated age distributions for the region.

Appendix 5: Monte Carlo Simulation

An analysis was conducted to characterize the variability of the time series and derive a distribution

of water supply shocks for use in the dynamic simulations. After inspection of the auto-correlation and

partial auto-correlation functions it was determined that the time series was an AR(1) process with

no evidence of a unit root. A Jarque-Bera test was conducted, revealing that the residuals were most

likely non-normal. We then fit a distribution to the residuals. To generate a synthetic time series with

stochastic shocks drawn from the distribution of residuals, the following equation is used:

d̃t = β̂0 + β̂1dt−1 + ε̃t (82)

where the β terms are the coefficients estimated in the regression and the term ε̃t is a random shock

drawn from the fitted distribution. The result is a time series which displays auto-correlation similar to

the original time series. We then take a random draw from the values in the original time series and

use it as the initial value in the equation above in combination with a random draw from the shock

distribution. This gives a forecasted value with noise which is then used as the lagged term in the next
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iteration of the equation. In this manner, we construct the data necessary for a Markov Chain Monte

Carlo analysis. The data are then used to fix the water allocation in the NLP model, effectively making

the water constraint stochastic.
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