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Abstract

Buyers often search across multiple retailers or websites to learn which product best fits their

needs. We study how sellers manage these search incentives through their disclosure policies

(e.g. advertisements, product trials and reviews), and ask how competition affects information

provision. If sellers can observe the beliefs of buyers (e.g. they can track buyers via their cookies)

then, in a broad range of environments, there is a unique equilibrium in which sellers provide the

“monopoly level” of information. However, if buyers are anonymous, then there is an equilibrium

in which sellers provide full information as search costs vanish. Tracking software thus enables

sellers to implicitly collude, providing a motivation for regulation.

1 Introduction

The internet has led to a proliferation of products, and a proliferation of sellers providing any
given product. For example, eBay has around 5 billion listings from 2 million sellers in 50,000
product categories. Sophisticated consumers search across sellers to learn the properties of different
products to benefit from this ever-expanding variety. Starting with Stigler (1961), there has been a
large literature examining the incentives of buyers to search for better prices. This paper studies the
incentives for buyers to search for better information, and asks how sellers manage these incentives
through their disclosure policies.

Sellers have a lot of flexibility in managing buyers’ information through advertisements, product
trials and advice. For example, when selling books online, a retailer chooses which products to
suggest, what information to provide in the descriptions, whether to let the buyer “look inside”,
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and how to present other customers’ reviews. Such information can be increasingly tailored to
buyers’ characteristics and their shopping behavior at previous sellers. For example, Facebook’s
“Like” and Twitter’s “Tweet” buttons carry code enabling the companies to track users’ movements
across the internet. Similarly, a slew of third-party tracking companies follow users from site to site,
monitoring popular websites and piggybacking on data collected by other data brokers.1

In this paper we characterize a general model of sequential search for information in which the
seller is free to choose any disclosure policy. We then ask whether competition forces sellers to
provide all pertinent information, and show that the answer depends on the sellers’ information
about buyers. When sellers can observe buyers’ beliefs (e.g. they can track buyers via their cookies)
then, in a broad range of environments, there is a unique equilibrium in which all sellers choose
the monopoly disclosure policy. That is, sellers manipulate their customers to purchase the most
profitable, rather than the most suitable product. In contrast, when buyers are anonymous, there
is an equilibrium in which sellers fully reveal all their information as search costs vanish.

We thus show that tracking software allows sellers to implicitly collude. Intuitively, tracking
enables sellers to discriminate between new and old buyers. Since old buyers are already informed,
it is optimal for a seller to provide them with less information; this lowers their outside option and
undermines competition. This finding is important since, over the last decade, internet giants such
as Google and Facebook and a plethora of data brokers have been collecting ever more information
about their users, giving rise to concerns that such information makes consumers somehow “ex-
ploitable”.2 We provide a theoretical foundation for such claims and show that neither competition
nor individual privacy measures – such as deleting one’s cookies – can correct such distortions, pro-
viding a rationale for regulating tracking programs and the data sharing agreements that underlie
them.

Beyond online retailing, our model is applicable to a wide variety of situations where a sequence
of “sellers” try to convince an uninformed “buyer” to choose them. When a company wishes to file
for an IPO, it will typically approach banks sequentially, obtaining advice about whether to file and
how to price the stock, with the winning bank obtaining a 7% fee. When a consumer wishes to
find information on the internet, they receive recommendations from one search engine and, if not
satisfied, try another. And, when a Government wishes to find an expert to design an auction, it
will enter discussions with a number of academics, choosing one when it is sufficiently certain of the
right design. This paper examines the effectiveness of competition in such environments, and thus
has implications for antitrust and the regulation of advisory industries (e.g. mortgage lending).

1To illustrate, The Economist reports that the 100 most widely used websites are monitored by more than 1,300
firms. See their “Special Report: Advertising and Technology” (13th September 2014).

2For example, see “Facebook Tries to Explain Its Privacy Settings but Advertising Still Rules,” New York Times

(13th November 2014) or “Google to Pay $17 Million to Settle Privacy Case,” New York Times (18th November
2013).
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In the model, we consider a prospective buyer (“he”) who samples from sellers in order to learn
which product best suits his needs. Each seller (“she”) sells the same set of products and, when
sampled, chooses how much information to disclose in order to encourage the buyer to purchase.
A product is defined by the utility u(s) to the agent in state s, and the profit ⇡̃ to the seller. We
suppose that the seller does not know the state (e.g. whether the buyer likes a book when they
“look inside”), and model the seller’s information disclosure as a distribution of signal realizations
that may increase or decrease the buyer’s assessment of the product, as in Kamenica and Gentzkow
(2011). After updating his belief, the buyer chooses to buy a product, to exit, or to pay a search
cost c and randomly sample another seller. We study how much information sellers disclose and
how this depends on sellers’ information about buyers.

In Section 2, we suppose that buyers’ beliefs are public; for example, the seller may learn a
buyer’s beliefs via cookies on his computer. First, we show that the monopoly disclosure policy
is always an equilibrium. Intuitively, if all sellers use the same disclosure policy no buyer has an
incentive to continue to search and, since the policy maximizes profits, no seller has the incentive
to defect. This monopoly policy may be very undesirable for customers: if there is a single product
and the buyer is skeptical, preferring not to buy in the absence of information, then the monopoly
policy leaves the buyer with zero utility.

Next, we derive conditions under which the monopoly policy is the unique equilibrium. This
is the case if there is a single product. Intuitively, the search cost allows one seller to provide a
little less information than the market, iteratively pushing the equilibrium towards the monopoly
outcome. However, in other examples, e.g. two vertically differentiated products, non-monopolistic
equilibria may also exist. Intuitively, a seller would like to provide a lot less information than the
market, but the search cost only allows for local deviations which may not exist. We then show that
if products are “dispersed” relative to the underlying state space, meaning that a buyer wishes to
purchase at most one product at each belief, then these local deviations are enough to prove that
the monopoly policy is the unique equilibrium.

In Section 3, we suppose that buyers’ beliefs are private. That is, a seller knows a buyer’s initial
prior but does not know his current belief nor his past search behavior; the seller then chooses a
signal that is independent of past signals. In equilibrium, the buyer purchases (or exits) in the first
period. However, the possibility that the buyer can continue to search and mimic a new buyer forces
sellers to provide more information than when beliefs are public. First, we show that as the search
cost vanishes, there is a sequence of equilibria that converges to full information. Intuitively, if all
other sellers provide (almost) full information and search costs are small, then any one seller must
match this and also provide (almost) full information. Formally, when the search cost is small, the
best-response correspondence maps the set of signals close to full information into itself. We then
show this best-response correspondence has a fixed point to prove an equilibrium exists, and let the
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search cost vanish.
Next, we derive conditions under which full information is the unique limit equilibrium. As

search costs become small, any equilibrium has the property that beliefs are “partitional”, meaning
that buyers either learn everything or nothing about which of two states occurs. If products are
“sufficiently dispersed” in that a buyer prefers not to buy unless they receive a little information
about each state, then full information is the only limit equilibrium.

Comparing the private and public cases, we find that anonymity is a powerful force to ensure
sellers compete against one another. When beliefs are public, they discriminate between new and
old buyers, lowering buyers’ outside options, and making them less likely to search. When beliefs
are private, sellers cannot discriminate and the option of going elsewhere forces sellers to provide
all the pertinent information in the limit.

In Section 4, we consider two extensions. First, we ask what happens when buyers can choose
to avoid being tracked at a small cost. For example, they can activate the “Do Not Track” function
in their browser or delete their cookies. The analysis of the previous two sections implies that
becoming anonymous exerts a positive externality on other buyers, inducing sellers to provide more
information to everyone. Moreover, the temptation to free-ride is so strong that no matter how
small the cost of becoming anonymous, there is no equilibrium where all buyers voluntarily do so.
Second, we consider a case in between public and private beliefs where a seller can observe whether
a buyer approached previous sellers, but cannot observe the outcome of the signals. As in the public
beliefs case, a seller is able to discriminate between new and old buyers. Consequently, the monopoly
policy is always an equilibrium and, in a single-product example, it is the only equilibrium.

1.1 Literature

There is a large literature in which sellers post prices and buyers pay a fixed cost for each search.
In the benchmark model, Diamond (1971) shows that if all sellers sell a single identical good then,
in equilibrium, all sellers charge the monopoly price. Intuitively, the search cost generates a holdup
problem, allowing any one seller to raise her price slightly above the price set by others.3 In our
paper, sellers choose disclosure policies rather than prices. The logic in the case of public beliefs
is analogous to Diamond, while the case of private beliefs contrasts sharply. In comparison to the
Diamond model, when a seller provides information to a visiting buyer, this changes his beliefs and
changes how he acts at subsequent sellers.

There is a growing literature on information disclosure with competition, based on the Kamenica-
Gentzkow framework.4 In a general model, Gentzkow and Kamenica (2012) consider two senders

3This result continues to hold if sellers make multiple offers to each buyer (Board and Pycia (2014)). However, it
breaks down if sellers sell heterogeneous products (Wolinsky (1986)), multiple products (Zhou (2014); Rhodes (2014)),
or if buyers pre-commit to a number of searches (Burdett and Judd (1983)).

4See also Rayo and Segal (2010) and Aumann and Maschler (1995).
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who simultaneously choose a disclosure policy, assuming that senders’ signals are “coordinated” in
that a common random variable determines how states are mapped into signals. They show how
each sender takes the information released by the other as given, choosing the optimal monopoly
policy on the residual, implying that two senders always provide more information than one. Li and
Norman (2014) reconsider this model when signals are independent, and show that adding a second
sender may reduce the amount of information provided as the first sender tries to protect herself
from the new information provided by the second. Finally, Hoffmann, Inderst, and Ottaviani (2014)
consider a model with more structure, assuming heterogeneous sellers compete to sell to a single
buyer, and that information revelation is a binary decision. When the seller’s disclosure strategy
is observed, an increase in competition increases the amount of information provided. Intuitively,
in order to make a sale, the buyer’s utility at a seller has to exceed a threshold; this threshold
increases in the level of competition, implying that the seller wishes to raise the variance of the
buyer’s posterior. In contrast to these papers, we consider sequential competition, giving rise to the
public vs. private dichotomy that is the centerpiece of our analysis.5,6

As in much of the communication literature, starting with Crawford and Sobel (1982), we assume
payoffs to the parties are exogenous, rather than having the seller choose the prices or qualities.
With the buyer-seller application, we think of this as markets where prices are not flexible (e.g. IPO
fees, books with RPM), or where the seller chooses aggregate prices when faced with heterogeneous
buyers, and then individually targets product recommendations. With other applications, prices
may be out of the control of the “seller” (e.g. an intermediary like a search engine), or there may be
no transfers (e.g. a government seeking advice). Anderson and Renault (2006) study a monopolist
selling a single good who can choose information and prices, and show that the seller should reveal
whether the buyer’s value exceeds the cost, and charge a price equal to the buyer’s expected value;
this implements the efficient allocation and fully extracts from the buyer. With more goods, such
as two vertically differentiated goods, matters become much more complicated, and a monopolist
must trade off the efficiency of the allocation and the rents acquired by the buyer.7

5There are other related papers. Gentzkow and Kamenica (2015) considers a very general model and ask when
competition yields more information than collusion. Forand (2013) studies a model of information revelation with
directed search.

6In addition, there are a variety of papers concerning the revelation of information when the senders are informed.
One literature considers verifiable information (“persuasion games”). For example, Milgrom and Roberts (1986) finds
conditions under which competition leads to full revelation. More recently, Bhattacharya and Mukherjee (2013)
consider a model where senders are stochastically informed, characterizing the receiver’s preferences over the biases
of experts. A second literature supposes information is unverifiable (“cheap talk”). Here, Krishna and Morgan (2001)
consider sequential communication, while Battaglini (2002) analyzes a simultaneous game, both finding conditions
under which full revelation is possible when the senders have opposed preferences.

7The seller can again achieve first-best if she can either make the price contingent on the state, or can use an
up-front fee (e.g. Eső and Szentes (2007)).
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2 Public Beliefs

We first consider the setting where buyers’ beliefs are public. For example, sellers have cookies on
a buyer’s computer that track which signals he sees and his reaction to these signals.

We first describe the model and consider a simple single-product example. Our first main result
is that the monopoly policy is always an equilibrium. In general, there may be multiple equilibria
and we characterize these in terms of local deviations. We then show that if products are “dispersed”,
then the monopoly policy is the unique equilibrium.

2.1 Model

Basics. There is one (male) buyer and infinite (female) sellers who sell the same products. A buyer
is uncertain about a finite set of states relevant for his decision that we call S. Let �S be the set of
beliefs about S. The buyer starts with an initial prior that, without loss, places positive probability
on every state.

Actions. When a buyer approaches a seller, she observes the buyer’s prior p 2 �S, which may
incorporate information from other sellers, and chooses an information disclosure policy that we
describe below. After the buyer sees the seller’s signal, he updates his belief to form a posterior
q 2 �S and chooses whether to (1) buy a product from the seller, (2) exit the market or (3) pay a
search cost c > 0 and pick a new seller at random. In the latter case, the buyer arrives at the new
seller, the seller observes the buyer’s new prior, and the game proceeds as above.

Buyer’s strategy. Denote U ⇢ RS as a finite set of available products8 including the exit
option 0 2 U . This means that product u 2 U delivers utility u (s) in state s 2 S and expected
utility q · u to the buyer under belief q 2 �S. Define the acceptance set Q as the set of beliefs
for which the buyer decides to stop searching. If the buyer decides to accept at posterior q, let
u⇤ (q) ⇢ U denote the set of optimal choices.

Seller’s strategy. A seller observes a buyer’s prior p and chooses a distribution of posteriors
such that the average posterior equals the prior. Formally, a disclosure policy K is a Markov kernel
satisfying

R

�S q K (p, dq) = p for each prior p.
Let ⇡̃ (u) be the seller’s payoff given the buyer’s choice u 2 U . To avoid ties, we assume each

choice u yields different profits, i.e. ⇡̃(u) 6= ⇡̃(u0) for u 6= u0, and normalize ⇡̃ (0) = 0. Assuming
that ties in the buyer’s actions are resolved in the seller’s favor, the seller’s payoff given the buyer’s
belief q 2 �S is ⇡ (q) := maxu2u⇤(q) ⇡̃ (u). A leaving buyer never returns, so sending a buyer outside

8 One could also interpret each u 2 U as a bundle of two products, three products, etc..

6



of his acceptance set Q is never optimal for the seller. Thus, a disclosure policy K is optimal given

Q iff for all possible disclosure policies L

Z

Q
⇡ (q)K (p, dq) �

Z

Q
⇡ (q)L (p, dq) . (1)

Moreover, to break ties, assume that if it is weakly optimal for the seller to reveal no information,
then she will do so. We call this the signal tie-breaking rule. This simplifies the analysis and has
the interpretation that providing some information is a little costly, in a lexicographic sense.

The full information policy is a disclosure policy such that every posterior is degenerate on some
state, q = �s. A monopoly policy is a disclosure policy that is optimal given Q = �S. The monopoly
policy corresponds to the static optimal information disclosure policy in Kamenica and Gentzkow
(2011).

Symmetric equilibrium. If all sellers use policy K, then a buyer with posterior q who
continues to search has continuation utility

Vc (K, q) := �c+

Z

�S
max

⇢

max

u2U
r · u, Vc (K, r)

�

K (q, dr)

A disclosure policy and acceptance set (K,Q) form an equilibrium iff K is optimal given

Qc(K) =

⇢

q 2 �S

�

�

�

�

max

u2U
q · u � Vc (K, q)

�

In this case, we call K an equilibrium policy.

Remarks. We model information disclosure in the style of Kamenica and Gentzkow (2011). It
is most natural to think of the buyer and seller sharing uncertainty about the buyer’s preference.
For example, when a buyer contemplates purchasing a book, Amazon can let the buyer “look inside”,
have temporary access, or try a basic version for free, but does not know how the buyer will interpret
this information. An alternative interpretation is that the seller has private information about the
buyer’s taste, but commits to reveal information “truthfully” and does not try to copy another type
of seller. For example, Amazon may have a policy of providing the most recent book reviews, even
if it knows these reviews are negative.

We assume there are a large number of sellers, which ensures a buyer never returns to a seller.
The analysis is the same if there are a finite number of sellers. The one-shot deviation principle
means that the acceptance set Q is unaffected by any deviation. Moreover, when a buyer leaves a
seller they return with probability less than one, so it is never optimal to induce a posterior outside
the acceptance set, Q. Each seller thus chooses posteriors to maximize profits subject to q 2 Q,
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Figure 1: Single Product (Public Beliefs)
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(b) Non-Equilibrium Policy
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π (q)

K [1Q (q)π (q)]

K [q⋅u (q)]

q⋅u (q)

V c(K , q)

b(1−c)b(1−c)

This figure illustrates Example 1 with public beliefs. The top panels show the buyer’s utility: the bold line is the
posterior utility function q ·u⇤

(q), the shaded line is the expected utility from the policy EK [q ·u⇤
(q)], and the dotted

line is the value of the policy Vc(K, q) = EK [q ·u⇤
(q)]� c. The bottom panels show the seller’s profit: the bold line is

the posterior profit function ⇡⇤
(q) and the shaded line is the expected profit EK [1Q⇡]. Figure 1(a) demonstrates

that the monopoly policy is an equilibrium. Since the dashed line always lies below the buyer’s utility function,
he always accepts. Given this, the seller has no incentive to defect. Figure 1(b) shows a more informative policy
cannot be an equilibrium. Such a policy induces acceptance set Q, and the seller can raise his expected profits from
the shaded line to the dotted line by providing a little less information, sending the buyer to b (1� c) instead of b.

while Q is given by the buyer’s expected continuation value, as in the infinite seller case.9

Finally, we make three assumptions about the nature of equilibria. First, we assume the seller
chooses a Markovian disclosure policy that depends on the buyer’s prior belief at that seller, but
not on the order in which the buyer approaches sellers. Second, we assume that if “no information”
is a best-response for the seller, then she chooses it. Third, we focus on symmetric equilibria, which
is without loss if the seller’s optimal policy is unique. In Appendix C1, we show that for our leading
example, none of these assumptions are necessary. Indeed, any rationalizable equilibrium induces
monopoly payoffs.
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2.2 Motivating Example

Example 1 (Single product). A seller has a single product u to sell, there are two states
{L,H}, and the buyer wishes to buy the product if state H is more likely. For example, a consumer
considers buying a game theory book, but does not know whether he will find it useful. Suppose that
(u (L) , u (H)) = (�1, 1), so the buyer prefers to buy if p = Pr (H) � 1

2 , and that a sale generates
profits ⇡̃ (u) = 1 for the seller. The resulting monopoly policy provides just enough information to
persuade the buyer to buy,

K (p) =

8

<

:

(1� 2p) �{0} + 2p �{ 1
2} if p 2

⇥

0, 12
�

p if p 2
⇥

1
2 , 1
⇤

as illustrated in Figure 1(a). That is, if the buyer starts with a prior p � 1
2 , the seller provides no

information and the buyer buys; if p < 1
2 , the seller sends the buyer to posteriors 0 and 1

2 . For
shorthand, we will sometimes write this “perfect bad news” policy as p ! {0, 12}.

The monopoly policy is an equilibrium of the game. If all sellers choose such a policy a buyer
learns nothing from a second seller after leaving a first and, given the search cost, buys immediately.
Since the buyer purchases and the seller makes monopoly profits, she has no incentive to deviate.

More surprising, the monopoly policy is the the unique equilibrium of the game. To gain some
intuition, fix b > 1

2 , and suppose that the seller provides a perfect bad news signal p ! {0, b}, as
illustrated in Figure 1(b). This induces an acceptance set Q = [0, b

2b�1c] [ [b(1 � c), 1], as shown
in the lower panel. Now, consider a seller who deviates and uses the policy p ! {0, b(1 � c)}.10

Since there is a strictly positive search cost, a buyer who receives this signal will not subsequently
search and this deviation strictly raises the seller’s profits. As we prove below, this logic implies that
whenever sellers provide more information than the monopoly policy, there is a profitable deviation.
4

2.3 Monopoly is an Equilibrium

We now return to the general model, with multiple states and multiple products. We first charac-
terize a seller’s optimal disclosure policy. From Kamenica and Gentzkow (2011) we know that the
seller’s optimal profits coincides with the convex hull of the profit function, ⇡ (q)1Q (q). We will be
particularly interested in the states where the seller does not release any further information. Given

9This assumes that a seller can choose a different policy each time a buyer approaches her. In contrast, if a seller
commits to her policy at the start of the game, a deviation in the policy affects the acceptance set Q. Using Lemma
1, we can restrict sellers to policies where a returning buyer receives no more information, meaning the buyer must
keep searching for a different seller. Thus, say, with two sellers, the search cost is essentially double that in the
infinite-seller model.

10This assumes that b(1 � c) > 1
2 , so the buyer does not always accept. Otherwise, a seller should deviate to the

monopoly policy.
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any disclosure policy K, define the set of absorbing beliefs as

AK := {p 2 �S | K (p) = �p } .

The following lemma establishes that sellers will only send a buyer to absorbing posteriors; that
is, if the buyer were to continue searching, he would get no further information. Once matched,
buyers therefore never search again. Define the support of K, supp(K), to be the largest set for
which every neighborhood of every point in the set has strictly positive K (p)-measure for some
p 2 �S.

Lemma 1. If K is optimal given Q, then supp (K) = cl (AK). Consequently,

Vc (K, q) = �c+

Z

�S

✓

max

u2U
r · u

◆

K (q, dr)

Proof. See Lemma A1.2(c) and Lemma A2.1 in Appendix A.

Lemma 1 says that the support of an optimal disclosure policy coincides with AK . Intuitively, if
a seller sends the buyer to posteriors outside of AK then a subsequent seller would provide further
information to the buyer. Given the tie-break rule, this must be strictly profitable for the second
seller, so the first seller should mimic her and provide all the information at once. Since buyers
only get information one time, Lemma 1 implies that their value function is the value from a single
search.

We now turn to equilibrium. We first establish that any equilibrium policy at search cost c is
also an equilibrium policy at any search cost less than c. Hence the set of equilibria increases as
costs decrease.

Lemma 2. Any equilibrium policy for c > 0 is also an equilibrium policy for all c0  c.

Proof. Let (K,Q) be an equilibrium for some c > 0, and consider c0 2 (0, c]. First, observe that
the buyer will accept at any absorbing point, AK ⇢ Qc0(K), and by Lemma 1, K sends the buyer
to absorbing points, K (p,AK) = 1. Hence a seller’s profits from policy K is unaffected by the
reduction in cost. Second, the reduction in cost means that a buyer’s continuation value Vc(K, q)

increases pointwise, and the acceptance set shrinks, i.e. Qc0 ⇢ Qc. Since the seller only chooses
posteriors in Qc0 , the scope for deviations is smaller than before. We now put this together: Since
K is optimal given Qc, for any L 2 K

Z

Qc0

⇡ (q)K (p, dq) =

Z

Qc

⇡ (q)K (p, dq) �
Z

Qc

⇡ (q)L (p, dq) �
Z

Qc0

⇡ (q)L (p, dq)

and K is optimal given Qc0 .11 Hence, (K,Qc0) is an equilibrium.
11 We also need to check that the tie-breaking rule holds. Suppose that K (p) yields the same profit on Qc0 as some
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Intuitively, a decrease in costs does not change the profit from the previous equilibrium policy
K, but does make it harder to deviate. Hence the policy remains an equilibrium.

We can now show that the monopoly policy is always an equilibrium; this also implies existence
of an equilibrium.

Theorem 1. The monopoly policy is an equilibrium policy for all c > 0.

Proof. Let K be the monopoly policy and find some c̄ large enough such that
⇢

q 2 �S

�

�

�

�

max

u2U
q · u � �c̄+

Z

�S

✓

max

u2U
r · u

◆

K (q, dr)

�

= �S

Then K is an equilibrium policy for any c � c̄. Conversely, if c < c̄, then Lemma 2 implies K is also
an equilibrium policy for c. Hence, the monopoly policy is an equilibrium policy for any c > 0.

Intuitively, if all sellers choose the monopoly policy, a buyer will purchase at the first seller;
since all sellers are making maximal profits, none has an incentive to defect.

2.4 Uniqueness of the Monopoly Equilibrium

Theorem 1 establishes that the monopoly policy is always an equilibrium. In this section we first
provide an example where there is a non-monopoly equilibrium. We then return to the general case,
characterize the set of equilibria by looking at local deviations and show that when products are
“dispersed”, the monopoly policy is the unique equilibrium policy.

Example 2 (Vertical differentiation). Suppose there are two vertically differentiated prod-
ucts and two states {L,H}, with p = Pr (H). The first product is a cheap, low-quality book yielding
utility u1 =

�

�1
3 ,

2
3

�

; the second is an expensive, high-quality book, yielding utility u2 = (�1, 1).
Thus, the buyer prefers no book if p 2

⇥

0, 13
�

, prefers the cheap book if p 2
⇥

1
3 ,

2
3

�

and prefers the
expensive book if p 2

⇥

2
3 , 1
⇤

. Assume the expensive book also has a higher profit for the seller,
⇡̃ (u1) = 1 and ⇡̃ (u2) = 3

2 . The monopoly policy here is as follows:

K (p) =

8

>

>

>

>

<

>

>

>

>

:

(1� 3p) �{0} + 3p�{ 1
3} if p 2

⇥

0, 13
�

(2� 3p) �{ 1
3} + (3p� 1) �{ 2

3} if p 2
⇥

1
3 ,

2
3

�

p if p 2
⇥

2
3 , 1
⇤

By Theorem 1, the monopoly policy is an equilibrium; this is illustrated in Figure 2(a). One can
interpret this policy as the seller recommending the high-quality book for high beliefs, recommending

L (p) = �p for some p 2 �S. Then it must be that K also yields the same profit as �p on Qc. Hence, the tie-breaking
property of K given Qc implies the tie-breaking property of K given Qc0 .
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Figure 2: Vertical and Horizontal Differentiation (Public Beliefs)
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Figures 2(a) and (b) show the two equilibria that arise in the vertical differentiated example. Figure 2(c) shows
the unique equilibrium that arises in the horizontally differentiated example; this coincides with the monopoly policy.

either the high- or low-quality book for middling beliefs, and recommending either the low-quality
book or no book for low beliefs.

When c > 0 is small enough, there is also a second equilibrium where sellers provide more
information,

K (p) =

8

<

:

2�3p
2 �{0} +

3p
2 �{ 2

3} if p 2
⇥

0, 23
�

p if p 2
⇥

2
3 , 1
⇤

(2)

as illustrated in Figure 2(b). This gives rise to the acceptance set Q = [0, "c] [
⇥

2
3 � "̄c, 1

⇤

for some
"c > 0 and "̄c > 0. Hence a seller’s profits are

⇡ (q)1Q (q) = 1
[

2
3
�"̄c,

2
3)

+

3

2

· 1
[

2
3
,1
]

This policy differs from the monopoly policy by never inducing the buyer to purchase the low-quality
book. As shown in Figure 2(b), the presence of the search cost allows the seller to provide a little
less information than her competitors; however, there is no local deviation that is profitable. If one
seller induces a buyer to have a posterior q =

1
3 , as under the monopoly policy, then the buyer would

refuse to buy, correctly anticipating that other sellers will provide significantly more information.4

We now provide a characterization of equilibria. As illustrated by Examples 1-2, the search cost
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means that a seller can provide a little less information than the market. As a result, all equilibria
can be characterized by a local optimality condition. We say a continuous disclosure policy K

is locally optimal iff it generates more profits than any other policy that has support within an
"-ball of K’s support. In other words, K is locally optimal if there exists some " > 0 such that
R

�S ⇡ (q)K (p, dq) �
R

�S ⇡ (q)L (p, dq) for all L with L(p,B" (supp(K))) = 1.12 A monopolist seller
who uses a locally optimal policy has no incentive to deviate if she were able to slightly perturb the
support of her policy.

Proposition 1. Any continuous equilibrium policy is locally optimal. Conversely, any locally opti-

mal policy is an equilibrium policy for some c > 0.

Proof. This follows from Propositions A2.3 and A2.5 in Appendix A.

Local optimality is a necessary condition for equilibrium. Intuitively, a buyer with belief q 2 AK

gets no information since the belief is absorbing, and so purchases, q 2 Q. By continuity of K, a
buyer with any nearby belief q 2 B" (AK) gets little information and also purchases, q 2 Q. Since an
equilibrium policy K must be better than any deviation in Q, it must be better than any deviation
in B" (AK). Conversely, any locally optimal policy is an equilibrium when costs are sufficiently
small. As c ! 0, the acceptance set converges to the absorbing beliefs, Q ! AK . Hence for any ✏,
there is a sufficiently small c such that Q ⇢ B" (AK) and any locally optimal policy is better than
any deviation in Q, making it an equilibrium.

As illustrated by the above examples, Proposition 1 is useful for characterizing the equilibria of
the game. Since local optimality makes no reference to the buyer’s acceptance set, we can check
whether any given disclosure policy is an equilibrium policy simply by looking at local deviations. In
Example 1, if K discloses more than the monopoly level, one can that see there is a local deviation.
Conversely, in Example 2, one can verify that there are no local deviations from the proposed non-
monopoly equilibrium policy, equation (2), meaning that it is an equilibrium when the search cost
is small.

We now provide a sufficient condition for the monopoly policy to be the unique equilibrium.
We say that products are dispersed if for any two products u and v, q · u � 0 implies q · v  0.
This condition says that the buyer is only willing to purchase one product at any given belief. It
implies that no two products that are too alike and no products are “stuck in the middle” of the
belief space, as in Example 2.

Theorem 2. If products are dispersed then any equilibrium policy is a monopoly policy.
12 The continuity assumption is satisfied in most general cases. For example, if Q is a polytope or if products

are dispersed, then the optimal disclosure policy is continuous. Intuitively, if Q is a polytope, then the concavified
value function of the seller is the minimum of a finite number of hyperplanes. In this case, the best-response policy
correspondence of the seller (as a function of buyer posteriors) is lower hemi-continuous. Hence, by the Michael
selection theorem, a continuous optimal disclosure policy exists.

13



Proof. See Corollary A3.4 in Appendix A.

The idea behind Theorem 2 is as follows. First observe that, if products are dispersed then the
monopoly policy has a lexicographic perfect bad news structure. Suppose there are three states
and three goods, as shown in Figure 3(a) with the most profitable good u1 favored in state s1, the
second most profitable u2 favored in state s2, and the third most profitable u3 favored in state s3.
The monopoly policy can then be viewed in two steps: first, it releases a perfect bad news signal
about s1, taking p ! {q1, q23} where q1 just persuades the buyer to buy u1, and q23 is on the edge
between s2 and s3; second, it releases a perfect bad news signal about s2 such that q23 ! {q2, �{s3}},
where q2 just persuades the buyer to purchase good u2.

Now, consider Figure 3(a), where the region Hi describes the beliefs for which the buyer prefers
good ui. We first show that any belief in H1 must be absorbing under K. If this were not the case,
the seller’s optimal policy would place weight on posteriors in the interior of H1 and the {s2, s3}
edge. She could then provide a little less information, enlarging the support of the policy within H1

from AK \H1 to B✏(AK) \H1, analogous to Example 1. Given a prior like that in the figure, this
deviation places more weight on beliefs in H1 and less on the {s2, s3} edge, yielding strictly higher
profits for the seller. By induction, we next consider the {s2, s3} edge and show that any belief in
the shaded red line (for good u2) and the red dot at s3 (for good u3) must also be absorbing. Hence,
any belief in the support of the monopoly policy is absorbing and lies in the buyer’s acceptance set,
allowing the seller to obtain monopoly profits.

Theorem 2 assumes that products are dispersed. With two states, Example 2 implies that we
may have a problem whenever there is a “middle” product; with three or more states, a similar issue
may arise whenever a product is stuck in the middle along some dimension. For example, consider
Figure 3(b) which is the three-dimensional extension of Example 2. In this case, the regions where
goods u1 and u2 are optimal intersect and for sufficiently profitable u2, the monopoly policy involves
giving the buyer no information at p. However, as in Example 2, there is another equilibrium: if
others sellers “skip over” product u2 and send the buyer p ! {q1, �s3}, it is optimal for the current
seller to ignore u2 as well. Such non-monopoly equilibria cannot arise if products are dispersed.

Theorem 2 has two useful corollaries. First, if there is a single product, then the only equilibrium
is the monopoly policy. This result thus extends Example 1 to any finite number of states.

Corollary 1. If there is a single product, then any equilibrium policy is a monopoly policy.

Proof. Follows immediately from Theorem 2.

Second, if there are two horizontally differentiated products then the only equilibrium is the
monopoly policy. Broadly speaking, two products are horizontally differentiated if any state that is
good for u1 is bad for u2. Formally, we say two products are opposed if �s ·u1 � 0 implies �s ·u2  0.
Note that if two products are dispersed, then they must be opposed.
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(a) Dispersed Products (b) Non-dispersed Products
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Figure 3: Monopoly Policy (Public Beliefs)
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Figure 3(a) shows the monopoly policy if products are dispersed. Figure 3(b) considers an example
where complications can arise when beliefs are not dispersed. In this case p is an absorbing belief
under the monopoly policy, but may not be one under some other equilibrium policy, resulting in
multiple equilibria.

Corollary 2. If there are two opposed products, then any equilibrium policy is a monopoly policy.

Proof. See Corollary A3.5 of Appendix A.

This result is illustrated in Figure 2(c) which supposes there are two states. The first yields
utility u1 =

�

�1, 12
�

, the second yields utility u2 =

�

1
2 ,�1

�

and profits are ⇡̃ (u1) > ⇡̃ (u2) > 0.
When products are horizontally differentiated, we may have u1(q) > 0 and u2(q) > 0 for some q,
meaning the condition is not implied by products being dispersed. Nevertheless, the condition that
products are opposed means that no goods can be “stuck in the middle”, and the optimal monopoly
policy is a lexicographic perfect bad news policy. The rest of the proof is analogous to Theorem 2.

3 Private Beliefs

In this section, we suppose buyers’ beliefs are private, so sellers cannot provide different information
to buyers with different beliefs. More precisely, we suppose that a buyer starts with a known prior;
if the buyer arrives at a seller, she observes neither the buyer’s current belief nor his past search
behavior; she then chooses to disclose an independent signal. On the equilibrium path, buyers will
purchase at the first seller, but the possibility that an old buyer can mimic a new buyer forces sellers
to provide more information than when beliefs are public.

We first set up the model and demonstrate how private beliefs affect the equilibrium in the single
product example. Our first main result is that as search costs become small, there is is always a
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limit equilibrium that is payoff-equivalent to full-information. In general, there may be multiple
equilibria and we characterize these limit equilibrium policies. We then show that if products are
“sufficiently dispersed”, then the full-information limit equilibrium is unique.

3.1 Model

Basics. There is one buyer and infinite sellers. All sellers know the buyers initial prior p which
lies in the interior of �S. The timing is the same as before: when a buyer arrives at a seller, she
chooses a signal structure, the buyer updates his prior and chooses whether to buy, exit or pay the
search cost c and continue.

Seller’s Strategy. A seller chooses a signal structure on some space ⇥ that is independent of
all previous signals received by the buyer. Any potential buyer with prior r can also observe the
signal and learn about the state. Let q (✓) be the posterior of a buyer with prior p after observing
a signal ✓ 2 ⇥, and let qr (✓) denote the posterior of a buyer with prior r who observes the same
signal. The posteriors of the two buyers are related as follows

qr (✓) = �r (q (✓))

where �r : �S ! �S is a mapping from the posteriors of buyer p to the posteriors of buyer r

satisfying

[�r (q)] (s) :=
q (s) r(s)

p(s)
P

s0 q (s
0
)

r(s0)
p(s0)

Intuitively, for any two buyers, the proportionality of their likelihood ratios for any two states
remains constant when we update via Bayes’ rule. If buyer r starts off twice as optimistic as buyer
p, i.e. r has double the likelihood ratio than p, then q will remain twice as optimistic as p after any
signal realization.

Since this mapping �r is independent of the signal structure, sellers can simply choose a signal

policy µ which is a distribution of posteriors for a buyer with prior p and satisfies
R

�S q µ (dq) = p.
If a buyer p observes a signal inducing posterior q, then buyer r has posterior �r(q); in addition,
buyer r has a different distribution over states and therefore over signals. Putting this together,
buyer r has posteriors distributed according to the Markov kernel Kµ (r) = µr ���1

r , where µr is the
signal distribution on ⇥ from the perspective of buyer r. Let µ̄ denote the full information signal

policy which has full support on all degenerate posteriors. In other words, µ̄ reveals the true state
to the buyer.

Symmetric equilibrium. We consider symmetric equilibria such that, on the equilibrium
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path, a buyer leaves the market after his first match (with or without a purchase). Given the
buyer’s acceptance set Q, a policy µ is optimal given Q iff for all possible signal policies ⌫

Z

Q
⇡ (q)µ (dq) �

Z

Q
⇡ (q) ⌫ (dq) .

and the usual tie-breaking rule applies.
A buyer with posterior q who continues to search obtains continuation utility

Vc (µ, q) := �c+

Z

�S
max

⇢

max

u2U
r · u, Vc (µ, r)

�

Kµ (q, dr)

We also define ¯V (q) := V0 (µ̄, q) as the buyer profit from using the full-information policy µ̄. A
signal policy and acceptance set (µ,Q) form an equilibrium iff µ is optimal given

Qc (µ) :=

⇢

q 2 �S

�

�

�

�

max

u2U
q · u � Vc (µ, q)

�

.

In this case, we call µ an equilibrium policy.
We also consider what happens to equilibria when search costs vanish. A signal policy µ is a

limit equilibrium policy iff there are equilibrium policies µi for each ci > 0 such that µi ! µ as ci ! 0.

Remarks. Since we are interested in large markets where coordination might be difficult, we
assume signals are independent. As we will show, the crucial property is that a buyer learns all
relevant information as the number of samples grows large; this suggests that any model of imperfect
correlation will suffice. With this said, if sellers could perfectly coordinate their signals, then such
a signal would be useful to a new buyer but not to an old one, and we would be back in the setting
of Section 2.

We also assume that the seller chooses a single signal policy, rather than offering a menu to
differentiate between new and old buyers. On the equilibrium path, buyers purchase from the first
seller, so there are no old buyers and the single policy we study is a best-response in the more
general model. Moreover, even if sellers did offer a second policy that were accepted by old buyers
off the equilibrium path, this would only increase their utility, reinforcing Theorem 3.

3.2 Motivating Example

Example 1 (cont). As before there are two states {L,H} and the buyer’s initial prior is p = Pr (H).
First, suppose that p < 1

2 , so that the monopoly policy provides a positive amount of information.
Then as c ! 0, the only equilibrium policy is full revelation µ̄. To see this, first observe that the
value function is convex and increasing in the posterior q. Since information has no value at the
boundaries, the acceptance set is of the form Qc (µ) = [0, a] [ [b, 1], where a  1

2  b. As a result,
the seller’s optimal policy is a perfect bad news signal p ! {0, b}, as shown in Figure 4(a).
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In such an equilibrium, the buyer with posterior b must prefer to accept rather than searching
and obtaining one more signal. If the buyer with prior p receives a signal p ! {0, b}, a buyer with
prior r will have posteriors

�r (b) =
b r
p

b r
p
+(1�b) 1�r

1�p

with probability r
�r(b)

�r (0) = 0 with probability 1� r
�r(b)

Hence buyer b prefers to purchase immediately rather than search again if

2b� 1 � b

�b (b)
(2�b (b)� 1)� c

Rearranging, this becomes

�b2 + b [1 + p� c (1� p)]� p  0. (3)

The LHS of the inequality (which has the same sign as the value of searching) equals �c(1� p) at
the endpoints b 2 {p, 1} and is larger in between. When c is small, the LHS is positive on

⇥

1
2 , b

⇤� and
negative on (b⇤, 1], where b⇤ is the larger root of the quadratic. Since the seller wishes to provide as
little information as possible, this means there is a unique equilibrium in which the seller uses the
policy p ! {0, b⇤} which induces an acceptance set Q = [0, a⇤] [ [b⇤, 1], so b⇤ is indifferent between
buying and searching. Moreover, as c ! 0, the value of searching increases and b⇤ ! 1, as shown
in Figure 4(b). Economically, this means that the seller provides full information. Intuitively, since
the monopoly policy provides some information then, as the cost vanishes, a buyer can obtain a
large number signals at low cost and become almost fully informed. Hence the current seller must
provide a lot of information in order to beat this outside option and make a sale.

When p � 1
2 , a monopolist would provide no information and there are two limit equilibria as

search costs vanish: full information and no information. First observe that no information is an
equilibrium for any c. If sellers provide no information, the buyer will not search and, since “no
information” is the monopoly policy, no seller will defect. There are two further equilibria which
correspond to the two roots of the quadratic equation (3), denoted by {b⇤L, b⇤H} ⇢

⇥

1
2 , 1
⇤

. As c ! 0,
b⇤L ! p, which corresponds to no information, whereas b⇤H ! 1, which corresponds to full informa-
tion. 4

This example shows how there are equilibria that are much more informative than the monopoly
policy. When beliefs are public, a buyer who receives information from one seller obtains no useful
information if he were to go back to the market. However, when beliefs are private, the buyer can
reject the first offer, pretend to be uninformed and receive more information from another seller in
the market. This possibility of taking this outside option allows competition to work.
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(a) Non-monopoly Equilibrium

Figure 4: Single Product (Private Beliefs)

(b) Full-information Limit Equilibrium
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This figure illustrates Example 1 with private beliefs for a prior p < 1
2 . Figure 4(a) shows a

non-monopoly equilibrium: A perfect bad news policy p ! {0, b⇤} that induces the acceptance set
Q = [0, a⇤

] [ [b⇤, 1]. Figure 4(b) shows that when the search cost vanishes, c ! 0, this equilibrium
converges to full-information, b⇤ ! 1.

3.3 Full Information is a Limit Equilibrium

We now return to the general model, with multiple states and multiple goods. First, we address
the issue of equilibrium existence. Fix a search cost c > 0 and suppose all other sellers use policy
µ. The other sellers’ policies generate a value function Vc (µ, ·) for the buyer and an acceptance
set Qc (µ); the current seller then has a set of optimal signal policies 'c (µ). We thus define the
best-response correspondence µ ⇣ 'c (µ) which describes the best-response policies given that all
other sellers use policy µ. Note that the set of all signal policies is a convex compact space. If the
best-response correspondence is nonempty, convex valued and has a closed graph, then the Kakutani-
Fan-Glicksberg theorem implies that the correspondence has a fixed point, and an equilibrium exists.

Unfortunately, 'c may not have a closed graph. To see this, let us return to the vertical
differentiation case in Example 2 with initial prior p =

1
3 . Consider a sequence of policies µi

and optimal policies ⌫i 2 'c (µi) such that (µi, ⌫i) ! (µ, ⌫) and Qc (µi) =

⇥

0, 13 � "i
⇤

[
⇥

2
3 , 1
⇤

,
where "i ! 0. Note that for each "i > 0, the buyer will never purchase the low-quality book, so
the seller’s optimal policy ⌫i is a perfect bad news signal p !

�

0, 23
 

. However, in the limit as
Qc (µi) !

⇥

0, 13
⇤

[
⇥

2
3 , 1
⇤

the optimal policy ⌫⇤ 2 'c (µ) provides no information. Hence ⌫ 62 'c (µ)
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and the correspondence does not have a closed graph.
To address this issue, we assume that products are robust to full-information in that for every

good u 2 U , there is a state s 2 S such that the buyer purchases u if he knows the state is s for
sure, as shown in Figure 5(a). Formally, let Hu denote the set of beliefs where the buyer chooses u,

Hu :=

n

q 2 �S
�

�

�

u = argmaxu02u⇤(q)⇡̃
�

u0
�

o

We say that the set of products U is robust iff for all non-zero u 2 U , there exists some s (u) 2 S

such that �s(u) 2 Hu. Note that if products are dispersed, then they are robust.

Proposition 2. If products are robust then an equilibrium exists.

Proof. See Corollary B2.5 in Appendix B.

We now provide a sketch of the main argument. It is straightforward to show that the corre-
spondence 'c is nonempty and convex valued; the key step is to show that 'c has a closed graph.
Consider a sequence of policies µi and best-responses ⌫i 2 'c (µi) such that (µi, ⌫i) ! (µ, ⌫). Let
⌫⇤ 2 'c (µ) be the optimal policy given µ, and suppose ⌫⇤ puts weight on some q 2 Qc (µ) \ Hu

for some u 2 U . By the definition of robustness, we know that there is a state s (u) 2 S such that
�s(u) 2 Hu. Since buyer value functions are convex and continuous, for each µi, we can find some
qi 2 Qc (µi) \Hu along the line segment from q to �s(u) such that qi ! q. Hence, by shifting the
weights from q onto qi, we can construct policies ⌫⇤i ! ⌫⇤ such that ⌫⇤i has support in Qc (µi) and
the profits coincide in the limit. Since ⌫i is weakly more profitable than ⌫⇤i for every µi, it follows
that ⌫ = limi ⌫i is weakly more profitable than ⌫⇤ = limi ⌫

⇤
i , and hence ⌫ 2 'c (µ), as required. We

can thus apply Kakutani-Fan-Glicksberg to obtain the fixed point.
We now show that full information is always a limit equilibrium.

Theorem 3. There exists a limit equilibrium µ such that Vci (µi, p) ! ¯V (p) as ci ! 0.

Proof. See Theorem B3.6 in Appendix B.

Intuitively, as costs become small, a buyer either learns everything or nothing about a state. On
the equilibrium path, a buyer only visits a single seller; however, for each search cost ci, he always
has the option of visiting 1/

p
ci sellers for a total search cost of pci. As ci approaches zero, so does

the total search cost. Hence, if each seller provides some information about a state, the buyer will
be fully-informed about that state in the limit. This means that if all sellers provide information
about all states then a single seller must match them and also provide information about those
states. Note that Theorem 3 says that the limit equilibrium policy must be payoff-equivalent to the
full-information buyer payoff, but the seller may not provide all information. This occurs because
a buyer who makes the same decision in state s1 and s2 will not pay a search cost to separate these
states.
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(a) Robust Products (b) Non-robust products

Figure 5: Equilibrium Existence (Private Beliefs)
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Figure 5(a) shows an example with robust products. Figure 5(b) shows how we prove that there
always exists a full-information limit equilibrium.

To understand how the proof works, suppose that information about every state is valuable to the
buyer as in Figure 5(b). We wish to construct a sequence of equilibrium policies µi that converges to
full-information µ̄ as ci ! 0. To do this, let M" be the set of signal policies with support contained
in some "-neighborhood of the vertices of �S, denoted D". Suppose that all other sellers use a policy
µ 2 M"; we claim that the best-response satisfies 'c (µ) ⇢ M" for some small c. First observe that,
since µ reveals something about every state, the buyer’s value function Vc (µ, ·) converges to the
full-information payoff ¯V monotonically. This means we can find some small c such that Vc (µ, ·) is
close to ¯V and Qc (µ) ⇢ D". Since any best-response policy ⌫ 2 'c (M") puts full support in Qc (µ),
it follows that 'c (M") ⇢ M" for small c, as required. Note that the products close to the vertices
of �S are robust so Proposition 2 implies the existence of an equilibrium in M".13 Hence, for every
"i > 0, we can find some small enough ci such that there exists an equilibrium policy µi 2 M✏. As
"i ! 0, ci ! 0 and our sequence of equilibrium policies µi approaches the full-information policy µ̄

in the limit.

3.4 Uniqueness of the Full-Information Limit Equilibrium

Theorem 3 establishes that there always exists a limit equilibrium that is payoff equivalent to full-
information. In some situations however, there are multiple limit equilibria where some provide less
than full information. In this section, we characterize these limit equilibria as revealing partitional

13Products close to the vertices are robust if buyers have strict preferences at the vertices. The problematic case
is when a buyer has u⇤

= u1 at the vertex, and u⇤
= u2 at all nearby points. In such a case, a seller strictly prefers

the buyer to purchase u1, and we define D✏ to coincide with the vertex.
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(a) Partial-information is a Limit Equilibrium (b) Partial-information is not a Limit Equilibrium

Figure 6: Limit Equilibria (Private Beliefs)
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Figure 6(a) shows a partitional limit equilibrium where the buyer only learns T = {{s1} , {s2, s3}}.
Note that T is partitionally optimal because at p{s2,s3}, the buyer is already purchasing the most
profitable (only) product. Figure 6(b) shows that not every partition that is partitionally optimal
corresponds to a limit equilibrium. Even though all other sellers are providing information about s1
only and T = {{s1} , {s2, s3}} is partitionally optimal, each seller has an incentive to deviate and
provide some information about s2 versus s3 (i.e. sending the buyer to posterior r instead of q).

information about the state space, and show that when products are “sufficiently dispersed”, the
full-information limit equilibrium payoff is unique.

We first present an example of a limit equilibrium that is not payoff equivalent to full-information.
Suppose there are three states S = {s1, s2, s3} and a single product u2 as in Figure 6(a). Suppose
that all other sellers provide information about s1 only, so a buyer never receives any information
that allows him to distinguish between s2 or s3. The buyer’s posterior beliefs thus lie on the line
connecting s1 with the belief p{s2,s3}, the projection of p on the {s2, s3} edge. From the current
seller’s perspective, a buyer near the belief p{s2,s3} purchases her product and the seller has no
incentive to add dispersion in his beliefs. This means that given that all other sellers are providing
no information about s2 versus s3, the current seller also has no incentive to provide information.
As search costs go to zero, buyers know for sure whether s1 is true or not, but they learn nothing
about s2 versus s3. This partial-information policy is a limit equilibrium and gives the buyer a
strictly lower payoff than full-information. Of course, Theorem 3 implies that full-information is
also a limit equilibrium, so this example exhibits multiple limit equilibria.

We now provide a characterization of these limit equilibrium policies. Let T be some partition
of the state space S. For any event T 2 T and belief p 2 �S such that p (T ) > 0, let pT 2 �S be
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the conditional belief of p given T . In other words,

pT (s) =
p (s)

p (T )

for all s 2 T , and pT (s) = 0 otherwise. Geometrically, if �T is the sub-simplex corresponding
to the event T , then pT is the projection of p onto �T . For each partition T , let µT denote the
signal policy corresponding to revealing T to the buyer. Finally, let VT be the buyer’s payoff from
receiving information T .14

We illustrate these ideas with two examples. First consider the case of no information release.
T is then the trivial partition where T = {S} and µT

= �p. In this case, providing no information
is a limit equilibrium if a monopolist provides no information, as seen in Example 1. Intuitively,
if all other sellers provide no information, then a buyer will never search and a seller’s problem is
identical to the monopoly problem. Second, consider the case of full-information release. T =

¯T
is then the finest partition of S and µT

= µ̄. In this case, providing full information is a limit
equilibrium since all other sellers are already providing full information, as discussed in Theorem 3.

We now show that any limit equilibrium policy must have a partitional informational structure
corresponding to some T . In other words, as search costs become arbitrarily small, a buyer learns
everything about some states and nothing about others according to the partition T . Moreover, it
must also be true that T is partitionally optimal in that for all T 2 T ,

⇡ (pT ) �
Z

�T
⇡ (q) ⌫ (dq)

for all ⌫ consistent with pT . In other words, a monopolistic seller would prefer to provide no
information to a buyer with belief pT for every event T 2 T . Generically, this means that the buyer
purchases the most profitable good that can be reached from pT .15

Proposition 3. If µ is a limit equilibrium, then there is a partitionally optimal T such that

Vci (µi, p) ! VT (p) as ci ! 0.

Proof. See Proposition B3.7 in Appendix B.

The intuition behind this result is that if sellers reveal a little information about state s versus
s0 then, as the search cost vanishes, a buyer can visit a large number of sellers and perfectly
distinguish them. In order to make a sale, any one seller must therefore match the market, meaning
that any limit information structure must be partitional. Now, suppose the market induces partition
T = {{s1} , {s2, s3}}, as in Figure 6(a). It must be the case that, given belief pT = p{s2,s3}, the
seller does not want to release any extra information about s2 versus s3. Otherwise, the buyer could

14 Formally, µT
:=

P
T2T p (T ) �pT and VT (p) :=

R
�S

(maxu2U q · u)KµT (p, dq).
15To illustrate, in Example 2, the monopolist provides no information if p 2

�
1
3

 
[
⇥
2
3 , 1

⇤
. This means that,

generically, the buyer purchases the high-quality book.
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again visit many sellers and perfectly distinguish them. This means that any limit equilibrium must
be partitionally optimal.

Even though every limit equilibrium corresponds to a partitionally optimal T , not all partition-
ally optimal T correspond to limit equilibria. For example, consider Figure 6(b) in which there are
two products u1 and u2, and let T = {{s1} , {s2, s3}}. In the limit, as the buyer learns either s1 or
{s2, s3} perfectly, the seller has no incentive to provide information about s2 versus s3, since T is
partitionally optimal. However, away from the limit, she does prefer to provide information about
s2 versus s3. In particular, the seller would like to send the buyer to posterior r rather than q.
Hence, there is no equilibrium that corresponds to T .

We now derive conditions under which full information is the unique limit equilibrium. We say
a set of products U is sufficiently dispersed iff it is dispersed and u⇤ (pT ) = {0} for all events T

that consist of at least two states. For example, products in Figure 3(a) are sufficiently dispersed
since the buyer chooses to not purchase at each pT for all T with at least two states. In other
words, products are sufficiently spread out in belief space such that the seller needs to reveal some
information about each state in order to induce the buyer to purchase a product.

Theorem 4. If products are sufficiently dispersed, then for any limit equilibrium µ, Vci (µi, p) !
¯V (p) as ci ! 0.

Proof. See Theorem B3.8 in Appendix B.

Taken in combination, Theorems 2 and 4 imply that when products are sufficiently dispersed and
search costs go to zero, buyers receive a higher payoff under private beliefs than public beliefs. When
beliefs are public, buyers only attain the monopoly payoff, even when search costs are arbitrarily
small. The ability to discriminate between new and old buyers allows sellers to implicitly collude.
When beliefs are private, buyers can attain their full-information payoff in the limit. Even though
buyers purchase from the first seller on-path, the option to mimic an uninformed buyer and receive
more information forces sellers to compete against each other and provide much more information
to buyers.

With two states however, the analysis is even simpler. This extends the analysis of Example 1
to multiple goods.

Corollary 3. Suppose there are two states. If a monopolist provides some information, full infor-

mation is the unique limit equilibrium. Otherwise, both full and no information are limit equilibria.

Proof. Follows from Theorem 3 and Proposition 3.
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4 Extensions

In this Section we consider two extensions. In Section 4.1 we suppose a buyer can eliminate their
cookies at a small cost and choose between the public and private cases. In Section 4.2 we consider
a case in between the public belief model and the private belief model. In particular, we suppose
a seller sees whom a buyer has visited in the past, but does not see the realizations of the signals.
We argue the forces are broadly similar to the public belief model.

4.1 The Choice of “Do Not Track”

We now endogenize the decision to become anonymous, supposing that buyers can pay a small cost
k to activate the “Do Not Track” mode on their browser. We first argue that buyers who become
anonymous exert a positive externality on other buyers. We then observe that the free-riding is so
severe that there is no equilibrium in which all buyers choose to become anonymous.

Consider a continuum of both buyers and sellers and suppose all buyers start with prior p. At time
t = 0, a buyer can choose to pay cost k in order to become anonymous. After this decision, buyers
can be described by two dimensions: their belief q when meeting a seller and their type {A, T},
which describes whether they are anonymous (A) or tracked (T ). When revealing information, a
seller must treat an anonymous buyer (A, q) in the same way as a new tracked buyer (T, p). The
seller can, however, give different signals to old tracked buyers.

One can understand much of the economics by considering a simple 2 ⇥ 2 game where buyers
choose whether or not to be anonymous. The following table provides an illustration showing the
pure strategy payoffs for the single-product example with initial prior p =

1
3 and c = 0.05.

Other Buyers

Anonymous Tracked

Buyer i Anonymous 0.3� k 0.15� k

Tracked 0.3 0

First, suppose all other buyers are tracked, so we are in the model from Section 2. If buyer i is
also tracked then he receives a single “monopoly” signal from a seller and immediately buys since
he knows a second seller will refuse to provide more information. In the single-product example,
this means the buyer receives 0 utility. If buyer i becomes anonymous then he can get the initial
“monopoly” signal, delete the seller’s cookie and then receive “monopoly” signals from subsequent
sellers, paying cost c for each search. In the example, this yields expected utility 0.15 � k. Next,
suppose all other buyers are anonymous, so we are in the model from Section 3. If buyer i is tracked
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then he receives a single “competitive” signal that is more informative than the monopoly signal.
Since he is tracked, no sellers provide any further information to him. If buyer i becomes anonymous
he has the option to receive a sequence of “competitive” signals. However, on the equilibrium path,
the buyer will purchase at the first opportunity.

The first point to observe is that when other buyers become anonymous, this exerts a positive
externality on buyer i. Intuitively, when faced with lots of anonymous buyers, competition is more
effective and sellers provide more information in equilibrium. This benefits any buyer, independent
of whether they are anonymous or tracked.

Second, observe that no matter how small the cost k, there is no equilibrium where everyone
is anonymous. When all other buyers are anonymous then sellers provide enough information to
prevent the searching; hence buyer i has no incentive to become anonymous himself. To illustrate,
consider the above table. If k > 0.15 there is a unique equilibrium in which everyone is tracked. If
k 2 (0, 0.15) then there is no pure strategy equilibrium.

If we wish to characterize the mixed strategy equilibrium played by the buyers, we have to move
beyond the simple 2⇥2 game. Unfortunately, this is difficult to analyze since anonymous buyers will
search multiple times before buying, meaning that a single seller faces a heterogeneous population
of buyers. In Appendix C2, we heuristically discuss the single-product example and argue that,
in the most informative equilibrium, an increase in the proportion of anonymous buyers raises the
amount of information disclosed.

4.2 Intermediate Observability

In the previous sections we have considered two extreme cases wherein a seller either sees the belief
of the buyer, or she knows nothing about the buyer’s history. Instead, suppose that a seller sees
which other sellers a buyer has previously visited, but that she does not know the outcome of the
signal. The main message of this section is that this model variant is similar to the case of public
beliefs (Section 2). The key force driving the monopoly equilibrium is that sellers treat old buyers
differently from new buyers; to do this, sellers just need to know whether a buyer is new or old.

To be more precise, suppose that each seller chooses information independently. The nth seller
that a buyer approaches then chooses an information policy µn as a function of previous disclosure
policies (µ1, . . . , µn�1). We first observe that the monopoly policy is a sequential equilibrium.

Proposition 4. If sellers observe the number of past sellers visited and their policies, then the

monopoly policy is a sequential equilibrium.

Proof. We consider the following strategies: Seller 1 provides the monopoly level of information,
and the buyer accepts this offer; if the buyer rejects, sellers n � 2 believe the posterior is drawn from
the support of the monopoly posteriors µ⇤ and provide no information. To finish the description,
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we should describe what happens if seller 1 deviates, however this is rather complicated and is
unnecessary to establish the result. Broadly, the subsequent sellers will see the deviation and may
provide more information; the buyer can then accept seller 1 or reject, whichever gives them higher
utility.

To show this is a sequential equilibrium, we have to verify no player wishes to defect. Seller
1 obtains monopoly profits, so cannot be better off. The buyer gains nothing by rejecting, since
subsequent sellers provide no information. Now, suppose a buyer approaches seller n � 2, and
previous sellers followed the equilibrium. She believes the buyer’s belief q is in the support of the
monopoly policy, and that subsequent sellers provide no information; hence providing no information
is optimal for her. This is also the limit of mixed strategies: if the buyer approaches seller 2, then
she can see who trembled and, if it is the buyer, will optimally provide no information.

The underlying intuition is that when a buyer approaches seller 2, she knows that seller 1 provides
the optimal amount of information. Given that the two sellers are in essentially the same position,
they have the same acceptance sets and it is optimal for seller 2 to provide no more information.

The next question is whether there are any other equilibria. In Example 1, the monopoly policy
is the unique equilibrium.

Example 1 (cont). Since the buyer’s belief is private information, his value function is convex
and each seller n faces an acceptance set of the form [0,↵n] [ [�n, 1]. Seller 1 knows the buyer has
initial prior p and thus provides a perfect bad news signal p ! {0,�1}. If the buyer approaches seller
2, then she knows the buyer’s belief q lies in {0,�1}. If q = 0, then seller 2 cannot affect the buyer’s
posterior; her optimal policy is thus to assume the buyer received a positive signal from the first
seller and use a perfect bad news policy �1 ! {0,�2}. Notice, that seller 2 would use exactly the
same policy if she could observe the belief of the buyer! The same logic applies to subsequent sellers,
so the equilibria of the game coincide with the game with public beliefs. Given that the monopoly
policy is the only rationalizable outcome, as shown in Appendix C1, it is also the equilibrium in
this case with intermediate observability. 4

5 Conclusion

This paper studied a market where buyers search for better information about a product and sellers
choose how much information to disclose. When beliefs are public, the monopoly policy is an
equilibrium; when products are dispersed it is the only equilibrium. When beliefs are private, full
revelation is a limit equilibrium; when products are sufficiently dispersed, it is the only equilibrium.

Our results have interesting policy implications. Much of the discussion of the increased individ-
ualization of the Internet has focused on the role of targeting in enhancing the level of personalization
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of firm policies. This paper demonstrates that tracking technology may be even more insidious, un-
dermining the competitive mechanism and supporting collusive equilibria. More broadly, regulators
should be wary of any technology that enables sellers to discriminate between new and old buyers
and thereby discourage searching, including methods of correlating disclosure policies.

The model can be extended in a variety of ways. First, while we assumed that the buyer’s prior
and values are known by the seller – e.g. because sellers have demographic data about their customers
– it is natural to consider heterogeneous buyers. We conjecture that the analysis is similar to our
model if all types of buyers purchase at the first seller, which would happen if, say, the priors are
distributed over a small interval, e.g. U [p� ✏, p+ ✏]. More broadly, when buyers are heterogeneous,
the seller might be able to use menus to discriminate between different types (e.g. Kolotilin et al.
(2015)). Second, as in many of the traditional search papers, it is natural to consider match specific
tastes, or let the sellers choose other dimensions of their strategy, such a price, product quality, and
product range (e.g. Wolinsky (1986)). Third, while we have considered a model with two types of
players, one would like to understand the incentives of third-party data-brokers to collect and sell
information to sellers (e.g. Bergemann and Bonatti (2015)).
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Appendix A: Public Beliefs

In this appendix, we present proofs for the case when beliefs are public. Appendix A1 characterizes
different properties of absorbing beliefs, i.e., the set of beliefs where the seller provides no infor-
mation. Appendix A2 covers results on local optimality and how it relates to equilibrium policies.
Finally, Appendix A3 covers our main theorem on the uniqueness of the monopoly policy equilibrium
with dispersed products.

First, we introduce some notation. Let F be the Borel algebra on �S and ⇧ be the set of all
Borel probability measures on �S. Formally, an acceptance set is a Borel set Q ⇢ �S. We say a
distribution over beliefs µ 2 ⇧ is consistent with the belief p 2 �S iff it satisfies the martingale
property

R

�S q µ (dq) = p. Hence, a disclosure policy is a Markov kernel K : �S ! ⇧ such that
K (p) is consistent with p for all p 2 �S. Let K be the set of all disclosure policies. Recall that a
disclosure policy K is optimal given some acceptance set Q if the firm’s expected profit inside the
set Q is greater under K than any other L 2 K and it satisfies the signal tie-breaking rule (i.e. the
seller provides no information when she is indifferent).

A1. Properties of Absorbing Beliefs

In this section, we present three useful lemmas describing properties of absorbing beliefs. Recall
that given some disclosure policy K, the absorbing set AK is the set of beliefs that provides no
information under K, i.e. K (p) = �p. Also define the degenerate set as the set of beliefs where the
buyer knows the state for sure, i.e. p (s) = 1 for some s 2 S.

Our first lemma shows that all degenerate beliefs are absorbing and the set of absorbing beliefs
is Borel measurable.

Lemma (A1.1). For all K 2 K, D ⇢ AK 2 F .

Proof. We first show that AK is a Borel set. Note that K (p) = �p iff K (p, {p}) = 1. Hence,

AK = {p 2 �S | K (p, {p}) = 1} =

⇢

p 2 �S

�

�

�

�

Z

�S
1{p} (q)K (p, dq) = 1

�

.

By Proposition I.6.9 of (Çinlar, 2011), AK is F-measurable as desired.
To show that D ⇢ AK , let p = �s 2 D for some s 2 S. Since K (p) is consistent with p,

Z

�S
q (s)K (p, dq) = p (s) = 1

Since q (s)  1, this implies q (s) = 1 K (p)-a.s.. Hence, p = q K (p)-a.s. so K (p, {p}) = 1 and
p 2 AK . Hence, D ⇢ AK as desired.
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The next lemma list several useful properties of absorbing beliefs under optimal disclosure poli-
cies. First, optimal disclosure policies only send buyers to posterior beliefs that are absorbing.
Second, if a policy is optimal given Q, then it is also optimal given any set that is sandwiched
between its absorbing set and Q. Third, we can characterize the closure of any absorbing set by the
support of its disclosure policy. Recall that the support of K (denoted by supp (K)) is the largest
set F 2 F such that for any q 2 F and " > 0, there is some p 2 �S such that K (p,B" (q)) > 0,
where B" (q) is the "-ball around q.16

Lemma (A1.2). Let K 2 K be optimal given Q 2 F . Then

(a) K (p,AK) = 1 for all p 2 �S.

(b) AK ⇢ F ⇢ Q implies K is also optimal given F 2 F .

(c) cl (AK) = supp (K)

Proof. Let K 2 K be optimal given Q 2 F . We prove the lemma in order.

(a) First, define G 2 F to be the set of beliefs such that using K gives the seller a strictly higher
profit than providing no information. Formally,

G :=

⇢

q 2 �S

�

�

�

�

Z

Q
⇡ (r)K (q, dr) >

Z

Q
⇡ (r) �q (dr)

�

Our first step is to show that K will never send the buyer to a posterior in G, i.e. K (p,G) = 0

for all p 2 �S. Once we have this, then the signal tie-breaking rule will ensure that K will
always send the buyer to a posterior in AK .

We prove this by contradiction. Suppose there is some p 2 �S such that K (p,G) > 0. For
notational convenience, set µ := K (p) and define the measure ⌫ that coincides with µ outside
of G but provides one more iteration of information according to K inside G. Formally,

⌫ (F ) := µ (F \ (�S\G)) +

Z

G
K (q, F )µ (dq)

for all F 2 F . We show that using using ⌫ is strictly more profitable for the seller so K is not
optimal. First, we show that ⌫ is consistent with p. In order to see this, note that

Z

�S
q ⌫ (dq) =

Z

�S\G
q µ (dq) +

Z

G

✓

Z

�S
r K (q, dr)

◆

µ (dq)

=

Z

�S\G
q µ (dq) +

Z

G
q µ (dq) =

Z

�S
q µ (dq) = p

where the second and last equalities all following from the fact that K (q) is consistent with
16 Formally, B" (q) := {p 2 �S | |p� q|  "}.
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q for all q 2 �S. However, the seller’s profit for using ⌫ is
Z

Q
⇡ (q) ⌫ (dq) =

Z

Q\(�S\G)
⇡ (q)µ (dq) +

Z

G

✓

Z

Q
⇡ (r)K (q, dr)

◆

µ (dq)

>

Z

Q\(�S\G)
⇡ (q)µ (dq) +

Z

G

✓

Z

Q
⇡ (r) �q (dr)

◆

µ (dq) =

Z

Q
⇡ (q)µ (dq)

where the strict inequality follows from the definition of G and the fact that K (p,G) > 0.
This contradicts the optimality of K (p) = µ.

Hence, K (p,G) = 0 and since we know that the seller’s profit from K cannot be strictly less
than providing no information, it must be that for all p 2 �S,

Kp

⇢

q 2 �S

�

�

�

�

Z

Q
⇡ (r)K (q, dr) =

Z

Q
⇡ (r) �q (dr)

�

= 1

Thus, K is always going to send the buyer to posteriors where the seller is indifferent between
the policy and providing no information. By the signal tie-breaking rule, this implies K (q) =

�q Kp-a.s. so K (p,AK) = 1 for all p 2 �S.

(b) Suppose AK ⇢ F ⇢ Q. We want to prove that K is also optimal given F . Since K (p,AK) = 1

from part (a) and K is optimal given Q,
Z

F
⇡ (q)K (p, dq) =

Z

AK

⇡ (q)K (p, dq) =

Z

Q
⇡ (q)K (p, dq)

�
Z

Q
⇡ (q)L (p, dq) �

Z

F
⇡ (q)L (p, dq)

for any p 2 �S and L 2 K. We also need to check the tie-breaking rule. Suppose
R

F ⇡ (q)K (p, dq) =
R

F ⇡ (q) �p (dq) so from the above inequalities, we have
Z

Q
⇡ (q)K (p, dq) =

Z

Q
⇡ (q) �p (dq)

Since K is optimal given Q, K (p) = �p follows from the tie-breaking rule under Q. Hence, K
is also optimal given F as desired.

(c) We first show that cl (AK) ⇢ supp (K). Let q 2 cl (AK) and consider some neighborhood
B" (q) for " > 0. Since q 2 cl (AK), we can find some p 2 B" (q) \ AK . By the definition of
AK , we know K (p, {p}) = 1 and since p 2 B" (q), K (p,B" (q)) = 1 > 0. Since this is true for
any neighborhood around any q 2 cl (AK), cl (AK) ⇢ supp (K).

We now show that supp (K) ⇢ cl (AK). Consider q 2 supp (K) and suppose q 62 cl (AK). We
show that this must imply a contradiction. Find some " > 0 such that B" (q) \ cl (AK) = Ø.
Since q 2 supp (K), by the definition of support, it must be that there is some p 2 �S where
K (p,B" (q)) > 0. However, from part (a), we know that K (p,AK) = 1 for all p 2 �S
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implying K (p,B" (q)) = 0 a contradiction. Hence, supp (K) ⇢ cl (AK) so supp (K) = cl (AK)

as desired.

The last lemma of this section shows that if the disclosure policy is continuous, then its set of
absorbing beliefs is exactly its support.

Lemma (A1.3). If K 2 K is continuous, then AK = supp (K).

Proof. Let K 2 K be continuous. We show that AK is closed so cl (AK) = AK and the result follows
immediately from Lemma A1.2(c). Consider a sequence pi ! p such that pi 2 AK . If we can show
that p 2 AK , then AK is closed and we are done. Note that K (pi) = �pi for all pi. We show that
K (p) = �p. Since K is continuous, K (pi) ! K (p) weakly so for any continuous function ⇠,

Z

�S
⇠ (q)K (p, dq) = lim

i

Z

�S
⇠ (q)K (pi, dq) = lim

i

Z

�S
⇠ (q) �pi (dq) = lim

i
⇠ (pi) = ⇠ (p) (4)

If we can replace ⇠ with 1p, i.e. the indicator function on {p}, then we are done. However, 1p is
not continuous, so we approximate it using sequence of continuous functions ⇠j ! 1{p} such that
⇠j (p) = 1 for all j. By dominated convergence,

K (p, {p}) =
Z

�S
1{p} (q)K (p, dq) = lim

j

Z

�S
⇠j (q)K (p, dq)

Since ⇠j is continuous, we can apply equation (4) to get

K (p, {p}) = lim

j
⇠j (p) = 1

Hence p 2 AK so AK is closed as desired.

A2. Results for Local Optimality

We now present results showing how equilibrium policies are characterized by local optimality.
First, we introduce a couple of technical lemmas. For notational convenience, define the single-
search payoff for a buyer with belief q under policy K as

W (K, q) :=

Z

�S

✓

max

u2U
r · u

◆

K (q, dr)

Since optimal disclosure policies will only send buyers to absorbing beliefs (see Lemma A1.2(a)),
the first lemma below shows that the buyer only searches once in equilibrium. This means that we
have a very simple expression for the buyer’s value function.
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Lemma (A2.1). Let K 2 K be optimal given Q 2 F . Then for any c > 0,

Vc (K, q) = �c+W (K, q)

Proof. Fix some c > 0 and consider some r 2 AK so

Vc (K, r) = �c+max

⇢

max

u2U
r · u, Vc (K, r)

�

Note that if Vc (K, r) > maxu2U r · u, then Vc (K, r) = �c + Vc (K, r) contradicting c > 0. Thus,
maxu2U r · u � Vc (K, r) for all r 2 AK . From Lemma A1.2(a), we know that K (q, AK) = 1 for all
q 2 �S so

Vc (K, q) = �c+

Z

AK

max

⇢

max

u2U
r · u, Vc (K, r)

�

K (q, dr)

= �c+

Z

�S

✓

max

u2U
r · u

◆

K (q, dr) = �c+W (K, q)

as desired.

The following lemma says that in equilibrium, if the buyer’s value function is continuous on some
set of absorbing beliefs, then that set must be contained in the acceptance set. In other words, in
any equilibrium, we can always find a neighborhood around that set that is still contained inside
the acceptance set. Put differently, the seller always has some additional room to deviate locally
but chooses not to. This captures the spirit of local optimality and will be very useful in proving
subsequent results.

Lemma (A2.2). Let (K,Q) be an equilibrium and Vc (K, ·) be continuous on some closed set F ⇢
AK . Then B" (F ) ⇢ Q for some " > 0.

Proof. Let (K,Q) be an equilibrium where Q := Qc (K). Consider a closed set F ⇢ AK such that
Vc (K, ·) is continuous on F . Define

 c (r) := max

u2U
r · u� Vc (K, r)

so  c is also continuous on F . Since F is closed, by Corollary 3.31 of Aliprantis and Border (2006),
 c is uniformly continuous on F . Now, for every q 2 F ⇢ AK ,  c (q) = c > 0. Hence, by
uniform continuity, we can find some " > 0 such that q 2 B" (F ) implies  c (q) � c

2 > 0. Hence,
q 2 Qc (K) = Q so B" (F ) ⇢ Q as desired.

We are now ready for our first main proposition in this section. Recall that a continuous policy
K is locally optimal iff it is optimal given B" (supp (K)) for some " > 0. Note that from Lemma
A1.3, we know that supp (K) = AK .
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Proposition (A2.3). Any continuous equilibrium policy is locally optimal.

Proof. Let K 2 K be an equilibrium policy and Q := Qc (K). Since K is continuous, we know that
AK = supp (K) and is closed from Lemma A1.3. Moreover, since support functions are continuous,
W (K, ·) is continuous. Since Vc (K, ·) = �c+W (K, ·) by Lemma A2.1, the buyer’s value function
is also continuous. Hence, from Lemma A2.2, we can set F = AK and there is some " > 0 such that
B" (AK) ⇢ Q. Note that AK ⇢ Q follows easily from Lemma A2.1. Thus, AK ⇢ B" (AK) ⇢ Q so
from Lemma A1.2(b), K is optimal given B" (AK) proving local optimality.

Before we proceed to the final proposition in this section, we first present a technical lemma
that will be useful in the proof of the proposition. It says that if the buyer is indifferent between
staying and searching under zero search cost, then the seller’s profit is bounded below by her profit
if the buyer stays.

Lemma (A2.4). Let K be locally optimal and p 2 �S be such that p · u⇤ (p) = W (K, p). Then
Z

�S
⇡ (q)K (p, dq) � ⇡ (p)

Proof. Let K be locally optimal and v := u⇤ (p). Since support functions are convex,

p · v = W (K, p) =

Z

�S

✓

max

u2U
q · u

◆

K (p, dq)

implies that Kp must place all its mass on the affine part of the support function maxu2U q · u. In
other words,

Kp

⇢

q 2 �S

�

�

�

�

q · v = max

u2U
q · u

�

= 1

Moreover, recall that Kp (AK) = 1 from Lemma A1.2(a). Consider some q 2 AK and q · v =

maxu2U q · u. Since ties in the buyer’s actions are resolved in the seller’s favor and K is optimal
given B" (AK), it must be that ⇡ (q) � ⇡ (p). Hence

1 = Kp

⇢

q 2 AK

�

�

�

�

q · v = max

u2U
q · u

�

 Kp {q 2 AK | ⇡ (q) � ⇡ (p)}

The desired result then follows immediately.

We now show the converse of the proposition above. Any locally optimal policy is an equilibrium
policy for some small enough search cost.

Proposition (A2.5). Any locally optimal policy is an equilibrium policy for some c > 0.

Proof. Suppose K 2 K is locally optimal so there is some " > 0 such that K is optimal given
B" (AK). Note that K is also continuous by definition. Also, note that from Lemma A2.1, for any
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c > 0,

Qc (K) =

⇢

p 2 �S

�

�

�

�

max

u2U
p · u � �c+W (K, p)

�

The main argument rests on showing that there is some c > 0, such that K is optimal given
B" (AK)[Qc (K). In other words, we can find some c > 0 small enough such that the seller will not
have a strict incentive to send the buyer to a posterior somewhere in B" (AK)[Qc (K) but outside
AK . Once we have this and since AK ⇢ Qc (K) ⇢ B" (AK) [Qc (K), Lemma A1.2(b) implies that
K is optimal given Qc (K) demonstrating that K is an equilibrium policy. To simplify notation,
define B := B" (AK), Qc := Qc (K) and

Q0 :=

⇢

p 2 �S

�

�

�

�

max

u2U
p · u � W (K, p)

�

Finally, define ˆQc := Qc\B for all c � 0.
We prove that K is optimal given B [ Qc by contradiction. Consider some small c > 0 and

p 2 �S and suppose there is some measure µ consistent with p such that
Z

B[Qc

⇡ (q)µ (dq) >

Z

B[Qc

⇡ (q)K (p, dq)

We can assume µ (B [Qc) = 1 without loss of generality. Note that µ
⇣

ˆQc

⌘

= µ (Qc/B) > 0

since otherwise, µ only sends the buyer to posteriors in B and the optimality of K given B would
contradict the strict inequality. Now, consider the measure ⌫ that coincides with µ in B but provides
one more iteration of information according to K in ˆQc. Formally,

⌫ (F ) := µ (F \B) +

Z

Q̂c

K (q, F )µ (dq)

for all F 2 F . Note that since µ is consistent with p, ⌫ is also consistent with p by the same
argument as in Lemma A1.2(a). Define Q⇤

c :=

ˆQc\ ˆQ0 so we can partition ˆQc =
ˆQ0 [Q⇤

c . We now
have

Z

B[Qc

⇡ (q) ⌫ (dq) =

Z

B
⇡ (q)µ (dq) +

Z

Q̂c

✓

Z

B[Qc

⇡ (r)K (q, dr)

◆

µ (dq)

=

Z

B
⇡ (q) ⌫ (dq) +

Z

Q̂0

✓

Z

�S
⇡ (r)K (q, dr)

◆

µ (dq) (5)

+

Z

Q⇤
c

✓

Z

�S
⇡ (r)K (q, dr)

◆

µ (dq)

Now, q 2 ˆQ0 = Q0\B implies maxu2U q · u � W (K, q) so by Lemma A2.4,
R

�S ⇡ (r)K (q, dr) �
⇡ (q). Moreover, by the continuity of K, we can choose c small enough such that

R

�S ⇡ (r)K (q, dr) �
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⇡ (q) for all q 2 Q⇤
c . Substituting these two inequalities into equation (5) yields

Z

B[Qc

⇡ (q) ⌫ (dq) �
Z

B
⇡ (q)µ (dq) +

Z

Q̂0

⇡ (q) ⌫ (dq) +

Z

Q⇤
c

⇡ (q)µ (dq)

�
Z

B
⇡ (q)µ (dq) +

Z

Q̂c

⇡ (q)µ (dq) =

Z

B[Qc

⇡ (q)µ (dq)

However, since ⌫ (B) = 1, by the optimality of K given B, we have
Z

B[Qc

⇡ (q)K (p, dq) =

Z

B
⇡ (q)K (p, dq) �

Z

B
⇡ (q) ⌫ (dq)

�
Z

B[Qc

⇡ (q) ⌫ (dq) �
Z

B[Qc

⇡ (q)µ (dq)

yielding a contradiction.

A3. Uniqueness of the Monopoly Equilibrium Policy

In this section, we show our main result that the monopoly policy is the unique equilibrium policy
with dispersed products. First, we prove a useful lemma that says that if a monopoly policy’s
absorbing beliefs is contained in an equilibrium policy’s absorbing beliefs, then the equilibrium
policy must be a monopoly policy. The reason is that if the seller can send the buyer to all the
posterior beliefs that the monopoly policy uses, then the seller can just use the monopoly to get her
maximal profit.

Lemma (A3.1). Let K be an equilibrium policy and K⇤ be a monopoly policy. If AK⇤ ⇢ AK , then

K is a monopoly policy.

Proof. Let K 2 K be an equilibrium policy and Q := Qc (K). Let K⇤ be a monopoly policy. Suppose
AK⇤ ⇢ AK ⇢ Q where the last set inclusion follows from Lemma A2.1. Hence, AK⇤ ⇢ Q ⇢ �S so
by Lemma A1.2(b), K⇤ is also optimal given Q. Thus,

Z

�S
⇡ (q)K (p, dq) =

Z

Q
⇡ (q)K (p, dq) =

Z

Q
⇡ (q)K⇤

(p, dq) =

Z

�S
⇡ (q)K⇤

(p, dq)

�
Z

�S
⇡ (q)L (p, dq)

for any L 2 K. For the tie-breaking rule, suppose the above is satisfied with equality for L (p) = �p.
Hence, K⇤

(p) = �p so K (p) = �p by the tie-breaking rule from the optimality of K. Hence, K is a
monopoly policy as desired.

Recall that products are dispersed iff q · u � 0 implies q · v  0 for any {u, v} ⇢ U . We first
fully characterize the monopoly policy under dispersed products. We then prove that Lemma A3.1
applies so that any equilibrium policy must be an monopoly policy.
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First, we introduce some notation. For each u 2 U , let ¯Hu ⇢ �S be the set of beliefs where
choosing u is optimal for the buyer (under no information). Formally,

¯Hu : = {p 2 �S | p · u � p · v for all v 2 U }

Also, let Hu ⇢ ¯Hu is the set of beliefs where the buyer chooses u given our assumption that ties in
the buyer’s actions are resolved in the seller’s favor. Formally,

Hu : =

⇢

p 2 ¯Hu

�

�

�

�

u 2 arg max

v2u⇤(p)
⇡̃ (v)

�

Note that each Hu is convex and
S

u2U Hu forms a partition of the belief space �S.
Let us order the set of products U = {uk, uk�1, . . . , u1, 0} such that ⇡̃ (ui) > ⇡̃ (ui�1) for all

i 2 {k, . . . , 1} and u0 = 0. Let Ti ⇢ S denote the set of states such that ui is optimal. Formally,

Ti := {s 2 S | �s 2 Hui }

For i 2 {k, . . . , 0}, let �

U
i denote the sub-simplex such that no product with profit greater than

that of ui is chosen. Formally,

�

U
i := �

0

@S\

0

@

[

j>i

Tj

1

A

1

A

where �T denotes the probability simplex for event T ⇢ S. In other words, ui is the most profitable
product for the seller in each region �

U
i . Finally, let

EU
i := �

U
i \Hui

denote the region in �

U
i where ui is chosen.

We say a set of products U is regular iff for any p 2 Huj \
�

�

U
i \�U

i�1

�

where j < i, there is some
p0 2 Huj and q 2 Hui such that p = aq+(1� a) p0 for some a 2 (0, 1). We will show that regularity
is one of the sufficient conditions for the monopoly policy to be a unique equilibrium policy. First,
we show that with regular products, the absorbing beliefs of any monopoly policy are contained in
the EU

i sets. This provides us with a characterization of the monopoly policy.

Lemma (A3.2). Let U be regular and K⇤ be a monopoly policy. Then AK⇤ ⇢
S

iE
U
i .

Proof. We prove this by induction on the number of products. If U = {u0}, then EU
0 = �S and the

result follows trivially. Hence, assume the conclusion holds for at least k� 1 products and consider
a set of products U = {uk, . . . , u1, 0}. Let p 2 AK⇤ and we wish to prove that p 2

S

iE
U
i . We

consider three cases:
(i) Suppose p 2 Huk . Then �

U
k = �S and p 2 EU

k by the definition of EU
k .

(ii) Suppose p 2 �

U
k�1. Define the set of products U 0

:= U\ {uk} so U 0 has k � 1 products.
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Note that since U and U 0 are the same on �

U
k�1, K

⇤ is also a monopoly policy over �U
k�1 under U 0.

Hence, by the induction assumption, p 2
S

iE
U 0

i . Again, since U and U 0 coincide on �

U
k�1,

p 2 �

U
k�1 \

 

[

i

EU 0

i

!

= �

U
k�1 \

 

[

i

EU
i

!

so p 2
S

iE
U
i as desired.

(iii) Finally, suppose p 62 Huk and p 62 �

U
k�1. Since (Hu)u2U forms a partition of �S, let p 2 Hu

for some u 6= uk. Since p 2 AK⇤ , K⇤
(p) = �p so

Z

�S
⇡ (q)K⇤

(p, dq) = ⇡ (p) = ⇡̃ (u)

We now use regularity. Since p 2 �

U
k \�U

k�1 and U is regular, we can find some q 2 Huk and
p0 2 Hu such that p = aq+(1� a) p0 for some a 2 (0, 1). Suppose the seller releases some additional
information that puts a mass on posterior q and 1 � a mass on posterior p0. Formally, if we let
⌫ := a�q + (1� a) �r, then

Z

�S
⇡ (q) ⌫ (dq) = a⇡̃ (uk) + (1� a) ⇡̃ (u) > ⇡̃ (u)

Note that ⌫ is consistent with p but provides the seller with a strictly higher profit than no informa-
tion, thus contradicting the optimality of K⇤. Hence, this third case cannot happen so AK⇤ ⇢

S

iE
U
i

as desired.

Theorem (A3.3). Let U be regular and K be an equilibrium policy such that p 2 Hu implies

K (p,Hu) > 0. Then K is a monopoly policy.

Proof. Let (K,Q) be an equilibrium. The key is to prove that
S

iE
U
i ⇢ AK . Once we have this,

then Lemma A3.2 gives us that
AK⇤ ⇢

[

i

EU
i ⇢ AK

We can then use Lemma A3.1 to prove that K is a monopoly policy as desired.
As in the proof of Lemma A3.2, we prove that

S

iE
U
i ⇢ AK by induction on the number of

products. If U = {u0}, then EU
0 = �S and the result follows trivially. Hence, assume the conclusion

holds for at least k� 1 products and consider a set of products U = {uk, . . . , u1, 0}. Let p 2
S

iE
U
i

and we wish to prove that p 2 AK .
First, suppose p 2 EU

i for some i < k. Define the set of products U 0
:= U\ {uk} so U 0 has

k � 1 products. Note that since U and U 0 are the same on �

U
k�1, K is also an equilibrium policy

over �

U
k�1 under U 0. Since p 2 EU

i ⇢ �

U
k�1 and EU

i coincides with EU 0

i on �

U
k�1, it must be that

p 2 EU 0

i . By the induction assumption, p 2 AK as desired.
Now, suppose p 2 EU

k = Huk . Let a := Kp (Huk) = Kp (AK \Huk) as Kp (AK) = 1 from
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Lemma A1.2(a). By the premise, a > 0. We will show that a = 1. In order to do this, we will make
use of Lemma A2.2 which requires that Vc (K, ·) be continuous on AK \Huk . We now proceed to
prove this latter claim. Let q 2 AK \Huk and consider a sequence qi ! q. Since K is optimal given
Q, by the Theorem of the Maximum,

R

Q ⇡ (r)K (·, dr) is continuous. Hence, as qi ! q,
Z

Q
⇡ (r)K (qi, dr) !

Z

Q
⇡ (r)K (q, dr) = ⇡̃ (uk)

Hence, K (qi, Huk) ! 1. In other words, K (qi) will eventually put all its mass in Huk in the limit.
From Lemma A2.1, we know that Vc (K, q) = �c+W (K, q). Now,

W (K, qi) =

Z

�S

✓

sup

u2U
r · u

◆

K (qi, dr) !
Z

Huk

✓

sup

u2U
r · u

◆

K (q, dr) = q · uk

so Vc (K, qi) ! �c+ q · uk = Vc (K, q). Hence, Vc (K, ·) be continuous on AK \Huk . Note that by
a similar argument as in the proof of Lemma A1.3, the set AK \Huk is also closed.

The argument above implies that we can use Lemma A2.2 so that we can find some " > 0 where
B" (AK \Huk) ⇢ Q. In order to show that a = 1, we will use this fact to show that whenever
a < 1, the seller has a strict incentive to deviate from the equilibrium policy. We construct this
deviation as follows. Since a > 0, we can split K (p) into two measures µ1 and µ2 on Huk and
�S\Huk respectively. Formally,

K (p) = aµ1 + (1� a)µ2

where µ1 (Huk) = 1 and µ2 (Huk) = 0. Now, consider the policy that takes all beliefs in the support
of µ1 and moves them all slightly closer to p. If we choose our weights correctly, then the support
of this “perturbed” policy µ" will be completely contained in B" (AK \Huk) ⇢ Q. Formally, define
the mapping �" (q) := "p+ (1� ") q, a" := a

1�(1�a)" > a and

µ" := a"
�

µ1 � ��1
"

�

+ (1� a")µ2

First, we check that µ" is consistent with p. Note that
Z

�S
q µ" (dq) = a"

Z

�S
�" (q)µ1 (dq) + (1� a")

Z

�S
q µ2 (dq)

= a"

✓

"p+ (1� ")

Z

�S
q µ1 (dq)

◆

+ (1� a")

Z

�S
q µ2 (dq)

= a""p+
(1� ")

1� (1� a) "
p = p
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so µ" is consistent with p as desired. However, since supp (µ") ⇢ B" (AK \Huk) ⇢ Q and a" > a

Z

Q
⇡ (q) ⌫" (dq) =

Z

�S
⇡ (q) ⌫" (dq)

= a"µ1
�

��1
" (Huk)

�

⇡̃ (uk) + (1� a")

Z

�S\Huk

⇡ (q)µ2 (dq)

> aµ1 (Huk) ⇡̃ (uk) + (1� a)

Z

�S\Huk

⇡ (q)µ2 (dq)

>

Z

�S
⇡ (q)K (p, dq) =

Z

Q
⇡ (q)K (p, dq)

contradicting the optimality of K. Hence, it must be that a = 1.
For the final step, since a = Kp (Huk) = 1, from Lemma A2.1,

Vc (K, p) = �c+

Z

�S
max

u2U
(q · u)K (p, dq)

= �c+ p · uk < p · uk

implying p 2 Q. Hence, by the signal tie-breaking rule, K (p) = �p so p 2 AK as desired. This
concludes the proof.

The next two corollaries are straightforward applications of Theorem A3.3. They involve check-
ing that the assumptions of the theorem hold so that any equilibrium policy is a monopoly policy
when products are dispersed or opposed. Recall that two products are opposed iff u (s) � 0 implies
v (s)  0 for any {u, v} ⇢ U .

Corollary (A3.4). If products are dispersed, then any equilibrium policy is a monopoly policy.

Proof. Let U be dispersed. We check that the two assumptions of Theorem A3.3 hold. We first
check regularity. Let p 2 Huj\�U

i�1 where j > i. Since U is dispersed, ¯Huj = {q 2 �S | q · uj � 0}.
Consider s 2 Ti so �s 62 Hui . By a standard separating hyperplane argument, we can find some
p0 2 Huj such that p = a�s + (1� a) p0 where a 2 (0, 1). Hence, U is regular.

We now check the second condition. Let p 2 Hu and suppose K (p,Hu) = 0. Since �S\Hu is
convex, this implies p 62 Hu yielding a contradiction. Hence, both conditions of Theorem A3.3 hold
and the result follows.

Corollary (A3.5). If products are opposed, then any equilibrium policy is a monopoly policy.

Proof. Let U = {u2, u1, 0} be opposed. We first check for regularity. Consider p 2 Hu1 and let
�s 2 Hu2 where u2 (s) � 0 and u1 (s)  0. We can then find some p0 2 �S\�SU

1 close to p such
that p = a�s + (1� a) p0 for some a 2 (0, 1). Since �s 62 Hu1 and p 2 Hu1 , it must be that p0 2 Hu1

so U is regular. Note that since there are only two products, K (p,Hui) > 0 for all p 2 Hui and
i 2 {1, 2}. Hence, both conditions of Theorem A3.3 hold and the result follows.
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Appendix B: Private Beliefs

In this appendix, we present proofs for the case when beliefs are private. Appendix B1 provides
some preliminary results on the buyer’s value function. Appendix B2 characterizes conditions under
which an equilibrium exists. Finally, Appendix B3 covers our main results on limit equilibria as
search costs vanish.

First, we introduce some notation. Recall that p 2 int (�S) is the initial prior and ⇧ is the set
of all Borel probability measures on �S. Let M ⇢ ⇧ be the set of all signal policies, i.e., the set of
all signal policies µ 2 M consistent with p. Recall that �q (r) is the posterior of a buyer with prior
q given that a buyer with prior p has posterior r. More formally, given any signal policy µ 2 M ,
�q (r) must satisfy

µq (dr) [�q (r)] (s) = µ (dr) q (s)
r (s)

p (s)
(6)

where µq be the distribution of signals from the perspective of a buyer with prior q.17 The expression
on the left of equation (6) is the joint distribution over signals and states. Since all buyers observe
the same independent signal structure, the expression on the right is the same joint distribution
but from the perspective of buyer p after applying Bayes’ rule. Recall that Kµ is the Markov kernel
induced by µ where Kµ (q) = µq � ��1

q is the distribution of posteriors for buyer q. Also recall
that Vc (µ, ·) is the buyer’s continuation utility. Finally, as in the public beliefs section, define the
single-search buyer payoff as

W (µ, q) :=

Z

�S

✓

max

u2U
r · u

◆

Kµ (q, dr)

B1. Preliminary Results

In this section, we introduce some preliminary results that will be useful in the subsequent analysis.
The first lemma shows that the induced Markov kernel Kµ is in fact a continuous disclosure policy
as defined in the section on public beliefs. The remaining two lemmas in this section demonstrate
properties of the buyer’s value function.

Lemma (B1.1). Kµ 2 K and is continuous for all µ 2 M .

Proof. We first show that Kµ (q) = µq � ��1
q is continuous. First, note that by summing up both

17 Note that this is well-defined since p 2 int (�S).
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sides of equation (6) over S, we have the following expression for µq

µq (dr) = µ (dr)
X

s

q (s)
r (s)

p (s)

Note that this expression allows us to link the signal policy µ to the distribution of signals from the
perspective of buyer q. To show that Kµ is continuous, we test weak convergence using a bounded
continuous function ⇠ : �S ! R. Substituting the above expression for µq into the definition of
Kµ, we have

Z

�S
⇠ (r)Kµ (q, dr) =

Z

�S
⇠ (�q (r))µq (dr)

=

Z

�S
⇠ (�q (r))

X

s

q (s)
r (s)

p (s)
µ (dr) (7)

Since �q is continuous, this is clearly continuous in q. Hence, Kµ is continuous.
We now show that Kµ is a disclosure policy. Following equation (7) above and setting ⇠ (r) =

r (s), we have that
Z

�S
r (s)Kµ (q, dr) =

Z

�S
[�q (r)] (s)

X

s

q (s)
r (s)

p (s)
µ (dr)

=

Z

�S
q (s)

r (s)

p (s)
µ (dr) = q (s)

where the last equality follows from the fact that µ is consistent with p. Hence, Kµ (q) is consistent
with q 2 �S so Kµ 2 K.

The following quick lemma provides a useful explicit expression for the single-search buyer payoff
W . The proof simply involves using the expression for µq in equation (7) of the proof of Lemma
B1.1.

Lemma (B1.2). For any µ 2 M ,

W (µ, q) =

Z

�S
max

u2U

 

X

s

q (s)
r (s)

p (s)
u (s)

!

µ (dr)

Proof. Making use of equation (7) from Lemma B1.1, we have

W (µ, q) =

Z

�S

✓

max

u2U
�q (r) · u

◆

 

X

s

q (s)
r (s)

p (s)

!

µ (dr)

=

Z

�S

 

max

u2U

  

X

s

q (s)
r (s)

p (s)

!

�q (r)

!

· u
!

µ (dr)

=

Z

�S

 

max

u2U

X

s

q (s)
r (s)

p (s)
u (s)

!

µ (dr)
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The second equality follows from the fact that support functions are homogeneous of degree one
while the last equality follows from the definition of �q.

The final lemma in this section shows that the buyer’s value function is jointly continuous in
both signal policies and posterior beliefs and convex in his posterior belief. This drives many of our
convergence results when we study limit equilibria.

Lemma (B1.3). Vc (µ, q) is continuous in (µ, q) and convex in q.

Proof. First, fix some c > 0 and µ 2 M . First, consider a buyer who searches once. Hence, his
value function is given by

V 1
c (µ, q) := �c+W (µ, q)

Since support functions are continuous and �S is bounded, by Corollary 15.7 of Aliprantis and
Border (2006), W is continuous in (µ, q). Hence, V 1

c is continuous. Using the expression for W from
Lemma B1.2 and the fact that support functions are convex, we get that W is convex in q. Hence,
V 1
c is convex in q as well. We can now define a sequence of finite-period value functions iteratively

where for i 2 N

V i+1
c (µ, q) := �c+

Z

�S
max

⇢

max

u2U
(r · u) , V i

c (µ, r)

�

Kµ (q, dr)

We can now apply the same argument for V 1
c inductively to conclude that V i

c is continuous in (µ, q)

and convex in q. Note that V i
c converges uniformly to the value function Vc. Hence, Vc is also

continuous in (µ, q) and convex in q.

B2. Results for Equilibrium Existence

In this section, we will prove results regarding equilibrium existence. We will be using the Kakutani-
Fan-Glicksberg (KFG) fixed point theorem to prove existence. However, the pre-conditions neces-
sary for KFG are not always satisfied, so we will concentrate on a subset of signal policies defined
below.

Given any " � 0, let D" ⇢ �S be the set of beliefs such that buyer’s acceptance payoff is at least
"-away from his full-information payoff. Recall that ¯V is the buyer’s payoff from the full information
policy µ̄. Formally,

D" :=

⇢

q 2 �S

�

�

�

�

max

u2U
q · u � ¯V (q)� "

�

We will consider policies that only put weight in D". In other words, we consider policies in the
subset

M" := {µ 2 M | µ (D") = 1}
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Note that we can set " large enough such that D" = �S and M" = M . However, we will show
that we can always find a small enough " such that KFG applies on M". Recall the best-response

correspondence 'c : M ! 2

M such that ⌫ 2 'c (µ) iff ⌫ 2 M is optimal given Qc (µ), i.e., the
buyer’s acceptance set given signal policy µ 2 M . We will show that under certain conditions, we
can apply the KFG on the mapping 'c given the domain of policies M".

First, we prove a couple of technical lemmas that are needed for KFG.

Lemma (B2.1). M" is a non-empty, compact and convex metric space.

Proof. Let " > 0. We first show that M" is non-empty. Consider some full information policy µ̄

such that µ̄ (D) = 1 where D is the set of degenerate beliefs. Since D ⇢ D", µ̄ (D") = 1 so µ̄ 2 M"

proving that M" is non-empty. Note that the convexity of M" follows trivially.
We now prove that M" is compact. Note that since �S is a compact metric space, ⇧ is also

a compact metric space by Theorem 15.11 of Aliprantis and Border (2006) and hence sequentially
compact (see Theorem 3.28 of Aliprantis and Border (2006)). We now show that M" is also sequen-
tially compact. Consider the sequence µi 2 M" ⇢ ⇧ so it has a convergent subsequence µk ! µ 2 ⇧.
Since µk 2 M", we have

Z

�S
q µ (dq) = lim

k

Z

�S
q µk (dq) = p

so µ is also consistent with p. Moreover, since µk (D") = 1 and D" is closed, by Theorem 15.3 of
Aliprantis and Border (2006),

µ (D") � lim sup

k
µk (D") = 1

so µ 2 M". Thus, M" is sequentially compact and therefore compact.

Lemma (B2.2). 'c (µ) is convex for all µ 2 M .

Proof. Fix some c > 0. Let {⌫1, ⌫2} ⇢ 'c (µ) for some µ 2 M and consider ⌫ := a⌫1 + (1� a) ⌫2 for
some a 2 [0, 1]. Note that ⌫ is also consistent with p so ⌫ 2 M . Let Q := Qc (µ) so for any ⌫ 0 2 M

Z

Q
⇡ (q) ⌫ (dq) = a

Z

Q
⇡ (q) ⌫1 (dq) + (1� a)

Z

Q
⇡ (q) ⌫2 (dq) �

Z

Qc(µ)
⇡ (q) ⌫ 0 (dq)

so ⌫ is optimal given Q = Qc (µ) as well. Hence, ⌫ 2 'c (µ) as desired.

Lemmas B2.1 and B2.2 deliver nearly all the necessary conditions for applying KFG. The re-
maining condition is that the correspondence 'c needs to have a closed graph. In general, this may
not be true. As we result, we introduce sufficient conditions under which this condition holds. Note
that these sufficient conditions are slightly more general than what we need right now so that they
can be used in the next section when we characterize limit equilibria.

Recall that a set of products U is robust iff for all non-zero u 2 U , there is some state s 2 U

such that �s 2 Hu. We now generalize this definition of robustness. We say that the set of products
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U is "-robust iff for all non-zero u 2 U such that Hu \ D" 6= Ø, there is some s 2 S such that
�s 2 Hu. Note that if " is large enough such that D" = �S, then "-robustness and robustness are
the same. The following technical lemma shows that "-robustness allows us to construct policies
with just enough continuity such that we can eventually obtain closed-graphness for 'c.

Lemma (B2.3). Let U be "-robust and µi 2 M" be such that µi ! µ 2 M". Then for any ⌫ 2 M ,

there are ⌫̂i 2 M such that

lim inf

i

Z

Qc(µi)\D"

⇡ (q) ⌫̂i (dq) �
Z

Qc(µ)\D"

⇡ (q) ⌫ (dq)

Proof. Let U be "-robust and consider µi 2 M" such that µi ! µ 2 M". Let ⌫ 2 M . For notation
convenience, define Q" := Qc (µ)\D" and Qi

" := Qc (µi)\D". We first prove an intermediary step.
We show that for any non-zero u 2 U and q 2 Q" \Hu, we can find qi 2 Qi

" \Hu such that qi ! q.
This allows us construct the sequence of policies ⌫̂i 2 M by shifting the weight that the ⌫ puts on
each q to qi in order to obtain the desired result.

We now prove the intermediary step. Let q 2 Q" \Hu for some non-zero u 2 U . We construct
a sequence qi 2 Qi

" \ Hu as follows. If q 2 Qc (µi), then q 2 Qi
" \ Hu so we can just set qi = q.

Now consider the case when q 62 Qc (µi). Note that Hu \D" 6= Ø, so by "-robustness, there is some
s 2 S such that �s 2 Hu. We now choose a belief qi along the line segment connecting the posterior
q to the degenerate belief �s such that qi 2 Qc (µi). Note that since q 62 Qc (µi) and q 2 Hu,
q · u < Vc (µi, q). We can now define

ai :=
c

c+ Vc (µi, q)� q · u < 1

and set qi := aiq+(1� ai) �s. We show that qi 2 Qc (µi). Since Vc (µi, ·) is convex by Lemma B1.3,

Vc (µi, qi)  aiVc (µi, q) + (1� ai)Vc (µi, �s)

 aiVc (µi, q) + (1� ai) (�c) = aiq · u < q · u

so qi 2 Qc (µi). Note that {q, �s} ⇢ Hu \ D" and since Hu and D" are convex, Hu \ D" is also
convex so qi = aiq+(1� ai) �s 2 Hu \D". Hence, qi 2 Qi

" \Hu. Finally, to prove that qi ! q, note
that by the continuity of Vc from Lemma B1.3, Vc (µi, q) ! Vc (µ, q) � q · u as q 2 Qc (µ). Hence
ai ! 1 so qi ! q as desired.

We now show how to use the intermediary step to construct ⌫̂i. First, define the following set
of beliefs

Q⇤
:=

[

u 6=0

(Q" \Hu)

By the intermediary step, for each q 2 Q⇤, we can find some qi 2 Qc (µi) that converges to q. We
will construct ⌫̂i by shifting the weight that ⌫ places on each q 2 Q⇤ to qi. Since we need to ensure
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that each ⌫̂i is consistent with p, we will need to add a “correction” term for each ⌫̂i. This term may
decrease the seller’s profit, but as qi ! q the difference will vanish in the limit. Formally, define the
transition kernel Li such that

Li (q) := �i
�

1Q⇤
(q) �qi + 1�S\Q⇤ (q) �q

�

+ (1� �i) �p0
i

where the “correction” terms p0i are chosen so that consistency is maintained. We can now set

⌫̂i (dr) := ⌫ (dq)Li (q, dr)

Note that

⌫̂i
�

Qi
" \Hu

�

=

Z

�S
Li

�

q, Qi
" \Hu

�

⌫ (dq)

�
Z

Q"\Hu

Li

�

q, Qi
" \Hu

�

⌫ (dq) �
Z

Q"\Hu

�i⌫ (dq)

where the last inequality follows from the fact that qi 2 Qi
"\Hu. Hence, ⌫̂i

�

Qi
" \Hu

�

� �i⌫ (Q" \Hu).
Since qi ! q, �i ! 1 and we have lim infi ⌫̂i

�

Qi
" \Hu

�

� ⌫ (Q" \Hu). Hence

lim inf

i

Z

Qi
"

⇡ (q) ⌫̂i (dq) � lim inf

i

X

u

⇡ (u) ⌫̂i
�

Qi
" \Hu

�

�
X

u

⇡ (u) ⌫ (Q" \Hu) =

Z

Q"

⇡ (q) ⌫ (dq)

as desired.

We now use the lemma above to show that "-robustness is sufficient for 'c to have a closed
graph. In other words, we can now use KFG to obtain the existence of an equilibrium.

Theorem (B2.4). Suppose U is "-robust and 'c (M") ⇢ M". Then there exists an equilibrium policy

µ 2 M".

Proof. As a first step, we first show that the mapping Qc : M ! F is upper hemi-continuous
and takes on non-empty, closed values. Note that for all µ 2 M , �s 2 Qc (µ) so Qc (µ) is non-
empty. Since Vc is continuous from Lemma B1.3, Qc (µ) is also closed. We now demonstrate
upper hemi-continuity. Let (µi, qi) ! (µ, q) where qi 2 Qc (µi). Thus, maxu qi · u � Vc (µi, qi) so
maxu q · u � Vc (µ, q) as Vc is continuous again by Lemma B1.3. Thus, q 2 Qc (µi) so Qc is upper
hemi-continuous as desired.

We now prove that the mapping 'c : M" ! 2

M" has a closed graph where 'c (M") ⇢ M" follows
from assumption. Let (µi, ⌫i) ! (µ, ⌫) where ⌫i 2 'c (µi). Let ⌫⇤ 2 'c (µ) so from Lemma B2.3, we
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can find ⌫̂i 2 M such that
Z

Qc(µ)\D"

⇡ (q) ⌫⇤ (dq)  lim inf

i

Z

Qc(µi)\D"

⇡ (q) ⌫̂i (dq)

 lim sup

i

Z

Qc(µi)
⇡ (q) ⌫̂i (dq)  lim sup

i

Z

Qc(µi)
⇡ (q) ⌫i (dq) (8)

 lim sup

i

Z

�S
⇡ (q) ⌫i (dq) 

Z

�S
⇡ (q) ⌫ (dq)

where the second line follows from the fact that ⌫i 2 'c (µi) and the last line follows from Theorem
15.5 of Aliprantis and Border (2006) since ⇡ is upper semicontinuous. Since ⌫⇤ 2 M", ⌫⇤ (D") = 1

so
Z

Qc(µ)
⇡ (q) ⌫⇤ (dq) =

Z

Qc(µ)\D"

⇡ (q) ⌫⇤ (dq) (9)

Since ⌫i (Qc (µi)) = 1 and Qc is upper hemi-continuous and takes on nonempty closed values from
above, by Theorem 17.13 of Aliprantis and Border (2006), ⌫ (Qc (µ)) = 1. Combining this along
with equations (8) and (9), we have

Z

Qc(µ)
⇡ (q) ⌫⇤ (dq) 

Z

�S
⇡ (q) ⌫ (dq) =

Z

Qc(µ)
⇡ (q) ⌫ (dq)

so ⌫ 2 'c (µ) as desired. Combined with Lemmas B2.1 and B2.2, KFG (Corollary 17.55 of Aliprantis
and Border (2006)) implies there exists some µ 2 M" such that µ = 'c (µ) as desired.

Finally, we apply this to the special case when products are robust.

Corollary (B2.5). If products are robust, then an equilibrium exists.

Proof. Fix c > 0 and choose " large enough such that D" = �S. Hence, M" = M and U is "-robust
by definition. Since 'c (M) ⇢ M , Theorem B2.4 delivers the desired result.

B3. Results for Limit Equilibria

This section covers results on limit equilibria. We will present three main results. First, we use
Theorem B2.4 to construct a sequence of equilibria that converges to full information as search costs
vanish. Hence, full information is always a limit equilibria. Second, we show that all limit equilibria
have a partitional structure. Third, we show that when products are sufficiently dispersed, then full
information is the unique limit equilibrium.

First, we prove a few technical lemma about convergence. Given K 2 K , define the Markov
kernel Kj such that

Kj
(q, dqj) := K (q, dq1)K (q1, dq2) · · ·K (qj�1, dqj)
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Thus, Kj corresponds to disclosing j-iterations of information according to the policy K. Our
first lemma uses the martingale convergence theorem to prove that Kj always converges to some
disclosure policy K⇤ that has support in AK . In other words, a limit policy always exists and it is
at most as informative as the original policy K.

Lemma (B3.1). For any continuous K 2 K, there exists a K⇤ 2 K such that Kj ! K⇤ and

K⇤
(q, AK) = 1.

Proof. We first set up a formal probability space such that the buyer’s posterior beliefs follow a
martingale. Fix q0 2 �S and let ⌦ := �SN. By Ionescu-Tulcea’s theorem (Theorem IV.4.7 of
Çinlar (2011)), we can find a probability measure P on ⌦ such that for all j

qj = Ej [qj+1] =

Z

�S
qj+1K (qj , dqj+1)

In other words, beliefs follow a martingale. Since they are bounded, by the martingale convergence
theorem (Theorem V.4.1 of Çinlar (2011)), we have P-a.s.

q⇤ = lim

j
qj

Hence, we can define the limit policy K⇤ such that K⇤
(q0) := limj K

j
(q0), i.e. the distribution of

the limit posterior q⇤.
We now show that K⇤

(q, AK) = 1. For " > 0, define the random variable X"
j := 1B"(q⇤) (qj+1).

Hence, X"
j is 1 iff qj+1 is in an "-neighborhood around the limit posterior q⇤. Note that P-a.s.

lim

j
X"

j = lim

j
1B"(q⇤) (qj+1) = 1

Since K is continuous, by dominated convergence, we have P-a.s.

K (q⇤, B" (q
⇤
)) = lim

j
K (qj , B" (q

⇤
)) = lim

j
Ej

⇥

1B"(q⇤) (qj+1)
⇤

= lim

j
Ej

⇥

X"
j

⇤

= 1

Since this is true for all " > 0, we must have K (q⇤, {q⇤}) = 1 so q⇤ 2 AK P-a.s. or K⇤
(q0, AK) = 1

for all q0 2 �S.
Finally, we show that K⇤

(q0) is consistent with q0 for all q0 2 �S. Note that by bounded
convergence and iterated expectations,

Z

�S
q⇤K⇤

(q0, dq
⇤
) = E [q⇤] = E



lim

j
qj

�

= lim

j
E [qj ] = lim

j
E [q1] = q0

as desired. Hence, K⇤ 2 K.
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We now introduce some notation regarding partitions that will be useful in the subsequent
proofs. Let T be some partition of S and recall that µT , KT and VT are the signal policy, Markov
kernel and buyer payoffs corresponding to T respectively. Also recall that qT is the conditional
belief of q 2 �S given any event T 2 T . Since µT sends buyer p to posterior beliefs (pT )T2T , it
must be that KT (q) must send buyer q to posterior beliefs (qT )T2T . Formally, this means that

KT (q) =
X

T2T
q (T ) �qT

where �qT is the degenerate measure on the conditional belief qT .
Given a partition T , define the conditional simplex

�T := conv

 

[

T2T
pT

!

Hence, �T is the |T |-dimensional simplex with (pT )T2T as extreme points. The first lemma below
shows that �T consists of exactly all the beliefs that have the same conditional beliefs as the initial
prior p. In other words, �T is the set of all possible posterior beliefs where the buyer only learns
about the partition T . This is a useful characterization of �T that we will use later.

Lemma (B3.2). For any partition T , q 2 �T iff qT = pT for all T 2 T .

Proof. Fix a partition T . First, let q 2 �T . Since q is in �T , we can express q =

P

T 02T q (T 0
) pT 0

as a convex combination of the conditional beliefs of p given T . Note that q (T ) is the probability
that q puts on the event T ⇢ S. Now, for any s 2 T 2 T , we can calculate the conditional
probability

qT (s) =

P

T 02T q (T 0
) pT 0

(s)
P

T 02T q (T 0
) pT 0

(T )
= pT (s)

so qT = pT for all T 2 T as desired.
Now, suppose qT = pT for all T 2 T . For each s 2 T 2 T ,

X

T2T
q (T ) pT (s) = q (T ) pT (s) = q (s)

so
P

T2T q (T ) pT = q. Since q can be expressed as a convex combination of conditional beliefs of p
given T , q 2 �T as desired.

The next lemma shows that if µ only sends the buyer to posteriors in �T , then the buyer cannot
learn more than T in the limit.

Lemma (B3.3). If µ (�T ) = 1 and Kj
µ ! K⇤, then K⇤

(p,�T ) = 1.

Proof. Let µ (�T ) = 1 and Kj
µ ! K⇤. First, we will show that if q 2 �T , then r 2 �T implies

�q (r) 2 �T . In other words, if a buyer with prior p only learns about T , then a buyer with prior
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q in �T can also only learn about T . Let r 2 �T so from Lemma B3.2, rT = pT for every T 2 T .
Since q 2 �T , we also have qT = pT for all T 2 T . Hence, for all s 2 T 2 T ,

[�q (r)]T (s) =
q (s) r(s)

p(s)

q (T ) r(T )
p(T )

=

q (s)

q (T )
= qT (s) = pT (s)

so �q (r) 2 �T again from Lemma B3.2. Hence, q 2 �T implies �T ⇢ ��1
q (�T ) where

��1
q (�T ) := {r 2 �S | �q (r) 2 �T }

is the set of beliefs such that �q maps into �T .
Since µ (�T ) = 1, �T ⇢ ��1

q (�T ) implies µ
�

��1
q (�T )

�

= 1 for all q 2 �T . From the
definition of Kµ (q) (see equation (7) in the proof of Lemma B1.1), since µ has support in ��1

q (�T ),

Kµ (q,�T ) =

Z

��1
q (�T )

X

s

q (s)
r (s)

p (s)
µ (dr) =

Z

�S

X

s

q (s)
r (s)

p (s)
µ (dr)

=

X

s

q (s)
1

p (s)

Z

�S
r (s)µ (dr) = 1

where the last equality follows from the fact that µ is consistent with p. In other words, as long as
q is in �T , Kµ (q) will only send the buyer to beliefs in �T . Hence, for any j, we have

Kj
µ (q,�T ) =

Z

�S
· · ·
Z

�S
Kµ (qj�1,�T )Kµ (qj�2, dqj�1) · · ·Kµ (q, dq1) = 1

Since Kj
µ (q) ! K⇤

(q) and �T is closed, by Theorem 15.3 of Aliprantis and Border (2006),

K⇤
(q,�T ) � lim sup

j
Kj

µ (q,�T ) = 1

as desired.

Finally, we can now use the lemmas above to show that every policy converges to some partitional
policy if the buyer were to receive infinite draws of the signal.

Lemma (B3.4). For any µ 2 M , Kj
µ ! KT for some partition T .

Proof. Note that by Lemma B1.1, Kµ 2 K and is continuous. Hence, by Lemma B3.1, we can
define K⇤ 2 K such that Kj

µ ! K⇤ and K⇤ �q, AKµ

�

= 1 for all q 2 �S. Recall that q 2 AKµ

iff Kµ (q) = �q. In other words, K⇤ has support only on the set of posterior beliefs such that Kµ

provides no information.
Since Kµ (q) = µq � ��1

q , we have q 2 AKµ
iff

1 = Kµ (q, {q}) = µq

�

��1
q {q}

�

(10)
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Now ��1
q {q} is the set of beliefs r 2 �S such that �q (r) = q. In other words, these are the

posterior beliefs of buyer p such that a buyer with prior q does not update. Clearly, this depends
on q. For example, if q = �s is degenerate, then regardless of what posterior buyer p obtains,
buyer q will still have posterior q = �s. In other words, ��1

q {q} is the entire simplex. Define
Tq := {s 2 S | q (s) > 0} as the set of states where q puts strictly positive probability and define
the partition

Tq := {Tq} [
[

s 62Tq

{s}

In other words, Tq partitions S into the event Tq where q has strictly positive probability and all
other states where q (s) = 0. We will now show that

��1
q {q} = �Tq

In other words, ��1
q {q} is exactly the sub-simplex with pTq

and every degenerate belief not in Tq

as vertices. In order to prove this, note that r 2 ��1
q {q} iff for all s 2 S

q (s)
r (s)

p (s)
=

 

X

s0

q
�

s0
� r (s0)

p (s0)

!

q (s) (11)

Now, for any ŝ 2 Tq, since q (ŝ) > 0, we can divide equation (11) by q (ŝ) to get

r (ŝ) =

 

X

s0

q
�

s0
� r (s0)

p (s0)

!

p (ŝ)

This implies that rTq
= pTq

. Moreover, for every s 62 Tq, r{s} = �s = ps trivially. Hence, we have
rT = pT for all T 2 Tq. By Lemma B3.2, r 2 �Tq. Thus, ��1

q {q} ⇢ �Tq. By similar reasoning,
�Tq ⇢ ��1

q {q} so ��1
q {q} = �Tq as desired.

Returning to equation (11), we now have that q 2 AKµ
implies µq (�Tq) = 1. We show that this

implies µ (�Tq) = 1. Suppose on the contrary that µ (�S\�Tq) > 0. From the expression for µq in
equation (6), we have

0 = µq (�S\�Tq) =
Z

�S\�Tq

X

s2S
q (s)

r (s)

p (s)
µ (dr)

=

X

s2Tq

q (s)
1

p (s)

Z

�S\�Tq

r (s)µ (dr)

Now, in order for this equality to hold, it must be that for any s 2 Tq,
R

�S\�Tq
r (s)µ (dr) = 0.

Since µ (�S\�Tq) > 0, this implies r (s) = 0 µ-a.s. for all s 2 Tq. This implies µ only puts mass
on posteriors such that r (Tq) = 0. Since µ is consistent with p and p 2 int (�S), this yields a
contradiction. Hence, µq (�Tq) = 1 implies µ (�Tq) = 1.

To summarize, we now have that q 2 AKµ
implies µ (�Tq) = 1. By Lemma B3.3, this im-
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plies that K⇤
(p,�Tq) = 1 for every q 2 AKµ

. Since K⇤ �p,AKµ

�

= 1, this further implies that
K⇤ �p,�Tq \AKµ

�

= 1. We now show that K⇤ must have support on conditional beliefs of p, i.e.,
posterior beliefs of the form pT where T ⇢ S. First, let q 2 AKµ

and suppose Tq = S. In this case,
Tq = {S} i.e. the no information partition and �Tq = {p}. Hence, K⇤

(p, {p}) = 1 as desired. Next,
suppose Tq = S\ {s0}. In this case, Tq = {Tq, {s0}} and �Tq = conv

�

pTq
, �s0
 

. Hence,

K⇤ �p, conv
�

pTq
, �s0
 

\AKµ

�

= 1

In other words, K⇤
p sends the buyer only to absorbing beliefs in the line segment connecting pTq

and �s0 . Suppose there is an interior belief r 2 int
�

conv
�

pTq
, �s0
 �

and r 2 AKµ
. This implies

r 2 int (�S) so Tr = S. By the step before, this implies p = r. Hence, K⇤ only puts weight on pTq
,

�s0 or p. By iterating this reasoning over the cardinality of Tq for any q 2 AKµ
, we obtain that K⇤

can only put weights on conditional beliefs of p. Hence, K⇤
= KT for some partition T .

We are now ready to address our first main result showing that a full information limit equilib-
rium always exists (we will be using the notation from Appendix B2). The main idea is to choose
a sequence of increasingly small " and apply Theorem B2.4 on the set of signals M". In order to
use the theorem, we need one more lemma in order to ensure that the the correspondence 'c only
maps signals in M" into M".

Lemma (B3.5). There exists some "̄ > 0, such that for any "  "̄, we can find some c > 0 where

'c (M") ⇢ M".

Proof. Set "̄ > 0 small enough such that for all "  "̄, D" is close enough to D0 so that they share
the same conditional beliefs of p. In other words, pT 2 D" implies pT 2 D0 for all T ⇢ S. Fix some
"  "̄ and note that by Lemma B3.4, for any µ 2 M", Kj

µ ! KT for some partition T .
First, we show that pT 2 D0 for all T 2 T . We prove this by contradiction. Let T 2 T and

suppose pT 62 D0. By our choice of ", this implies that pT 62 D". Note that by Lemma B3.1,
KT

�

pT , AKµ

�

= 1. Hence, pT 2 AKµ
. By the same argument as in the proof of Lemma B3.4, this

implies that µ (�Tq) = 1 where q = pT . Now, since µ 2 M", µ (D") = 1 so µ (�Tq \D") = 1.
However, q 62 D" so µ puts no mass around pT = q and all its mass in �Tq \D". This contradicts
the fact that p 2 int (�S) and µ is consistent with p. Hence, it must be that pT 2 D0 for all T 2 T .

We now prove that as c ! 0, Vc ! ¯V uniformly on M" ⇥ �S. Let ci ! 0. Fix µ 2 M" and
q 2 �S. First, we first show that Vci (µ, q) ! ¯V (q) pointwise. Set ni as the largest integer less
than c

� 1
2

i so nici  c
1
2 . Note that the buyer can always visit ni sellers before choosing to go with

the ni-th seller. Hence, his payoff is at least as great as searching ni times. If we let µni be the
distribution of posteriors for a buyer who visits ni sellers, then

Vci (µ, q) � �nici +W (µni , q) � �c
1
2
+W (µni , q) (12)
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As ci ! 0, ni ! 1. Hence, by Lemma B3.4, Kµni = Kni
µ ! KT for some partition T . Moreover,

we know that pT 2 D0 for all T 2 T . Recall that

D0 =

⇢

q 2 �S

�

�

�

�

max

u2U
q · u � ¯V (q)

�

Since ¯V is the full information payoff, it is linear in q. Hence, pT 2 D0 for all T 2 T implies qT 2 D0

for all T 2 T . This implies that KT (q,D0) = 1 for all q 2 �S. In other words, KT (q) has support
in D0 for all q 2 �S so we have

W (µni , q) !
Z

�S

✓

max

u2U
r · u

◆

KT (q, dr) =

Z

D0

¯V (r)KT (q, dr) =

Z

�S

¯V (r)KT (q, dr)

=

¯V

✓

Z

�S
r KT (q, dr)

◆

=

¯V (q)

where the penultimate equality follows again from the fact that ¯V is linear in q. Since W (µni , q) !
¯V (q) it must be that Vci (µ, q) ! ¯V (q) pointwise. Note that M" ⇥�S is compact by Lemma B2.1
and Vc is continuous by Lemma B1.3. Since Vci is decreasing monotonically, by Dini’s Theorem,
(Theorem 2.66 of Aliprantis and Border (2006)), Vci ! ¯V uniformly on M" ⇥�S.

Now, by uniform continuity, we can find some c > 0 such that for all (µ, q) 2 M" ⇥�S

�

�Vc (µ, q)� ¯V (q)
�

� < "

Hence, for all µ 2 M",

Qc (µ) =

⇢

q 2 �S

�

�

�

�

max

u2U
q · u � Vc (µ, q)

�

⇢
⇢

q 2 �S

�

�

�

�

max

u2U
q · u � ¯V (q)� "

�

= D"

Consider a best-response policy ⌫ 2 'c (µ). Since we know that ⌫ must send the buyer inside the
acceptance set, ⌫ (Qc (µ)) = 1. Hence,

⌫ (D") � ⌫ (Qc (µ)) = 1

so ⌫ 2 M". Hence, 'c (µ) ⇢ M" for every µ 2 M" so 'c (M") ⇢ M" as desired.

We are now ready to state our first main result on the existence of full information limit equilibria.
Recall that a limit equilibrium policy µ is a policy where there exists a sequence of equilibrium
policies µi for each ci > 0 such that µi ! µ as ci ! 0.

Theorem (B3.6). There exists a limit equilibrium µ such that Vci (µi, q) ! ¯V (q) as ci ! 0.

Proof. First, suppose U has strict preferences in that u (s) 6= v (s) for all products u and v and
s 2 S. We first prove this for strict preferences. Consider a decreasing sequence "i ! 0. Now,
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for each "i, from Lemma B3.5, we can find some ci > 0 such that 'ci (M"i) ⇢ M"i . We will now
use Theorem B2.4 to show existence of an equilibrium. In order to do this, we need to show that
U is "i-robust. Since U has strict preferences, we can alway set "i such that D"i is small enough
such that it only intersects those Hu that also touch at least one of the degenerate vertices. This
is because we can always set "i such that "i < |u (s)� v (s)| for all {u, v} ⇢ U and s 2 S. In other
words, for every non-zero u 2 U , Hu\D"i 6= Ø implies there is some s 2 S such that �s 2 Hu. Note
that this is exactly the definition of "-robustness, so by Theorem B2.4, there exists an equilibrium
policy µi 2 M"i . Note that Vci ! ¯V follows directly from the proof of Lemma B3.5.

Now, suppose U does not have strict preferences. In this case, we can redefine the D" sets
such that they only include the indifferent points at the vertices. Note that if we define D" in this
manner, since ties in the buyer’s actions are resolved in the seller’s favor, sellers will never want to
send any buyer to posterior beliefs outside of these vertices. Hence Lemma B3.5 that 'c (M") ⇢ M"

is satisfied and the argument then follows exactly as above.

Recall that a partition T is partitionally optimal iff a monopolistic seller would prefer to provide
no information to a buyer with belief pT for every event T 2 T . Formally, this means that for all
T 2 T ,

⇡ (pT ) �
Z

�T
⇡ (q) ⌫ (dq)

for all ⌫ consistent with pT where �T is the sub-simplex corresponding to the event T . We now
show that any limit equilibrium must be partitionally optimal.

Proposition (B3.7). If µ is a limit equilibrium, then there is a partitionally optimal T such that

Vci (µi, q) ! VT (q) as ci ! 0.

Proof. Let µ be a limit equilibrium so µi ! µ as ci ! 0 where µi are all equilibrium policies. As in
the proof of Lemma B3.5, the buyer can always search ni times where ni is the largest integer less
than c

1
2

i so nici  c
1
2

i . Hence, by the same argument for equation (12) in Lemma B3.5, we obtain

Vci (µi, q) � �nici +W (µni

i , q) � �c
1
2
+W (µni

i , q)

where µni

i is the distribution of posteriors for a buyer who visits ni sellers under signal policy µi.
Now, by Lemma B3.4, µni

= Kni
µ (p) ! KT (p) for some partition T . Since µ = limi µi and W is

continuous in µ from Lemma B1.2, we have

lim

i
W (µni

i , q) = lim

i
W (µni , q) = W

⇣

lim

i
µni , q

⌘

= W (KT (p) , q) = VT (q)

Hence, limi Vci (µi, q) � VT (q). Moreover, since µni

i converges to KT (p), it cannot be strictly more
informative than KT (p) so the inequality is an equality. Hence, Vci (µi, q) ! VT (q).
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We now show that T is partitionally optimal. We prove this by contradiction. Suppose T is not
partitionally optimal so we can find some T 2 T and ⌫ consistent with pT such that

⇡ (pT ) <

Z

�T
⇡ (q) ⌫ (dq)

Since µi is an equilibrium, we have that
Z

Qc(µi)
⇡ (q)µi (dq) �

Z

Qc(µi)
⇡ (q) ⌫ 0 (dq)

for all µ0 2 M . Since Vci (µi, q) ! VT (q), we can find ci small enough such that pT 2 Qc (µi). How-
ever, since ⇡ (pT ) <

R

�T ⇡ (q) ⌫ (dq) and µi is optimal given Qc (µi), it must be that µi never sends
the buyer to posteriors near pT . In other words, we can find some B" (pT ) such that µi (B" (pT )) = 0.
This contradicts the fact that Vci (µi, q) ! VT (q) so T must be partitionally optimal.

Recall that a set of products U is sufficiently dispersed iff it is dispersed and u⇤ (pT ) = {0} for
all event T ⇢ S where T consists of at least two states. We now show that sufficiently dispersed is
enough to guarantee that full information is the unique limit equilibrium.

Theorem (B3.8). If products are sufficiently dispersed, then for any limit equilibrium µ, Vci (µi, q) !
¯V (q) as ci ! 0.

Proof. Suppose U is sufficiently dispersed and let µ be a limit equilibrium where µi ! µ as ci ! 0.
From Proposition B3.7, we know that Vci (µi, q) ! VT (q) for some partitionally optimal T . We
now show that VT =

¯V , i.e., T is payoff-equivalent to full information for the buyer. Note that KT

only puts weight on pT for all T 2 T . Hence, it is sufficient to just check that VT (pT ) = ¯V (pT ) for
all T 2 T

We prove this by contradiction. Suppose there is some T 2 T such that VT (pT ) < ¯V (pT ). Note
that if T = {s} is a singleton, VT (�s) =

¯V (�s) so T must contain at least two states. Since U

is sufficiently dispersed, we know that u⇤ (pT ) = {0}. Hence if we let H0 denote the set of beliefs
such that the buyer chooses 0, then pT 2 int (H0). Hence, we can create a neighborhood B" (pT )

such that µi (B" (pT )) = 0. Since µi ! µ, this implies µ (B" (pT )) = 0. In other words, µ will
never send a buyer to any belief near pT . This contradicts the fact that KT is the limit policy as
Vci (µi, q) ! VT (q). Hence, VT (pT ) = ¯V (pT ) for all T 2 T so VT =

¯V as desired.
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C. Additional Analysis

C1. Non-Markovian Equilibria

In the main text, we restrict equilibria in three ways. First, we consider Markovian equilibria,
assuming sellers only condition their disclosure strategies on the buyer’s current belief (which is the
payoff relevant state variable).18 Second, we assume a signal tie-breaking rule that if “no informa-
tion” is a best-response for a seller, then she will use it. Third, we focus on symmetric equilibria.
Here we reconsider Example 1 and show that the monopoly strategy is the unique rationalizable
outcome without these restrictions on strategies.

Example 1 (cont). Consider a single seller i and suppose that all other sellers pursue arbitrary
policies. No matter what �i do, even if they provide full information, a buyer would purchase from
seller i if the state falls into the set

Q1 := {q 2 [0, 1] : max{2q � 1, 0} � V0(q)} = [0, a1] [ [b1,1] = [0, c] [ [1� c, 1]

where the full-information value function ¯V (q) = V0(q) := �c+ q provides an upper bound on the
buyer’s value if he searches.

Given that seller i faces Q � Q1, then the only strategies that are not strictly dominated are
(payoff equivalent to) perfect bad news policies that just persuade the buyer to purchase the product.
If b1  1

2 , seller i will use the monopoly policy, and we are done. Otherwise, she will use one of a set
of perfect bad news policies; of these, the most information such a signal could generate for a buyer
is p ! {0, b1}. The same logic applies to all sellers, so a buyer’s value from searching is bounded
above by V1(q) = q[2� 1

b1
]� c which means that the acceptance set must contain

Q2 : = {q 2 [0, 1] : max{2q � 1, 0} � V1(q)} = [0, a2] [ [b2,1]

=



0,
b1

2b1 � 1

c

�

[ [b1(1� c), 1] =



0,
(1� c)

2(1� c)� 1

c

�

[
⇥

(1� c)2, 1
⇤

Continuing this process, bn = (1 � c)n which means that with n � � log(2)/ log(1 � c) rounds,
then Qn � [

1
2 , 1] and the seller chooses the monopoly policy. Note that in this case sellers may use

different strategies, but all are payoff-equivalent to the monopoly policy. 4

18Of course, if a seller cannot observe the order in which the buyer approaches sellers, then this is without loss of
generality.

58



C2. Mixed Strategies in the Tracking Game - Single Product Example

We now consider mixed strategies in the tracking game discussed in Section 4.1. Consider Example
1, with p < 1/2, so that a buyer does not buy in the absence of information.19 Suppose proportion
↵ of buyers are initially anonymous while 1�↵ are tracked. If a seller knows she is facing a tracked
buyer, then she provides the monopoly level of information, as in Section 2. If a seller faces a buyer
without tracking information, this may mean that the buyer is a new tracked buyer with prior p,
or an anonymous buyer who has received any number of signals.

Consider an equilibrium in which sellers use perfect bad news signals such that p ! {0, q}.
Using Bayes’ rule define {p, q, q(2), q(3), . . .} as the sequence of beliefs that arises from repeatedly
observing the good signal, so one more signal means q(n) ! {0, q(n+1)}. Observe that we must
have q � 1

2 . If this were not the case, a seller could provide “two signals” taking q(n) ! {0, q(n+2)},
raising the seller’s sales from anonymous buyers, and possibly leading to sales from tracked buyers.
Tracked buyers thus purchase at the first seller; anonymous buyers have some threshold belief qA,
and purchase after receiving N := min{n : q(n) � qA} positive signals, where N � 2 to justify the
cost of becoming anonymous.

We now verify there is an equilibrium of this form. A seller faces 1�↵ tracked buyers with prior
p, ↵ anonymous buyers with prior p, ↵p

q anonymous buyers with belief q, . . ., and ↵ p

q(N�1)
anonymous

buyers with prior q(N�1). Since the seller’s profit function is a mixture of step functions, it follows
that her optimal disclosure policy will be at a corner, meaning one type of buyer is indifferent
between purchasing and not. A symmetric equilibrium can thus be of two kinds: (a) the seller
ignores the anonymous buyers and sets q =

1
2 , or (b) the seller chooses q > 1

2 so that a tracked
buyer with belief q(N) is indifferent between buying and continuing.

For q =

1
2 to be an equilibrium the seller must not want to deviate by providing “two signals”

and selling to two cohorts of informed buyers,20

(1� ↵)
p

q
+ ↵

p

q(N)
� (1� ↵)

p

q(2)
+ ↵

p

q(N)
+ ↵

p

q(N+1)
,

where N is derived from the anonymous buyer’s stopping problem.
For q > 1

2 to be an equilibrium, we require that the seller does not want to deviate by providing
the monopoly level of information, giving up on the anonymous buyers,21

(1� ↵)
p

1/2
 (1� ↵)

p

q
+ ↵

p

q(N)
.

As one would expect, an increase in the number of anonymous buyers, ↵, slackens this constraint
19Without this assumption, no information is always an equilibrium (see Corollary 3).
20This corresponds to the local upwards (IC) constraint. Unfortunately, this does not imply other (IC) constraints

bind.
21This corresponds to the (only) downward (IC) constraint. In the most informative equilibrium this is the relevant

constraint.
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and allows us to support a higher q. This means that, in the most informative equilibrium, sellers
disclose more as ↵ rises, and any one buyer is better off when other buyers are anonymous. 4
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