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Abstract

We propose a factor model for quantile regression using quantile-covariance(qcov), which will be

called the Quantile-Covariance Three-Pass Regression Filter (Qcov3PRF). Inspired by the Three-

Pass Regression Filter (3PRF, Kelly and Pruitt, 2015), our method selects the relevant factors from

a large set of predictors to forecast the conditional quantile of a target variable. The measure qcov

is implied by the first order condition from a univariate linear quantile regression. Our approach

differs from the Partial Quantile Regression (PQR, Giglio et al., 2016) as Qcov3PRF successfully

allows the estimation of more than one relevant factor using qcov. In particular, qcov permits us to

run time series least squares regressions of each regressor on a set of transformations of the variables,

indexed for a specific quantile of the forecast target, known as proxies that only depend on the

relevant factors. This is not possible to be executed using quantile regressions as regressing each

predictor on the proxies refers to the conditional quantile of the predictor and not the quantile

corresponding to the target. As a consequence of running a quantile regression of the target or proxy

on each predictor, only one factor is recovered with PQR. By capturing the correct number of the

relevant factors, the Qcov3PRF forecasts are consistent and asymptotically normal when both time

and cross sectional dimensions become large. Our simulations show that Qcov3PRF exhibits good

finite sample properties compared to alternative methods. Finally, three applications are presented:

forecasting the Industrial Production Growth, forecasting the Real GDP growth, and forecasting the

global temperature change index.
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1 Introduction

In economics and finance, forecasting a time series variable through factor models has been widely used

as a method of dimension reduction under the presence of a very large set of predictors, which may be

highly correlated. Some relevant works include Stock and Watson, 2002a, Stock and Watson, 2002b, Bai

and Ng, 2002, Bai, 2003, and Bai and Ng, 2006, among many others. However, this has been usually

applied in a setup where in the first step one decomposes a set of N covariates into K orthogonal factors

using Principal Components Analysis (PCA); and then, the researcher runs a linear regression of the

target variable on the set of the K factor estimates. This two steps conform the method Principal

Components Regression (PCR, Stock and Watson, 2002a), and although the forecasts resulting from

using PCR are shown to be consistent, for finite samples the estimates can bring poor and/or inefficient

results as the target variable may depend only on a subset of factors out of those factors selected in

the first step. For this reason, it is important to consider a method where we can determine only the

relevant factors before the forecasting step. This can be done by considering the forecast target in steps

of computing the factors, for example, the target-PCA of Bai and Ng, 2008, the Three Pass Regression

Filter (3PRF) of Kelly and Pruitt, 2015, and the scaled-PCA of Huang et al., 2022, among others.

Specifically, in 3PRF one can obtain the relevant factors to forecast the target variable for its con-

ditional mean. Interestingly, Kelly and Pruitt, 2015 showed that Partial Least Squares (PLS) (Wold,

1966) is a particular case of 3PRF. Applications found in Kelly and Pruitt, 2013, Huang et al., 2015, Lyle

and Wang, 2015, Light et al., 2017, Gu et al., 2020, and Huang et al., 2021, among others, showed that

3PRF (or PLS) is successful at extracting factors for predicting stock returns and economic activities

in time series and cross-sectional data. On the other hand, methods involving factor models regarding

the prediction of other functionals are much more scarce. In particular, for the conditional quantile

prediction of the target we have the Principal Components Quantile Regression (PCQR) and Partial

Quantile Regression (PQR), both studied in Giglio et al., 2016.

The method 3PRF assumes the researcher has Kf proxy variables that contain information of the

relevant factors such that, through simple cross sectional and time series linear regressions, one can

obtain the Kf relevant factors. PQR shares some similarities with 3PRF when a proxy is the target

itself, however, it only obtains one relevant factor for each quantile by construction. The reason is that

extending 3PRF to the PQR approach would rely on running time series quantile regressions of each

predictor on the proxies, but this refers to the conditional quantile of the predictor and not the one

corresponding to the target/proxies. Then, as a consequence of running a quantile regression of the

target or proxy on each predictor, only one factor is recovered with PQR.

Motivated by this limitation, we propose a new supervised method to forecast the conditional quantile

of a target variable that depends on the latent factors obtained from a high dimension set of covariates.

We call the new method the Quantile Three Pass Regression Filter (Qcov3PRF). This method is similar
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in nature to PLS and 3PRF as it exploits the covariance between the target variable and the predictors,

but we instead incorporate the quantile-covariance (qcov) definition of Li et al., 2015. The measure

qcov is implied by the first order condition from a linear univariate quantile regression. In contrast to

PQR, our method can successfully estimate more than one relevant factor and it allows the inclusion

of proxies which, by assumption, only depend on the factors that forecast the conditional quantile of

the target variable. Our algorithm is easy to implement and only requires least square regressions to

extract the relevant factors. Illustrating that our approach can be extended in various ways, similar to

3PRF, we also propose a simple modification of Qcov3PRF with mixed frequency data, low frequency

in the proxies and the target, and high frequency in the predictors. This extension of Qcov3PRF follows

the approach of Hepenstrick and Marcellino, 2019 and is an example of other potential extensions of

Qcov3PRF similar to existent extensions of 3PRF (for example, the Markov-Switching 3PRF proposed

by Guérin et al., 2020).

We are not the first to incorporate a quantile-covariance concept in a conditional quantile forecast

factor model focusing on the estimation of the factors which are relevant for the target. Dodge and Whit-

taker, 2009 and Méndez-Civieta et al., 2022 proposed PLS modifications for quantile regression based on

a different definition of quantile-covariance and qcov, respectively. However, there are some shortcomings

compared to Qcov3PRF. The method of Dodge and Whittaker, 2009 provides no background on what is

the optimization problem that their PQR algorithm is solving, the quantile-covariance they use does not

have properties that theoretically justifiy the estimation of more than one factor, and its implementation

can be computationally expensive. Regarding the method of Méndez-Civieta et al., 2022, the authors do

not provide asymptotic results, their approach does not allow the inclusion of proxies, and their empirical

applications and simulations focus on the median.

In this paper, asymptotic properties for the estimated factors and quantile forecasts obtained through

Qcov3PRF are studied. We show the consistency of the estimated forecasts towards the infeasible best

forecasts, i.e., the population conditional quantile forecasts. We also show the asymptotic normality of

the forecasts. In particular, the consistency and asymptotic normality hold under the use of automatic

proxies, which are proxies that can always be generated with the target and the set of predictors only.

In addition, the finite sample performance of Qcov3PRF through simulations is verified. We show how

poorly PCQR performs under the presence of irrelevant factors and a high degree of cross sectional and

serial correlation in the idiosyncratic component.

Finally, we provide three empirical applications. The first one involves the real growth vulnerability

from a set of financial variables based on Adrian et al., 2019). The second one considers an economic

activity index as a proxy variable to determine the quantile interactions between financial risk and

Real GDP growth. The third application is related to climate change and is focused on how well

the distribution of the global change in temperatures can be predicted with the carbon dioxide (CO2)
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emissions from a large set of countries, we call this relationship as Climate at Risk (CaR). Our results

suggest that our method surpasses PCQR, PQR and other similar alternatives in forecasting accuracy.

The rest of the paper is organized as follows. Section 2 presents the related literature by introducing

the 3PRF and some other related methods focused on quantile prediction. In Section 3 we present the

methodology for quantile-covariance and Qcov3PRF. Section 4 establishes the consistency and asymp-

totic normality of the estimated infeasible conditional quantile forecasts. Section 5 presents a study of

the finite sample performance of our method through simulations. Section 6 provides three empirical

applications, and Section 7 concludes the paper. All mathematical proofs are included in the Appendix.

2 Related literature

2.1 The Three Pass Regression Filter

Proposed by Kelly and Pruitt, 2015, the 3PRF is a forecasting method that focuses on predicting a

target variable in conditional mean by extracting the relevant factors from a set of predictors. This is

a supervised method in the sense that the method only determines the relevant factors for the target

and not all the factors driven by the set of predictors. Specifically, 3PRF considers the following data

generating process (DGP):

xt = ϕ0 +ΦF t + εt, (1)

yt+1 = β0 + β
′F t + ut+1, (2)

zt = λ0 +ΛF t + ωt, (3)

where xt is a vector of predictors with a large dimension N . These predictors are approximated through

a factor model such that we can obtain K latent unobservable factors F t that predict a target variable

yt+1. Without Eq.(3), forecasts for yt+1 can be obtained through PCR applying PCA in the set of

predictors (based on Eq.(1)) to obtain estimates for the latent factors F̂
PCA

t , and the prediction stage

(based on Eq.(2)) involves running a least squares regression of yt+1 on F̂
PCA

t and a constant.

Suppose that yt+1 is only affected by Kf ≤ K factors, denoted by f t such that F t = (f ′
t, g

′
t)

′. The

factors f t (gt) are relevant (irrelevant) for the target in the sense that β = (β′
f ,0

′)′ with βf ̸= 0. These

factors are also the only relevant factors to proxies zt such that Λ = (Λf ,0). Then, Eq.(3) is what

allows the recovery of the relevant factors by using zt.

A relevant factor of yt+1 can be potentially omitted from the factors estimated via PCA since the

relevant factors do not necessarily have to come from the eigenvectors associated to the largest eigenval-

ues. In contrast, 3PRF has an advantage of only estimating the factors that affect the target. This nice

feature comes from the fact that the factor loadings in Eq.(1) depend on the target (or the proxies) such
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that the DGP becomes xt = ϕ0 +Φ(yt+1)F t + ε̃t as the factor loadings Φ(yt+1) = [Φf 0], where the

matrix Φf corresponds to the loadings of the factors f t, and are identified by Eq.(3) and ε̃t contains

the remaining (irrelevant) factors, given by gt, and the idiosyncratic component εt. The method 3PRF

is presented in Algorithm 1.

Algorithm 1 Three-Pass Regression Filter (3PRF)

Pass 1: Run a time series least squares regression of xi = (xi1, . . . , xiT ) on z = (z′1, . . . ,z
′
T )

′ (zt =
(z1t, . . . , zKf t), t = 1, . . . , T ) for i = 1, . . . , N ,

xit = ϕ0,i + ϕ
′
izt + ϵit,

and retain the estimate ϕ̂i.

Pass 2: Run a cross section least squares regression of xt = (x1t, . . . , xNt) on ϕ̂ = (ϕ̂
′
1, . . . , ϕ̂

′
N )′ (ϕ̂i =

(ϕ̂1i, . . . , ϕ̂Kf i), i = 1, . . . , N) for t = 1, . . . , T ,

xit = ϕ0,t + f
′
tϕ̂i + εit,

and retain the estimate f̂ t.

Pass 3: Run a time series least squares regression of y = (y2, . . . , yT+1) on the estimated factors f̂ =

(f̂
′
1, . . . , f̂

′
T )

′ (f̂ t = (f̂1t, . . . , f̂Kf t) for t = 1, . . . , T ),

yt+1 = β0 + β
′
f f̂ t + ut+1.

This gives the forecast for the conditional mean of yt+1.

Pass 1 and Pass 2 determine the relevant factors through zt
1, while Pass 3 is the same prediction

stage compared to PCR. In general, the proxies can be difficult to get since they require a justified

economic/financial theory and/or additional data. To remediate this, Kelly and Pruitt, 2015 proposed

an algorithm to determine automatic-proxies by only using the data for xt and yt+1.
2 We present

Algorithm 2, the procedure to determine the automatic proxies for 3PRF.

Algorithm 2 Automatic proxy selection for 3PRF

Initialize r0 = y.

for ℓ = 1, . . . ,Kf do

Step 0: Let the ℓth automatic proxy be rℓ−1. Stop if ℓ = Kf ; otherwise proceed.

Step 1: Apply 3PRF using the T × N matrix of predictors, X, and the automatic proxies r0, . . . , rℓ−1.
Denote the forecast obtained as ŷℓ−1.

Step 2: Let the residual rℓ,τ = y − ŷℓ−1 be the (ℓ+1)th automatic proxy.

Kelly and Pruitt, 2015 showed that these proxies are linearly independent and uncorrelated with the

1The idiosyncratic component ωt in Eq.(3) is crucial for 3PRF in the sense that, without it, the proxies are perfect for
the unobservable factors, i.e., zt = λ0 +ΛF t, then Eq.(1) becomes irrelevant. Hence, the forecasts for yt+1 are given by
simply running a linear regression of yt+1 on zt. Otherwise, when ωt is present, running a linear regression of yt+1 on zt

would result in biased coefficients.
2Note that PLS is a particular case of 3PRF when the proxies are automatic and the set of predictors xt are standardized

over time.
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irrelevant factors. In particular:

ˆcov(y, gj) = ˆcov(r0, gj) = 0, (4)

ˆpcov(y, gj |f̂
(1)

1 ) = ˆcov(y − β̂
(1)
1f f̂

(1)

1 , gj) = ˆcov(r1, gj) = 0,

...

ˆpcov(y, gj |f̂
(Kf−1)

1 , . . . , f̂
(Kf−1)

Kf−1 ) = ˆcov(y − β̂
(Kf−1)
1f f̂

(Kf−1)

1 − · · · − β̂
(Kf−1)

(Kf−1)f f̂
(Kf−1)

Kf−1 , gj)

= ˆcov(rKf−1, gj) = 0,

for j = Kf + 1, . . . ,K, where ˆcov(y, gj) and ˆpcov(y, gj |f̂
(1)

1 , . . . , f̂
(ℓ)

ℓ ) denote the sample covariance

between y and gj , and the sample partial covariance between y and gj conditioning on the variables

f̂
(1)

1 , . . . , f̂
(ℓ)

ℓ , respectively, where (ℓ) denotes the estimates obtained in the ℓth iteration, and f̂ ℓ is

uncorrelated with gj for all ℓ = 1, . . . ,Kf , j = Kf + 1, . . . ,K. Then, it is natural to think of an

extension of 3PRF for the conditional quantile prediction by using quantile-covariance (qcov) instead of

the standard covariance (cov).

2.2 Related methods that forecast the conditional quantile of the target

Giglio et al., 2016 extended 3PRF to predict conditional quantiles of the target variable. However, they

were only successful at extracting one relevant factor. The method developed in that article is known as

Partial Quantile Regression (PQR), whose algorithm, compared to 3PRF, replaces the prediction stage

(Pass 3) with τ -quantile regression. More importantly, PQR replaces Pass 1 by running a time series

τ -quantile regression of yt+1 on xit and a constant, and keep the estimates, say, ϕ̂iτ , for i = 1, . . . , N .3

Pass 1 in PQR is associated to a quantile-covariance concept considered by Dodge and Whittaker, 2009

for a PLS extension with conditional quantile prediction (also called PQR). The reason why this method

only captures one relevant factor is because a quantile regression can not be switched as it can be for

the least squares case. This is, ommiting a constant term, a linear coefficient equal to zero by running

a quantile regression of y on x is not necessarily zero if we run a quantile regression of x on y, whereas

for the conditional mean case running a least squares regression y on x leads to a coefficient equal to

zero if and only if the coefficient is zero when running a least squares regression of x on y. Comparing

Pass 1 in Algorithm 1 for the conditional mean with zt = yt+1 and Kf = 1, we should run a quantile

regression of y on xi for the conditional quantile forecasts of y but we cannot run a quantile regression

of xi on y. Extending Pass 1 for the quantile forecast with Kf > 1 is not even possible as it involves

simultaneous linear relationships between xi and the τ -quantile of z.

Giglio et al., 2016 also presented the Principal Components Quantile Regression (PCQR). This

3In addition, they omitted the constant in Pass 2. Adding a constant is an important forecast improvement in 3PRF
(with automatic proxies) compared to PLS when forecasting the conditional mean. See Kelly and Pruitt, 2015 for details.
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method simply substitutes the prediction stage of PCR with quantile regression. The authors showed

that both PQR and PCQR give consistent forecasts. As in the case of PCR when forecasting the

conditional mean, PCQR is consistent for any number of relevant factors when forecasting conditional

quantiles, as the estimated loadings for the irrelevant factors will converge to zero. However, in finite

samples, the resulting forecasts may be inefficient when including several irrelevant factors as is the case

when predicting the conditional mean.

Another supervised method for quantile prediction involving factor models is the fast PQR (fPQR)

developed by Méndez-Civieta et al., 2022 where they followed a similar approach PQR but instead of the

quantile covariance of Dodge and Whittaker, 2009, they maximized the qcov (Li et al., 2015) between

the target and the predictors in a PLS framework.

3 Quantile-covariance Three Pass Regression Filter

3.1 Quantile-covariance (qcov) and Quantile partial-covariance (qpcov)

As we have noticed on the methods described above, a key point to successfully extend 3PRF to condi-

tional quantile prediction relies on exploiting a quantile-covariance relationship between the target and

the predictors such that the relevant factors for a conditional τ -quantile can be recovered. This quantile

covariance needs to be used to allow a kind of “inverse” form for the quantile regression, as it is required

in Pass 1 of 3PRF.

The quantile-covariance used in our forecasting method is the qcov presented in Li et al., 2015.

Specifically, for two random variables f and y, let Qτy be the τth unconditional quantile of y and Qτy|f

be the τth conditional quantile of y given f . The first order condition of quantile regression implies that

Qτy|f is independent of f with probability 1 if and only if the random variables I(y −Qτy > 0) and f are

independent, where I(·) is the indicator function. From this result, the qcov for 0 < τ < 1 is defined as

follows:

qcovτ (y, f) = cov(I(y −Qτy > 0), f)

= E[ψτ (y −Qτy)(f − E(f)], (5)

where ψτ (v) = τ −I(v < 0). It is important to mention that qcov does not possess a symmetry property,

i.e., qcovτ (y, f) ̸= qcovτ (f, y). However, cov(I(y − Qτy > 0), f) = cov(f, I(y − Qτy > 0)). This is the

critical property for us to construct Pass 1 of the Qcov3PRF algorithm presented in Section 3.2. We note

that this is different from the quantile-covariance considered implicitly in PQR of Giglio et al., 2016.4

Now, let us refer to the quantile regression y = b0τ + bjτfj + uτ , where j = 1, . . . ,Kf and look for

4Specifically, the quantile-covariance considered in PQR is equal to the linear coefficient obtained after running a quantile
regression of y on f and a constant, where f has mean 0 and variance 1.
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the following minimizers:

(b∗0τ , b
∗
jτ ) = argmin

b0τ ,bjτ

E [ρτ (y − b0τ − bjτfj)] , (6)

where ρτ (v) = v [τ − I(v < 0)] is the check loss function. Li et al., 2015 found a nice result such

that qcovτ (y, fj) = ν(b∗jτ ) where ν(·) is a continuous and increasing function, and, more importantly,

ν(b∗jτ ) = 0 if and only if b∗jτ = 0.

The previous result only holds for the case of one regressor at a time. However, as we will see in

the next subsection, Qcov3PRF involves a quantile regression with multiple predictors (multiple relevant

factors) in the prediction stage. So we need further tools that extend the result presented above for the

case of multiple predictors. To see how qcov and the multivariate quantile regression are related, let us

consider a linear quantile model for the target variable y and the set of predictors f = (f1, . . . , fKf
):

y = β0τ + β1τf1 + · · ·+ βKfτfKf
+ uτ , (7)

where the error term satisfies P (uτ < 0|f) = τ . This implies that the conditional quantile of y given f

is Qτy|f = β0τ + β1τf1 + · · · + βKfτfKf
. Without loss of generality, let us assume that E(fj) = 0 and

Var(fj) = 1 for all j = 1, . . . ,Kf , and denote hu(u|f) and hy(y|f) as the conditional density of u and y

given f , respectively.

Angrist et al., 2006 described a procedure to obtain the coefficient b∗jτ alternatively as the minimizer

of the following weighted least squares problem:

b∗jτ = argmin
bjτ∈R

E
[
w̃τ (f) ·

(
Qτy|f − bjτfj

)2]
, (8)

where w̃τ (f) = 1
2

∫ 1

0
hu
(
u ·∆τ (fj , b

∗
jτ )|f

)
du, and ∆τ (fj , b

∗
jτ ) = b∗jτ + b∗jτfj − Qτy|f for j = 1, . . . ,Kf .

Then,

b∗jτ = E(w̃τ (f)f2j )−1E(w̃τ (f)fjQτy|f ) = β∗
jτ + djτ ,

where β∗
jτ is the coefficient estimate of fj obtained from running quantile regression of y on f , and

djτ =
∑
k ̸=j β

∗
kτE(w̃τ (f)f2j )−1E(w̃τ (f)fjfk). The term djτ can be interpreted as the bias of the quantile

estimator. It is equal to zero when E(w̃τ (F )fjfk) = 0, however, in contrast to the conditional mean

case, orthogonality among the predictors is not enough to ensure djτ = 0 due to the presence of the

term w̃τ (f). Therefore, the relationship between qcovτ (y, fj) = ν(b∗jτ ) and β∗
jτ is affected by the term

djτ . Li et al., 2015 and Ma et al., 2017 approached this problem by using the quantile partial covariance

(qpcov). Similar to the partial covariance for the conditional mean, qpcov is defined by partialling out
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the confunding effects of the predictors f−j = (1, {fk, k ̸= j}) on fj and on y. Specifically,

qpcovτ (y, fj |f−j) = cov(I(y − γ′
0jf−j > 0), fj − θ′0jf−j), (9)

where θ0j = argminθj
E[(fj − θ′jf−j)

2] and γ0j = argminγj
E[ρτ (y − γ′

jf−j)]. Based on the results in

Ma et al., 2017 with the estimates obtained from solving:

(δ∗0τ , δ
∗
jτ ) = argmin

δ0τ ,δjτ

E[ρτ (y − γ′
0jf−j − δτ − δjτfj)], (10)

we have that qpcovτ (y, fj |f−j) = ϱ(δ∗jτ ), where ϱ(·) is a continuous and increasing function and ϱ(δ∗jτ ) =

0 if and only if δ∗jτ = 0. It can be shown that β∗
jτ = 0 if and only if δ∗jτ = 0. Hence, β∗

jτ = 0 if and only

if ϱ(δ∗jτ ) = 0.

3.2 Quantile-covariance Three Pass Regression Filter

Based on the work of Kelly and Pruitt, 2015 and Giglio et al., 2016 we develop a new method of

Qcov3PRF. This forecasting method relies on the quantile-covariance qcov defined in the previous sub-

section.

We first establish the environment considered for this method. There is a target variable that we

wish to forecast its conditional τ -quantile. There are many highly correlated predictors that can contain

useful information to predict the conditional quantile. The number of predictors N can be large and

its magnitude can be greater than or equal to the time series observations T , this is N ≥ T . This

complicates the estimation using quantile regression (Koenker and Bassett Jr, 1978). Then, we look to

reduce the dimension of the covariates assuming that the covariates can be approximated using a (linear)

factor model. The proxies that we consider in our method have a similar interpretation than for 3PRF.

These are variables driven by the relevant factors that affect the target variable in the τth quantile. The

complication now, in contrast to 3PRF, is that the proxies considered are not the variables themselves

but transformations motivated by qcov (see Eq.(13), which will be justified later on in this subsection).

Hence, the effects on the target come from the transformed proxies and not from the original variables.

Much more useful in practice is that these proxies can be obtained in an automatic manner, as we

will describe when we present Algorithm 4. The target variable depends on those factors, but given that

these factors are unobserved, the predictions obtained from the true factors are known as the infeasible

best forecasts. For the DGP we first present the following models presented in Assumption 1.
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Assumption 1. The data for a fixed level τ ∈ (0, 1) is generated as follows:

xt = ϕ0 +ΦF t + εt, (11)

yt+1 = β0,τ + β
′
τF t + uτt+1, (12)

where yt+1 denotes the target time series variable, xt is an N × 1 vector of predictors which are stan-

dardized to have unit time series variance, F t is a K × 1 vector of latent factors, and Φ is an N ×K

matrix with K < min(N,T ). In addition, βτ is a K × 1 vector, whose dependence on τ is because the

conditional quantile of yt+1 is Qτyt+1|F t
= βτ,0 + β′

τF t where Et[τ − I(uτt+1 < 0)] = E[τ − I(uτt+1 <

0)|yt,F t, yt−1,F t−1, . . . ] = 0. Also, βτ = (β
′

f,τ ,0
′)′ with βf,τ ̸= 0 vector of dimension Kf × 1.

Eq.(11) assumes a standard factor structure for a large set of predictors (Bai and Ng, 2002), Eq.(12)

is the prediction stage which focuses on estimating the conditional quantile of the target. By only

considering these models, there is no need to make a distinction between irrelevant or relevant factors.

We know by Ando and Tsay, 2011 and Giglio et al., 2016 that PCQR provides consistent conditional

quantile forecasts, however, in finite sample cases, under the presence of high cross section and/or serial

correlation in εt and the existence of several irrelevant factors with high variance, the estimation can

result in forecasts with poor performance.

On the other hand, referring to 3PRF with automatic-proxies (see Eqs.(1)-(3) and Algorithm 2),

there are Kf proxies linearly independent and uncorrelated with the irrelevant factors g (see Eq.(4)). If

now we instead incorporate qcov and qpcov in the automatic proxies framework we can formulate Kf

proxies determined sequentially given by I(y − Q̂τy > 0), I(y − Q̂τ
y|f̂(1)

1

> 0) = I(y − β̂
(1)
1,τ f̂

(1)

1 > 0),

. . . , I(y − Q̂τ
y|f̂

(Kf−1)

1 ,...,f̂
(Kf−1)

Kf−1

> 0) = I(y − β̂
(Kf−1)
1f,τ f̂

(Kf−1)

1 − · · · − β̂
(Kf−1)

(Kf−1)f,τ f̂
(Kf−1)

Kf−1 > 0), where

(ℓ) denotes the relevant factors obtained in the ℓth iteration and β̂
(ℓ)

τ are obtained by running quantile

regression of y on f̂
(ℓ)

.

If we further generalize to any linearly independent group ofKf proxies by letting z∗jτ = I(zjτ−Qτzj >

0) = I(y − Q̂τ
y|f̂1,...,f̂j

> 0), and stacking over j = 1, . . . ,Kf we have:

z∗τ = λ0,τ ι
′ +Λf,τf + ω, (13)

where ι is a column vector of ones and Λf,τ is a Kf × Kf matrix. Eq.(13) is the proxy equation

in our setting, which extends Eq.(3) to the quantile case. Eq.(13) is presented as Assumption 2 and

it is associated to τ -quantile through Qτzj , which makes it possible to extend Pass 1 in 3PRF to the

conditional quantile case via least squares time series regressions. Note that when zt = yt+1 we go back

to the estimation of only one relevant factor, which is covered in PQR.

10



Assumption 2. The data for a fixed level τ ∈ (0, 1) is generated as follows:

z∗t,τ = λτ,0 +ΛτF t + ωt, (14)

where z∗t,τ = (z∗1t,τ , . . . , z
∗
Kf t,τ

) with z∗ℓt,τ = I(zℓt − Qτzℓt > 0), zt is a Kf × 1 vector of proxy data,

F t = (f ′
t, g

′
t)

′, Λτ = (Λf,τ ,Λg,τ ) is a Kf × K matrix. Let Kf > 0 and Kg ≥ 0 the dimension of f t

and gt, respectively, such that Kf +Kg = K where Kf ≪ min(N,T ). Qτzℓt denotes the unconditional τ

quantile of zℓt. In addition, Λτ = [Λf,τ 0], where Λf,τ is nonsingular.

Based on Assumptions 1 and 2 , the variable yt+1 depends only on a subset of factors f t, called

the relevant factors. In the 3PRF for the conditional mean, z∗t,τ = zt, and Eq.(14) gives a link to

extract the relevant factors. However, for the conditional quantile case the implementation is not direct

when there are more than one relevant factor. The reason is because, while in Pass 1 of 3PRF we run

time series least squares regressions of xit on zt, for the quantile case the proxies correspond to the

conditional quantile and would require running time series quantile regressions of xit on zt focused on

the τth quantile of zt and not on the quantile of xit. This is not possible to be implemented directly

through quantile regressions. Hence, we make use of the fact that qcovτ (zℓt, xit) = cov(I(zℓt − Qτzℓt >

0), xit) = cov(z∗ℓt,τ , xit) = cov(xit, z
∗
ℓt,τ ) along with the discussion that resulted in Eq.(13) (Assumption

2).

Qcov3PRF is implemented through Algorithm 3. As an initial step, the unconditional quantile for

each proxy has to be estimated.5 Pass 1 and Pass 2 estimate the Kf relevant factors f̂ t. In Pass 3

we obtain the estimated parameters β̂0f,τ and β̂f,τ from the underlying predictors xt for t = 1, . . . , T .

Then, we construct the forecasts one period ahead6 for the observation yT+2 with the updated set of

predictors xt, t = 1, . . . , T + 1 to obtain f̂T+1 and compute ŷT+2 = β̂0,τ + β̂
′
f,τ f̂T+1.

As we mentioned above, quantile regression cannot be implemented directly in Pass 1 under the

presence of more than 1 relevant factor. This is because we are focusing on predicting the conditional

quantile of the target variable and not on the conditional quantile of the predictors. Instead, we run

least squares regressions given Eq.(14).

In contrast to 3PRF, our Qcov3PRF method does not provide a complete closed form estimator for

the linear coefficients βτ because the linear quantile regression estimator does not have a closed form

solution. However, we can obtain a closed form expression for the relevant factor estimates f̂ t and their

5We noticed a decrease in performance for the forecasts obtained from the Qcov3PRF compared to the PQR when T
is small (less than 100) in simulations, and obtaining multicollinearity issues for extreme quantile values (e.g. 1% and
99%). This is due to the additional estimation of the unconditional quantile for the target and the discrete nature of
I(zℓt −Qτ

zℓt
> 0). This difference vanishes as T increases.

6For simplicity we have considered one-period ahead forecasts, however, the algorithm can be perfectly implemented for
h-periods ahead forecasts. For instance, in our first empirical application with monthly data, we consider 3-periods and
12-periods ahead.
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Algorithm 3 Quantile-covariance Three-Pass Regression Filter (Qcov3PRF)

Pass 0: Let z∗ℓ = I(zℓ − Q̂τzℓ > 0), where Q̂τzℓ is an estimator for the unconditional quantile of zℓ for
ℓ = 1, . . . ,Kf .

Pass 1: Run a time series least squares regression of xi = (xi1, . . . , xiT ) on z∗τ = (z∗
′

1,τ , . . . ,z
∗′

T,τ )
′ (z∗t =

(z∗1t, . . . , z
∗
Kf t

), t = 1, . . . , T ) for i = 1, . . . , N ,

xit = ϕ0,i + ϕ
′
i,τz

∗
t,τ + ϵit,

and retain the estimate ϕ̂i,τ .

Pass 2: Run a cross section least squares regression of xt = (x1t, . . . , xNt) on ϕ̂τ = (ϕ̂
′
1,τ , . . . , ϕ̂

′
N,τ )

′

(ϕ̂i,τ = (ϕ̂1i,τ , . . . , ϕ̂Kf i,τ ), i = 1, . . . , N) for t = 1, . . . , T ,

xit = ϕ0,t,τ + f
′
tϕ̂i,τ + εit,

and retain the estimate f̂ t.

Pass 3: Run time series quantile regression of yt+1 on the estimated factors f̂ = (f̂
′
1, . . . , f̂

′
T )

′ (f̂ t =

(f̂1t, . . . , f̂Kf t), t = 1, . . . , T ),

yt+1 = β0,τ + β
′
f,τ f̂ t + uτt+1. (15)

This gives the forecast for the conditional τ quantile of yt+1 denoted by Q̂τ
yt+1|f̂t

.

corresponding loadings by combining Pass 1 and Pass 2. These are given by:

Φ̂τ = (W zz)
−1
W ′

xz, (16)

F̂
′

= W zz(W
′
xzJNW xz)

−1W ′
xzJNX

′, (17)

where Φ̂τ , F̂ and X are the matrices resulting from stacking ϕ̂i,τ over i, and F̂ t and xt over t, respec-

tively. Also, JN = IN − 1
N ιN ι

′
N , IN is the identity matrix of dimension N , ι′N is a vector of ones of

dimension N , W zz = Z∗′

τ JTZ
∗
τ , W xz = X ′JTZ

∗
τ , and W zz = Z∗′

τ JTZ
∗
τ (JT is analogous to JN ).

This closed form expression is particularly useful to show the consistency of the relevant factors and

their corresponding loadings relying on the results of Kelly and Pruitt, 2015.

Now, we explore the implementation of automatic-proxies for Qcov3PRF generated when only y and

X are available as it is common in practice that the researcher does not count with proxy variables.

Compared to 3PRF, we cannot generate the proxies as residuals from a least squares regression. To see

this, consider a scale model with two relevant factors yt+1 = (f1t + f2t + σy)ut+1 where f1t ∼ U [0, 1],

f2t ∼ U [0, 2], σy is a constant and ut+1 ∼ N (0, 1). Hence, the conditional mean of yt+1 is equal to 0 but

f1t and f2t are relevant for any quantile except the median. Consider Algorithm 2 applying Qcov3PRF

instead of 3PRF, when ℓ = 1, with the automatic proxy yt+1, we get an estimate for the factor with the

largest variance f̂1t. Next, when ℓ = 2 the automatic proxies are yt+1 and the residual when running

a least squares regression of yt+1 on f1t, say, ỹt+1. Then, Pass 1 in Qcov3PRF will potentially face
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a multicollinearity problem since the set of automatic proxies rt = (yt+1, ỹt+1) basically contains the

target variable repeated twice as yt+1 is not affected by f1t in the conditional mean. As a result, f2t

cannot be estimated.

As we mentioned earlier, from Eq.(4), the natural candidates for the automatic-proxies in the condi-

tional quantile case are given by I(y− Q̂τy > 0), I(y− Q̂τ
y|f̂(1)

1

> 0), . . . , I(y− Q̂τ
y|f̂

(Kf−1)

1 ,...,f̂
(Kf−1)

Kf−1

> 0).

Specifically, these automatic-proxies are obtained by applying Algorithm 4 in the same spirit as Algo-

rithm 2. It can be shown that these proxies are linearly independent, but not necessarily uncorrelated of

gj , for j = Kf + 1, . . . ,K, if uτ depends on gj . This is a consequence of the fact that gj does not affect

the conditional τ -quantile of y but it can affect some other part of the conditional distribution of y. For

example, consider yt+1 = 1+f1,t+(0.5f1,t+f2,t)ut+1, whereQ
τ
u = 0, and f3,t is some other factor indepen-

dent of yt+1. Then, Q
τ
yt+1|f = β0,τ + β1,τf1,t + β2,τf2,t + β3,τf3,t with (β0,τ , β1,τ , β2,τ , β3,τ ) = (1, 1, 0, 0).

However, if we run a least squares regression of I(yt+1 −Qτy > 0) on f t = (f1,t, f2,t, f3,t) and a constant,

we get the estimated coefficients α∗
τ = (α∗

0,τ , α
∗
1,τ , α

∗
2,τ , α

∗
3,τ ) where α∗

0,τ ̸= 0, α∗
1,τ ̸= 0, α∗

3,τ = 0 but

α∗
2,τ ̸= 0.

Algorithm 4 Automatic proxy selection for Qcov3PRF

For a quantile value τ ∈ (0, 1) initialize r0,τ = y − Q̂τy .

for ℓ = 1, . . . ,Kf do

Step 0: Let the ℓth automatic proxy be rℓ−1,τ . Stop if ℓ = Kf ; otherwise proceed.

Step 1: Apply Qcov3PRF using the predictors X, and the automatic proxies r0,τ , . . . , rℓ−1,τ . Denote the

forecast obtained as Q̂τ
y|f̂1,...,f̂ℓ−1

.

Step 2: Let the residual rℓ,τ = y − Q̂τ
y|f̂1,...,f̂ℓ−1

be the (ℓ+ 1)th automatic proxy.

Therefore, the following model is suggested:

r∗ℓt,τ = I(rℓt,τ > 0) = I(yt+1 − Q̂τ
yt+1|f̂(ℓ)

1,t ,...,f̂
(ℓ)
ℓ,t

> 0) = α0,τ +α
(ℓ)
f,τf t +α

(ℓ)
g,τgt + ξt+1, (18)

where ξt+1 depends on uτt+1, α
(ℓ)
j,f,τ ̸= 0 if βjτ ̸= 0 for j = 1, . . . ,Kf , α

(ℓ)
k,g,τ = 0 if gkt is independent of

yt+1 for k = Kf +1, . . . ,K. However, the value of α
(ℓ)
k,g,τ when gk is not independent of yt+1, specifically,

if uτt+1 depends of gk, is not guaranteed to be zero. Although our multiple simulation experiments

always indicate that under this situation α
(ℓ)
k,g,τ is much lower than α

(ℓ)
j,f,τ for any j = 1, . . . ,Kf and

k = Kf +1, . . . ,K and very close to zero for most cases it is not always the case that an irrelevant factor

for the τ -conditional quantile of yt+1 would be irrelevant for the automatic-proxy r∗ℓt,τ as well. In order

to guarantee this is always the case we need to restrict the error term uτt+1 such that the automatic

proxies are only spanned by the factors f . That is stated in the following assumption.
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Assumption 3. The error term uτt+1 from Eq.(12) allows the following model:

I(yt+1 −Qτyt+1
> 0) = α0,τ +α

′
f,τf t + ξt+1, (19)

where the error term ξt+1 depends on uτt+1 and satisfies Et(ξt+1) = E(ξt+1|yt,F t, yt−1,F t−1, . . . ) = 0,

E(ξ4t+1) ≤M and T−1/2
∑T
t=1 F tξt+1 = Op(1) for all t andM <∞, and Qτyt+1

denotes the unconditional

τ -quantile of yt+1.

By Assumption 3 we can obtain Kf automatic-proxies that are uncorrelated with the irrelevant

factors, this is,

ˆqcov(y, gj) = ˆcov(I(y −Qτy > 0), gj) = ˆcov(I(r0,τ > 0), gj) = 0, (20)

ˆqpcov(y, gj |f̂
(1)

1 ) = ˆcov(I(y − β̂
(1)
1f,τ f̂

(1)

1 > 0), gj) = ˆcov(I(r1,τ > 0), gj) = 0,

...

ˆqpcov(y, gj |f̂
(Kf−1)

1 , . . . , f̂
(Kf−1)

Kf−1 ) = ˆcov(I(y − β̂
(Kf−1)
1f,τ f̂

(Kf−1)

1 − · · · − β̂
(Kf−1)

(Kf−1)f,τ f̂
(Kf−1)

Kf−1 > 0), gj)

= ˆcov(I(rKf−1,τ > 0), gj) = 0,

where ˆqcov and ˆqpcov denote the sample quantile covariance and the sample quantile partial covariance,

respectively. It can also be shown that the proxies r∗t,τ are linearly independent. Specifically, the

automatic proxies generated by Qcov3PRF are spanned precisely by the set of (relevant) factors that

affect the conditional quantile of the target variable, as is stated in Section 4, Theorem 3. Therefore,

Assumption 2 is satisfied by replacing z∗t,τ with r∗t,τ = (r∗0t,τ , . . . , r
∗
(Kf−1)t,τ ).

3.3 Quantile-covariance Three Pass Regression Filter for mixed frequency

data

Similar to 3PRF, Qcov3PRF usually allows more tractable extensions since each pass involves least

squares regressions. Now, we present a simple extension of Qcov3PRF for mixed frequency (MF) data

inspired by Hepenstrick and Marcellino, 2019. Let us assume that the target variable and proxies are low

frequency whereas the predictors are high frequency.7 In terms of notation, assume that the covariates

xt can be observed for each t, whereas the target variable yt and the proxies zt can be observed only

every h periods. For example, when h = 3 low frequency is quarterly (e.g. GDP growth), and high

frequency is monthly (e.g. Industrial Production, prices, financial variables). The aggregate (low)

frequency is indicated by s. An approach for Qcov3PRF that deals with this type of mixed frequency

data is presented in Algorithm 5.

7Cases where the predictors are low frequency and the target and proxies are high frequency, and ragged edges presented
in Hepenstrick and Marcellino, 2019 can also be used in Qcov3PRF.
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Algorithm 5 Quantile Three-Pass Regression Filter with low frequency (quarterly) target variable
and/or proxies, and high frequency (monthly) predictors (MF-Qcov3PRF).

Pass 0: Let z∗ℓ = I(zℓ − Q̂τzℓ > 0), where Q̂τzℓ is an estimator for the unconditional quantile of zℓ for
ℓ = 1, . . . ,Kf .

Pass 1: Run time series least squares regressions, in low frequency s, of xi = (xi1, . . . , xiT ) on z∗τ =
(z∗

′

1,τ , . . . ,z
∗′

T/3,τ )
′ (z∗s,τ = (z∗1s,τ , . . . , z

∗
Kfs,τ

), s = 1, . . . , ⌊T/3⌋) for i = 1, . . . , N ,

xis = ϕ0,i + ϕ
′
iz

∗
s,τ + ϵis, for s = 1, . . . , ⌊T/3⌋

where xis =
(
xi(3s−2) + xi(3s−1) + xi(3s)

)
, and retain the estimate ϕ̂i,τ .

Pass 2: Run cross section least squares regressions of xt = (x1t, . . . , xNt) on ϕ̂τ = (ϕ̂
′
1,τ , . . . , ϕ̂

′
N,τ )

′ (ϕ̂i,τ =

(ϕ̂1i,τ , . . . , ϕ̂Kf i,τ ), i = 1, . . . , N) for t = 1, . . . , T ,

xit = ϕ0,t,τ + f
′
tϕ̂i,τ + εit,

and retain the estimate f̂ t for each month t = 1, . . . , T .

Pass 3: Split the estimated monthly factors f̂ t = (f̂1t, . . . , f̂Kf t) into three quarterly factors (f̄
1
s, f̄

2
s, f̄

3
s),

where f̄
j
s = f̂3(s−1)+j and f̄

j
s = (f̄ j1s, . . . , f̄

j
Kfs

) for j = 1, 2, 3. Then, run a time series quantile

regression of ys+1 on
(
f̄
1
s + f̄

2
s + f̄

3
s

)
:

ys+1 = β0,τ + β
′
f,τ

(
f̄
1
s + f̄

2
s + f̄

3
s

)
+ uτs+1. (21)

This gives the forecast for the conditional τ quantile of yt+1 denoted by Q̂τ
ys+1|f̂t

.
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Compared to Algorithm 3, the passes that involve time series regressions are modified to allow

mixed frequency (Pass 1 and Pass 3). Now, there are three sets of relevant factors f̄
1
s, f̄

2
s and f̄

3
s

corresponding to the months in each quarter. We do not regress the target on (f̄
1
s, f̄

2
s, f̄

3
s) separately

since, by Assumptions 1 and 2, for Qcov3PRF (analogously to 3PRF) that regression will not result in

consistent forecasts. This can be easily seen if we consider, say, the matrices A1,A2 and A3 where Aj is

a matrix ⌊T/3⌋ × T , where ⌊·⌋ denotes the floor integer, with Aj = [ιj ; ιj+3; . . . ; ιT−3+j ] for j = 1, 2, 3,

where ιj is a 1 × T vector equal to one in the jth entry and zero everywhere else. Then, from Eq.(11)

we have:

XĀ
′
= ϕ0Ā

′
+Φ′FĀ

′
+ εĀ

′
,

where Ā = A1 +A2 +A3. Instead of Assumption 2, we have the following DGP:

Z∗
τ = λ0,τ +Λ′

τFĀ
′
+ ω.

These two DGP’s are consistent with Pass 1 by running Xs on z∗s,τ since:

XĀ
′

= ψ0 +Ψ′Z∗
τ + ϵ

= ψ0 +Ψ′
[
λ0,τ +Λ′

τFĀ
′
+ ωτ

]
+ ϵ

=
(
ψ0 +Ψ′λ0,τ

)
+Ψ′Λ′

τFĀ
′
+
(
Ψ′ωτ + ϵ

)
,

which is identifiable with Assumption 1 by making ϕ0Ā
′
=
(
ψ0 +Ψ′λ0,τ

)
, ϕff = Φ′Λ′

τF where

Φ = [ϕf ϕg] and ϕf (ϕg) denotes the corresponding loadings for f (g), and εĀ
′
+ϕggĀ

′
=
(
Ψ′ωτ + ϵ

)
.

Matrices A1, A2 and A3 need to be considered jointly as a sum, otherwise, Pass 1 will not lead consistent

forecasts. In other words, the aggregation scheme of the low frequency predictors xis are generated and

used in Pass 1 should be the same to the one we consider for the proxy zs and (f̄
1
s, f̄

2
s, f̄

3
s) in Pass 3 (since

the set of factors becomes FĀ
′
). In Algorithm 5 we consider the simple aggregation of the three months

in each quarter. Here, we are assuming that all monthly predictors are flow variables so we transform

them into quarterly frequency via aggregation. Pass 1 and Pass 3 should be modified accordingly being

consistent with the same transformation. For example, with stock variables we should consider only the

observation every three months.

Remark 1. By considering that X follows a factor structure at s frequency, i.e., xs = ϕ0 +ΦF s + εs,

we can replace Pass 3 with:

ys+1 = β0,τ + β
′
1f,τ f̄

1
s + β

′
2f,τ f̄

2
s + β

′
3f,τ f̄

3
s + uτs+1,

as was considered in Hepenstrick and Marcellino, 2019. We prefer the initial Pass 3 in Algorithm 5 since
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imposing factor structure at the frequency s for the predictors is more restrictive in practice.

4 Assumptions and asymptotic results

In addition to Assumptions 1, 2, and 3, we state the following assumptions needed for the estimation

of Qcov3PRF. These assumptions come from standard factor models estimation, 3PRF and quantile

regression.

Assumption 4. (Prediction Stage)

1. Let 0 < m < M <∞. The conditional density of ut+1 given F t denoted as hτ (ut+1|F t):

(a) is continuous.

(b) m ≤ hτ (ut+1|F t) ≤M for all t.

(c) hτ (ut+1|F t) is Lipchitz continuous, i.e., |hτ (u|F t)− hτ (u
′|F t)| ≤M |u− u′| for all t.

2. P [ut+1 ≤ 0|yt,F t, yt−1,F t−1, . . . ] = τ .

3. T−1F ′JTFhτ (0|F )
p−−−−→

T→∞
∆F,f .

Assumption 4.1 allows for a bias representation of the quantile regression in the prediction stage

following Angrist et al., 2006. This permits us to show consistency of the conditional quantile forecasts.

Assumption 4.2 corresponds to quantile regression in Eq.(12). Assumption 4.3 is required to show

asymptotic normality in quantile regression.

Assumption 5. (Factors, Loadings and Residuals). Let M <∞. For any i, s, t

1. E∥F t∥4 < M, T−1
∑T
s=1 F s

p−−−−→
T→∞

µF , T−1F ′JTF
p−−−−→

T→∞
∆F ,

2. E∥ϕi∥4 ≤M, N−1
∑N
j=1 ϕj

p−−−−→
N→∞

µΦ, N−1Φ′JNΦ
p−−−−→

N→∞
∆Φ, N−1Φ′JNϕ0

p−−−−→
N→∞

∆1,Φ,

3. E(εit) = 0, E|εit|8 ≤M ,

4. E (ωt) = 0, E||ωt||4 ≤M, T−1/2
∑T
s=1 ωs = Op(1), T−1ω′JTω

p−−−−→
T→∞

∆ω

5. E(ψτ (ut+1)
4) ≤M , and ut+1 is independent of ϕi(m) and εit.

Assumptions 5.1-5.3 are the same considered by Bai and Ng, 2002, Bai, 2003 and Stock and Watson,

2002a. Assumption 5.4 is required in the 3PRF for conditional mean forecasts, and it is also required

in the Qcov3PRF because this method uses proxies to extract the factors. The moments of the proxies

noise ωt are bounded in the same manner as the bounds on factor moments. Assumption 5.5 is required

to show consistency of estimators of factors and loadings, and asymptotic normality of the forecasts.

Assumption 6. (Dependence) There exists a constant M <∞ and for any i, j, t, s,m1,m2
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1. E(εitεjs) = σij,ts, |σij,ts| ≤ σ̄ij , |σij,ts| ≤ σ̄ts, N−1
∑N
i,j=1 σ̄ij ≤ M , T−1

∑T
t,s=1 σ̄ts ≤ M ,

and N−1
∑
i,s |σij,ts| ≤M ,

2. E|N−1/2T−1/2
∑T
s=1

∑N
i=1 [εisεit − E(εisεit)]|2 ≤M ,

3. E|T−1/2
∑T
t=1 Fm1,tωm2,t|2 ≤M ,

4. E|T−1/2
∑T
t=1 ωm1,tεit|2 ≤M .

As in 3PRF, we allow some degree of cross sectional correlation and serial dependence in the factor

structure through Assumptions 6.1-6.2. This follows the work of Chamberlain and Rothschild, 1982

and Stock and Watson, 2002a. In Assumptions 6.3-6.4 some proxy noise dependence with factors and

idiosyncratic errors εit is allowed.

Assumption 7. (Normalization and orthogonalization). For any m1,m2:

1. ∆Φ = I, ∆1,Φ = 0,

2. ∆F is diagonal, positive definite, and each diagonal element is unique.

3. f t is independent of gj,t for j = Kf + 1, . . . ,K.

Assumptions 7.1-7.2 give a unique representation of the latent factor and factor loadings in the same

way as in Kelly and Pruitt, 2015. They select a normalization such that the covariance of predictor

loadings is the identity matrix, and the factors are orthogonal to one another.

Assumption 8. (Central Limit Theorems). For any i, t

1. 1√
N

∑N
i=1 ϕiεit

d−→ N (0,Σϕε), where Σϕε = plimN→∞
1
N

∑N
i,j=1 E

[
εitεjtϕiϕ

′
j

]
> 0,

2. 1√
T

∑T
t=1 F tεit

d−→ N (0,ΣFε), where ΣFε = plimT→∞
1
T

∑T
t,s=1 E

[
εitεisF tF

′
s

]
> 0,

3. 1√
T

∑T
t=1 F tψτ (ut+1)

d−→ N (0,ΣFψ), where ΣFψ = plimT→∞
1
T

∑T
t=1 E

[
ψ2
τ (ut+1)F tF

′
t

]
> 0.

Assumption 8 states the central limit theorems needed to show asymptotic normality of the estimates.

Next, we obtain that as N and T become large, the conditional quantile forecasts determined with

Qcov3PRF converges to the infeasible best forecasts. This result is presented in Theorem 1, whose

proof makes use of the convergence rates from Lemma 1, quasi-maximum likelihood results, equivariance

properties of the quantile regression, and the weighted (quantile) regression from Angrist et al., 2006.

Theorem 1. Let Assumptions 1-2 and 4-8 hold. Then, the forecast in the predictive stage Eq.(15) in

Pass 3 of Qcov3PRF satisfies

Q̂τ
yt+1|F̂ t

= β̂0,τ + β̂
′
τ F̂ t

p−−−−−→
N,T→∞

β0,τ + β
′
τF t,

where Q̂τ
yt+1|F̂ t

is the conditional τ -quantile forecast of yt+1 given the unobserved factors.
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Proof. See Appendix.

To show the asymptotic normality of the infeasible quantile forecasts we need to make use of Lemma

2 (see Appendix 8.2), whose proof comes from Theorem 6 in Kelly and Pruitt, 2015 but now we consider

the transformed proxies z∗t,τ instead of zt.

Theorem 2. Let Assumptions 1-2 and 4-8 hold and
√
N/T → 0. Then, the forecast in Pass 3 of

Qcov3PRF satisfies,

V̂
−1/2

τ

(
β̂0,τ + β̂

′
τ F̂ t − β0,τ − β

′
τF t

)
d−−−−−→

N,T→∞
N (0, 1), (22)

where V̂ τ = 1
T β̂

′
τ (ΣF̂ )β̂τ +

1
N F̂

′
t(Σβ̂τ

)F̂ t.

Proof. See Appendix.

Theorem 2 guarantees that the estimates for the infeasible forecasts obtained from Qcov3PRF are

asymptotically normal. However, this is more a theoretical result than practical since, similar to 3PRF,

Qcov3PRF only recovers the estimates for the relevant factors so ΣF̂ can not be estimated. To get an

estimate for the variance we can implement an approximation of the finite distribution (or variance)

using, for example, block bootstrap.

Next, we state formally that Algorithm 4 under Assumption 3 provides proxies consistent for the

conditional quantile forecasts. Note that all of our simulations and the first two empirical applications

described in the next sections consider that the only available information is the set of predictors xt and

the target yt+1.

Theorem 3. Let Assumptions 1 and 4-8 hold with the exception of Assumptions 5.4, 6.3 and 6.4. Then

the Kf automatic-proxies obtained in Algorithm 4 under Assumption 3 satisfy Assumptions 2, 5.4, 6.3

and 6.4 when the number of relevant factors is Kf . As a result, the Kf -automatic-proxy forecast is

consistent according to Theorem 1 and asymptotically normal according to Theorem 2.

Proof. See Appendix.

Lastly, we present Corollary 1 that presents the consistency for the infeasible forecast using the

MF-Qcov3PRF covered in Section 3.3. In this case, Assumption 9 replaces Assumptions 1 and 2 which

assumes the target and proxies are generated with low frequency.

Assumption 9. (Data Generating Processes for Mixed Frequency data) The data for a fixed level τ ∈
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(0, 1) is generated as follows:

xt = ϕ0 +ΦF t + εt, (23)

ys+1 = β0,τ + β
′
τ

(
F 3(s−1)+1 + F 3(s−1)+2 + F 3(s−1)+3

)
+ uτs+1, (24)

z∗s,τ = λτ,0 +Λτ

(
F 3(s−1)+1 + F 3(s−1)+2 + F 3(s−1)+3

)
+ ωs, (25)

where y = (y2, . . . , yS+1) is an S × 1 vector denoting the target variable time series. In addition,

z∗s,τ = (z∗s,1, . . . ,z
∗
s,Kf

) with z∗s,ℓ = I(zs,ℓ − Qτzs,ℓ > 0), zs is a Kf × 1 vector of proxy data. Here s

represents low frequency and t high frequency. For example, S = ⌊T/3⌋ when s denotes quarterly data

and t monthly data. All else elements have the same interpretation and dimensions from Assumptions 1

and 2.

In Assumption 9 we are assuming that the predictors are flow variables so that the monthly aggre-

gation makes sense.

Corollary 1. Let Assumptions 4-9 hold. Then, the forecast in the prediction stage Eq.(24) in Pass 3 of

Qcov3PRF with mixed frequency satisfies

Q̂τ
ys+1|F̂ t

p−−−−−→
N,T→∞

β0,τ + β
′
τ

(
F 3(s−1)+1 + F 3(s−1)+2 + F 3(s−1)+3

)
,

where Q̂τ
ys+1|F̂ t

is the conditional τ -quantile forecast of ys+1 given the unobserved (high frequency) factors.

It is straightforward to show the asymptotic normality of the forecast estimates obtained from Algo-

rithm 5, similar to what we do in the proof of Theorem 2.

5 Monte Carlo simulations

In this section we present the forecasting power of Qcov3PRF and the consistency of the forecasts in

finite samples through Monte Carlo simulations. For the forecasting accuracy we examine three DGPs

based on the simulations of Kelly and Pruitt, 2015, Giglio et al., 2016 and Chen et al., 2021. The first and

third DGPs consist on location scale models with dependent idiosyncratic errors, while the second DGP

is a location model with a focus on the estimation of the conditional median. We run 1000 simulations

in each case when N = 100, T = 200 and N = 200, T = 400, respectively. The factor loadings follow

a standard normal distribution and are i.i.d. The structure of the predictors is xt = ΦF t + εt. The

idiosyncratic errors of the predictors allow the presence of cross sectional and serial correlation following

the expression:

ε = ΣN ε̄ΣT ,
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where ε = (ε1, . . . , εT ) with εt, t = 1, . . . , T a column vector of size N . Also, ε̄ is a N × T matrix where

each row ε̄i, i = 1, . . . , N is standard normally distributed, and ΣN is an N × N matrix whose entries

are given by σi,jN = ρ
|i−j|/2
N , for all i = 1, . . . , N and j = 1, . . . , N . We determine ΣT similarly such that

σt,sT = ρ
|t−s|/2
T , for all t = 1, . . . , T and s = 1, . . . , T . Then, higher values of ρN and ρT indicate high

levels of cross sectional and serial correlation in the idiosyncratic component, respectively.

We report the out-of-sample R2
τ defined in Koenker and Machado, 1999 evaluating forecasts one

period ahead starting at the middle of the sample which is defined as:

R2
τ = 1−

ΣTt=T/2

(
yt+1 − Q̂τyt+1|F̂ t

)(
τ − I(yt+1 − Q̂τ

yt+1|F̂ t
< 0)

)
ΣTt=T/2

(
yt+1 − Q̂τyt+1

)(
τ − I(yt+1 − Q̂τyt+1

< 0)
) , (26)

where Q̂τyt+1
is an estimate for the τ unconditional quantile of yt considering {y1, . . . , yt}, and Q̂τyt+1|F̂ t

is a conditional quantile estimate for yt+1 given F̂ t using the DGPs presented below.

The first DGP consists on the following location scale model:

yt+1 = f1,t + f2,t + f3,t + (σy + g1,t)ηt+1, (27)

where ηt+1 = η̄t+1 − Qτη̄t+1
, with Qτη̄t+1

the τ unconditional quantile of η̄t+1, σy = 0.50, and η̄t+1 ∼

N (0, 1/
√
2). In this DGP, we assume the predictors are determined by six factors, three of which are

relevant and the other three are irrelevant for the conditional τ -quantile of the target. However, for

any other conditional quantile different from τ there are four relevant factors (f1,t, f2,t, f3,t and g1,t).

This DGP is particularly interesting since in real life applications the same factors are not necessarily

relevant/irrelevant for all the quantiles across the target’s conditional distribution. The relevant factors,

f1,t, f2,t, f3,t, are independent normally distributed with standard deviations {1, 1.5, 2} and the irrelevant

factors, g1,t, g2,t, g3,t, are independent uniform distributed with the lower bound equal to zero and the

upper bound equal to {3, 4, 5}, respectively. We report the R2
τ using three methods: Qcov3PRF with one,

two and three factors (denoted as Qcov3PRF1, Qcov3PRF2, Qcov3PRF3, respectively), PQR (Giglio

et al., 2016) (that only estimates one relevant factor), and PCQR (Giglio et al., 2016) with six PCA

factors.

Table 1 shows that Qcov3PRF3 provides the highest predictive power over many cases. We can

see that Qcov3PRF1 and PQR report similar R2
τ values to each other and always lower than those of

Qcov3PRF2 and Qcov3PRF3. These results suggest that both methods, PQR and Qcov3PRF1, estimate

the same relevant factor, and the clear advantage of Qcov3PRF over PQR would appear when more than

one relevant factor are estimated. As expected, Qcov3PRF1 provides slightly lower performance than

PQR as Pass 1 requires the dummies (transformed proxies) generated in Pass 0, whereas PQR does

not consider a transformation of the proxies. In addition, as a result of these transformations, PCQR6
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performs slightly better for the cases where ρN and ρT are low. All these differences between methods

decrease as N and T augment. The advantage of using Qcov3PRF is more evident when ρN and ρT are

high. The reason is that as serial and cross-sectional correlations increase, the idiosyncratic component

is wrongly seen as an additional factor(s), so considering only six factors for PCQR is not enough to

capture f1,t, f2,t, f3,t (and g1,t, g2,t, g3,t). In contrast, Qcov3PRF performs well even when ρN and ρT

are high as it focuses on only estimating the relevant factors.

In general, the out-of-sample R2
τ obtained with Qcov3PRF3 is only marginally different compared to

Qcov3PRF1. The reason is possibly related to the results obtained in Ahn and Bae, 2021. These authors

found that there is only one relevant factor using PLS in cases where the variance for the relevant factors

is the same, and even in cases where the relevant factors variances are different, additional relevant

factors provide only marginal increments in forecasting power.

[Table 1 about here.]

The second DGP considers the following location model:

yt+1 = f1,t + f2,t + σyηt+1, (28)

where ηt = BtN (0, 1) + (1 − Bt)Cauchy(0, 1), Bt ∼ Bernoulli(0.80). The value of σy is equal to 0.75.

In this case the expected value of the target does not exist, since part of ηt+1 consists of a Cauchy

distribution, but the median does. Hence, the use of methods that focus on the estimation of the

conditional median becomes crucial as methods including PCR and 3PRF are not valid. In DGP (28),

we assume the predictors are determined by four factors F t = (f1,t,f2,t, g1,t, g2,t), two of which are

relevant (f1,t and f2,t) and the other two are irrelevant (g1,t and g2,t). We use the same methods used in

DGP (27) plus PCR with four factors (denoted as PCR4) and 3PRF with two relevant factors (denoted

as 3PRF2). We also vary the level of cross-sectional and serial correlations, and we additionally report

the cases where the factors are AR(1) processes with standard normal distributed i.i.d. errors, with

standard deviations {1, 1.5, 2.0, 2.5}, and autorregressive parameters αf , αg ∈ {0, 0.3, 0.6} for relevant

and irrelevant factors, respectively.

In Table 2 we see that Qcov3PRF2 gives the best forecasts on average. Similar to the previous

DGP, Qcov3PRF1 and PQR report similar values to each other and always below Qcov3PRF2, with

Qcov3PRF1 having slightly lower performance than PQR. Also, PCQR4 performs slightly better for

the cases where ρN and ρT are low. These differences drop as N and T increase. Qcov3PRF performs

substantially better when ρN and ρT are high. When αf is high (and αg is low), it is easier to distinguish

the relevant factors from the irrelevant ones resulting in greater R2
τ , the opposite happens when αg is

high (and αf is low) as the irrelevant factors are more dominant. PCR and 3PRF do not give the best

performance as the unconditional mean does not exist in DGP (28).
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[Table 2 about here.]

For the third DGP, we refer to as a heteroskedastic location scale model. Specifically,

yt+1 = 2f1,t + (σy + |f2,t|)ηt+1, (29)

where ηt ∼ N (0, 1) i.i.d. and σy = 1.0. In DGP (29), we also assume the predictors are determined by

four factors as in the previous DGP, two of which are relevant and the other two are irrelevant, with

standard deviations equal to {1.5, 1.0, 2.0, 2.5}, respectively. Simulation results are reported in Table 3.

We can see that the highest R2
τ comes from using Qcov3PRF with two relevant factors (Qcov3PRF2),

showing similar patterns as in DGPs (27) and (28).

[Table 3 about here.]

To check the consistency of the infeasible forecast β̂0,τ + β̂′
τ F̂ t in finite samples, we report the

Mean Absolute Error (MAE), the Mean Squared Error (MSE) and standard correlation between the

true conditional quantile of Qτyt+1|F t
and the estimated conditional quantile Q̂τ

yt+1|F̂ t
. We examine the

following location-scale model:

yt+1 = −f1,t − 0.5f2,t + (0.5f2,t + f3,t)ηt+1, (30)

xt = ϕ′f t +ψ
′gt + et, (31)

where eit ∼ N (0, 1), ϕi ∼ N (0, 1), ψi ∼ N (0, 1), ηt ∼ N (0, 1) i.i.d. We consider two data generating

processes. The first alternative (31.a), where f1,t ∼ U [0, 1], f2,t ∼ U [0, 2], f3,t ∼ U [0, 3], and gi,t ∼

N(0, 1), i = 1, 2, 3. And the second alternative (31.b), where f1,t ∼ U [0, 1], f2,t ∼ U [0, 2], f3,t ∼ U [0, 3]

and gi,t is normally skewed distributed i.i.d. with location, scale and skewness parameters equal to 0, σi

and 100, respectively, with σi ∈ {1.25, 1.5, 1.75} for i = 1, 2, 3. Hence, the conditional quantile of yt+1 is

given by Qτyt+1|F t
= β1f1,t + β2f2,t + β3f3,t, where β1 = −1, β2 = −0.5 + 0.5×Qτηt+1

and β3 = Qτηt+1
.

In Table 4 we see that the MAE and the MSE approach to 0, and the correlation approaches to 1

as T and N increase for both alternatives in DGP (30)-(31), regardless of which quantile we focus on.

Although the MAE and MSE when using Qcov3PRF for three relevant factors (denoted as Qcov3PRF3)

are not the highest, they are very close to the highest ones which come from using PCQR with six

factors (denoted as PCQR6). PCQR6 serves as a benchmark since we know by Ando and Tsay, 2011

and Giglio et al., 2016 that the forecasts obtained with PCQR are consistent. By looking at the results

obtained from PQR and Qcov3PRF1 in Table 4, we see that the MAE and the MSE converge to zero as

N and T increase. Similarly, we notice a convergence of the correlation towards one as N and T increase.

However, as the true number of relevant factors is equal to three, the MAE, MSE and the correlation
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provide better estimates using Qcov3PRF3 and PCQR6, which indicates the inconsistency of PQR and

Qcov3PRF1.8

[Table 4 about here.]

6 Applications to forecasting macroeconomic vulnerability and

climate change

In this section we show that Qcov3PRF outperforms competitive alternatives in three different applica-

tions. The first two applications take into account the relationship between financial indicators (e.g., the

variables that construct the National Finance Condition Index (NFCI, Federal Reserve Bank of Chicago))

and the conditional distribution of the economic activity (e.g., GDP growth). The connection between

the financial and economic sector focused on the left tail conditional quantiles of the latter is often re-

ferred to as Growth at Risk (GaR, Adrian et al., 2019). The third application studies the relationship

between the carbon dioxide emissions and the conditional distribution of the global temperature changes,

with a particular focus on the right tail quantiles. We called such effect Climate at Risk (CaR).

6.1 Forecasting Monthly GaR Using the NFCI Components

For the first empirical application we consider the approach of Adrian et al., 2019, Adams et al., 2021 and

Adrian et al., 2022. In these works the authors obtained significant relationships between macroeconomic

indicators (Real GDP growth, the consensus forecasts of Real GDP growth, Unemployment rate and

Inflation) and the financial sector. Specifically, there is a significant effect of the financial variables

represented by the NFCI on predicting macroeconomic variables in the left tail of the distribution. The

NFCI is a weighted index constructed with 107 financial variables and is published monthly by the

Federal Reserve Bank of Chicago. Instead of considering a simple quantile regression of the Real GDP

annual growth on its lags and the NFCI (as done in Adrian et al., 2019), we run a quantile regression with

the relevant factors obtained from the set of indicators that construct the NFCI. This is motivated by the

fact that the relevant factor(s) required to predict the left tail of the distribution for the macroeconomic

indicator can be different than the ones that best predict the right tail. The forecast horizons considered

are three months and twelve months ahead.

The NFCI index and the indicators used to construct it can be downloaded from the webpage

https://www.chicagofed.org/publications/nfci/index. We also make use of the Risk, Credit, Leverage

and Nonfinancial Leverage subindexes of the NFCI, which consider subsets of the 107 variables. We use

8Indeed, we know from Kelly and Pruitt, 2015 that the forecast estimates with one relevant factor when Kf ≥ 2 are
inconsistent albeit they result in in-sample and out-of-sample R2

τ close to the measures obtained with the true value of
Kf . The only case where one relevant factor forecasts are consistent is under the knife-edge case. This case is where the
variance of the relevant factor and factor loadings are the same for all the factors.
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the Index for Industrial Production (IP) activity, which can be downloaded from the FRED database of

the Federal Reserve Bank of St. Louis, as a monthly approximation of the Real GDP. The IP growth is

computed as the natural logarithm of the IP in the current period minus the natural logarithm of the

IP h months before for h ∈ {3, 12}. Our sample period is from 2007M06 to 2023M12 resulting in 199

months.

6.1.1 Out-of-sample evaluation

Tables 5 and 6 contain the out-of-sample R2
τ with IP growth as the dependant variable for three and

twelve months ahead, respectively. We present the results for Qcov3PRF and PCQR for up to three

factors, PQR and PCQR with LASSO implemented in a second step to select the latent factors (out of

40 factors). We also report the R2
τ when the predictors are the NFCI, the Risk, Credit, Leverage and

Nonfinancial Leverage, respectively. We consider both rolling and expanding window schemes starting

in August 2011 and October 2015. The rolling window scheme consists of 50 observations. Quantiles

in the tails are considered with τ ∈ {0.05, 0.10, 0.90, 0.95} as well as quantiles near the center with

τ ∈ {0.25, 0.50, 0.75} following Adrian et al., 2019.

Overall, we can see greater forecasting power of Qcov3PRF compared to other alternative methods,

particularly for IP growth 3-month ahead. The predetermined indexes perform poorly, with significant

power concentrated in the left tail using the expanding window scheme. Qcov3PRF exhibits a robust

performance across different quantiles, forecast horizons, and estimation window schemes. In contrast,

PCQR results in several negative R2
τ in the center and right tail of the distribution.

[Table 5 about here.]

[Table 6 about here.]

6.1.2 In-sample prediction of the conditional distribution

The use of Qcov3PRF can be relevant not only for forecasting but for in-sample prediction as the

estimated relevant factors (being referred as indices) may condense important information of the eco-

nomic/financial activity for an specific forecast target (e.g., Real GDP growth).

In our GaR application, Figure 1 illustrates the in-sample prediction for various conditional quantiles

of IP growth three and twelve months ahead. The estimates obtained after applying Qcov3PRF (with

3 factors) are consistent with Adrian et al., 2019 findings. The indicators of financial conditions have a

stronger effect on predicting the left tail of the economic activity conditional distribution. Specifically,

5% quantile prediction exhibits more variability compared to 95% quantile estimation in both forecast

horizons. This pattern is also found using the qunatile regression with NFCI 5% quantile and 95%

quantile predictions, but the red and blue lines only show significant variability in the financial crisis
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of 2008 and COVID-pandemic episodes. Regarding the methods PCQR3 and PQR, we can not notice

significant differences in variability between the 5% quantile and 95% quantile predictions, the estimates

only mirror the blue and red lines except for the case with PCQR3 and h = 3. Table 7 indicates the

greater accuracy using our method compared to the alternatives giving the lowest value in the check loss,

most apparently in both tails.

[Figure 1 about here.]

[Table 7 about here.]

Once we have estimated the conditional quantiles of IP growth, we follow the two-step procedure

proposed by Adrian et al., 2019 to estimate the conditional parametric distribution of the target. In

the first step, the conditional quantiles of the target variable are estimated, and in the second step the

parameters that describe the conditional distribution are estimated by fitting the conditional quantiles

according to a quadratic loss function. This step requires to assume an specific parametric form of

the conditional distribution for the target variable. Specifically, this method considers the following

optimization problem:

min
θ

∑
τ

(
Q̂τ
yt+1|F̂ t

−G−1(τ |F t;θ)
)2
, (32)

where G−1(τ |F t) are the quantiles corresponding to the the conditional distribution of yt+1 given F t,

denoted as G(yt+1|F t). Adrian et al., 2019 assumed that the conditional density of yt+1 has the form of

a skewed t-distribution :

g(y;µ, σ, α, ν) =
2

σ
t

(
y − µ

σ
; ν

)
T

(
α
y − µ

σ

√
ν + 1

ν +
(
y−µ
σ

)2 ; ν + 1

)
, (33)

where t(·) and T (·) denote the PDF and CDF of the Student t-distribution, respectively. Then, the

estimates θ̂ = (µ̂t+1, σ̂t+1, α̂t+1, ν̂t+1), where α is the skewness parameter and ν is the degrees of freedom

parameter determining the kurtosis, are obtained by solving the problem (32) with the distribution (33),

where the subscripts in the estimated parameters indicate dependence on F t, and µ̂t+1 ∈ R, σ̂t+1 ∈ R+,

α̂t+1 ∈ R, and ν̂t+1 ∈ Z+. The predictions correspond to the quantiles τ ∈ {0.05, 0.25, 0.75, 0.95} to

exactly identify θ̂.

Figure 2 shows the estimated in-sample conditional distribution with the conditional quantiles ob-

tained with NFCI (quantile regression), PCQR, PQR and Qcov3PRF for three and twelve months ahead.

Overall, there is more heterogeneity in the conditional distribution estimated with Qcov3PRF over time.

The plot confirms the findings from Qcov3PRF estimation shown in Figure 1, which exhibits more

variability in the left tail of the distribution over time.

[Figure 2 about here.]
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Next, for robustness in our findings we calculate the conditional expected shortfall (ES), a popular risk

measure, and the expected longrise (EL) as in Adrian et al., 2019. Both measures can be calculated from

fitting the conditional quantiles into a skew-t distribution as described above in Eq.(33). Specifically, for

a chosen τ probability the ES and EL are defined as:

ESτt+1(F t) = E[yt+1|yt+1 ≤ GaRτ (yt+1|F t)],

EL1−τ
t+1 (F t) = E[yt+1|yt+1 ≥ GaR1−τ (yt+1|F t)],

where GaRτ (yt+1|F t) denotes the conditional τ -quantile of yt+1 given F t. Figure 3 presents the in-

sample IP growth ES at τ = 5% level and EL at 1− τ = 95% level, estimated with NFCI, PCQR, PCQR

and Qcov3PRF. We see that the results from using Qcov3PRF, again, show the highest heterogeneity

between the expected shortfall and the expected longrise. In particular, the expected longrise is flatter

and shows less variation than the expected shortfall.

[Figure 3 about here.]

For the in-sample evaluation of the expected shortfall and longrise we make use of the FZ loss function

proposed by Fissler and Ziegel, 2016 for the case where the loss function is homogeneous of degree zero

(denoted as FZ0) as in Patton et al., 2019. This is defined as:

LFZ0(yt+1, Q
τ
yt+1|F t

,ESτt+1; τ) = − 1

τESτt+1

I(yt+1 ≤ Qτyt+1
)(Qτyt+1|F t

−yt+1)+
Qτyt+1|F t

ESτt+1

+log(−ESτt+1)−1,

(34)

where ESτt+1 is the τ -conditional expected shortfall. Since this loss function is only valid for positive

values of the expected shortfall, we rescale yt+1, Q
τ
yt+1|F t

and ESτt+1 by a constant.9 Table 8 reports the

in-sample mean of the loss given in Eq.(34) across alternatives. The results indicate better prediction in

both, the expected shortfall and longrise, when using the conditional quantiles obtained by Qcov3PRF.

This suggests that the larger effects of the financial indicators towards downside economic risks, as can

be seen in Figure 3, are consistent with the financial conditions indices (factors) that best predict the

conditional distribution of the real activity growth (i.e., the correlation between ESτ , and the relevant

factors and the NFCI is higher in absolute terms compared to the correlation between ELτ and the

indices/factors).

[Table 8 about here.]

9For the case of expected longrise we use Eq.(34) evaluated in −yt+1, −Qτ
yt+1|F t

and −ESτt+1, i.e., we mirror the

conditional distribution of yt+1 such that the 1− τ expected longrise of yt+1 is the τ expected shortfall of −yt+1.
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6.2 Forecasting Quarterly GaR Using Financial Risk Measures through mixed

frequency data

As a second empirical application we study the case where the conditional distribution of the Real GDP

growth is affected by financial variables. We make use of the financial risk measures (16 variables)

considered in Giglio et al., 2016 to illustrate that GDP growth is more affected by an index of these

measures instead of adding all of them explicitly. This index is the most relevant factor of the financial

variables on the annual Real GDP growth one-quarter ahead, estimated by applying Qcov3PRF. In

addition, we use the Chicago Fed National Activity Index (CFNAI) as a proxy variable. This follows

from the evidence found in Giglio et al., 2016 regarding the significance of the relevant factor obtained

through PQR using these 16 financial risk measures as predictors on the (quarterly) shocks from the

CFNAI. In particular, the significant effect is on the left tail of the distribution, i.e. there is presence

of GaR. The financial risk measures can be downloaded from www.sethpruitt.net/GKPwebdata.zip, and

are based on data for financial institutions identified by two-digit SIC codes 60 through 67 (finance,

insurance, and real estate). The CFNAI is constructed by the Federal Reserve Bank of Chicago. The

risk measures are transformed to quarterly frequency by taking simple average from monthly data.

Current Real GDP growth is considered as an additional predictor. The sample data is from the 1971Q1

to 2011Q4.

Table 9 contains the out-of-sample R2
τ through different methods focusing on the left tail of the target

distribution, specifically, τ ∈ {0.05, 0.10, 0.25}. These methods are: quantile regression (QR) with the

16 risk measures, QR with CFNAI, QR with LASSO, PCQR with one factor, PQR, Qcov3PRF and

MF-Qcov3PRF (monthly predictors, and quarterly target and proxy). We use these last three methods

with 1 automatic proxy and the CFNAI as a proxy, respectively. For the forecast evaluation, we consider

a rolling window scheme of length 40, 80, and 120 with starting dates at 1981Q1, 1991Q1 and 2001Q1,

respectively.

We see that Qcov3PRF is more effective capturing the predictive power of the financial variables

compared to the quantile regression. Moreover, the R2
τ is greater overall when CFNAI is considered

as a proxy using quarterly data. With mixed frequency data, we do not see a significant difference

between using either an automatic proxy or the CFNAI. This result suggests that both CFNAI and Real

GDP growth depend on the same relevant factor contained in the risk measures. Markedly, Qcov3PRF

improves PQR for the case of one relevant factor. One possible reason is that Giglio et al., 2016 assume

that PQR provides consistent forecasts when the idiosyncratic component in the factor structure of the

predictors are i.i.d. and the distribution for the irrelevant factors is symmetric. These assumptions are

not required in our method (see the online Appendix of Giglio et al., 2016).

[Table 9 about here.]
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6.3 Climate at Risk (CaR)

The next empirical application is related to the work of Rivas and Gonzalo, 2020 and the empirical

application for the climate change in Chen et al., 2021. These papers show there is heterogeneity in the

global temperature changes (through different kinds of trends and latent factors, respectively) depending

on what side (or characteristics) of the distribution we focus. In our application we want to see whether

Qcov3PRF improves forecasting power for the annual global changes in temperature through the carbon

dioxide (CO2) emissions of several countries, we call this effect of CO2 on the right tail quantiles of the

global temperature changes as Climate at Risk (CaR).

For the changes in global temperature we use the Global Land-Ocean Temperature index which can

be downloaded from the NASA website https://climate.nasa.gov/vital-signs/global-temperature/. For

the set of predictors we consider the CO2 annual emissions of 86 countries. The data can be downloaded

in https://ourworldindata.org/co2-emissions. The sample period is 1930-2021 resulting in 92 years. We

consider the annual growth rate of the CO2 emissions by taking the log difference. The forecast horizon

is one year ahead.

We compare the same forecasting methods included in Section 6.1. For Qcov3PRF and PCQR we

report the results up to five factors. In all the methods we include the current value of the Global Land-

Ocean Temperature index as an additional predictor. We forecast the Global Land-Ocean temperature

index one year ahead with expanding and rolling windows. The rolling window considers the 70 previous

observations. Table 10 reports the R2
τ for several values of τ with the validation period starting in

2001. We can see that Qcov3PRF generally shows greater predictive power. In particular, the results

obtained by using PCQR do not show good performance even when five factors are contemplated. This

may suggest that the relevant factors for predicting the changes in temperature are not the eigenvectors

associated with the largest eigenvalues in the covariance matrix of the predictors. We can see a higher

forecasting power in the right tail when we use Qcov3PRF, i.e., there is forecasting evidence towards

CaR. This is consistent with the fact that over time the CO2 emissions have been increased in many

countries affecting more extreme increments in temperature.

[Table 10 about here.]

7 Conclusions

We have proposed a new method called Qcov3PRF that estimates the conditional quantile of a target

variable with a large set of predictors by incorporating a quantile-covariance concept. As a result and in

contrast to other existing supervised methods, our method successfully extracts more than one relevant

factor of the predictors. Qcov3PRF exploits the quantile-covariance (qcov) between the target and the

predictors in a similar way as 3PRF (or PLS) exploits the covariance between the target and predictors
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to obtain the conditional mean forecast of the target. Qcov3PRF demonstrates strong forecasting per-

formance, often superior to alternatives, across simulation specifications and in empirical applications

consistent with the the recent literature on GaR (Adrian et al., 2019 and Giglio et al., 2016). We also

showed asymptotic properties of the resulting forecasts. Extensions for Qcov3PRF can easily be imple-

mented as in 3PRF such as allowing Markov-Switching regimes (Guérin et al., 2020), time-varying (Su

and Wang, 2017) or state-varying factor loadings (Pelger and Xiong, 2022). We leave them for further

research.

8 Appendix

In Section 8.1 we first go into detail about how Qcov3PRF and PLS are related. Just like Kelly and

Pruitt, 2015 showed that PLS is a particular case of 3PRF, we justify that Qcov3PRF contains a suitable

extension of PLS designed for conditional quantile forecasting which maximizes the qcov between the

target and the predictors. Section 8.2 contains the mathematical proofs of the main results and auxiliary

lemmas.

8.1 PLS for conditional quantile prediction is a particular case of Qcov3PRF

As with the Three-Pass Regression Filter and Principal Components, Partial Least Squares (PLS) con-

structs forecasting indices, or latent factors, as linear combinations of the underlying predictors. These

predictive indices are referred as “directions”. The PLS forecast, based on the first j directions, denoted

as ŷ(j), aims to solve the following optimization problem:

ϕ(j) = argmax
ϕ,∥ϕ∥=1

{ ˆcov(X(j−1)ϕ,y(j−1))′ ˆcov(X(j−1)ϕ,y(j−1))}, (35)

where y = (y2, . . . , yT+1)
′, X = (x

′

1, . . . ,x
′

T ), ϕ a N × 1 vector, and ˆcov(X(j−1)ϕ,X(j−1)ϕl) = 0 for

l = 1, . . . , j. This restriction is equivalent to normalize the latent factors to be orthogonal following

the PCA literature. X(j−1) denotes the deflated underlying set of predictors, and y(j−1) is the deflated

target variable. Compared to 3PRF framework, ϕ are the factor loadings and X(j−1)ϕ can be seen

as the residual of X containing the remaining j − 1 relevant factors, the Kg irrelevant factors and the

idiosyncratic component. This becomes clear as in each jth iteration in PLS the predictors X(j) are

deflated by the f j factor. The PLS procedure is presented in Algorithm 6.

Comparing 3PRF with PLS, it is clear that the former is equivalent to the latter when three things

happen: the underlying predictors are standarized, the proxies for 3PRF are given by y(j) = y − qjf j ,

and the resulting predictors are not deflated, i.e., X(j) = X(j−1) with j = 1, . . . ,Kf . In other words,

3PRF shows that it is only required to substract the effect of the relevant factor j on y in order to
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Algorithm 6 Partial Least Squares (PLS)

Let X = (x1, . . . ,xN ). Standardize each xi, i = 1, . . . , N to have mean zero and variance one.

Set X(0) =X and y(0) = y.
for j = 1, . . . ,Kf do

1. Compute ϕ
(j−1)
i = ˆcov(x

(j−1)
i ,y(j−1)).

Then, ϕ(j−1) = (ϕ
(j−1)
1 , . . . , ϕ

(j−1)
N )′.

2. Calculate the score vector (latent factor) as f j =X
(j−1)ϕ(j−1), the loading vector (factor loading)

of X as pj =
X(j−1)′fj

f ′
jfj

, and the loading of y as qj =
y(j−1)′fj

f ′
jfj

.

3. Deflat X(j−1) and y(j−1) such that X(j) =X(j−1) − f jp′j and y(j) = y(j−1) − qjf j .

get the forecasts. This is because only the condition cov(y(j),f j) = 0 is required to avoid possible

multicollinearity problems in Pass 1 of 3PRF.

The particular way of deflating and the use of mean covariance in Step 1 in Algorithm 6 is what

makes possible the implementation of Pass 1 and Pass 2 through linear regressions in 3PRF. Deflating

y but not X implies that the relevant factor estimates are not equal in both methods. Specifically, the

relevant factors estimated in 3PRF are not orthogonal10, in contrast to the factors estimated via PLS.

With respect to conditional quantile prediction, we can see that Qcov3PRF extends the fast Partial

Quantile Regression (fPQR) of Méndez-Civieta et al., 2022 with one modification described below. The

algorithm for fPQR is obtained by adapting the objective function (35) using the quantile-covariance

defined in Section 3.1. The new objective function is given by:

ϕ(j) = argmax
ϕ,∥ϕ∥=1

{ ˆqcovτ (X
(j−1)ϕ,y(j−1))′ ˆqcovτ (X

(j−1)ϕ,y(j−1))}

= argmax
ϕ,∥ϕ∥=1

{ ˆcov(X(j−1)ϕ, ψτ (y
(j−1) −Qτy(j−1)))

′ ˆcov(X(j−1)ϕ, ψτ (y
(j−1) −Qτy(j−1)))}

where ˆcov(X(j−1)ϕ,X(j−1)ϕl) = 0 for l = 1, . . . , j. Méndez-Civieta et al., 2022 adapt Algorithm 6

by changing the mean covariance with quantile-covariance in Step 1. It is important to note that this

procedure can not be extended to Qcov3PRF if the automatic proxies procedure for 3PRF is kept. To

see this, consider the fact that Step 3 in iteration j − 1 and Step 1 in iteration j in PLS are linked

through the following partial mean covariance:

ˆcov(y(j),x
(j)
i ) = E

[
(y(j−1) − E(y(j−1)|f j−1))(x

(j−1)
i − E(x(j−1)

i |f j−1))
]

= ˆpcov(y(j−1),x
(j−1)
i |f j), for i = 1, . . . , N,

where xi is a T × 1 vector. Regarding fPQR, the objective in each iteration j can be seen as to deflat

X(j) and y(j) such that ˆcov(X(j),f j) = 0 and ˆqcovτ (y
(j),f j) = 0. The first covariance is still with

respect to the mean since the restriction ˆcov(X(j−1)ϕ,X(j−1)ϕl) = 0 does not change. However, with

10Regarding Qcov3PRF, the non-orthogonality of the estimated factors is clear by looking at Lemma 1.
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respect to the variable y(j) we need to consider a partial quantile-covariance. From Ma et al., 2017 we

consider the partial quantile-covariance defined as follows:

ˆqcovτ (y
(j),x

(j)
i ) = E

[
(ψτ (y

(j−1) −Qτy(j−1)|fj−1
)(x

(j−1)
i − E(x(j−1)

i |f j−1))
]

= ˆqpcovτ (y
(j),x

(j)
i |f j) for i = 1, . . . , N.

To obtain ˆcov(X(j),f j) = 0, we deflat X(j−1) in the same way as in Step 3. This is setting X(j) equal

to the residuals obtained by regressing each x
(j−1)
i on f j using least squares. For ˆqcovτ (y

(j),f j) =

0, we set y(j) equal to the residuals obtained by regressing y(j−1) on f j using quantile regression.

Therefore, a PLS extension for quantile regression that incorporates qcov need to satisfy ˆcov(X(j),f j) =

0 and ˆqcovτ (y
(j),f j) = 0.11 Deflating y(j−1) with quantile regression motivates the automatic proxies

procedure for Qcov3PRF. This is the modification in Step 3 of fPQR which makes it a special case in

Qcov3PRF. We then require that:

ˆqcovτ (y
(j),f j) = ˆcov

(
I
(
y(j) −Qτy(j) > 0

)
,f j

)
= 0, (36)

which is satisfied with y(j) = y(j−1) − q̂jf j where q̂j is the estimate of running a quantile regression of

y(j−1) on f j .

To illustrate the relationship between Qcov3PRF and fPQR with the correct deflat in y, we consider

the case where a single predictive index is constructed. Applying fPQR we have:

1. Set ϕτi = x′
iy
τ , and ϕ = (ϕ1, . . . , ϕN )′, where yτ = I(y −Qτy > 0).

2. Set ft = x
′
tϕ

τ , and f = (f1, . . . , fT )
′.

3. The forecast for the conditional τ quantile of yt+1 is obtained from running a quantile regression

of yt+1 on ft.

This forecast is the same as what we obtained from Qcov3PRF with 1 automatic-proxy.

8.2 Proofs and additional lemmas

In this section we provide the proofs of the main results of the paper and auxiliary lemmas. Lemma 1 and

Lemma 3 are very similar to Lemma 3 and Lemma 4, respectively (with the corresponding normalization

assumption), in Kelly and Pruitt, 2015. The proof of Theorem 3 is similar to Theorem 7 in Kelly and

Pruitt, 2015. Theorem 1 uses the same initial steps considered in the proof of Theorem 1 in Giglio et al.,

2016. Theorem 2 is new.

11As we noted in Section 3.2, we also need Assumption 3 to guarantee the transformation of deflated residuals ψτ (y(j−1)−
Qτ

y(j−1) ) is not affected by the irrelevant factors.
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Lemma 1 provides asymptotic limits of the estimates for the relevant factors and their corresponding

factor loadings. In general, the estimates f̂ t are not orthogonal between each other since their covariance

matrix does not converge to a diagonal matrix, in contrast to the estimated factors resulting from

principal components.

Lemma 1. Let Assumptions 1-2 and 4-8 hold. Then, the probability limits of Φ̂τ and F̂ t are:

Φ̂τ
p−−−−−→

T,N→∞

[
(Λf,τΛ

′
f,τ +∆−1

f ∆ω)
−1Λf,τΦ

′
f 0

]
and

F̂ t
p−−−−−→

T,N→∞

[(
Λf,τΛ

′
f,τ +∆−1

f ∆ω

)
Λ′−1
f,τ f t 0

]
,

where f t is the part of F t corresponding to Λf,τ such that ΛτF t = [Λf,τ 0]F t = [Λf,τf t 0], and ∆f

is the covariance matrix of f t.

Proof. The proof makes use of the closed form expression of Φ̂τ and F̂ (Eq.(17)), and Assumptions 5, 6

and 8. It is covered in detail in Kelly and Pruitt, 2015 in their Lemma 2, and it is further simplified by

Assumptions 2 and 7.

Proof of Theorem 1. Following Lemma 1, the relevant factors estimated in Pass 1 and Pass 2 are

asymptotically relevant for the quantile linear model in Pass 3. Let us now consider the prediction stage

of Qcov3PRF such that the optimal coefficients are given by:

(β̂0.τ , β̂τ ) = argmin
β0,τ ,βτ

1

T

T∑
t=1

ρτ (yt+1 − β0,τ − β′
τ F̂ t).

Since F t linearly depends on the vector (F̂ t, F̂ t−HτF t), a regression that considers this vector nests the

correctly specified quantile forecast regression. Using Corollary 5.12 in White, 1994 and the equivariance

properties of quantile regression we have that the regression coefficients which solve:

(β̇0,τ , β̇τ , β̇1,τ ) = argmin
β0,β,β1

1

T

T∑
t=1

ρτ

(
yt+1 − β0,τ − β′

τ F̂ t − β
′
1,τ (F̂ t −HτF t)

)
,

are such that,
√
T (β̇τ − β

′
τH

−1
τ )

p−−−−−→
N,T→∞

N (0,Σβ̇).

Now, from Theorem 1 in Angrist et al., 2006 we have that,

β̂τ = β̇τ +

(
T∑
t=1

ctF̂ tF̂
′
t

)−1( T∑
t=1

ctF̂ tβ̇
′
1,τ (F̂ t −HτF t)

)
, (37)
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where ct =
1
2

∫ 1

0
hτ

(
u(β̇τ F̂ t − β

′
τF t)|F t

)
du. Also, we can rewrite the forecast error as follows:

β̂
′
τ F̂ t − β

′
τF t = β̂

′
τ (F̂ t −HτF t) + (β̂

′
τ − β

′
τH

−1
τ )HτF t.

What remains to find is the convergence order of (β̂
′
τ − β

′
τH

−1
τ ). From Eq.(37) we get:

(β̂
′
τ − β

′
τH

−1
τ ) = (β̇

′
τ − β

′
τH

−1
τ ) +

(
1

T

T∑
t=1

ctF̂ tF̂
′
t

)−1(
1

T

T∑
t=1

ctF̂ tβ̇
′
1,τ (F̂ t −HτF t)

)
.

Now, let us focus on the numerator of the second term in the previous expression and use F̂ t ≡ F̂ t −
HτF t +HτF t, then we get:

1

T

T∑
t=1

ctF̂ tβ̇
′
1,τ (F̂ t −HτF t) = δ−2

NT

1

T

T∑
t=1

ctδNT (F̂ t −HτF t)β̇
′
1,τ δNT (F̂ t −HτF t)

+δ−1
NT

1

T

T∑
t=1

ct(HτF t)β̇
′
1,τ δNT (F̂ t −HτF t)

= δ−2
NT

1
√
T

1

T

T∑
t=1

ctδNT (F̂ t −HτF t)
√
T (β̇

′
1,τ − β′

1,τ )δNT (F̂ t −HτF t)

+δ−2
NT

1

T

T∑
t=1

ctδNT (F̂ t −HτF t)β
′
1,τ δNT (F̂ t −HτF t)

+δ−1
NT

1
√
T

1

T

T∑
t=1

ct(HτF t)
√
T (β̇

′
1,τ − β′

1,τ )δNT (F̂ t −HτF t)

+δ−1
NT

1

T

T∑
t=1

ct(HτF t)β
′
1,τ δNT (F̂ t −HτF t)

= δ−2
NTOp(T

−1/2) + δ−2
NTOp(1) + δ−1

NTOp(T
−1/2) + δ−1

NTOp(1)

= Op(δ
−1
NT ),

where δNT = min(
√
N,T ). The above result implies that (β̂

′
τ−β

′
τH

−1
τ ) = Op(T

−1/2)+Op(1)Op(δ
−1
NT ) =

Op(δ
−1
NT ). Therefore, β̂

′
τ F̂ t − β

′
τF t = Op(1)Op(δ

−1
NT ) +Op(δ

−1
NT )Op(1) = Op(δ

−1
NT ).

To show the asymptotic normality of the infeasible quantile foecasts we need to make use of the

following lemma, whose proof comes from Theorem 6 in Kelly and Pruitt, 2015, but we consider the

transformed proxies z∗t,τ instead of zt.

Lemma 2. Let Assumptions 1-2 and 4-8 hold. We have for all t,

(i). If
√
N = o(T ) or N = O(T ) then:

√
N
[
F̂ t − H̃τF t

]
d−−−−−→

N,T→∞
N (0,plimΣF̂t

).

(ii). If T = o(
√
N) then:

T
[
F̂ t − H̃τF t

]
= Op(1).

where plimΣF̂t
=
(
Λτ∆FΛ

′
τ +∆ω

) (
Λτ∆

2
FΛ

′
τ

)−1
Λτ∆FΣϕε∆FΛ

′
τ

(
Λτ∆

2
FΛ

′
τ

)−1 (
Λτ∆FΛ

′
τ +∆ω

)′
,
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and H̃τ = F̂AF̂
−1

B N−1T−1Z∗′

τ JTXJNΦ, with F̂A = T−1Z∗′

τ JTZ
∗
τ and

F̂B = N−1T−2Z∗′

τ JTXJNX
′JTZ

∗
τ .

Proof of Theorem 2. Without loss of generality, let us assume that the target variable does not have

an intercept. We can rewrite the forecast error as follows:

β̂
′
τ F̂ t − β

′
τF t = β̂

′
τ F̂ t − β

′
τH

−1
τ F̂ t + β

′
τH

−1
τ F̂ t − β

′
τF t

=
√
T (β̂

′
τ − β

′
τH

−1
τ )

F̂ t√
T

+
β′
τH

−1
τ√
N

√
N(F̂ t −HτF t).

Since,

(β̂
′
τ − β

′
τH

−1
τ ) = (β̇

′
τ − β

′
τH

−1
τ ) +

(
1

T

T∑
t=1

ctF̂ tF̂
′
t

)−1(
1

T

T∑
t=1

ctF̂ tβ̇
′
1,τ (F̂ t −HτF t)

)
= (β̇

′
τ − β

′
τH

−1
τ ) + I−1 · II.

We have that:

|I| ≤

(
1

T

T∑
t=1

c2t

)1/2(
1

T 2

T∑
t=1

∥F̂ t∥4
)1/2

≤ Op(1) ·Op(1)

= Op(1),

where the second inequality is due to Cauchy-Schwartz inequality and the last inequality holds by As-

sumption 4.1 and Lemma 1. For the numerator term we get that:

|II| ≤ 1

T 2

T∑
t=1

ctF̂ t√
NT

√
T (β̇

′
1,τ − β

′
1,τ )

√
N(F̂ tHτ − F t) +

1

T 2
β′
1,τ

T∑
t=1

ctF̂ t√
N

√
N(F̂ t −HτF t)

≤ 1

N1/2T
∥
√
T (β̂1,τ − β1,τ )∥

(
1

T

T∑
t=1

c2t

)1/2(
1

T

T∑
t=1

∥F̂ t∥2
)1/2(

1

T

T∑
t=1

(
√
N(F̂ t −HτF t))

2

)1/2

+
1

N1/2T 1/2
∥β1,τ∥

(
1

T

T∑
t=1

c2t

)1/2(
1

T

T∑
t=1

∥F̂ t∥2
)1/2(

1

T

T∑
t=1

(
√
N(F̂ t −HτF t))

2

)1/2

= Op(N
−1/2T−1/2)

= op(1),

by using Cauchy-Schwartz inequality, Assumption 4.1, Assumption 5.1, Lemma 2 and the asymptotic

normality of linear estimates in quantile regression. Then, by the continuous mapping theorem, we have:

β̂
′
τ F̂ t − β

′
τF t =

√
T (β̇

′
τ − β

′
τH

−1
τ )

F̂ t√
T

+
β′
τH

−1

√
N

√
N(F̂ t −HτF τ ) + op(1).
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Since

√
N(F̂ t −HτF t)

d−−−−−→
N,T→∞

N (0,plimΣF̂t
),

√
T (β̂τ − βτ )

d−−−−−→
N,T→∞

N (0,plimΣβ̂),

whereΣF̂t
is defined in Lemma 2 and plimΣβ̂ = E[hτ (0|F t)F tF ′

t]
−1E[ψτ (u2t+1)F tF

′
t]E[hτ (0|F t)F tF

′
t]
−1

which is feasible by Assumption 4.3, 5.5 and 8.2. Since
√
N(F̂ t−HτF t) depend on εi,t, and

√
T (β̂τ−βτ )

depend on ut+1, both terms are independent. It follows that β̂
′
τ F̂ t − β

′
τF t is normal with estimated

variance V̂ τ = 1
T β̂

′
τ (ΣF̂ )β̂τ +

1
N F̂

′
t(Σβ̂τ

)F̂ t given that β̂τ = βτ + op(1).

Lemma 3 shows the consistency of the linear estimates from Eq.(19). We need it in order to show

that the automatic proxies resulting from Algorithm 4 are linearly independent such that Assumption 2

is satisfied.

Lemma 3. Let Assumptions 1-2 and 4-8 hold. Then, under Assumption 3 the probability limit of the

estimated coefficients α̂τ obtained by running a least squares regression of I(yt+1 −Qτyt+1
> 0) on F̂ t is:

α̂τ
p−−−−−→

T,N→∞

[(
Λf,τΛ

′
f,τ +∆−1

f ∆ω

)−1

Λf,ταf,τ 0

]
,

where ατ = (α′
f,τ 0)′, with αf,τ a vector of size Kf × 1.

Proof. The estimation of ατ using least squares regression results in:

α̂τ =
(
F̂

′
JT F̂

)−1

F̂
′
JT I(y −Qτy+1)

= (T−1Z∗′

τ JTZ
∗
τ )

−1N−1T−2Z∗′

τ JTXJNX
′JTZ

∗
τ

(N−2T−3Z∗′

τ JTXJNX
′JTXJNX

′JTZ
∗
τ )

−1N−1T−2Z∗′

τ JTXJNX
′JT I(y −Qτy+1)

= α̂−1
1,τ α̂2,τ α̂

−1
3,τ α̂4,τ ,

where the second equality follows from Eq.(17). From Lemma 3 in Kelly and Pruitt, 2015, by replacing

the term Z with Z∗
τ and further simplifying by Assumptions 2 and 7 we have the following probability

limits:

α̂1,τ
p−−−−−→

T,N→∞
Λτ∆FΛ

′
τ +∆ω, (38)

α̂2,τ
p−−−−−→

T,N→∞
Λτ∆

2
FΛ

′
τ . (39)

Regarding the terms α̂3,τ and α̂4,τ , we rely on the web appendix from Kelly and Pruitt, 2015. Then, by
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simply replacing their term y with I(y −Qτy+1), we obtain that

α̂3,τ
p−−−−−→

T,N→∞
Λτ∆

3
FΛ

′
τ (40)

α̂4,τ
p−−−−−→

T,N→∞
Λτ∆

2
Fατ . (41)

By Eqs.(38)-(41), Assumptions 2 and 7, and the continuous mapping theorem, the main result is obtained.

Proof of Theorem 3. We begin by showing that Assumption 2 is generally satisfied, this is that the

loadings of the automatic proxies are linear independent (full rank matrix) and that they are uncorrelated

with irrelevant factors. If Kf = 1, it is clearly seen that r0,τ = y − Q̂τy is not correlated with irrelevant

factors by Assumption 3. If Kf = 2, to see that r1,τ = y − Q̂τ
y|f̂1,...,f̂ℓ−1

is uncorrelated with irrelevant

factors we have that:

r1,τ = y − Q̂τ
y|f̂(1)

1

= Fβτ + u
τ − f̂

(1)

1 β̂
(1)
1,τ

= Fβτ + u
τ −XΩ(1)

τ β̂
(1)
1,τ

= Fβτ + u
τ −XΩ(1)

τ (β̂
(1)
1,τ − H̃

(1)−1

τ β
(1)
1,τ )− f1β

(1)
1,τ

= Fβτ + u
τ −XΩ(1)

τ (β̂
(1)

1,τ − H̃
(1)−1

τ β
(1)
1,τ )− f1β1,τ − f1(E[w̃(1)

τ (F )f2
1])

−1E[w̃(1)
τ (F )f1f

′
−1β−1,τ ]

= −f1b
(1)
1,τ + f−1β−1,τ − FH̃

(1)

τ (β̂
(1)
1,τ − H̃

(1)−1

τ β
(1)
1,τ ) + u

τ − εΩ(1)
τ (β̂

(1)
1,τ − H̃

(1)−1

τ β
(1)
1,τ ),

where Ω(1)
τ = JNW

(1)
xr (W

(1)′

xr JNW
(1)
xr )

−1, W (1)
xr =X ′JTr

∗
1,τ , H̃

(1)

τ = Φ′Ω(1)
τ ,

b
(1)
1,τ = (E[w̃(1)

τ (F )f2
1])

−1E[w̃(1)
τ (F )f1f

′
−1β−1,τ ], and w̃

(1)
τ (F ) = 1

2

∫ 1

0
hτ (u∆τ (F , β

(1)
1,τ )|F )du with

∆τ (F , β
(1)
1,τ ) = f1β

(1)
1,τ − Qτ (y|F ). In the fifth inequality we use the partial quantile regression and

omitted variable bias formulation of Angrist et al., 2006. Recalling that FH̃
(1)

τ = [fH̃
(1)

f,τ 0], and by

Assumptions 4.2 and 8.2 the conditional quantile of r1,τ is uncorrelated with irrelevant factors g. Then,

by Assumption 3 and Lemma 3 we can guarantee that r∗1,τ = I(r1,τ > 0) contains loadings equal to zero

corresponding to irrelevant factors, and therefore Assumption 2 is satisfied.

For Kf > 2, we proceed by induction to show that Algorithm 4 constructs a set of proxies that

satisfies Assumption 2. In particular, we want to show that the automatic proxies have a loading matrix

on relevant factors Λf,τ that is full rank, and that Λg,τ = 0. Suppose by hypothesis that we have k < Kf

automatically generated proxies, the loadings corresponding to irrelevant factors are equal to zero by the
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same argument when Kf = 2, i.e., Λk
τ = [Λk

f,τ 0], where Λk
f,τ is a k ×Kf matrix, specifically,

rk,τ = −f1:kb
(k)
1:k,τ + fk+1:Kf

βk+1:Kf ,τ
− FH̃(k)

τ (β̂
(k)

1:k,τ − H̃
(k)−1

τ β
(k)
1:k,τ )

+uτ − εΩ(k)
τ (β̂

(k)

1:k,τ − H̃
(k)−1

τ β1:k,τ ), (42)

where the notation vk1:k2 indicates the elements from k1 to k2 of the v vector. Also, the terms Ω(k)
τ , H̃

(k)

τ

and b
(k)
1:k,τ are defined similarly as in the Kf = 2 case but now with the first k+1 automatically generated

proxies after the kth iteration following Algorithm 4. The equality above implies that r∗k,τ = I(rk,τ > 0)

has loadings equal to zero corresponding to irrelevant factors by Assumption 3 and Lemma 3.

Now, we will show that the rk,τ ’s loading on relevant factors is linearly independent of the rows

of Λk
f,τ . This follows from a similar argument done in the proof for Theorem 7 in the Appendix in

Kelly and Pruitt, 2015. First, note that the relevant-factor loadings are equal to
(
(−b(k)

′

1:k,τ ,β
′
k+1:Kf ,τ

)′−

H̃
(k)

f,τ (β̂
(k)

1:k,τ − H̃(k)−1

τ β
(k)
1:k,τ )

)
by Eq.(42), where the matrix H̃

(k)

f,τ is constructed based on the proxies

(r∗0,τ , . . . , r
∗
k−1,τ ). Next, project rk,τ ’s relevant-factor loadings onto the column space of Λk′

f,τ . Then, the

residual’s loading vector is linearly independent of Λk′

f,τ if the difference between it and its projection on

Λk′

f,τ is non-zero. Specifically, this difference is presented as:

(
I −Λk′

f,τ (Λ
k
f,τΛ

k′

f,τ )
−1Λk

f,τ

)(
(−b(k)

′

1:k,τ ,β
′
k+1:Kf ,τ

)′ − H̃(k)

f,τ (β̂
(k)

1:k,τ − H̃
(k)−1

τ β
(k)
1:k,τ )

)
.

As it is clear that the relevant-factor loadings are not equal to zero with probability zero, this difference

is equal to zero only when Λk′

f,τ (Λ
k
f,τΛ

k′

f,τ )
−1Λk

f,τ = I. The induction hypothesis ensures that this is not

the case as long as k < Kf . Thus, the difference between the r1,τ ’s loading vector and its projection

onto the column space of Λk′

f,τ is nonzero, implying that the loading vector is linearly independent of the

rows of Λk′

f,τ . Lastly, by Assumption 3, the relevant-factor loadings of the transformed proxy r∗k,τ is also

linearly independent of the rows of Λk′

f,τ . Therefore, the transformed proxies (r∗1,τ , . . . , r
∗
Kf ,τ

) satisfy

Assumption 2.

Finally, it is left to check that the automatic proxies satisfy Assumptions 5.4, 6.3 and 6.4 when the

remaining parts of Assumptions 1–8 hold. To see this, by Assumption 3 and Eq.(42) we can rewrite an

automatic proxy rkt,τ (suppressing constants) as rkt,τ = Λ̃
k+1′

f,τ f t + ω̃kt with ω̃kt = ut+1 +N−1ã′
f,τϵt as
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we can show it with the following:

rkt,τ = y − Q̂τ
y|f̂(k)

1 ,...,f̂
(k)
k

= β′
f,τf t + uτt+1 − β̂

(k)′

1:k,τΩ
(k)
τ xt

= β′
f,τf t + uτt+1 −N−1β̂

(k)′

1:k,τT
−1W (k)′

rr (N−1T−2W (k)′

xr JNW
(k)
xr )

−1T−1W (k)
xr JNxt

= β′
f,τf t + uτt+1 −N−1ã′

f,τxt

= Λ̃
k+1′

f,τ f t + uτt+1 − ãk
′

f,τN
−1εt,

where ãkf,τ = Op(1) by the proof of Lemma 1 in Kelly and Pruitt, 2015 (replacing Z with (r∗0,τ , . . . , r
∗
k,τ )).

Then, by Assumption 3, we can rewrite r∗kt,τ = Λk+1′

f,τ f t+ ξt+1−ak
′

f,τN
−1εt = Λk+1′

f,τ f t+ω
k
t , where ξt+1

depends on uτt+1 and akf,τ = Op(1).

By Assumption 5.5, the ξt+1 and a′
f,τN

−1εt components of ωt are independent (since ξt+1 is a

function of uτt+1) so they can be treated separately. By Assumptions 3 and 5.5, the ξt+1 component

satisfies Assumptions 5.4, 6.3 and 6.4. For the second component, given that akf,τ is a vector of constants,

Assumption 5.4 is satisfied by Assumption 5.3 and 6.2, Assumption 6.3 is satisfied by Assumption 8.2.

Finally, Assumption 6.4 holds by Assumption 6.2.
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(i) 3-month ahead

(ii) 12-month ahead

Figure 1: Conditional quantiles and realized IP growth, corresponding to the vertical left axis, estimated
with (a) Qcov3PRF with 3 factors, (b) PCQR with 3 factors, (c) Quantile Regression with NFCI as a
regressor, and (d) PQR. The vertical right axis corresponds to NFCI.
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(i) 3-month ahead

(ii) 12-month ahead

Figure 2: Conditional parametric distribution of the IP growth based on conditional quantiles after being
estimated with (a) Qcov3PRF with 3 factors, (b) PCQR with 3 factors, (c) Quantile Regression with
NFCI as a regressor, and (d) PQR.
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(i) 3-month ahead

(ii) 12-month ahead

Figure 3: Conditional expected shortfall (longrise) of the IP growth after the conditional parametric
distribution is estimated with the conditional quantiles etimated by: (a) Qcov3PRF with 3 factors, (b)
PCQR with 3 factors, (c) Quantile Regression with NFCI as a regressor, and (d) PQR.
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Table 1: Out-of-sample R2
τ (%) for DGP (27) with h = 1.

N = 100, T = 200 N = 200, T = 400

τ ρT = ρN Qcov3PRF3 Qcov3PRF2 Qcov3PRF1 PQR PCQR6 Qcov3PRF3 Qcov3PRF2 Qcov3PRF1 PQR PCQR6
0.10 0 50.9 49.6 42.6 44.5 51.5 52.9 51.8 45.3 45.9 53.1

0.2 50.6 49.4 42.4 43.7 50.9 52.5 51.5 44.8 45.7 52.8
0.4 48.9 47.7 40.9 42.3 46.4 51.6 50.7 44.1 44.8 51.6
0.6 46.4 44.0 36.1 38.1 33.5 49.8 48.3 41.3 42.2 38.2
0.8 41.0 33.9 17.7 20.5 22.4 43.4 37.3 23.6 26.3 9.3

0.25 0 51.9 50.7 43.7 44.4 52.0 53.4 52.3 45.4 45.5 53.4
0.2 51.4 50.3 43.3 44.1 51.5 53.0 51.9 45.2 45.4 53.1
0.4 50.2 49.1 42.1 42.9 47.3 52.0 50.9 44.0 44.5 51.7
0.6 48.3 46.1 38.3 39.4 34.9 50.8 49.3 42.0 42.3 38.9
0.8 43.6 37.2 21.7 23.6 25.3 45.3 39.7 26.5 28.6 9.8

0.50 0 51.9 50.7 44.1 44.5 52.0 53.2 52.2 45.4 45.6 53.3
0.2 51.5 50.4 43.8 44.0 51.4 53.0 52.0 45.3 45.4 53.0
0.4 50.2 49.0 42.1 42.6 47.2 52.4 51.2 44.5 44.5 51.7
0.6 48.8 46.3 38.6 39.2 34.8 51.0 49.3 42.4 42.7 38.9
0.8 44.1 38.1 22.7 24.9 24.6 45.5 40.2 27.7 29.2 10.4

0.75 0 51.7 50.5 43.7 44.1 52.0 53.2 52.0 45.5 45.9 53.3
0.2 51.2 50.0 43.5 44.0 51.2 52.9 51.9 45.1 45.3 52.9
0.4 49.9 48.6 41.6 42.4 46.8 52.2 51.2 44.4 44.8 51.9
0.6 48.3 45.8 38.0 39.0 34.4 50.6 49.1 41.7 42.1 38.8
0.8 42.8 36.5 20.7 23.2 24.3 45.4 39.9 27.0 29.0 10.6

0.90 0 51.5 50.1 43.3 45.0 51.7 53.1 51.9 45.0 45.9 53.3
0.2 50.3 49.4 41.9 43.6 50.5 52.5 51.5 44.8 45.5 52.7
0.4 48.6 47.6 40.4 41.9 46.1 51.4 50.6 43.6 44.3 51.5
0.6 46.2 43.4 35.8 37.9 32.7 49.6 48.3 41.4 42.5 38.7
0.8 40.6 34.2 17.5 20.5 22.5 43.3 37.1 22.7 25.8 8.4

Note: The median of R2
τ out of 1000 simulations in each case is reported. R2

τ evaluates the forecasts of the second half of the sample (100 and 200
observations, respectively). We set σy = 0.5. ρT represents the level of serial correlation, and ρN is the level of cross-section correlation. The model consists
on six latent factors, three are relevant. Qcov3PRF# denotes Qcov3PRF implementation with # number of factors, similarly for PCQR#.
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Table 2: Out-of-sample R2
τ (%) for DGP (28) with h = 1 and τ = 0.50.

ρT = ρN αf αg Qcov3PRF2 Qcov3PRF1 PQR PCQR4 3PRF2 PCR4
N = 100, T = 200

0 0 0 45.2 36.8 37.9 47.4 40.1 41.3
0.2 0 0 45.0 36.0 37.7 47.0 40.0 41.3
0.4 0 0 43.1 34.2 35.4 37.5 37.0 32.2
0.6 0 0 39.7 28.9 30.2 5.1 31.9 2.6
0.8 0 0 28.4 12.6 13.6 -1.4 19.5 -3.4
0 0.6 0.3 52.8 42.9 43.9 54.9 47.6 49.0
0.2 0.6 0.3 53.7 43.2 44.8 55.8 49.0 50.6
0.4 0.6 0.3 51.3 41.2 42.5 50.2 45.9 45.0
0.6 0.6 0.3 47.3 36.1 37.3 20.5 41.2 16.2
0.8 0.6 0.3 35.4 16.9 17.8 0.7 29.1 -1.6
0 0.3 0.6 46.2 34.2 36.0 49.7 41.7 43.9
0.2 0.3 0.6 45.1 33.8 35.1 48.3 38.8 41.6
0.4 0.3 0.6 43.2 31.6 32.9 40.5 37.5 34.7
0.6 0.3 0.6 39.0 26.7 28.1 8.3 33.3 4.9
0.8 0.3 0.6 28.0 11.9 12.9 -1.1 20.6 -3.1

N = 200, T = 400
0 0 0 45.8 39.2 40.0 47.8 41.2 42.2
0.2 0 0 44.7 38.1 39.0 46.8 39.3 40.1
0.4 0 0 44.1 37.5 38.3 45.5 37.2 39.5
0.6 0 0 41.6 33.6 34.7 17.2 32.5 13.3
0.8 0 0 31.0 16.3 17.5 -0.6 19.9 -2.1
0 0.6 0.3 53.7 46.0 46.9 55.4 49.3 49.9
0.2 0.6 0.3 52.9 45.1 45.9 54.6 48.3 49.3
0.4 0.6 0.3 52.6 44.3 45.0 53.7 46.9 48.6
0.6 0.6 0.3 49.4 41.1 41.8 30.7 42.5 26.7
0.8 0.6 0.3 39.0 22.2 23.2 0.5 31.4 -1.3
0 0.3 0.6 46.2 37.9 39.1 49.1 40.5 42.3
0.2 0.3 0.6 46.3 37.8 39.1 48.9 41.2 42.8
0.4 0.3 0.6 44.5 35.9 37.2 46.9 39.1 41.2
0.6 0.3 0.6 42.0 32.9 34.2 21.2 33.3 16.5
0.8 0.3 0.6 31.7 16.0 17.0 -0.5 19.3 -2.3

Note: The median of R2
τ out of 1000 simulations in each case is reported. R2

τ evaluates the forecasts of the
second half of the sample (100 and 200 observations, respectively). We set σy = 0.75. The predictors contain
four latent factors, two are relevant. All the factors follow independent AR(1) processes. αf (αg

t ) denotes
the value of the coefficient for the autorregresive term of the relevant (irrelevant) factors. ρT represents the
level of serial correlation, and ρN is the level of cross-section correlation. Qcov3PRF# denotes Qcov3PRF
implementation with # number of factors, similarly for PCQR#, PCR# and 3PRF#.
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Table 3: Out-of-sample R2
τ (%) for DGP (29) with h = 1.

N = 100, T = 200 N = 200, T = 400

τ ρT = ρN Qcov3PRF2 Qcov3PRF1 PQR PCQR4 Qcov3PRF2 Qcov3PRF1 PQR PCQR4
0.10 0 42.2 35.4 38.0 42.4 43.7 39.6 41.5 43.6

0.2 41.7 34.9 37.6 41.6 43.7 39.9 41.3 43.7
0.4 39.9 32.6 35.4 39.4 43.4 39.0 40.9 43.2
0.6 36.0 27.3 30.5 7.7 40.3 35.1 37.4 28.8
0.8 25.4 9.6 11.2 -4.1 30.6 15.5 17.9 -1.7

0.25 0 46.1 40.6 42.4 46.2 47.0 43.9 44.8 47.0
0.2 46.0 40.0 41.6 46.0 46.9 43.7 44.7 46.9
0.4 44.3 38.2 39.7 42.8 46.2 42.8 43.7 46.1
0.6 41.8 33.1 35.3 8.9 44.5 39.6 40.8 30.4
0.8 31.7 14.4 16.3 -2.1 36.4 20.5 22.5 -0.8

0.50 0 47.2 42.1 43.4 47.2 48.0 45.1 46.0 48.1
0.2 46.8 41.7 42.7 46.8 47.9 45.1 45.6 47.9
0.4 45.8 39.9 41.2 44.2 47.3 44.4 45.1 47.1
0.6 43.5 34.9 36.6 9.2 45.6 41.3 42.1 32.1
0.8 34.8 16.5 18.6 -1.4 38.6 22.9 24.5 -0.7

0.75 0 46.2 40.9 42.6 46.2 47.2 43.9 44.8 47.2
0.2 45.8 40.2 42.1 45.8 46.7 43.2 44.3 46.6
0.4 44.8 39.0 40.9 43.6 46.6 42.9 44.0 46.3
0.6 41.4 32.9 34.8 8.9 44.6 39.9 41.0 31.1
0.8 32.7 14.8 16.8 -2.0 36.6 20.8 23.1 -0.9

0.90 0 42.2 35.5 38.8 42.4 43.5 39.4 41.3 43.7
0.2 41.9 35.0 38.0 42.2 43.9 39.6 41.5 43.9
0.4 39.8 32.7 35.2 38.9 42.8 38.6 40.5 42.7
0.6 37.0 27.6 31.1 6.7 40.8 35.3 37.2 29.2
0.8 25.7 10.2 12.2 -4.3 30.4 15.1 17.3 -1.8

Note: The median of R2
τ out of 1000 simulations in each case is reported. R2

τ evaluates the forecasts of the second half of the sample (100
and 200 observations, respectively). We set σy = 1.0. ρT represents the degree of serial correlation, and ρN is the degree of cross-section
correlation. The model consists on four latent factors, two are relevant. Qcov3PRF# denotes Qcov3PRF implementation with # number
of factors, similarly for PCQR#.
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Table 4: In-sample MAE, MSE and correlations with DGP (30)-(31).

DGP (31.a) DGP (31.b)
T = N τ Qcov3PRF3 Qcov3PRF1 PQR PCQR6 Qcov3PRF3 Qcov3PRF1 PQR PCQR6

MAE 100 0.05 0.843 0.880 0.805 0.857 0.459 0.528 0.509 0.394
MSE 1.187 1.285 1.080 1.257 0.336 0.439 0.410 0.257

Correlation 0.844 0.794 0.840 0.819 0.637 0.406 0.460 0.755
MAE 200 0.05 0.593 0.873 0.796 0.568 0.340 0.476 0.457 0.269
MSE 0.584 1.223 1.024 0.543 0.184 0.359 0.331 0.118

Correlation 0.914 0.770 0.815 0.923 0.824 0.533 0.576 0.892
MAE 1000 0.05 0.272 0.561 0.515 0.240 0.132 0.328 0.303 0.111
MSE 0.120 0.502 0.418 0.095 0.028 0.179 0.154 0.020

Correlation 0.984 0.912 0.929 0.989 0.976 0.789 0.821 0.983
MAE 100 0.10 0.685 0.814 0.769 0.667 0.372 0.428 0.419 0.311
MSE 0.786 1.067 0.960 0.756 0.222 0.290 0.281 0.159

Correlation 0.821 0.693 0.736 0.835 0.701 0.473 0.512 0.792
MAE 200 0.10 0.483 0.667 0.626 0.451 0.265 0.378 0.365 0.212
MSE 0.388 0.716 0.632 0.339 0.113 0.227 0.213 0.073

Correlation 0.915 0.798 0.829 0.928 0.856 0.593 0.631 0.910
MAE 1000 0.10 0.232 0.453 0.426 0.192 0.108 0.242 0.229 0.090
MSE 0.087 0.322 0.283 0.061 0.019 0.099 0.088 0.013

Correlation 0.981 0.912 0.924 0.989 0.976 0.839 0.858 0.985
MAE 100 0.25 0.589 0.580 0.573 0.506 0.295 0.317 0.313 0.231
MSE 0.587 0.544 0.534 0.431 0.142 0.160 0.157 0.088

Correlation 0.739 0.629 0.654 0.789 0.726 0.524 0.553 0.801
MAE 200 0.25 0.409 0.472 0.461 0.348 0.210 0.269 0.262 0.161
MSE 0.279 0.358 0.342 0.202 0.071 0.116 0.111 0.042

Correlation 0.862 0.743 0.764 0.896 0.859 0.650 0.676 0.909
MAE 1000 0.25 0.197 0.331 0.321 0.150 0.095 0.163 0.155 0.068
MSE 0.063 0.170 0.160 0.037 0.015 0.045 0.041 0.007

Correlation 0.963 0.873 0.882 0.982 0.966 0.870 0.884 0.984
MAE 100 0.75 0.629 0.504 0.504 0.506 0.290 0.281 0.281 0.218
MSE 0.664 0.418 0.420 0.438 0.137 0.126 0.127 0.079

Correlation 0.632 0.632 0.647 0.708 0.684 0.504 0.529 0.767
MAE 200 0.75 0.449 0.397 0.391 0.341 0.209 0.237 0.234 0.151
MSE 0.335 0.253 0.246 0.193 0.071 0.090 0.088 0.037

Correlation 0.786 0.752 0.768 0.864 0.826 0.626 0.647 0.889
MAE 1000 0.75 0.206 0.270 0.263 0.145 0.093 0.145 0.139 0.064
MSE 0.069 0.110 0.105 0.035 0.015 0.035 0.033 0.007

Correlation 0.946 0.882 0.889 0.976 0.956 0.854 0.867 0.981
MAE 100 0.90 0.694 0.718 0.686 0.675 0.344 0.372 0.369 0.291
MSE 0.809 0.834 0.768 0.774 0.190 0.218 0.217 0.139

Correlation 0.777 0.708 0.746 0.785 0.661 0.453 0.485 0.752
MAE 200 0.90 0.490 0.565 0.530 0.440 0.252 0.325 0.319 0.199
MSE 0.403 0.519 0.458 0.327 0.102 0.168 0.162 0.065

Correlation 0.887 0.822 0.851 0.913 0.824 0.566 0.597 0.886
MAE 1000 0.90 0.245 0.336 0.316 0.188 0.103 0.210 0.199 0.083
MSE 0.098 0.179 0.157 0.059 0.018 0.074 0.066 0.011

Correlation 0.972 0.939 0.948 0.986 0.969 0.822 0.842 0.981
MAE 100 0.95 0.837 0.951 0.890 0.857 0.418 0.459 0.448 0.368
MSE 1.171 1.437 1.281 1.251 0.279 0.327 0.315 0.225

Correlation 0.785 0.670 0.726 0.778 0.596 0.387 0.432 0.714
MAE 200 0.95 0.578 0.764 0.687 0.569 0.318 0.414 0.400 0.251
MSE 0.558 0.943 0.771 0.547 0.161 0.267 0.251 0.103

Correlation 0.902 0.790 0.839 0.907 0.790 0.498 0.544 0.867
MAE 1000 0.95 0.283 0.439 0.394 0.237 0.125 0.282 0.263 0.102
MSE 0.132 0.313 0.250 0.094 0.026 0.130 0.114 0.017

Correlation 0.977 0.934 0.949 0.987 0.969 0.777 0.808 0.980

Note: MAE and MSE denote the mean absolute error and the mean squared error, respectively. These measures consider the difference
between the true conditional quantile of the target variable and the estimated forecast. Correlation reports the standard linear correlation
and considers the same two time series. We run 1000 simulations. In both DGPs we consider six factors, three are relevant. Qcov3PRF#
denotes Qcov3PRF implementation with # number of factors, similarly for PCQR#.

48



Table 5: Out-of-sample R2
τ (%) IP growth with h = 3.

τ=0.05 τ=0.1 τ=0.25 τ=0.5 τ=0.75 τ=0.9 τ=0.95
Rolling window. Starting in 2011M08.

NFCI -0.5 1.5 -0.3 -8.1 -15.1 -12.8 -8.7
Risk -39.1 -1.6 -3.0 -6.1 -15.2 -19.6 -7.1
Credit 7.1 2.1 1.9 -5.1 -16.8 -8.2 0.2
Leverage 3.0 9.4 5.7 0.9 -7.2 -19.8 14.1
Nonfin. Lev. -31.8 -10.7 -5.0 -8.0 -3.9 -15.7 -51.7
Qcov3PRF1 34.7 13.9 6.8 4.2 1.4 15.4 16.1
Qcov3PRF2 39.8 26.4 13.2 3.6 7.0 9.4 10.9
Qcov3PRF3 39.0 24.6 2.7 1.9 12.1 9.3 11.2
PQR 40.5 16.5 -0.5 -1.3 7.1 9.0 10.6
PCQR1 -6.2 -8.6 -4.1 -10.7 -13.4 -22.9 -7.7
PCQR2 6.8 11.6 2.4 -1.7 -10.1 -5.0 -0.3
PCQR3 -7.6 15.5 4.1 -3.4 0.5 -10.1 3.9
PCQR-LASSO 25.0 14.0 9.0 9.0 3.0 -11.0 16.0

Rolling window. Starting in 2015M10.
NFCI -7.6 -8.6 -4.7 -7.9 -17.0 -13.8 -8.0
Risk -54.4 -15.2 -6.6 -3.2 -16.6 -22.2 -5.8
Credit 0.1 -11.4 -4.8 -6.0 -20.1 -9.3 1.0
Leverage -3.8 0.5 4.0 3.3 -5.5 -22.7 16.3
Nonfin. Lev. -45.9 -26.5 -12.9 -10.0 -5.2 -18.4 -58.2
Qcov3PRF1 31.7 0.0 -1.5 2.0 -1.8 14.5 16.0
Qcov3PRF2 34.7 15.7 4.8 2.0 6.0 10.8 12.7
Qcov3PRF3 34.3 14.0 -7.7 0.9 11.8 9.5 13.0
PQR 36.1 3.4 -13.0 -5.6 5.5 6.9 9.6
PCQR1 -15.3 -21.4 -8.2 -9.4 -13.6 -24.3 -5.6
PCQR2 -1.6 -1.1 -7.4 -4.9 -14.5 -8.0 0.4
PCQR3 -20.8 3.1 -4.5 -5.3 -0.5 -11.4 5.4
PCQR-LASSO 26.0 7.0 2.0 9.0 0.0 -18.0 20.0

Expanding window. Starting in 2011M08.
NFCI 15.8 12.2 0.3 -4.9 -5.2 0.5 1.0
Risk 13.2 10.1 -6.4 -11.1 -7.0 0.1 -0.5
Credit 18.9 14.5 6.0 -0.3 -3.0 1.1 3.0
Leverage 18.1 14.2 1.3 -4.5 -8.2 -5.4 -0.8
Nonfin. Lev. 17.2 11.2 4.6 0.7 -1.7 -2.2 -2.1
Qcov3PRF1 19.1 14.9 8.2 2.9 4.1 6.4 10.4
Qcov3PRF2 28.9 23.9 13.6 6.4 2.1 10.2 19.9
Qcov3PRF3 27.2 26.8 14.2 8.8 6.1 14.7 20.0
PQR 19.9 14.9 7.8 0.2 2.0 6.6 14.3
PCQR1 17.0 12.8 2.0 -4.8 -7.8 -3.5 -2.4
PCQR2 20.6 14.0 4.0 -3.9 -2.0 1.8 0.4
PCQR3 20.8 14.0 1.8 -10.6 -14.8 -6.1 9.3
PCQR-LASSO 24.0 24.0 6.0 -2.0 -1.0 3.0 4.0

Expanding window. Starting in 2015M10.
NFCI 7.5 6.1 -2.1 -0.1 0.1 0.1 0.4
Risk 6.4 5.8 -6.7 -3.0 -0.2 -0.3 -1.4
Credit 7.5 4.6 1.4 1.9 0.1 0.5 2.7
Leverage 9.8 10.1 0.4 1.2 -0.1 -1.7 0.9
Nonfin. Lev. 7.0 1.3 0.7 2.6 1.0 -1.6 -2.7
Qcov3PRF1 11.3 8.2 3.8 4.2 4.9 3.0 8.7
Qcov3PRF2 18.0 11.7 5.8 7.0 3.1 9.7 20.0
Qcov3PRF3 14.4 15.0 6.3 8.3 6.8 13.6 21.6
PQR 13.1 8.5 3.3 3.6 3.9 4.4 14.1
PCQR1 8.1 6.6 -0.5 0.5 -0.2 -0.3 -0.8
PCQR2 9.0 2.7 -1.3 0.8 2.7 0.5 -1.2
PCQR3 9.2 2.4 -3.6 -8.1 -10.4 -6.7 11.2
PCQR-LASSO 29.0 21.0 -1.0 1.0 4.0 9.0 17.0

Note: The out-of-sample R2
τ is reported. It evaluates the out-of-sample performance of the samples

2011M08-2023M12 and 2015M08-2023M12, respectively. August 2011 represents the observation
51 and October 2015 the observation 101. The size of the rolling window is 50. The variables Risk,
Credit, Leverage and Nonfi. Lev. consider a subgroup of indicators that construct the NFCI that
do not overlap. The IP growth is equal to the log difference of the current IP and the IP 3 months
before. Qcov3PRF# and PCQR# denote Qcov3PRF and PCQR implementation with # number
of factors, respectively. PCQR-LASSO selects predictors from the 40 factors corresponding to the
highest eigenvalues. The predictors are standardized.
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Table 6: Out-of-sample R2
τ (%) for IP growth with h = 12.

τ=0.05 τ=0.1 τ=0.25 τ=0.5 τ=0.75 τ=0.9 τ=0.95
Rolling window. Starting in 2011M08.

NFCI 1.0 11.2 5.4 -5.8 -10.6 -6.5 1.1
Risk -5.2 11.3 5.2 -2.1 -11.9 -8.4 -4.4
Credit 6.8 10.2 4.4 -4.5 -10.4 1.4 7.3
Leverage 5.6 11.5 7.2 -5.1 -2.3 -10.0 12.8
Nonfin. Lev. -13.2 10.7 -8.1 -28.6 -17.7 -14.1 -30.5
Qcov3PRF1 32.9 20.0 20.4 5.8 3.7 15.4 21.7
Qcov3PRF2 39.2 34.6 34.3 10.7 13.4 21.4 13.9
PQR 36.2 35.8 25.5 6.0 9.7 10.1 17.1
PCQR1 21.4 19.5 5.6 -7.4 -7.4 -9.8 -9.5
PCQR2 8.3 15.0 -4.8 -19.7 -1.4 6.0 -0.9
PCQR3 19.8 30.2 18.1 -0.4 10.5 14.1 1.0
PCQR-LASSO 14.0 34.0 35.0 18.0 11.0 12.0 31.0

Rolling window. Starting in 2015M10.
NFCI -13.3 0.9 3.7 -4.5 -14.8 -13.5 -5.9
Risk -22.5 -1.3 1.2 0.5 -16.5 -15.1 -12.0
Credit -1.4 -0.9 3.1 -3.7 -15.6 -4.3 1.3
Leverage -8.9 -3.3 1.4 -2.4 -1.4 -13.3 13.4
Nonfin. Lev. -36.0 -7.1 -25.4 -40.9 -30.1 -26.9 -48.2
Qcov3PRF1 22.3 0.1 9.2 3.0 -1.9 8.6 16.9
Qcov3PRF2 30.8 19.8 28.4 2.6 4.7 16.4 5.6
PQR 27.8 24.1 16.3 2.5 4.5 1.2 10.3
PCQR1 13.9 9.5 0.0 -4.4 -10.3 -16.4 -17.1
PCQR2 -7.4 -2.3 -22.3 -32.6 -11.9 -2.6 -11.4
PCQR3 9.2 19.5 10.4 -5.6 3.1 6.4 -7.3
PCQR-LASSO 2.0 28.0 20.0 16.0 4.0 1.0 27.0

Expanding window. Starting in 2011M08.
NFCI 24.8 20.4 -4.1 -2.6 0.1 7.1 13.3
Risk 17.2 13.7 -1.9 -6.1 0.1 3.9 8.8
Credit 30.9 24.5 -4.5 0.9 0.3 8.3 15.8
Leverage 26.6 25.7 2.5 -2.6 -1.4 -0.2 10.4
Nonfin. Lev. 33.8 33.0 13.8 3.1 -1.2 2.3 7.3
Qcov3PRF1 30.7 24.9 12.7 7.7 13.0 17.4 20.4
Qcov3PRF2 40.1 40.8 21.9 14.4 23.6 23.7 28.7
Qcov3PRF3 37.5 46.1 26.3 21.6 24.0 28.3 28.8
PQR 35.5 29.8 6.6 5.3 10.1 15.3 17.6
PCQR1 24.1 20.9 -7.3 0.8 -0.1 0.1 8.7
PCQR2 36.6 31.9 5.3 4.0 4.9 9.2 3.2
PCQR3 38.4 32.8 8.4 7.5 11.0 26.0 27.7
PCQR-LASSO 30.0 20.0 26.0 8.0 10.0 15.0 15.0

Expanding window. Starting in 2015M10.
NFCI 7.9 -2.7 -4.9 1.1 0.1 1.0 5.4
Risk -0.3 -9.5 -2.1 -1.0 -0.1 -4.7 -1.6
Credit 14.8 2.2 -10.6 3.3 0.5 3.4 10.1
Leverage 14.8 10.2 9.8 0.2 -0.3 -0.1 7.3
Nonfin. Lev. 24.9 19.7 18.3 11.8 2.9 -6.5 -3.7
Qcov3PRF1 17.1 7.3 7.5 3.9 10.2 9.4 12.1
Qcov3PRF2 18.9 18.4 6.9 10.2 21.8 14.8 20.6
Qcov3PRF3 19.6 23.9 14.7 18.3 20.9 19.9 20.5
PQR 18.4 8.7 3.5 5.7 7.0 8.3 9.3
PCQR1 10.0 0.7 -2.8 6.6 1.1 -0.4 6.1
PCQR2 19.2 6.5 -9.2 -0.2 0.7 -2.4 -10.9
PCQR3 21.9 8.3 -4.5 5.0 9.0 21.4 21.6
PCQR-LASSO 29.0 19.0 17.0 13.0 12.0 9.0 6.0

Note: The out-of-sample R2
τ is reported. It evaluates the out-of-sample performance of the samples

2011M08-2023M12 and 2015M08-2023M12, respectively. August 2011 represents the observation
51 and October 2015 the observation 101. The size of the rolling window is 50. The variables Risk,
Credit, Leverage and Nonfi. Lev. consider a subgroup of indicators that construct the NFCI that
do not overlap. The IP growth is equal to the log difference of the current IP and the IP 12 months
before. Qcov3PRF# and PCQR# denote Qcov3PRF and PCQR implementation with # number
of factors, respectively. PCQR-LASSO selects predictors from the 40 factors corresponding to the
highest eigenvalues. The predictors are standardized.
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Table 7: Check Loss for IP growth in-sample prediction.

Method τ=0.05 τ=0.25 τ=0.50 τ=0.75 τ=0.95
3-month ahead

NFCI 0.319 0.552 0.611 0.506 0.226
Qcov3PRF1 0.291 0.494 0.557 0.436 0.137
Qcov3PRF2 0.206 0.430 0.474 0.376 0.113
Qcov3PRF3 0.172 0.399 0.452 0.355 0.094
PQR 0.287 0.496 0.550 0.428 0.135
PCQR1 0.310 0.541 0.600 0.497 0.227
PCQR2 0.295 0.528 0.596 0.477 0.216
PCQR3 0.292 0.528 0.595 0.474 0.191

12-month ahead
NFCI 0.611 1.695 1.760 1.209 0.383
Qcov3PRF1 0.518 1.170 1.345 0.845 0.274
Qcov3PRF2 0.377 0.860 1.033 0.750 0.191
Qcov3PRF3 0.326 0.752 0.952 0.631 0.178
PQR 0.503 1.199 1.303 0.799 0.267
PCQR1 0.591 1.557 1.660 1.195 0.393
PCQR2 0.461 1.227 1.330 0.935 0.342
PCQR3 0.444 1.182 1.278 0.918 0.340

Note: IP growth is equal to the log difference of the current IP and IP h months before.
Qcov3PRF# and PCQR# denote Qcov3PRF and PCQR implementation with # number
of factors, respectively.

Table 8: Out-of-sample average FZ0 loss for IP growth prediction.

QR with NFCI Qcov3PRF3 PCQR3 PQR
3-month ahead

expected shortfall (5%) 0.96 0.43 0.82 0.84
expected longrise (95%) 0.57 0.07 0.36 0.17

12-month ahead
expected shortfall (5%) 1.15 0.53 0.95 1.09
expected longrise (95%) 0.68 0.06 0.80 0.15

Note: For the expected longrise we consider the FZ0 loss function but evaluated with
the negative quantile and expected longrise of the target. The values are divided by
100 for ease of presentation. Qcov3PRF# and PCQR# denote Qcov3PRF and PCQR
implementation with # number of factors, respectively. The values are divided by 100
for ease of presentation.
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Table 9: Out-of-sample R2
τ for one-quarter ahead forecast of Real GDP growth.

Starting Validation Date 1981Q1 1991Q1 2001Q1
τ=0.05 τ=0.1 τ=0.25 τ=0.05 τ=0.1 τ=0.25 τ=0.05 τ=0.1 τ=0.25

QR -111.7 -29.5 15.0 46.2 49.8 56.9 48.9 66.9 66.2
QR with CFNAIt -117.4 -31.5 16.5 44.8 51.7 55.1 49.0 57.9 63.9
QR-LASSO -8.7 2.6 -3.6 34.3 16.3 -5.0 35.2 20.3 11.9
PCQR1 14.9 18.9 5.5 46.6 33.2 15.5 12.1 29.2 38.9
PQR-zt = yt+1 18.6 28.1 15.7 54.9 45.3 34.8 58.9 53.6 58.8
PQR-zt = CFNAIt 19.3 30.4 23.3 58.5 46.6 44.3 58.6 57.7 55.4
Qcov3PRF1-zt = yt+1 21.3 27.8 24.8 57.9 48.5 38.1 58.5 65.6 56.5
Qcov3PRF1-zt = CFNAIt 22.1 32.5 25.3 58.3 56.6 44.4 61.3 53.8 60.0
MF-Qcov3PRF1-zt = yt+1 55.0 60.8 51.8 64.6 56.7 50.5 61.0 59.5 61.0
MF-Qcov3PRF1-zt = CFNAIt 54.2 61.6 51.6 61.5 61.0 50.2 61.4 60.0 60.7

Note: The forecasts are evaluated using a rolling window scheme of length 40, 80, and 120 with validation period
starting in 1981Q1, 1991Q1 and 2001Q1, respectively. QR denotes quantile regression. QR-LASSO quantile regression
with LASSO. Qcov3PRF1-zt = yt+1, Qcov3PRF with 1 automatic proxy. Qcov3PRF1-zt = CFNAIt, Qcov3PRF
with CFNAIt as a proxy. Similarly for PQR and MF-Qcov3PRF1. MF-Qcov3PRF1 works with monthly predictors,
and quarterly proxy and target.

Table 10: Out-of-sample R2
τ for one-year ahead forecast of the change in Global Land-Ocean Temperature

Index.

Method τ=0.05 τ=0.1 τ=0.25 τ=0.5 τ=0.75 τ=0.9 τ=0.95
Rolling window.

Qcov3PRF1 4.5 6.8 18.6 25.4 38.0 37.5 18.8
Qcov3PRF2 8.5 14.1 35.6 43.3 52.1 42.5 17.4
Qcov3PRF3 11.4 20.9 43.4 54.9 56.2 44.9 25.6
Qcov3PRF4 16.7 27.2 48.6 58.3 60.5 46.6 18.7
Qcov3PRF5 22.7 36.7 52.9 60.2 63.5 46.7 17.8
PQR 13.3 14.2 18.2 18.8 39.2 32.6 20.0
PCQR1 8.2 8.3 13.6 18.1 15.3 16.2 15.3
PCQR2 11.5 10.8 13.6 19.8 16.2 23.8 23.6
PCQR3 10.9 10.6 13.5 19.2 15.1 23.9 25.5
PCQR4 11.8 12.1 18.5 18.6 12.5 26.6 22.0
PCQR5 12.0 11.7 19.4 19.5 14.4 23.8 26.2
PCQR-LASSO 16.4 11.7 10.0 14.1 41.7 25.3 0.3

Expanding window.
Qcov3PRF1 6.9 3.3 11.1 25.8 45.7 39.8 30.8
Qcov3PRF2 8.7 13.1 27.0 48.7 61.2 57.9 34.7
Qcov3PRF3 11.9 16.4 36.5 61.2 66.7 57.3 27.2
Qcov3PRF4 16.5 22.1 46.1 63.6 69.6 57.1 39.0
Qcov3PRF5 18.7 29.7 51.0 64.7 70.4 58.0 34.0
PQR 13.3 14.2 18.2 18.8 39.2 32.6 20.0
PCQR1 5.2 3.0 3.8 9.5 11.4 13.0 21.2
PCQR2 3.4 2.7 3.8 11.0 15.0 15.6 23.8
PCQR3 4.5 2.1 5.7 12.9 15.7 14.8 25.2
PCQR4 6.3 5.7 9.7 11.0 13.4 13.3 21.2
PCQR5 5.8 5.7 9.8 9.2 14.8 16.7 12.0
PCQR-LASSO 17.6 23.3 25.0 30.5 25.9 6.6 -18.9

Note: The forecasts are evaluated starting in 2001. The size of the rolling window is 70.
We take the first difference of the Global Land-Ocean Temperature index and the annual
growth of the CO2 emissions (difference in logs). In all the specifications we include the
current value of the Global land-ocean temperature index as a predictor. Qcov3PRF#
and PCQR# denote Qcov3PRF and PCQR implementation with # number of factors,
respectively.
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