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Abstract

In this paper, we introduce a novel method for predicting intraday instantaneous

volatility based on Itô semimartingale models using high-frequency financial data. Sev-

eral studies have highlighted stylized volatility time series features, such as interday

auto-regressive dynamics and the intraday U-shaped pattern. To accommodate these

volatility features, we propose an interday-by-intraday instantaneous volatility ma-

trix process that can be decomposed into low-rank conditional expected instantaneous

volatility and noise matrices. To predict the low-rank conditional expected instanta-

neous volatility matrix, we propose the Two-sIde Projected-PCA (TIP-PCA) proce-

dure. We establish asymptotic properties of the proposed estimators and conduct a

simulation study to assess the finite sample performance of the proposed prediction

method. Finally, we apply the TIP-PCA method to an out-of-sample instantaneous

volatility vector prediction study using high-frequency data from the S&P 500 index

and 11 sector index funds.
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1 Introduction

The analysis of volatility is a vibrant research area in financial econometrics and statistics.

In practice, it is crucial to investigate the volatility dynamics of asset returns for hedging,

option pricing, risk management, and portfolio management. With the wide availability

of high-frequency financial data, several well-performing non-parametric integrated volatil-

ity estimation methods have been developed. Examples include two-time scale realized

volatility (TSRV) (Zhang et al., 2005), multi-scale realized volatility (MSRV) (Zhang, 2006,

2011), pre-averaging realized volatility (PRV) (Christensen et al., 2010; Jacod et al., 2009),

wavelet realized volatility (WRV) (Fan and Wang, 2007), kernel realized volatility (KRV)

(Barndorff-Nielsen et al., 2008, 2011), quasi-maximum likelihood estimator (QMLE) (Aı̈t-

Sahalia et al., 2010; Xiu, 2010), local method of moments (Bibinger et al., 2014), and robust

pre-averaging realized volatility (Fan and Kim, 2018; Shin et al., 2023). This incorporation

of high-frequency information enhances our understanding of low-frequency (i.e., interday)

market dynamics, and several conditional volatility models have been developed based on the

realized volatility to explain market dynamics. Examples include realized volatility-based

modeling approaches (Andersen et al., 2003), heterogeneous auto-regressive (HAR) models

(Corsi, 2009), high-frequency-based volatility (HEAVY) models (Shephard and Sheppard,

2010), realized GARCH models (Hansen et al., 2012), and unified GARCH-Itô models (Kim

and Wang, 2016; Song et al., 2021).

To understand intraday dynamics, several non-parametric instantaneous (or spot) volatil-

ity estimation procedures have been developed (Fan and Wang, 2008; Figueroa-López and

Wu, 2022; Foster and Nelson, 1996; Kristensen, 2010; Mancini et al., 2015; Todorov, 2019;

Todorov and Zhang, 2023; Zu and Boswijk, 2014). With these well-performing instantaneous

volatility estimators, several studies have found that intraday instantaneous volatility has

U-shaped patterns (Admati and Pfleiderer, 1988; Andersen and Bollerslev, 1997; Andersen

et al., 2019; Hong and Wang, 2000; Li and Linton, 2023). On the other hand, forecasting

intraday volatility has not received as much attention in the literature compared to daily
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volatility forecasting. Engle and Sokalska (2012) developed a modified GARCH model that

imposes the conditional variance as a product of daily, diurnal, and stochastic intraday com-

ponents for intraday volatility forecasting. Recently, Zhang et al. (2024) studied several

non-parametric machine learning methods to forecast intraday realized volatility by utilizing

commonality in intraday volatility. From the aforementioned studies, it is evident that inter-

day volatility dynamics can be explained by autoregressive-type time series dynamics while

intraday volatility dynamics have some periodic patterns, such as a U-shape. Thus, to predict

the one-day-ahead whole intraday instantaneous volatility vector, we need to consider the

interday and intraday dynamics simultaneously. Furthermore, since we consider the predic-

tion of whole intraday instantaneous volatilities, we need to handle the overparameterization

issue.

This paper introduces a novel approach for predicting the one-day-ahead instantaneous

volatility process. Specifically, we represent the instantaneous volatility process in a matrix

form. For example, to account for interday time series dynamics and intraday periodic pat-

terns, each row corresponds to a day, and each column represents a high-frequency sequence

within that day. Thus, we have an interday-by-intraday instantaneous volatility matrix.

To handle the overparameterization issue, we impose a low-rank plus noise structure on

the instantaneous volatility matrix, where the low-rank components represent a conditional

expected instantaneous volatility matrix and have semiparametric factor structures. To

accommodate the proposed instantaneous volatility model, we adopt the Projected-PCA

method (Fan et al., 2016b) to estimate left-singular and right-singular vector components

with instantaneous volatility matrix estimators. For example, for the left-singular vector,

we project the left-singular vectors onto a linear space spanned by past realized volatility

estimators, which enables us to account for the interday time-series dynamics and to predict

the one-day-ahead instantaneous volatility vector with observed current realized volatility

estimators. Conversely, for the right-singular vector, to explain periodic patterns, we project

the right-singular vectors onto a linear space spanned by deterministic time sequences. This
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two-side projection enables us to explain the interday and intraday dynamics simultaneously.

We call this the Two-sIde Projected-PCA (TIP-PCA) procedure. We then derive conver-

gence rates for the projected instantaneous volatility matrix estimator and the predicted

instantaneous volatility vector using the TIP-PCA method. As an empirical study, we apply

the proposed TIP-PCA estimator on out-of-sample predictions for the one-day-ahead instan-

taneous volatility process using high-frequency trading data. Using a rolling window scheme,

we compare TIP-PCA with several methods. TIP-PCA demonstrates superior performance

by leveraging both interday and intraday dynamics. Additionally, we evaluate one-day-

ahead 10-minute frequency Value at Risk (VaR) predictions, where TIP-PCA consistently

outperforms other methods in backtests.

The remainder of the paper is structured as follows. Section 2 establishes the model and

introduces the TIP-PCA prediction procedure. Section 3 provides an asymptotic analysis

of the TIP-PCA estimators. The effectiveness of the proposed method is demonstrated

through a simulation study in Section 4 and by applying it to real high-frequency financial

data for predicting the one-day-ahead instantaneous volatility process in Section 5. Section

6 concludes the study. All proofs are presented in the online supplementary file.

2 Model Setup and Estimation Procedure

Throughout this paper, we denote by ∥A∥F , ∥A∥2 (or ∥A∥ for short), ∥A∥1, ∥A∥∞, and

∥A∥max the Frobenius norm, operator norm, l1-norm, l∞-norm, and elementwise norm, which

are defined, respectively, as ∥A∥F = tr1/2(A′A), ∥A∥2 = λ
1/2
max(A′A), ∥A∥1 = maxj

∑
i |aij|,

∥A∥∞ = maxi
∑

j |aij|, and ∥A∥max = maxi,j |aij|. When A is a vector, the maximum norm

is denoted as ∥A∥∞ = maxi |ai|, and both ∥A∥ and ∥A∥F are equal to the Euclidean norm.
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2.1 A Model Setup

We consider the following jump diffusion process: for the i-th day and intraday time t ∈ [0, 1],

dXi,t = µi,tdt+ σi,tdBi,t + Ji,tdPi,t, (2.1)

where Xi,t is the log price of an asset, µi,t is a drift process, Bi,t is a one-dimensional standard

Brownian motion, Ji,t is the jump size, and Pi,t is the Poisson process with the intensity µJ .

For a given intraday time sequence, for each i = 1, . . . , D and j = 1, . . . , n, we denote the

instantaneous volatility process as ci,j := σ2
i,tj

, where 0 < t1 < · · · < tn = 1. Then, we can

write the discrete-time instantaneous volatility process as follows:

ΣD,n = (ci,j)D×n = UΛV′ +Σε, (2.2)

where U = (ui,k)i=1,...,D,k=1,...,r is the left singular vector matrix, V = (vj,k)j=1,...,n,k=1,...,r is

the right singular vector matrix, Λ = Diag(λ1, . . . , λr) is the singular value matrix, and Σε =

(εi,j)D×n is the random noise matrix. We note that ΣD,n is a D×n matrix, which is distinct

from a covariance matrix and contains only positive elements. The left singular vector

matrix represents interday volatility dynamics, while the right singular vector matrix explains

intraday volatility dynamics. For example, we consider r = 1. For the intraday, the U-

shaped instantaneous volatility pattern is often observed in empirical data and supported by

the financial market (Admati and Pfleiderer, 1988; Andersen and Bollerslev, 1997; Andersen

et al., 2019; Hong andWang, 2000). Thus, we can use a U-shape function with respect to time

t for V, for example, vt,1 = a1(t−a2)
2+a3. In contrast, for the interday, the daily dynamics

are often explained by past realized volatilities (Corsi, 2009; Hansen et al., 2012; Kim and

Fan, 2019; Kim and Wang, 2016; Shephard and Sheppard, 2010; Song et al., 2021). To reflect

this, ui,1 is a function of past realized volatilities, such as the HAR model (Corsi, 2009), for

example, ui,1 = b0 + b1RVi−1 + b2
1
5

∑5
j=1RVi−j + b3

1
22

∑22
j=1RVi−j, where RVi is the i-th day

5



realized volatility. The features mentioned above motivate the representation of the model

(2.2). We note that in this paper, to simplify prediction modeling, we consider the time series

structure of interday volatility dynamics and the instantaneous periodic pattern of intraday

volatility dynamics, as described in the example above. Our empirical experiment supports

that the simplified structure performs well. However, we can impose more complicated

structures on both dimensions. That is, the above example is one of the possible models,

and we propose a generalized model discussed below.

In this paper, our goal is to predict the instantaneous volatility process for the next day.

In general, we assume that λ1, . . . , λr are latent factors, ui,k is Fi−1-adapted, and vt,k is a

function of time t. Thus, given FD, we can predict the instantaneous volatility as follows:

E
[
σ2
D+1,t|FD

]
=

r∑
k=1

λkuD+1,kvt,k a.s. (2.3)

Given (2.2), we impose the following nonparametric structure on both singular vectors: for

each k ≤ r, i ≤ D, and j ≤ n,

ui,k = gk(xi), vj,k = hk(wj), (2.4)

where xi = (xi1, . . . , xid1) and wj = (wj1, . . . , wjd2) are observable covariates that explain

the left and right singular vectors, respectively. In this context, xi can be the past realized

volatility of yesterday, last week, and last month in the HAR model, while wj can be the

intraday time sequence. Furthermore, we assume that each unknown nonparametric function

is additive as follows: for each k ≤ r, i ≤ D, and j ≤ n,

gk(xi) = ϕ(xi)
′bk +Rk(xi),

hk(wj) = ψ(wj)
′ak +Qk(wj),

where ϕ(xi) is a (J1d1) × 1 vector of basis functions, bk is a (J1d1) × 1 vector of sieve
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coefficients, and Rk(xi) is the approximation error term; ψ(wj) is a (J2d2)×1 vector of basis

functions, ak is a (J2d2) × 1 vector of sieve coefficients, and Qk(wj) is the approximation

error term. Equivalently, we can write gk(xi) =
∑d1

d=1 gkd(xid) and hk(wj) =
∑d2

d=1 hkd(wjd),

where gkd(xid) =
∑J1

l=1 bl,kdϕl(xid) + Rkd(xid) and hkd(wjd) =
∑J2

l=1 al,kdψl(wid) + Qkd(wjd),

respectively. Hence, each additive component of gk and hk can be estimated by the sieve

method. Throughout the paper, we assume that d1 = dim(xi), d2 = dim(wj) and r are

fixed. The number of sieve terms, J1 and J2, grow very slowly as D → ∞ and n → ∞,

respectively. In a matrix form, we can write

U := G(X) = Φ(X)B+R(X),

V := H(W) = Ψ(W)A+Q(W),

where the D × (J1d1) matrix Φ(X) = (ϕ(x1), . . . , ϕ(xD))
′, the (J1d1) × r matrix B =

(b1, . . . ,br), and R(X) = (Rk(xi))D×r; the n× (J2d2) matrix Ψ(W) = (ψ(w1), . . . , ψ(wn))
′,

the (J2d2)×r matrix A = (a1, . . . , ar), and Q(W) = (Qk(wj))n×r. We note that since G(X)

and H(W) are identifiable up to the sign and Φ(X) and Ψ(W) are given, the coefficients

A and B can be defined by the definition of linear regression coefficients. Then, since the

vectors of basis functions are non-singular, we can define uniquely Φ(X)B and Ψ(W)A.

Due to the imperfections of the trading mechanisms (Aı̈t-Sahalia and Yu, 2009), the true

underlined log-stock price Xi,t in (2.1) is not observable. To reflect the imperfections, we

assume that the high-frequency intraday observations Xi,ts , s = 1, . . . ,m, are contaminated

by microstructure noises as follows:

Yi,ts = Xi,ts + ei,ts , i = 1, . . . , D, s = 1, . . . ,m, (2.5)

where the microstructure noises ei,ts are independent random variables with a mean of zero

and a variance of ηii. For simplicity, we assume that the observed time points are equally

spaced, that is, ts − ts−1 = m−1 for i = 1, . . . , D and s = 2, . . . ,m.
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Several non-parametric instantaneous volatility estimation procedures have been devel-

oped (Fan and Wang, 2008; Figueroa-López and Wu, 2022; Foster and Nelson, 1996; Kris-

tensen, 2010; Mancini et al., 2015; Todorov, 2019; Todorov and Zhang, 2023; Zu and Boswijk,

2014). We can use any well-performing instantaneous volatility estimator that satisfies As-

sumption 3.1 (ii). In the numerical study, we employ the jump robust pre-averaging method

proposed by Figueroa-López and Wu (2022). The specific method is described in (4.1).

2.2 Two-sIde Projected-PCA

To accommodate the semiparametric structure in Section 2.1, we need to project the left

and right singular vectors on linear spaces spanned by the corresponding covariates. To do

this, we apply the Projected-PCA (Fan et al., 2016b) procedure to the left and right singular

vectors with the well-performing instantaneous volatility estimator. The specific procedure

is as follows:

1. For each i ≤ D and j ≤ n, we estimate the instantaneous volatility, ci,j = σ2
i,tj

, using

high-frequency log-price observations and denote them ĉi,j. Let Λ̂ = diag(λ̂1, . . . , λ̂r),

where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂r are the square root of the leading eigenvalues of Σ̂D,nΣ̂
′
D,n,

where Σ̂D,n = (ĉi,j)D×n.

2. Define theD×D projection matrix as PΦ = Φ(X)(Φ(X)′Φ(X))−1Φ(X)′. The columns

of Ĝ(X) := (Û1, . . . , Ûr) are defined as the r leading eigenvectors of the D×D matrix

PΦΣ̂D,nΣ̂
′
D,nPΦ. Then, we can estimate B by

B̂ = (b̂1, . . . , b̂r) = (Φ(X)′Φ(X))−1Φ(X)′Ĝ(X).

Given any x ∈ X , we estimate gk(·) by

ĝk(x) = ϕ(x)′b̂k for k = 1, . . . , r,
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where X denotes the support of xi.

3. Define the n × n projection matrix as PΨ = Ψ(W)(Ψ(W)′Ψ(W))−1Ψ(W)′. The

columns of Ḧ(W) := (V̂1, . . . , V̂r) are defined as the r leading eigenvectors of the n×n

matrix PΨΣ̂
′
D,nΣ̂D,nPΨ.

4. We estimate a sign vector s0 = (s01, . . . , s0r) ∈ {−1, 1}r defined in (2.7) by

ŝ := (ŝ1, . . . , ŝr) = argmin
s∈{−1,1}r

∥∥∥∥∥
r∑

k=1

skλ̂kÛkV̂
′
k − Σ̂D,n

∥∥∥∥∥
2

F

. (2.6)

Then, we update the right singular vector estimator by Ĥ(W) = (ŝ1V̂1, . . . , ŝrV̂r).

5. Finally, we predict the conditional expectation of the one-day-ahead instantaneous

volatility vector E[(cD+1,1, . . . , cD+1,n)|FD] by

(c̃D+1,1, . . . , c̃D+1,n) = ĝ(xD+1)Λ̂Ĥ(W)′,

where ĝ(xD+1) = (ĝ1(xD+1), . . . , ĝr(xD+1)).

Remark 2.1. To estimate the instantaneous volatility matrix, we need to match the signs

for singular vector estimators (Cho et al., 2017). This is because Ûk and V̂k can estimate

Uk = (u1,k, . . . , uD,k)
′ and Vk = (v1,k, . . . , vD,k)

′ up to signs, such as sign(⟨Ûk, Uk⟩) and

sign(⟨V̂k, Vk⟩), respectively. Let s0 = (s01, . . . , s0r) ∈ {−1, 1}r be

s0k = sign(⟨Ûk, Uk⟩)sign(⟨V̂k, Vk⟩) for k = 1, . . . , r. (2.7)

Then, UΛV′ can be consistently estimated by
∑r

k=1 s0kλ̂kÛkV̂
′
k . However, since s0 is un-

known in practice, we employ the sign estimation procedure as discussed in Step 2.6 above.

We can show their sign consistency under a regularity condition (see Assumption 3.5).

In summary, given the estimated instantaneous volatility matrix, we initially estimate
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the singular values using the conventional PCA method. We employ the Projected-PCA

method (Fan et al., 2016b) to estimate the unknown nonparametric function using observ-

able covariates (e.g., a series of past realized volatilities). We then apply the Projected-PCA

method again to estimate the right singular vector matrix using the covariate (e.g., intraday

time sequence). Finally, with the observable covariates xD+1 (i.e., information about past

realized volatilities on the Dth day), we predict the one-day-ahead instantaneous volatil-

ity process by multiplying the estimated singular value and vector components. We refer

to this procedure as the Two-sIde Projected-PCA (TIP-PCA). The TIP-PCA method can

accurately predict instantaneous volatility by incorporating both interday and intraday dy-

namics, as the projection approach removes noise components. Moreover, since we assume

a low-rank matrix, we can reduce the complexity of the model, which helps overcome the

overparameterization. The numerical study in Sections 4 and 5 demonstrates that TIP-PCA

performs well in predicting a one-day-ahead instantaneous volatility vector.

2.3 Choice of Tuning Parameters

The suggested TIP-PCA estimator requires the choice of tuning parameters r, J1, and J2.

First, the number of latent factors, r, can be chosen through data-driven methods (Ahn and

Horenstein, 2013; Bai and Ng, 2002; Onatski, 2010). For example, r can be determined by

finding the largest singular value gap or singular value ratio such that maxk≤rmax(λ̂k − λ̂k+1)

and maxk≤rmax

λ̂k

λ̂k+1
for a predetermined maximum number of factors rmax. For the numerical

studies in Sections 4 and 5, we employed rank 1 using the eigenvalue ratio method proposed

by Ahn and Horenstein (2013).

The numbers of sieve terms, J1 and J2, and basis functions can be flexibly chosen by

practitioners based on the conjecture of the nonparametric function form (Chen et al., 2020;

Fan et al., 2016b). We note that J1 and J2 are the cost to approximate the unknown

nonparametric functions gk(·) and hk(·) (see Remark 3.2). Both J1 and J2 grow very slowly

such as logD and log n, respectively, and we require J1 = o(
√
D) and J2 = o(

√
n) as described
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in Proposition 3.1 and Theorem 3.1. In this context, the interday volatility dynamic is a linear

function of the past realized volatilities, while the intraday volatility dynamic is a U-shaped

function with respect to deterministic time sequences. Therefore, for the numerical studies

in Sections 4 and 5, we employed the additive polynomial basis with the sieve dimensions

J1 = 2 and J2 = 3 for the TIP-PCA method.

3 Asymptotic Properties

In this section, we establish the asymptotic properties of the proposed TIP-PCA estimator.

To do this, we impose the following technical assumptions.

Assumption 3.1.

(i) For k ≤ r, the eigengap satisfies |λk+1 − λk| = OP (
√
nD) and λr+1 = 0.

(ii) For each i ≤ D and j ≤ n and, the estimated instantaneous volatility ĉi,j satisfies

ĉi,j − ci,j = υi,j + ςi,j,

where υi,j follows the martingale difference sequence and ςi,j is the estimation bias

term such that E(υi,j|Fi,tj) = 0 a.s., E(υ6i,j) = O(m−3/4), E(ς6i,j) = O(ρ6m), and for any

s ≤ D and j′ ≤ n, E(ci,j′υi,j|Fi,tj) = 0 and E(cs,jcs,j′υi,j|Fi,tj) = 0 a.s. Additionally,

there exist a constant C1 > 0 such that E(c4i,j) < C1.

(iii) Let Ωε,D×D denote the D × D covariance matrix of εj = (ε1,j, . . . , εD,j)
′. Define

ΩD×D = 1
n
UΛ2U′ +Ωε,D×D. The instantaneous volatility matrix, ΣD,n, satisfies

∥ 1
n
ΣD,nΣ

′
D,n −ΩD×D∥max = OP (

√
logD/n).

Assumption 3.1 is related to assumptions for the instantaneous volatility matrix. As-

sumption 3.1(i) is the eigengap assumption, which is essential for analyzing low-rank ma-
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trices (Candes and Plan, 2010; Cho et al., 2017; Fan et al., 2018a). We note that since we

have a D×n instantaneous volatility matrix, the pervasive condition implies that the eigen-

value for the low-rank component has
√
nD order. The moment conditions in Assumption

3.1(ii) can be satisfied under some assumptions on the process X, microstructure noise, and

kernel function in Figueroa-López and Wu (2022) by using similar arguments in Kim et al.

(2016). When estimating the spot volatility at time t, we usually use data after time t. This

implies E(υi,j|Fi,tj) = 0 a.s. We note that the spot volatility estimator is asymptotically

unbiased, thus, the estimation bias term goes to zero faster than m− 1
8 . The uncorrelated

condition, E(ci,j′υi,j|Fi,tj) = E(cs,jcs,j′υi,j|Fi,tj) = 0 a.s., is required to show the benefit of

the smoothing scheme. This condition is satisfied, if the spot volatility can be represented

by Fi,tj -adapted processes and independent noises. For example, the usual time series struc-

ture, such as ARMA, satisfies it. Thus, this condition is not restrictive. It is worth noting

that if the uncorrelated condition is not satisfied, we have a slower convergence rate, for

example, we have additionally m−1/8 in Proposition 3.1 and Theorem 3.1. To analyze large

matrix inferences, we impose the element-wise convergence condition (Assumption 3.1(iii)).

This condition can be easily satisfied under the sub-Gaussian condition and the mixing time

dependency (Fan et al., 2018a,b; Vershynin, 2010; Wang and Fan, 2017). We can also obtain

this condition under heavy-tailed observations with the bounded fourth moments (Fan and

Kim, 2018; Shin et al., 2023).

Assumption 3.2.

(i) There are cmin and cmax > 0 so that, with the probability approaching one, as D → ∞

and n→ ∞,

cmin < λmin(D
−1Φ(X)′Φ(X)) < λmax(D

−1Φ(X)′Φ(X)) < cmax,

cmin < λmin(n
−1Ψ(W)′Ψ(W)) < λmax(n

−1Ψ(W)′Ψ(W)) < cmax.

(ii) maxl≤J1,i≤D,d≤d1 Eϕl(xid)
2 <∞, and maxl≤J2,j≤n,d≤d2 Eψl(wjd)

2 <∞.
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(iii) maxk≤r,i≤D Egk(xi)
2 <∞, and maxk≤r,j≤nEhk(wj)

2 <∞.

Assumption 3.2 is related to basis functions. Intuitively, the strong law of large numbers

implies Assumption 3.2 (i), which can be satisfied by normalizing common basis functions

such as B-splines, polynomial series, or Fourier basis.

Assumption 3.3. For all d ≤ d1, d
′ ≤ d2, k ≤ r,

(i) the functions gkd(·) and hkd′(·) belong to a Hölder class G and H defined by, for some

L > 0,

G = {g : |g(c)(s)− g(c)(t)| ≤ L|s− t|α},

H = {h : |h(c′)(s)− h(c
′)(t)| ≤ L|s− t|α′}.

(ii) the sieve coefficients {bl,kd}l≤J1 satisfy for κ = 2(c+ α) ≥ 4, as J1 → ∞,

sup
x∈Xd

∣∣∣∣∣gkd(x)−
J1∑
l=1

bl,kdϕl(x)

∣∣∣∣∣
2

= O(J−κ
1 /D),

where Xd is the support of the dth element of xi. Similarly, the sieve coefficients

{al,kd′}l≤J2 satisfy for κ = 2(c′ + α′) ≥ 4, as J2 → ∞,

sup
w∈Wd′

∣∣∣∣∣hkd′(w)−
J2∑
l=1

al,kd′ψl(w)

∣∣∣∣∣
2

= O(J−κ
2 /n),

where Wd′ is the support of the d′th element of wj.

(iii) maxk≤r,l≤J1,d≤d1 b
2
l,kd = O(1/D) and maxk≤r,l≤J2,d′≤d2 a

2
l,kd′ = O(1/n).

Assumption 3.3 pertains to the accuracy of the sieve approximation and can be satisfied

using a common basis such as a polynomial basis or B-splines (see Chen, 2007). We have the

following conditions that the idiosyncratic errors are weakly dependent on both dimensions,

which are commonly imposed for high-dimensional factor analysis.
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Assumption 3.4.

(i) Eεi,j = 0 for all i ≤ D, j ≤ n; {εi,j}i≤D,j≤n is independent of {xi,wj}i≤D,j≤n.

(ii) There is C > 0 such that

max
m≤D

D∑
i=1

|Eεi,jεm,j| < C,

1

nD

D∑
i=1

D∑
m=1

n∑
j=1

n∑
s=1

|Eεi,jεm,s| < C.

(iii) The covariance matrix Ωε,D×D = cov(εj) := (ωε,ij)D×D, where εj = (ε1,j, . . . , εD,j)
′,

satisfies

∥Ωε,D×D∥ = O(φD), where φD = o(D).

Assumption 3.4(iii) is the conventional condition on the idiosyncratic covariance ma-

trix. For example, this includes the sparsity condition, which has been considered in many

applications (Boivin and Ng, 2006; Fan et al., 2016a).

Assumption 3.5. The estimated instantaneous volatility matrix Σ̂D,n and initial estimators

{λ̂k, Ûk, V̂k}rk=1 satisfy

lim
D→∞,n→∞

P

 min
s∈{−1,1}r

∥∥∥∥∥
r∑

k=1

skλ̂kÛkV̂
′
k − Σ̂D,n

∥∥∥∥∥
2

F

<

∥∥∥∥∥
r∑

k=1

s0kλ̂kÛkV̂
′
k − Σ̂D,n

∥∥∥∥∥
2

F

 = 0.

Remark 3.1. Assumption 3.5 is related to the sign estimation in (2.6). In this paper, we

conduct the singular value decomposition to estimate the left and right singular vectors

separately, but these vectors can only be estimated up to a sign due to the sign problem of

singular vectors. Hence, to define the signs uniquely, we impose this identifiability condition.

To understand Assumption 3.5, for simplicity, we consider the case of r = 1. When s0 = 1,

14



Assumption 3.5 implies

lim
D→∞,n→∞

P
(
∥ − λ̂1Û1V̂

′
1 − Σ̂D,n∥2F < ∥λ̂1Û1V̂

′
1 − Σ̂D,n∥2F

)
= 0.

That is, the probability that ŝ chooses a different sign than the true sign goes to zero as

dimensions increase (Cho et al., 2017). Thus, Assumption 3.5 guarantees the identifiability

of the sign problem. In light of this, Assumption 3.5 is the natural assumption to make.

We obtain the following elementwise convergence rate of the projected instantaneous

volatility matrix estimator.

Proposition 3.1. Suppose that Assumptions 3.1–3.5 hold, J1 = o(
√
D), and J2 = o(

√
n).

As D,n,m, J1, J2 → ∞, we have

∥Ĝ(X)Λ̂Ĥ(W)′ −G(X)ΛH(W)′∥max

= OP

(√
logD

n
+
φD

D
+max(J1, J2)

(√
ρm

m
1
8

+ ρm

)

+
J1√
nm

1
4

+
J2√
Dm

1
4

+min(J1, J2)
1
2
−κ

2 +
J1√
D

+
J2√
n

)
.

Remark 3.2. Proposition 3.1 shows that the projected instantaneous volatility matrix es-

timator has the convergence rate J
√

ρm
m1/8 + J

1
2
−κ

2 + J√
D
+ J√

n
up to the log order and the

sparsity level, when ρm < m−1/8 and J = J1 = J2. We note that the convergence rate ρm

of the bias term is faster than the convergence rate m−1/8 of the martingale difference term

in the spot volatility estimator, and the term
√

ρm
m1/8 arises from the cross product between

two components. The bias comes from the drift term that has the order of m−1, and due

to the subsampling scheme to handle the microstructure noise, ρm usually is the order of

m−1/2. The martingale term is negligible because of the smoothing effect when calculating

the singular components. It is worth noting that if ρm is zero, with the fixed m, we can ob-

tain the consistency. The term D−1/2 is the cost to learn daily times series dynamics, while
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the term n−1/2 is the learning cost of the intraday periodic patterns. We note that J1 and

J2 are related to the sieve approximation. That is, max(J1, J2) is the cost to approximate

the unknown nonparametric functions gk(·) and hk(·). In addition, the term min(J1, J2)
1
2
−κ

2

is due to the approximation error. If gk(·) and hk(·) are known, the convergence rate is√
ρm
m1/8 + n−1/2 +D−1/2 up to the log order and the sparsity level with the finite J1 and J2.

The following theorem provides the convergence rate of the predicted instantaneous

volatility using the TIP-PCA method.

Theorem 3.1. Suppose that Assumptions 3.1–3.5 hold, J1 = o(
√
D), and J2 = o(

√
n). As

D,n,m, J1, J2 → ∞, we have

max
j≤n

|c̃D+1,j − E[cD+1,j|FD]|

= OP

(√
logD

n
+
φD

D
+

J2√
Dm

1
4

+ J2

(√
ρm

m
1
8

+ ρm

)
+ J

1
2
−κ

2
2 +

J2√
n

)

+OP

(
J

3
2
1√
nm

1
4

+ J
3
2
1

(√
ρm

m
1
8

+ ρm

)
+ J

1−κ
2

1 +
J

3
2
1√
D

)
max
l≤J1

sup
x

|ϕl(x)|.

Theorem 3.1 indicates that the proposed TIP-PCA consistently predicts the one-day-

ahead instantaneous volatility. As discussed in Remark 3.2, we have
√

ρm
m1/8 , D

−1/2, n−1/2,

and Ji’s terms. To predict the one-day-ahead instantaneous volatility process, we need to

learn the interday time series dynamics and intraday periodic patterns. Thus, the terms

D−1/2 and n−1/2 are usual costs. We note that the difference from the result in Proposition

3.1 arises from the estimation of the nonparametric function gk(·). Specifically, out-of-

sample predictions with any covariates x necessitate additional costs such as J
1/2
1 and the

supremum term maxl≤J1 supx |ϕl(x)|, whereas the result in Proposition 3.1 does not require

them because it is based on in-sample prediction.
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4 Simulation Study

In this section, we conducted simulations to examine the finite sample performance of the

proposed TIP-PCA method. We first generated high-frequency observations as follows: for

i = 1, . . . , D + 1, s = 0, . . . ,m, and ts = s/m,

Yi,ts = Xi,ts + ei,ts ,

dXi,t = (µ− σ2
i,t/2)dt+ σi,tdBi,t + Ji,tdPi,t,

σ2
i,ts = σ̃2

i h(ts) + εi,ts ,

where we set microstructure noise as ei,ts ∼ N (0, 0.00052) and the initial value as X1,0 = 1;

Bi,t is a standard Brownian motion; for the jump part, we set Ji,t ∼ N (−0.01, 0.022) and

Pi,t+∆ − Pi,t ∼ Poisson(36∆/252); σ̃i = b0 + b1σ̃i−1 + b2
1
5

∑5
s=1 σ̃i−s + b3

1
22

∑22
s=1 σ̃i−s + ζi,

ζi ∼ N (0, 1), h(ts) = γ0+γ1(ts−0.6)2, and εi,ts = q(ts)ξi,ts , where q(ts)
2 = 0.1+0.5(2ts−1)2

and ξi,ts ∼ N (0, 0.012). The model parameters were set to be

µ = 0.05/252, γ0 = 0.04/252, γ1 = 0.5/252,

b0 = 0.5, b1 = 0.372, b2 = 0.343, b3 = 0.224.

The normalized parameter values above imply the daily time unit, and we adapted the

estimated coefficients studied in Corsi (2009) to generate σ̃i. We note that in each simulation,

the instantaneous volatility process was generated until all instantaneous volatility values

were positive, based on the data-generating process described above. We set m = 23,400,

which indicates that the data are observed every second over a period of 6.5 trading hours

per day.

For each simulation, we used the jump robust pre-averaging method (Figueroa-López and

Wu, 2022) to estimate the instantaneous volatility, ci,τ = σ2
i, τ

n
, at a frequency of every 5 or
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10 minutes (i.e., n = m/300 or m/600) for each i-th day as follows: for τ = 1, . . . , n,

ĉi,τ =
1

ϕkn(g)

m−kn+1∑
s=1

Kbm(ts−1 −
τ

n
)

(
Ȳ 2
i,s −

1

2
Ŷi,s

)
1{|Ȳi,s|≤νm}, (4.1)

where Kb(x) = K(x/b)/b, the bandwidth size bm = 1/n, the weight function g(x) = 2x ∧

(1− x),

Ȳi,s =
km−1∑
l=1

g

(
l

km

)
(Yi,ts+l

− Yi,ts+l−1
), ϕkm(g) =

km∑
i=1

g

(
i

km

)2

,

Ŷi,s =
km∑
l=1

{
g

(
l

km

)
− g

(
l − 1

km

)}2

(Yi,ts+l
− Yi,ts+l−1

)2,

1{·} is an indicator function, and νm = 1.8
√
BPV(km/m)0.47, where the bipower variation

BPV = π
2

∑m
s=2 |Yi,ts−1 − Yi,ts−2||Yi,ts − Yi,ts−1|. We used the uniform kernel function and the

data-driven approach to obtain the preaveraging window size, km, as suggested in Section

3.1 of Figueroa-López and Wu (2022).

With the instantaneous volatility estimates spanning D days, Σ̂D,n = (ĉi,τ )D×n, we exam-

ined the out-of-sample performance of estimating the one-day-ahead instantaneous volatility

process. For comparison, the TIP-PCA, AVE, AR, SARIMA, HAR, HAR-D, XGBoost,

and PC methods were employed to predict cD+1,τ , for τ = 1, . . . , n. Specifically, for the

TIP-PCA, we utilized the ex-post daily, weekly, and monthly realized volatilities and the

intraday time sequence { τ
n
}nτ=1 as covariates for X and W, respectively. In addition, the

additive polynomial basis with J1 = 2 and J2 = 3 are used for the sieve basis of TIP-PCA,

as discussed in Section 2.3. AVE represents estimates obtained by the column mean of Σ̂D,n.

AR and HAR represent predicted values obtained with the autoregressive model of order 1

and the HAR model, respectively, within each column of Σ̂D,n. PC represents the last row of

the estimated low-rank matrix using the best rank-r matrix approximation based on Σ̂D,n.

For TIP-PCA and PC, we used rank 1 as suggested by the eigenvalue ratio method (Ahn

and Horenstein, 2013). We note that AR and HAR account for the time series dynamics

18



while AVE and PC cannot. However, AR and HAR have the overparameterization problem.

PC can partially explain the periodic pattern using the rank-one right singular vector, while

other competitors cannot explicitly account for the pattern due to the random noise εi,tj . To

address intraday periodic patterns in addition to daily autoregressive time series dynamics,

we also employed the existing methods below. SARIMA represents n-step ahead predicted

values obtained with the seasonal ARIMA(1,1,1) (Sheppard, 2010), with the length of the

seasonal cycle as n. HAR-D represents the modified HAR model that includes the diurnal

effect and previous intraday component in addition to the ex-post daily, weekly, and monthly

realized volatilities (for details, see Zhang et al., 2024). Lastly, to account for the nonlinear

impacts, we included XGBoost (Chen and Guestrin, 2016), a decision-tree-based ensemble

algorithm. We utilized the same hyperparameters as those specified in Zhang et al. (2024).

We note that SARIMA, HAR-D, and XGBoost were conducted after vectorizing Σ̂D,n as a

time series vector. We generated high-frequency data with m = 23,400 for 200 consecutive

days. We used the subsampled log prices of the last D = 50, 100, 150, and 200 days. To check

the performance of the instantaneous volatility, we calculated the mean squared prediction

errors (MSPE) as follows:

1

n

n∑
τ=1

(c̃D+1,τ − cD+1,τ )
2,

where c̃D+1,τ is one of the above one-day-ahead instantaneous volatility estimators. Then,

we calculated the sample average of MSPEs over 500 simulations.

Figure 1 presents the average MSPEs of one-day-ahead intraday instantaneous volatility

estimators with D = {50, 100, 150, 200} and n = {39, 78}. We note that for each simulation,

since we used the subsampled data, the target future volatility is the same for each different

D. Figure 1 makes evident that the TIP-PCA method demonstrates the best performance.

This is because TIP-PCA can accurately predict the future instantaneous volatility process

by leveraging the features of the HAR model and the U-shaped intraday volatility and

handling of the overparameterization problem. Additionally, the MSPEs of TIP-PCA tend to

decrease as the number of daily observations and intraday instantaneous volatility estimators
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Figure 1: MSPE×109 for the TIP-PCA, AVE, AR, SARIMA, HAR, HAR-D, XGBoost, and
PC.

increases. This finding aligns with the theoretical results in Section 3. In contrast, the

MSPEs of AVE and AR increase as the number of daily observations increases. This may be

because they do not include the HAR model feature and consider old information deemed

unhelpful. SARIMA and XGBoost do not perform well because they do not incorporate the

interday HAR model feature. Furthermore, the HAR method does not perform well due to its

inability to integrate the U-shaped intraday volatility feature and the overparameterization

problem. By considering the previous intraday component as well as the diurnal effect,

HAR-D improves performance compared to HAR. However, HAR-D underperforms TIP-

PCA because it cannot fully incorporate the intraday periodic pattern. We note that we

also considered a simulation study for the higher rank case (r = 2) in Section S.1 of the

online supplement. The result is similar.

5 Empirical Study

In this section, we applied the proposed TIP-PCA method to an intraday instantaneous

volatility prediction using real high-frequency trading data. We obtained intraday data of the
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S&P 500 index ETF (SPY) and ETFs that represent the 11 Global Industrial Classification

Standard (GICS) sector index funds (XLC, XLY, XLP, XLE, XLF, XLV, XLI, XLB, XLRE,

XLK, and XLU) from July 2021 to June 2022 from the TAQ database in the Wharton

Research Data Services (WRDS) system. We collected high-frequency data subsampled

every 1 second and excluded days with early stock market closures during this period. This

subsampling helps reduce the effect of irregular observation time points (Li and Linton,

2023). We used the log prices and employed the jump robust pre-averaging estimation

procedure defined in Section 4 to estimate the instantaneous variance at a frequency of

every 10 minutes. Then, we conducted the TIP-PCA, AVE, AR, SARIMA, HAR, HAR-D,

XGBoost, and PC methods as described in Section 4 using the in-sample period data to

predict the one-day-ahead instantaneous volatilities. In addition, we added TIP-PCA-S,

which is a simplified version of the proposed method. Specifically, we fit the HAR model

based on the row mean of Σ̂D,n to predict the one-day-ahead integrated volatility value,

while the U-shape is fitted using the column mean of Σ̂D,n. The predicted volatility process

is then obtained by multiplying the predicted integrated volatility by the fitted intraday

vector. We note that TIP-PCA-S basically generates a rank one matrix by averaging each

dimension of the volatility matrix. We used the rolling window scheme, where the in-sample

period was 63 days (i.e., one quarter). The number of out-of-sample predictions was 7,371

(i.e., every 10 minutes for 189 days).

To measure the performance of the predicted instantaneous volatility, we utilized the

mean squared prediction errors (MSPE) and QLIKE (Patton, 2011) as follows:

MSPE =
1

nq

q∑
i=1

n∑
j=1

(c̃D+i,j − ĉD+i,j)
2,

QLIKE =
1

nq

q∑
i=1

n∑
j=1

(log c̃D+i,j +
ĉD+i,j

c̃D+i,j

),

where c̃D+i,j is one of the TIP-PCA, AVE, AR, SARIMA, HAR, HAR-D, XGBoost, and PC

estimates. We predicted one-day-ahead conditional expected instantaneous volatilities using
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Table 1: MSPEs and QLIKEs for the TIP-PCA, AVE, AR, SARIMA, HAR, HAR-D, XG-
Boost, PC, and TIP-PCA-S.

TIP-PCA AVE AR SARIMA HAR HAR-D XGBoost PC TIP-PCA-S

MSPE×109

SPY 2.239 3.213 2.903 3.082 3.328 2.942 2.843 2.407 2.433
XLC 3.308 4.491 4.055 4.200 4.794 4.719 4.105 3.455 3.782
XLY 8.606 11.992 10.327 10.375 12.162 12.399 12.533 9.157 9.507
XLP 0.593 0.798 0.713 0.828 0.804 0.752 0.719 0.604 0.627
XLE 8.471 11.792 9.516 9.399 10.017 10.105 10.919 8.559 8.909
XLF 2.380 3.510 2.854 3.121 3.085 2.897 3.118 2.524 2.507
XLV 0.918 1.223 1.069 1.150 1.214 1.172 1.334 0.953 1.052
XLI 1.817 2.568 2.344 2.325 2.792 2.373 2.313 1.851 1.986
XLB 2.182 2.993 2.605 2.819 2.965 2.891 2.912 2.254 2.376
XLRE 1.803 2.339 2.120 2.583 2.400 2.218 2.327 1.819 1.881
XLK 7.477 10.233 9.019 9.157 10.628 9.819 9.538 7.879 8.159
XLU 0.909 1.143 1.026 1.129 1.120 1.081 1.177 0.926 0.939

QLIKE

SPY -9.054 -8.932 -9.095 -6.983 -8.695 -7.098 -9.098 -9.171 -9.150
XLC -8.871 -8.801 -8.898 -7.061 -1.790 -8.378 -8.897 -8.973 -8.970
XLY -8.367 -8.179 -8.297 -7.600 -7.987 -6.081 -8.286 -8.379 -8.357
XLP -9.477 -9.378 -9.444 -7.934 -9.316 -8.932 -9.450 -9.484 -9.473
XLE -8.090 -8.013 -8.060 -7.993 -7.947 -7.971 -8.068 -8.093 -8.085
XLF -8.393 -8.327 -8.379 -8.303 -8.325 -8.057 -8.377 -8.391 -8.392
XLV -9.417 -9.302 -9.391 -6.121 -9.153 -6.680 -9.371 -9.451 -9.425
XLI -9.134 -8.997 -9.109 -6.366 -8.579 -8.638 -9.122 -9.197 -9.358
XLB -9.104 -8.947 -9.025 -6.564 -8.670 -8.378 -9.047 -9.118 -9.093
XLRE -9.082 -8.986 -9.036 -7.208 -8.845 -8.244 -9.029 -9.075 -9.067
XLK -8.487 -8.316 -8.452 -6.959 -8.172 -7.382 -8.442 -8.511 -8.500
XLU -9.122 -9.057 -9.097 -7.974 -9.017 -8.990 -9.100 -9.117 -9.119

in-sample period data. Additionally, since we do not know the true conditional expected

instantaneous volatility, to assess the significance of differences in prediction performances,

we conducted the Diebold and Mariano (DM) test (Diebold and Mariano, 2002) based on

MSPE and QLIKE. We compared the proposed TIP-PCA method with other methods.

Importantly, since we conducted each hypothesis test multiple times repeatedly throughout

this section, it is essential to control the False Discovery Rate (FDR). Hence, we adjusted the

p-values using the Benjamini–Hochberg (BH) procedure (Benjamini and Hochberg, 1995) at

a level α = 0.05 to control the FDR across all hypothesis tests employed in this section.

Table 1 reports the results of MSPEs and QLIKEs, and Table 2 shows the adjusted p-
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Table 2: The adjusted p-values for the DM test statistic based on MSPE and QLIKE for
AVE, AR, SARIMA, HAR, HAR-D, XGBoost, PC, and TIP-PCA-S with respect to the
TIP-PCA.

AVE AR SARIMA HAR HAR-D XGBoost PC TIP-PCA-S

MSPE

SPY 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***
XLC 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.013** 0.000***
XLY 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***
XLP 0.000*** 0.001*** 0.000*** 0.000*** 0.000*** 0.000*** 0.495 0.000***
XLE 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.857 0.000***
XLF 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***
XLV 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.141 0.000***
XLI 0.000*** 0.001*** 0.000*** 0.000*** 0.000*** 0.000*** 0.140 0.000***
XLB 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.043** 0.000***
XLRE 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.623 0.000***
XLK 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***
XLU 0.000*** 0.002*** 0.000*** 0.000*** 0.000*** 0.000*** 0.252 0.000***

QLIKE

SPY 0.000*** 0.084* 0.000*** 0.003*** 0.017** 0.077* 0.000*** 0.000***
XLC 0.043** 0.379 0.000*** 0.400 0.000*** 0.312 0.000*** 0.000***
XLY 0.000*** 0.000*** 0.000*** 0.000*** 0.001*** 0.000*** 0.000*** 0.000***
XLP 0.000*** 0.000*** 0.001*** 0.005*** 0.001*** 0.000*** 0.000*** 0.000***
XLE 0.000*** 0.000*** 0.000*** 0.000*** 0.141 0.000*** 0.176 0.000***
XLF 0.000*** 0.000*** 0.000*** 0.000*** 0.004*** 0.000*** 0.038** 0.027**
XLV 0.000*** 0.002*** 0.000*** 0.000*** 0.101 0.000*** 0.000*** 0.011**
XLI 0.000*** 0.046** 0.000*** 0.007*** 0.000*** 0.276 0.000*** 0.000***
XLB 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***
XLRE 0.000*** 0.000*** 0.000*** 0.000*** 0.011** 0.000*** 0.094* 0.000***
XLK 0.000*** 0.000*** 0.001*** 0.000*** 0.000*** 0.014** 0.000*** 0.000***
XLU 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.005*** 0.000***

Note: The adjusted p-values are based on the Benjamini–Hochberg (BH) procedure (Ben-
jamini and Hochberg, 1995) at a level α = 0.05. ***, **, and * indicate rejection of the null
hypothesis at significance levels of 1%, 5%, and 10%, respectively.

values for the DM tests. From Tables 1 and 2, we find that the TIP-PCA method exhibits the

best performance overall. This may be because the projection method, utilizing covariates

such as ex-post realized volatility information and the U-shaped intraday volatility feature,

contributes to enhancing the accuracy of instantaneous volatility predictions. We note that

PC also performs well compared to other competing methods. This may be because re-

moving the noise component using the PC method is crucial. Additionally, the dynamics

of previous intraday volatility significantly influence one-day-ahead intraday volatility fore-
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Table 3: Number of cases where the adjusted p-value is greater than 0.05 for TIP-PCA,
AVE, AR, SARIMA, HAR, HAR-D, XGBoost, PC, and TIP-PCA-S across 12 ETFs at each
q0 = {0.01, 0.02, 0.05, 0.1, 0.2} based on the LRuc, LRcc, and DQ tests.

LRuc LRcc DQ

q0 0.01 0.02 0.05 0.1 0.2 0.01 0.02 0.05 0.1 0.2 0.01 0.02 0.05 0.1 0.2

TIP-PCA 9 12 12 12 12 10 12 12 12 12 6 6 7 8 10
AVE 3 3 6 12 12 3 4 5 12 12 3 3 4 4 7
AR 4 5 11 12 12 7 7 11 12 12 4 4 5 7 9
SARIMA 1 1 1 3 10 7 9 11 12 12 2 2 2 3 6
HAR 1 2 4 12 12 0 1 4 11 12 3 4 4 5 7
HAR-D 1 0 4 7 12 7 10 12 12 12 2 2 3 4 6
XGBoost 3 4 8 11 12 7 10 11 12 12 3 3 5 6 9
PC 6 8 12 12 12 7 9 12 12 12 5 5 7 8 10
TIP-PCA-S 4 6 11 12 12 8 10 12 12 12 4 5 6 8 10

Note: The adjusted p-values are based on the Benjamini–Hochberg (BH) procedure (Ben-
jamini and Hochberg, 1995) at a level α = 0.05.

casts, which indicates a strong AR structure in the interday dimension. TIP-PCA-S is also

comparable to the proposed TIP-PCA in some cases. This may be because both TIP-PCA

and TIP-PCA-S utilize the same information using the HAR model structure within the in-

stantaneous volatility matrix. To further evaluate the performance of the proposed method,

we implemented one-day-ahead Value at Risk (VaR) estimation as described below.

We also evaluated the performance of the proposed method in estimating one-day-ahead

10-minute frequency Value at Risk (VaR). In particular, we first predicted the one-day-ahead

conditional expected instantaneous volatilities using the TIP-PCA, AVE, AR, SARIMA,

HAR, HAR-D, XGBoost, and PC procedures using the in-sample period data. We then

calculated the quantiles using historical standardized 10-minute returns. Specifically, we

standardized in-sample 10-minute returns using estimated conditional instantaneous volatil-

ities. We then derived sample quantiles for 0.01, 0.02, 0.05, 0.1, and 0.2. Using the sample

quantile estimates and predicted instantaneous volatility, we obtained the one-day-ahead 10-

minute frequency VaR values for each prediction method. We used a fixed in-sample period

as one quarter and implemented a rolling window scheme. The out-of-sample period was

considered to be from October 2021 to June 2022.
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To backtest the estimated VaR, we conducted the likelihood ratio unconditional coverage

(LRuc) test (Kupiec, 1995), the likelihood ratio conditional coverage (LRcc) test (Christof-

fersen, 1998), and the dynamic quantile (DQ) test with lag 4 (Engle and Manganelli, 2004).

Table 3 reports the number of cases where the adjusted p-value using the BH procedure is

greater than 0.05 for the 12 ETFs at each q0 = {0.01, 0.02, 0.05, 0.1, 0.2} quantile, based on

the LRuc, LRcc, and DQ tests. In Table 3, we find that the TIP-PCA method consistently

outperforms in all hypothesis tests. We note that both PC and TIP-PCA-S also perform well

compared to other methods. However, the number of cases for TIP-PCA exceeds those of

PC and TIP-PCA-S, particularly for the lower quantiles, which are difficult to predict. This

is because TIP-PCA-S cannot filter out the noise component using the given singular vector

structure, and PC cannot explain the complex dynamic structure. In contrast, TIP-PCA can

filter out the noise component through the projection approach and catch the complex dy-

namics using the inter-day HAR and intra-day U-shape structures. This outcome confirms

that the proposed TIP-PCA method significantly contributes to the improved prediction

accuracy of future instantaneous volatilities and enhanced risk management.

6 Conclusion

This paper introduces a novel intraday instantaneous volatility prediction procedure. The

proposed Two-sIde-Projected-PCA (TIP-PCA) method leverages both interday and intra-

day volatility dynamics based on the semiparametric structure of the low-rank matrix of

the instantaneous volatility process. We establish the asymptotic properties of TIP-PCA

and its future instantaneous volatility estimators. In the empirical study, concerning the

out-of-sample performance of predicting the one-day-ahead instantaneous volatility process,

TIP-PCA outperforms other conventional methods. This finding confirms that both the

HAR model structure on interday dynamics and the U-shaped pattern on intraday dynam-

ics contribute to predicting the future instantaneous volatility process.
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In this paper, we focus on the instantaneous volatility process for a single asset. In prac-

tice, we often need to handle a large number of assets. Thus, it is important and interesting

to extend the study to predict the instantaneous volatility process of many assets. However,

to do this, cross-sectionally, we encounter another curse of dimensionality. Therefore, tech-

nically, it is a demanding task to handle both the cross-sectional curse of dimensionality and

the intraday curse of dimensionality. We leave this for a future study.
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ity analysis with realized GARCH-Itô models,” Journal of Econometrics, 222, 393–410.

Todorov, V. (2019): “Nonparametric spot volatility from options,” The Annals of Applied

Probability, 29, 3590–3636.

Todorov, V. and Y. Zhang (2023): “Bias reduction in spot volatility estimation from

options,” Journal of Econometrics, 234, 53–81.

Vershynin, R. (2010): “Introduction to the non-asymptotic analysis of random matrices,”

arXiv preprint arXiv:1011.3027.

Wang, W. and J. Fan (2017): “Asymptotics of empirical eigenstructure for high dimen-

sional spiked covariance,” The Annals of Statistics, 45, 1342.

Xiu, D. (2010): “Quasi-maximum likelihood estimation of volatility with high frequency

data,” Journal of Econometrics, 159, 235–250.

Zhang, C., Y. Zhang, M. Cucuringu, and Z. Qian (2024): “Volatility forecasting

with machine learning and intraday commonality,” Journal of Financial Econometrics,

22, 492–530.

Zhang, L. (2006): “Efficient estimation of stochastic volatility using noisy observations: A

multi-scale approach,” Bernoulli, 12, 1019–1043.

——— (2011): “Estimating covariation: Epps effect, microstructure noise,” Journal of

Econometrics, 160, 33–47.

31
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