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This article discusses estimation of multilevel/hierarchical linear models that

include cluster-level random intercepts and random slopes. Viewing the models

as structural, the random intercepts and slopes represent the effects of omitted

cluster-level covariates that may be correlated with included covariates. The

resulting correlations between random effects (intercepts and slopes) and

included covariates, which we refer to as ‘‘cluster-level endogeneity,’’ lead to

bias when using standard random effects (RE) estimators such as (restricted)

maximum likelihood. While the problem of correlations between unit-level cov-

ariates and random intercepts is well known and can be handled by fixed-effects

(FE) estimators, the problem of correlations between unit-level covariates and

random slopes is rarely considered. When applied to models with random

slopes, the standard FE estimator does not rely on standard cluster-level exo-

geneity assumptions, but requires an ‘‘uncorrelated variance assumption’’ that

the variances of unit-level covariates are uncorrelated with their random

slopes. We propose a ‘‘per-cluster regression’’ (PC) estimator that is straight-

forward to implement in standard software, and we show analytically that it is

unbiased for all regression coefficients under cluster-level endogeneity and vio-

lation of the uncorrelated variance assumption. The PC, RE, and an augmented

FE estimator are applied to a real data set and evaluated in a simulation study

that demonstrates that our PC estimator performs well in practice.
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1 Introduction

We consider linear regression models for clustered data that include cluster-

specific random intercepts and slopes. Such models are called multilevel models,

mixed models, random-coefficient models, or hierarchical linear models. If the

models are viewed as ‘‘structural models,’’ the perspective taken in this article,

the regression coefficients represent structural or causal parameters, and the error

terms represent the effects of omitted covariates. If there are omitted confounders

that are correlated with included covariates, then the error terms are correlated

with the included covariates. These correlations lead to omitted variable bias.

This article focuses on estimation methods that avoid bias due to omitted

cluster-level confounders, also referred to as ‘‘cluster-level endogeneity.’’ An

alternative view of models, not taken here, is that regression coefficients merely

represent associations between included variables, or linear projections in the

case of linear models, in which case the error terms are orthogonal to the covari-

ates by construction (see Spanos, 2006, for a discussion of ‘‘structural’’ vs. ‘‘sta-

tistical’’ models).

Research on addressing cluster-level endogeneity in multilevel models has

traditionally been confined to correlations between unit-level covariates (i.e.,

covariates that vary over units) and random intercepts that vary over clusters

in which units are nested. This constitutes a type of ‘‘cluster-level’’ endogeneity,

as it involves correlation with a cluster-level random error term. For instance, in

estimating the effect of Catholic schooling on student achievement controlling

for student socioeconomic status (SES), one may worry that school-level omitted

variables, such as school resources, may be correlated with SES. Left unad-

dressed, this endogenity may lead us to misattribute the impacts of these omitted

variables to the effect of SES. This bias may in turn spill over to other coeffi-

cients. To address this type of endogeneity, Mundlak (1978) shows that consis-

tent estimators of the coefficients of unit-level covariates can be obtained by a

fixed-effects (FE) approach. However, with standard FE estimators, coefficients

of cluster-level covariates (i.e., covariates that only vary over clusters) cannot be

estimated. The Hausman and Taylor (1981) instrumental variable estimator

resolves this limitation and is consistent for the coefficients of both unit- and

cluster-level covariates under appropriate assumptions (see Castellano, Rabe-

Hesketh, & Skrondal, 2014).

Endogeneity in the form of correlations between unit-level covariates and

random slopes varying over clusters may also arise. Referring back to the

Catholic schooling example, when controlling for students’ SES, the slope

of SES (or SES achievement gradient) may vary between schools, due to

interactions between SES and omitted school-level covariates, such as school

resources. If the omitted variables are negatively correlated with the SES

achievement gradient, then the random slopes will be negatively correlated

with SES.
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Remarkably, such endogeneity is rarely considered. One exception is

Frees (2004) who extends the Mundlak approach to handle random slopes.

Another is Wooldridge (2005) who shows under seemingly benign condi-

tions that traditional FE estimation of random-intercept models is robust

against correlations between unit-level covariates and random slopes.

However, neither of these approaches permits estimation of the coeffi-

cients of cluster-level covariates even if the covariates are exogenous

(i.e., not endogenous). This limitation is overcome by Kim and Frees

(2007) who use generalized method of moments estimation to extend the

Hausman–Taylor approach to multilevel models with random slopes. How-

ever, their method is difficult to implement, making the FE approach more

feasible in practice.

Unfortunately, a key assumption required for the FE approach may be vio-

lated in important applications. Specifically, the within-cluster variance of a

unit-level covariate must be uncorrelated with the random slope of that cov-

ariate, which we refer to as the ‘‘uncorrelated variance assumption’’ through-

out this article. Turning back to the Catholic schooling example, it is

possible that more diverse schools (schools with high variance of SES) may

be better equipped to mitigate the effects of SES (lower the SES achievement

gradient) than schools that are more homogeneous (schools with low var-

iance of SES). Such a situation would directly violate the uncorrelated var-

iance assumption.

In this article, we investigate estimation of the coefficients of unit-level

and cluster-level covariates in multilevel models in the presence of two

sources of endogeneity; (nonzero) correlations between unit-level covariates

and both the random intercept and random slopes. Throughout, we assume

that covariates are uncorrelated with the unit-level error term and that

cluster-level covariates are uncorrelated with the random intercepts and ran-

dom slopes. We propose a simple ‘‘per-cluster regression’’ (PC) approach

that is unbiased and consistent for coefficients of both unit-level and

cluster-level covariates under both forms of cluster-level endogeneity and

violation of the uncorrelated variance assumption. We contrast its perfor-

mance to the ‘‘standard’’ random-effects (RE) estimator and what we call the

‘‘augmented FE’’ (FEþ) approach, which extends the FE approach to provide

estimates of the coefficients of cluster-level covariates. In Section 2, we first

introduce our motivating empirical example and specific model of interest

and then present our general model. In Section 3, we discuss the traditional

RE and FE estimators and their conditions for unbiasedness. In Section 4, we

introduce new estimators, namely, the FEþ estimator and the PC estimator,

and show under what assumptions they are unbiased. We provide conditions

for consistency for all four estimators in Online Appendix A. All estimators

are applied to a data set in Section 5, and Section 6 investigates performance

of the estimators using a simulation study.
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2 Motivation and Multilevel Model

2.1 Motivating Example and Specific Model

As a motivating example, we consider the effect of private schooling on stu-

dent achievement. We use the Raudenbush and Bryk (2002) data from the 1982

High School and Beyond (HSB) Survey because it is familiar in education and it

is in the public domain, allowing us to provide data and commands for all esti-

mators in Online Appendix B.

This two-level data set provides us with an estimation sample of 7,185 stu-

dents (units) nested in 160 schools (clusters), 70 of which are Catholic (private)

and the remaining of which are public. The number of observations per school

ranges from 14 to 67 students (mean¼ 45, SD¼ 12). We use a mathematics stan-

dardized test score for student i in school j as our response variable, yij, which has

a mean of 12.75 and a standard deviation of 6.88. Our primary variables of inter-

est are wj, a binary indicator for whether school j is Catholic, and xij, a continuous

index of students’ SES, composed of parental education, parental occupation,

and parental income. This index has a mean of 0 and a standard deviation of 0.78.

We write the model using a two-stage formulation, similar to that used in Rau-

denbush and Bryk (2002). The first stage is the Level-1 model:

yij ¼ η0j þ η1jxij þ εij: ð1Þ

This is a simple regression of the student mathematics test scores yij on their SES

xij, where the intercept η0j and slope η1j can vary between schools, as indicated

by the j subscript. Each student’s test score can deviate from the school-specific

regression line by a random error term εij.

The school-specific intercepts and slopes become (unobservable) outcomes in

the Level-2 models:

η0j ¼ γ0 þ γ1wj þ u0j

η1j ¼ β1 þ β2wj þ u1j:
ð2Þ

The mean intercept and slope of SES, for the population of schools, depend on

whether the schools are Catholic or public (wj). The intercepts γ0 and β1 in these

models therefore represent the population means of the intercepts and slopes of

SES for public schools, whereas the slopes γ1 and β2 represent the differences in

population means of the intercepts and slopes between Catholic and private

schools, respectively. The Level-2 models have errors u0j and u1j to allow the

schools’ intercepts and slopes to vary within the subpopulations of Catholic and

private schools. Assumptions regarding the error terms are discussed in Sections

3 and 4.

Substituting the Level-2 models into the Level-1 model, we obtain the

reduced form of the model:

yij ¼ γ0 þ γ1wj þ β1xij þ β2wjxij þ u0j þ u1jxij þ εij: ð3Þ
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We see that β2 is the coefficient of a cross-level interaction between the

student-level covariate xij and the school-level covariate wj.

In this setting, it is likely that there are omitted school-level variables that

affect student achievement, and hence enter the random intercept u0j, and are cor-

related with student SES. If these omitted school-level variables also interact

with student SES, then they enter the random slope u1j, and the slope is then cor-

related with SES. Ignoring such endogeneity may lead to bias when estimating

the coefficients of this model.

2.2 General Multilevel Model

The general model we consider in this article is for two-level data, such as the

HSB data described previously. In the cross-sectional case, units (Level 1) are

typically individuals nested within clusters (Level 2), such as schools, hospitals,

or neighborhoods. In the longitudinal case, units refer to measurement occasions

nested within individuals who constitute the ‘‘clusters.’’ Clusters are indexed j,

with j ¼ 1, . . . , J, and units are indexed ij, with i ¼ 1, . . . , nj. The general

model includes unit-level covariates that vary between units within clusters (and

between clusters) as well as cluster-level covariates that vary between clusters

but are constant across units within the same cluster. Same-level and cross-

level interactions may also be included, where cross-level interactions are unit-

level covariates. Some unit-level covariates may have random slopes.

The general model can be written as:

yi ¼Wjγ þ Xjβþ Zjuj þ εj: ð4Þ

Here yj ¼ ðy1j; . . . ; ynjjÞ
0

is the vector of responses for cluster j, the nj � Pþ 1ð Þ
matrix Wj includes all P cluster-level covariates and its first column is a vector of

ones, 1nj
, for the intercept; the nj� R matrix Xj includes all R unit-level covariates;

the nj � R1 þ 1ð Þmatrix Zj includes all R1� R unit-level covariates in Xj that have

random slopes and its first column is 1nj
for the random intercept. Finally, the uj are

random effects or cluster-level error terms (one random intercept and R1

random slopes), and the εj are unit-level error terms. The uj are assumed to be inde-

pendent of the εj, and the clusters are independent in the sense that error terms as

well as covariates are independent across clusters. Other required assumptions

regarding uj and εj depend on what estimators are used and are discussed in Sec-

tions 3 and 4. Sometimes all unit-level covariates have random slopes, so that R1¼
R, but typically R1 < R, so that the slopes of some unit-level covariates do not vary

between clusters, giving rise to the term ‘‘mixed-effects’’ (mixed random and

‘‘fixed’’ effects) model.

For the specific model of the HSB data in Equation 3, P ¼ 1, so that Wj has

nj rows and Pþ 1¼ 2 columns, with each row equal to (1,wj). The corresponding

coefficients are γ ¼ γ0; γ1ð Þ0. The matrix of R ¼ 2 unit-level covariates is
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Xj ¼ (xj wjxj), where xj ¼ x1j; : : : ; xnjj

� �0
, and β ¼ β1; β2ð Þ0: The first unit-level

covariate has a random slope, so R1 ¼ 1; Zj ¼ 1nj
xj

� �
, and uj ¼ u0j; u1j

� �0
.

Finally, the unit-level errors are εj ¼ ε1j; : : : ; εnjj

� �0
:

The model in Equation 4 can be expressed more compactly by combining all

covariates (i.e., Xj and Wj) into a single matrix Vj and likewise their correspond-

ing coefficients (β and γ ) into a single vector δ:

yj ¼ Vjδ þ Zjuj þ εj: ð5Þ

It will often be convenient to stack the covariates for all J clusters in the

matrix V.

Writing this general model using a two-stage formulation, analogous to Equa-

tions 1 and 2, requires additional notation, so we defer this until Section 4.2

where this formulation is useful for explaining the PC approach.

3 Standard Estimators and Conditions for Unbiasedness

3.1 Exogeneity and Endogeneity

Throughout this article, we assume unit-level exogeneity or strict exogeneity,

given the random effects,

E εjjVj; uj

� �
¼ 0: ð6Þ

It follows that E εjjVj

� �
¼ 0 and E ε0jVj

� �
¼ 0 and that each element of εj is

uncorrelated with each element of the covariate vectors.

The assumption of cluster-level exogeneity can be expressed as:

E ujjVj

� �
¼ 0: ð7Þ

When this assumption is violated, there is cluster-level endogeneity.

We assume that cluster-level exogeneity holds for the cluster-level covariates

E ujjWj

� �
¼ 0 ð8Þ

and discuss the problem that unit-level covariates may be cluster-level

endogenous,

E ujjXj

� �
6¼ 0:

Cluster-level endogeneity occurs if, for example, E X0j1nj
u0j

� �
6¼ 0 or in other

words, if the cluster sums or means of the unit-level covariates are correlated

with the random intercepts.

In this article, we consider RE, FEþ, and (our proposed) PC approaches for

estimating the model in Equation 3 when Xj is correlated with both the random

intercept u0j and the random slopes urj, r ¼ 1; : : :;R1: In the following
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subsections, we describe each of these estimators and under which conditions

they are unbiased for the regression coefficients δ ¼ β0; γ 0
� �0

.

3.2 RE estimators

For RE estimators, the random effects, uj, are assumed to have zero means and

covariance matrix �, given the covariates. They are uncorrelated across clusters,

and they are also uncorrelated with the unit-level error term εj. The elements εij of

εj have zero means and variance y, given the covariates, and are mutually

uncorrelated.

It follows from these assumptions that the mean and covariance structure of yj,

given Vj becomes

E yjjVj

� �
¼ Vjδ;

and

�j � Var yjjVj

� �
¼ Zj�Z0j þ yInj

: ð9Þ

Under the exogeneity assumptions in Equations 6 and 7, consistent estimators for

the parameters of the model in Equation 5 can be obtained using maximum like-

lihood (ML), restricted ML (REML), or feasible generalized least squares

(FGLS). The FGLS estimator can be expressed in closed form as

bδRE ¼ δ þ J�1
XJ

j¼1

V0j
b��1

j Vj

 !�1

J�1
XJ

j¼1

V0j
b��1

j Zjuj þ εj

� � !
; ð10Þ

where b�j is an estimator of �j; obtained by substituting estimators of � and y into

Equation 9, and
P

j V0j
b��1

j Vj is assumed to be nonsingular with probability 1.

The conditional expectation of the GLS estimator bδGLS (assuming � is

known), given V, is

E bδGLSjV
� �

¼ δ þ J�1
XJ

j¼1

V0j�
�1
j Vj

 !�1

J�1
XJ

j¼1

V0j�
�1
j ZjE ujjV

� �
þ E εjjV

� �� � !
:

Note that E εjjV
� �

¼ E εjjVj

� �
and E ujjV

� �
¼ E ujjVj

� �
because clusters are

assumed to be independent. Furthermore, unit-level exogeneity implies that

E εjjVj

� �
¼ 0 and cluster-level exogeneity implies that E ujjVj

� �
¼ 0. Condi-

tional unbiasedness, E bδGLSjV
� �

¼ δ, hence follows; and using the law of iter-

ated expectations, bδGLS is (unconditionally) unbiased, E bδGLS

� �
¼ δ.

Unfortunately, due to the nonlinear nature of the FGLS estimator, this unbia-

sedness result does not automatically apply when estimates b�j are plugged in for
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�j. Under the previous assumptions, a sufficient assumption for unbiasedness,

E bδFGLS

� �
¼ δ, is that the error terms have symmetric distributions (Kakwani,

1967). This result also applies to ML and REML, given that these estimators can

be expressed as iterative versions of the FGLS estimator (Don & Magnus, 1980).

Note that for the empirical example and simulation study, we use REML, follow-

ing the tradition of its use in the education research literature.

3.3 FE Estimators

In econometrics, the term fixed-effects (FE) estimator refers to an estimator

that does not rely on cluster-level exogeneity, and we adopt this terminology

here. Some of the estimators can be derived by treating the random effects as

fixed and others by eliminating the random effects, but in either case, the effects

are typically viewed as random. The traditional FE approaches have been devel-

oped for random-intercept models, with Zj ¼ 1nj
and uj ¼ u0j, to handle violation

of the exogeneity assumption E u0jjVj

� �
¼ 0 (Mundlak, 1978).

We define the FE estimator in terms of the de-meaning (or group-mean cen-

tering) transformation Qj � Inj
� 1nj

10nj
1nj

� ��1

10nj
where Qj1nj

¼ 0, and define

€yj � Qjyj; €Xj � QjXj; €Zj � QjZj; and €εj � Qjεj. Premultiplying Equation 4

by Qj, the de-meaned model becomes

€yj ¼ €Xjβþ €Zjuj þ €εj:

Note that €Wjγ ¼ 0nj
because the columns of Wj are constant. The first column of

€Zj is 0nj
because the first column of Zj is 1nj

, so that the random part of the model

does not depend on u0j
. The FE estimator can be obtained by applying a pooled

ordinary least squares (POLS) estimator (pooling over the Level-2 units) to the

de-meaned model, giving

bβFE ¼ βþ J�1
XJ

j¼1

€X0j €Xj

 !�1

J�1
XJ

j¼1

€X0j €Zjuj þ €εj

� � !
;

where
P

j
€X0j

€Xj is assumed to be nonsingular with probability 1.

To derive the conditions for unbiasedness, stack the €Xj for all clusters j in €X.

Consider the conditional expectation of β̂FE, given €X,

E bβFEj€X
� �

¼ βþ J�1
XJ

j¼1

€X0j €Xj

 !�1

J�1
XJ

j¼1

€X0j €ZjE ujj€X
� �

þ E €εjj€X
� �� � !

: ð11Þ

Keep in mind that €Zj is a subset of €Xj and note that E ujj€X
� �

¼ E ujj€Xj

� �
and

E €εjj€X
� �

¼ E €εjj€Xj

� �
because clusters are independent. Furthermore, unit-level
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exogeneity implies that E €εj€Xj

� �
¼ 0, and cluster-level exogeneity implies that

E ujj€Xj

� �
¼ 0, so bβFE is conditionally unbiased, E bβFEj€X

� �
¼ β. Finally, using

the law of iterated expectations, it follows that bβFE is (unconditionally) unbiased,

E bβFE

� �
¼ β.

Wooldridge (2005, 2010, section 11.7.3) considers FE estimation for a special

case of Equation 4 without cluster-level covariates Wj. He derives the conditions

required for consistency of the traditional FE estimator, and we briefly derive the

analogous results for the general model (Equation 4) in Online Appendix A, Sec-

tion A.2. The condition for consistency plim bβFE ¼ β, is

E €X0j €Zjuj

� �
¼ 0: ð12Þ

As pointed out by Wooldridge (2010, p. 382), this assumption allows uj to be cor-

related with the ‘‘permanent’’ components of Xj, but not the ‘‘idiosyncratic’’

components €Xj. Condition 12 is implied by the more easily interpretable condi-

tion for unbiasedness,

E ujj€Xj

� �
¼ 0;

because E €X0j €Zjujj€Xj

� �
¼ €X0j €ZjE ujj€Xj

� �
:

We now look at the assumption in Equation 12, which is required for consistency

and unbiasedness, in more detail for our specific model for the empirical example in

Equation 3 to understand how it can be violated. In that model, €Xj ¼ €xj wj€xj

� �
and €Zj ¼ 0nj

€xj

� �
. The condition can be written as two nontrivial equations,

E
€x0j

wj€x
0
j

� 	
€xju1j


 �
¼ 0:

Concentrating on the first equation, we obtain

E €x0j €xju1j

� �
¼ E

Xnj

i¼1

€x2
ij

 !
u1j

" #
¼ nj � 1
� �

E s2
j u1j

� �
¼ 0; ð13Þ

where s2
j is the sample variance of xij for cluster j. In other words, the condition is

violated if the within-cluster variance of xij is correlated with the random slope u1j.

In our empirical example, it seems reasonable that more diverse schools (larger s2
j )

may be better suited to mitigate the effects of SES (smaller u1j) than more

homogeneous schools. We will therefore consider the problem of nonzero correla-

tion between the within-cluster variance of xij and its random slope u1j and will

refer to Equation 12 as the ‘‘uncorrelated variance assumption.’’ Note, however,

that Equation 12 can also be violated in other ways. For instance, in longitudinal

data, the covariate value at the initial time point, x1j, may be correlated with u1j.
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4 New Estimators and Conditions for Unbiasedness

4.1 FEþ Estimator

The FE approach does not permit estimation of the coefficients, γ , of any

cluster-level covariates, but it can be ‘‘augmented’’ so that it does. The FEþ esti-

mator we use is similar to the estimator proposed by Hausman and Taylor (1981)

to estimate effects of cluster-level covariates for two-level models with only ran-

dom intercepts—and no random slopes. As pointed out by Castellano, Rabe-

Hesketh, and Skrondal (2014), the estimator discussed here has been invented

and reinvented several times (e.g., Ballou, Sanders, & Wright, 2004; Raudenbush

& Willms, 1995; Wiley, 1975). However, the conditions for unbiasedness for

random-coefficient models have not previously been considered.

Step 1: Estimation of β

In the first step, β (coefficients for all unit-level covariates) is estimated by

FE. The estimator is unbiased under the uncorrelated variance assumption in

Equation 12 and the unit-level exogeneity assumption in Equation 6.

Step 2: Estimation of γ

In the second step, we obtain quasi-residuals rj,

rj � yj � Xj
bβFE;

and estimate γ (coefficients for the cluster-level covariates) in the regression of rj

on Wj by POLS. Substituting Equation 4 for yj, we obtain

rj ¼Wjγ þ Xj β� bβFE

� �
þ Zjuj þ εj:

The POLS estimator of γ can be expressed as

bγ ¼ γ þ J�1
XJ

j¼ 1

W0
jWj

 !�1

J�1
XJ

j¼ 1

W0
j Xj β � bβFE

� �
þ Zjuj þ εj

h i !
; ð14Þ

where
P

j W0
jWj is assumed to be nonsingular with probability 1.

The conditional expectation of the POLS estimator bγ given V; becomes

E bγ jVð Þ ¼ γ þ J�1
XJ

j¼1

W0
jWj

 !�1

J�1
XJ

j¼1

W0
j Xj β � E bβFEjV

� �h in 

þ Zj E ujjV
� �

þ E εjjV
� �o!

:

Conditional unbiasedness, E bγ jVð Þ ¼ γ follows since (i) EðbβFEjVÞ� ¼ β
under the uncorrelated variance assumption, (ii) E ujjV

� �
¼ E ujjVj

� �
and
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E εjjV
� �

¼ E εjjVj

� �
due to independence of the clusters, and (iii) EðujjVjÞ ¼ 0

and E εjjVj

� �
¼ 0 under the exogeneity assumptions. Using the law of iterated

expectations, we finally obtain (unconditional) unbiasedness E bγð Þ ¼ γ :
To implement the FEþ approach for the empirical example, the two steps are

as follows: (1) estimate β1 and β2 by FE and (2) regress quasi-residuals,

rij � yij � bβ1FExij � bβ2FEwjxij, on wj to obtain estimates of γ0 and γ1.

4.2 PC estimator

In this section, we define our proposed PC estimator. This estimator is best

understood by using the two-stage formulation (see Section 2.1) of the general

model in Equation 4, which requires some new notation.

The columns of the matrix Xj of unit-level covariates can be ordered, so that

the matrix can be decomposed as Xj ¼ ðX1j X2j X3jÞ, where X1j contains the R1

unit-level covariates that have random slopes, so that Zj ¼ 1nj
X1j

� �
, X2j are R2

cross-level interactions between unit-level covariates in X1j, and cluster-level

covariates in Wj, and X3j are the R3 remaining unit-level covariates (which may

include cross-level interactions between covariates in Wj and other covariates in

X3j). Correspondingly, β ¼ β01; β02; β03
� �

and R ¼ R1 þ R2 þ R3. The two-stage

model can then be written as

yj ¼ X3jβ3 þ Zj η j þ εj; ð15Þ

ηrj ¼ w 0rj αr þ urj; r ¼ 0; . . . ;R1; ð16Þ

where ηj are cluster-specific coefficients. Here, Equation 15 is referred to as the

Level-1 or unit-level model, and Equation 16 for the R1þ 1 cluster-specific coef-

ficients of the Level-1 model is referred to as the Level-2 or cluster-level model.

When r¼ 0, Equation 16 is the model for the cluster-specific intercept η0j, w00j is

a row of Wj (with Wj ¼ 1nj
� w00j) and α0 ¼ γ . When r > 0 , Equation 16 is the

model for the cluster-specific slope of the rth column of X1j. The vector wrj

includes only those cluster-level covariates that interact with the rth column of

X1j. The first element of αr is β1r and the other elements are subsets of β2. Note

that we include Level-2 models only for the coefficients of those unit-level cov-

ariates that have random slopes.

Equations 15 and 16 are a generalization of the two-stage formulation of the

model for the HSB example in Equations 1 and 2. In that model, there are R1 ¼ 1

covariates X1j ¼ xj with random slopes and β1¼ β1. There are also R2¼ 1 cross-

level interactions between unit-level covariates in X1j and a cluster-level covari-

ate wj, namely X2j¼ wjxj with β2¼ β2. There are no remaining columns of Xj, so

R3 ¼ 0, and there is no X3j or β3. Further, η j ¼ η0j;η1j

� �0
; w0j ¼ w1j ¼ 1;wj

� �0
,

α0 ¼ γ0; γ1ð Þ0, and α1 ¼ β1; β2ð Þ0. We now outline the steps for our proposed PC

estimator.
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Step 1: Estimation of β3

Wooldridge (2005, 2010, section 11.7.2) considers the special case of this

model without cluster-level covariates, that is, with ηj ¼ β1 þ uj, and describes

estimation of β3 (coefficients for all unit-level covariates without random slopes)

by an extension of the de-meaning transformation used in FE estimation. Instead

of premultiplying by the de-meaning operator Qj, we premultiply the Level-1

model by the projection matrix

Mj � Inj
� Zj Z0jZj

� ��1
Z0j :

Defining _yj ¼Mjyj,
_X3j ¼MjX3j, and _εj ¼Mjεj, and noting that

_Zj ¼MjZj ¼ 0, gives

_yj ¼ _X3jβ3 þ εj:

The POLS estimator of β3, denoted bβ3CML, can be expressed as

bβ3CML ¼ β3 þ J�1
XJ

j¼1

_X03j
_X3j

 !�1

J�1
XJ

j¼1

_X03j
_εj

 !
;

where
P

j
_X03j

_X3j is assumed to be nonsingular with probability 1. If the eij are

normally distributed, this estimator also corresponds to the conditional ML

(CML) estimator, conditioning on the sufficient statistics Z0jyj for the ‘‘nuisance

parameters’’ ηj (Verbeke, Spiessens, & Lesaffre, 2001).

The conditional expectation of bβ3CML, given all covariates V, becomes

E bβ3CMLjV
� �

¼ β3 þ J�1
XJ

j¼1

_X03j
_X3j

 !�1

J�1
XJ

j¼1

_X03jE _εjjV
� � !

:

Unit-level exogeneity, which implies that E _εjjV
� �

¼ 0, is a sufficient condition

for conditional unbiasedness E bβ3CMLjV
� �

¼ β3.

Step 2: Estimation of ηj

Next, form quasi-residuals as

rj � yj � X3j
bβ3CML

and then obtain OLS estimates η^j for the regressions of rj on Zj for each cluster,

j ¼ 1; : : :; J ,

η^j ¼ ZjZ
0
j

� ��1
Z0jrj ¼ n�1

j

Xnj

i¼1

zijz
0
ij

 !�1

n�1
j

Xnj

i¼1

zijrij

 !
; ð17Þ
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where z0ij is the ith row of Zj, and
Pnj

i¼1 zijz
0
ij is nonsingular with probability 1,

which requires that R1 þ 1 � nj. This step gives rise to the name PCs. Identical

estimates of β3 and ηj are obtained by treating ηj as fixed parameters in Equation

15 via the inclusion of dummy variables for the clusters and interactions between

these dummy variables and the columns of Zj.

The estimator in Equation 17 can alternatively be expressed as

η^j ¼ ηj þ ZjZ
0
j

� ��1

Z0j X3j β3 � bβ3CML

� �
þ ε j

h i
; ð18Þ

and the conditional expectation of η^j, given V, becomes

E η^jjV
� �

¼ ηj þ ZjZ
0
j

� ��1

Z0j X3j β3 � E bβ3CMLjV
� �h i

þE εjjV
� �n o

;

where ZjZ
0
j is assumed to be nonsingular with probability 1. Because

E bβ3CMLjV
� �

¼ β3 from Step 1, it follows that X3j β3 � E bβ3CMLjV
� �h i

¼ 0.

It follows from unit-level exogeneity that E εjjV
� �

¼ 0, and therefore η^j is con-

ditionally unbiased, Eðη^jjVÞ ¼ ηj.

Step 3: Estimation of γ , β1, and β2

The remaining regression coefficients γ (for cluster-level covariates), β1 (for

unit-level covariates with random slopes), and β2 (for cross-level interactions

involving unit-level covariates with random slopes) are now estimated. These

coefficients are contained in the vectors αr, r ¼ 0; : : :;R1, in Equation 16. We

write each Level-2 equation for all clusters using the following vector notation.

Let η�r ¼ ðηr1; . . . ;ηrJ Þ0 and u�r ¼ ur1; . . . ; urJð Þ0 and let W�
r have J rows w0rj,

j ¼ 1; . . . ; J . The Level-2 equation for each η�r can then be written as

η�r ¼W�
r αr þ u�r ; r ¼ 0; . . . ;R1:

Denoting the vector of estimates η^�r � η^r1; : : :;η
^

rJ

� �0
, the model can be written as

η�r ¼W�
r αr þ u�r þ η^�r � η�r

We estimate αr by applying OLS to the regression of η�r on W�
r , giving

bαr ¼ αr þ W�
r
0W�

r

� ��1
W�

r
0 u�r þ η^�r � η�r
� �

¼ αr þ J�1
XJ

j¼1

wrjw
0
rj

 !�1

J�1
XJ

j¼1

wrj urj þ η^rj � ηrj

� � !
;

ð19Þ

where, for each r,
P

j wrjw
0
rj is assumed to be nonsingular with probability 1.

The conditional expectation of bαr, given V, is given by:
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E bαrjVð Þ ¼ αr þ J�1
XJ

j¼1

wrjw
0
rj

 !�1

J�1
XJ

j¼1

wrj E urjjV
� �

þ E η^rjjV
� �

� ηrj

h i !
:

It follows from cluster-level exogeneity that E urjjV
� �

¼ 0 and from the results

for Step 2 that E η^rjjV
� �

¼ ηrj. Hence, EðbαrjVÞ ¼ αr, and using the law of iter-

ated expectations, we see that the estimator is unbiased; E bαrð Þ ¼ αr.

For the special case of our model with ηj ¼ β1 þ uj, the estimator for β

becomes the sample mean of η^
�
r , and that estimator has been proposed by Wool-

dridge (2010, equation 11.80). In models in which Xj ¼ X1j X2j

� �
, or R3¼ 0, the

first step can be skipped and rj ¼ yj. Our empirical illustration is an example of

the latter special case. Accordingly, we first estimate η0j and η1j in Equation 2 for

each cluster j by regressing yj on xj using OLS, giving unbiased estimates η^0j and

η^1j. Identical estimates are obtained by OLS with dummy variables for clusters

and interactions between these dummy variables and xij. Next, η^0j and η^1j are

both regressed on wj using OLS. In the regression for η^0j, the OLS estimator for

the intercept is unbiased for γ0 and the OLS estimator for the coefficient of wj is

unbiased for γ1. In the regression for η^1j, the OLS estimator for the intercept is

unbiased for β1 and the OLS estimator for the coefficient of wj is unbiased for β2.

If we did not include the cross-level interaction term, xijwj, in our model, there

would be no β2, R1 ¼ R, and we would regress η^1j on just the intercept, that

is, find its sample mean, to obtain the unbiased estimate of β1.

5 Empirical Example

To ground comparisons of our estimators of interest, we apply each to the

HSB data introduced in Section 2.1. Table 1 provides estimates of the regression

TABLE 1

Estimates of Regression Coefficients From Different Methods For HSB Data

Random Effects

(RE)

Augmented Fixed

Effects (FEþ)

Per-Cluster

Regression (PC)

Estimates (SE) Estimates (SE) Estimates (SE)

γ0 [Constant] 11.752 (0.232) 11.769 (0.205) 11.615 (0.271)

γ1 [Catholic] 2.130 (0.346) 2.186 (0.337) 2.253 (0.406)

β1 [SES] 2.958 (0.143) 2.782 (0.145) 2.772 (0.169)

β2 [SES � Catholic] �1.313 (0.216) �1.349 (0.218) �1.303 (0.234)

Note. All estimates are significantly different from 0 at the 0.05 level. HSB ¼ high school and beyond.
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coefficients for Equation 3. All estimates were obtained using standard com-

mands in Stata 13 (StataCorp, 2013), such as mixed and xtreg (see Online Appen-

dix B). Note that the RE estimate of the correlation between the random intercept

and slope is 1, a relatively frequent occurrence in random-coefficient models

(Chung, Gelman, Rabe-Hesketh, Liu, & Dorie, In press).

Castellano et al. (2014) show that positive correlation between a random inter-

cept and a student-level covariate leads to overestimation of the coefficient of the

covariate. Indeed, from the HSB data results presented in Table 1, we see that RE

produces the largest estimate of the coefficient of SES, 2.958, approximately 6%
higher than the closest estimate (FEþ). The indicator variable wj for Catholic

schools is positively correlated with SES and therefore overestimation of the

coefficient of SES is accompanied by underestimation of the coefficient of wj,

with RE producing the smallest estimate of γ1, at 2.130.

While the differences in the FEþ and RE estimates of γ1 may be practically

significant, they are close in magnitude to the estimated standard errors (SEs) of

the coefficient estimates. FEþ produces estimates of both β1 and γ1 that lie

between the estimates produced by RE and PC, which is intuitive, given that FEþ
relies only on the uncorrelated variance assumption, whereas RE additionally

requires exogeneity, and PC requires neither assumption. PC gives the smallest

estimated effect of SES on math achievement scores (bβ1 ¼ 2:772) and the largest

estimated effect of Catholic schooling (bγ1 ¼ 2:253). These estimates differ by

about 6% from the RE counterparts, enough to give practitioners pause.

The small difference between estimates of β1 from FEþ and PC suggests that the

within-school variance in SES is not strongly correlated with the random slope. In

fact, the within-school standard deviation of SES has a correlation of only 0.04 with

the estimated residuals from the regression of η^1j on wj in the final step of the PC

approach.

6 Simulation Study

We now conduct a simulation study to investigate the performance of the RE,

FEþ, and PC estimators. In particular, we are interested in the amount of bias for

RE and FEþ when the respective assumptions of cluster-level exogeneity and

uncorrelated variance are violated. We also evaluate all three estimators, RE,

FEþ, and PC, by their root mean square errors (RMSEs) and consider perfor-

mance of the estimated SEs. We use Stata 13 (StataCorp, 2013) throughout.

6.1 Data Generation Process

We generate the data using our model of interest in Equation 3. We first draw

the school-level variables for each of J¼ 100 clusters. The random intercepts u0j

and random slopes u1j are drawn from a bivariate normal distribution with

zero means and variance–covariance matrix defined by variances c0 ¼ 0.42 and
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c1¼ 0.252 and correlation r¼ 0.5, giving the covariance c10¼ 0.05. We specify

these variances to reflect those found in our empirical example. The exogenous

school-level covariate wj is drawn independently from a normal distribution with

mean 1.7 and variance s2
w ¼ 1.

We then generate the student-level covariate xij as

xij ¼ b0u0j þ b1u1j þ b2wj þ aeij; eij 	 Nð0;sjÞ; ð20Þ

where

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c0b2

0 � c2
1b2

1 � s2
wb2

2 � 2b0b1c10

q
:

Here, b0¼ 1.33, b1 ¼ 2.13, and b2 ¼ 0.20, so that xij is positively correlated with

the random intercept, random slope, and school-level covariate wj. Finally, we

generate yij according to Equation 3 with γ0 ¼ 1, γ1 ¼ 3, β1 ¼ 1, and β2 ¼ 2.

The key assumption under which we want to assess the performance of the

competing estimators is that the sample within-cluster variance s2
j of xij is uncor-

related with the random slope u1j. Thus, the population within-cluster standard

deviation sj is of particular importance. Accordingly, the uncorrelated variance

assumption factor in this simulation has two levels: when it holds, sj ¼ 1, and

when it is violated, sj ¼ exp(u1j).

Although our empirical example involves schools that tend to have large num-

bers of students, both RE and FE are commonly used with classrooms serving as

clusters. Furthermore, there are numerous relevant applications with longitudinal

data where we often find even smaller cluster sizes. Thus, we also vary cluster

size, primarily considering cluster sizes of 4 and 20. For simplicity, we set cluster

sizes equal across clusters, nj ¼ n. We fully cross the cluster size and uncorre-

lated variance assumption factors, yielding four primary simulation conditions

defined by (large/small n) � (uncorrelated variance assumption holds/violated).

To further determine the effect of cluster size when the uncorrelated variance

assumption is violated, we also consider a range of cluster sizes from 4 to 50:

n ¼ 4, 8, 14, 20, 50.

All conditions are replicated 500 times. Due to occasional lack of variation of

xij within some small clusters, the PC approach fails for some replications. The

lowest number of successful replications is 489, which occurs when the variance

of xij is correlated with the random slopes, and we have only four observations in

each cluster. For all simulation conditions with a cluster size of 20, all 500 repli-

cations are successful.

6.2 Results

We evaluate the performance of each of our three estimators (RE, FEþ, and

PC) of the fixed regression coefficients in our model of interest (Equation 3)

across our four simulation conditions. The estimated bias and RMSE are given
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in Table 2. Online Appendix C provides supplemental tables for each coefficient

that also include the mean SEs, standard deviations of the estimates, and the

ratios of these values.

6.2.1 Bias. For β1, the coefficient of the endogenous student-level covariate xij,

there are three main results. First, the PC estimator is unbiased across all con-

ditions even when the uncorrelated variance assumption is violated. Figure 1

clearly illustrates this finding as the empirical distributions of the errors (i.e.,

estimate � parameter) of the PC estimator (the solid curves) are centered on

0 in all four panels, where each panel represents one of the four simulation

conditions.

Second, the RE estimator is biased regardless of whether the uncorrelated

variance assumption holds, whereas the FEþ estimator is biased only when

this assumption is violated. This result for RE is expected, given that the

RE estimator relies on the assumption of both unit- and cluster-level exo-

geneity (see Section 3.2), and cluster-level exogeneity is violated in all four

conditions, with the nonzero correlation between xij and both the random

intercept and its random slope. We do note, however, that violation of the

uncorrelated variance assumption exacerbates the magnitude of the RE esti-

mator’s bias: For the small cluster size condition (n ¼ 4), the estimated bias

TABLE 2

Comparing Methods for Estimating the Coefficients Using Simulated Data

β1 [xij] β2 [xij � wj] γ1 [wj]

Simulation 100� 100� 100� 100� 100� 100�
Condition Method Bias RMSE Bias RMSE Bias RMSE

Small clusters and uncorrelated

variance

RE 16.6* 21.6 0.8 7.0 �4.5* 8.0

FEþ 0.6 16.2 0.0 8.2 �0.3 7.4

PC 1.9 25.5 �0.6 13.3 �0.5 12.7

Small clusters and correlated

variance

RE 21.3* 24.2 1.2 6.1 �5.3* 8.2

FEþ 11.7* 19.1 0.2 7.9 �2.4* 8.2

PC �1.8 26.7 0.7 13.4 0.2 12.2

Large clusters and uncorrelated

variance

RE 6.2* 10.0 0.2 3.9 �1.7* 4.9

FEþ �0.3 8.0 0.2 4.0 0.2 5.3

PC �0.2 8.0 0.1 4.1 0.0 5.2

Large clusters and correlated

variance

RE 12.6* 14.4 �0.1 3.5 �2.9* 5.2

FEþ 12.8* 15.2 �0.3 4.2 �2.5* 5.2

PC 0.7 7.7 �0.3 4.0 0.0 5.0

Note. RMSE ¼ root mean square error; RE ¼ random effects; FE+ ¼ augmented fixed effects; PC ¼
per-cluster regression; small clusters: nj ¼ n ¼ 4, large clusters: nj ¼ n ¼ 20; uncorrelated variance:

s2
j ¼ 1, correlated variance: sj ¼ expðu1jÞ.

*Estimated bias differs significantly from 0 at the 0.05 level.
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is 1.28 times as large; and for the larger cluster size (n ¼ 20), the estimated

bias more than doubles as shown in the first column of results in Table 2. In

contrast, the FEþ approach only requires unit-level exogeneity assumptions

and thus produces unbiased estimates under cluster-level endogeneity as long

as there is no correlation between the random slopes and within-cluster var-

iance of xij. This is evident in Figure 1 by observing that the curves for FEþ
(dashed) are more similar to those for PC (solid) in the left-hand plots (for

uncorrelated variance simulation conditions) and more similar to the curves

for RE (dot-dashed) in the right-hand plots (for correlated variance simula-

tion conditions).

Third, the estimated bias for β1 is larger than that for the other two regression

coefficients, which is not surprising, given that xij is the source of the endogene-

ity. For instance, as shown in Table 2, the estimated bias of bβ1RE ranges from

6.2% to 21.3% of the true value. The next largest estimated bias is �0.053 for

γ̂1RE under the small clusters and uncorrelated variance condition, which is only

1.8% of the coefficient’s true value (γ1 ¼ 3).
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FIGURE 1. Kernel density plots of estimation errors, bβ1 � β1, for coefficient of xij across

replications for all methods when the uncorrelated variance assumption holds (left

panels) and when it is violated (right panels). Note. FEþ ¼ augmented fixed effects;

PC ¼ per-cluster regression; RE ¼ random effects.
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The coefficient of the interaction term, β2, is the least affected by the simula-

tion conditions. We only find statistically significant bias (at the 5% level) forbβ2RE for the small cluster size condition—both when the uncorrelated variance

assumption holds and when it is violated. Even in these cases, as given in Table

2, the estimated bias is rather small relative to the magnitude of the true value (β2

¼ 2): It is 0.4% of the parameter value when the condition holds and 0.6% when

it is violated. (Plots of the empirical distributions of the estimation errors for β2

are given in Figure C.1 in Online Appendix C.)

The estimated biases of the estimators for the coefficient γ1 of the exogen-

ous school-level covariate wj follow similar patterns as for the coefficient β1

of the endogenous student-level covariate xij. Just as for β1, the PC estimator

is unbiased across all conditions, the FEþ estimator is biased only when the

variance of xij is correlated with the random slope u1j (i.e., uncorrelated var-

iance assumption violated), and the RE estimator is biased regardless of

whether the uncorrelated variance assumption is violated. These findings are

clearly illustrated in Figure 2 by comparing the centers of the empirical dis-

tributions of errors for all estimators across all conditions: the PC curve
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FIGURE 2. Kernel density plots of estimation errors, γ̂ � γ1, for coefficient of wj across

replications for all methods when the uncorrelated variance assumption holds (left

panels) and when it is violated (right panels). Note. FEþ ¼ augmented fixed-effects;

PC ¼ per-cluster regression; RE ¼ random effects.
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(solid) is always centered on 0, whereas the RE curve (dot-dashed) is always

centered below 0, and the FEþ curve (dashed) is centered below 0 only for

the correlated variance conditions in the right-hand panels. Just as with β1,

the FEþ estimator’s bias for γ1 does not vary with cluster size—its estimate

is about 0.8% of the true parameter value for both n ¼ 4 and n ¼ 20 as seen

in Table 2. Cluster size affects the RE estimator’s bias for γ1, as it did for β1:

As cluster size increases, the bias decreases. When the uncorrelated variance

assumption holds, this bias decreases by about 63% going from n ¼ 4 to n ¼
20, and by about 45% when the assumption is violated (see Table 2).

Given that β1 was most affected by the violation of the uncorrelated variance

assumption, we further investigated the effect of cluster size on the estimates of

this regression coefficient. Figure 3 gives the estimated bias for each estimator

across cluster sizes of 4, 8, 14, 20, and 50. The PC (solid) curve hugs the y ¼
0 line. The FEþ and RE curves cross at n ¼ 20: As cluster size increases, the

RE estimator’s bias decreases (dot-dashed curve), whereas the FEþ estimator’s

bias is not as affected by cluster size, shown by its dashed curve staying relatively

constant across the range of cluster sizes. Thus, cluster size has a differential

effect on the bias of the estimators. When using bias to evaluate the estimators,

our simulation study provides strong evidence that our proposed PC estimator

outperforms the other estimators.
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FIGURE 3. Estimated bias for coefficient β1 of xij versus cluster size. Note. FEþ ¼ aug-

mented fixed effects; PC ¼ per-cluster regression; RE ¼ random effects.
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6.2.2 Precision and RMSE. As is often the case, there is a trade-off between bias

and precision, which depends in part on the size of the clusters. The rank ordering

of the estimators by their standard deviation (SD) is approximately the same for

the three regression coefficients with slight differences between the smaller and

larger cluster size conditions. Accordingly, we discuss how the precision of the

estimators depends on cluster size, without distinguishing among the

coefficients.

For the smaller cluster sizes of n ¼ 4, RE produces the estimates with the

smallest variances, followed by FEþ, and PC produces the most variable esti-

mates. This is clearly illustrated by comparing the widths of the empirical distri-

butions of errors in Figure 1 or 2 for each estimator: The RE curves are the

narrowest and the PC curves are the widest. For instance, for n ¼ 4 and when the

uncorrelated variance assumption is violated, the SD of bβ1PC over 500 replica-

tions is about 0.266, whereas for RE, the SD is less than half that at about

0.114 (see Tables C.1–C.3 in Online Appendix C for all SD values).

For the larger cluster size of n¼ 20, RE always yields the smallest variances,

but the variances are not much smaller than those for FEþ and PC, which tend

to have about equal variances. For instance, for β1, for the large clusters and

uncorrelated variance condition shown in the lower, left-hand panel of Figure

1, it is difficult to discern any differences in the widths of the distributions.

Indeed, the SD for RE, in this case, is about 0.078 and the SDs for both FEþ
and PC are 0.080.

With regard to precision, RE consistently outperforms FEþ and PC for all the

regression coefficients and across all the simulation conditions. However, given

the trade-off between bias and precision, it is useful to evaluate the estimators

with regard to their RMSEs, which take both bias and imprecision into account.

Given that the estimates of β1 are the most affected by the simulation conditions

and that precision depends on cluster size, we consider the RMSEs as a function

of the extended range of cluster sizes for β1 in Figure 4. Just as with bias in Figure

3, Figure 4 shows that the FEþ and RE curves cross with RE outperforming FEþ
as cluster size increases. This figure also shows that, for the smallest cluster size

of 4, the RMSE for PC is large and similar to that of RE. However, with clusters

of at least 8, the PC estimator outperforms both RE and FEþ with regard to

RMSE, providing strong evidence in favor of the PC estimator.

6.2.3 SE Estimation. As a final point, we evaluate the estimators in terms of how

well their estimated SEs approximate the sampling SDs. We again focus on the

most affected regression coefficient β1. Figure 5 displays this ratio of mean SE to

SD over the extended range of cluster sizes—similar to Figures 3 and 4. If the SE

estimation works well, this ratio should equal 1. We see that both the PC (solid

curve) and RE (dot-dashed curve) approaches provide good SE estimates. In con-

trast, for the FEþ approach, the SEs are increasingly underestimated as the
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cluster size increases. Although both the FEþ and PC approaches treat estimated

coefficients from previous steps as known in the subsequent steps, it appears that

underestimation of the SE is a larger problem for the FEþ approach. Accord-

ingly, we recommend using either analytically derived or bootstrapped SEs for

the FEþ approach. These could also be used for the PC approach and may be

necessary if Step 1 is required.

7 Conclusion

Given the popularity of multilevel models, studies that investigate poten-

tial biases for key parameters and provide simple solutions are clearly impor-

tant. We have shown that commonly used random effects and FE estimators

are biased in the presence of correlation between random effects and the

within-cluster variance of unit-level covariates. Further, such bias can spill

over to the estimation of coefficients of other covariates. We have proposed

a new PC estimator that avoids such bias, produces good estimates of SEs, and

generally has low RMSE. Consequently, we recommend broad use of PC when

working with longitudinal or nested cross-sectional data when the clusters are

sufficiently large. Stata code for applying this method to the HSB data is pro-

vided in Online Appendix B. In instances where the cluster sizes are small
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FIGURE 4. Estimated root mean square error (RMSE) for coefficient β1 of xij versus cluster

size. Note. FEþ ¼ augmented fixed effects; PC ¼ per-cluster regression; RE ¼ random

effects.
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relative to the number of random effects, or where estimates for the random part

of the model are of interest, we recommend using PC as part of a sensitivity

analysis for alternative estimators.

Per-cluster methods have been used in the past for linear multilevel models

(Burstein, Linn, & Capell, 1978, p. 369) and multilevel structural equation mod-

els (Chou, Bentler, & Pentz, 2000). Per-cluster methods can also be used for non-

linear multilevel models, such as probit models with random intercepts (Borjas &

Sueyoshi, 1994) and logit models with random intercepts and slopes (Korn &

Whittemore, 1979). However, the purpose of that work was to develop simple

estimators and not to address endogeneity concerns. For our proposed PC estima-

tor for linear models, it might appear to be inefficient to use OLS in the final step,

not taking into account that the intercepts and slopes are estimated with different

precision for different clusters. However, FGLS approaches, such as those dis-

cussed by Berkey, Hoaglin, Antczak-Bouckoms, Mosteller, and Golditz

(1998), suffer from similar biases as RE estimators, as we confirmed in simula-

tions (not shown).

An alternative approach for handling endogeneity, proposed for random-

intercept models by Allison and Bollen (1997) and Teachman, Duncan, Yeung,

and Levy (2001), is to model the unit-level covariates jointly with the responses
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FIGURE 5. Ratio of mean standard errors (mean SEs) divided by standard deviations

(SDs) of estimates versus cluster size. Note. FEþ ¼ augmented fixed effects; PC ¼
per-cluster regression; RE ¼ random effects.

Handling Correlations Between Covariates and Random Slopes

546

 at MICHIGAN STATE UNIV LIBRARIES on April 6, 2015http://jebs.aera.netDownloaded from 

http://jebs.aera.net


using structural equation modeling and allow them to be correlated with the ran-

dom intercept. This approach can be generalized to random-coefficient models

but becomes infeasible for large cluster sizes.

In summary, we have demonstrated that our proposed, simple-to-implement

PC approach outperforms standard estimators when estimating regression coef-

ficients in multilevel models under violations of both the cluster-level exogeneity

and uncorrelated variance assumptions. We recommend that researchers consider

the validity of the uncorrelated variance assumption and add the PC method to

their toolbox when investigating effects of covariates in cross-sectional and long-

itudinal analyses.
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