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Abstract

This paper studies the effect of information lag in dynamic moral hazard prob-

lems/repeated games. As our basic setting, we take up a canonical repeated product

choice game with imperfect public monitoring where one long-run player faces a se-

quence of short run players. A distinguishing feature of our model is that the public

signals about unobservable actions of the long-run player realize with a random lag.

We characterize the best eequilibrium payoff as a function of the lag distribution,

which can be achieved exactly when the long-run player is patient enough. The best

eequilibrium payoff is an increasing function of the expected waiting time for the first

arrival of any public signal, and converges to the first best payoff in the limit as the

expected waiting time goes to infinity (with the long-run player’s discount rate going

to 0). Our closed-form expression of the best eequilibrium payoff implies that the best

eequilibrium payoff is higher for one lag distribution than another when the former

distribution second order stochastically dominates the latter. So not only the expected

length of lag matters, but also the variance of the lag distribution matters to support

efficient outcomes.

1 Introduction

The models of repeated interactions help us understand how cooperative behavior, which is

difficult to sustain in one-shot interaction, may emerge as an eequilibrium behavior among

self-interested individuals. The underlying logic behind this is extremely simple. An agent

is willing to cooperate today because she does not like to be punished in the future. She

just does not want to waste her future profit by ruining the long-term relationship with

her current partner now. This simple logic has been employed to explain so many things

such as: why firms can collude by keeping the price high, why a country may not initiate a
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protective trade policy against other countries, and why some workers are paid more than

the market wage, and how a monopoly firm can keep its reputation and enjoy the large

price premium etc.

For this mechanism of cooperation and punishment to work, it is essential that each

agent’s behavior is monitored accurately and promptly. Thus it is important to understand

how those long-term relationships are affected when the feedback of information is not

perfect or slow.

The effect of information accuracy has been studied extensively. For example, Green

and Porter [6] considers a model of dynamic Cournot competition where a firm’s production

decision is not directly observable by other firms and the market price is used as an imperfect

signal of the productions of the firms. They show that the eequilibrium behavior with

imperfect monitoring would be drastically different with the eequilibrium behavior with

perfect monitoring. In particular, collusion must be associated with an episode of price

war in eequilibrium when the firm’s action is imperfectly observed. Kandori [7] considers

repeated games with imperfect public monitoring and shows that the set of eequilibrium

payoffs expands as the information structure improves in the sense of Blackwell.

The timing of information has not attracted as much attention as the accuracy of in-

formation, but is equally important. We can think of many situations where information

critical for long-term relationships becomes available with lag. For example, consider a man-

ager/CEO who makes an investment decision on multiple long-term projects sequentially.

It would take some time before the success or failure of each project becomes apparent.

Is it better for the manager to wait before making another investment until we know the

outcome of the current project? Or is it OK to let the manager to make another investment

decision before any feedback about the current project becomes publicly available? As an

another example, consider a central bank who makes a policy decision based on its private

information and suppose that a noisy signal about the private information becomes publicly

available a few months later. How would the reputation of the central bank be affected by

the timing of information? These are all important questions.

In this paper, we take up a canonical repeated product choice game (Mailath and Samuel-

son, 1.5 [9]) as our benchmark model, where one long-run player (“firm”) faces a sequence of

short run players (“consumers”). The firm produces a good, which may be of high quality

or low quality. The firm can choose either high effort or low effort, which is not observable

directly by the customers and determines the distribution of qualities of the goods they

consume.

The distinguishing feature of our model is the the quality of each good may not be

observed by anybody immediately and becomes publicly available with lag. Moreover the

timing of each signal realization could be random. For example, although each consumer
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knows the quality of the product immediately, this information can be circulated via word-

of-mouth first, then becomes a public information only after a certain time has passed. So

each consumer decides whether to buy a good or not given his belief about the quality,

based on the observed qualities of some random past goods. For example, a customer may

know the quality of the goods up to 3 weeks ago, but does not know the quality of any good

in most recent two weeks.

Given a distribution of lag, which we assume to be invariant across time, we obtain the

closed-form expression of the best eequilibrium payoff, which is exactly achieved when the

firm is patient enough. We show that it is an increasing function of the expected waiting

time for the first arrival of any public signal, and converges to the first best payoff in the

limit as the expected waiting time goes to infinity (and discounting factor δ goes to 1).

Our main findings follow from this formula. We show that the best eequilibrium payoff

is higher for one lag distribution than another when the former distribution second order

stochastically dominates the latter. In particular, this implies that the best eequilibrium

payoff is increasing in the order of first order stochastic dominance. This finding echoes

and confirms an observation in the literature that information lag is sometimes useful to

mitigate the incentive problem. Our paper provides a precise characterization about when

information lag is beneficial in a more complex environment where information arrives with

lag randomly and identifies the variance of lag as an important factor in achieving more

efficient outcome.

Technically the difficulty with our model of stochastic information lag is that it does

not have the standard recursive structure ([1]), as a deviating long-run player carries pri-

vate information about the distribution of delayed signals. We approach this problem by

first deriving an upper bound of the eequilibrium payoffs, which does have some recursive

structure, then explicitly construct an eequilibrium to achieve the bound.

Related Literature

Fudenberg, Ishii, and Kominers [4] studies general repeated games with private monitor-

ing and stochastic information lag. Fudenberg and Olszewski [5] considers a game between

a long-run player and short-run players where the players observe an evolving state variable

with random private lag. Both papers focus on the limit case: the former paper proves

a folk theorem as δ → 1 and the latter paper characterizes the eequilibrium payoff in the

high frequency limit. On the other hand, we consider a random rag of imperfect public

monitoring and obtain a closed-form expression of the best eequilibrium payoff for a given

level of discount factor. The idea that information lag is helpful to reduce the incentive cost

has appeared in Abreu, Milgrom and Pearce [1]. They study a repeated prisoner’s dilemma

with imperfect public monitoring and with a specific form of deterministic information lag
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where the most recent n signals are observed publicly only every n periods. They construct

a trigger strategy eequilibrium for each n, show that the eequilibrium payoff increases in n

and approximates the full efficient outcome as n→∞.1 Our paper delivers similar results

with a variety of general stochastic information lag structures, but we allow for a long-

run player to carry a private information even in public eequilibrium and we identify the

importance of the dispersion of stochastic lag in addition to the length of information lag.

In the next section, we introduce a model of repeated product choice game. We consider

a simple example with one period lag in Section 3. We present our main results in Section 4.

We first derive an upper bound on the best eequilibrium payoff for the firm, then construct

an eequilibrium to achieve this bound explicitly. Section 5 is devoted to discussions. Most

of the proofs can be found in the appendix at the end of the paper.

2 Model

Stage Game

A firm (player 1) and a sequence of consumers (player 2) play the following product

choice game in every period. The firm chooses the level of effort, which is either H (“high”)

or L (“low”). In each period, one consumer decides whether to buy the good that the firm

produces or not. The stage game payoffs are summarized by the following matrix.

B(“Buy”) DB(“Don’t Buy”)

H 1, 1 −G, 0
L 1 +G,−T 0, 0

where G,T > 0 and G−T < 1 so that (1, 1) is the most efficient outcome with transferable

utility.2 The firm’s effort level is not observable. The firm’s effort determines the distri-

bution of the quality of its product, which is either g (“good”) or b (“bad”). Let p and q

be the probability that the quality is bad when the firm chooses a high effort or low effort

respectively. We assume 0 < p < q, so a product is more likely to be of a good quality when

the firm chooses a high effort. The above stage game payoffs can be interpreted as follows.

The good is sold at a fix price. Each consumer’s payoff is the expected payoff, which is

the expected quality minus the payment. It is worth purchasing a good only when the firm

chose a high effort in producing it. The extra cost of exerting a high effort instead of a low

1Kobayashi and Ohta [8] studies a related model of multimarket contacts and shows that the eequilibrium
in Abreu et al. [1] is in fact an optimal one for each n when δ is large enough.

2The detail of the payoffs do not matter for our results as long as (1) L is the dominant action and (2)
“Buy” is the unique best response to H and “Don’t Buy” is the unique best response to L.
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effort is G.

Lag Structure

Let st be the quality of the good that is produced and consumed in period t, which

would be never available if the good is not purchased in period t. The distinctive feature

of our model is that st is not observed immediately (by any player) and observed with a

random lag. We assume that the distribution of lag is invariant across the time and is given

by λn, n = 0, 1, ..., N (N can be ∞) independent of t, where λn is the probability that st

becomes publicly available in the end of period t + n to the firm and any consumer from

period t + n + 1. The standard case of no information lag corresponds to λ0 = 1. We call

lag structure {λn} N-stochastic information lag when N is the largest integer such that

λN > 0.

The firm discounts future payoffs by discount factor δ ∈ (0, 1). We focus on pure strategy

perfect Bayesian eequilibrium. Note that this means that each consumer knows the firm’s

action and best responds to it on the eequilibrium path. So only (H,B) and (L,DB) can

be played on the eequilibrium path. Therefore the best eequilibrium payoff is bounded by

1 and every eequilibrium payoff can be ranked: the best eequilibrium payoff for the firm is

the best eequilibrium payoff for the consumers in terms of the discounted average.

3 An Example with One Period Lag

In this section, we present the simplest example with deterministic 1 period lag. As a

benchmark, let’s first consider the standard case with no information lag, i.e. λ0 = 1. In

this case, we know that the following strategy achieves the best pure strategy eequilibrium:

play (H,B) in the first period, if g is observed, then restart the game (hence continue with

the best eequilibrium). If b is observed, then restart the game with probability 1 − π and

use Nash reversion with probability π. Hence the best eequilibrium (discounted average)

payoff v∗0 satisfies the following recursive equation.

v∗0 = (1− δ) + δ [(1− p)v∗0 + p(1− π)v∗0]

To maximize the payoff, we need to minimize π: the probability of punishment. So π is

chosen to satisfy the incentive constraint with equality: (1− δ)G = δ(q− p)πv∗0. By solving

these equations, we obtain v∗0 = 1− G
q
p
−1 ([9], 7.6.2.). In particular, the firm cannot achieve

the efficient outcome (1, 1).

Now suppose that the quality of each product is observed with 1-period lag, i.e. λ1 =

1. To derive the best eequilibrium payoff heuristically, we pretend that we can ignore
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the incentive constraint in the second period, then derive the best eequilibrium payoff v∗1.

Decompose the repeated game into the first two periods and the continuation game. Clearly

it is optimal to have (H,B) played in the first two periods. We still need to provide an

incentive for the firm to play H in the 1st period. The most efficient way to do so is to

continue with the best eequilibrium from period 3 when g is observed in the end of the

second period and impose some punishment when b is observed in the end of the second

period. Hence v∗1 satisfies the following recursive equation.

v∗1 = (1− δ2) + δ2 [(1− p)v∗1 + p(v∗1 −∆)]

, where ∆ is the punishment relative to the best eequilibrium payoff. We need to minimize

∆ as before to obtain the best eequilibrium payoff that satisfies this recursive equation. So

we choose ∆ satisfying (1− δ) = δ2(q − p)∆. Then we obtain v∗1 = 1− 1
1+δ

G
q
p
−1 . Note that

information lag reduces the incentive cost, hence helps achieving a higher value.

Of course, v∗1 is still just an upper bound of the best eequilibrium payoff. We need to

justify why the second period incentive constraint is not binding. In fact, we can construct

an eequilibrium in such a way that ∆ not only takes care of the incentive constraint in the

1st period, but also the incentive constraint in the 2nd period without any additional cost.

The following strategy profile is such an eequilibrium.

• 1st period: Play (H,B);

• 2nd period: Play (H,B) (on and off path). If the realized quality s1 (of the first

period good) is g, then restart the game from the 1st period. If it is b, then proceed

to the 3rd period.

• 3rd period: Play (H,B) (on and off path). If the realized quality s2 is g, then

restart the game from the 1st period. If it is b, then randomize between going to

the punishment period and going to the above “2nd period” and treating the current

period as the “1st period” (hence the signal associated with the current effort will

used as s1 above).

• Punishment period: Play (L,DB) and randomize between restarting the game from

the 1st period and playing (L,DB) forever. The probability to restart the game

depends on the realized signal s3 and would be higher when s3 = g and lower when

s3 = b.

We set the randomization in the 3rd period so that the 1st period incentive constraint is

binding. Then we can show that the second period incentive constraint is indeed automati-

cally satisfied. Note that two consecutive bad signals (in the 2nd period and the 3rd period)
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would trigger a move to the punishment period, and the firm would have stronger incentive

to play H in the second period because she is one period closer to the possible punishment.

As for the incentive in the 3rd period, note that the firm does not know whether the game

goes back to the 2nd period (hence the current period will be treated as the 1st period)

or the punishment period. We set the randomization in the punishment period so that the

firm is indifferent between H and L in the 3rd period conditional on the event that the

game moves to the punishment period. Then the firm’s incentive constraint conditional on

the event that the game moves to the 2nd period is the same as the incentive constraint in

the 1st period, hence is satisfied as well.

When the quality of each good is observed with deterministic N -period lag, we can

use a similar heuristic derivation of the best eequilibrium payoff v∗N , ignoring the incentive

constraints from period 2 to period N + 1. The best eequilibrium payoff v∗N with deter-

ministic N-period lag is v∗N = 1 − 1
1+

∑N
n=1 δ

n

G
q
p
−1 . Hence the best eequilibrium payoff v∗N ,

would increase as N increases as long as the firm is patient enough. In the limit as N →∞
(while δ → 1 at the same time), the incentive cost vanishes and the first best payoff 1 is

approximately achieved.

Next we try to illustrate how a more dispersion of lag would hurt the firm. Suppose

that a quality is observed immediately or with 2-period lag with equal probability, i.e.

λ0 = λ2 = 0.5. So the expected length of lag is still 1, but now the lag is random. This time

we assume that the best eequilibrium is played as the continuation eequilibrium as soon as

si is observed in the ith period for any i = 1, 2, 3 and ignore the incentive constraint of the

second period and the third period conditional on the event that no signal is observed in

the 1st period and the 2nd period respectively.

Then the best eequilibrium payoff v∗λ would satisfy the following recursive equation.

v∗λ = 0.5 [(1− δ) + δ {(1− p)v∗λ + p(v∗λ −∆0)}] + 0.25
[
(1− δ2) + δ2v∗λ

]
+ 0.125

[
(1− δ3) + δ3v∗λ

]
+ 0.125

[
(1− δ3) + δ3 {(1− p)v∗λ + p(v∗λ −∆2)}

]
where ∆0 is the punishment when the quality s1 of period-1 good is revealed to be bad

immediately, and ∆2 is the expected punishment conditional on s1 being revealed to be bad

in the end of period 3 and no other public signal is observed. ∆0 and ∆2 satisfy the following

1st period incentive constraint with equality: (1− δ)G = 0.5δ(q− p)∆0 + 0.125δ3(q− p)∆2.

Then we obtain v∗λ = 1− 1
1+0.5δ+0.25δ2

G
q
p
−1 . Note that this is strictly less than v∗1, even when

δ → 1.

Our theorem generalizes this observation and show that the best eequilibrium payoff
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with lag distribution {λn} is given by

v∗λ = 1− 1

1 + E(λ, δ)

G
q
p − 1

where E(λ, δ) the expected discounted waiting time before the first arrival of a public signal.

In the above examples, E(λ, δ) = 0 with no lag, E(λ, δ) =
∑N

n=1 δ
n with deterministic N -

period lag, and E(λ, δ) = 0.5× 0 + 0.25δ + 0.25(δ + δ2) = 0.5δ + 0.25δ2 with the stochastic

lag. We use this formula to show that the best eequilibrium payoff would be higher when

the lag distribution is higher in the order of first order stochastic dominance/second order

stochastic dominance.

4 Main Results

4.1 Upper bound

We provide a semi-formal, but still a heuristic way to derive an upper bound over all

the eequilibrium payoffs. The proof that it is indeed an upper bound is provided in the

appendix. Then we actually construct an eequilibrium to achieve the bound in the next

subsection. Let vλ(δ) be a least upper bound of all pure strategy eequilibrium payoffs given

discount factor δ.

Take any N -stochastic information lag structure. Let γn, n = 0, 1, ...N be the probability

that n periods pass before the first arrival of a public signal. γn is completely determined

by the lag distribution, namely, γ0 = λ0, γ1 = λ1 + (1 − λ0 − λ1)λ0 etc. Let E(λ, δ) =∑N
n=1 γn

(∑n
k=1 δ

k
)

be the expected discounted waiting time before the first arrival of a

public signal.

Suppose that we can ignore the incentive constraint of the firm before the arrival of a

first public signal, except for the first period. So this is as if the firm can commit to choose

high effort before the first public signal arrives except for the first period. We assume that

the firm chooses high effort in every period until the first public signal arrives. When the

first signal arrives, assign vλ(δ) as the continuation payoff. This is consistent with our

assumption that we can ignore the incentive constraints except for the 1st period incentive

constraint. When the first signal arrives in period n and the set of realized signals include

s1, assign vλ as the continuation payoff when s1 = g and vλ(δ) −∆n when s1 = b, where

∆n is used as a punishment to provide the incentive for the firm to exert a high effort in

the 1st period.
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Then the firm’s payoff would be given by

N∑
n=0

γn
[
(1− δn+1) + δn+1

(
γ1n
γn
{(1− p)vλ(δ) + pvλ(δ)−∆n}+

γn − γ1n
γn

vλ(δ)

)]

where γ1n is the probability that the first public signals arrive in period n + 1 and they

include s1.

To minimize the expected cost associated with these punishments, we choose ∆n, n =

0, 1, ..., N to satisfy the following binding incentive constraint in the 1st period.

(1− δ)G =
N∑
n=0

γ1nδ
n+1(q − p)∆n

We can write this as

(1− δ)G
q
p − 1

=
N∑
n=0

γ1nδ
n+1p∆n

Using this, we can eliminate ∆n, n = 0, 1, ..., N from the above expression of the firm’s

payoff to obtain
N∑
n=0

γn
[
(1− δn+1) + δn+1vλ(δ)

]
− (1− δ)G

q
p − 1

This value should be larger than any eequilibrium payoff, hence larger than vλ(δ) as

follows.

vλ(δ) ≤
N∑
n=0

γn
[
(1− δn+1) + δn+1vλ(δ)

]
− (1− δ)G

q
p − 1

This gives us an upper bound of the set of pure strategy eequilibrium payoffs.

vλ(δ) ≤ 1− 1

1 + E(λ, δ)

G
q
p − 1

If this value is negative, then the best eequilibrium payoff is 0 and achieved by the

repetition of the Nash eequilibrium. So we obtain the following proposition.

Proposition 1. Given information lag structure {λn} and discount factor δ ∈ [0, 1), every

pure strategy perfect Bayesian eequilibrium payoff is bounded above by

max

{
1− 1

1 + E(λ, δ)

G
q
p − 1

, 0

}

The formal proof of this proposition is in the appendix. In the proof, we set up an
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auxiliary finitely repeated games with stochastic termination where the game is terminated

and the firm receives a terminal payoff as soon as the first public signal arrives or the N+1st

period is over, whichever comes first. We can assign any terminal payoff that is equal to

or less than vλ(δ) as a function of the realized public signals and the firm’s actions in all

the periods except for the first period. We show that this auxiliary game can replicate

any eequilibrium in the original game with N -stochastic information lag, hence we obtain a

bound of eequilibrium payoffs by maximizing the best eequilibrium payoff over all possible

selection terminal payoffs (for ∞-stochastic information lag, we obtain a bound by using a

longer and longer horizon (N → ∞)). Since this bound is larger than or equal to vλ(δ),

we have a recursive expression regarding vλ(δ), from which we obtain the above expression

that bounds vλ(δ) from the above.

4.2 Best Eequilibrium

We characterize the best eequilibrium payoff as a function of information lag structure and

other parameters by explicitly constructing an eequilibrium that achieves the above upper

bound when the firm is patient enough.

Theorem 1. Suppose that the lag structure is given by N -stochastic information lag {λn}
for some finite N < ∞, then there exists δ such that the best pure strategy eequilibrium

payoff v∗λ(δ) is given by

v∗λ(δ) = 1− 1

1 + E(λ, δ)

G
q
p − 1

for any δ ∈ [δ, 1), assuming that the above expression is positive.

Proof. See the appendix.

Remark: For N =∞, we cannot achieve the bound vλ(δ) exactly, but we can construct

a sequence of eequilibrium that approximates vλ(δ) as δ → 1.

Below we provide a description of eequilibrium strategy that achieves the above value

when the firm is patient enough.3 Our construction generalizes the construction for the

deterministic 1-period lag case in the previous section. The eequilibrium consists of 3

phases, one transition period, and Nash reversion.

• Phase 1: Always play (H,B) (on and off the eequilibrium path). Reset the game

and start a new Phase 1 as soon as any public signal is observed. If no public signal

is observed for N periods, then go to the transition period.

3This description can be translated into a more formal expression using a finite state automaton.
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• Transition Period: Play (H,B). Note that s1 (the signal associated with the first

period action in the preceding Phase 1) realizes with probability 1 conditional on the

game reaching to the transition period. If only s1 is observed and s1 = g or any other

public signal is observed in this period, then reset the game and start a new Phase 1.

If only s1 is observed and s1 = b, then go to Phase 2.

• Phase 2: Always play (H,B) (on and off the eequilibrium path). If any public

signal associated with the firm’s actions in current Phase 2 is observed, then reset

the game and start a new Phase 1. Otherwise, if any public signal associated with

the preceding Phase 1 and the preceding transition period realizes with less then N

period lag or realizes with N period lag and it is a good signal g in the n(≤ N)th

period of Phase 2, then go to the n+ 1th period of a new Phase 1 (to the transition

period if n = N) and treat the t th period of current Phase 2 for t = 1, ..., nas the t th

period of new Phase 1 retroactively. Suppose that none of the above has occurred for

N periods. Then N consecutive bad signals should have been observed where the nth

bad signal is associated with the firm’s action in the n + 1st period in the preceding

Phase 1 (or the firm’s action in the preceding transition period for n = N). Given this

event, randomize between going to a new transition period (and treating the current

Phase 2 as the Phase 1 preceding the transition period) and going to Phase 3.

• Phase 3: Play (L,NB) (on and off the eequilibrium path) for N periods. In the end

of this phase, reset the game and start a new Phase 1 with probability β (z) or start

Nash reversion (play (L,NB) forever) with probability 1 − β (z) , where z ∈ {g, b}N

is an N -tuple of public signals associated with the actions in the preceding Phase 2.

Here is a high level intuition for why this is an eequilibrium. A punishment would occur

with some probability when and only when N + 1 consecutive bad signals with longest

lag (N -period lag) associated with the actions in Phase 1 and the transition period are

observed. We treat the firm’s actions from the the 1st period of Phase 1 to the transition

period in a symmetric way. Hence if the incentive constraint for the 1st period action is

satisfied, then the incentive constraint in any later period in Phase 1 and the transition

period would be satisfied, because the 1st period is most distant from the timing of possible

punishment. We choose the probability of punishment (probability to move to Phase 3

at the end of Phase 2) in such a way that the first period incentive constraint is binding

to avoid any loss of efficiency. The incentive constraints in Phase 3 are trivially satisfied

because the firm’s action does not affect future payoffs at all and the firm plays a dominant

action L there. In Phase 2, the firm is uncertain about whether the game would move to

Phase 3 or the current Phase 2 would be treated as Phase 1. We choose the probability

to go back to Phase 1 in the end of Phase 3 so that the firm is indifferent between high
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effort and low effort in Phase 2 conditional on moving to Phase 3 at the end. Hence we can

check the firm’s incentive in Phase 2 conditional on it being treated as Phase 1. Then such

incentive constraints in Phase 2 are identical to the ones in in Phase 1, hence satisfied.

4.3 Comparative Statics in Lag Structure

Our formula shows that the best eequilibrium payoff is increasing in the expected waiting

time for the first public signal (with δ suitably adjusted). So we can do comparative statics

of the best eequilibrium payoff with respect to the change of lag structures very easily, we

just need to check how E(λ, δ) depends on {λn}.
Remember that E(λ, δ) =

∑N
n=1 γn(

∑n
k=1 δ

n). This is the expected value of increasing

and concave function on integers with respect to the distribution of waiting time for the

first public signal. Hence any change of lag structure that would increase this distribution

in the order of second order stochastic dominance would increase the the best eequilibrium

payoff.

Our main comparative statics result with respect to information lag is the following

theorem.

Theorem 2. Suppose that a lag structure {λn} second order stochastically dominates a lag

structure {λ′n}. Then E(λ, δ) ≥ E(λ′, δ) for any δ ∈ [0, 1), hence there exists δ such that

v∗λ(δ) ≥ v∗λ′(δ) for any δ ∈ [δ, 1).

If a lag distribution changes in such a way that the new lag distribution FOSD the

original distribution, each public signal would realize later with higher probability, so it is

intuitively clear that the new distribution of the first public signal FOSD the corresponding

original distribution as well.

What is more subtle is the case where a lag distribution changes so that the new lag

distribution SOSD the original lag distribution. Suppose that the original lag variable is a

new lag variable with 0 mean noise (the variance of the noise can depend on the realized

lag of the new lag variable), this is the best case scenario for the old lag distribution.

Take the timing of the first public signal for the new lag distribution, which is a random

variable. Let’s add the 0 mean noise to this timing, then the derived distribution of the

timing is already second order stochastically dominated by the distribution with the new lag

distribution. Furthermore, the actual timing associated with the original lag distribution is

even earlier (thus FOSDed further), because a 0 mean noise is applied to every signal, not

just the one that realizes earliest, hence the first public signal may change, especially the

first public signal is hit by a positive lag shock (see the random lag example in Section 3).

12



5 Discussion

5.1 A Simpler Optimal Eequilibrium

Here we illustrate that we can find a simpler optimal eequilibrium for some special class of

information lag.

Suppose that the lag structure is given by deterministic N -period lag (i.e. λN = 1)

Divide the repeated game into two independent games. One game starts at period 1, and

includes period 1 to N + 1, then period 2(N + 1) + 1 to 3(N + 1) and so on. The other

game starts at period N + 2 then continues until 2(N + 1), then 3(N + 1) + 1 to 4(N + 1)

and so on. So each game consists of a sequence of N + 1 -period blocks.

Then we can construct an eequilibrium that is similar to the one in [1]. The play is either

in the cooperative phase or the Nash reversion phase for each game. The Nash reversion

phase is an absorbing one, where the players play (L,NB) forever. In the cooperative phase,

(H,B) is played in every period on and off the eequilibrium path. No signal associated with

the actions in the current cooperative phase will be observed until the very end of the phase

(the signal about the first period action will be observed in the end of the N + 1 th period

before moving to the other independent game). Since one block is separated from the next

one by N +1 periods in each game, every signal associated with one block will have realized

by when the next block of the same game starts. In the beginning of the next block, the

cooperative phase would restart if there is an even one good signal g among N + 1 public

signals. If every signal is b, then the cooperative phase restarts with probability 1− π and

the Nash reversion starts with probability π.

The only binding incentive constraint is the one in the first period:

(1− δ)G = δ2(N+1)π(q − p)pNV (δ).

where V (δ) is the the eequilibrium payoff in the beginning of the cooperative phase for each

component game , which satisfies the recursive equation:

V (δ) =
(
1− δN+1

)
+ δ2(N+1)(1− πpN+1)V (δ)

By solving this, we obtain

V (δ) =
1− δN+1

1− δ2(N+1)
− 1− δ

1− δ2(N+1)

G
q
p − 1

13



If we add the eequilibrium payoffs of the two component games, then we obtain

V (δ) + δV (δ) = 1− 1

1 +
∑N

n=1 δ
n

G
q
p − 1

,

which is exactly the best eequilibrium payoff V ∗(δ)N with deterministic N -information lag.
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6 Appendix: Proofs

6.1 Proof of Proposition 1

TBA

6.2 Proof of Theorem 1

In the following, we verify that the strategy suggested in the main text is indeed an eequi-

librium and achieves the bound for the firm.

First we check one-shot deviation constraints for the firm at every history (including

off-path histories). Note that consumers’ incentive constraints are trivially satisfied.

Incentive in Phase 3.

All the incentive constraints in Phase 3 are trivially satisfied because L is the strictly

dominant action and all the public signals generated by the actions in this phase will not

affect the future play of the game at all.

Incentive in Phase 1 and at the transition period

Consider the k th period of Phase 1 for k = 1, ..., N and the transition period on the

eequilibrium path. The firm’s action in this period matters through a realization of sk if

and only if all sn, n = 1, ..., N + 1 realizes with the longest lag (each sn realizing in period

N + n, which is the n − 1 th period in the Phase 2 (or the transition period for n = 1)),

sn = b for n = 1, ..., N + 1 except for n = k, and any sn, n = N + 2, ..., 2N + 1 does not

realize by the end of Phase 2.

Hence the firm’s one-shot deviation constraint in the k th period on the eequilibrium

path for k = 1, ..., N + 1 is

(1− δ)G ≤ δ2n−k+2Πk−1
t=1 λN (t)λN−k+2

N γNπ (q − p) pN
(
V T (δ)− V 3(δ)

)
for k = 1, ..., N + 1,

• λN (t) = λN∑N
n=t−1 λn

is the probability that a signal realizes with the longest lag condi-

tional on it has not realized for t− 1 periods

• π is the probability to go to Phase 3 in the end of Phase 2 conditional on the above

event (given which sk plays a pivotal role) and sk being a bad signal b

• V T (δ) is the firm’s continuation payoff at the transition period and V 3 is the firm’s

continuation payoff in the beginning of Phase 3.

For the one-shot deviation constraints in the k th period of Phase 1 and the transition

period off the equilibrium path, some of p in this expression is replaced by q > p. So those
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one-shot deviation constraints off the eequilibrium path would be automatically satisfied if

this one-shot deviation constraint on the eequilibrium path is satisfied.

Next note that the above condition for k would be automatically satisfied if it is satisfied

for k = 1, because δ2n−k+2 ≤ δ2n+1 and λN (t) ≥ λN for any t = 1, ..., N . So every one-shot

deviation constraint on and off the eequilibrium path in Phase 1 and the transition period

would be satisfied if the following one-shot deviation constraint in the 1st period of Phase

1 is satisfied.

(1− δ)G ≤ δ2n+1λN−k+2
N γNπ (q − p) pN

(
V T (δ)− V 3(δ)

)
, (1)

Incentive in Phase 2.

We define the probability β(z) to go back to Phase 1 in the end Phase 3 as follows.

β(z) = η
N∑
n=1

δn−11 (zn = g) ,

when we use the public signal associated the firm’s action in the kth period of Phase 2 as

an input for zk. We choose small η so that this is indeed a probability given any z ∈ {g, b}N

Suppose that the firm believes with probability 1 that the game would reach the end

of Phase 2 and move to Phase 3, then the firm’s one-shot deviation constraint in the k

th period of Phase 2 (on and off the eequilibrium path) would be independent of k (by

construction of β) and given by

(1− δ)G ≤ δ2Nη (q − p)V 1(δ). (2)

where V 1 is the continuation payoff in the beginning of Phase 1. We choose η so that

this constraint is binding.

Note that if the firm believes with probability 1 that the game would move to the

transition period in the end of Phase 2 when it is reached, then the one-shot deviation

constraint in the k th period of Phase 2 coincides with the one-shot deviation constraint in

the k th period of Phase 2.

Since the actual one-shot deviation constraints in Phase 2 are mixtures of the above two

type of one-shot deviation constraints conditional on two distinct events, they are satisfied.

To summarize, all the on-shot deviation constraints on and off the eequilibrium path

are satisfied if we can choose π and η in such a way that (1) and (2) are satisfied.

Next we derive the firms’ payoff V 1, assuming that (1) and (2) are binding. V 1 satisfy
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the following recursive equation.

V 1 =
N−1∑
n=0

γn
[
(1− δn+1) + δn+1V 1

]
+ γN

[
(1− δN+1) + δN+1

{
(1− p)V 1 + pV 2

}]
Note that the binding (1) is equivalent to the following condition where the continuation

payoffs are evaluated just after the transition period.

(1− δ)G = γNδN+1(q − p)
(
V 1 − V 2

)
.

Using the above two equations, we can eliminate V 2 to derive V 1 as follows

V 1 = 1− 1

1−
∑N

n=0 γnδ
n+1

1− δ
q
p − 1

= 1− 1

1 + E(λ, δ)

1− δ
q
p − 1

where E(λ, δ) =
∑N

n=1 γn
(∑n

k=1 δ
k
)
. So V 1 achieves the bound in Theorem 1.

If this bound is strictly positive as δ → 1, it can be verified that we can find π ∈ (0, 1)

and small enough η such that β(z) ∈ (0, 1) so that the above strategy is well defined and

(1) and (2) are satisfied with equality when δ is large enough. So there exists some lower

bound of discount factor δ in this case such that the constructed strategy is an eequilibrium

and achieves the bound as the equilibrium payoff for any δ ≥ δ.

6.3 Proof of Theorem 2

TBA
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